A package (1) has a sealing region (2) which comprises a cover (3) and a sealing cap (4) which is rotatable in relation to the cover (3). Both the cover (3) and the sealing cap (4) have openings (5) and (6) which are eccentric but can be brought into alignment with each other. When said openings lie opposite each other, emptying of the package is possible, if, beforehand, a seal element (8) which seals the opening (5) is at least partially removed. The opening (6) is surrounded by a seal (12) so that no particles of product can get between cover (3) and sealing cap (4) during emptying of the package (1). The sealing cap (4) has a closing region (7) which is surrounded by a seal (13) and covers the opening (5) in the cover when the package is to be resealed.
The invention relates to a package with a sealing region which comprises a cover which is rigidly connected with the package and a sealing cap which traverses the cover and is held relative to the cover, with both the cover as well as the sealing cap each comprising a discharge opening which can be brought into true alignment and the sealing cap comprising a closing region which can be brought into true alignment with the discharge opening.

A package of this kind is known from DE 197 06 112 C2. In this known package, which is especially described as a beverage can, there is the problem that after the filling of the can and afterseaming of the cover, the fluid filled into the can is able to reach between the cover and the sealing cap because the opening in the cover is not sealed prior to applying the sealing cap. Further problems of the known package are the virtually impossible cleaning of soiled covers prior to applying the sealing cap without contaminating the packaged material with detergents or dirt and the highly difficult arrangement of a tamper-evident closure which is understandable to end customers, especially without any additional components. Such packages are especially suitable for pourable or flowable products.

It is the object of the invention to provide the package in such a way that after the filling of the package and the application of the cover and the subsequent application of the sealing cap, the filled product cannot reach between the cover and the sealing cap. Further objects of the invention are secure sealing of the cover already at the time of the cleaning after the filling of the package, and production of a tamper-evident closure.

Based on a package of the kind mentioned above, this object is achieved in accordance with the invention in such a way that the discharge opening in the cover is sealed by a sealing element which can be brought into an at least partly opened state of the sealing element for discharging the package.

When the package is filled excessively, as is partly the case during filling with fluids, in order to prevent any trapping of air or gas during the sealing of the cover, it is ensured in this embodiment in accordance with the invention that no fluid can reach the cover through the discharge opening because the discharge opening is sealed by a sealing element.

No fluid can be situated between cover and sealing cap after the application of the sealing cap, so that all problems in connection with hygiene are avoided. In the case of pourable products, the invention is also especially advantageous for the reason that no product particles are present between cover and sealing cap which might lead to a disturbance in the mobility of the sealing cap.

The cover which is connected with the package can have any desired shape. The important aspect is that the shape is chosen in such a way that a sealing cap can be moved relative to the cover. In the case of an oblong package, an oblong cover is appropriate in which the sealing cap is displaced laterally to the cover. In view of the large number of round cans used as package it is advantageous when the cover connected with the package is circular. This allows twisting the sealing cap relative to the cover in order to expose or seal the discharge opening.

That is why it is proposed in a further development that the sealing cap is held to be rotatable.

The sealing cap can be fastened with grippers to the cover. For this purpose, individual webs are sufficient in order to arrange functions of the sealing cap there. It is advantageous however when the sealing region comprises a sealing cap which overlaps the entire cover. This helps ensure an especially stable of the sealing cap and offers a large number of possibilities for arranging the sealing cap in order to arrange a large variety of functions there.

It is especially advantageous in a constructional respect, especially in the case of a round cover, when both the cover and the sealing cap each comprise an off-center discharge opening.

It is advantageous especially when using harder materials for the sealing cap and the cover when the discharge opening of the cover is associated with a sealing region which encloses the discharge opening.

When the closing area of the sealing cap is associated with a sealing region which encloses the closing area. This sealing region can be arranged both on the cover as well as on the sealing cap. It can lie between cover and sealing cap or be arranged in an integral fashion with the cover and/or the sealing cap.

It is advantageous when the sealing region comprises a seal. Seals in the present case shall be understood not only as separate seals, but also as seals which are a specially arranged area of the cover or sealing cap which cause a special sealing effect.

Even when a sealing region is mentioned within the scope of the invention, then this does not exclude that also the entire cover or the entire sealing cap can be arranged of a material which has sealing properties in order to achieve the required sealing.

