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ABSTRACT

Example implementations described herein are directed to a
configurable Network on Chip (NoC) element that can be
configured with a bypass that permits messages to pass
through the NoC without entering the queue or arbitration.
The configurable NoC element can also be configured to
provide a protocol alongside the valid-ready protocol to
facilitate valid-ready functionality across virtual channels.
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INTERFACE VIRTUALIZATION AND FAST
PATH FOR NETWORK ON CHIP

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This regular U.S. patent application is a continua-
tion of U.S. patent application Ser. No. 15/829,749, filed on
Dec. 1, 2017 which is based on and claims the benefit of
priority under 35 U.S.C. 119 from provisional U.S. patent
application No. 62/429,695, filed on Dec. 2, 2016, the entire
disclosure of which is incorporated by reference herein.

BACKGROUND

Technical Field

[0002] Methods and example implementations described
herein are directed to interconnect architecture, and more
specifically, to Network on Chip (NoC) architectures and the
design and management thereof.

Related Art

[0003] The number of components on a chip is rapidly
growing due to increasing levels of integration, system
complexity and shrinking transistor geometry. Complex
System-on-Chips (SoCs) may involve a variety of compo-
nents e.g., processor cores, Digital Signal Processors
(DSPs), hardware accelerators, memory and 1/0, while Chip
Multi-Processors (CMPs) may involve a large number of
homogenous processor cores, memory and I/O subsystems.
In both SoC and CMP systems, the on-chip interconnect
plays a role in providing high-performance communication
between the various components. Due to scalability limita-
tions of traditional buses and crossbar based interconnects,
Network-on-Chip (NoC) has emerged as a paradigm to
interconnect a large number of components on the chip. NoC
is a global shared communication infrastructure made up of
several routing nodes interconnected with each other using
point-to- point physical links.

[0004] Messages are injected by the source and are routed
from the source node to the destination over multiple
intermediate nodes and physical links. The destination node
then ejects the message and provides the message to the
destination. For the remainder of this application, the terms
‘components’, ‘blocks’, ‘hosts’ or ‘cores’ will be used inter-
changeably to refer to the various system components which
are interconnected using a NoC. Terms ‘routers’ and ‘nodes’
will also be used interchangeably. Without loss of general-
ization, the system with multiple interconnected components
will itself be referred to as a ‘multi-core system’.

[0005] There are several topologies in which the routers
can connect to one another to create the system network.
Bi-directional rings (as shown in FIG. 1(a)), 2D (two
dimensional) mesh (as shown in FIGS. 1(5)) and 2-D Taurus
(as shown in FIG. 1(¢)) are examples of topologies in the
related art. Mesh and Taurus can also be extended to 2.5-D
(two and half dimensional) or 3-D (three dimensional)
organizations. FIG. 1(d) shows a 3D mesh NoC, where there
are three layers of 3x3 2D mesh NoC shown over each other.
The NoC routers have up to two additional ports, one
connecting to a router in the higher layer, and another
connecting to a router in the lower layer. Router 111 in the
middle layer of the example has both ports used, one
connecting to the router at the top layer and another con-
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necting to the router at the bottom layer. Routers 110 and 112
are at the bottom and top mesh layers respectively, therefore
they have only the upper facing port 113 and the lower
facing port 114 respectively connected.

[0006] Packets are message transport units for intercom-
munication between various components. Routing involves
identifying a path composed of a set of routers and physical
links of the network over which packets are sent from a
source to a destination. Components are connected to one or
multiple ports of one or multiple routers; with each such port
having a unique ID. Packets carry route information such as
the destination’s router and port ID for use by the interme-
diate routers to route the packet to the destination compo-
nent.

[0007] Examples of routing techniques include determin-
istic routing, which involves choosing the same path from A
to B for every packet. This form of routing is independent
from the state of the network and does not load balance
across path diversities, which might exist in the underlying
network. However, such deterministic routing may imple-
mented in hardware, maintains packet ordering and may be
rendered free of network level deadlocks. Shortest path
routing may minimize the latency as such routing reduces
the number of hops from the source to the destination. For
this reason, the shortest path may also be the lowest power
path for communication between the two components.
Dimension-order routing is a form of deterministic shortest
path routing in 2D, 2.5-D, and 3-D mesh networks. In this
routing scheme, messages are routed along each coordinates
in a particular sequence until the message reaches the final
destination. For example in a 3-D mesh network, one may
first route along the X dimension until it reaches a router
whose X-coordinate is equal to the X-coordinate of the
destination router. Next, the message takes a turn and is
routed in along Y dimension and finally takes another turn
and moves along the Z dimension until the message reaches
the final destination router. Dimension ordered routing may
be minimal turn and shortest path routing.

[0008] FIG. 2(a) pictorially illustrates an example of XY
routing in a two dimensional mesh. More specifically, FI1G.
2(a) illustrates XY routing from node ‘34 to node ‘00°. In
the example of FIG. 2(a), each component is connected to
only one port of one router. A packet is first routed over the
x-axis till the packet reaches node ‘04” where the x-coordi-
nate of the node is the same as the x-coordinate of the
destination node. The packet is next routed over the y-axis
until the packet reaches the destination node.

[0009] In heterogeneous mesh topology in which one or
more routers or one or more links are absent, dimension
order routing may not be feasible between certain source and
destination nodes, and alternative paths may have to be
taken. The alternative paths may not be shortest or minimum
turn.

[0010] Source routing and routing using tables are other
routing options used in NoC. Adaptive routing can dynami-
cally change the path taken between two points on the
network based on the state of the network. This form of
routing may be complex to analyze and implement.

[0011] A NoC interconnect may contain multiple physical
networks. Over each physical network, there may exist
multiple virtual networks, wherein different message types
are transmitted over different virtual networks. In this case,
at each physical link or channel, there are multiple virtual
channels; each virtual channel may have dedicated buffers at
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both end points. In any given clock cycle, only one virtual
channel can transmit data on the physical channel.

