Abstract:

Title: TREATMENT CANCERS USING COMBINATION COMPRISING PARP INHIBITORS

Disclosed herein is a method for the prevention, delay of progression or treatment of cancer in a subject, comprising administering to the subject in need thereof a PARP inhibitor, particularly, (R) -2-fluoro-10a-methyl-7, 8, 9, 10a, 11-hexahydro-5, 6, 7a, 11-tetraazacyclohepta [def] cyclopen[a] fluoren-4 (5H) -one, a sesqui-hydrate thereof, or a pharmaceutically acceptable salt thereof, in combination with an immune checkpoint inhibitor or a chemotherapeutic agent. Also, disclosed a pharmaceutical combination comprising a PARP inhibitor, particularly, (R) -2-fluoro-10a-methyl-7, 8, 9, 10a, 11-hexahydro-5, 6, 7a, 11-tetraazacyclohepta [def] cyclopen[a] fluoren-4 (5H) -one, a sesqui-hydrate thereof, or a pharmaceutically acceptable salt thereof, in combination with an immune checkpoint inhibitor, or a chemotherapeutic agent and the use thereof.
TREATMENT CANCERS USING COMBINATION COMPRISING PARP INHIBITORS

[0001] This application claims the benefit of priority to International Patent Application No. PCT/CN2016/100320 filed on September 27, 2016, the disclosures of which is hereby incorporated by reference in its entirety for all purposes.

FIELD OF THE INVENTION

[0002] Disclosed herein is a method for the prevention, delay of progression or treatment of cancer in a subject, comprising administering to the subject in need thereof a PARP inhibitor (in particularly (R)-2-fluoro-10a-methyl-7,8,9,10a,l 1-hexahydro-5,6,7a,l 1-tetraazacyclohepta[def]cyclopenta[a]fluoren-4(5H)-one or a pharmaceutically acceptable salt thereof; (R)-2-fluoro-10a-methyl-7,8,9,10a,l 1-hexahydro-5,6,7a,l 1-tetraazacyclohepta[def]cyclopenta[a]fluoren-4(5H)-one sesqui-hydrate) in combination with an immune checkpoint inhibitor or a chemotherapeutic agent. Disclosed herein is also a pharmaceutical combination comprising a PARP inhibitor (in particularly (R)-2-fluoro-10a-methyl-7,8,9,10a,l 1-hexahydro-5,6,7a,l 1-tetraazacyclohepta[def]cyclopenta[a]fluoren-4(5H)-one sesqui-hydrate) in combination with an immune checkpoint inhibitor, or a chemotherapeutic agent and the use thereof.

BACKGROUND OF THE INVENTION

[0003] One of the hallmarks and driving forces of cancer is genetic instability [Hanahan D and Weinberg R A, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.]. Specifically in familial cancers, mutations in the breast cancer susceptibility BRCA1 and BRCA2 tumor suppressor genes, key players in homologous recombination (HR), have been associated with an increased risk of developing breast or ovarian cancer [Li X and Heyer WD, Homologous recombination in DNA repair and DNA damage tolerance. Cell Res, 2008. 18(1): p. 99-113.]. It is in this patient population that inhibitors of poly (ADP-ribose) polymerase (PARP) have gained recent attention. PARP family members PARP1 and PARP2 play important roles in DNA replication, transcriptional regulation, and DNA damage repair [Rouleau M, Patel A, Hendzel MJ,

[0004] PARP inhibition and mutant BRCA were synthetically lethal in preclinical models, suggesting an elegant, targeted and minimally toxic way to treat patients.

[0005] WO2013/097225A3 disclosed a series of PARP inhibitor having the following general Formula (I) or a stereoisomer thereof, or a pharmaceutically acceptable salt thereof,

\[
\text{Formula (I)}
\]

\[
\text{Compound A}
\]

[0006] In particularly, (R)-2-fluoro-10a-methyl-7,8,9,10,10a,l 1-hexahydro-5,6,7a,l 1-tetraazacyclohepta[def]cyclopenta[a]fluoren-4(5H)-one (hereinafter Compound A), disclosed in WO2013/097225A1, has highly selective and potent PARP 1/2 inhibitory activities.

[0007] PCT application PCT/CN2016/096200 also discloses crystalline forms of Compound A, particularly, (R)-2-fluoro-10a-methyl-7,8,9,10,10a,l 1-hexahydro-5,6,7a,l 11-tetraazacyclohepta[def]cyclopenta[a]fluoren-4(5H)-one sesqui-hydrate (hereinafter Compound B).

[0008] The inventors of the present application have found that the combination treatment of a PARP inhibitor (in particular, the above-mentioned Compound A or Compound B) with an
immunotherapy agent (for example, an immune checkpoint inhibitor) or a chemotherapeutic agent demonstrates better anti-tumor activity than the monotherapy of each of the above active pharmaceutical agent alone, without severe toxicity.

5 SUMMARY OF THE INVENTION

[0009] In a first aspect, disclosed herein is a method for the prevention, delay of progression or treatment of cancer in a subject, comprising administering to the subject in need thereof a therapeutically effective amount of a PARP inhibitor of Formula (I) or a stereoisomer thereof, a pharmaceutically acceptable salt thereof or a solvate thereof, in combination with a therapeutically effective amount of an immune checkpoint inhibitor or a chemotherapeutic agent.

[0010] In a second aspect, disclosed herein is a pharmaceutical combination for use in the prevention, delay of progression or treatment of cancer, comprising a PARP inhibitor of Formula (I) or a stereoisomer thereof, a pharmaceutically acceptable salt thereof or a solvate thereof, in combination with a therapeutically effective amount of an immune checkpoint inhibitor or a chemotherapeutic agent.

[0011] In a third aspect, disclosed herein is a PARP inhibitor of Formula (I) or a stereoisomer thereof, a pharmaceutically acceptable salt thereof or a solvate thereof, for use in the prevention, delay of progression or treatment of cancer in combination with a therapeutically effective amount of an immune checkpoint inhibitor or a chemotherapeutic agent. In one embodiment of this aspect, disclosed herein is an immune checkpoint inhibitor or a chemotherapeutic agent for use in the prevention, delay of progression or treatment of cancer in combination with a PARP inhibitor of Formula (I) or a stereoisomer thereof, a pharmaceutically acceptable salts thereof or a solvate thereof.

[0012] In a fourth aspect, disclosed herein is a use of a pharmaceutical combination in the manufacture of a medicament for use in the prevention, delay of progression or treatment of cancer, said pharmaceutical combination comprising a PARP inhibitor of Formula (I) or a stereoisomer thereof, a pharmaceutically acceptable salt thereof, or a solvate thereof, and an immune checkpoint inhibitor or a chemotherapeutic agent.

[0013] In a fifth aspect, disclosed herein is an article of manufacture, or "kit" comprising a first container, a second container and a package insert, wherein the first container comprises at least one dose of a medicament comprising a PARP inhibitor of Formula (I) or a stereoisomer thereof, a pharmaceutically acceptable salt thereof, or a solvate thereof; the second container comprises at least one dose of a medicament comprising an immune checkpoint inhibitor or a chemotherapeutic
agent, and the package insert comprises instructions for treating cancer a subject using the medicaments.

[0014] In a sixth aspect, disclosed herein is a method for the prevention, delay of progression or treatment of cancer in a subject, comprising:

(i) in the treatment cycle, administering to the subject in need thereof a chemotherapeutic agent together with a first amount of the PARP inhibitor of Formula (I); and

(ii) in the maintenance phase, administering to the subject which has been treated in the above treatment cycle a second amount of the PARP inhibitor of Formula (I).

[0015] In some embodiments, the PARP inhibitor is Compound A. In other embodiments, the PARP inhibitor is Compound B.

[0016] In some embodiments, the PARP inhibitor is administered continuously or intermittently during the treatment cycle.

[0017] In some embodiments, the method comprises 1 to 3 treatment cycles, and each treatment cycle comprises 1 to 4 weeks.

[0018] In some embodiments, the chemotherapeutic agent is selected from paclitaxel, or etopside plus carboplatin (E/C).

[0019] In some embodiments, the chemotherapeutic agent is administered at a standard dosing regimen. In particular, the standard dosing schedule for C/E includes cisplatin 75mg/m² on day 1, etoposide 100mg/m² on day 1, 2, 3 of every 21 days, 21 days per Cycle; or carboplatin AUG 5-6 on day 1, etoposide 100mg/m² on day 1, 2, 3 of every 21 days, 21 days per Cycle; and the standard dosing schedule for paclitaxel: 80 mg/m² iv on day 1, 8, 15 of every 28 days, 28 days per Cycle.

[0020] In some embodiments, the first amount of the PARP inhibitor in the treatment cycle is different from the second amount of the PARP inhibitor in the maintenance phase.

[0021] In some embodiments, the first amount of the PARP inhibitor in the treatment cycle is lower from the second amount of the PARP inhibitor in the maintenance phase.

[0022] In some embodiments, the second amount of the PARP inhibitor in the maintenance phase is 1-120 mg (in terms of the parent compound) with the administration frequency of once to twice a day; preferably, the administered dosage of the PARP inhibitor is 1-80 mg (in terms of the parent compound), and the administration frequency is twice a day (BID). In other embodiments, the second amount of the PARP inhibitor in the maintenance phase is about 120-240 mg once a day (QD) and the first amount of the PARP inhibitor in the treatment cycle is about 60-120 mg once a day (QD).
[0023] The method and pharmaceutical combination disclosed herein, as a combination therapy, produce more efficacious anti-tumor response than either single agent alone. In particular, the combination of the anti-PD-1 antibody (Mab-1) and Compound B was confirmed to exhibit synergistic effect. So was the combination of Compound A or Compound B with paclitaxel or etopside plus carboplatin (E/C).

[0024] In an embodiment of each of the above six aspects, the chemotherapeutic agent is selected from paclitaxel, or etopside plus carboplatin (E/C). In an embodiment of each of the above six aspects, the immune checkpoint inhibitor is an antibody. In an embodiment of each of the above six aspects, the immune checkpoint inhibitor is a monoclonal antibody. In an embodiments of each of the above six aspects, the immune checkpoint inhibitor is an inhibitor of PD-1. In an embodiment of each of the above six aspects, the cancer is selected from colorectal cancer, gastric cancer, lung cancer, small cell lung cancer, bladder cancer, breast cancer, ovarian cancer, fallopian tube carcinoma, cervical cancer, peritoneal carcinoma, prostate cancer, castration-resistant prostate, bile duct cancer, gastric / gastro-esophageal junction cancer, urothelial cancer, pancreatic cancer, peripheral nerve sheath cancer, uterine cancer, melanoma or lymphoma. In an embodiment of each of the above six aspects, the PARP inhibitor is (R)-2-fluoro-10a-methyi-7,8,9,10,10a,11-hexahydro-5,6,7a,11-tetraazacyclohepta[def]cyclopenta[a]fluoren-4(5H)-one (Compound A), or a pharmaceutically acceptable salt thereof. In an embodiment of each of the above six aspects, the PARP inhibitor is (R)-2-fluoro-10a-methyi-7,8,9,10,10a,11-hexahydro-5,6,7a,11-tetraazacyclohepta[def]cyclopenta[a]fluoren-4(5H)-one sesqui-hydrate (Compound B). In an embodiment of each of the above six aspects, the PARP inhibitor and the immune checkpoint inhibitor, or a chemotherapeutic agent, are administered simultaneously, sequentially or intermittently.

BRIEF DESCRIPTION OF THE DRAWING
[0025] FIG. 1 shows the X-ray diffraction pattern of crystal Compound B.
[0026] FIG. 2 shows the $^1$H-NMR of crystal Compound B.
[0027] FIG. 3 shows the $^{13}$C-NMR of crystal Compound B.
[0028] FIG. 4 shows the level of IFN-γ produced from PBMCs in primary human tumor cells cultured in Matrigel®/ PBMCs co-culture system treatment with Compound B, Mab-1 or the combination of Mab-1 and Compound B, in the EpCAM·CD3 bispecific T cell engager platform.
[0029] FIG. 5 shows the effect of Compound A, paclitaxel and (Compound A+paclitaxel) on tumor growth in human primary gastric cancer xenograft model.

[0030] FIG. 6 shows the effect of Compound A, paclitaxel and (Compound A+paclitaxel) on body weight in primary human gastric cancer xenograft model.

[0031] FIG. 7 shows the effect of etoposide and carboplatin (E/C), and Compound B in combination with E/C on tumor growth in primary human SCLC (limited-stage) xenograft model.

[0032] FIG. 8 shows the effect of etoposide and carboplatin (E/C), and Compound B in combination with E/C on body weight in primary human SCLC (limited-stage) xenograft model.

[0033] FIG. 9 shows the effect of Compound B, etoposide and carboplatin (E/C), and Compound B in combination with E/C on tumor growth in primary human SCLC (extensive-stage) xenograft model.

[0034] FIG. 10 shows the effect of Compound B, etoposide and carboplatin (E/C), and Compound B on body weight in primary human SCLC (extensive-stage) xenograft model.

[0035] FIG. 11 shows the effect of Compound B as maintenance therapy after E/C on tumor growth in primary human SCLC (extensive-stage) xenograft model.

[0036] FIG. 12 shows the effect of Compound B as maintenance therapy after E/C on body weight in primary human SCLC (extensive-stage) xenograft model.

DETAILED DESCRIPTION OF THE INVENTION

Definitions

[0037] Unless specifically defined elsewhere in this document, all other technical and scientific terms used herein have the meaning commonly understood by one of ordinary skill in the art to which this invention belongs.

[0038] As used herein, including the appended claims, the singular forms of words such as "a", "an", and "the", include their corresponding plural references unless the context clearly indicates otherwise.

[0039] The term "or" is used to mean, and is used interchangeably with, the term "and/or" unless the context clearly dictates otherwise.

[0040] Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of an active agent (e.g., a mAb or a Btk inhibitor) or a stated amino acid sequence, but not the exclusion of any other active ingredient or amino acid sequence.
When used herein the term "comprising" can be interchangeable with the term "containing" or "including".

[0041] The term "alkyl" herein refers to a hydrocarbon group selected from linear and branched saturated hydrocarbon groups comprising from 1 to 18, such as from 1 to 12, further such as from 1 to 6, carbon atoms. Examples of the alkyl group can be selected from methyl, ethyl, 1-propyl or n-propyl ("n-Pr"), 2-propyl or isopropyl ("i-Pr"), 1-butyl or n-butyl ("n-Bu"), 2-methyl-1-propyl or isobutyl ("i-Bu"), 1-methylpropyl or s-butyl ("s-Bu"), and 1,1-dimethylethyl or t-butyl ("t-Bu"). Other examples of the alkyl group can be selected from 1-pentyl (n-pentyl, -CH2CH2CH2CH2CH3), 2-pentyl (C(CH3)2CH2CH3), 3-methyl-2-butyl (-CH(CH3)CH2CH3), 3-methyl-1-butyl (CH3CH2CH2CH3), 2-raethyl (C(CH3)2CH2CH3), 1-hexyl (C(CH3)2CH2CH2CH3), -hexyl (C(CH3)2CH2CH2CH3), 2-hexyl (C(CH3)2CH2CH2CH3), 3-hexyl (C(CH3)2CH2CH2CH3), 2-methyl-2-pentyl (C(CH3)2CH2CH2CH3), 3-methyl-2-pentyl (C(CH3)2CH2CH2CH3), 4-methyl-2-pentyl (C(CH3)2CH2CH2CH3), 3-methyl-3-pentyl (C(CH3)2CH2CH3), 2-methyl-3-pentyl (C(CH3)2CH2CH3), 2,3-dimethyl-2-butyl (C(CH3)2CH2CH3) and 3,3-dimethyl-2-butyl (C(CH3)2CH2CH3) groups.

[0042] The term "aikenyl" herein refers to a hydrocarbon group selected from linear and branched hydrocarbon groups comprising at least one C=C double bond and from 2 to 18, such as from 2 to 6, carbon atoms. Examples of the aikenyl group may be selected from ethenyl or vinyl (-CH=CH2), prop-1-enyl (CH=CHCH3), prop-2-enyl (CH2CH=CH2), 2-methylprop-1-enyl, but-1-enyl, but-2-enyl, but-3-enyl, buta-1,3-dienyl, 2-methylbuta-1,3-diene, hexa-1,1-enyl, hexa-2-enyl, hexa-3-enyl, hexa-4-enyl, and hexa-1,3-dienyl groups.

