(12) 实用新型专利

(19) 中华人民共和国国家知识产权局

(10) 授权公告号 CN 201627605 U
(45) 授权公告日 2010.11.10

(21) 申请号 201020055483.2
(22) 申请日 2010.01.21

(73) 专利权人 重庆德华机械制造有限公司
地址 401120 重庆市渝北区翠谷街2号

(72) 发明人 刘雅黔 王洪远 杨昭洪

(74) 专利代理机构 重庆创新专利商标代理有限公司 50125
代理人 付继德

(51) Int. Cl.
 F01D 11/00 (2006.01)
 F01D 25/16 (2006.01)
 F01D 25/08 (2006.01)
 F02B 39/00 (2006.01)

(54) 实用新型名称
涡轮增压器涡端密封和隔热结构

(57) 摘要
本实用新型公开了一种涡轮增压器涡端密封和隔热结构，包括压气叶轮、主轴、轴承壳、涡端隔热罩和涡轮蜗壳、涡端隔热罩与轴承壳之间设有涡端隔热空腔，涡端隔热罩的内孔与轴承壳的环状突出外圆之间有配合间隙；该配合间隙将涡端隔热空腔与涡轮蜗壳的排气通道连通；轴承壳的另一端设有压气机蜗壳和压端密封盖；压端密封盖外侧面与压气叶轮背面之间形成有与压气通道连通的压端密封空腔，压端密封空腔和涡端隔热空腔之间设有连通的轴向通道；涡端隔热空腔与涡轮主轴和轴承壳之间的密封环槽及配合间隙设有连通的径向通道。本实用新型一种增压器涡轮端密封和隔热结构的有益效果是，结构简单，隔热降温效果好，密封性能好，增压器故障率低，制造成本低。
1. 一种涡轮增压器涡端密封和隔热结构，包括与压气叶轮 (1) 同轴固定连接的涡轮主轴 (2)，涡轮主轴 (2) 旋转支承在轴承壳 (3) 内部的动压轴承 (37) 上，涡轮主轴 (2) 上的涡轮 (22) 位于轴承壳 (3) 的外部，涡轮主轴 (2) 位于涡轮 (22) 一侧的轴颈 (23) 与轴承壳 (3) 的环状突出部 (36) 的内孔之间设有涡端密封环 (24)；所述涡轮 (22) 与轴承壳 (3) 之间设有涡端隔热罩 (9) 和涡轮蜗壳 (5)，涡端隔热罩 (9) 位于涡轮蜗壳 (5) 内部，涡端隔热罩 (9) 的内孔与轴承壳 (3) 的环状突出部 (36) 外圆之间设有配合间隙 (25)，涡端隔热罩 (9) 内侧面与轴承壳 (3) 的相向外侧面之间设有涡端隔热空腔 (8)，涡端隔热空腔 (8) 由轴承壳 (3) 与涡端隔热罩 (9) 之间的配合间隙与涡轮蜗壳 (5) 的排气通道在涡轮 (22) 的轮背处连接；所述轴承壳 (3) 的另一端固定连接有压气机蜗壳 (4) 和压端密封盖 (6)，压端密封盖 (6) 位于压气机蜗壳 (4) 内部，压端密封盖 (6) 外侧面与压气叶轮 (1) 背面之间形成有压端密封空腔 (7)，压端密封空腔 (7) 与压气机蜗壳 (4) 的压气通道连通。其特征在于：所述压端密封空腔 (7) 和涡端隔热空腔 (8) 之间设有沿涡轮轴 (2) 轴向的轴向通道 (31)，轴向通道 (31) 的进口与压端密封空腔 (7) 连通，轴向通道 (31) 的出口端与涡端隔热空腔 (8) 连通；所述轴承壳 (3) 上还设有径向通道 (32)，径向通道 (32) 的进口端与涡端隔热空腔 (8) 连通，径向通道 (32) 的出口端与涡轮主轴 (2) 和轴承壳 (3) 之间的密封环槽 (21) 及配合间隙 (25) 连通。

2. 根据权利要求 1 所述的涡轮增压器涡端密封和隔热结构，其特征在于：所述轴向通道 (31) 由相互连通的前段节流通道 (311) 和后段通道 (312) 组成，前段节流通道 (311) 的两端分别位于压端密封盖 (6) 和轴承壳 (3) 上，前段节流通道 (311) 的前端与压端密封空腔 (7) 连通；轴向通道 (31) 的后端通道 (312) 设在轴承壳 (3) 上，后段通道 (312) 的后端与涡端隔热空腔 (8) 连通。