[0012] The physical channels are shared into a number of
independent logical channels called virtual channels (VCs).
VCs provide multiple independent paths to route packets,
however they are time-multiplexed on the physical channels.
A virtual channel holds the state needed to coordinate the
handling of the flits of a packet over a channel. At a
minimum, this state identifies the output channel of the
current node for the next hop of the route and the state of the
virtual channel (idle, waiting for resources, or active). The
virtual channel may also include pointers to the flits of the
packet that are buffered on the current node and the number
of flit buffers available on the next node.

[0013] NoC interconnects may employ wormhole routing,
wherein, a large message or packet is broken into small
pieces known as flits (also referred to as flow control digits).
The first flit is the header flit, which holds information about
this packet’s route and key message level info along with
payload data and sets up the routing behavior for all sub-
sequent flits associated with the message. Optionally, one or
more body flits follows the head flit, containing the remain-
ing payload of data. The final flit is the tail flit, which in
addition to containing the last payload also performs some
bookkeeping to close the connection for the message. In
wormhole flow control, virtual channels are often imple-
mented.

[0014] The term “wormhole” plays on the way messages
are transmitted over the channels: the output port at the next
router can be so short that received data can be translated in
the head flit before the full message arrives, thereby facili-
tating the sending of the packet to the next router before the
packet is fully received. This allows the router to quickly set
up the route upon arrival of the head flit and then opt out
from the rest of the conversation. Since a message is
transmitted flit by flit, the message may occupy several flit
buffers along its path at different routers so that the packet
can exist in multiple routers, thereby creating a worm-like
image.

[0015] Based upon the traffic between various end points,
and the routes and physical networks that are used for
various messages, different physical channels of the NoC
interconnect may experience different levels of load and
congestion. The capacity of various physical channels of a
NoC interconnect is determined by the width of the channel
(number of physical wires) and the clock frequency at which
it is operating. Various channels of the NoC may operate at
different clock frequencies, and various channels may have
different widths based on the bandwidth requirement at the
channel. The bandwidth requirement at a channel is deter-
mined by the flows that traverse over the channel and their
bandwidth values. Flows traversing over various NoC chan-
nels are affected by the routes taken by various flows. In a
mesh or Taurus NoC, there may exist multiple route paths of
equal length or number of hops between any pair of source
and destination nodes. For example, in FIG. 2(b), in addition
to the standard XY route between nodes 34 and 00, there are
additional routes available, such as YX route 203 or a
multi-turn route 202 that makes more than one turn from
source to destination.

[0016] InaNoC with statically allocated routes for various
traffic flows, the load at various channels may be controlled
by intelligently selecting the routes for various flows. When
a large number of traffic flows and substantial path diversity
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is present, routes can be chosen such that the load on all NoC
channels is balanced nearly uniformly, thus avoiding a single
point of bottleneck. Once routed, the NoC channel widths
can be determined based on the bandwidth demands of flows
on the channels. Unfortunately, channel widths cannot be
arbitrarily large due to physical hardware design restrictions,
such as timing or wiring congestion. There may be a limit on
the maximum channel width, thereby putting a limit on the
maximum bandwidth of any single NoC channel.

[0017] Additionally, wider physical channels may not help
in achieving higher bandwidth if messages are short. For
example, if a packet is a single flit packet with a 64-bit
width, then no matter how wide a channel is, the channel
will only be able to carry 64 bits per cycle of data if all
packets over the channel are similar. Thus, a channel width
is also limited by the message size in the NoC. Due to these
limitations on the maximum NoC channel width, a channel
may not have enough bandwidth in spite of balancing the
routes.

[0018] To address the above bandwidth concern, multiple
parallel physical NoCs may be used. Each NoC may be
called a layer, thus creating a multi-layer NoC architecture.
Hosts inject a message on a NoC layer; the message is then
routed to the destination on the NoC layer, where it is
delivered from the NoC layer to the host. Thus, each layer
operates more or less independently from each other, and
interactions between layers may only occur during the
injection and ejection times. FIG. 3(a) illustrates a two layer
NoC. Here the two NoC layers are shown adjacent to each
other on the left and right, with the hosts connected to the
NoC replicated in both left and right diagrams. A host is
connected to two routers in this example—a router in the
first layer shown as R1, and a router is the second layer
shown as R2. In this example, the multi-layer NoC is
different from the 3D NoC, i.e. multiple layers are on a
single silicon die and are used to meet the high bandwidth
demands of the communication between hosts on the same
silicon die. Messages do not go from one layer to another.
For purposes of clarity, the present disclosure will utilize
such a horizontal left and right illustration for multi-layer
NoC to differentiate from the 3D NoCs, which are illustrated
by drawing the NoCs vertically over each other.

[0019] InFIG. 3(b), a host connected to a router from each
layer, R1 and R2 respectively, is illustrated. Each router is
connected to other routers in its layer using directional ports
301, and is connected to the host using injection and ejection
ports 302. A bridge-logic 303 may sit between the host and
the two NoC layers to determine the NoC layer for an
outgoing message and sends the message from host to the
NoC layer, and also perform the arbitration and multiplexing
between incoming messages from the two NoC layers and
delivers them to the host.

[0020] In a multi-layer NoC, the number of layers needed
may depend upon a number of factors such as the aggregate
bandwidth requirement of all traffic flows in the system, the
routes that are used by various flows, message size distri-
bution, maximum channel width, etc. Once the number of
NoC layers in NoC interconnect is determined in a design,
different messages and traffic flows may be routed over
different NoC layers. Additionally, one may design NoC
interconnects such that different layers have different topolo-
gies in number of routers, channels and connectivity. The
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channels in different layers may have different widths based
on the flows that traverse over the channel and their band-
width requirements.