[0043] The term "alkynyl" herein refers to a hydrocarbon group selected from linear and branched hydrocarbon group, comprising at least one C≡C triple bond and from 2 to 18, such as from 2 to 6, carbon atoms. Examples of the alkynyl group include ethynyl (-C≡CH), 1-propynyl (-C≡CCH3), 2-propynyl (propargyl, -CH2C≡CH), 1-butynyl, 2-butynyl, and 3-butynyl groups.

[0044] The term "cycloalkyl" herein refers to a hydrocarbon group selected from saturated and partially unsaturated cyclic hydrocarbon groups, comprising monocyclic and polycyclic (e.g., bicyclic and tricyclic) groups. For example, the cycloalkyl group may comprise from 3 to 12, such as from 3 to 8, further such as from 3 to 6, 3 to 5, or 3 to 4 carbon atoms. Even further for example, the cycloalkyl group may be selected from monocylic group comprising from 3 to 12, such as from 3 to 8, 3 to 6 carbon atoms. Examples of the monocylic cycloalkyl group include cyclopropyl, cyclobutyl, cyclopentyl, 1-cyclopent-1-enyl, 1-cyclopent-2-enyl, 1-cyclopent-3-enyl, cyclohexyl,
1-cyclohex-1-enyl, 1-cyclohex-2-enyl, 1-cyclohex-3-enyl, cyclohexadienyl, cycloheptyl, cyclooctyl, cyclononyl, cyclobicyclo[2.2.2]octane, cycloheptyl, cyclooctyl, cyclononyl, cyclopentadecylic, and cyclohexadecylic groups. Examples of the bicyclic cycloalkyl groups include those having from 7 to 12 ring atoms arranged as a bicyclic ring selected from [4,4], [4,5], [5,5], [5,6] and [6,6] ring systems, or as a bridged bicyclic ring selected from bicyclo[2.2.1]heptane, bicyclo[2.2.2]octane, and bicyclo[3.2.2]nonane. The ring may be saturated or have at least one double bond (i.e., partially unsaturated), but is not fully conjugated, and is not aromatic, as aromatic is defined herein.

[0045] The term "aryl" herein refers to a group selected from:

5- and 6-membered carbocyclic aromatic rings, for example, phenyl;

bicyclic ring systems such as 7 to 12 membered bicyclic ring systems wherein at least one ring is carbocyclic and aromatic, selected, for example, from naphthalene and indane; and

tricyclic ring systems such as 10 to 15 membered tricyclic ring systems wherein at least one ring is carbocyclic and aromatic, for example, fluorene.

[0046] For example, the aryl group is selected from 5 and 6-membered carbocyclic aromatic rings fused to a 5- to 7-membered cycloalkyl or heterocyclic ring optionally comprising at least one heteroatom selected from N, O, and S, provided that the point of attachment is at the carbocyclic aromatic ring when the carbocyclic aromatic ring is fused with a heterocyclic ring, and the point of attachment can be at the carbocyclic aromatic ring or at the cycloalkyl group when the carbocyclic aromatic ring is fused with a cycloalkyl group. Bivalent radicals formed from substituted benzene derivatives and having the free valences at ring atoms are named as substituted phenylene radicals. Bivalent radicals derived from univalent polycyclic hydrocarbon radicals whose names end in "-yl" by removal of one hydrogen atom from the carbon atom with the free valence are named by adding "-idene" to the name of the corresponding univalent radical, e.g., a naphthyl group with two points of attachment is termed naphthylidene. Aryl, however, does not encompass or overlap in any way with heteroaryl, separately defined below. Hence, if one or more carbocyclic aromatic rings are fused with a heterocyclic aromatic ring, the resulting ring system is heteroaryl, not aryl, as defined herein.

[0047] The term "aryllalkyl" herein refers to an alkyl group as defined above substituted by an aryl group as defined above.

[0048] The term "halogen" or "halo" herein refers to F, Cl, Br or I.

[0049] The term "heteroaryl" herein refers to a group selected from:
5- to 7-membered aromatic, monocyclic rings comprising at least one heteroatom, for example, from 1 to 4, or, in some embodiments, from 1 to 3, heteroatoms, selected from N, O, and S, with the remaining ring atoms being carbon;

8- to 12-membered bicyclic rings comprising at least one heteroatom, for example, from 1 to 4, or, in some embodiments, from 1 to 3, or, in other embodiments, 1 or 2, heteroatoms, selected from N, O, and S, with the remaining ring atoms being carbon and wherein at least one ring is aromatic and at least one heteroatom is present in the aromatic ring; and

11- to 14-membered tricyclic rings comprising at least one heteroatom, for example, from 1 to 4, or in some embodiments, from 1 to 3, or, in other embodiments, 1 or 2, heteroatoms, selected from N, O, and S, with the remaining ring atoms being carbon and wherein at least one ring is aromatic and at least one heteroatom is present in an aromatic ring.

For example, the heteroaryl group includes a 5- to 7-membered heterocyclic aromatic ring fused to a 5- to 7-membered cycloalkyl ring. For such fused, bicyclic heteroaryl ring systems wherein only one of the rings comprises at least one heteroatom, the point of attachment may be at the heteroaromatic ring or at the cycloalkyl ring.

[0051] When the total number of S and O atoms in the heteroaryl group exceeds 1, those heteroatoms are not adjacent to one another. In some embodiments, the total number of S and O atoms in the heteroaryl group is not more than 2. In some embodiments, the total number of S and O atoms in the aromatic heterocycle is not more than 1.

[0052] Examples of the heteroaryl group include, but are not limited to, (as numbered from the linkage position assigned priority 1) pyridyl (such as 2-pyridyl, 3-pyridyl, or 4-pyridyl), cinnolinyl, pyrazinyl, 2,4-pyrimidinyl, 3,5-pyrimidinyl, 2,4-imidazoly, imidazopyridinyl, isoxazolyl, oxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, tetrazolyl, thienyl, triazinyl, benzothienyl, furyl, benzofuryl, benzimidazolyl, indolyl, isindolyl, indoliny, phthalazinyl, pyrazinyl, pyridazinyl, pyrrolyl, triazolyl, quinolinyl, isoquinolinyl, pyrazofyl, pyrrolopyridinyl (such as 1H-pyrrolo[2,3-b]pyridin-5-yl), pyrazolopyridinyl (such as 1H-pyrazolo[3,4-b]pyridin-5-yl), benzoazolyl (such as benzol[d]oxazol-6-yl), pteridinyl, purinyl, 1-oxa-2,3-diazolyl, 1-oxa-2,4-diazolyl, 1-oxa-2,5-diazolyl, 1-oxa-3,4-diazolyl, 1-thia-2,3-diazolyl, 1-thia-2,4-diazolyl, 1-thia-2,5-diazolyl, 1-benzothiazolyl, 3,4-diazolyl, furazanyl, benzofurazanyl, benzothiofuryl, benzothiazoyl, benzoxazolyl, quinazolininy, quinoxaliny, naphthyridinyl, furopyridinyl, benzothiazolyl (such as benzof 6-thiazol-6-yl), indazolyl (such as 1H-indazol-5-yl) and 5,6,7,8-tetrahydroisoquinoline.

[0053] The term "heterocyclic" or "heterocycle" or "heterocyclic" herein refers to a ring selected from 4- to 12-membered monocyclic, bicyclic and tricyclic, saturated and partially unsaturated
rings comprising at least one carbon atom in addition to at least one heteroatom, such as from 1-4 heteroatoms, further such as from 1-3, or further such as 1 or 2 heteroatoms, selected from oxygen, sulfur, and nitrogen. "Heterocycle" herein also refers to a 5- to 7-membered heterocyclic ring comprising at least one heteroatom selected from N, O, and S fused with 5-, 6-, and/or 7-membered cycloalkyl, carbocyclic aromatic or heteroaromatic ring, provided that the point of attachment is at the heterocyclic ring when the heterocyclic ring is fused with a carbocyclic aromatic or a heteroaromatic ring, and that the point of attachment can be at the cycloalkyl or heterocyclic ring when the heterocyclic ring is fused with cycloalkyl. "Heterocycle" herein also refers to an aliphatic spirocyclic ring comprising at least one heteroatom selected from N, O, and S, provided that the point of attachment is at the heterocyclic ring. The rings may be saturated or have at least one double bond (i.e., partially unsaturated). The heterocycle may be substituted with oxo. The point of the attachment may be carbon or heteroatom in the heterocyclic ring. A heterocycle is not a heteroaryl as defined herein.

[0054] Examples of the heterocycle include, but not limited to, (as numbered from the linkage position assigned priority 1) 1-pyrrolidinyl, 2-pyrrolidinyl, 2,4-imidazolidinyl, 2,3-pyrazolidinyl, 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 2,5-piperazinyl, pyranyl, 2-morpholino, 3-morpholino, oxiranyl, aziridinyl, thiiranyl, azetidinyl, oxetanyl, thietanyl, 1,2-dithietanyl, 1,3-dithietanyl, dihydropyridinyl, tetrahydropyridinyl, thiomorpholinyl, thioxanyl, piperazinyl, homopiperazinyl, homopiperidinyl, azepanyl, oxepanyl, thiepanyl, 1,4-oxathianyl, 1,4-dioxepanyl, 1,4-oxathiepanyl, 1,4-oxaazepanyl, 1,4-dithiepanyl, 1,4-thiazepanyl and 1,4-diazepane, 1,4-dithianyl, 1,4-azathianyl, oxazepinyl, diazepinyl, thiazepinyl, dihydrothienyl, dihydropropyryl, dihydrofuranyl, tetrahydrofuranyl, tetrahydrothienyl, tetrahydropropyranly, tetrahydrothiopyranylylpyrrolinyl, 2-pyrrolinyl, 3-pyrrolinyl, indolyl, 2H-pyran, 4H-pyran, 1,4-dioxany, 1,3-dioxolanly, pyrazolanyl, pyrazolidinyl, dithianyl, dithiolanly, pyrazolidinyl, imidazoiinyl, pyrimidinonyl, 1,1-dioxo-thiomorpholinyl, 3-azabicyclo[3.1.0]hexanyl, 3-azabicyclo[4.1.0]heptanyl and azabicyclo[2.2.2]hexanyl. A substituted heterocycle also includes a ring system substituted with one or more oxo moieties, such as piperidinyl N-oxide, morpholinyl-N-oxide, 1-oxo-1-thiomorpholinyl and 1,1-dioxo-1-thiomorpholinyl.

[0055] Compounds described herein may contain an asymmetric center and may thus exist as enantiomers. Where the compounds described herein possess two or more asymmetric centers, they may additionally exist as diastereomers. Enantiomers and diastereomers fall within the broader class of stereoisomers. All such possible stereoisomers as substantially pure resolved enantiomers, racemic mixtures thereof, as well as mixtures of diastereomers are intended to be
included. All stereoisomers of the compounds disclosed herein and/or pharmaceutically acceptable salts thereof are intended to be included. Unless specifically mentioned otherwise, reference to one isomer applies to any of the possible isomers. Whenever the isomeric composition is unspecified, all possible isomers are included.

[0056] The term "substantially pure" as used herein means that the target stereoisomer contains no more than 35%, such as no more than 30%, further such as no more than 25%, even further such as no more than 20%, by weight of any other stereoisomers. In some embodiments, the terra "substantially pure" means that the target stereoisomer contains no more than 10%, for example, no more than 5%, such as no more than 1%, by weight of any other stereoisomer(s).

[0057] When compounds described herein contain olefinic double bonds, unless specified otherwise, such double bonds are meant to include both E and Z geometric isomers.

[0058] Some of the compounds described herein may exist with different points of attachment of hydrogen, referred to as tautomers. For example, compounds including carbonyl -CH₂C(0)- groups (keto forms) may undergo tautomerism to form hydroxyl -CH=C(OH)- groups (enol forms).

[0059] Both keto and enol forms, individually as well as mixtures thereof, are also intended to be included where applicable.

[0059] It may be advantageous to separate reaction products from one another and/or from starting materials. The desired products of each step or series of steps is separated and/or purified (hereinafter separated) to the desired degree of homogeneity by the techniques common in the art. Typically such separations involve multiphase extraction, crystallization from a solvent or solvent mixture, distillation, sublimation, or chromatography. Chromatography can involve any number of methods including, for example: reverse-phase and normal phase; size exclusion; ion exchange; high, medium and low pressure liquid chromatography methods and apparatus; small scale analytical; simulated moving bed ("SMB") and preparative thin or thick layer chromatography, as well as techniques of small scale thin layer and flash chromatography. One skilled in the art will apply techniques most likely to achieve the desired separation.

[0060] Diastereomeric mixtures can be separated into their individual diastereomers on the basis of their physical chemical differences by methods well known to those skilled in the art, such as by chromatography and/or fractional crystallization. Enantiomers can be separated by converting the enantiomeric mixture into a diastereomeric mixture by reaction with an appropriate optically active compound (e.g., chiral auxiliary such as a chiral alcohol or Mosher's acid chloride), separating the diastereomers and converting (e.g., hydrolyzing) the individual diastereoisomers to
the corresponding pure enantiomers. Enantiomers can also be separated by use of a chiral HPLC column.

[0061] A single stereoisomer, e.g., a substantially pure enantiomer, may be obtained by resolution of the racemic mixture using a method such as formation of diastereomers using optically active resolving agents (Elie, E. and Wilen, S. Stereochemistry of Organic Compounds. New York: John Wiley & Sons, Inc., 1994; Lochmuller, C. H., et al. "Chromatographic resolution of enantiomers: Selective review." J. Chromatogr., 113(3) (1975): pp. 283-302). Racemic mixtures of chiral compounds of the invention can be separated and isolated by any suitable method, including: (1) formation of ionic, diastereomeric salts with chiral compounds and separation by fractional crystallization or other methods, (2) formation of diastereomeric compounds with chiral derivatizing reagents, separation of the diastereomers, and conversion to the pure stereoisomers, and (3) separation of the substantially pure or enriched stereoisomers directly under chiral conditions. See; Wainer, Irving W., Ed. Drug Stereochemistry: Analytical Methods and Pharmacology. New York: Marcel Dekker, Inc., 1993.

[0062] "Pharmaceutically acceptable salts" include, but are not limited to salts with inorganic acids, selected, for example, from hydrochlorides, phosphates, diphosphates, hydrobromides, sulfates, sulfonates, and nitrates; as well as salts with organic acids, selected, for example, from malates, maleates, fumarates, tartrates, succinates, citrates, lactates, methanesulphonates, p-toluenesulphonates, 2-hydroxyethylsulphonates, benzoates, salicylates, stearates, alkanoates such as acetate, and salts with HOOC-(CH2)n-COOH, wherein n is selected from 0 to 4. Similarly, examples of pharmaceutically acceptable cations include, but are not limited to, sodium, potassium, calcium, aluminum, lithium, and ammonium.

[0063] In addition, if a compound disclosed herein is obtained as an acid addition salt, the free base can be obtained by basifying a solution of the acid salt. Conversely, if the product is a free base, an addition salt, such as a pharmaceutically acceptable addition salt, may be produced by dissolving the free base in a suitable organic solvent and treating the solution with an acid, in accordance with conventional procedures for preparing acid addition salts from base compounds. Those skilled in the art will recognize various synthetic methodologies that may be used without undue experimentation to prepare non-toxic pharmaceutically acceptable addition salts.

[0064] As defined herein, "pharmaceutically acceptable salts thereof" include salts of at least one compound of Formulas I, II (including II-1, II-2 or II-3) or Π₁, and salts of the stereoisomers of at least one compound of Formulas I, II (including II-1, II-2 or II-3) or III, such as salts of enantiomers, and/or salts of diastereomers.
"Treating", "treat", or "treatment" or "alleviation" refers to administering at least one compound and/or a least one pharmaceutically acceptable salt thereof disclosed herein to a subject in recognized need thereof that has, for example, cancer disease, or has a symptom of, for example, cancer disease, or has a predisposition toward, for example, cancer disease, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect, for example, cancer disease, the symptoms of, for example, cancer disease, or the predisposition toward, for example, cancer disease.

The term "effective amount" refers to an amount of at least one compound, stereoisomers thereof, pharmaceutically acceptable salts thereof and solvates thereof, disclosed herein effective to "treat," as defined above, a disease or disorder in a subject. In the case of cancer, the effective amount may cause any of the changes observable or measurable in a subject as described in the definition of "treating", "treat", "treatment" and "alleviation" above. For example, the effective amount can reduce the number of cancer or tumor cells; reduce the tumor size; inhibit or stop tumor cell infiltration into peripheral organs including, for example, the spread of tumor into soft tissue and bone; inhibit and stop tumor metastasis; inhibit and stop tumor growth; relieve to some extent one or more of the symptoms associated with the cancer, reduce morbidity and mortality; improve quality of life; or a combination of such effects. An effective amount may be an amount sufficient to decrease the symptoms of a disease responsive to inhibition of PARP. For cancer therapy, efficacy in vivo can, for example, be measured by assessing the duration of survival, time to disease progression (TTP), the response rates (RR), duration of response, and/or quality of life. Effective amounts may vary, as recognized by those skilled in the art, depending on route of administration, excipient usage, and co-usage with other agents.