A special embodiment provides that a lifting apparatus with action between the cover and the sealing cap is provided which causes a removal of the sealing effect of a sealing region between cover and sealing cap on twisting the sealing cap.

It is advantageous when the sealing element is elastic. This allows a deformation as a result of an overpressure in the package or as a result of an applied pretensioning in the connection of sealing cap and cover. The elastic sealing cap can extend into such an opening, if it reaches beneath an opening in the sealing cap. This helps gripping the sealing element or acting with the sealing cap upon the sealing element.

Although the discharge opening in the cover as well as the sealing element are hardly subject to any limitations concerning their shaping, it is advantageous when the sealing element is bulged outwardly in a cap-like manner with respect to the package in a further development of the invention and comprises at least one flange which protrudes radially to the outside.

The outwardly bulging configuration proves to be advantageous for example when a handle for opening the sealing element is provided. It is advantageous when the handle is rigidly connected with the sealing element or is integrated in the sealing cap. After the twisting of the sealing cap to the opened position, the outwardly bulging cap presses through the discharge opening in the sealing cap to the outside, through which the handle for opening of the sealing element can be gripped with greater ease.

The transfer of the sealing element to an at least partly opened state will be facilitated when the sealing ele-


ment comprises a predetermined breaking point. It can be arranged in such a way that the sealing element is opened only partly, or the predetermined breaking point can also permit complete opening of the sealing element.

[0020] The presence of a predetermined breaking point is also advantageous in cases where the handle is integrated in the sealing cap and is arranged especially as a shaped part of the sealing cap and comes into engagement with the sealing element during the twisting of the same. As a result, the sealing element can be transferred to an at least partly opened state already during the twisting of the sealing cap, especially in conjunction with the predetermined breaking point.

[0021] The handle can also be held in movable manner in the sealing cap as a punching tool. For opening the sealing element, the punching tool needs to be pressed down to the opened position after the twisting of the sealing cap, through which the sealing cap, depending on the configuration of the blade of the punching tool, is severed either partly or completely.

[0022] The sealing element can be fixed with a flange to the inside or the outside.

[0023] An advantageous embodiment is also obtained in such a way that the boundary region of the opening is received in the cover between two flanges of the sealing element. This arrangement is advantageous for the reason because on the one hand the sealing element can be arranged in an especially rigid manner on the cover and on the other hand the upper of the two flanges can enclose the closing area of the same as a seal in the closed position of the sealing cap in this arrangement. This type of arrangement of the sealing comes with the advantage that in this case too there is an intimate connection between seal and cover.

[0024] When the sealing cap comprises in the closing area a recess for receiving the sealing element at least in part, then this is especially advantageous in the case that the sealing element is outwardly bulged in the form of a cap. In this at least partly received position of the sealing element in a recess of the sealing cap, the sealing element can be destroyed especially easily for opening during the twisting of the sealing cap.

[0025] The sealing cap can be made from such a material that it is advantageous to arrange both the seal enclosing the discharge opening as well as the closing area in an integral manner with the sealing cap.

[0026] It is also possible that both the seal enclosing the discharge opening as well as the closing area is fastened to the sealing cap. It is also especially advantageous in this case when the seals are partly embedded in recesses of the sealing cap.

[0027] It is especially advantageous when the sealing element remains connected with the cover in the opened state because it is thus prevented that the severed seal part is discharged with the content of the package, which would be especially disadvantageous in beverage cans when the beverage is drunk directly from the can.

[0028] It is advantageous in this embodiment that the sealing element protrudes with pretensioning into the package after the opening, so that it is unable to cause any disturbance during the discharging of the package.

[0029] It is proposed alternatively or cumulatively that the sealing element comes into engagement with grippers fastened to the sealing cap during the movement of the sealing cap relative to the cover. This allows keeping a severed or severable part of the sealing element on the sealing cap, so that it can fall neither into the package nor anywhere into the ambient environment. The grippers can grip the sealing element or at least a part of the sealing element prior to its severing, hold the same during the severing and preferably even hold the same after its severing.

[0030] It is advantageous when the sealing element is latched to the sealing cap after the opening. In this way, the sealing element or the severed part of the sealing element will hang rigidly on the sealing cap, where it is held in a manner as captive as possible.

