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INTERFACE VIRTUALIZATION AND FAST 
PATH FOR NETWORK ON CHIP 

CROSS - REFERENCE TO RELATED 
APPLICATION 

[ 0001 ] This regular U . S . patent application is a continua 
tion of U . S . patent application Ser . No . 15 / 829 , 749 , filed on 
Dec . 1 , 2017 which is based on and claims the benefit of 
priority under 35 U . S . C . 119 from provisional U . S . patent 
application No . 62 / 429 , 695 , filed on Dec . 2 , 2016 , the entire 
disclosure of which is incorporated by reference herein . 

BACKGROUND 

Technical Field 
[ 0002 ] Methods and example implementations described 
herein are directed to interconnect architecture , and more 
specifically , to Network on Chip ( NoC ) architectures and the 
design and management thereof . 

Related Art 
[ 0003 ] The number of components on a chip is rapidly 
growing due to increasing levels of integration , system 
complexity and shrinking transistor geometry . Complex 
System - on - Chips ( SoCs ) may involve a variety of compo 
nents e . g . , processor cores , Digital Signal Processors 
( DSPs ) , hardware accelerators , memory and I / O , while Chip 
Multi - Processors ( CMPs ) may involve a large number of 
homogenous processor cores , memory and I / O subsystems . 
In both SoC and CMP systems , the on - chip interconnect 
plays a role in providing high - performance communication 
between the various components . Due to scalability limita 
tions of traditional buses and crossbar based interconnects , 
Network - on - Chip ( NoC ) has emerged as a paradigm to 
interconnect a large number of components on the chip . NoC 
is a global shared communication infrastructure made up of 
several routing nodes interconnected with each other using 
point - to - point physical links . 
[ 0004 ] Messages are injected by the source and are routed 
from the source node to the destination over multiple 
intermediate nodes and physical links . The destination node 
then ejects the message and provides the message to the 
destination . For the remainder of this application , the terms 
components ' , ' blocks ' , ' hosts ' or ' cores ' will be used inter 
changeably to refer to the various system components which 
are interconnected using a NoC . Terms ' routers ' and ‘ nodes ' 
will also be used interchangeably . Without loss of general 
ization , the system with multiple interconnected components 
will itself be referred to as a “ multi - core system ' . 
0005 ] There are several topologies in which the routers 
can connect to one another to create the system network . 
Bi - directional rings ( as shown in FIG . 1 ( a ) ) , 2D ( two 
dimensional ) mesh ( as shown in FIGS . 1 ( b ) ) and 2 - D Taurus 
( as shown in FIG . 1 ( c ) ) are examples of topologies in the 
related art . Mesh and Taurus can also be extended to 2 . 5 - D 
( two and half dimensional ) or 3 - D ( three dimensional ) 
organizations . FIG . 1 ( d ) shows a 3D mesh NoC , where there 
are three layers of 3x3 2D mesh NoC shown over each other . 
The NoC routers have up to two additional ports , one 
connecting to a router in the higher layer , and another 
connecting to a router in the lower layer . Router 111 in the 
middle layer of the example has both ports used , one 
connecting to the router at the top layer and another con 

necting to the router at the bottom layer . Routers 110 and 112 
are at the bottom and top mesh layers respectively , therefore 
they have only the upper facing port 113 and the lower 
facing port 114 respectively connected . 
[ 0006 ] Packets are message transport units for intercom 
munication between various components . Routing involves 
identifying a path composed of a set of routers and physical 
links of the network over which packets are sent from a 
source to a destination . Components are connected to one or 
multiple ports of one or multiple routers ; with each such port 
having a unique ID . Packets carry route information such as 
the destination ' s router and port ID for use by the interme 
diate routers to route the packet to the destination compo 
nent . 
[ 0007 ] Examples of routing techniques include determin 
istic routing , which involves choosing the same path from A 
to B for every packet . This form of routing is independent 
from the state of the network and does not load balance 
across path diversities , which might exist in the underlying 
network . However , such deterministic routing may imple 
mented in hardware , maintains packet ordering and may be 
rendered free of network level deadlocks . Shortest path 
routing may minimize the latency as such routing reduces 
the number of hops from the source to the destination . For 
this reason , the shortest path may also be the lowest power 
path for communication between the two components . 
Dimension - order routing is a form of deterministic shortest 
path routing in 2D , 2 . 5 - D , and 3 - D mesh networks . In this 
routing scheme , messages are routed along each coordinates 
in a particular sequence until the message reaches the final 
destination . For example in a 3 - D mesh network , one may 
first route along the X dimension until it reaches a router 
whose X - coordinate is equal to the X - coordinate of the 
destination router . Next , the message takes a turn and is 
routed in along Y dimension and finally takes another turn 
and moves along the Z dimension until the message reaches 
the final destination router . Dimension ordered routing may 
be minimal turn and shortest path routing . 
[ 0008 ] FIG . 2 ( a ) pictorially illustrates an example of XY 
routing in a two dimensional mesh . More specifically , FIG . 
2 ( a ) illustrates XY routing from node ' 34 ' to node ' 00 ' . In 
the example of FIG . 2 ( a ) , each component is connected to 
only one port of one router . A packet is first routed over the 
X - axis till the packet reaches node ' 04 ' where the x - coordi 
nate of the node is the same as the x - coordinate of the 
destination node . The packet is next routed over the y - axis 
until the packet reaches the destination node . 
10009 ] . In heterogeneous mesh topology in which one or 
more routers or one or more links are absent , dimension 
order routing may not be feasible between certain source and 
destination nodes , and alternative paths may have to be 
taken . The alternative paths may not be shortest or minimum 
turn . 
[ 0010 ] Source routing and routing using tables are other 
routing options used in NoC . Adaptive routing can dynami 
cally change the path taken between two points on the 
network based on the state of the network . This form of 
routing may be complex to analyze and implement . 
[ 0011 ] . A NOC interconnect may contain multiple physical 
networks . Over each physical network , there may exist 
multiple virtual networks , wherein different message types 
are transmitted over different virtual networks . In this case , 
at each physical link or channel , there are multiple virtual 
channels ; each virtual channel may have dedicated buffers at 
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both end points . In any given clock cycle , only one virtual 
channel can transmit data on the physical channel . 
[ 0012 ] The physical channels are shared into a number of 
independent logical channels called virtual channels ( VCs ) . 
VCs provide multiple independent paths to route packets , 
however they are time - multiplexed on the physical channels . 
A virtual channel holds the state needed to coordinate the 
handling of the flits of a packet over a channel . At a 
minimum , this state identifies the output channel of the 
current node for the next hop of the route and the state of the 
virtual channel ( idle , waiting for resources , or active ) . The 
virtual channel may also include pointers to the flits of the 
packet that are buffered on the current node and the number 
of flit buffers available on the next node . 
[ 0013 ] NoC interconnects may employ wormhole routing , 
wherein , a large message or packet is broken into small 
pieces known as flits ( also referred to as flow control digits ) . 
The first flit is the header flit , which holds information about 
this packet ' s route and key message level info along with 
payload data and sets up the routing behavior for all sub 
sequent flits associated with the message . Optionally , one or 
more body flits follows the head flit , containing the remain 
ing payload of data . The final flit is the tail flit , which in 
addition to containing the last payload also performs some 
bookkeeping to close the connection for the message . In 
wormhole flow control , virtual channels are often imple 
mented . 
[ 0014 ] The term “ wormhole ” plays on the way messages 
are transmitted over the channels : the output port at the next 
router can be so short that received data can be translated in 
the head flit before the full message arrives , thereby facili 
tating the sending of the packet to the next router before the 
packet is fully received . This allows the router to quickly set 
up the route upon arrival of the head flit and then opt out 
from the rest of the conversation . Since a message is 
transmitted flit by flit , the message may occupy several flit 
buffers along its path at different routers so that the packet 
can exist in multiple routers , thereby creating a worm - like 
image . 
[ 0015 ] . Based upon the traffic between various end points , 
and the routes and physical networks that are used for 
various messages , different physical channels of the NoC 
interconnect may experience different levels of load and 
congestion . The capacity of various physical channels of a 
NoC interconnect is determined by the width of the channel 
( number of physical wires ) and the clock frequency at which 
it is operating . Various channels of the NoC may operate at 
different clock frequencies , and various channels may have 
different widths based on the bandwidth requirement at the 
channel . The bandwidth requirement at a channel is deter 
mined by the flows that traverse over the channel and their 
bandwidth values . Flows traversing over various NoC chan 
nels are affected by the routes taken by various flows . In a 
mesh or Taurus NoC , there may exist multiple route paths of 
equal length or number of hops between any pair of source 
and destination nodes . For example , in FIG . 2 ( b ) , in addition 
to the standard XY route between nodes 34 and 00 , there are 
additional routes available , such as YX route 203 or a 
multi - turn route 202 that makes more than one turn from 
source to destination . 
[ 0016 ] In a NoC with statically allocated routes for various 
traffic flows , the load at various channels may be controlled 
by intelligently selecting the routes for various flows . When 
a large number of traffic flows and substantial path diversity 