"Inhibition" indicates a decrease in the baseline activity of a biological activity or process. "Inhibition of PARP" refers to a decrease in the activity of PARP as a direct or indirect response to the presence of at least one compound and/or at least one pharmaceutically acceptable salt disclosed herein, relative to the activity of PARP in the absence of the at least one compound and/or the at least one pharmaceutically acceptable salt thereof. The decrease in activity is not bound by theory and may be due to the direct interaction of the at least one compound, stereoisomers thereof, and pharmaceutically acceptable salts thereof disclosed herein with PARP, or due to the interaction of the at least one compound and/or at least one pharmaceutically acceptable salt disclosed herein, with one or more other factors that in turn affect PARP activity. For example, the presence of at least one compound, stereoisomers thereof, and pharmaceutically acceptable salts thereof disclosed herein, may decrease PARP activity by directly binding to the
PARP, by causing (directly or indirectly) another factor to decrease PARP activity, or by (directly or indirectly) decreasing the amount of PARP present in the cell or organism.

[0068] The term "at least one substituent" disclosed herein includes, for example, from 1 to 4, such as from 1 to 3, further as 1 or 2, substituents. For example, "at least one substituent R₁²" disclosed herein includes from 1 to 4, such as from 1 to 3, further as 1 or 2, substituents selected from the list of R₁² as described herein.

[0069] The terms "administration", "administering" herein, when applied to an animal, human, experimental subject, cell, tissue, organ, or biological fluid, mean contact of an exogenous pharmaceutical, therapeutic, diagnostic agent, or composition to the animal, human, subject, cell, tissue, organ, or biological fluid. Treatment of a cell encompasses contact of a reagent to the cell, as well as contact of a reagent to a fluid, where the fluid is in contact with the cell. The term "administration" also means in vitro and ex vivo treatments, e.g., of a cell, by a reagent, diagnostic, binding compound, or by another cell. The term "subject" herein includes any organism, preferably an animal, more preferably a mammal (e.g., rat, mouse, dog, cat, rabbit) and most preferably a human.

[0070] The term "antibody" herein is used in the broadest sense and specifically covers antibodies (including full length monoclonal antibodies) and antibody fragments so long as they recognize antigen, such as, a target antigen (e.g., CD20) or an immune checkpoint (e.g., PD-1). An antibody molecule is usually monospecific, but may also be described as idiospecific, heterospecific, or polyspecific. Antibody molecules bind by means of specific binding sites to specific antigenic determinants or epitopes on antigens.

[0071] The term "monoclonal antibody" or "mAb" or "Mab" herein means a population of substantially homogeneous antibodies, i.e., the antibody molecules comprised in the population are identical in amino acid sequence except for possible naturally occurring mutations that may be present in minor amounts. In contrast, conventional (polyclonal) antibody preparations typically include a multitude of different antibodies having different amino acid sequences in their variable domains, particularly their CDRs, which are often specific for different epitopes. The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. Monoclonal antibodies (mAbs) may be obtained by methods known to those skilled in the art. See, for example, *U.S. Pat. No. 4,376,110*. The mAbs disclosed herein may be of any immunoglobulin class including IgG, IgM, IgD, IgE, IgA, and any subclass thereof. A hybridoma producing a mAb may be cultivated *in vitro or in vivo*. High titers
of mAbs can be obtained in in vivo production where cells from the individual hybridomas are injected intraperitoneally into mice, such as pristine-primed Balb/c mice to produce ascites fluid containing high concentrations of the desired mAbs. MAbs of isotype IgM or IgG may be purified from such ascites fluids, or from culture supernatants, using column chromatography methods well known to those of skill in the art.

[0072] In general, the basic antibody structural unit comprises a tetramer. Each tetramer includes two identical pairs of polypeptide chains, each pair having one "light chain" (about 25 kDa) and one "heavy chain" (about 50-70 kDa). The amino-terminal portion of each chain includes a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The carboxyl-terminal portion of the heavy chain may define a constant region primarily responsible for effector function. Typically, human light chains are classified as kappa and lambda light chains. Furthermore, human heavy chains are typically classified as \( \alpha \), \( \delta \), \( \varepsilon \), \( \gamma \), or \( \mu \), and define the antibody's isotypes as IgA, IgD, IgE, IgG, and IgM, respectively. Within light and heavy chains, the variable and constant regions are joined by a "J" region of about 12 or more amino acids, with the heavy chain also including a "D" region of about 10 more amino acids.

[0073] The variable regions of each light/heavy chain (Vl/Vh) pair form the antibody binding site. Thus, in general, an intact antibody has two binding sites. Except in Afunctional or bispecific antibodies, the two binding sites are, in general, the same.


[0075] The term "hypervariable region" means the amino acid residues of an antibody that are responsible for antigen-binding. The hypervariable region comprises amino acid residues from a "complementarity determining region" or "CDR" (i.e., CDR-L1, CDR-L2 and CDR-L3 in the light chain variable domain and CDR-H1, CDR-H2 and CDR-H3 in the heavy chain variable domain).
See, Kabat et al. (1991) Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (defining the CDR regions of an antibody by sequence); see also Chothia and Lesk (1987) J. Mol. Biol. 196: 901-917 (defining the CDR regions of an antibody by structure). The term "framework" or "FR" means those variable domain residues other than the hypervariable region residues defined herein as CDR residues.

[00761 Unless otherwise indicated, "antibody fragment" or "antigen-binding fragment" means antigen binding fragments of antibodies, i.e. antibody fragments that retain the ability to bind specifically to the antigen bound by the full-length antibody, e.g. fragments that retain one or more CDR regions. Examples of antigen binding fragments include, but not limited to, Fab, Fab', F(ab')2, and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules, e.g., single chain Fv (ScFv); nanobodies and multi-specific antibodies formed from antibody fragments.

[00771 An antibody that "specifically binds to" a specified target protein is an antibody that exhibits preferential binding to that target as compared to other proteins, but this specificity does not require absolute binding specificity. An antibody is considered "specific" for its intended target if its binding is determinative of the presence of the target protein in a sample, e.g. without producing undesired results such as false positives. Antibodies or binding fragments thereof, useful in the present invention will bind to the target protein with an affinity that is at least two fold greater, preferably at least ten times greater, more preferably at least 20-times greater, and most preferably at least 100-times greater than the affinity with non-target proteins. An antibody herein is said to bind specifically to a polypeptide comprising a given amino acid sequence, e.g. the amino acid sequence of a mature human PD-1 molecule, if it binds to polypeptides comprising that sequence but does not bind to proteins lacking that sequence.

[00781 The term "human antibody" herein means an antibody that comprises human immunoglobulin protein sequences only. A human antibody may contain murine carbohydrate chains if produced in a mouse, in a mouse cell, or in a hybridoma derived from a mouse cell. Similarly, "mouse antibody" or "rat antibody" mean an antibody that comprises only mouse or rat immunoglobulin protein sequences, respectively.

[0079] The term "humanized antibody" means forms of antibodies that contain sequences from non-human (e.g., murine) antibodies as well as human antibodies. Such antibodies contain minimal sequence derived from non-human immunoglobulin. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin sequence. The
The image contains text with mixed formatting and some symbols that are not clearly visible, making it difficult to transcribe accurately. However, it appears to discuss immune checkpoint inhibitors (ICIs), which are molecules that interfere with interactions between immune cells and cancer cells, potentially improving the immune system's ability to fight cancer.

Key concepts and terms:
- **ICIs**: Molecules that interfere with immune checkpoint interactions to enhance the body's immune response against cancer.
- **PD-L1**: Also known as CD274 or B7-H1, a protein involved in the immune response.
- **TIM-3**: T-cell Immunoglobulin domain and Mucin domain 3, another immune checkpoint molecule.

The text discusses the role of PD-L1 and TIM-3 in immune responses and their relevance in cancer treatment. It mentions that these molecules can reduce light and cell antibodies, likely contributing to anti-tumor effects. "Immune checkpoint inhibitors" are agents that interfere with these immune checkpoints, potentially improving cancer treatment outcomes.

The mentioned text seems to include specific identifiers and chemical notations that are not clearly visible, likely referring to specific compounds or studies.

Without clearer visibility, further detailed transcription is not possible.
as HAVCR2) and its ligand Gal-9; CTLA-4 (Cytotoxic T-Lymphocyte-Associated protein 4, CD152) and its ligands CD80 and CD86; and A2AR (Adenosine A2A receptor); B7-H3 (CD276); B7-H4 (VTCN1); BTLA (B and T Lymphocyte Attenuator, CD272) and its ligand HVEM (Herpesvirus Entry Mediator); IDO (Indoleamine 2,3-dioxygenase); LAG3 (Lymphocyte Activation Gene-3); VISTA (V-domain Ig suppressor of T-cell activation); KIR ( Killer-cell Immunoglobulin-like Receptor). These proteins are responsible for co-stimulatory or inhibitory interactions of T-cell responses. Immune checkpoint proteins regulate and maintain self-tolerance and the duration and amplitude of physiological immune responses. Immune checkpoint inhibitors include antibodies or are derived from antibodies.

[0085] The immune system has multiple inhibitory pathways that are critical for maintaining self-tolerance and modulating immune responses. In T-cells, the amplitude and quality of response is initiated through antigen recognition by the T-cell receptor and is regulated by immune checkpoint proteins that balance co-stimulatory and inhibitory signals.

[0086] PD-1 is an immune checkpoint protein, that limits the activity of T cells in peripheral tissues at the time of an inflammatory response to infection and to limit autoimmunity. PD-1 blockade in vitro enhances T-cell proliferation and cytokine production in response to a challenge by specific antigen targets or by allogeneic cells in mixed lymphocyte reactions. A strong correlation between PD-1 expression and response was shown with blockade of PD-1 (Pardoll, Nature Reviews Cancer, 12: 252-264, 2012). PD-1 blockade can be accomplished by a variety of mechanisms including antibodies that bind PD-1 or its ligands. Examples of PD-1 and PD-L1 blockers, also named PD-1 and PD-L1 inhibitors, are described in US7488802; US7943743; US8008449; US8,668,757; US8217149, and WO03042402, WO2008156712, WO2010089411, WO20 10036959, WO201 0166342, WO201 1559877, WO201 01082400, WO201 1161699, and WO2015035606. In some embodiments the PD-1 inhibitors include an antibody or a fragment antigen binding thereof, which specifically binds to PD-1. In certain other embodiments the PD-1 blockers include anti-PD-1 antibodies and similar binding proteins such as nivolumab (MDX 1106, BMS 936558, ONO-4538, Opdivo®) described in US8008449B2, a fully human IgG4 antibody that binds to and blocks the activation of PD-1 by its ligands PD-L1 and PD-L2; pembrolizumab ( lambroizumab, MK-3475 or SCH 900475, Keytruda®) disclosed in US8168757B2, a humanized monoclonal IgG4 antibody against PD-1; pidilizumab (CT-01 l), a humanized antibody that binds PD-1; AMP-224, a fusion protein of B7-DC; an antibody Fc portion; BMS-936559 (MDX-1 105-01) for PD-L1 (B7-H1) blockade for PD-1 blockade.
In some embodiments, the immune checkpoint inhibitor is an antibody or a fragment antigen binding thereof, or a chemical molecule drug. In some embodiments, the immune checkpoint inhibitor is a chemical molecule drug, which is an inhibitor of PD-1, PD-L1, PD-L2, TIM-3, Gal-9, CTLA-4, CD80, CD86, A2AR, B7-H3, B7-H4, BTLA, BTLA, HVEM, IDO1, IDO2, TDO, LAG3, VISTA, KIR, 2B4, CD2, CD27, CD28, CD30, CD40, CD90, CD137, CD226, (.1)276, DR3, GITR, ICOS, LAIR1, LIGHT, MARCO, PS, OX-40, SLAM TIGHT, CTCNI, or a combination thereof; or an antibody or a fragment antigen binding thereof, which specifically binds to one or more checkpoint proteins selected from PD-1, PD-L1, PD-L2, TIM-3, Gal-9, CTLA-4, CD80, CD86, A2AR, B7-H3, B7-H4, BTLA, BTLA, HVEM, IDO1, IDO2, TDO, LAG3, VISTA, KIR, 2B4, CD2, CD27, CD28, CD30, CD40, CD90, CD137, CD226, (.1)276, DR3, GITR, ICOS, LAIR1, LIGHT, MARCO, PS, OX-40, SLAM TIGHT, or CTCNI. In some embodiments, the immune checkpoint inhibitor is an anti-PD-1 antibody.

Preferably, the anti-PD-1 monoclonal antibody is an antibody which comprises a heavy chain variable region (Vh) and a light chain variable region (Vl) that contain complement determinant regions (CDRs) listed as follows:

<table>
<thead>
<tr>
<th></th>
<th>CDR-H1, CDR-H2 and CDR-H3 (SEQ ID Nos: 11, 12, 13, respectively); and CDR-L1, CDR-L2 and CDR-L3 (SEQ ID Nos: 14, 15, 16, respectively);</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>mu317</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDR-H1, CDR-H2 and CDR-H3 (SEQ ID Nos: 31, 32, 33, respectively) ; and CDR-L1, CDR-L2 and CDR-L3 (SEQ ID Nos: 34, 35, 36, respectively) ;</td>
</tr>
<tr>
<td>b</td>
<td>317-4B6</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDR-H1, CDR-H2 and CDR-H3 (SEQ ID Nos: 37, 38, 39, respectively) ; and CDR-L1, CDR-L2 and CDR-L3 (SEQ ID Nos: 40, 41, 42, respectively) ;</td>
</tr>
<tr>
<td>c</td>
<td>317-4A3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDR-H1, CDR-H2 and CDR-H3 (SEQ ID Nos: 11, 60, 13, respectively); and CDR-L1, CDR-L2 and CDR-L3 (SEQ ID Nos: 61, 15, 16, respectively);</td>
</tr>
<tr>
<td>d</td>
<td>317-4B2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDR-H1, CDR-H2 and CDR-H3 (SEQ ID Nos: 11, 60, 13, respectively); and CDR-L1, CDR-L2 and CDR-L3 (SEQ ID Nos: 61, 15, 16, respectively);</td>
</tr>
<tr>
<td>e</td>
<td>317-4B5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDR-H1, CDR-H2 and CDR-H3 (SEQ ID Nos: 11, 32, 13, respectively); and CDR-L1, CDR-L2 and CDR-L3 (SEQ ID Nos: 61, 15, 16, respectively);</td>
</tr>
<tr>
<td>f</td>
<td>317-4B6</td>
</tr>
</tbody>
</table>

In some embodiments, the immune checkpoint inhibitor is a monoclonal antibody or a fragment thereof, disclosed in WO 2015/035606 A1.
| i) 326-1 | CDR-H1, CDR-H2 and CDR-H3 (SEQ ID NOs: 17, 62, 19, respectively); and CDR-L1, CDR-L2 and CDR-L3 (SEQ ID NOs: 20, 21, 22, respectively); |
| j) 326-3B1 | CDR-H1, CDR-H2 and CDR-H3 (SEQ ID NOs: 17, 62, 19, respectively); and CDR-L1, CDR-L2 and CDR-L3 (SEQ ID NOs: 20, 21, 22, respectively); |
| or k) 326-3G1 | CDR-H1, CDR-H2 and CDR-H3 (SEQ ID NOs: 17, 62, 19, respectively); and CDR-L1, CDR-L2 and CDR-L3 (SEQ ID NOs: 20, 21, 22, respectively). |

[0090] Preferably, the anti-PD-1 monoclonal antibody is an antibody which comprises a heavy chain variable region (Vh) and a light chain variable region (Vl) that contain any combinations of CDRs listed as follows:

| (a) | CDR-H1 (SEQ ID NO 31), CDR-H2 (SEQ ID NO 12, 32, 59 or 60) and CDR-H3 (SEQ ID NO 33), CDR-L1 (SEQ ID NO 14, 34 or 61), CDR-L2 (SEQ ID NO 35) and CDR-L3 (SEQ ID NO 36); or |
| (b) | CDR-H1 (SEQ ID NO 37), CDR-H2 (SEQ ID NO 18, 38 or 62) and CDR-H3 (SEQ ID NO 39), CDR-L1 (SEQ ID NO 40), CDR-L2 (SEQ ID NO 41) and CDR-L3 (SEQ ID NO 42). |

[0091] Preferably, the anti-PD-1 monoclonal antibody is an antibody which comprises a heavy chain variable region (Vh) and a light chain variable region (Vl) comprising:

| a) mu317 (SEQ ID NOs: 4 and 6, respectively); | p) 317-3111 (SEQ ID NOs: 69 and 26, respectively); |
| b) mu326 (SEQ ID NOs: 8 and 10, respectively); | q) 317-311 (SEQ ID NOs: 70 and 26, respectively); |
| c) 317-4B6 (SEQ ID NOs: 24 and 26, respectively); | r) 317-4B1 (SEQ ID NOs: 71 and 26, respectively); |
| d) 326-4A3 (SEQ ID NOs: 28 and 30, respectively); | s) 317-4B3 (SEQ ID NOs: 72 and 26, respectively); |
| e) 317-4B2 (SEQ ID NOs: 43 and 44, respectively); | t) 317-4B4 (SEQ ID NOs: 73 and 26, respectively); |
| f) 317-4B5 (SEQ ID NOs: 45 and 46, respectively); | u) 317-4A2 (SEQ ID NOs: 74 and 26, respectively); |
| g) 317-1 (SEQ ID NOs: 48 and 50, respectively); | v) 326-3 A1 (SEQ ID NOs: 75 and 30, respectively); |
| h) 326-3B1 (SEQ ID NOs: 51 and 52, respectively); | w) 326-3C1 (SEQ ID NOs: 76 and 30, respectively); |
| i) 326-3GI (SEQ ID NOs: 53 and 54, respectively); | x) 326-3D1 (SEQ ID NOs: 77 and 30, respectively); |
| j) 326-1 (SEQ ID NOs: 56 and 58, respectively); | y) 326-3E1 (SEQ ID NOs: 78 and 30, respectively); |
| k) 317-3A1 (SEQ ID NOs: 64 and 26, respectively); | z) 326-3F1 (SEQ ID NOs: 79 and 30, respectively); |
| l) 317-3C1 (SEQ ID NOs: 65 and 26, respectively); | aa) 326-3B N55D (SEQ ID NOs: 80 and 30, respectively); |
| m) 317-3E1 (SEQ ID NOs: 66 and 26, respectively); | ab) 326-4A1 (SEQ ID NOs: 28 and 81, respectively); |
Preferably, the anti-PD-1 monoclonal antibody is an antibody which comprises an IgG4 heavy chain effector or constant domain comprising any of SEQ ID Nos: 83-88.