[0031] The lifting apparatus comprises a latching cam arranged on the cover or the sealing cap and a latching recess arranged on the respectively associated part, with the latching cam and the cooperating latching recess determining by their geometric arrangement the two positions of the sealing cap in which the two discharge openings on the one hand and the closing area of the sealing cap on the other hand are in alignment with the discharge opening in the cover. This arrangement ensures not only the necessary lifting of the sealing cap during the movement of the sealing cap relative to the cover, but the two operating positions of the sealing cap are determined simultaneously, so that it is ensured that in the one position the package is completely opened and in the other position completely closed.

[0032] In order to facilitate the discharging of the package, especially when a fluid is concerned, or to accelerate the discharging process, a second opening is provided in a further embodiment of the invention which is sealed by a second, preferably elastic sealing element. This second opening is used as a venting opening when the sealing element has been destroyed.

[0033] It is advantageous for the process of venting when the second opening in the cover is arranged in a sector which is substantially opposite of the discharge opening. In this way, the air can be allowed to flow in especially advantageously during the discharging of the package.

[0034] For opening the sealing element for this second opening it is advantageous when the sealing cap is provided with a projection which penetrates the second sealing element in the opened position of the sealing cap and opens the same.

[0035] It is especially advantageous when the sealing cap comprises a further sealing region which seals a second sealing element in the closed position. The second sealing element, which is usually used as a venting means during the discharging of fluids, is opened after its opening and thus allows fluid to exit. The further sealing region which is preferably arranged as a sealing allows sealing the opened second sealing element, especially when the can is closed.

[0036] There are various possibilities to open the sealing element. In addition to the described possibilities of a handle that can be withdrawn or a punch that can be pressed in, there is also the possibility to sever the sealing element horizontally. It is proposed for this purpose that the sealing cap comprises a blade.

[0037] A simple embodiment provides that the blade is arranged in the discharge opening. When the sealing element enters the discharge opening, it can be cut off with the blade. Subsequently, the sealing cap is turn slightly back again, whereupon the content of the package can pass out of the discharge opening.

[0038] In practical dealing with the package it has proven to be advantageous when the blade is arranged in a further opening of the sealing cap. As a result, the functions of cutting off a part of the seal and the discharge of the content of the package are separated.
A simple embodiment provides that the further opening is an oblong hole. This allows a sealing element which is in alignment with the oblong hole to enter the opening and to open the sealing element by a motion of the sealing cap relative to the cover.

Pressures of several bars are frequently obtained when pressurized fluids such as beverages containing CO₂ are transported in the package. When the closed area of the sealing cap presses against the seal in the closed position of the sealing cap, a seal that is arranged in a less stable manner can withstand such pressures.

An especially simple cooperation between a blade fixed to the sealing cap and a seal is achieved in such a way that a portion of the pretensioned seal protrudes into an opening of the sealing cap during a movement of the sealing cap relative to the cover. The seal can be pretensioned here by a special deformation or be under a pretension by the pressure of the sealing cap against the seal until the seal protrudes into an opening of the sealing cap.

It is especially advantageous when the part of the pretensioned seal audibly jumps into a position during the motion of the sealing cap relative to the cover, especially an opening of the sealing cap. The seal jumps into the opening with a "plop" sound in which it is subsequently cut off by a motion of the sealing cap relative to the cover. An acoustic signal can also be achieved in that the seal jumps into a recess in the sealing cap and thus indicates, preferably in an audible way, a special position of the cover relative to the sealing cap.

In order to facilitate the cutting of the seal at a predetermined position it is provided that the sealing element comprises a circumferential weakened portion for the engagement of the blade.

It is further advantageous when the opened seal forms a sealing region between cover and sealing cap. Notice must be taken in this respect that even after the removal of a portion of the seal, sufficient seal material remains for opening the seal in order to ensure sufficient sealing between cover and sealing cap.

In order to prevent losing a cut portion of the seal, the sealing cap can comprise an opening with a cover. The cover then forms a cavity for receiving at least a portion of the seal. This cover can be arranged integrally with the sealing cap or be connected with the same as an additional part. It can preferably be provided that the opening with the blade comprises a cover. Especially in the case of high pressures in the package it is thus prevented that a seal in alignment with an opening in the sealing cap will open by itself or in an uncontrolled manner and fluid will spray out or a portion of the seal will be ejected under acceleration by the pressure.