is present , routes can be chosen such that the load on all NoC 
channels is balanced nearly uniformly , thus avoiding a single 
point of bottleneck . Once routed , the NoC channel widths 
can be determined based on the bandwidth demands of flows 
on the channels . Unfortunately , channel widths cannot be 
arbitrarily large due to physical hardware design restrictions , 
such as timing or wiring congestion . There may be a limit on 
the maximum channel width , thereby putting a limit on the 
maximum bandwidth of any single NoC channel . 
[ 0017 ] Additionally , wider physical channels may not help 
in achieving higher bandwidth if messages are short . For 
example , if a packet is a single flit packet with a 64 - bit 
width , then no matter how wide a channel is , the channel 
will only be able to carry 64 bits per cycle of data if all 
packets over the channel are similar . Thus , a channel width 
is also limited by the message size in the NoC . Due to these 
limitations on the maximum NoC channel width , a channel 
may not have enough bandwidth in spite of balancing the 
routes . 
[ 0018 ] To address the above bandwidth concern , multiple 
parallel physical NoCs may be used . Each NoC may be 
called a layer , thus creating a multi - layer NoC architecture . 
Hosts inject a message on a NoC layer ; the message is then 
routed to the destination on the NoC layer , where it is 
delivered from the NoC layer to the host . Thus , each layer 
operates more or less independently from each other , and 
interactions between layers may only occur during the 
injection and ejection times . FIG . 3 ( a ) illustrates a two layer 
NoC . Here the two NoC layers are shown adjacent to each 
other on the left and right , with the hosts connected to the 
NoC replicated in both left and right diagrams . A host is 
connected to two routers in this example a router in the 
first layer shown as R1 , and a router is the second layer 
shown as R2 . In this example , the multi - layer NoC is 
different from the 3D NoC , i . e . multiple layers are on a 
single silicon die and are used to meet the high bandwidth 
demands of the communication between hosts on the same 
silicon die . Messages do not go from one layer to another . 
For purposes of clarity , the present disclosure will utilize 
such a horizontal left and right illustration for multi - layer 
NoC to differentiate from the 3D NoCs , which are illustrated 
by drawing the NoCs vertically over each other . 
[ 0019 ] In FIG . 3 ( b ) , a host connected to a router from each 
layer , R1 and R2 respectively , is illustrated . Each router is 
connected to other routers in its layer using directional ports 
301 , and is connected to the host using injection and ejection 
ports 302 . A bridge - logic 303 may sit between the host and 
the two NoC layers to determine the NoC layer for an 
outgoing message and sends the message from host to the 
NoC layer , and also perform the arbitration and multiplexing 
between incoming messages from the two NoC layers and 
delivers them to the host . 
[ 0020 ] In a multi - layer NoC , the number of layers needed 
may depend upon a number of factors such as the aggregate 
bandwidth requirement of all traffic flows in the system , the 
routes that are used by various flows , message size distri 
bution , maximum channel width , etc . Once the number of 
NoC layers in NoC interconnect is determined in a design , 
different messages and traffic flows may be routed over 
different NoC layers . Additionally , one may design NoC 
interconnects such that different layers have different topolo 
gies in number of routers , channels and connectivity . The 
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are transported in a separate channel from the higher priority 
packets , the destination component can backpressure one 
channel and allow the other to continue unimpeded . 