3. 根据权利要求 2 所述的涡轮增压器涡端密封和隔热结构，其特征在于：所述前段节流通道 (311) 包括设在压端密封盖 (6) 上设有的通孔 (62)，通孔 (62) 的前端与压端密封盖 (6) 与压气叶轮 (1) 之间的压端密封空腔 (7) 连通；通孔 (62) 位于压端密封盖 (6) 设有的凸柱 (61) 轴向上，凸柱 (61) 的外周面与轴承壳 (3) 设有的沉孔 (33) 的内壁面间隙配合，沉孔 (33) 将压端密封盖 (6) 上的通孔 (62) 与轴向通道 (31) 的后端通道 (312) 连通。

4. 根据权利要求 2 所述的涡轮增压器涡端密封和隔热结构，其特征在于：所述前段节流通道 (311) 包括设在压端密封盖 (6) 上的螺纹孔 (63)，螺纹孔 (63) 由螺纹配合有在轴线上设有直通孔 (641) 的节流螺钉 (64)，节流螺钉 (64) 的前端悬伸在轴承壳 (3) 设有的沉孔 (33) 内，沉孔 (33) 的底面与节流螺钉 (64) 前端面之间连接有橡胶垫 (34)，橡胶垫 (34) 的轴线上设有节流孔 (341)，节流孔 (341) 分别与节流螺钉 (64) 上的直通孔 (641) 和轴向通道 (31) 的后段通道 (312) 连通，节流孔 (341) 的截面积小于后段通道 (312) 截面积。

5. 根据权利要求 1～4 中任意一项权利要求所述的涡轮增压器涡端密封和隔热结构，其特征在于：所述后端通道 (312) 的出口端由螺纹配合有涡端节流螺钉 (35)，涡端节流螺钉 (35) 沿轴线设有涡端节流孔 (351)，涡端节流孔 (351) 分别与后段通道 (312) 和涡轮蜗壳 (5) 与轴承壳 (3) 之间的涡端隔热空腔 (8) 连通，涡端节流孔 (351) 的截面积小于后段通道 (312) 截面积。
涡轮增压器涡端密封和隔热结构

【0001】技术领域
本实用新型涉及一种涡轮增压器转动部件的密封和隔热结构，特别涉及一种涡轮增压器涡端密封和隔热结构。

【0002】背景技术
涡轮增压器提高汽油或柴油内燃机功率的一种附加装置，其利用内燃机排气道排出的废气驱动涡轮，涡轮通过转子带动压气叶轮旋转，叶轮压送由空气滤清器管道送来的空气，使涡压进入发动机气缸，以通过增加而增加发动机气缸的进气量，随后加大进油量达到提高发动机功率的目的。

【0003】目前，随着高增压的中速和高速柴油机的发展，与之配套的高压力增压器结构越来越紧凑，其承受的热负荷也越来越高，相应的工作转速不断增加，使得保证增压器涡端的隔热和润滑脂的密封越来越困难。在实际的应用中，由于增压器涡端轴承承受负荷过高，引起涡端密封失效而导致润滑脂泄漏，泄漏的润滑脂在高温下焦结而造成增压器转子部件烧死的故障频繁发生，给用户带来了很多不便和较大经济损失。

【0004】发明内容
本实用新型的目的就是针对现有技术的不足，提供一种结构简单、隔热效果好、密封性能好、增压器效率低、制造成本低的涡轮增压器涡端密封和隔热结构。

【0005】为实现上述目的，本实用新型采用如下技术方案：

【0006】一种涡轮增压器涡端密封和隔热结构，包括与压气叶轮同轴固定连接的涡轮主轴，涡轮主轴旋转支承在轴承壳内部的动压轴承上，涡轮主轴上的蜗轮位于轴承壳的外部，涡轮主轴位于蜗轮一端的轴颈与轴承壳的环状突出部的内孔之间设有端面密封环；所述蜗轮与轴承壳之间设有端面隔环罩和涡轮蜗壳，涡端隔环罩位于涡轮蜗壳内部，涡端隔环罩的内孔与轴承壳的环状突出部外圆之间设有配合间隙，涡端隔环罩内侧与轴承壳的相向外侧而之间设有涡端隔热空腔，涡端隔热空腔由轴承壳与涡端隔热罩之间的配合间隙涡端蜗壳的排气通道在涡轮的轮背处连通；所述轴承壳的另一端固定连接有压气机蜗壳和压端密封盖，压端密封盖位于压气机蜗壳内部，压端密封盖外侧与压气叶轮背面之间形成有端面密封空腔，压端密封空腔与压气机蜗壳的压气通道连通，所述压端密封空腔和涡端隔热空腔之间设有沿涡轮主轴轴向的轴向通道，轴向通道的进口与压端密封空腔连通，轴向通道的出口端与涡端隔热空腔连通；所述轴承壳上还设有径向通道，径向通道的进口端与涡端隔热空腔连通，径向通道的出口端与涡轮主轴和轴承壳之间形成的在密封环槽及配合间隙连通。