Especially when a special opening for cutting off the seal is provided it is advantageous that the seal and the discharge opening in the sealing cap are arranged in such a way that the seal is unable to penetrate the discharge opening.

In order to ensure that the functions of opening the seal and discharging the package are offered in the correct sequence by moving the sealing cap relative to the cover, it is proposed that the sealing cap can be moved in only one direction relative to the cover.

It has been seen in practice that it is advantageous when the distance between the discharge opening and a further opening is smaller than the diameter of the seal. This allows placing the sealing cap in any desired position on the cover.

Special possibilities for advertising or information on the conditions of the package seal are offered when the sealing cap comprises an embossed portion for information.

It is advantageous for production when the sealing cap is made from a multi-component material. This allows providing especially strong materials for connecting sealing cap and cover, whereas other qualities of the material are required for the sealing regions.

An advantageous embodiment is hereby provided that the sealing cap comprises a metal frame with a plastic insert.

Elasticity of the sealing element is not necessary for many embodiments. It is advantageous however when the sealing element can be deformed for sitting close to the sealing cap. This allows support the sealing element with the sealing cap in the closed state.

It is preferably provided in this respect that the sealing element comprises a frame which seals against the sealing cap.

It is advantageous when the sealing element comprises a bellows. This allows pressing a portion of the sealing element in a simple manner into the package or to extend a portion of the sealing element as a spout for example.

Another embodiment provides that the sealing element comprises a film hinge. A film hinge or several film hinges enable the provision of predetermined bending points with which a bellows can be produced or which enable a defined deformation of the sealing element.

Although the invention will be explained below by reference to a round can, the features of the invention can also be used for a package, depending on the application, in which the sealing cap is replaceable.

The invention is now explained below in closer detail by reference to various embodiments shown in the drawings, wherein:

FIG. 1 shows a top view of a cover with a sealing cap of a package arranged as a beverage can for example;

FIG. 2 shows a sectional view along line II-II in FIG. 1;

FIG. 3 shows a sectional view according to FIG. 2, but with a sealing cap twisted by 180°;

FIG. 4 shows a top view according to FIG. 1 with a position of the cover and sealing cap arrangement which is twisted by approximately 30°;

FIG. 5 shows a sectional view along line V-V in FIG. 4;

FIG. 6 shows a sectional view according to FIG. 5 with a sealing cap twisted by 180°;

FIGS. 7 to 10 show sectional views in sections in the area of a discharge opening in the cover with various rotational positions of the sealing cap disposed above the same;

FIGS. 11 to 13 show sectional views in sections in the area of a discharge opening in the cover with different arrangements of a sealing element for the opening;

FIGS. 14 to 16 show sectional views in sections of a further embodiment;

FIGS. 17 to 19 show a top view of a cover with a sealing cap and a sectional view of the engagement of the sealing cap on the sealing element;

FIGS. 20 to 31 each show a sectional view through a can and a top view of the can for explaining the opening of the can with a blade in the sealing cap, and

FIG. 32 shows a sectional view through a can with a bipartite cover and a sealing cap arranged thereon.
As is shown in the illustration in FIGS. 1 to 6, a package 1 arranged in the form of a beverage can for example comprises a cover 3 in its closing area designated in its entirety with reference numeral 2 and a sealing cap 4 which is twistable with respect to the cover 3. Cover 3 comprises an off-center discharge opening 5 for discharging the content. The sealing cap 4, which is twistable with respect to the cover but not liftable in this embodiment, also comprises an off-center discharge opening 6 which can be brought into true alignment with the discharge opening 5 in the cover in the rotational position according to FIG. 3.

The sealing cap 4 also further comprises an off-center closing area 7 which is also arranged off-center like the discharge opening 6 and can be brought into true alignment with the discharge opening 5 in the cover, as is shown in FIG. 2.

After the filling of the package 1, cover 3 is fastened for example by seaming onto the package 1. In this respect it is possible to excessively fill the package by a small percentage when fluids are concerned which are received by the package, so that after the placement of the cover 4 there will not be any trapped air. The sealing cap is applied thereupon. In the unused state, the closing area 7 of the sealing cap 4 is in true alignment with the opening 5 in the cover, as is shown in FIG. 2.