SUMMARY 

channels in different layers may have different widths based 
on the flows that traverse over the channel and their band 
width requirements . 
[ 0021 ] In a NoC interconnect , if the traffic profile is not 
uniform and there is a certain amount of heterogeneity ( e . g . , 
certain hosts talking to each other more frequently than the 
others ) , the interconnect performance may depend on the 
NoC topology and where various hosts are placed in the 
topology with respect to each other and to what routers they 
are connected to . For example , if two hosts talk to each other 
frequently and require higher bandwidth than other inter 
connects , then they should be placed next to each other . This 
will reduce the latency for this communication which 
thereby reduces the global average latency , as well as reduce 
the number of router nodes and links over which the higher 
bandwidth of this communication must be provisioned . 
[ 0022 ] A NoC uses a shared network to pass traffic 
between different components . Any particular traffic flow 
might cross multiple routers before arriving at its destina 
tion . While the NoC can be efficient in terms of sharing 
wires , there can be an adverse effect on latency . Each router 
needs to arbitrate between its various inputs ports to decide 
which packet will be sent in a cycle . After the arbitration , the 
data must be selected through a multiplexing ( muxing ) 
structure . This process can take one or more cycles to 
complete , depending on the microarchitecture of the routers 
and the frequency . This means that for each router a traffic 
flow must cross , it can be incurring additional cycles of 
delay . Wire delay between routers can also cause delay . 
[ 0023 ] To reduce latency , the routers can be built with 
bypass paths that allow skipping some or all of the arbitra 
tion and muxing costs of a router . These bypass paths can be 
used opportunistically when the router is idle , or they can 
support a simpler arbitration that allows a significant 
decrease in cycle time loss . Intelligent use of bypasses in a 
system can improve average latency of requests . 
[ 0024 ] Longer latency can hurt the performance of the 
system . Reducing the latency of traffic flows is an important 
goal . The benefit of lower latency vary between different 
traffic flows . Some components are very latency sensitive , 
where each additional cycle of latency can have a significant 
performance reduction . Other flows will be less sensitive to 
latency . Intelligent setup of the bypasses can select the traffic 
flows that will provide the largest overall benefit to the 
system performance . 
0025 ] When packets finish traversing a NoC , they arrive 
at the interface to a component . Because a NoC can have 
many different kinds of traffic , design of the interface can 
have a big impact on performance . Many interface protocols 
use a method of flow control that doesn ' t distinguish 
between the contents of the packets . This can create head 
of - line blocking issues , where a more important packet is 
stuck behind a less important packet . 
10026 ] . The destination component can often benefit from 
distinguishing between different incoming traffic flows , 
allowing it to accept the more important flows and hold off 
the less important flows when resources are scares . Support 
of an enhanced interface can allow the destination compo 
nent to signal the network which traffic flows it is willing to 
accept . The network can then choose which packets to send , 
avoiding the head - of - line blocking issue . 
[ 0027 ] The enhanced interface flow control can be coupled 
with the networks use of virtual or physical channels to 
further avoid head - of - line blocking . If lower priority packets 

[ 0028 ] Therefore , to address the aforementioned prob 
lems , there is a need for systems , methods , and non 
transitory computer readable mediums to facilitate an oppor 
tunistic bypass system for a NoC , as well as a VC valid and 
credit system to facilitate the management of VCs of the 
NoC . 
[ 0029 ] Aspects of the present disclosure involve a Net 
work on Chip ( NOC ) having a plurality of channels and a 
valid - ready system with VC valid and VC credit going back , 
element configured to send a valid signal with a VC valid 
signal . 
0030 ] Aspects of the present disclosure further involve a 
network on chip ( NoC ) element involving a plurality of 
physical links and virtual links , and a configurable bypass 
between virtual links , and bypass logic configured to bypass 
the queue and the logic of the NoC element . 
[ 0031 ] The bypass is configured to bypass the queue and 
the logic of the NoC element in an opportunistic manner in 
accordance with the desired implementation . The NoC can 
also involve a configurable router that has complete con 
figurability in terms of which bypasses are available . The 
configurable router has output ports , in which any select 
input port can connect to an output port with a direct bypass . 
[ 0032 ] Aspects of the present disclosure can further 
include methods and computer readable mediums directed to 
determining the selection of bypasses for NoC construction . 
Such methods and computer readable mediums can include 
algorithms that during NoC construction , create additional 
opportunities for bypassing . Such algorithms can include 
restrictions to bypass placement ( e . g . , connections requiring 
upsizing and downsizing do not have bypass ) reshaping the 
NoC topology to create more links for the bypass , building 
the NoC to have equal number of ports with no clock 
crossing , and avoiding upsizing and downsizing links . 
[ 0033 ] In example implementations , the algorithms for the 
creation of bypass paths can involve determining the pos 
sible bypass opportunities for the configurations based on 
restrictions , for each bypass opportunity , choosing which 
inputs go to the output based on calculation of expected 
traffic flows / bandwidth that are expected to have biggest 
impact on the specification ( e . g . , weighted average of traffic , 
also take latency and importance of traffic into consider 
ation ) , and selecting the bypasses with the biggest benefit . 
[ 0034 ] In example implementations , there can be algo 
rithms such as a multiplexer selection algorithm to select 
which multiplexer to use ( e . g . , preselected versus post 
selected ) , opportunistic bypass processing ( e . g . , messages 
are sent through bypass if bypass is idle or if bypass is 
possible , bypass conducted based on latency and First In 
First Out ( FIFO ) depth ) . 
[ 0035 ] In example implementations , there can be NoC 
elements and configuration methods wherein a single input 
port could be selected for use as a bypass to multiple output 
port subject to restrictions ( e . g . , output VC must be the same 
size as the input , different physical link sizes involve bypass 
links with matching VCs ) . 
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BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0036 ] FIGS . 1 ( a ) , 1 ( b ) , 1 ( c ) and 1 ( d ) illustrate examples 
of Bidirectional ring , 2D Mesh , 2D Taurus , and 3D Mesh 
NoC Topologies . 
[ 0037 ] FIG . 2 ( a ) illustrates an example of XY routing in a 
related art two dimensional mesh . 
[ 0038 ] FIG . 2 ( b ) illustrates three different routes between 
a source and destination nodes . 
[ 0039 ] FIG . 3 ( a ) illustrates an example of a related art two 
layer NoC interconnect . 
[ 0040 ] FIG . 3 ( b ) illustrates the related art bridge logic 
between host and multiple NoC layers . 
[ 0041 ] FIG . 4 illustrates an example of a router , in accor 
dance with an example implementation . 
[ 0042 ] FIG . 5 illustrates an example flow diagram for 
configuring routers during configuration time , in accordance 
with an example implementation . 
[ 0043 ] FIG . 6 illustrates a valid - ready architecture in 
accordance with an example implementation . 
[ 0044 ] FIG . 7 ( a ) illustrates an example system having a 
SoC element ( master ) , a SoC element ( slave ) , a NoC bridge 
and a NoC , in accordance with an example implementation . 
In the example implementation , the NoC bridges and the 
NoC elements have four input VCs and four output VCs . A 
single physical wire proceeds from the SoC element to the 
bridge , whereupon the signal is fanned out to each NoC 
element in four output VCs . 
[ 0045 ] FIG . 7 ( b ) illustrates an example architecture for a 
NoC element , in accordance with an example implementa 
tion . 
[ 0046 FIG . 8 illustrates an example table view of infor 
mation utilized by the NoC element , in accordance with an 
example implementation . 
[ 0047 ] FIG . 9 illustrates a flow diagram for a requesting 
NoC element , in accordance with an example implementa 