[0021] In a NoC interconnect, if the traffic profile is not
uniform and there is a certain amount of heterogeneity (e.g.,
certain hosts talking to each other more frequently than the
others), the interconnect performance may depend on the
NoC topology and where various hosts are placed in the
topology with respect to each other and to what routers they
are connected to. For example, if two hosts talk to each other
frequently and require higher bandwidth than other inter-
connects, then they should be placed next to each other. This
will reduce the latency for this communication which
thereby reduces the global average latency, as well as reduce
the number of router nodes and links over which the higher
bandwidth of this communication must be provisioned.
[0022] A NoC uses a shared network to pass traffic
between different components. Any particular traffic flow
might cross multiple routers before arriving at its destina-
tion. While the NoC can be efficient in terms of sharing
wires, there can be an adverse effect on latency. Each router
needs to arbitrate between its various inputs ports to decide
which packet will be sent in a cycle. After the arbitration, the
data must be selected through a multiplexing (muxing)
structure. This process can take one or more cycles to
complete, depending on the microarchitecture of the routers
and the frequency. This means that for each router a traffic
flow must cross, it can be incurring additional cycles of
delay. Wire delay between routers can also cause delay.
[0023] To reduce latency, the routers can be built with
bypass paths that allow skipping some or all of the arbitra-
tion and muxing costs of a router. These bypass paths can be
used opportunistically when the router is idle, or they can
support a simpler arbitration that allows a significant
decrease in cycle time loss. Intelligent use of bypasses in a
system can improve average latency of requests.

[0024] Longer latency can hurt the performance of the
system. Reducing the latency of traffic flows is an important
goal. The benefit of lower latency vary between different
traffic flows. Some components are very latency sensitive,
where each additional cycle of latency can have a significant
performance reduction. Other flows will be less sensitive to
latency. Intelligent setup of the bypasses can select the traffic
flows that will provide the largest overall benefit to the
system performance.

[0025] When packets finish traversing a NoC, they arrive
at the interface to a component. Because a NoC can have
many different kinds of traffic, design of the interface can
have a big impact on performance. Many interface protocols
use a method of flow control that doesn’t distinguish
between the contents of the packets. This can create head-
of-line blocking issues, where a more important packet is
stuck behind a less important packet.

[0026] The destination component can often benefit from
distinguishing between different incoming traffic flows,
allowing it to accept the more important flows and hold off
the less important flows when resources are scares. Support
of an enhanced interface can allow the destination compo-
nent to signal the network which traffic flows it is willing to
accept. The network can then choose which packets to send,
avoiding the head-of-line blocking issue.

[0027] The enhanced interface flow control can be coupled
with the networks use of virtual or physical channels to
further avoid head-of-line blocking. If lower priority packets
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are transported in a separate channel from the higher priority
packets, the destination component can backpressure one
channel and allow the other to continue unimpeded.

SUMMARY

[0028] Therefore, to address the aforementioned prob-
lems, there is a need for systems, methods, and non-
transitory computer readable mediums to facilitate an oppor-
tunistic bypass system for a NoC, as well as a VC valid and
credit system to facilitate the management of VCs of the
NoC.

[0029] Aspects of the present disclosure involve a Net-
work on Chip (NoC) having a plurality of channels and a
valid-ready system with VC valid and VC credit going back,
element configured to send a valid signal with a VC valid
signal.

[0030] Aspects of the present disclosure further involve a
network on chip (NoC) element involving a plurality of
physical links and virtual links, and a configurable bypass
between virtual links, and bypass logic configured to bypass
the queue and the logic of the NoC element.

[0031] The bypass is configured to bypass the queue and
the logic of the NoC element in an opportunistic manner in
accordance with the desired implementation. The NoC can
also involve a configurable router that has complete con-
figurability in terms of which bypasses are available. The
configurable router has output ports, in which any select
input port can connect to an output port with a direct bypass.

[0032] Aspects of the present disclosure can further
include methods and computer readable mediums directed to
determining the selection of bypasses for NoC construction.
Such methods and computer readable mediums can include
algorithms that during NoC construction, create additional
opportunities for bypassing. Such algorithms can include
restrictions to bypass placement (e.g., connections requiring
upsizing and downsizing do not have bypass) reshaping the
NoC topology to create more links for the bypass, building
the NoC to have equal number of ports with no clock
crossing, and avoiding upsizing and downsizing links.

[0033] Inexample implementations, the algorithms for the
creation of bypass paths can involve determining the pos-
sible bypass opportunities for the configurations based on
restrictions, for each bypass opportunity, choosing which
inputs go to the output based on calculation of expected
traffic flows/bandwidth that are expected to have biggest
impact on the specification (e.g., weighted average of traffic,
also take latency and importance of traffic into consider-
ation), and selecting the bypasses with the biggest benefit.

[0034] In example implementations, there can be algo-
rithms such as a multiplexer selection algorithm to select
which multiplexer to use (e.g., preselected versus post
selected), opportunistic bypass processing (e.g., messages
are sent through bypass if bypass is idle or if bypass is
possible, bypass conducted based on latency and First In
First Out (FIFO) depth).

[0035] In example implementations, there can be NoC
elements and configuration methods wherein a single input
port could be selected for use as a bypass to multiple output
port subject to restrictions (e.g., output VC must be the same
size as the input, different physical link sizes involve bypass
links with matching VCs).
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BRIEF DESCRIPTION OF THE DRAWINGS

[0036] FIGS. 1(a), 1(b), 1(c) and 1(d) illustrate examples
of Bidirectional ring, 2D Mesh, 2D Taurus, and 3D Mesh
NoC Topologies.

[0037] FIG. 2(a) illustrates an example of XY routing in a
related art two dimensional mesh.

[0038] FIG. 2(b) illustrates three different routes between
a source and destination nodes.

[0039] FIG. 3(a) illustrates an example of a related art two
layer NoC interconnect.

[0040] FIG. 3(b) illustrates the related art bridge logic
between host and multiple NoC layers.

[0041] FIG. 4 illustrates an example of a router, in accor-
dance with an example implementation.

[0042] FIG. 5 illustrates an example flow diagram for
configuring routers during configuration time, in accordance
with an example implementation.

[0043] FIG. 6 illustrates a valid-ready architecture in
accordance with an example implementation.