Preferably, the anti-PD-1 monoclonal antibody is an antibody which contains a F(ab) or F(ab)2 comprising a domain said above, including a heavy chain variable region (Vh), a light chain variable region (VL) and a IgG4 heavy chain effector or constant domain.

Preferably, the anti-PD-1 monoclonal antibody is an antibody which comprise a heavy chain variable region (Vh) and a light chain variable region (VL), and a IgG4 heavy chain effector or constant domain comprising SEQ ID Nos: 87 or 88, wherein the heavy chain variable region (Vh) and the light chain variable region (VL) comprise:

| a) mu317 (SEQ ID Nos: 4 and 6, respectively); | P) 317-4H1 (SEQ ID Nos: 69 and 26, respectively); |
| b) mu326 (SEQ ID Nos: 8 and 10, respectively); | q) 317-311 (SEQ ID Nos: 70 and 26, respectively); |
| c) 317-4B6 (SEQ ID Nos: 24 and 26, respectively); | r) 317-4B1 (SEQ ID Nos: 71 and 26, respectively); |
| d) 326-4A3 (SEQ ID Nos: 28 and 30, respectively); | s) 317-4B3 (SEQ ID Nos: 72 and 26, respectively); |
| e) 317-4B2 (SEQ ID Nos: 43 and 44, respectively); | t) 317-4B4 (SEQ ID Nos: 73 and 26, respectively); |
| f) 317-4B5 (SEQ ID Nos: 45 and 46, respectively); | u) 317-4A2 (SEQ ID Nos: 74 and 26, respectively); |
| g) 317-1 (SEQ ID Nos: 48 and 50, respectively); | v) 326-3A1 (SEQ ID Nos: 75 and 30, respectively); |
| h) 326-3B1 (SEQ ID Nos: 51 and 52, respectively); | w) 326-3C1 (SEQ ID Nos: 76 and 30, respectively); |
| i) 326-3G1 (SEQ ID Nos: 53 and 54, respectively); | x) 326-3D1 (SEQ ID Nos: 77 and 30, respectively); |
| j) 326-1 (SEQ ID Nos: 56 and 58, respectively); | y) 326-3E1 (SEQ ID Nos: 78 and 30, respectively); |
| k) 317-3A1 (SEQ ID Nos: 64 and 26, respectively); | z) 326-3F1 (SEQ ID Nos: 79 and 30, respectively); |
| l) 317-3C1 (SEQ ID Nos: 65 and 26, respectively); | aa) 326-3B N55D (SEQ ID Nos: 80 and 30, respectively); |
| m) 317-3E1 (SEQ ID Nos: 66 and 26, respectively); | ab) 326-4A1 (SEQ ID Nos: 28 and 81, respectively); |
| n) 317-3F1 (SEQ ID Nos: 67 and 26, respectively); | or ac) 326-4A2 (SEQ ID Nos: 28 and 82, respectively). |
| o) 317-3G1 (SEQ ID Nos: 68 and 26, respectively); |

Preferably, the anti-PD-1 monoclonal antibody is an antibody which comprises a heavy chain variable region (Vh) and a light chain variable region (VL) (comprising SEQ ID No 24 and SEQ ID No 26, respectively) and a IgG4 heavy chain effector or constant domain (comprising SEQ ID NO 88), hereinafter MabJ, which specifically binds to PD-1, especially PD-1 residues including 45 and 193; or, 193, 95 and 97, and inhibits PD-1-mediated cellular signaling and activities in immune cells, antibodies binding to a set of amino acid residues required for its ligand binding.
[0096] The anti-PDl monoclonal antibodies and antibody fragments thereof may be prepared in accordance with the disclosure of WO2015/035606 Al, the entire disclosure of which is expressly incorporated herein by reference.

Chemotherapeutic Agent

[0097] In some embodiment, the PARP inhibitor is co-administered with a chemotherapeutic agent.

[0098] Chemotherapy is a category of cancer treatment that uses one or more anti-cancer drugs (chemotherapeutic agents) as part of a standardized chemotherapy regimen. In some embodiments, the chemotherapeutic agent is selected from paclitaxel, or etoposide plus carboplatin (E/C).

PARP inhibitors

[0099] "PARP inhibitor" means a compound of Formula (I), or a stereoisomer thereof, a pharmaceutically acceptable salt thereof, or a solvate thereof.

[0100] As disclosed in each of the above six aspects, the PARP inhibitor is a compound of Formula (I),

\[
\begin{align*}
R_N & \text{ is selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein each of the alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl is independently optionally substituted with at least one substituent } R_{12}; \\
X & \text{ is selected from the group consisting of } C, N, O, \text{ and } S; \\
m \text{ and } n, \text{ which may be the same or different, are each an integer of 0, 1, 2, or 3}; \\
t & \text{ is an integer of 0, 1, 2, or 3}; \\
R^1 & \text{, at each occurrence, is independently selected from halogen, } C, NO2, OR^9, NR^9R^10, NR^9COR^10, NR^9SO_2R^10, CONR^9R^10, COOR^9, SO_2R^9, \text{ alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein each of the alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl is independently optionally substituted with at least one substituent } R_{12}; \\
\end{align*}
\]
$R^2$ is selected from hydrogen, COR$^9$, CONR$^9$R$^{10}$, CO2R$^9$, SO2R$^9$, alkyl, alkenyl, alkynyl, cycloalkyl, heteroaryl, aryl, and heteroaryl, wherein each of the alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl is independently optionally substituted with at least one substituent R$^{12}$;

$R^3$, $R^4$, $R^5$, $R^6$, $R^7$ and $R^8$, which may be the same or different, are each independent!

selected from hydrogen, halogen, -NR$^9$R$^{10}$, -OR$^9$, oxo, -COR$^9$, -CO2R$^9$, -CONR$^9$R$^{10}$, -NR$^9$CONR$^{10}$R$^{11}$, -NR$^9$CO$_2$R$^{10}$, -NR$^9$SO$_2$R$^{10}$, -SO2R$^9$, alkyl, alkenyl, cycloalkyl, aryl, heteroaryl, alkyl, and heteroaryl, wherein each of the alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heterocyclyl, and heteroaryl is independently optionally substituted with at least one substituent R$^{12}$;

or (R$^3$ and R$^4$), and/or (R$^5$ and R$^6$), and/or (R$^3$ and R$^5$), and/or (R$^6$ and R$^7$), and/or (R$^7$ and R$^8$), together with the atora(s) they are attached, form a 3- to 8-membered saturated, partially or fully unsaturated ring having 0, 1 or 2 heteroatoms independently selected from -NR$^{13}$-, -O-, -S-, -SO-, or -SO$_2$-, and said ring is optionally substituted with at least one substituent R$^{12}$, provided that

when X is O, R$^5$ and R$^6$ are absent,
when X is N, R$^6$ is absent, an
when X is S, R$^2$ and R$^9$ are absent, or at least one of R$^3$ and R$^4$ is oxo,
when one of R$^3$ and R$^4$ is oxo, the other is absent,
when one of R$^7$ and R$^8$ is oxo, the other is absent, and
when X is C and one of R$^5$ and R$^6$ is oxo, the other is absent;

R$^9$, R$^{10}$, and R$^{11}$, which may be the same or different, are each selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein each of the alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl is independently optionally substituted with at least one substituent R$^{12}$;

R$^{12}$ is selected from CN, halogen, haloalkyl, NO$^2$, -NR'R'', -OR', oxo, -COR', -CO2R', -CONR'R'', -NR'CONR'R'``, -NR'CO$_2$R'', -NR'SO$_2$R'', -SO2R', alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein R', R'', and R''' are independently selected from hydrogen, haloalkyl, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, or (R' and R''), and/or (R'' and R'''') together with the atoms to which they are attached, form a 3- to 8-membered saturated, partially or fully unsaturated ring having 0, 1 or 2 additional heteroatoms independently selected from -NR$^{13}$-, -O-, -S-, -SO- and -SO$_2$-.

R$^{13}$ is selected from hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl.

[0101] In some embodiments, the PARP inhibitor is a compound of Formula (II),
a stereoisomer thereof, a pharmaceutically acceptable salts thereof, or a solvate thereof,
wherein:

\( \text{R}^1 \) is selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein each of the alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl is independently optional!

\( \text{m} \) and \( \text{n} \), which may be the same or different, are each an integer of 0, 1, 2, or 3;

\( \text{t} \) is an integer of 0, 1, 2, or 3;

\( \text{R}^1 \), at each occurrence, is independently selected from halogen, CN, NO\( _2 \), OR\( ^9 \), NR\( ^9 \)R\( ^10 \), NR\( ^9 \)COR\( ^{10} \), NR\( ^9 \)SO\( _2 \)R\( ^10 \), CONR\( ^9 \)R\( ^{10} \), COOR\( ^9 \), SO\( _2 R^9 \), alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein each of the alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl is independently optionally substituted with at least one substituent R\( ^{12} \);

\( \text{R}^2 \) is selected from hydrogen, COR\( ^9 \), CONR\( ^9 \)R\( ^{10} \), CO\( _2 R^9 \), SO\( _2 R^9 \), alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein each of the alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl is independently optionally substituted with at least one substituent R\( ^{12} \);

\( \text{R}^3, \text{R}^4, \text{R}^5, \text{R}^7 \) and \( \text{R}^8 \), which may be the same or different, are each independently selected from hydrogen, halogen, -NR\( ^9 \)R\( ^{10} \), -OR\( ^9 \), oxo, -COR\( ^9 \), -CO\( _2 R^9 \), -CONR\( ^9 \)R\( ^{10} \), -NR\( ^9 \)CONR\( ^{10} \)R\( ^{11} \), -NR'CC\( R^9 \), -NR\( ^9 \)SO\( _2 \)R\( ^{10} \), -SO\( _2 R^9 \), alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, alkynyl, and heteroaryl, wherein each of the alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heterocyclyl, and heteroaryl is independently optional!)

attached, form a 3- to 8-membered saturated, partially or fully unsaturated ring having 0, 1 or 2 heteroatoms independently selected from \(-\text{NR}^{11}-, -\text{O}-, -\text{S}-, -\text{SO}-, -\text{SO}_2-\), and said ring is optionally substituted with at least one substituent R\( ^{12} \), provided that

when one of R\( ^3 \) and R\( ^4 \) is oxo, the other is absent, and
when one of $R^7$ and $R^8$ is oxo, the other is absent; $R^9$, $R^{10}$, and $R^{11}$, which may be the same or different, are each selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein each of the alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl is independently optionally substituted with at least one substituent $R^{12}$;

$R^{12}$ is selected from CN, halogen, haloalkyl, $NO_2$, -NR'R", -OR', oxo, -COR', -CO2R', -CONR'R", -NR'CONR"R"", -NR'C0$_2$R", -NR'S0$_2$R", -SO2R', alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein $R'$, $R''$, and $R'''$ are independently selected from hydrogen, haloalkyl, alkyl, arylalkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, or (R' and R'"), and/or (R" and R""") together with the atoms to which they are attached, form a 3- to 8-membered saturated, partially or fully unsaturated ring having 0, 1 or 2 additional heteroatoms independently selected from -NR$_3$, -O-, -S-, -SO- or -SO$_2$-; and

$R^{13}$ is selected from hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl.

[0102] In some embodiments, the PARP inhibitor is selected from the compound the following compounds,
a stereoisomer thereof, a pharmaceutically acceptable salts thereof, or a solvate thereof.

[01031] As disclosed in each of the above six aspects, the PARP inhibitor is a compound of

Formula (III)—i.e., Compound A,
or a pharmaceutically acceptable salt thereof.

[0104] As disclosed in each of the above six aspects, the PARP inhibitor is a compound of

Formula (IV)--i.e., Compound B.

[0105] The PARP inhibitor disclosed herein, such as the compound of Formula (III) and (IV),
may be synthesized by synthetic routes disclosed in WO2013/097225 A1 and PCT application
PCT/CN2016/096200, the entire disclosure of which is expressly incorporated herein by reference.

Combination therapy

[0106] The combination therapy may be administered as a simultaneous, or separate or sequential
regimen. When administered sequentially, the combination may be administered in two or more
administrations. The combined administration includes co-administration, using separate
formulation, and consecutive administration in either order, wherein preferably there is a time
period while both (or all) active agents simultaneously exert their biological activities.

[0107] Suitable dosages for any of the above co-administered agents are those presently used and
may be lowered due to the combined action (synergy) of the PARP inhibitor and the
chemotherapeutic agent or the immune checkpoint inhibitor, such as to increase the therapeutic
index or mitigate toxicity or other side-effects or consequences.

[0108] In a particular embodiment of anti-cancer therapy, the PARP inhibitor and the
chemotherapeutic agent or the immune checkpoint inhibitor may be further combined with
surgical therapy and radiotherapy.

[0109] In an embodiment of each of the above six aspects, the amounts of the PARP inhibitor and
the chemotherapeutic agent or the immune checkpoint inhibitor disclosed herein and the relative
timings of administration be determined by the individual needs of the patient to be treated,
administration route, severity of disease or illness, dosing schedule, as well as evaluation and judgment of the designated doctor.

[0110] For example, the administered dosage of the PARP inhibitor is 1-120 mg (in terms of the parent compound), preferably, 1-80 mg (in terms of the parent compound), and the administration frequency is twice a day (BID); the administered dosage of the PARP inhibitor is 1-120-240 mg (in terms of the parent compound), preferably, 60-120 mg (in terms of the parent compound), and the administration frequency is once a day (QD). In some cases, it is more suitable to apply the lower end of the above described dosage ranges, while in other cases the higher dosages may be used without causing harmful side effects.

[0111] The PD-1 antagonist is administered at a dose of 0.5-30 mg/kg, such as 0.5-20 mg/kg, further such as 0.5-10 mg/kg once weekly (QW), or every two weeks (Q2W), or every three weeks (Q3W), or every four weeks (Q4W). Preferably, the PD-1 antagonist is administrated at dose of 2 mg/kg every three weeks (Q3W), or at dose of 200 mg every three weeks (Q3W).

[0112] The PARP inhibitor and the chemotherapeutic agent or the immune checkpoint inhibitor disclosed herein may be administered in various known manners, such as orally, topically, rectally, parenterally, by inhalation spray, or via an implanted reservoir, although the most suitable route in any given case will depend on the particular host, and nature and severity of the conditions for which the active ingredient is being administered. The term "parenteral" as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.