[ 0050 ] In a NoC , there is a network having routers and 
bridges . Other elements may also be present which can make 
the NoC fairly large . There may be an inherent latency 
problem with the NoC . In example implementations , bridges 
require activation for send messages into the network , and 
when messages are sent through the link , the router has to 
arbitrate the messages before the message is sent to the next 
hop . 
[ 0051 ] For each hop running at a slow frequency , an entire 
router arbitration calculation including the travel time can be 
determined . However , most related art implementations are 
executed at a high frequency , wherein in such cases that the 
router arbitration may be conducted in a single cycle . 
Further , latency can be incurred in the bridge , with a cycle 
incurred in the bridge , a cycle for the link , a cycle for the 
router , and so on for the transaction . Latency reduction can 
be difficult due to the routers having arbitration requirements 
which incur a latency loss for arbitration in each router . 
[ 0052 ] FIG . 4 illustrates an example of a router , in accor 
dance with an example implementation . In example imple 
mentations for reducing latency in the router , routers imple 
ment a fast path , which functions as a bypass having bypass 
logic 406 . A router may have an assortment of inputs which 
are processed by elements such as a decoder 401 , a queue 
such as a First in First Out ( FIFO ) queue 402 , an arbiter 403 
and a multiplexer 404 ( mux ) for conducting arbitration and 
determining the output 405 . In example implementations 
alongside the multiplexer 404 , the router has a path config 
ured to function as a special bypass with bypass logic 406 . 
One or more inputs can be designated for the special bypass , 
such that the input entering one of the muxes will be able to 
hop in at the end of a cycle . If there is an output , the output 
can be placed in at the end of a cycle so that the input into 
the router will be able to go directly to the output instead of 
going through the arbitration . In such an example imple 
mentation , one cycle of latency can thereby be removed per 
router by reducing the processing to decode , bypass logic 
( e . g . validation ) and output . Routing information can be 
included in direct wires to the router in accordance with the 
desired implementation . Further , once latency is reduced , 
the potential round trip latency is decreased as other mes 
sages may be able to pop off the FIFO more quickly . Once 
the bypasses are configured for each eligible router , the 
example implementations could then calculate the cycle of 
depth based on this latency . Example implementations of a 
NoC contains hardware or NoC elements that involve a 
plurality of physical links and virtual links , with a configu 
rable bypass between virtual links , and bypass logic 406 
configured to bypass the queue and the logic of the NoC 
element . The bypass logic 406 can be configured to initiate 
bypass of the message in an opportunistic manner ( e . g . , 
depending on whether queue is free or not , etc . ) 
[ 0053 ] In example implementations , messages destined to 
bypass can be pre - arbitrated and then the only logic in the 
hop can be for determining which output channel is used for 
the bypass as determined by the bypass logic as illustrated 
in FIG . 4 . In example implementations , multiple outputs can 
be used for bypass for an input . For example , one input can 
bypass to one of multiple output ports , with each output 
associated with only one input . Bypass logic may also be 
utilized for optimizing messages in accordance with an 
example implementation . For example , if a queue is empty 
the message is sent through the logic for the bypass . If no 
other message takes priority then the message is transmitted 

tion . 

DETAILED DESCRIPTION 
[ 0048 ] The following detailed description provides further 
details of the figures and example implementations of the 
present application . Reference numerals and descriptions of 
redundant elements between figures are omitted for clarity . 
Terms used throughout the description are provided as 
examples and are not intended to be limiting . For example , 
the use of the term “ automatic ” may involve fully automatic 
or semi - automatic implementations involving user or 
administrator control over certain aspects of the implemen 
tation , depending on the desired implementation of one of 
ordinary skill in the art practicing implementations of the 
present application . 
[ 0049 ] In example implementations , a NoC interconnect is 
generated from a specification by utilizing design tools . The 
specification can contain constraints such as bandwidth / 
Quality of Service ( QoS ) / latency attributes that is to be met 
by the NoC , and can be in various software formats depend 
ing on the design tools utilized . Once the NoC is generated 
through the use of design tools on the specification to meet 
the specification requirements , the physical architecture can 
be implemented either by manufacturing a chip layout to 
facilitate the NoC or by generation of a register transfer level 
( RTL ) for execution on a chip to emulate the generated NoC , 
depending on the desired implementation . 
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through the bypass path to avoid all logic . Such example 
implementations can therefore be configured to conduct 
more than simply bypassing the FIFO queue and entering 
arbitration , but can be utilized to bypass all router logic and 
go directly to the output . In example implementations , the 
bypass can be conducted when there is no other traffic going 
on the link , which indicates no cost to arbitration as deter 
mined by the bypass logic . 
[ 0054 ] In the following example implementations , 
requirements may be set for forwarding an input to the 
special bypass . One example requirement is that the link 
sizes are matched so latency from a width conversion is 
removed . Another example requirement is no clock crossing , 
so latency from clock conversion is also removed . Other 
requirements may also be set in according to the desired 
implementation . 
[ 0055 ] Related art implementations implement a bypass 
path in a fixed position that is affixed to an input that is 
considered to be the most common bypass user . One 
example of a related art implementation is that an input 
destined for a particular direction will continually proceed in 
the direction ( e . g . a south input port bypasses to the north 
input port ) . Such related art solutions are static . 
[ 0056 ] In example implementations as illustrated in FIG . 
4 , there can be a NoC hardware element which can involve 
a plurality of physical channels and virtual channels , and a 
configurable bypass between virtual links , whereupon 
bypass logic can be configured to bypass the queue and the 
logic of the NoC element in an opportunistic manner . The 
bypass logic can allow messages to be transmitted through 
the bypass opportunistically based on whether the input First 
in First Out ( FIFO ) queue is empty or not , based on the 
priority of the traffic being arbitrated , whether the bypass is 
idle / available or not , queue depth of the transmitting hard 
ware element , and so on depending on the desired imple 
mentation . 
[ 0057 ] In example implementations , the bypass configu 
ration can be made during configuration time for the speci 
fication . FIG . 5 illustrates an example flow diagram for 
configuring routers during configuration time , in accordance 
with an example implementation . At 501 , the specification is 
processed for traffic flows . During configuration time , the 
example implementations determine all of the traffic flows 
from the specification , wherein routers that are eligible for 
bypass are identified at 502 . In an example implementation , 
if all the traffic flows can be considered during configuration 
time , traffic tendencies can be identified for a router ( e . g . 
most traffic for an identified router proceeds from the west 
port to the north port ) . In the above example , a bypass can 
be constructed from the west port to the north port to reduce 
latency . Other implementations based on the traffic flow for 
identifying routers are also possible depending on the 
desired implementation . For example , latency sensitivity of 
traffic flows can also be recognized . In this manner , example 
implementations can be configured to determine the bypass 
not only by the most amount of traffic going through a port , 
the bypass can be determined based on determining the 
importance of the traffic . Traffic flows can be associated with 
a weight in terms of the importance of the latency , e . g . how 
latency sensitive is the traffic , which can be taken into 
account for identifying eligible routers . Example implemen 
tations can calculate the latency sensitivity based on the 
weights . For example , latency sensitive traffic can be mul 