[0044] FIG. 7(a) illustrates an example system having a
SoC element (master), a SoC element (slave), a NoC bridge
and a NoC, in accordance with an example implementation.
In the example implementation, the NoC bridges and the
NoC elements have four input VCs and four output VCs. A
single physical wire proceeds from the SoC element to the
bridge, whereupon the signal is fanned out to each NoC
element in four output VCs.

[0045] FIG. 7(b) illustrates an example architecture for a
NoC element, in accordance with an example implementa-
tion.

[0046] FIG. 8 illustrates an example table view of infor-
mation utilized by the NoC element, in accordance with an
example implementation.

[0047] FIG. 9 illustrates a flow diagram for a requesting
NoC element, in accordance with an example implementa-
tion.

DETAILED DESCRIPTION

[0048] The following detailed description provides further
details of the figures and example implementations of the
present application. Reference numerals and descriptions of
redundant elements between figures are omitted for clarity.
Terms used throughout the description are provided as
examples and are not intended to be limiting. For example,
the use of the term “automatic” may involve fully automatic
or semi-automatic implementations involving user or
administrator control over certain aspects of the implemen-
tation, depending on the desired implementation of one of
ordinary skill in the art practicing implementations of the
present application.

[0049] Inexample implementations, a NoC interconnect is
generated from a specification by utilizing design tools. The
specification can contain constraints such as bandwidth/
Quality of Service (QoS)/latency attributes that is to be met
by the NoC, and can be in various software formats depend-
ing on the design tools utilized. Once the NoC is generated
through the use of design tools on the specification to meet
the specification requirements, the physical architecture can
be implemented either by manufacturing a chip layout to
facilitate the NoC or by generation of a register transfer level
(RTL) for execution on a chip to emulate the generated NoC,
depending on the desired implementation.
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[0050] In a NoC, there is a network having routers and
bridges. Other elements may also be present which can make
the NoC fairly large. There may be an inherent latency
problem with the NoC. In example implementations, bridges
require activation for send messages into the network, and
when messages are sent through the link, the router has to
arbitrate the messages before the message is sent to the next
hop.

[0051] For each hop running at a slow frequency, an entire
router arbitration calculation including the travel time can be
determined. However, most related art implementations are
executed at a high frequency, wherein in such cases that the
router arbitration may be conducted in a single cycle.
Further, latency can be incurred in the bridge, with a cycle
incurred in the bridge, a cycle for the link, a cycle for the
router, and so on for the transaction. Latency reduction can
be difficult due to the routers having arbitration requirements
which incur a latency loss for arbitration in each router.

[0052] FIG. 4 illustrates an example of a router, in accor-
dance with an example implementation. In example imple-
mentations for reducing latency in the router, routers imple-
ment a fast path, which functions as a bypass having bypass
logic 406. A router may have an assortment of inputs which
are processed by elements such as a decoder 401, a queue
such as a First in First Out (FIFO) queue 402, an arbiter 403
and a multiplexer 404 (mux) for conducting arbitration and
determining the output 405. In example implementations
alongside the multiplexer 404, the router has a path config-
ured to function as a special bypass with bypass logic 406.
One or more inputs can be designated for the special bypass,
such that the input entering one of the muxes will be able to
hop in at the end of a cycle. If there is an output, the output
can be placed in at the end of a cycle so that the input into
the router will be able to go directly to the output instead of
going through the arbitration. In such an example imple-
mentation, one cycle of latency can thereby be removed per
router by reducing the processing to decode, bypass logic
(e.g. validation) and output. Routing information can be
included in direct wires to the router in accordance with the
desired implementation. Further, once latency is reduced,
the potential round trip latency is decreased as other mes-
sages may be able to pop off the FIFO more quickly. Once
the bypasses are configured for each eligible router, the
example implementations could then calculate the cycle of
depth based on this latency. Example implementations of a
NoC contains hardware or NoC elements that involve a
plurality of physical links and virtual links, with a configu-
rable bypass between virtual links, and bypass logic 406
configured to bypass the queue and the logic of the NoC
element. The bypass logic 406 can be configured to initiate
bypass of the message in an opportunistic manner (e.g.,
depending on whether queue is free or not, etc.)

[0053] In example implementations, messages destined to
bypass can be pre-arbitrated and then the only logic in the
hop can be for determining which output channel is used for
the bypass as determined by the bypass logic as illustrated
in FIG. 4. In example implementations, multiple outputs can
be used for bypass for an input. For example, one input can
bypass to one of multiple output ports, with each output
associated with only one input. Bypass logic may also be
utilized for optimizing messages in accordance with an
example implementation. For example, if a queue is empty
the message is sent through the logic for the bypass. If no
other message takes priority then the message is transmitted
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through the bypass path to avoid all logic. Such example
implementations can therefore be configured to conduct
more than simply bypassing the FIFO queue and entering
arbitration, but can be utilized to bypass all router logic and
go directly to the output. In example implementations, the
bypass can be conducted when there is no other traffic going
on the link, which indicates no cost to arbitration as deter-
mined by the bypass logic.

[0054] In the following example implementations,
requirements may be set for forwarding an input to the
special bypass. One example requirement is that the link
sizes are matched so latency from a width conversion is
removed. Another example requirement is no clock crossing,
so latency from clock conversion is also removed. Other
requirements may also be set in according to the desired
implementation.

[0055] Related art implementations implement a bypass
path in a fixed position that is affixed to an input that is
considered to be the most common bypass user. One
example of a related art implementation is that an input
destined for a particular direction will continually proceed in
the direction (e.g. a south input port bypasses to the north
input port). Such related art solutions are static.

[0056] In example implementations as illustrated in FIG.
4, there can be a NoC hardware element which can involve
a plurality of physical channels and virtual channels, and a
configurable bypass between virtual links, whereupon
bypass logic can be configured to bypass the queue and the
logic of the NoC element in an opportunistic manner. The
bypass logic can allow messages to be transmitted through
the bypass opportunistically based on whether the input First
in First Out (FIFO) queue is empty or not, based on the
priority of the traffic being arbitrated, whether the bypass is
idle/available or not, queue depth of the transmitting hard-
ware element, and so on depending on the desired imple-
mentation.