When applying the cover 3 to the package 1, the discharge opening 5 is sealed in a leak-proof manner by means of a sealing element 8. This sealing element 8 has an outwardly bulging shape of a cap in the illustrated embodiment and comprises a radially outwardly protruding flange 9. This flange 9 is used to fasten the sealing element 8 to the inside of cover 4 by means of tightening glue for example.

In the unused state, the sealing element 8 reaches into a recess 10 in the sealing cap 4 which is located in the closing area 7. The sealing element is provided with a handle 11 which protrudes from the discharge opening 6 of the sealing cap 4 after the twisting of sealing cap 4 from the position shown in FIG. 7 to the position as shown in FIG. 9 and enables a tearing off of the sealing element 8 at a predetermined breaking point 21 as shown in FIG. 9.

After the at least partial removal of the sealing element 8, the content of the package 1 can be discharged. FIGS. 7 to 10 show the completely closed state in the original state according to FIG. 7, an intermediate position according to FIG. 8, the end position according to FIG. 9 prior to the tearing off of the sealing element 8 and the already partly torn state according to FIG. 10.

In the embodiments according to FIGS. 1 to 12, the sealing cap 4 comprises a single radially protruding flange which is designated with reference numeral 9 and is fixed to the bottom side of the cover 3. In all embodiments according to FIGS. 1 to 12, both the area around the discharge opening 6 in the sealing cap 4 and the closing area 7 are enclosed by a seal 12 and 13 in order to ensure that in the opened state according to FIG. 10 no product from the package can get between the sealing cap 4 and the cover 3.

The closing area 7 reaches over the discharge opening 5 of the cover during resealing. In this state too, the seal 13 seals the gap between the sealing cap 4 and the cover 3, so that no fluid or other product particles can reach between the sealing cap 4 and the cover 3.

In the embodiment according to FIG. 11, the flange 9 of the cap-like sealing element 8 is fixed to the upper side of the cover 3.

The embodiment according to FIG. 12 differs from all previously shown embodiments in such a way that the cap-like sealing element 8 comprises two flanges 9 and 9' which receive the opening edge of cover 3 between themselves.

In the embodiment according to FIG. 13, the upper flange 9 is designated with 9' and is provided with a substantially wider and thicker configuration. As a result, this flange 9' can be used as a seal and replaces both the seal 12 enclosing the discharge opening 6 in the sealing cap 4 and the seal 13 enclosing the closing area 7.

In order to ensure that during the discharge of fluids it can escape relatively quickly even with a relatively small discharge opening 5, a venting opening 22 is provided which is sealed by a sealing element 14 as long as the package is in an unopened state. The venting opening and the sealing element are shown especially in FIGS. 4 and 5.

In order to open this venting opening, a projection 15 is provided on the bottom side of the sealing cap 4 which engages in a depression 16 in the cover in the closed state of the entire closing area in order to prevent the sealing cap from lifting off in this closed state.

FIG. 5 shows the state in which the venting opening 22 is sealed by the sealing element 14. The area of the sealing cap 4 which is opposite of the sealing element 14 is enclosed by a seal 17 which is used to seal the venting opening 22 after the resealing of the package, so that no fluid or product particles can get between cover 3 and sealing cap 4 via the venting opening 22. After the twisting of the sealing cap 4 from the position according to FIG. 5 to the position according to FIG. 6, the projection 15 penetrates the sealing element 14 and pierces the same.

FIGS. 14 to 16 show a modified embodiment which enables another type of opening of the sealing element 8. FIG. 14 shows the state in which the closing area 7 of the sealing cap lies above the sealing element. FIG. 15 shows a sectional view in the area of the discharge opening 6 of the sealing cap 4 in which a punching tool 18 is located which pierces the sealing element 8 by pressing downwards to the position as shown in FIG. 16 on a partial circumference of the cap-like region of the sealing element 8.

For this purpose, punching element 18 is provided over a partial section of the circumference with a blade 23 whereas another partial section 24 is provided with a blunt configuration, so that no severing of the sealing element occurs, as is shown in FIG. 16. The non-severed part of the sealing element is arranged in such a way that it presses the severed part inwardly into the package with pretension. This state is shown in FIG. 16.

The advantage of this arrangement of the sealing element is that in the case of a beverage can the punched-off part cannot be swallowed but protrudes inwardly into the package without disturbing the drinking process.

To ensure that the seals are not destroyed during the twisting of the sealing cap 5, a lifting apparatus is provided which comprises a latching cam 19 on the bottom side of the sealing cap and, in the associated area of the cover, a latching recess 20.