tiplied by the weight to prioritize latency sensitive traffic 
over raw latency for a channel , depending on the desired 
implementation . 
[ 0058 Example implementations can also analyze traffic 
flows so that an array is created based on the input ports ( e . g . 
A , B , C , D , E , and F ) , and analyze how much of the traffic 
is coming in on a given link is going to a given output port . 
So for a given output port , analysis can be conducted by 
comparing the input ports and constructing a bypass based 
on the bandwidth consumed by the input ports to a given 
output port . For example , for a router wherein input port one 
is responsible for three gigabytes of output for output port X 
for a given time frame and input port two is responsible for 
six gigabytes for the given time frame , a bypass can be 
utilized between input port two and output port one . 
[ 0059 ] At 503 , locations for implementing a bypass are 
identified . The locations for implementing the bypass can be 
identified based on the traffic flow determinations , the hard 
ware configuration of the router and by other methods 
according to the desired implementation . For example , 
simulations can be conducted to detect where latency as 
affected by wire length and travel length are taken into 
consideration . In such example implementations , output 
ports can be configured so that a bypass can be made 
available within the router . And so by converting the router 
with additional output ports , latency can be reduced . Thus , 
in example implementations , the optimization can involve 
determining which bypasses can be implemented to reduce 
latency and the location of such bypass . The optimization 
can involve a pre - optimization implementation where con 
ditions for bypassing are identified , and bypasses can be 
implemented therein . By using design tools during the 
configuration time , path input algorithms can be utilized to 
determine the shortest path for the bypass for use in deter 
mining the location for implementing the bypass . Optimi 
zations for placement of network elements can also be made 
to create additional opportunities for bypass in accordance 
with the desired implementation . 
[ 0060 ] Bypasses may also be determined based on desired 
constraints . In an example constraint , the input VC width is 
set to match the output VC width . In such an example 
implementation , the physical link size may be different , 
however , the bypass is still utilized between the two physical 
links to connect matching input and output VCs . 
[ 0061 ] At 504 , the eligible routers are then configured 
with the bypass based on the determinations . As the routers 
are configurable in example implementations , a heteroge 
neous NoC with heterogeneous routers can thereby be 
implemented . Example implementations are in contrast to 
related art systems , which are directed to homogenous NoC 
systems and homogenous routers . Related art implementa 
tions involve bypasses that are stacked directionally on the 
assumption that the NoC is homogenous and is therefore 
static , whereas the example implementations of the present 
disclosure can utilize heterogeneous router and NoC con 
figurations . 
[ 0062 ] Example implementations described herein can be 
implemented as a hardwired bypass . In such example imple 
mentations , the software at configuration time can precom 
pute where packets are going and can also utilize sideband 
information to the NoC . Sideband channels can be utilized 
for messages to determine which output port to utilize . 
Sideband information does not need to be utilized for 
controlling multiplexing to the output ports , but can be 
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utilized control the validity of the output port . The routing 
information is processed , wherein example implementations 
calculate the route including the port . 
[ 0063 ] As illustrated in FIG . 5 , example implementations 
can also involve methods and computer readable mediums 
with instructions directed to determining the selection of 
bypasses for NoC construction . Such example implementa 
tions can involve algorithms that during NoC construction , 
create additional opportunities for bypassing . The opportu 
nities can involve the reshaping of NoC topology to create 
more channels that are eligible for bypass ( e . g . , building a 
NoC with routers having equal numbers of ports without any 
clock crossing ) , applying restrictions to bypass to avoid 
channels or virtual channels that conduct upsizing and 
downsizing , and so on depending on the desired implemen 
tation . 
100641 Example implementations can also involve algo 
rithms for the creation of bypass paths . As illustrated in FIG . 
5 , such algorithms determine all of the possible bypass 
opportunities for the configurations based on the restrictions 
as described above . For each possible bypass , the algorithm 
can then determine which inputs go to which output based 
on the calculation of expected traffic flows / bandwidth . Such 
example implementations will determine which bypass pro 
vides the biggest impact on the NoC specification ( weighted 
average of traffic , also take latency and importance of traffic 
into consideration ) , whereupon the algorithm can thereby 
choose bypasses with the biggest benefit above a desired 
threshold . 
[ 0065 ] Example implementations may also involve algo 
rithms for selecting which multiplexer to incorporate into 
the NoC hardware element , which can be conducted in a 
preselected manner or configured after the NoC is designed , 
in accordance with the desired implementation . 
[ 0066 ] Example implementations may also involve NoCs 
with hardware elements having differing physical channel 
sizes , but VCs with matching sizes to facilitate the bypass . 
The hardware elements may also be in the form of a 
configurable router that has complete configurability in 
terms of which bypasses are available . In an example 
implementation , the router design can involve having each 
output port associated with a selected input port with a direct 
bypass . Further , example implementations may involve a 
NoC element and configuration method wherein a single 
input port could be selected from bypass to multiple with 
restrictions . ( e . g . , if the output VC is the same size as the 
input . ) 
10067 ] Virtualization Interface and Valid - Ready for Vir 
tual Channels ( VCs ) and Other Types of Traffic 
[ 0068 ] In related art implementations , NoC systems utilize 
a valid / ready handshake . In such a handshake protocol , one 
NoC element asserts a valid signal , and if the receiving NoC 
element asserts a ready signal at the same time , then a 
message transfer can occur between the two NoC elements . 
Such related art implementations may further have restric 
tions depending on the implementation ( e . g . to prevent 
deadlock ) . In an example restriction , the NoC element does 
not wait for the valid signal to assert a ready signal , or vice 
versa . However , related art implementations of the valid / 
ready handshake are not aware of the actual status of VCs . 
In related art implementations , even if a request is made 
using the valid / ready handshake , the status of the VC to be 
used may actually be blocked . Further , other VCs within the 
physical channel may be available , but the related art 