[0057] In example implementations, the bypass configu-
ration can be made during configuration time for the speci-
fication. FIG. 5 illustrates an example flow diagram for
configuring routers during configuration time, in accordance
with an example implementation. At 501, the specification is
processed for traffic flows. During configuration time, the
example implementations determine all of the traffic flows
from the specification, wherein routers that are eligible for
bypass are identified at 502. In an example implementation,
if all the traffic flows can be considered during configuration
time, traffic tendencies can be identified for a router (e.g.
most traffic for an identified router proceeds from the west
port to the north port). In the above example, a bypass can
be constructed from the west port to the north port to reduce
latency. Other implementations based on the traffic flow for
identifying routers are also possible depending on the
desired implementation. For example, latency sensitivity of
traffic flows can also be recognized. In this manner, example
implementations can be configured to determine the bypass
not only by the most amount of traffic going through a port,
the bypass can be determined based on determining the
importance of the traffic. Traffic flows can be associated with
a weight in terms of the importance of the latency, e.g. how
latency sensitive is the traffic, which can be taken into
account for identifying eligible routers. Example implemen-
tations can calculate the latency sensitivity based on the
weights. For example, latency sensitive traffic can be mul-
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tiplied by the weight to prioritize latency sensitive traffic
over raw latency for a channel, depending on the desired
implementation.

[0058] Example implementations can also analyze traffic
flows so that an array is created based on the input ports (e.g.
A, B, C, D, E, and F), and analyze how much of the traffic
is coming in on a given link is going to a given output port.
So for a given output port, analysis can be conducted by
comparing the input ports and constructing a bypass based
on the bandwidth consumed by the input ports to a given
output port. For example, for a router wherein input port one
is responsible for three gigabytes of output for output port X
for a given time frame and input port two is responsible for
six gigabytes for the given time frame, a bypass can be
utilized between input port two and output port one.
[0059] At 503, locations for implementing a bypass are
identified. The locations for implementing the bypass can be
identified based on the traffic flow determinations, the hard-
ware configuration of the router and by other methods
according to the desired implementation. For example,
simulations can be conducted to detect where latency as
affected by wire length and travel length are taken into
consideration. In such example implementations, output
ports can be configured so that a bypass can be made
available within the router. And so by converting the router
with additional output ports, latency can be reduced. Thus,
in example implementations, the optimization can involve
determining which bypasses can be implemented to reduce
latency and the location of such bypass. The optimization
can involve a pre-optimization implementation where con-
ditions for bypassing are identified, and bypasses can be
implemented therein. By using design tools during the
configuration time, path input algorithms can be utilized to
determine the shortest path for the bypass for use in deter-
mining the location for implementing the bypass. Optimi-
zations for placement of network elements can also be made
to create additional opportunities for bypass in accordance
with the desired implementation.

[0060] Bypasses may also be determined based on desired
constraints. In an example constraint, the input VC width is
set to match the output VC width. In such an example
implementation, the physical link size may be different,
however, the bypass is still utilized between the two physical
links to connect matching input and output VCs.

[0061] At 504, the eligible routers are then configured
with the bypass based on the determinations. As the routers
are configurable in example implementations, a heteroge-
neous NoC with heterogeneous routers can thereby be
implemented. Example implementations are in contrast to
related art systems, which are directed to homogenous NoC
systems and homogenous routers. Related art implementa-
tions involve bypasses that are stacked directionally on the
assumption that the NoC is homogenous and is therefore
static, whereas the example implementations of the present
disclosure can utilize heterogeneous router and NoC con-
figurations.

[0062] Example implementations described herein can be
implemented as a hardwired bypass. In such example imple-
mentations, the software at configuration time can precom-
pute where packets are going and can also utilize sideband
information to the NoC. Sideband channels can be utilized
for messages to determine which output port to utilize.
Sideband information does not need to be utilized for
controlling multiplexing to the output ports, but can be
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utilized control the validity of the output port. The routing
information is processed, wherein example implementations
calculate the route including the port.

[0063] As illustrated in FIG. 5, example implementations
can also involve methods and computer readable mediums
with instructions directed to determining the selection of
bypasses for NoC construction. Such example implementa-
tions can involve algorithms that during NoC construction,
create additional opportunities for bypassing. The opportu-
nities can involve the reshaping of NoC topology to create
more channels that are eligible for bypass (e.g., building a
NoC with routers having equal numbers of ports without any
clock crossing), applying restrictions to bypass to avoid
channels or virtual channels that conduct upsizing and
downsizing, and so on depending on the desired implemen-
tation.

[0064] Example implementations can also involve algo-
rithms for the creation of bypass paths. As illustrated in FI1G.
5, such algorithms determine all of the possible bypass
opportunities for the configurations based on the restrictions
as described above. For each possible bypass, the algorithm
can then determine which inputs go to which output based
on the calculation of expected traffic flows/bandwidth. Such
example implementations will determine which bypass pro-
vides the biggest impact on the NoC specification (weighted
average of traffic, also take latency and importance of traffic
into consideration), whereupon the algorithm can thereby
choose bypasses with the biggest benefit above a desired
threshold.

[0065] Example implementations may also involve algo-
rithms for selecting which multiplexer to incorporate into
the NoC hardware element, which can be conducted in a
preselected manner or configured after the NoC is designed,
in accordance with the desired implementation.

[0066] Example implementations may also involve NoCs
with hardware elements having differing physical channel
sizes, but VCs with matching sizes to facilitate the bypass.
The hardware elements may also be in the form of a
configurable router that has complete configurability in
terms of which bypasses are available. In an example
implementation, the router design can involve having each
output port associated with a selected input port with a direct
bypass. Further, example implementations may involve a
NoC element and configuration method wherein a single
input port could be selected from bypass to multiple with
restrictions. (e.g., if the output VC is the same size as the
input.)