[0113] In one embodiment of each of the above six aspects, the PARP inhibitor and the chemotherapeutic agent or the immune checkpoint inhibitor disclosed herein may be administered in different route. In a preferred embodiment, the PARP inhibitor is administrated orally, and the chemotherapeutic agent or the immune checkpoint inhibitor is administrated parenterally such as subcutaneously, intracutaneously, intravenously or intraperitoneally.

[0114] In an embodiment of each of the above six aspects, the anti-PD-1 monoclonal antibody is an antibody named as \textbf{Mab-1}, which comprises a heavy chain variable region (Vh) and a light chain variable region (Vl) (comprising SEQ ID No 24 and SEQ ID No 26, respectively) and a IgG4 heavy chain effector or constant domain (comprising SEQ ID NO 88); and the PARP inhibitor is the compound of \textbf{Formula} (HI) or (TV) disclosed herein.

[0115] In an embodiment of each of the above six aspects, the PD-1 antagonist \textbf{Mab-1} is administrated to a subject at a dose of 0.5-20 mg/kg i.v. or i.p. QW or Q2W or Q3W or Q4W, and the PARP inhibitor \textbf{Compound A} or \textbf{Compound B} is administrated to a subject at a dose of 1-120
mg BID. In some preferred embodiments, the PD-1 antagonist Mab-1 is administrated to a subject at a dose of 0.5-10 mg/kg i.v. or i.p. QW or Q2W or Q3W or Q4W, and the PARP inhibitor Compound A or Compound B is administrated to a subject at a dose of 1-80 mg BID. In some embodiment of each of the above six aspects, the PD-1 antagonist Mab-1 is administrated to a subject at a dose of 2 mg/kg every three weeks (Q3W), and the PARP inhibitor Compound A or Compound B is administrated to a subject at a dose of 1-80 mg BID. In some embodiment of each of the above six aspects, the PD-1 antagonist Mab-1 is administrated to a subject at a dose of 2 mg/kg Q3W, and the PARP inhibitor Compound A or Compound B is administrated to a subject at a dose of 20 mg/kg, 40 mg or 60 mg BID, preferably, at a dose of 40 mg BID. In some embodiment of each of the above six aspects, the PD-1 antagonist Mab-1 is administrated to a subject at a dose of 200 mg Q3W, and the PARP inhibitor Compound A or Compound B is administrated to a subject at a dose of 40 or 60 mg BID, preferably, at a dose of 40 mg BID.

EXAMPLES

[0116] The present invention is further exemplified, but not limited, by the following examples that illustrate the invention. In the examples of the present invention, the techniques or methods, unless expressly stated otherwise, are conventional techniques or methods in the art.

Example 1. Preparation of Compound A and Compound B

[0117] Step 1: Synthesis of Compound-2

![Chemical Structure](image)

[0118] t-Butyl bromoacetate (51.7 Kg) was dissolved in anhydrous acetonitrile (72 Kg). The temperature was raised to 65-75 °C, then methyl pyrroline (22 Kg) was added. The reaction mixture was condensed after the reaction was completed, the residual acetonitrile was removed by adding THF and then condensing. After GC showed a complete removal of acetonitrile, more THF was added and stirred. The resulting solid was filtered and collected. 44.1 Kg of off white solid Compound-2 was obtained. $^1$H NMR (400 MHz, DMSO-d6) δ 4.91 (s, 2H), 4.15 (m, 2H), 3.29 (m, 2H), 2.46 (s, 3H), 1.46 (m, 2H), 1.46 (s, 9H)ppm.

[0119] Step 2: Synthesis of Compound-3
To a cool (-60 °C) solution of trimethylsilyl acetylene (12.4 Kg) in THF was added a solution of n-butyl lithium in hexane (43.4 Kg). After complete addition of n-butyl lithium solution, the resulting mixture was stirred for additional 1-2 h and then the entire solution was transferred into a suspension of Compound-2 (31 Kg) in THF cooled at -60 °C. After transfer completion, the resulting mixture was warmed to room temperature and stirred for 1 h. The reaction was quenched with water, extracted with petroleum. The organic phase was washed with brine, dried over sodium sulfate, condensed to give 25.1 Kg of Compound-3. \(^{1}H\) NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 3.34 (d, \(J = 16.0\) Hz, 1H), 3.15 (m, 1H), 2.78 (d, \(J = 16.0\) Hz, 1H), 2.27 (m, 1H), 1.93 (m, IH), 1.68 (m, 3H), 1.41 (s, 9H), 1.24 (s, 3H), 0.13 (s, 9 H) ppm.

Step 3: Synthesis of Compound-4

To a cool (0-5 °C) solution of 70.1 Kg of Compound-3 in THF was added tetrabutylammonium fluoride (13.3 Kg) in THF. After de-silylation was completed, the reaction was quenched with water, extracted with petroleum (290 Kg) and the organic phase was condensed and passed through a pad of silica gel. The filtrate was condensed to give 48 Kg of Compound-4. \(^{1}H\) NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 3.36 (d, \(J = 16.0\) Hz, 1H), 3.15 (m, 1H), 2.82 (d, \(J = 16.0\) Hz, 1H), 2.28 (m, 1H), 1.97 (m, IH), 1.70 (m, 3H), 1.41 (s, 9H), 1.26 (s, 3H) ppm.

Step 4: Syntheses of Compound-5

A solution of Compound-4 (48 Kg) in THF was warmed to 50-60 °C. To the above solution was added a solution of (-)-di-p-methylbenzoyl-L-tartaric acid (69.6 Kg) in THF. The resulting mixture was stirred at 50-60 °C 1-2 h and then gradual! cooled to 0-10 °C. The resulting salt solid was filtered and re-suspended in methyl tert-butyl ether and heated at 50-60 °C for 1 h.
The mixture was gradually cooled to 0-5 °C. The resulting solid was filtered to give 13.1 Kg of off-white solid. The solid was treated with aqueous sodium hydroxide, extracted with petroleum, condensed to give 13.1 Kg of Compound-5 (ee≥96%). \(^1\)H NMR (400 MHz, DMSO-d6) δ 3.36 (d, J = 16.0 Hz, 1H), 3.15 (m, 1H), 2.82 (d, J = 16.0 Hz, 1H), 2.29 (m, 1H), 1.97 (m, 1H), 1.70 (m, 3H), 1.41 (s, 9H), 1.26 (s, 3H) ppm.

[0125] Step 5: Syntheses of Compound-6

[0126] Intermediate B (14 Kg), bis(triphenyl)palladium dichloride (0.7 Kg), CuI (0.42 Kg) and tetramethyl guanidine (11.5 Kg) were dissolved in DMF (48.1 Kg). The resulting solution was stirred and de-gassed and then heated under nitrogen. A solution of Compound-5 (9.24 Kg) in DMF (16 Kg) was added dropwise. After coupling, the organic phase was condensed, the residue was stirred with water (145 Kg) and methyl t-butyi ether (104 Kg), the entire mixture passed through a pad of celite, separated. The organic phase was washed with a solution of thiourea (14 Kg) in water (165 Kg) and brine (100 Kg), condensed. The residue was dissolved in a mixture of n-heptane (120 Kg) and ethyl acetate (28 Kg). The solution was mixed with charcoal (1.4 kg), heated at 40-50 °C for 1-2 h, filtered though a pad of silica gel. The filtrate was condensed to give Compound-6 solid (14.89 Kg) and the liquid filtrate (13 Kg heptane solution, contains 1.24 Kg of Compound-6). \(^1\)H NMR (400 MHz, DMSO-d6) δ 7.85 (d, J = 9.6 Hz, 1H), 7.55 (m, 1H), 7.32 (m, 2H), 3.87 (s, 3H), 3.37 (d, J = 16.0 Hz, 1H), 3.22 (m,1H), 2.94 (d, J = 16.0, Hz, 1H), 2.60 (m, 1H), 2.48 (m, 1H), 2.29 (s, 3H), 2.26 (m,1 H), 1.82 (m, 2H), 1.49 (s, 3H), 1.43 (s, 9H) ppm.

[0127] Step 6: Syntheses of Compound-7

[0128] The above heptane solution of Compound-6 was added into a cold trifluoromethane sulfonic acid (66.1 Kg) while maintaining the internal temperature below 25 °C. Then solid Compound-6 (14.87 Kg) was added batchwise. After complete addition of Compound-6, the
reaction mixture was warmed to 25-30°C and stirred until the reaction was completed. The entire mixture was poured into a solution of sodium acetate (123.5 Kg) in water (240 Kg). pH of the solution was then adjusted to 7-8 by adding solid potassium carbonate (46.1 Kg). The mixture was extracted with dichloromethane (509 Kg), condensed. The residue was mixed with n-heptane (41 Kg), condensed again to give the precipitate which was filtered and washed by n-heptane (8 Kg) and dried. 8.78 Kg of Compound-7 was obtained.  

\[ \text{H} \text{NMR (400 MHz, DMSO-}_d\text{6) } \delta 12.30 \text{ (s, 1H), 7.35 (dd, } J= 9.2, 1.6 \text{ Hz, 1H), 7.08 (dd, } J= 9.2, 1.6 \text{ Hz, 1H), 3.79 (s, 3H), 3.68 (d, } J= \text{ II H Hz, 1H), 3.21 (d, } J= 17.2 \text{ Hz, 1H), 3.06 (m, 1H), 2.68 (m, 1H), 1.96 (m, 1H), 1.74 (m, 1H), 1.49 (s, 3H) ppm.} \]

[0129] Step 7: Syntheses of Compound A-Crude 1

[0130] Compound-7 (8.76 Kg) was dissolved in methanol (69 Kg) and internally cooled below 25 °C. Acetic acid (9.3 Kg) and hydrazine hydrate (7.4 Kg, 85%) were added while maintaining internal temperature below 25 °C. After de-gassed and re-filled with nitrogen (repeated three times), the reaction mixture was stirred at 55-60 °C for 4 h. After a complete reaction, the mixture was mixed with water (29 Kg). The organic phase was condensed and potassium carbonate (12.5 Kg) in water (40 Kg) was added. The resulting solid was filtered, washed with water (18.3 Kg). The solid was slurried with water (110 Kg), centrifuged, dried and slurried with ethanol (9.4 Kg), centrifuged, filtered, washed with ethanol, dried in vacum to give Compound A-Crude 1 (7.91 Kg). \[ \text{H} \text{-NMR (600 MHz, DMSO-}_d\text{6) } \delta 12.0 \text{ (s, 1H), 10.2 (s, 1H), 7.31 (dd, 1H, } J= 9.6, 2.0 \text{ Hz), 7.19 (dd, } J= 9.6, 2.0 \text{ Hz), 3.77 (d, 1H, } J= 16.4 \text{ Hz), 3.34 (d, 1H, } J= 16.4 \text{ Hz), 2.97-3.02 (m, 1H), 2.54-2.58 (m, 1H), 2.35-2.40 (m, 1H), 1.90-1.94 (m, 1H), 1.73-1.75 (m, 1H), 1.47 (s, 3H), 1.43-1.45(m, 1H) ppm. MS (ESI) m/e [M+1] + 299. \]

[0131] Step 8: Synthesis of Compound A-Crude 2

\[ \text{H} \text{-NMR (600 MHz, DMSO-}_d\text{6) } \delta 12.0 \text{ (s, 1H), 10.2 (s, 1H), 7.31 (dd, 1H, } J= 9.6, 2.0 \text{ Hz), 7.19 (dd, } J= 9.6, 2.0 \text{ Hz), 3.77 (d, 1H, } J= 16.4 \text{ Hz), 3.34 (d, 1H, } J= 16.4 \text{ Hz), 2.97-3.02 (m, 1H), 2.54-2.58 (m, 1H), 2.35-2.40 (m, 1H), 1.90-1.94 (m, 1H), 1.73-1.75 (m, 1H), 1.47 (s, 3H), 1.43-1.45(m, 1H) ppm. MS (ESI) m/e [M+1] + 299. \]
Under nitrogen protection, Compound A (Crude 1) (7.88 Kg) was stirred with isopropanol (422 Kg) and heated at 70-80 °C for 1-2 h until the solid disappeared completely. A solution of (+)-di-p-methylbenzoyl-D-tartaric acid (10.25 Kg) in isopropanol (84.4 Kg) was added. The mixture was stirred for 14-16 h, filtered and washed with isopropanol (16 Kg), dried. The resulting salt was added into a stirred solution of potassium carbonate (6.15 Kg) in water (118 Kg). The precipitate was centrifuged, washed with water (18 Kg). The solid was slurried with water (110 Kg), centrifuged, dried. The solid was dissolved in THF (75 Kg), active carbon (0.8 Kg) was added. The mixture was degassed and re-protected by nitrogen, stirred and heated at 40-45 °C for 1-2 h, cooled, filtered through celite, condensed to give the solid which was further slurried with ethanol (6.5 Kg), filtered to give 5.6 Kg of Compound A crude 2. 3H NMR (400 MHz, DMSO-d6) δ 12.0 (s, 1H), 10.2 (s, 1H), 7.31 (dd, 1H, J=9.6, 2.0 Hz), 7.19 (dd, 1H, J=9.6, 2.0 Hz), 3.77 (d, 1H, J=16.4 Hz), 3.34 (d, 1H, J=16.4 Hz), 2.97-3.02 (m, 1H), 2.54-2.58 (m, 1H), 2.35-2.40 (m, 1H), 1.90-1.94 (m, 1H), 1.73-1.75 (m, 1H), 1.47 (s, 3H), 1.43-1.45 (m, 1H) ppm. MS (ESI) m/z [M+1] 299.

[0133] Step 9: Synthesis of Compound B

Compound B

[0134] Compound A-Crude 2 (5.3 Kg) was mixed with a solution of isopropanol (41.6 Kg) and water (15.9 Kg). The mixture was degassed and re-protected under nitrogen and then heated to 60 °C and stirred for 2-4 h until the solid was dissolved completely. The temperature was raised to 70-80 °C and water (143 Kg) was added. The resulting mixture was heated to the internal temperature of 70-80 °C and then the heating was stopped but stirred gently for 16 h. The precipitate was filtered, washed with water (19 Kg) and slurried with water (21 kg) for 2 h. The resulting solid was filtered, washed with water (20 Kg). The filtered solid was dried at the temperature below 45 °C for 24-36 h. Compound A sesqui-hydrate (4.22 kg) was obtained with particle sizes of D90=51.51um, D50=18.62 um, D10=7.63 um. This range of PSD is almost ideal for formulation development.

[0135] The powder X-ray diffraction pattern (PXRD) was used to characterize Crystal Compound 2, see FIG. 1. 1H-NMR for Crystal Compound 2, is shown in FIG. 2. 13C-NMR for Crystal Compound 2 is shown in, see FIG. 3.
Example 2 Effect of the combination of PARP inhibitor and anti-PD-1 mAb

Materials and Methods

PBMC isolation and activation

[0136] After signed the informed consent, healthy human donor's blood was collected and
PBMCs were isolated with Ficoll (GE Healthcare, 17-1440-02) according to the manufacturer's
protocol with small modification. Briefly, fresh blood was diluted with equivalent volume of
1xDPBS (Gibco®, 14190-144), added equivalent volume of Ficoll into a 50 mL sterile tube, and
added diluted blood very carefully onto the surface of the Ficoll. Then centrifuged at 400g for 40
minutes at room temperature. Carefully removed the upper layer and pipetted the lymphocyte
layer to a clean sterile tube, added 3 volumes of 1xDPBS and centrifuged at 200g for 10 minutes at
room temperature. After discarded the supernatant, suspended cells with 10 mL 1xDPBS and
washed 2 times more. Suspended cells with 5 mL RPMI-1640 (Gibco®, 22400-089) complete
medium (added with 10% fetal bovine serum (Gibco®, 10099-141).

[0137] For the activation of PBMCs, 5 mL 1xDPBS with 1 μg/mL anti-CD3 antibody
(eBioscience, 16-0037-85) was added to a T25 plate (Coming, 430168), incubate at 4°C overnight.
Liquid in the T25 plate was discarded and the plate was washed with 5 mL 1xDPBS for 2 times,
discarded 1xDPBS and added fresh isolated 6-8x10^6 PBMCs suspended in 5 mL RPMI-1640
complete medium. Put the plate at 37°C, 5% CO2 cell incubator. 2 to 3 days later, cells was
collected and counted amount.