implementations cannot discern their availability due to the 
NoC elements requiring a ready signal before proceeding . 
Such implementations may also apply to other traffic types 
where the valid / ready handshake is blocking the transmis 
sion . The destination element would benefit from being able 
to indicate which traffic flows it would like to receive 
through the issuance of credits or indication through the 
ready signal for that specific traffic type . 
[ 0069 ] In example implementations , additional informa 
tion is provided for a valid - ready handshake to address the 
issues with the related art . Example implementations utilize 
a valid - ready and credit based hybrid system to facilitate 
valid - ready handshake functionality . In a credit - based 
design for the example implementations , independent cred 
its are allocated for each VC . The requesting NoC element 
transmits a request when a VC credit has been obtained . 
[ 0070 ] Related art implementations utilize a sideband 
information channel to indicate which virtual channels are 
available . However , such information is potentially stale . 
Further , such implementations provide a bit vector that 
indicates VCs within a range are available ( e . g . VCs 8 - 16 ) 
without specifically indicating which VCs are available and 
which are not 
[ 0071 ] FIG . 6 illustrates a valid - ready architecture in 
accordance with an example implementation . In example 
implementations , a hybrid approach involving a credit base 
system is utilized , which facilitates a bi - directional commu 
nication . For a NoC requesting element 601 and a NoC 
target element 602 , there is a valid - ready handshake as well 
as another vector for VC valid and VC credit in the sideband . 
The VC valid information is provided to the NoC requesting 
element 601 , so that the NoC requesting elements makes the 
request if a specific resource dedicated to the request is 
available . Such example implementations provide flexibility 
as the number of virtual channels can be any number in 
accordance with a desired implementation . 
[ 0072 ] In example implementations , a number of VCs on 
the NoC are associated with a physical interface . The 
physical interface can be associated with a number of 
interface VCs which can be mapped according to the desired 
implementation . 
[ 0073 ] In an example implementation involving a master 
and slave , a NoC bridge is utilized . The NoC bridge com 
municates with a slave , which may have a plurality of virtual 
channels for the traffic . One virtual channel may involve 
high - priority CPU traffic ( e . g . latency - sensitive traffic ) , 
another may involve I / O traffic , and another may involve 
asynchronous traffic which may be time critical , and so on . 
The properties of the virtual channels may also change over 
time , depending on the desired implementation . 
[ 0074 ] In example implementations involving credit based 
implementation , as each channel can be separated and 
dedicated to the desired implementation , such implementa 
tions avoid the merger of traffic flows that should not be 
merged . 
[ 0075 ] In the example implementation hybrid approach , 
the credit - based handshake is conducted between the agents 
while valid - ready requirements are enforced . In an example 
implementation , the target sends a credit back to the master 
indicating that a resource is available for a request . When the 
master tries to make that request , the target can indicate that 
it is not ready due to some delay ( e . g . clock crossing ) . By 
utilizing the valid - ready with the credit system , it provides 
a way for temporary back - pressuring from the slave . 
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[ 0076 ] In example implementations , initialization is also 
facilitated as when the credit - based approach is applied , the 
NoC elements will determine the initialization . For example , 
the initialization of the credits can be zero , whereupon after 
a reset credits can be passed from the target NoC element to 
the requesting NoC element . Depending on the desired 
implementation , a certain number of credits can be provided 
at the master . However , if the reset for the NoC elements are 
unknown , the flow is harder to control , the valid - ready 
handshake can be utilized with the ready allowed for de 
assertion . Even though the master element has VC credits , 
the master may be unable to transmit until the target NoC 
( slave ) element is ready to accept the credits . 
[ 0077 ] In example implementations , different virtual 
channels may involve different responses ( e . g . read 
response , write response ) . In example implementations , 
there can be multiple virtual channels on the read interface 
going into another controller having only one read response 
channel . Thus , the congestion may go to the memory con 
troller undergoing different arbitrations with a guaranteed 
drain . Each channel is completely independent , and they can 
be used for any purpose according to the desired implemen 
tation . 
[ 0078 ] Example implementations involve a bookkeeping 
mechanism to track responses . Such a mechanism can 
involve a data structure to store information to track 
responses and when the responses are received . For 
example , if there are four VCs , the VCs can be broken into 
four segments with reservations . The arbiter may determine 
to send a flit if the NoC element has credit at the output . The 
example implementations can involve any partition of the 
data structure between the four VCs in any way according to 
the desired implementation . For example , each hardware 
element can be dedicated to a single VC , or pools of 
resources can be shared with some or all of the VCs . In 
example implementations , a mix of dedicated and shared 
resources can also be provided . Dedicated resources can 
ensure one channel cannot block another channel . 
[ 0079 ] FIG . 7 ( a ) illustrates an example system having a 
SoC element ( master ) 701 , a SoC element ( slave ) 705 , NOC 
bridges 702 , 704 and a NoC 703 , in accordance with an 
example implementation . In the example implementation , 
the NoC bridges 702 , 704 and the NoC elements inside the 
NoC 703 have four input VCs and four output VCs . A single 
physical wire proceeds from the SoC element to the bridge , 
whereupon the signal is fanned out to each NoC element in 
four output VCs . 
[ 0080 ] FIG . 7 ( b ) illustrates an example architecture for a 
NoC element , in accordance with an example implementa 
tion . In the example implementation , the NoC element has 
four input VCs and four output VCs . In the example of FIG . 
7 ( b ) , there is a decoder 711 for the input VCs , a queue 712 , 
an arbiter 713 , a multiplexer 714 , and an output 715 facili 
tating output to four output VCs . The single bus feeds into 
the decoder 711 , which receives the input and fans out the 
input to four individual queues 712 . When a VC credit is 
received , the arbiter 713 pops a flit off of the queue 712 and 
send the flit to the multiplexer 714 to be transmitted through 
the corresponding output VC 715 . 
[ 0081 ] As illustrated in FIGS . 7 ( a ) and 7 ( b ) , example 
implementations may involve a NoC that can involve a 
plurality of channels ( e . g . , physical channels , virtual chan 
nels and / or virtual channels disposed within the physical 
channels ) and NoC hardware elements . Such NoC hardware 