[0067] Virtualization Interface and Valid-Ready for Vir-
tual Channels (VCs) and Other Types of Traffic

[0068] Inrelated art implementations, NoC systems utilize
a valid/ready handshake. In such a handshake protocol, one
NoC element asserts a valid signal, and if the receiving NoC
element asserts a ready signal at the same time, then a
message transfer can occur between the two NoC elements.
Such related art implementations may further have restric-
tions depending on the implementation (e.g. to prevent
deadlock). In an example restriction, the NoC element does
not wait for the valid signal to assert a ready signal, or vice
versa. However, related art implementations of the valid/
ready handshake are not aware of the actual status of VCs.
In related art implementations, even if a request is made
using the valid/ready handshake, the status of the VC to be
used may actually be blocked. Further, other VCs within the
physical channel may be available, but the related art
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implementations cannot discern their availability due to the
NoC elements requiring a ready signal before proceeding.
Such implementations may also apply to other traffic types
where the valid/ready handshake is blocking the transmis-
sion. The destination element would benefit from being able
to indicate which traffic flows it would like to receive
through the issuance of credits or indication through the
ready signal for that specific traffic type.

[0069] In example implementations, additional informa-
tion is provided for a valid-ready handshake to address the
issues with the related art. Example implementations utilize
a valid-ready and credit based hybrid system to facilitate
valid-ready handshake functionality. In a credit-based
design for the example implementations, independent cred-
its are allocated for each VC. The requesting NoC element
transmits a request when a VC credit has been obtained.
[0070] Related art implementations utilize a sideband
information channel to indicate which virtual channels are
available. However, such information is potentially stale.
Further, such implementations provide a bit vector that
indicates VCs within a range are available (e.g. VCs 8-16)
without specifically indicating which VCs are available and
which are not.

[0071] FIG. 6 illustrates a valid-ready architecture in
accordance with an example implementation. In example
implementations, a hybrid approach involving a credit base
system is utilized, which facilitates a bi-directional commu-
nication. For a NoC requesting element 601 and a NoC
target element 602, there is a valid-ready handshake as well
as another vector for VC valid and VC credit in the sideband.
The VC valid information is provided to the NoC requesting
element 601, so that the NoC requesting elements makes the
request if a specific resource dedicated to the request is
available. Such example implementations provide flexibility
as the number of virtual channels can be any number in
accordance with a desired implementation.

[0072] In example implementations, a number of VCs on
the NoC are associated with a physical interface. The
physical interface can be associated with a number of
interface VCs which can be mapped according to the desired
implementation.

[0073] In an example implementation involving a master
and slave, a NoC bridge is utilized. The NoC bridge com-
municates with a slave, which may have a plurality of virtual
channels for the traffic. One virtual channel may involve
high-priority CPU traffic (e.g. latency-sensitive traffic),
another may involve I/O traffic, and another may involve
asynchronous traffic which may be time critical, and so on.
The properties of the virtual channels may also change over
time, depending on the desired implementation.

[0074] Inexample implementations involving credit based
implementation, as each channel can be separated and
dedicated to the desired implementation, such implementa-
tions avoid the merger of traffic flows that should not be
merged.

[0075] In the example implementation hybrid approach,
the credit-based handshake is conducted between the agents
while valid-ready requirements are enforced. In an example
implementation, the target sends a credit back to the master
indicating that a resource is available for a request. When the
master tries to make that request, the target can indicate that
it is not ready due to some delay (e.g. clock crossing). By
utilizing the valid-ready with the credit system, it provides
a way for temporary back-pressuring from the slave.
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[0076] In example implementations, initialization is also
facilitated as when the credit-based approach is applied, the
NoC elements will determine the initialization. For example,
the initialization of the credits can be zero, whereupon after
a reset credits can be passed from the target NoC element to
the requesting NoC element. Depending on the desired
implementation, a certain number of credits can be provided
at the master. However, if the reset for the NoC elements are
unknown, the flow is harder to control, the valid-ready
handshake can be utilized with the ready allowed for de-
assertion. Even though the master element has VC credits,
the master may be unable to transmit until the target NoC
(slave) element is ready to accept the credits.

[0077] In example implementations, different virtual
channels may involve different responses (e.g. read
response, write response). In example implementations,
there can be multiple virtual channels on the read interface
going into another controller having only one read response
channel. Thus, the congestion may go to the memory con-
troller undergoing different arbitrations with a guaranteed
drain. Each channel is completely independent, and they can
be used for any purpose according to the desired implemen-
tation.

[0078] Example implementations involve a bookkeeping
mechanism to track responses. Such a mechanism can
involve a data structure to store information to track
responses and when the responses are received. For
example, if there are four VCs, the VCs can be broken into
four segments with reservations. The arbiter may determine
to send a flit if the NoC element has credit at the output. The
example implementations can involve any partition of the
data structure between the four VCs in any way according to
the desired implementation. For example, each hardware
element can be dedicated to a single VC, or pools of
resources can be shared with some or all of the VCs. In
example implementations, a mix of dedicated and shared
resources can also be provided. Dedicated resources can
ensure one channel cannot block another channel.

[0079] FIG. 7(a) illustrates an example system having a
SoC element (master) 701, a SoC element (slave) 705, NoC
bridges 702, 704 and a NoC 703, in accordance with an
example implementation. In the example implementation,
the NoC bridges 702, 704 and the NoC elements inside the
NoC 703 have four input VCs and four output VCs. A single
physical wire proceeds from the SoC element to the bridge,
whereupon the signal is fanned out to each NoC element in
four output VCs.

[0080] FIG. 7(b) illustrates an example architecture for a
NoC element, in accordance with an example implementa-
tion. In the example implementation, the NoC element has
four input VCs and four output VCs. In the example of FIG.
7(b), there is a decoder 711 for the input VCs, a queue 712,
an arbiter 713, a multiplexer 714, and an output 715 facili-
tating output to four output VCs. The single bus feeds into
the decoder 711, which receives the input and fans out the
input to four individual queues 712. When a VC credit is
received, the arbiter 713 pops a flit off of the queue 712 and
send the flit to the multiplexer 714 to be transmitted through
the corresponding output VC 715.