The geometric arrangement of these two parts is made in such a way that the sealing cap is lifted with the start of a rotation of the sealing cap 4 in relation to the cover 3, with the seals 12 and 13 being released from the cover. In the case of an arrangement according to FIG. 13, the sealing cap is released from the flange 9" which is used as a seal.
[0089] Since the discharge opening 6 in the sealing cap 4 and the closing area 7 in the sealing cap 4 are precisely opposite of each other, a rotation of the sealing cap by 180° is required in order to make the latching cam 19 to engage in the latching recess 20 again. In this position, the discharge openings 5 and 6 of cover 2 and the sealing cap are in alignment with each other, whereas in the second position twisted by 180° the closing area 7 lies above the opening 5 of the cover. The illustrations in FIGS. 1 to 4 show that the venting opening 22 is virtually opposite to the discharge opening 5 in the cover, leading to a favorable venting.

[0090] FIG. 17 shows a sealing cap 2 with a discharge opening 5. The schematic illustration further shows an oblong hole 25, with a blade 26 being arranged at one of its ends. A sealing element 27 is indicated within the oblong hole 25 which protrudes into the oblong hole 25. The sealing element 27 is held with two flanges on cover 23, whereas the cap-like cover 29 of the sealing element 27 protrudes into the plane of a sealing cap 30. The sealing cap 30 comprises the blade 26 at the one end of the oblong hole 25, which blade can be brought into engagement with the sealing element 27 by twisting the sealing cap 30 relative to the cover 23. The sealing element 27 has a circumferential weakening 31 for this purpose which facilitates severing the cap 29 from the sealing element 27 with the blade 26.

[0091] A further embodiment in which a sealing cap cooperates with a sealing element arranged in the cover is described in FIGS. 20 to 31.

[0092] FIG. 20 shows the cover 20 of a can 41 with a sealing element 43 attached eccentrically in an opening 42 of cover 20. The sealing element 43 is provided with a pretension by its shaping, which ensures that a cap 44 protrudes clearly above the level of the cover 40.

[0093] FIGS. 22 and 23 show how upon placement of the sealing cap 45 the cover 44 of the sealing element 43 is pressed down. A flexible film hinge 46 in the sealing element 43 allows pressing the sealing element 43 into the interior space of the can, so that the cover 44 of the sealing element 43 lies directly above the cover 40 of can 41. Sealing element 43 remains under tension in such a way that it still has the tendency to jump outwardly. Since the sealing cap 45 in the placed position above the sealing element 43 does not have an opening, the sealing cap 45 supports the sealing element 43 in holding an internal pressure within the can 40. This is especially relevant for cans with carbonated beverages. The upper flange 47 of the sealing element 43 is used as a seal between the cover 40 of can 41 and the sealing cap 45.

[0094] FIG. 23 shows how the sealing cap 45 covers the sealing element 43.

[0095] FIGS. 24 to 27 show how the sealing cap 45 slides an oblong hole-like opening 49 with a blade 50 over the sealing element 43 by twisting in the direction of arrow 48. Once the sealing element 43 is able to completely penetrate the oblong hole 49, it jumps with an audible "plop" sound into the oblong hole 49 and thus into the plane of action of the blade 50. The user of the beverage can acoustically and optically recognizes the integrity of seal 43 within the oblong hole.

[0096] FIGS. 28 to 29 show how the blade 50 severs the cover 44 of the sealing element 43, in that it is slid by the sealing cap 45 beneath the cover 44.

[0097] When the sealing cap 45 is turned further relative to the cover 40 of the can 41, the cap 44 is severed completely and the oblong hole is twisted beyond the opening 42 in the cover 40. As a result, a discharge opening 51 reaches the area above the discharge opening 42 in the cover 40 of the can, so that the content of the can is allowed to emerge through the discharge openings 42 and 51. In this position too, the upper flange 47 of the sealing element 43 provides sealing between the cover 40 of the can 41 and the sealing cap 54.

[0098] A special embodiment of a can closure 60 is shown in FIG. 32. A bipartite cover 62 is applied to can 61. Said bipartite cover 62 consists of an annular element 63 which is made of metal and sealed onto the can 61 and of an inside part 64 which is made of plastic and is fastened thereto by means of flanges. A sealing element 65 is arranged in the inside part 64 made of plastic, which sealing element cooperates with a recess 66 in a sealing cap 67 and which can reach into a discharge opening 68 when twisting the sealing cap 67 towards the cover 62.