【0007】采用如上技术方案后，对于不同大小和型号的增压器，轴承壳中布置的轴向通道和径向通道截面尺寸都需要根据实际数据予以确定或优化。涡轮增压器的压气机端压气叶轮轴后端密封空腔的压缩空气由轴向通道进入涡端隔热空腔中，利用空气隔热性能优良，实现对轴承壳及转子部件隔热降温的目的；涡轮主轴和轴承壳之间形成的密封环槽，进入涡端隔热空腔中的一部分空气从由轴承壳同涡端隔热罩之间的配合间隙排出到涡轮轴背处，进而排入大气中，从而阻止涡端的热气进入涡端隔热空腔，实现对轴承壳及转子部件隔热降温的目的；进入涡端隔热空腔中的另一部分空气从径向通道进入轴承壳之间形成的密封环槽，并由增压器的润滑油路进入发动机油底壳，继而从发动机油底壳的呼吸孔排

3
入气中，形成稳定的冷却气路，密封环槽处的空气阻止或减少润滑油进入涡端密封处，降低润滑油从涡端密封处泄漏机率，提高润滑油的密封可靠性，有效防止润滑油发生高温结焦，从而减少涡轮增压器因润滑油发生高温结焦产生故障的频率；同时，涡端密封环两端面的压紧环境基本相同，密封环处于压力均匀的平衡状态，利于降低活塞环面端的磨损，进一步提高润滑油密封的可靠性。由于该压缩空气已经过增压器的空气滤清器过滤，清洁度高，对滑油无污染，滑油的润滑性能不受影响，使用安全。故本实用新型结构简单，隔热降温效果好，密封性能好、增压器故障率低，制造成本低。

【0008】优选的，轴向通道由相互连通的前段节流通道和后段通道组成，前段节流通道的两端分别位于压端密封盖和轴承壳上，前段节流通道的前端与压端密封空腔连通，轴向通道的后端通道设在轴承壳上，后段通道的前端与涡端隔熱空腔连通，设置前段节流通道用于控制进入涡端隔热空腔冷却空气流量，避免多于能量损耗，使增压器的效能保持最优。

【0009】优选的，前段节流通道包括设在压端密封盖上设有的通孔，通孔的前端与压端密封盖与气叶轮之间的压端密封空腔连通；通孔位于压端密封盖设有的凸柱轴线上，凸柱的外周面与轴承壳设有的沉孔的内壁面间隙配合，沉孔将压端密封盖上的通孔与轴向通道的后端通道连通；凸柱的外周面与轴承壳设有的沉孔的内壁面的间隙配合是满足装配方便的需要，其配合间隙较小，避免从间隙处漏出过多压缩空气，漏出的压缩空气由润滑管路及发动机油底壳的呼吸孔排入大气中，通常需由此配合面进行密封处理，其结构简单、安装拆卸方便，同时，对通孔的直径和凸柱长度进行合理设计，以实现控制进入涡端隔熱空腔冷却空气流量，避免多于能量损耗，进一步实现增压器的效能保持最优之目的。

【0010】优选的，前段节流通道包括设在压端密封盖上的螺纹孔，螺纹孔由螺纹配合有在轴线上设有的通孔的节流螺钉，节流螺钉的前端设在轴承壳设有的沉孔内，沉孔的底面与节流螺钉前端面之间连接有橡胶垫，橡胶垫的轴线上设有节流孔，节流孔分别与节流螺钉上的直通孔和轴向通道的后段通道连通，节流孔的截面积小于后段通道截面积，可以方便地调节进入涡端隔熱空腔中进气量，确保隔热降温效果和密封可靠性的同时，避免多于能量损耗，进一步实现增压器的效能保持最优之目的。

【0011】优选的，后段通道的出口端由螺纹配合有涡端节流螺钉，涡端节流螺钉沿轴线设有涡端节流孔，涡端节流孔分别与后段通道和涡轮蜗壳与轴承壳之间的涡端隔熱空腔连通，涡端节流孔的截面积小于后段通道截面积，适用于涡轮增压器在低转速工况下，如主机在高寒地区环境使用时，其压端密封空腔压力低于涡端隔熱空腔压力容易引起涡端滑油泄漏，此时，合理确定节流孔的长径比，即涡端节流螺钉的长度和节流孔直径比值，以确保涡端密封环两端面的压力环境基本相同，涡端密封环处于压力均匀的平衡状态，降低活塞环面端的磨损，提高滑油密封的可靠性。