[0081] As illustrated in FIGS. 7(a) and 7(b), example
implementations may involve a NoC that can involve a
plurality of channels (e.g., physical channels, virtual chan-
nels and/or virtual channels disposed within the physical
channels) and NoC hardware elements. Such NoC hardware
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elements can involve at least one receiving hardware ele-
ment (e.g., target NoC element 602) and at least one
transmitting hardware element (e.g., requesting NoC ele-
ment 601) as illustrated in FIG. 6. When a transmitting
hardware element is to transmit a message, the protocol as
illustrated in FIG. 6 can be followed wherein the hardware
element transmits a valid signal to the at least one receiving
hardware element on a channel of the plurality of channels,
and transmits a virtual channel (VC) valid signal on a virtual
channel of the plurality of channels to the at least one
receiving hardware element. The receiving hardware ele-
ment is configured to transmit a VC credit to the at least one
transmitting hardware element over the virtual channel of
the plurality of channels as illustrated in FIG. 6.

[0082] Depending on the desired implementation, the
transmitting hardware element can be configured to not
transmit the VC valid signal on the virtual channel until a
VC credit is obtained, and transmit the VC valid signal on
the virtual channel to the at least one receiving hardware
element on receipt of the VC credit based on the protocol of
FIG. 6. In example implementations, the transmitting hard-
ware element can issue a write request when the transmitter
determines that the receiving NoC hardware element has
enough buffer size for the address information and the
storage of data. The transmitting NoC hardware element can
infer such information based on the default storage (e.g.,
64B) which can be programmable or definable depending on
the desired implementation.

[0083] In an example implementation, the plurality of
channels can also involve virtual channels, with each of the
physical channels being configurable to be independently
controlled to adjust a number of VCs for each of the plurality
of channels. Such implementations can be conducted by a
NoC controller which is configured to define the number of
VCs for a given physical channel. In an example implemen-
tation, the NoC may maintain the same quantity of VCs for
read messages as for read response messages within a given
physical channel through such a NoC controller, or they can
be differing quantities depending on the desired implemen-
tation.

[0084] Inexample implementations, the NoC may include
a configurable interface for the transmitting hardware ele-
ment and the receiving hardware element, that configures the
transmitting hardware element and the receiving hardware
element for at least one of deadlock avoidance and quantity
of virtual channels. Such configuration can be conducted
through a NoC specification, wherein the interface can be in
the form of a hardware/software interface or a hardware
mechanism that processes the specification to configure the
NoC for deadlock avoidance, and quantity of virtual chan-
nels.

[0085] In example implementations, the NoC may also
include a virtual interface for virtual channels to interact
with agents of a SoC. Such a virtual interface can be
implemented in the NoC bridges, or can be part of the NoC
depending on the desired implementation.

[0086] In example implementations, the transmitting ele-
ment can be configured to manage VC credits received from
one or more receiving hardware elements as illustrated in
FIG. 8, and conduct arbitration based on whether a message
destination is associated with a VC credit from the managed
VC credits. The hardware elements can be configured to
conduct informed arbitration, as each hardware element
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knows whether a potential output VC has an associated
credit or not based on the information managed as illustrated
in FIG. 8.

[0087] In further example implementations, the receiving
hardware element can be configured to provide a reservation
for a VC to one or more transmitting hardware elements
based on at least one of management of dedicated VC credits
to the one or more of transmitting hardware elements, a
shared tool providing certain minimum priority for the one
or more transmitting hardware elements, and an inference of
priority from the one or more of the at least one transmitting
hardware element. Such reservations can include a pre-
configuration so that certain hardware elements always have
a certain number of VC credits reserved, priority inferred
based on the type of message received or a hierarchy of
hardware elements as defined in the NoC specification.
[0088] FIG. 8 illustrates an example table view of infor-
mation utilized by the NoC element, in accordance with an
example implementation. In example implementations, NoC
elements may include a bookkeeping mechanism to indicate
the status of the target VCs. In the example of FIG. 8, each
output VC is associated with a ready signal, and VC credit.
When ready and valid are set, then a transfer can take place.
VC credit indicates the number of credits available for
transmission to the output VC. VC credit is incremented
when a credit signal is received, and decremented when a
credit is utilized.

[0089] FIG. 9 illustrates a flow diagram for a requesting
NoC element, in accordance with an example implementa-
tion. At 901 the requesting NoC element waits until a VC
credit is received before transmitting a request. At 902, once
a VC credit is received, the requesting NoC element con-
ducts arbitration among available traffic that are associated
with credits, and forwards the data packet to the output
interface. At 903, the valid/ready handshake as illustrated in
FIG. 6 is conducted, wherein a VC valid signal is provided
to indicate the VC that the data will be sent through and the
data/flit is sent through the corresponding VC with the VC
valid signal. The VC credit counter is decremented. The
requesting NoC element will also wait for additional VC
credits as necessary. At 904, the receiving element receives
the data/flit from the transmitting element.

[0090] In example implementations there can be a system
such as a NoC, a SoC, or any hardware element system that
require a virtual channel interface that involves a plurality of
channels; at least one receiving hardware element; and at
least one transmitting hardware element configured to: trans-
mit a valid signal to the at least one receiving hardware
element on a channel of the plurality of channels, and
transmit a virtual channel (VC) valid signal as a virtual
channel indicator for a virtual channel of a plurality of
virtual channels designated for transmission of data and
transmit the data on the virtual channel designated for the
transmission of the data; wherein the at least one receiving
hardware element is configured to transmit a VC credit to the
at least one transmitting hardware element as illustrated in
FIG. 6 and FIG. 9.