elements can involve at least one receiving hardware ele 
ment ( e . g . , target NoC element 602 ) and at least one 
transmitting hardware element ( e . g . , requesting NoC ele 
ment 601 ) as illustrated in FIG . 6 . When a transmitting 
hardware element is to transmit a message , the protocol as 
illustrated in FIG . 6 can be followed wherein the hardware 
element transmits a valid signal to the at least one receiving 
hardware element on a channel of the plurality of channels , 
and transmits a virtual channel ( VC ) valid signal on a virtual 
channel of the plurality of channels to the at least one 
receiving hardware element . The receiving hardware ele 
ment is configured to transmit a VC credit to the at least one 
transmitting hardware element over the virtual channel of 
the plurality of channels as illustrated in FIG . 6 . 
[ 0082 ] Depending on the desired implementation , the 
transmitting hardware element can be configured to not 
transmit the VC valid signal on the virtual channel until a 
VC credit is obtained , and transmit the VC valid signal on 
the virtual channel to the at least one receiving hardware 
element on receipt of the VC credit based on the protocol of 
FIG . 6 . In example implementations , the transmitting hard 
ware element can issue a write request when the transmitter 
determines that the receiving NoC hardware element has 
enough buffer size for the address information and the 
storage of data . The transmitting NoC hardware element can 
infer such information based on the default storage ( e . g . , 
64B ) which can be programmable or definable depending on 
the desired implementation . 
[ 0083 ] In an example implementation , the plurality of 
channels can also involve virtual channels , with each of the 
physical channels being configurable to be independently 
controlled to adjust a number of VCs for each of the plurality 
of channels . Such implementations can be conducted by a 
NoC controller which is configured to define the number of 
VCs for a given physical channel . In an example implemen 
tation , the NoC may maintain the same quantity of VCs for 
read messages as for read response messages within a given 
physical channel through such a NoC controller , or they can 
be differing quantities depending on the desired implemen 
tation . 
[ 0084 ] In example implementations , the NoC may include 
a configurable interface for the transmitting hardware ele 
ment and the receiving hardware element , that configures the 
transmitting hardware element and the receiving hardware 
element for at least one of deadlock avoidance and quantity 
of virtual channels . Such configuration can be conducted 
through a NoC specification , wherein the interface can be in 
the form of a hardware / software interface or a hardware 
mechanism that processes the specification to configure the 
NoC for deadlock avoidance , and quantity of virtual chan 
nels . 
[ 0085 ] In example implementations , the NoC may also 
include a virtual interface for virtual channels to interact 
with agents of a SoC . Such a virtual interface can be 
implemented in the NoC bridges , or can be part of the NoC 
depending on the desired implementation . 
[ 0086 ] In example implementations , the transmitting ele 
ment can be configured to manage VC credits received from 
one or more receiving hardware elements as illustrated in 
FIG . 8 , and conduct arbitration based on whether a message 
destination is associated with a VC credit from the managed 
VC credits . The hardware elements can be configured to 
conduct informed arbitration , as each hardware element 
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knows whether a potential output VC has an associated 
credit or not based on the information managed as illustrated 
in FIG . 8 . 
[ 0087 ] In further example implementations , the receiving 
hardware element can be configured to provide a reservation 
for a VC to one or more transmitting hardware elements 
based on at least one of management of dedicated VC credits 
to the one or more of transmitting hardware elements , a 
shared tool providing certain minimum priority for the one 
or more transmitting hardware elements , and an inference of 
priority from the one or more of the at least one transmitting 
hardware element . Such reservations can include a pre 
configuration so that certain hardware elements always have 
a certain number of VC credits reserved , priority inferred 
based on the type of message received or a hierarchy of 
hardware elements as defined in the NoC specification . 
10088 ] FIG . 8 illustrates an example table view of infor 
mation utilized by the NoC element , in accordance with an 
example implementation . In example implementations , NoC 
elements may include a bookkeeping mechanism to indicate 
the status of the target VCs . In the example of FIG . 8 , each 
output VC is associated with a ready signal , and VC credit . 
When ready and valid are set , then a transfer can take place . 
VC credit indicates the number of credits available for 
transmission to the output VC . VC credit is incremented 
when a credit signal is received , and decremented when a 
credit is utilized . 
[ 0089 ] FIG . 9 illustrates a flow diagram for a requesting 
NoC element , in accordance with an example implementa 
tion . At 901 the requesting NoC element waits until a VC 
credit is received before transmitting a request . At 902 , once 
a VC credit is received , the requesting NoC element con 
ducts arbitration among available traffic that are associated 
with credits , and forwards the data packet to the output 
interface . At 903 , the valid / ready handshake as illustrated in 
FIG . 6 is conducted , wherein a VC valid signal is provided 
to indicate the VC that the data will be sent through and the 
data / flit is sent through the corresponding VC with the VC 
valid signal . The VC credit counter is decremented . The 
requesting NoC element will also wait for additional VC 
credits as necessary . At 904 , the receiving element receives 
the data / flit from the transmitting element . 
[ 0090 ] In example implementations there can be a system 
such as a NoC , a SoC , or any hardware element system that 
require a virtual channel interface that involves a plurality of 
channels ; at least one receiving hardware element ; and at 
least one transmitting hardware element configured to : trans 
mit a valid signal to the at least one receiving hardware 
element on a channel of the plurality of channels , and 
transmit a virtual channel ( VC ) valid signal as a virtual 
channel indicator for a virtual channel of a plurality of 
virtual channels designated for transmission of data and 
transmit the data on the virtual channel designated for the 
transmission of the data ; wherein the at least one receiving 
hardware element is configured to transmit a VC credit to the 
at least one transmitting hardware element as illustrated in 
FIG . 6 and FIG . 9 . 
[ 0091 ] In example implementations , the at least one trans 
mitting hardware element is configured to not transmit the 
data packet on the virtual channel until a VC credit is 
obtained . The plurality of channels can be physical channels 
that are partitioned into one or more virtual channels , and 
each of the channels can be configurable to be independently 
controlled for mapping to an interface virtual VCs . In such 