[0099] An opening of the seal 65 can occur by means of a handle or a blade in this embodiment too.

1. A package with a sealing region (2) which comprises a cover (3) which is rigidly connected with the package and a sealing cap (4) which traverses the cover and is held relative to the cover (3), with both the cover (3) as well as the sealing cap (4) each comprising a discharge opening (5, 6) which can be brought into true alignment and the sealing cap (4) comprising a closing region (7) which can be brought into true alignment with the discharge opening (5), wherein the discharge opening (5) in the cover (3) is sealed by a sealing element (8) which can be brought into an at least partly opened state of the sealing element (8) for discharging the package (1).

2-9. (canceled)

10. The package according to claim 1, including a lifting apparatus (19, 20) with action between the cover (3) and the sealing cap (4) which causes a removal of the sealing effect of a sealing region (12, 13, 9°) between cover (3) and sealing cap (4) on twisting the sealing cap (4).

11. (canceled)

12. The package according to claim 1, wherein the sealing element (8) is bulged outwardly in a cap-like manner with respect to the package (1) and comprises at least one flange (9, 9°, 9°) which protrudes radially to the outside.

13. The package according to claim 1, including a handle (11) for opening the sealing element (8), the handle being integrally in the sealing cap (4).

14-18. (canceled)

19. The package according to claim 1, wherein the sealing element (8) can be fixed with a flange (9) to one of the inside and outside of the cover (3).

20. (canceled)

21. The package according to claim 1, wherein a boundary region of the discharge opening (5) in the cover (3) is received between two flanges (9, 9°) of the sealing element (8).

22. The package according to claim 21, wherein the upper (9°) of the two flanges (9, 9°) encloses the closing region (7) of the sealing cap (4) in the closed position of the same.

23. The package according to claim 1, wherein the sealing cap (4) comprises in the closing region (7) a recess (10) for receiving the sealing element (8) at least in part.

24. The package according to claim 1, wherein a seal (12, 13) which encloses both the discharge opening (6) as well as the closing region (7) is integrally arranged with the sealing cap (4).

25. The package according to claim 1, wherein a seal (12, 13) which encloses both the discharge opening (6) as well as the closing region (7) is fixed to the sealing cap (4).
26. (canceled)

27. The package according to claim 1, wherein the sealing element (8) remains connected with the cover (8) in the opened state.

28. The package according to claim 1, wherein the sealing element (8) protrudes with pretension into the package (1) after the opening.

29. (canceled)

30. The package according to claim 1, wherein the sealing element (8) is latched to the sealing cap (4) after the opening.

31. (canceled)

32. The package according to claim 1, including a second opening (22) in the cover (3) which is sealed by a second sealing element (14).

33. The package according to claim 32, wherein the second opening (22) in the cover (3) is arranged in a sector opposite of the discharge opening (5).

34. The package according to claim 32, wherein the sealing cap (4) is provided with a projection (15) which penetrates the second sealing element (14) in the opened position of the sealing cap (4) and opens the same.

35. The package according to claim 32, wherein the sealing cap (4) comprises a further sealing region which seals a second sealing element in the closed position.

36. The package according to claim 1, wherein the sealing cap (45) comprises a blade (50) which is arranged in a further opening (49) of the sealing cap (45).

37-39. (canceled)

40. The package according to claim 1, wherein the closing region (7) of the sealing cap (4) presses against the seal.

41. (canceled)

42. The package according to claim 1, wherein a part of the pretensioned sealing element (43) audibly jumps into a position during the motion of the sealing cap (45) relative to the cover (40).

43-49. (canceled)

50. The package according to claim 1, wherein the sealing cap (47) is made from a multi-component material.

51. The package according to claim 21, wherein the sealing cap (4) comprises a metal frame (63) with a plastic insert (64).

52. The package according to claim 1, wherein the sealing element (43) can be deformed for sitting close to the sealing cap.

53. The package according to claim 1, wherein the sealing element (43) comprises a frame (47) which seals against the sealing cap (45).

54. (canceled)

55. The package according to claim 1, wherein the sealing element (43) comprises a film hinge.

56. (canceled)

* * * * *