Primary human tumor cell isolation

[0138] After a patient with cancer signed the informed consent, tumor biopsy or surgical tumor
tissue sample from patient was collected. At the day of tumor collection, tumor was steriely
minced to small pieces at a biosafety cabinet. Then tumor pieces was suspended with 10 mL
digestion buffer, digested at 37°C and 200 rpm for 0.5-1 hour. Undigested tumor pieces were
removed by filtering with a 70 μm strainer. Liquid with tumor cells passed the strainer was
centrifuged at 300g for 5 minutes at room temperature. Discarded the supernatant and suspended
cells with 10 mL 1xDPBS and washed 2 times more. The cells are re-suspended with Medium
BGB.

[0139] The medium is Medium BGB comprises a substance listed as follows:

1) F12/DMEM 1:1 medium 500 mL (Gibco®, 31765-035);
2) Fetal Bovine Serum 5 Oral (Gibco®, 10099-141);
3) B-27 supplement 1x (Gibco®, 17504-044);
4) B2 supplement 1x (Gibco®, 17502-048);
5) Insulin-Transferrin-Selenium (ITS-G) 0.5x (Gibco®, 41400045);
6) N-Acty-L-Cysteine 1.25mM (Sigma®, V900429);
7) L-Ascorbic acid 25µg/ml (Sigma®, V900134);
8) Folic acid 3.5µM (Sigma®, V900422);
9) Putrescine 180µM (Sigma®, V900377);
10) [Leul5]-Gastrin 10 nM (Sigma®, SCP0151);
11) Selenium 1.2µM (Gibco®, 51300-044);
12) Glucose 25mM (Sigma®, V900392);
13) Beta-ME 0.2mM (Sigma®, M7522-100ML);
14) Recombinant Human HB-EGF 100ng/ml (Peprotech, 100-47);
15) Recombinant Human R-Spondin-1 1 µg/ml (Peprotech, 120-38);
16) Recombinant Human Noggin 100 ng/ml (Peprotech, 120-IOC);
17) HEPES 1x (Gibco®, 15630080);
18) Glutamine 2 mM (Gibco®, 25030081);
19) MEM Non-Essential Amino Acids Solution 1x (Gibco®, 1140050);
20) Sodium pyruvate 1x (Gibco®, 11360070);
21) Penicillin-Streptomycin 1x (Gibco, 15140122); and
22) ROCK inhibitor y-27632 10µM (Sigma®, Y0503).

Flow cytometry analysis

[0140] Activated PBMCs were collected and washed with 1xDPBS. 3 × 10^5 cells were stained with a fluorescent probe conjugated anti-PD-1 antibody (eBioscience, 12-2799-42). The PD-1 expressed on PBMCs was analyzed by flow cytometry.

Culcuring primary human tumor cells on feeder cells

[0141] C3H10T1/2 cell (ATCC, ATCC® CCL-226™) is a mouse embryo cell line and used as feeder cell. When the confluence of C3H10T1/2 cell was about 90%, cells were treated with 10 µg/mL mitomycin C (MCC, Sigma®, M0503) at 37°C for 2 hours. Then discarded the medium with MMC and washed with 1xDPBS for 3 times. Cells were collected and stored in liquid-nitrogen. 4 hours before isolated primary tumor cells were seeded, MMC treated C3H10T1/2 cells were seeded into a 6-well plate. Two days after tumor cells were seeded, changed medium to remove unattached cells. Medium was changed according to the medium color. When the confluence was about 70-90%, primary tumor cells were trypsinized and subcultured to 96-well plate which was pre-seeded with MMC treated C3H10T1/2. Culture primary tumor cells to the confluence sufficient to co-culture with PBMCs.
Culturing primary human tumor cells in Matrigel®

[0142] Isolated primary tumor cells suspended in medium were mixed with 2% Matrigel® (BD, 356234) and then seeded in a 48-well plate. Medium was changed according to the medium color. When cells should be subcultured, organoids in Matrigel® were collected and pipetted to dispense the Matrigel® to small pieces and subcultured to a 96-well plate to co-culture with PBMCs.

ELISA for human IFN-γ

[0143] Coated a 96-well high binding plate (Coming, 9018) with purified anti-human IFN-γ (Biolegend, 502402) at 37°C for 2 hours or overnight, after washed the plate with 1xPBST (PBS added with 0.5% Tween 20 (Sigma®, P1379) for 3 times, plate was blocked with 3% BSA (ChernCruz®, sc-2323) resolved in 1xPBST. Then supernatant of the co-culture system was incubated at room temperature for 2 hours or overnight. After washed the plate with 1xPBST for 3 times, plate was incubated with biotin conjugated anti-human IFN-γ (Biolegend, 502504) at room temperature for 1 hour. After washed the plate with 1xPBST for 3 times, plate was incubated with HRP conjugated streptavidin (Themo Scientific, 21130) at room temperature for 30 minutes. After washed the plate with 1xPBST for 5 times, 100 µL 1X TMB (ebioscience, 00-4201-56) was added to each well of the plate, 5 to 15 minutes later, each well was added with 50 µL of 2 mM H2SO4 to stop the reaction. Read absorbance at 450 nm.

Effect of the combination of PARP inhibitor and anti-PD-1 mAb

[0144] Primary tumor cells from a patient with colorectal cancer cultured in Matrigel® were co-cultured with non pre-activated allogeneic human PBMCs, with 50 ng/ml EpCAMxCD3 bispecific T cell engager and with or without an PARP inhibitor named Compound B (30 nM) or an anti-PD-1 antibody named Mab-1 (1 µg/mL), or their combination (named as Mab-1+ Compound B, for short), and cultured for 72 hours. Human IFN-γ in the supernatant of the co-culture system was measured and as the readout (See FIG. 4). The IFN-γ concentration of each bisspecific T cell engager concentration group was normalized to fold change by antibody treatment group concentration dividing by control group concentration. Primary tumor cells cultured in Matrigel® responded to anti-PD-1 antibody.

[0145] With 50ng/mL bispecific T cell engager, the fold changes of IFN-γ of Compound B group was only almost close to 1 (the value is 1.08), which indicates that the primary tumor cells probably not respond to 30 nM Compound B alone. While the fold changes of anti-PD-1 antibody and the combination treatment groups were all bigger than 1.3, the fold changes of combination was bigger than anti-PD-1 antibody alone treatment groups, which indicated that the primary tumor cells not only responded to anti-PD-1 antibody alone, but also there was significant
synergistic effect of anti-PD-1 antibody and Compound B on primary tumor cells cultured in Matrigel®. The results indicated that this cancer patient not only responded to the tested anti-PD-1 antibody, but also responded to the effect of its combination with Compound B. The effect of the combination of Mab-1 and Compound B showed better activity than the single anti-PD-1 antibody treatment, indicating there was significant synergistic effect of the anti-PD-1 antibody (Mab-1) and Compound B on primary tumor cells cultured in Matrigel®.

Example 3 Effect of the combination of PARP inhibitor and paclitaxel in a primary human gastric tumor xenograft model

Method

[0146] Tumor tissues surgically removed from a patient with gastric cancer. Within 2 to 4 hours following patient surgery, small fragments of tumor (3×3×3 mm³) were subcutaneously engrafted into the scapular area of anesthetized NOD/SOD mice. After tumors grew to around 300-1000 mm³, tumors were surgically removed and fragments were passaged in NOD/SCID mice by subsequent engraftments. Engraftment in BALB/c nude mice was conducted after 3 successfully passages in NOD/SCID mice. The right axilla region of each BALB/C nude mouse was cleaned with 70% ethanol prior to tumor fragments inoculation. Each animal was implanted subcutaneously with a fragment (around 3×3×3 mm³) of the gastric cancer in the right flank via 20-gauge trocar needle.

[0147] When average tumor size reached >200 mm³, animals were assigned into 7 groups with 8 mice per group using a stratified randomization procedure. Mice were then treated twice daily (BID) with vehicle (0.5% methylicellulose), 12 mg/kg Compound A, or once every four days (Q4D) with 15 mg/kg paclitaxel (30rag/5mi, diluted to 1.5 mg/ml with saline just before use), Beijing Union Pharmaceutical Factory, or the combination of paclitaxel (15 mg/kg) and Compound A (6 or 12 mg/kg BID). All doses were based on free-base weight. Treatments were administered by oral gavage (p.o.) for vehicle and Compound A or intraperitoneal (i.p.) for paclitaxel in a volume of 10 ml/kg body weight. Body weight was assessed immediately before dosing and volume dosed was adjusted accordingly.

[0148] Individual body weight and tumor volume were recorded twice weekly, with mice being monitored daily for clinical signs of toxicity for the duration of the study. Mice were euthanized using carbon dioxide once their tumor volume reached ≥2,000 mm³, the tumor was ulcerated, or body weight loss exceeded 25%.
After implantation, primary tumor volume was measured in two dimensions using a calliper. Tumor volume was calculated using the formula: 

\[ V = 0.5 \times (a \times b^2) \]

where \(a\) and \(b\) are the long and short diameters of the tumor, respectively. Tumor growth inhibition (TGI) was calculated using the following formula:

\[
\% \text{growth inhibition} = 180 \times \left(1 - \frac{(treated \ t) - (treated \ to)}{(placebo \ t) - (placebo \ to)}\right)
\]

where:

- \(treated \ t\) = treated tumor volume at time \(t\)
- \(treated \ to\) = treated tumor volume at time 0
- \(placebo \ t\) = placebo tumor volume at time \(t\)
- \(placebo \ to\) = placebo tumor volume at time 0

Statistical analysis was conducted using the student T-test. \(P < 0.05\) was considered statistically significant.

Result:

In vivo anti-tumor efficacy of the combination of Compound A and paclitaxel was shown in FIG.s 5 and 6. Single agent treatments, paclitaxel (15 mg/kg Q4D X 3), and Compound A (12 mg/kg BID) had weak or no effect on tumor growth, with 31%, -29% and 30% of tumor growth inhibition (TGI) on day 21, respectively (not statistically different from vehicle group). All combination treatments, paclitaxel with Compound A (6 and 12 mg/kg BID) showed significantly better anti-tumor activity, with 80%, 70% and 77% of TGI on day 21, respectively (\(P < 0.05\) vs. paclitaxel single agent treatment). In all single agent and combination treatment groups, no significant effect on body weight was observed throughout the study compared to the vehicle group. Compound A also demonstrated better anti-tumor activity in combination with paclitaxel than paclitaxel single agent in a primary gastric cancer xenograft model, without severe toxicity.

Example 4 Effect of the combination of PARP inhibitor and etoposide/carboplatin (E/C) in a primary human SCLC tumor xenograft model

Method

Tumor tissues surgically removed from a patient with limited-stage small cell lung cancer (SCLC). Within 2 to 4 hours following patient biopsy, the tumor samples were subcutaneously engrafted into the scapular area of anesthetized NOD/SCID mice. After tumors grew to around 300-1000 mm\(^3\), tumors were surgically removed and fragments were passaged in NOD/SCID mice by subsequent engraftments. Engraftment in BALB/c nude mice was conducted after 3 successfully passages in NOD/SCID mice. The right axilla region of each BALB/C nude mouse
was cleaned with 70% ethanol prior to tumor fragments inoculation. Each animal was implanted subcutaneously with a fragment (around 3×3×3 mm³) of the lung cancer in the right flank via 20-gauge trocar needle.

[0152] When average tumor size reached ≥230 mm³, animals were assigned into 4 groups with 10 mice per group using a stratified randomization procedure. Mice were then treated with vehicle (0.5% methylcellulose) twice daily (BID) for 42 days, or etoposide (Adamas Reagent Co., Ltd. CAS# 33419-44-0)/carboplatin (CAS#41575-94-4, from Beijing Fei Long Rui Co., Ltd.) [etoposide at 12 mg/kg (Day 1-3) + carboplatin at 60 mg/kg (Day1) of a 7 day cycle] for 3 cycles then vehicle BID for 21 days (Day22-42), or the combination of E/C with Compound B at 1.36 mg/kg BID [Day1 -7 (continuous) or Day1-4(intermittent) of the 7 day cycle] for 3 cycles then Compound B maintenance therapy at 5.45 mg/kg BID for 21 days (Day22-42). All doses were based on free-base weight. Treatments were administered by oral gavage (p.o.) for vehicle and Compound B or intraperitoneal (ip) for etoposide, or intravenous for carboplatin in a volume of 10 ml/kg body weight. Body weight was assessed immediately before dosing and volume dosed was adjusted accordingly.

[0153] Individual body weight and tumor volume were recorded twice weekly from Day1-31 and then once weekly thereafter, with mice being monitored daily for clinical signs of toxicity for the duration of the study. Mice were euthanized using carbon dioxide once their tumor volume reached ≥2000 mm³ or the tumor was ulcerated.

[0154] After implantation, primary tumor volume was measured in two dimensions using a caliper. Tumor volume was calculated using the formula: \( V = 0.5 \times (a \times b^2) \) where \( a \) and \( b \) are the long and short diameters of the tumor, respectively. Partial regression (PR) was defined as tumor volume smaller than 50% of the starting tumor volume on the first day of dosing in three consecutive measurements and complete regression (CR) was defined as tumor volume less than 14 mm³ in three consecutive measurements. In animal with PR tumor, progressive disease was defined as tumor volume bigger than 50% of the starting tumor volume in two consecutive measurements. In animal with CR tumor, progressive disease was defined as tumor volume bigger than 14 mm³ in two consecutive measurements. Tumor free was defined as tumor volume less than 14 mm³ on the day 72 of end of the study.

[0155] Tumor growth inhibition (TGI) was calculated using the following formula:

\[
\% \text{growth inhibition} = 100 \times \left( 1 - \frac{\text{treated } t - \text{treated } 0}{\text{placebo } t - \text{placebo } 0} \right)
\]

(2)

\( \text{treated } t = \text{treated tumor volume at time } t \)

\( \text{treated } 0 = \text{treated tumor volume at time } 0 \)
placebo t = placebo tumor volume at time t
placebo t₀ = placebo tumor volume at time 0

Statistical analysis was conducted using the student T-test. P < 0.05 was considered statistically significant.

Result:

[0156] In vivo anti-tumor efficacy of the combination of Compound B and E/C was shown in FIG.s 7 and 8. Consistent with the clinical finding, PR was observed in the host patient after etoposide/carboplatin treatment, E/C for 3 cycles resulted in objective response in all animals treated (6PR/4CR/10). However, 7 of these 10 tumors had progressive disease after discontinuation of E/C treatment and mean tumor volume reached 246 mm³ on day 72. Addition of Compound B at 1.36 mg/kg BID continuously (Day 1-7) or intermittently (Day 1-4) during the E/C treatment cycles and 5.45 mg/kg BID as maintenance therapy significantly enhanced anti-tumor activity with all animals becoming tumor free during the treatment (100% CRR). No relapse occurred while animals were on Compound B maintenance therapy, suggesting maintenance therapy with Compound B may provide further anti-tumor benefit. Thirty days after completion of maintenance treatment (day 72), most animals were still tumor-free. In all combination treatment groups, no significant effect on body weight was observed during the E/C concurrent administration phase compared to the E/C treatment group. During the maintenance phase, there was no significant body weight change in all treatment groups. Combination treatment of Compound B and E/C demonstrated better anti-tumor activity than E/C treatment alone, without severe toxicity.

Example 5 Effect of the combination of PARP inhibitor and E/C in a primary human SCLC xenograft model

Method

[0157] Tumor tissues surgically removed from a patient with extensive-stage SCLC. Within 2 to 4 hours following patient biopsy, the tumor samples were subcutaneously engrafted into the scapular area of anesthetized NOD/SCID mice. After tumors grew to around 300-1000 mm³, tumors were surgically removed and fragments were passaged in NOD/SCID mice by subsequent engraftments. Engraftment in BALB/c nude mice was conducted after 3 successfully passages in NOD/SCID mice. The right axilla region of each BALB/C nude mouse was cleaned with 70% ethanol prior to tumor fragments inoculation. Each animal was implanted subcutaneously with a fragment (around 3×3×3 mm³) of the lung cancer in the right flank via 20-gauge trocar needle.
[0158] 47 days after implantation, animals bearing tumor were divided to two cohorts, cohort 1 used smaller tumors for combination setting and cohort 2 used bigger tumors for maintenance setting. In cohort 1, animals with mean tumor size of \(-150 \text{ mm}^3\) were assigned into 6 groups with 9 mice per group using a stratified randomization procedure. Mice were then treated with vehicle (0.5% methylceliulose) twice daily (BID) or Compound B at 5.45 mg/kg BID for 21 days, or E/C [etoposide at 12 mg/kg (Day 1-3) + carboplatin at 60 mg/kg (Day1) of a 7 day cycle] for 3 cycles then vehicle BID for 21 days (Day22-42), or the combination of E/C with Compound B at 0.68, 1.36 or 2.73 mg/kg BID (Day1-4 of the 7 day cycle) for 3 cycles then Compound B maintenance therapy at 5.45 mg/kg BID for 21 days (Day22-42). In cohort 2, animals with mean tumor size of \(-400 \text{ mm}^3\) were treated with E/C for 3 cycles first. At day 22, 20 animals were assigned into 2 groups with 10 mice per group using a stratified randomization procedure, then treated with vehicle (0.5% methylceliulose) twice daily (BID) for 21 days (Day22-42), or Compound B maintenance therapy at 5.45 mg/kg BID for 21 days (Day22-42). All doses were based on free-base weight. Treatments were administered by oral gavage (p.o.) for vehicle and Compound B, or intraperitoneal (ip) for etoposide, or intravenous for carboplatin in a volume of 10 ml/kg body weight. Body weight was assessed immediately before dosing and volume dosed was adjusted accordingly.