example implementations , multiple transmitting channels 
can map to a single interface virtual channel , or a single 
transmitting channel can map to multiple virtual channels 
depending on the desired implementation . In an example 
implementation involving a single transmitting channel 
mapping to multiple virtual channels , the transmission can 
be conducted when any of the VC credits are available . The 
mapping can be done through a virtual interface connected 
to the NoC to map virtual channels with transmitting ele 
ments such as agents of a SoC . Such interfaces can include 
read channels , read response channels , and so on depending 
on the desired implementation . In example implementations , 
the interface can include the decoder , queue , arbiter , multi 
plexer , and / or the output as illustrated in FIG . 7 ( b ) . 
[ 0092 ] In example implementations , the at least one trans 
mitting element is further configured to manage VC credits 
received from one or more of the at least one receiving 
hardware element , and conduct arbitration based on whether 
a message destination is associated with a VC credit from 
the managed VC credits as illustrated in FIG . 8 . The 
management can be done through the interface of the 
hardware element that is configured to map transmitting 
channels to virtual channels . 
10093 ] . In example implementations , the at least one trans 
mitting hardware element is configured to arbitrate messages 
for transmitting through prioritizing messages that are asso 
ciated with a VC credit through the user of the arbiter as 
illustrated in FIG . 7 ( b ) . 
[ 0094 ] In example implementations , the at least one 
receiving hardware element is configured to provide a 
reservation for a VC to one or more of the at least one 
transmitting hardware element based on at least one of 
management of dedicated VC credits to the one or more of 
the at least one transmitting hardware element , and an 
inference of priority from the one or more of the at least one 
transmitting hardware element based on the information of 
FIG . 8 . Priority can be inferred based on the type of message 
and the hierarchy set according to the desired implementa 
tion ( e . g . , hierarchy for read , read response , write , etc . ) . 
[ 0095 ] In example implementations the at least one receiv 
ing hardware element can be a NoC element such as a router 
or a bridge and the at least one transmitting hardware 
element is an agent of the System on Chip ( SOC ) , such as a 
memory or a CPU . 
[ 0096 ] Although example implementations involve a 
NoC , other systems such as a SoC or other interconnect can 
be utilized in accordance with the desired implementation . 
Any hardware element that can utilize a virtual interface can 
take advantage of the example implementations described 
herein . 
[ 0097 ] Unless specifically stated otherwise , as apparent 
from the discussion , it is appreciated that throughout the 
description , discussions utilizing terms such as “ process 
ing , " " computing , " " calculating , " " determining , " " display 
ing , " or the like , can include the actions and processes of a 
computer system or other information processing device that 
manipulates and transforms data represented as physical 
( electronic ) quantities within the computer system ' s regis 
ters and memories into other data similarly represented as 
physical quantities within the computer system ' s memories 
or registers or other information storage , transmission or 
display devices . 
0098 ] Example implementations may also relate to an 
apparatus for performing the operations herein . This appa 
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ratus may be specially constructed for the required purposes , 
or it may include one or more general - purpose computers 
selectively activated or reconfigured by one or more com 
puter programs . Such computer programs may be stored in 
a computer readable medium , such as a computer - readable 
storage medium or a computer - readable signal medium . A 
computer - readable storage medium may involve tangible 
mediums such as , but not limited to optical disks , magnetic 
disks , read - only memories , random access memories , solid 
state devices and drives , or any other types of tangible or 
non - transitory media suitable for storing electronic informa 
tion . A computer readable signal medium may include 
mediums such as carrier waves . The algorithms and displays 
presented herein are not inherently related to any particular 
computer or other apparatus . Computer programs can 
involve pure software implementations that involve instruc 
tions that perform the operations of the desired implemen 
tation . 
[ 0099 ] Various general - purpose systems may be used with 
programs and modules in accordance with the examples 
herein , or it may prove convenient to construct a more 
specialized apparatus to perform desired method steps . In 
addition , the example implementations are not described 
with reference to any particular programming language . It 
will be appreciated that a variety of programming languages 
may be used to implement the teachings of the example 
implementations as described herein . The instructions of the 
programming language ( s ) may be executed by one or more 
processing devices , e . g . , central processing units ( CPUs ) , 
processors , or controllers . 
[ 0100 ] As is known in the art , the operations described 
above can be performed by hardware , software , or some 
combination of software and hardware . Various aspects of 
the example implementations may be implemented using 
circuits and logic devices ( hardware ) , while other aspects 
may be implemented using instructions stored on a machine 
readable medium ( software ) , which if executed by a pro 
cessor , would cause the processor to perform a method to 
carry out implementations of the present disclosure . Further , 
some example implementations of the present disclosure 
may be performed solely in hardware , whereas other 
example implementations may be performed solely in soft 
ware . Moreover , the various functions described can be 
performed in a single unit , or can be spread across a number 
of components in any number of ways . When performed by 

software , the methods may be executed by a processor , such 
as a general purpose computer , based on instructions stored 
on a computer - readable medium . If desired , the instructions 
can be stored on the medium in a compressed and / or 
encrypted format . 
[ 0101 ] Moreover , other implementations of the present 
disclosure will be apparent to those skilled in the art from 
consideration of the specification and practice of the teach 
ings of the present disclosure . Various aspects and / or com 
ponents of the described example implementations may be 
used singly or in any combination . It is intended that the 
specification and example implementations be considered as 
examples only , with the true scope and spirit of the present 
disclosure being indicated by the following claims . 
What is claimed is : 
1 . A hardware element incorporated into a Network on 

Chip ( NOC ) , comprising : 
a plurality of physical links and virtual links ; 
a queue for transmission of output messages to output 

ports of the hardware element ; 
an arbiter configured to process input messages to the 

queue based on a logic scheme ; 
a configurable bypass link between the virtual links , and 
bypass logic configured to redirect the input messages to 

the configurable bypass link to bypass the queue and 
the arbiter . 

2 . The hardware element of claim 1 , wherein the bypass 
logic is configured to redirect the input messages to the 
configurable bypass link opportunistically . 

3 . A hardware element incorporated into a System on Chip 
( SOC ) , comprising : 

a plurality of physical links and virtual links ; 
a queue for transmission of output messages to output 

ports of the hardware element ; 
an arbiter configured to process input messages to the 

queue based on a logic scheme ; 
a configurable bypass link between the virtual links , and 
bypass logic configured to redirect the input messages to 

the configurable bypass link to bypass the queue and 
the arbiter . 

4 . The hardware element of claim 3 , wherein the bypass 
logic is configured to redirect the input messages to the 
configurable bypass link opportunistically . 

* * * * * 