【0012】本实用新型一种增压器涡端密封和隔热结构的有益效果是，结构简单、隔热降温效果好、密封性能好、增压器故障率低，制造成本低。

【0013】附图说明 图1是本实用新型实施例1的结构示意图；

【0014】图2是本实用新型实施例2的结构示意图；

【0015】图3是本实用新型实施例3的结构示意图；

【0016】具体实施方式 下面结合附图对本实用新型作进一步的说明；

【0017】实施例1 参见图1，一种用于TET1系列的涡轮增压器涡端密封和隔热结构，包
括与压气叶轮1同轴固定连接的蜗轮主轴2;蜗轮主轴2旋转支承在轴承壳3内部的动压轴承37上,蜗轮主轴2上的蜗轮22位于轴承壳3的外部,蜗轮主轴2位于蜗轮22一侧的轴颈23与轴承壳3的环状突出部36的内孔之间设有涡端密封环24;所述蜗轮22与轴承壳3之间设有涡端隔热罩9和涡轮蜗壳5,涡端隔热罩9位于涡轮蜗壳5内部,涡端隔热罩9的内孔与轴承壳3的环状突出部36外圆之间设有配合间隙25,涡端隔热罩9内侧面与轴承壳3的相向外侧面之间设有涡端隔热空腔8,涡端隔热空腔8由轴承壳3与涡端隔热罩9之间的配合间隙与涡轮蜗壳5的排气通道在蜗轮22的轮背处连通;所述轴承壳3的另一端固定连接有压气机蜗壳4和压端密封盖6,压端密封盖6位于压气机蜗壳4内部,压端密封盖6外侧面与压气叶轮1背面之间形成有压端密封空腔7,压端密封空腔7与压气机蜗壳4的压气通道连通,所述压端密封空腔7和涡端隔热空腔8之间设有沿涡轮主轴2轴向的轴向通道31,轴向通道31的出口与压端密封空腔7连通,轴向通道31的出口端与涡端隔热空腔8连通;轴承壳3上还设有径向通道32,径向通道32的进口端与涡端隔热空腔8连通,径向通道32的出口端与蜗轮主轴2和轴承壳3之间形成的密封环槽21及配合间隙25连通。

【0018】所述轴向通道31由相互连通的前段节流通道311和后段通道312组成,前段节流通道311的两端分别位于压端密封盖6和轴承壳3上,前段节流通道311的前端与压端密封空腔7连通,轴向通道31的后段通道312设在轴承壳3上,后段通道312的后端与涡端隔热空腔8连通。

【0019】所述前段节流通道311包括设在压端密封盖6上设有的通孔62,通孔62的前端与压端密封盖6与压气叶轮1之间的压端密封空腔7连通;通孔62位于压端密封盖6设有的凸柱61轴线上,凸柱61的外周面与轴承壳3设有的沉孔33的内壁面间隙配合,沉孔33将压端密封盖6上的通孔62与轴向通道31的后段通道312连通。

【0020】所述径向通道32为直通孔,径向通道32的轴线与蜗轮轴上2轴线垂直。

【0021】本实施例的其余结构与实施例1相同,在此不再赘述。

【0022】实施例2 参见图2,所述前段节流通道311包括设在压端密封盖6上的螺纹孔63,螺纹孔63由螺纹配合有在轴线上设有直通孔641的节流螺钉64,节流螺钉64的前端悬伸在轴承壳3设有的沉孔33内,沉孔33的底面与节流螺钉64前端面之间连接有橡胶垫34,橡胶垫34的轴线上设有节流孔341,节流孔341分别与节流螺钉64上的直通孔641和轴向通道31的后段通道312连通,节流孔341的截面积小于后段通道312截面积。

【0023】所述后段通道312的出口端由螺纹配合有涡端节流螺钉35,涡端节流螺钉35沿轴线设有涡端节流孔351,涡端节流孔351分别与后段通道312和涡轮蜗壳5与轴承壳3之间的涡端隔热空腔8连通,涡端节流孔351的截面积小于后段通道312截面积。

【0024】所述径向通道32为直通孔,径向通道32的轴线与蜗轮轴上2轴线成倾斜状。

【0025】实施例3 参见图3,所述后段通道312的出口端由螺纹配合有涡端节流螺钉35,涡端节流螺钉35沿轴线设有涡端节流孔351,涡端节流孔351分别与后段通道312和涡轮蜗壳5与轴承壳3之间的涡端隔热空腔8连通,涡端节流孔351的截面积小于后段通道312截面积。

【0026】所述径向通道32的轴线成折线状,径向通道32的出口端与涡轮轴上2和轴承壳3之间形成的密封环槽21及配合间隙25连通端的轴线与涡轮轴上2的轴线成倾斜状。

【0027】本实施例的其余结构与实施例1相同,在此不再赘述。
以上虽然结合了附图描述了本实用新型的实施方式，但本领域的普通技术人员可以在所附权利要求的范围内作出各种变形或修改。这些变形和修改可以理解为在本发明的范围和意图之内。