[0091] In example implementations, the at least one trans-
mitting hardware element is configured to not transmit the
data packet on the virtual channel until a VC credit is
obtained. The plurality of channels can be physical channels
that are partitioned into one or more virtual channels, and
each of the channels can be configurable to be independently
controlled for mapping to an interface virtual VCs. In such
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example implementations, multiple transmitting channels
can map to a single interface virtual channel, or a single
transmitting channel can map to multiple virtual channels
depending on the desired implementation. In an example
implementation involving a single transmitting channel
mapping to multiple virtual channels, the transmission can
be conducted when any of the VC credits are available. The
mapping can be done through a virtual interface connected
to the NoC to map virtual channels with transmitting ele-
ments such as agents of a SoC. Such interfaces can include
read channels, read response channels, and so on depending
on the desired implementation. In example implementations,
the interface can include the decoder, queue, arbiter, multi-
plexer, and/or the output as illustrated in FIG. 7(b).

[0092] Inexample implementations, the at least one trans-
mitting element is further configured to manage VC credits
received from one or more of the at least one receiving
hardware element; and conduct arbitration based on whether
a message destination is associated with a VC credit from
the managed VC credits as illustrated in FIG. 8. The
management can be done through the interface of the
hardware element that is configured to map transmitting
channels to virtual channels.

[0093] Inexample implementations, the at least one trans-
mitting hardware element is configured to arbitrate messages
for transmitting through prioritizing messages that are asso-
ciated with a VC credit through the user of the arbiter as
illustrated in FIG. 7(b).

[0094] In example implementations, the at least one
receiving hardware element is configured to provide a
reservation for a VC to one or more of the at least one
transmitting hardware element based on at least one of
management of dedicated VC credits to the one or more of
the at least one transmitting hardware element, and an
inference of priority from the one or more of the at least one
transmitting hardware element based on the information of
FIG. 8. Priority can be inferred based on the type of message
and the hierarchy set according to the desired implementa-
tion (e.g., hierarchy for read, read response, write, etc.).
[0095] Inexample implementations the at least one receiv-
ing hardware element can be a NoC element such as a router
or a bridge and the at least one transmitting hardware
element is an agent of the System on Chip (SoC), such as a
memory or a CPU.

[0096] Although example implementations involve a
NoC, other systems such as a SoC or other interconnect can
be utilized in accordance with the desired implementation.
Any hardware element that can utilize a virtual interface can
take advantage of the example implementations described
herein.

[0097] Unless specifically stated otherwise, as apparent
from the discussion, it is appreciated that throughout the
description, discussions utilizing terms such as “process-
ing,” “computing,” “calculating,” “determining,” “display-
ing,” or the like, can include the actions and processes of a
computer system or other information processing device that
manipulates and transforms data represented as physical
(electronic) quantities within the computer system’s regis-
ters and memories into other data similarly represented as
physical quantities within the computer system’s memories
or registers or other information storage, transmission or
display devices.

[0098] Example implementations may also relate to an
apparatus for performing the operations herein. This appa-
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ratus may be specially constructed for the required purposes,
or it may include one or more general-purpose computers
selectively activated or reconfigured by one or more com-
puter programs. Such computer programs may be stored in
a computer readable medium, such as a computer-readable
storage medium or a computer-readable signal medium. A
computer-readable storage medium may involve tangible
mediums such as, but not limited to optical disks, magnetic
disks, read-only memories, random access memories, solid
state devices and drives, or any other types of tangible or
non-transitory media suitable for storing electronic informa-
tion. A computer readable signal medium may include
mediums such as carrier waves. The algorithms and displays
presented herein are not inherently related to any particular
computer or other apparatus. Computer programs can
involve pure software implementations that involve instruc-
tions that perform the operations of the desired implemen-
tation.

[0099] Various general-purpose systems may be used with
programs and modules in accordance with the examples
herein, or it may prove convenient to construct a more
specialized apparatus to perform desired method steps. In
addition, the example implementations are not described
with reference to any particular programming language. It
will be appreciated that a variety of programming languages
may be used to implement the teachings of the example
implementations as described herein. The instructions of the
programming language(s) may be executed by one or more
processing devices, e.g., central processing units (CPUs),
processors, or controllers.

[0100] As is known in the art, the operations described
above can be performed by hardware, software, or some
combination of software and hardware. Various aspects of
the example implementations may be implemented using
circuits and logic devices (hardware), while other aspects
may be implemented using instructions stored on a machine-
readable medium (software), which if executed by a pro-
cessor, would cause the processor to perform a method to
carry out implementations of the present disclosure. Further,
some example implementations of the present disclosure
may be performed solely in hardware, whereas other
example implementations may be performed solely in soft-
ware. Moreover, the various functions described can be
performed in a single unit, or can be spread across a number
of components in any number of ways. When performed by
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software, the methods may be executed by a processor, such
as a general purpose computer, based on instructions stored
on a computer-readable medium. If desired, the instructions
can be stored on the medium in a compressed and/or
encrypted format.

[0101] Moreover, other implementations of the present
disclosure will be apparent to those skilled in the art from
consideration of the specification and practice of the teach-
ings of the present disclosure. Various aspects and/or com-
ponents of the described example implementations may be
used singly or in any combination. It is intended that the
specification and example implementations be considered as
examples only, with the true scope and spirit of the present
disclosure being indicated by the following claims.

What is claimed is:

1. A hardware element incorporated into a Network on
Chip (NoC), comprising:

a plurality of physical links and virtual links;

a queue for transmission of output messages to output

ports of the hardware element;

an arbiter configured to process input messages to the

queue based on a logic scheme;

a configurable bypass link between the virtual links, and

bypass logic configured to redirect the input messages to

the configurable bypass link to bypass the queue and
the arbiter.

2. The hardware element of claim 1, wherein the bypass
logic is configured to redirect the input messages to the
configurable bypass link opportunistically.

3. Ahardware element incorporated into a System on Chip
(SoC), comprising:

a plurality of physical links and virtual links;

a queue for transmission of output messages to output

ports of the hardware element;

an arbiter configured to process input messages to the

queue based on a logic scheme;

a configurable bypass link between the virtual links, and

bypass logic configured to redirect the input messages to

the configurable bypass link to bypass the queue and
the arbiter.

4. The hardware element of claim 3, wherein the bypass
logic is configured to redirect the input messages to the
configurable bypass link opportunistically.
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