[0159] Individual body weight and tumor volume were recorded twice weekly from Day 1-31 and then once weekly thereafter, with mice being monitored daily for clinical signs of toxicity for the duration of the study. Mice were euthanized using carbon dioxide once their tumor volume reached \(\geq 2000 \text{ mm}^3\) or the tumor was ulcerated.

[0160] After implantation, primary tumor volume was measured in two dimensions using a caliper. Tumor volume was calculated using the formula: \(V = 0.5 \times (a \times b^2)\) where \(a\) and \(b\) are the long and short diameters of the tumor, respectively!'. Partial regression (PR) was defined as tumor volume smaller than 50% of the starting tumor volume on the first day of dosing in three consecutive measurements and complete regression (CR) was defined as tumor volume less than 14 mm\(^3\) in three consecutive measurements. In animal with PR tumor, progressive disease was defined as tumor volume bigger than 50% of the starting tumor volume in two consecutive measurements. In animal with CR tumor, progressive disease was defined as tumor volume bigger than 14 mm\(^3\) in two consecutive measurements. Tumor free was defined as tumor volume less than 14 mm\(^3\) on the day 72 of end of the study.

[0161] Tumor growth inhibition (TGI) was calculated using the following formula:

\[
\% \text{ growth inhibition} = 100 \times \left(1 - \frac{(treated \ t) - (treated \ to)}{(placebo \ t) - (placebo \ to)}\right)
\]
treated t = treated tumor volume at time t
treated to = treated tumor volume at time 0
placebo t = placebo tumor volume at time t
placebo to = placebo tumor volume at time 0

Statistical analysis was conducted using the student T-test. P < 0.05 was considered statistically significant.

Result:
[0162] In vivo anti-tumor efficacy of the combination of Compound B and E/C was shown in FIGs. 9, 10, 11 and 12. Consistent with the clinical finding, PR was observed in the host patient after etoposide/carboplatin treatment but relapse was rapidly. E/C treatment resulted in objective response in both cohorts but tumors progressed after discontinuation of E/C treatment. In cohort 1, E/C for 3 cycles resulted in objective response in animals treated (3PR/QCR/9) but the mean tumor volume rebounded to 1206 mm³ on day 45. Addition of Compound B at 0.68, 1.36 or 2.73 mg/kg BID (Day 1-4) during the E/C treatment cycles, followed with 5.45 mg/kg BID as maintenance therapy, significantly enhanced anti-tumor activity with tumor regression (5PR/9, 4PR/4CR/9 and 2PR/6CR/9, respectively). At the completion of maintenance treatment (day 45), 6 out of 9 animals were still tumor-free in Compound B 2.73 mg/kg group. In all combination treatment groups, no significant effect on body weight was observed during the E/C concurrent administration phase and the maintenance phase compared to the E/C treatment group. In cohort 2 at the completion of 3 cycles E/C treatment, animals were divided into 2 groups and treated with vehicle or Compound B 5.45 mg/kg BID for 21 days. In vehicle group, the mean tumor volume rebounded to 1353 mm³ on day 45. However, the mean tumor volume only reached 571 mm³ after treated with Compound B, which demonstrated more sustained tumor growth inhibition than E/C alone. During the maintenance phase, there was no significant body weight change compared to the E/C treatment group. Combination treatment of Compound B and E/C demonstrated better anti-tumor activity than E/C treatment alone, without severe toxicity. Compound B as maintenance therapy also demonstrated significant anti-tumor activity.

Example 6 Clinical Trials of Compound B in combination with Mab 1
[0163] Using Compound B to prepare capsules, a Phase Ia clinical safety study of Compound B combined with Mab 1 was completed on 43 subjects administered the doses of 10, 20, 40 and 60 mg BID of Compound B together with 2 rmpk (rag/kg) or 200 mg Q3W. The results showed that all the combinations were safe and well tolerated.
The detailed study was illustrated as follows: Cohorts of 6 to 12 patients each received treatments at five planned dose levels (DLs). Mab 1 was administered at 2 mg/kg every three weeks (Q3W) with Compound B at 20, 40, or 60 mg twice daily (BID) in DLs 1, 2, and 3, respectively. Mab 1 was also administered at a fixed dose of 200 mg Q3W with Compound B at 40 or 60 mg BID in DLs 4 and 5, respectively.

Duration of treatment was greater than 200 days for 10 patients, and a total of seven patients remained on treatment as of the data cut-off (March 31, 2017). The safety analysis suggested that the combination of Mab 1 and Compound B was generally well-tolerated in patients with advanced solid tumors, although dose-limiting toxicities occurred in three patients including nausea or vomiting at DL4 or DLS or autoimmune hepatitis at DLS. However, no fatal adverse events have been reported and all events were reversible with or without corticosteroid treatment.

Co-administration of Mab-1 with Compound B did not have a significant impact on the pharmacokinetic profile of either compound. Either complete response or partial response were observed in patients with ovarian or fallopian tube cancer, patients with breast cancer, patients with pancreatic cancer, patients with uterine cancer; and those responses were durable and observed in patients with wild type and mutant gBRCA status. Stable diseases were observed in patients with prostate cancer and patients with bile duct cancer. Additional tumor types enrolled in the study include bladder, cervical, lung, and peripheral nerve sheath cancer.

The foregoing examples and description of certain embodiments should be taken as illustrating, rather than as limiting the present invention as defined by the claims. As will be readily appreciated, numerous variations and combinations of the features set forth above can be utilized without departing from the present invention as set forth in the claims. All such variations are intended to be included within the scope of the present invention. All references cited are incorporated herein by reference in their entireties.

It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art in any country.

In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e., to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.
The disclosures of all publications, patents, patent applications and published patent applications referred to herein by an identifying citation are hereby incorporated herein by reference in their entirety.
CLAIMS

1. A method for the prevention, delay of progression or treatment of cancer in a subject, comprising administering to the subject in need thereof a therapeutically effective amount of a PARP inhibitor, in combination with a therapeutically effective amount of an immune checkpoint inhibitor, or a chemotherapeutic agent,

   wherein the PARP inhibitor is a compound of Formula (I),

   (I)

   a stereoisomer thereof, a pharmaceutically acceptable salts thereof, or a solvate thereof,

   wherein;

   RN is selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein each of the alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl is independently optionally substituted with at least one substituent R12;

   X is selected from the group consisting of C, N, O, and S;

   m and n, which may be the same or different, are each an integer of 0, 1, 2, or 3;

   t is an integer of 0, 1, 2, or 3;

   R1, at each occurrence, is independently selected from halogen, CN, NO2, OR9, NR9R10, NR9COR10, NR9SO2, R10, CONR9R10, COOR9, SO2R9, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein each of the alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl is independently optionally substituted with at least one substituent R12;

   R2 is selected from hydrogen, COR9, CONR9R10, CO2R9, SO2R9, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein each of the alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl is independently optionally substituted with at least one substituent R12;

   R3, R4, R5, R6, R7 and R8, which may be the same or different, are each independently selected from hydrogen, halogen, -NR9R10, -OR9, oxo, -COR9, -CO2R9, -CONR9R10, -NR9CONR10R11, -NR9CO2R10, -NR9SO2R10, -SO2R9, alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, alkynyl, and heteroaryl, wherein each of the alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heterocyclyl, and heteroaryl is independently optionally substituted with at least one substituent R12;
or \( (R^3 \text{ and } R^4) \), and/or \( (R^4 \text{ and } R^5) \), and/or \( (R^5 \text{ and } R^6) \), and/or \( (R^6 \text{ and } R^7) \), and/or \( (R^7 \text{ and } R^8) \), together with the atom(s) they are attached, form a 3- to 8-membered saturated, partially or fully unsaturated ring having 0, 1 or 2 heteroatoms independently selected from \(-NR^{13}, -OR^*, -S-, -SO-, -SO_2-\), and said ring is optionally substituted with at least one substituent \( R^{12} \), provided that

5. The method of Claim 4, wherein the immune checkpoint inhibitor is a monoclonal antibody.

10. The method of Claim 4, wherein the chemotherapeutic agent is selected from paclitaxel, or etopside plus carboplatin (E/C).

15. The method of Claim 4, wherein the immune checkpoint inhibitor is an inhibitor of PD-1, PD-PD-L1, PD-L2, TIM-3, Gal-9, CTLA-4, CD80, CD86, A2AR, B7-H3, B7-H4, BTLA, BTLA, HVEM, IDO1, IDO2, TDO, LAG3, VISTA, KIR, 2B4, CD2, CD27, CD28, CD30, CD40, CD90, C1q 137, CD226, CD276, DR3, GITR, ICOS, LAIR1, LIGHT, MARCO, PS, OX-40, SLAM TIGHT, CTCNI, or a combination thereof.

20. The method of Claim 3, wherein the immune checkpoint inhibitor is an anti-PD-1 antibody.

25. The method of Claim 4, wherein the immune checkpoint inhibitor is a monoclonal antibody.
6. The method of Claim 5, wherein the immune checkpoint inhibitor is a monoclonal antibody or a fragment thereof, comprising a heavy chain variable region (Vh) amino acid sequence of SEQ ID No 24, a light chain variable region (Vl) amino acid sequence of SEQ ID No 26, and a IgG4 constant domain amino acid sequence of SEQ ID NO 88.

7. The method of Claim 1, wherein the cancer is selected from colorectal cancer, gastric cancer, lung cancer, small cell lung cancer, bladder cancer, breast cancer, ovarian cancer, fallopian tube carcinoma, cervical cancer, peritoneal carcinoma, prostate cancer, castration-resistant prostate, bile duct cancer, gastric / gastroesophageal junction cancer, urothelial cancer, pancreatic cancer, peripheral nerve sheath cancer, uterine cancer, melanoma or lymphoma.

8. The method of Claim 1, wherein the PARP inhibitor is the compound of Formula (III),

[Chemical Structure Image]

(III)

or a pharmaceutically acceptable salt thereof.

9. The method of Claim 1, wherein the PARP inhibitor is the compound of Formula (IV),

[Chemical Structure Image]

(IV)

10. The method of any one of Claims 1 and 3-9, wherein the immune checkpoint inhibitor and the PARP inhibitor are administered simultaneously, sequentially or separately.

11. The method of any one of Claims 1-10, wherein the PARP inhibitor is administrated orally at a dose of 1-120 mg twice daily, preferably, at dose of 1-80 rag twice daily.

12. The method of any one of Claims 1-10, wherein the PARP inhibitor is administrated orally at a dose of 120-240 mg once a day, preferably, at dose of 60-120 mg once a day.

13. The method of any one of Claims 1 and 3-10, wherein the immune checkpoint inhibitor is administered parenterally at a dose of 0.5-10 mg/kg once weekly, or every two weeks, or every three weeks, or every four weeks.

14. The method of any one of Claims 1 and 3-10, wherein the immune checkpoint inhibitor is administrated at a dose of 2 mg/kg every three weeks.
15. The method of any one of Claims 1 and 3-10, wherein the immune checkpoint inhibitor is administrated at a dose of 2 mg/kg every three weeks (Q3W), and the PARP inhibitor is administrated at a dose of 20 mg, 40 mg or 60 mg twice daily, preferably, at a dose of 40 mg twice daily.

16. The method of any one of Claims 1 and 3-10, wherein the immune checkpoint inhibitor is administrated at a dose of 200 mg every three weeks, and the PARP inhibitor is administrated at a dose of 40 or 60 mg twice daily, preferably, at a dose of 40 mg twice daily.

17. The method of any one of Claims 1 or 3-10, wherein the immune checkpoint inhibitor is an anti-PD-1 antibody.

18. The method of any one of claim 17, wherein the wherein the anti-PD-1 antibody is a monoclonal antibody or a fragment thereof, comprising a heavy chain variable region (Vh) amino acid sequence of SEQ ID No 24, a light chain variable region (Vl) amino acid sequence of SEQ ID No 26, and an IgG4 constant domain amino acid sequence of SEQ ID NO 88.

19. A pharmaceutical combination for use in the prevention, delay of progression or treatment of cancer, comprising a PARP inhibitor, and a chemotherapeutic agent, wherein the PARP inhibitor is a compound of Formula (I),

![Chemical Structure](image)

(I)

a stereoisomer thereof, a pharmaceutically acceptable salts thereof, or a solvate thereof,

20. wherein:

R, N is selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein each of the alkyl, alkenyi, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl is independently optional!" substituted with at least one substituent R,R;

X is selected from the group consisting of C, N, O, and S;

m and n, which may be the same or different, are each an integer of 0, 1, 2, or 3;

r is an integer of 0, 1, 2, or 3;

heterocyclyl, aryl, and heteroaryl is independently optionally substituted with at least one substituent \( R^{12} \);

\( R^2 \) is selected from hydrogen, \( \text{COR}^9 \), \( \text{CONR}^5 \text{R}^{10} \), \( \text{CO}2\text{R}^9 \), \( \text{SO2R}^9 \), alkyl, alkenyl, aikynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein each of the alkyl, alkenyl, aikynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl is independently optionally substituted with at least one substituent \( R^{12} \);

\( R^3, R^4, R^5, R^6, R^7 \) and \( R^8 \), which may be the same or different, are each independently selected from hydrogen, halogen, \( \text{NR}^6 \text{R}^{10} \), \( \text{OR}^9 \), \( \text{oxo} \), \( \text{COR}^9 \), \( \text{CO}2\text{R}^9 \), \( \text{CONR}^5 \text{R}^{10} \), \( \text{NR} \text{CONR}^5 \text{R}^{11} \), \( \text{NR}^5 \text{CO}2\text{R}^{10} \), \( \text{NR}^9 \text{SChR}^9 \), \( \text{SO}2\text{R}^9 \), alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, aikynyl, and heteroaryl, wherein each of the alkyl, alkenyl, aikynyl, cycloalkyl, aryl, heterocyclyl, and heteroaryl is independently optionally substituted with at least one substituent \( R^{12} \),

or \( (R^3 \) and \( R^4 \), and/or \( (R^4 \) and \( R^5 \), and/or \( (R^5 \) and \( R^6 \), and/or \( (R^6 \) and \( R^7 \), and/or \( (R^7 \) and \( R^8 \),

together with the atom(s) they are attached, form a 3- to 8-membered saturated, partially or fully unsaturated ring having 0, 1 or 2 heteroatoms independently selected from \( \text{NR}^{13} \), \( \text{O}^- \), \( \text{S}^- \), \( \text{SO}^- \)

or \( \text{SO2}^- \), and said ring is optionally substituted with at least one substituent \( R^{12} \)

provided that

when \( X \) is \( O \), \( R^5 \) and \( R^6 \) are absent,

when \( X \) is \( N \), \( R^6 \) is absent, an

when \( X \) is \( S \), \( R^5 \) and \( R^6 \) are absent, or at least one of \( R^5 \) and \( R^6 \) is oxo,

when one of \( R^7 \) and \( R^4 \) is oxo, the other is absent,

when one of \( R^7 \) and \( R^8 \) is oxo, the other is absent, and

when \( X \) is \( C \) and one of \( R^5 \) and \( R^6 \) is oxo, the other is absent;

\( R^9, R^{10} \), and \( R^{11} \), which may be the same or different, are each selected from hydrogen, alkyl, alkenyl, aikynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein each of the alkyl, alkenyl, aikynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl is independently optionally substituted with at least one substituent \( R^{12} \);

\( R^{12} \) is selected from \( \text{CN} \), halogen, haloalkyl, \( \text{NO}2 \), \( \text{NR}^9 \text{R}^{10} \), \( \text{OR}^- \), \( \text{oxo} \), \( \text{COR}^9 \), \( \text{CO}2\text{R}^9 \), \( \text{CONR}^5 \text{R}^{10} \), \( \text{NR} \text{CONR}^5 \text{R}^{11} \), \( \text{NR}^5 \text{CO}2\text{R}^{10} \), \( \text{NR}^9 \text{SChR}^9 \), \( \text{SO}2\text{R}^9 \), alkyl, alkenyl, aikynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein \( R', R'' \), and \( R''' \) are independently selected from hydrogen, haloalkyl, alkyl, aikynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, or \( (R' \) and \( R'' \), and/or \( R''' \)), and/or \( (R' \) and \( R'' \)), together with the atoms to which they are attached, form a 3- to 8-membered saturated, partially or fully unsaturated ring having 0, 1 or 2 additional heteroatoms independently selected from \( \text{NR}^{13} \), \( \text{O}^- \), \( \text{S}^- \), \( \text{SO}^- \) and \( \text{SO2}^- \)
$\mathbf{R}^{13}$ is selected from hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl.

20. The pharmaceutical combination of Claim 19, wherein the chemotherapeutic agent is selected from paclitaxel, or etopside plus carboplatin (E/C).

21. A pharmaceutical combination for use in the prevention, delay of progression or treatment of cancer, comprising a PARP inhibitor, and an immune checkpoint inhibitor, wherein the PARP inhibitor is a compound of Formula (I),

\[
\begin{align*}
\text{(I)}
\end{align*}
\]

a stereoisomer thereof, a pharmaceutically acceptable salts thereof, or a solvate thereof,

wherein;

- $\mathbf{R}^\text{N}$ is selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein each of the alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl is independently optionally substituted with at least one substituent $\mathbf{R}^{12}$;

- $\mathbf{X}$ is selected from the group consisting of C, N, O, and S;

- $\mathbf{m}$ and $\mathbf{n}$, which may be the same or different, are each an integer of 0, 1, 2, or 3;

- $\mathbf{t}$ is an integer of 0, 1, 2, or 3;

- $\mathbf{R}^1$, at each occurrence, is independently selected from halogen, CN, NO$_2$, OR$^9$, NR$^9$R$^{10}$, NR$^9$COR$^{10}$, NR$^9$SOR$_2$R$^{10}$, CONR$^9$R$^{10}$, COOR$^9$, SO$_2$R$^9$, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein each of the alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl is independently optionally substituted with at least one substituent $\mathbf{R}^{12}$;

- $\mathbf{R}^2$ is selected from hydrogen, COR$^9$, CONR$^9$R$^{10}$, CO$_2$R$^9$, SO$_2$R$^9$, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein each of the alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl is independently optionally substituted with at least one substituent $\mathbf{R}^{12}$;

- $\mathbf{R}^3$, $\mathbf{R}^4$, $\mathbf{R}^5$, $\mathbf{R}^6$, $\mathbf{R}^7$ and $\mathbf{R}^8$, which may be the same or different, are each independently selected from hydrogen, halogen, -NR$^9$R$^{10}$, -OR$^9$, oxo, -COR$^9$, -CO$_2$R$^9$, -CONR$^9$R$^{10}$, -N=CONR$^9$R$^{11}$, -NR$^9$CO$_2$R$^{10}$, -NR$^9$SOR$_2$R$^{10}$, -SO$_2$R$^9$, alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, alkynyl, and heteroaryl, wherein each of the alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heterocyclyl, alkynyl, and heteroaryl is independently optionally substituted with at least one substituent $\mathbf{R}^{12}$,
or (R³ and R⁴), and/or (R⁴ and R⁵), and/or (R⁵ and R⁶), and/or (R⁶ and R⁷), and/or (R⁷ and R⁸), together with the atom(s) they are attached, form a 3- to 8-membered saturated, partially or fully unsaturated ring having 0, 1 or 2 heteroatoms independently selected from -NR¹³-, -O-, -S-, -SO- or -SO²-, and said ring is optionally substituted with at least one substituent R¹², provided that

when X is O, R⁵ and R⁶ are absent,
  when X is N, R⁶ is absent, an
  when X is S, R⁵ and R⁶ are absent, or at least one of R⁵ and R⁶ is oxo,
  when one of R³ and R⁴ is oxo, the other is absent,

when one of R⁷ and R⁸ is oxo, the other is absent, and
when X is C and one of R⁵ and R⁶ is oxo, the other is absent;

R⁹, R¹⁰, and R¹¹, which may be the same or different, are each selected from hydrogen, alkyl, aikenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein each of the alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl is independently optionally substituted with

at least one substituent R¹²;

R¹² is selected from CN, halogen, haloalkyl, NO₂, -NR'R'', -OR', oxo, -COR', -CO₂R', -CONR'R'', -NR'CONR''R''', -NR'CO₂R'', -NR'SO₂R'', -SG₂R'', alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, and heteroaryl, wherein R', R'', and R''' are independently selected from hydrogen, haloalkyl, alkenyl, alkylalkyl, alkenyl, alknyln, cycloalkyl, heterocyclyl, aryl, and heteroaryl, or (R* and R''), and/or (R'' and R'''') together with the atoms to which they are attached, form a 3- to 8-membered saturated, partially or fully unsaturated ring having 0, 1 or 2 additional heteroatoms independently selected from -NR¹³-, -O-, -S-, -SO- and -SO²-,

R¹³ is selected from hydrogen, alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclyl.

22. The pharmaceutical combination of Claim 21, wherein the immune checkpoint inhibitor is an inhibitor of PD-1, PD-L1, PD-L2 TIM-3, Gai-9, CTLA-4, CD80, CD86, A2AR, B7-H3, B7-H4, BTLA, BTLA, HVEM, [DO₁], 1D02, TDO, LAG3, VISTA, KIR, 2B4, CD2, CD27, CD28, CD30, CD40, CD90, CD137, CD226, (I)276, DR3, GITR, ICOS, LAIR1, LIGHT, MARCO, PS, OX-40, SLAM TIGHT, CTCNI, or a combination thereof.

23. The pharmaceutical combination of Claim 22, wherein the immune checkpoint inhibitor is an inhibitor of PD-1.

24. The pharmaceutical combination of Claim 23, wherein the immune checkpoint inhibitor is a monoclonal antibody.
25. The pharmaceutical combination of Claim 24, wherein the immune checkpoint inhibitor is a monoclonal antibody or a fragment thereof, comprising a heavy chain variable region \((V_h)\) amino acid sequence of SEQ ID No 24, a light chain variable region \((V_l)\) amino acid sequence of SEQ ID No 26, and a \(\text{IgG}4\) constant domain amino acid sequence of SEQ ID NO 88.

26. The pharmaceutical combination of any one of Claims 19-25, wherein the cancer is selected from colorectal cancer, gastric cancer, lung cancer, small cell lung cancer, bladder cancer, breast cancer, ovarian cancer, fallopian tube carcinoma, cervical cancer, peritoneal carcinoma, prostate cancer, castration-resistant prostate, bile duct cancer, gastric / gastroesophageal junction cancer, urothelial cancer, pancreatic cancer, peripheral nerve sheath cancer, uterine cancer, melanoma or lymphoma.

27. The pharmaceutical combination of Claims 19 or 21, wherein the PARP inhibitor is the compound of Formula (III),

\[
\text{(III)}
\]

or a pharmaceutically acceptable salt thereof.

28. The pharmaceutical combination of Claims 19 or 21, wherein the PARP inhibitor is the compound of Formula (IV),

\[
\text{(IV)}
\]

29. The pharmaceutical combination of any one of Claims 21-28, wherein the immune checkpoint inhibitor and the PARP inhibitor are administered simultaneously, sequentially or separately, and the immune checkpoint inhibitor is an anti-PD-1 antibody.

30. The pharmaceutical combination of any one of Claims 19-29, wherein the PARP inhibitor is administrated orally at a dose of 1-120 mg twice daily.

31. The pharmaceutical combination of any one of Claims 19-29, wherein the PARP inhibitor is administrated orally at a dose of 1-80 mg twice daily.
32. The pharmaceutical combination of any one of Claim 21-29, wherein the anti-PD-1 antibody, which is administered parenterally at a dose of 0.5-10 mg/kg once weekly, or every two weeks, or every three weeks, or every four weeks.

33. A method for the prevention, delay of progression or treatment of cancer in a subject, comprising:
   (i) in the treatment cycle, administering to the subject in need thereof a chemotherapeutic agent together with a first amount of the PARP inhibitor of Formula (I);
   and
   (ii) in the maintenance phase, administering to the subject which has been treated in the above treatment cycle a second amount of the PARP inhibitor of Formula (I).

34. The method of Claim 33, wherein the PARP inhibitor is Compound A.

35. The method of Claim 33, wherein the PARP inhibitor is Compound B.

36. The method of any one of Claims 33-35, wherein the PARP inhibitor is administered continuously or intermittently during the treatment cycle.

37. The method of any one of Claims 33-36, wherein the method comprises 1 to 3 treatment cycles, and each treatment cycle comprises 1 to 4 weeks.

38. The method of any one of Claims 33-37, wherein the chemotherapeutic agent is selected from paclitaxel, or etopside plus carboplatin (E/C).

39. The method of any one of Claims 33-38, wherein the first amount of the PARP inhibitor in the treatment cycle is different from the second amount of the PARP inhibitor in the maintenance phase.

40. The method of any one of Claims 33-39, wherein the first amount of the PARP inhibitor in the treatment cycle is lower from the second amount of the PARP inhibitor in the maintenance phase.
FIG. 5

- Vehicle BID × 21
- Compound A, 12mg/kg BID × 21
- paclitaxel, 15mg/kg Q4D×3
- paclitaxel, 15mg/kg + Compound A, 6mg/kg
- paclitaxel, 15mg/kg + Compound A, 12mg/kg
FIG. 7

Tumor Volume (mm$^3$ ± SEM)

- **Vehicle**
- **E/C×3 cycles**
- **E/C+Compound B 1.36mg/kg continuous, then 5.45mg/kg maintenance**
- **E/C+Compound B 1.38mg/kg intermittent, then 5.45mg/kg maintenance**

Days

0 20 40 60 80
FIG. 8
FIG. 9

- **Vehicle**
- **E/C×3 cycles**
- **Compound B 5.45mg/kg BID×21**
- **E/C+Compound B 0.66 mg/kg intermittent, then 5.45mg/kg for maintenance**
- **E/C+Compound B 1.36 mg/kg intermittent, then 5.45mg/kg for maintenance**
- **E/C+Compound B 2.73 mg/kg intermittent, then 5.45mg/kg for maintenance**
FIG. 10

### Mean Body Weight (g±SEM)

- **Vehicle**
- **E/C×3 cycles**
- **Compound B 5.45mg/kg BID×21**
- **E/C+Compound B 0.68 mg/kg intermittent, then 5.45mg/kg for maintenance**
- **E/C+Compound B 1.36 mg/kg intermittent, then 5.45mg/kg for maintenance**
- **E/C+Compound B 2.73 mg/kg intermittent, then 5.45mg/kg for maintenance**

**Days**

- 0
- 10
- 20
- 30
- 40
- 50
FIG. 12

Mean Body Weight (g ± SEM)

- E/C×3 cycles
- E/C, then Compound B 5.45mg/kg maintenance

Days
INTERNATIONAL SEARCH REPORT

PCT/CN2017/103660

International application No.

A. CLASSIFICATION OF SUBJECT MATTER
A61P 35/00(2006.01)i; C07D 487/06(2006.01)i; C07D 471/16(2006.01)i; C07D 471/22(2006.01)i; C07K 16/28(2006.01)i; A61K 31/551(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
A61P; C07D; C07K; A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
CNABS:WPIEPODOC;REGISTRY(STN);CAPLUS(STN);CNKI;PARP inhibitor, immune checkpoint, chemotherapeutic, fused, tetracyclic, BEIGENE;

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2013097225 A1 (BEIGENE LTD. ET AL.) 04 July 2013 (2013-07-04) description and claims 1-9</td>
<td>1, 2, 7-9, 11, 12, 19, 20, 27, 28, 33-40</td>
</tr>
<tr>
<td>Y</td>
<td>WO 2013097225 A1 (BEIGENE LTD. ET AL.) 04 July 2013 (2013-07-04) description and claims 1-9</td>
<td>1, 3-18, 21-32</td>
</tr>
<tr>
<td>Y</td>
<td>WO 2015035606 A1 (BEIGENE LTD. ET AL.) 19 March 2015 (2015-03-19) description and abstract</td>
<td>1, 3-18, 21-32</td>
</tr>
<tr>
<td>A</td>
<td>WO 2016000619 A1 (BEIGENE LTD. ET AL.) 07 January 2016 (2016-01-07) description and abstract</td>
<td>1, 3-18, 21-32</td>
</tr>
<tr>
<td>A</td>
<td>US 2016222012 A1 (RUAN, FUQIANG) 04 August 2016 (2016-08-04) the whole document</td>
<td>1-40</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
  “A” document defining the general state of the art which is not considered to be of particular relevance
  “E” earlier application or patent but published on or after the international filing date
  “I” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
  “O” document referring to an oral disclosure, use, exhibition or other means
  “P” document published prior to the international filing date but later than the priority date claimed
  “T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
  “X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
  “Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
  “&” document member of the same patent family

Date of the actual completion of the international search 24 November 2017
Date of mailing of the international search report 09 January 2018

Name and mailing address of the ISA/CN
STATE INTELLECTUAL PROPERTY OFFICE OF THE P.R.CHINA
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing 100088
China

Authorized officer LUCO,Nannan

Facsimile No. (86-10)62019451 Telephone No. (86-10)82246715

Form PCT/ISA/210 (second sheet) (July 2009)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. **Claims Nos.: 1-18, 33-40**
   because they relate to subject matter not required to be searched by this Authority, namely:
   
   [1] **Claims 1-18, 33-40 are directed to a method for treatment of the human body by therapy. This search report has been established on the basis of the use of the said compound for manufacture of medicaments thereof.**

2. **Claims Nos.:**
   because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. **Claims Nos.:**
   because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date (day/month/year)</th>
<th>Patent family member(s)</th>
<th>Publication date (day/month/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CA 2856309 C</td>
<td>07 June 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MX 2014007840 A</td>
<td>21 August 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CA 2856309 A1</td>
<td>04 July 2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IL 233365 D0</td>
<td>31 August 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CN 103703004 A</td>
<td>02 April 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DK 2797921 T3</td>
<td>02 October 2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP 2797921 B1</td>
<td>06 September 2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CN 103703004 B</td>
<td>29 June 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SG 11201401726V A</td>
<td>30 October 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HK 1192233 A1</td>
<td>21 April 2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AU 2011384858 A1</td>
<td>29 May 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP 2797921 A4</td>
<td>21 October 2015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CN 106220635 A</td>
<td>14 December 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JP 6034877 B2</td>
<td>30 November 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NZ 624063 A</td>
<td>30 September 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 2016159811 A1</td>
<td>09 June 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JP 2015503526 A</td>
<td>02 February 2015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EA 027533 B1</td>
<td>31 August 2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BR 112014012628 A2</td>
<td>13 June 2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 9617273 B2</td>
<td>11 April 2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KR 101716012 B1</td>
<td>13 March 2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 2017305921 A1</td>
<td>26 October 2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IL 233365 A</td>
<td>31 August 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AU 2011384858 B2</td>
<td>05 May 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IN 6169DEN2014 A</td>
<td>21 August 2015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP 2797921 A1</td>
<td>05 November 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EA 201491303 A1</td>
<td>30 October 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HK 1217501 A1</td>
<td>13 January 2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CN 107011441 A</td>
<td>04 August 2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AU 2013400609 A8</td>
<td>21 July 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 87355553 B1</td>
<td>27 May 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CN 105531288 A</td>
<td>27 April 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MX 2016003292 A</td>
<td>24 June 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TW 201538525 A</td>
<td>16 October 2015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP 3044234 A4</td>
<td>09 August 2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>JP 2016533763 A</td>
<td>04 November 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CA 2924172 A1</td>
<td>19 March 2015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 2015315274 A1</td>
<td>05 November 2015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EA 201690567 A1</td>
<td>31 August 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 9217034 B2</td>
<td>22 December 2015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AU 2013400609 A1</td>
<td>05 May 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SG 11201601844T A</td>
<td>28 April 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IL 244514 D0</td>
<td>21 April 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KR 20160044063 A</td>
<td>22 April 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CN 107090041 A</td>
<td>25 August 2017</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date (day/month/year)</th>
<th>Patent family member(s)</th>
<th>Publication date (day/month/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EP 3160505 A1</td>
<td>03 May 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20170023102 A</td>
<td>02 March 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201625681 A</td>
<td>16 July 2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 106604742 A</td>
<td>26 April 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2017132157 A1</td>
<td>03 August 2017</td>
</tr>
</tbody>
</table>