«» UK Patent Application ..GB .,2540809

(13)A

(43)Date of A Publication 01.02.2017

(21) Application No: 1513367.1

(22) Date of Filing: 29.07.2015

(71) Applicant(s):
ARM Limited
(Incorporated in the United Kingdom)
110 Fulbourn Road, Cherry Hinton, CAMBRIDGE,
CB1 9NJ, United Kingdom

(72) Inventor(s):
Michael Andrew Campbell
Fergus MacGarry
Bruce James Mathewson

(74) Agent and/or Address for Service:
D Young & Co LLP
120 Holborn, LONDON, EC1N 2DY, United Kingdom

(51) INT CL:
GOGF 9/48 (2006.01)

(56) Documents Cited:
US 8539493 B
US 20090183162 A
"Scheduling (computing)" and "Fixed-priority pre-
emptive scheduling”
"Scheduling (computing)" and "Fixed-priority pre-
emptive scheduling” Wikipedia articles. https://
en.wikipedia.org/w/index.php?title=Scheduling_
(computing)&oldid=669277541 30 June 2015 and
https://len.wikipedia.org/w/index.php?title=Fixed-
priority_pre-emptive_scheduling&oldid=658444303 22
April 2015

US 20150074674 A

(58) Field of Search:

INT CL GO6F
Other: EPODOC, WPI, TXTA, Wikipedia.

(54) Title of the Invention: Task scheduling

Abstract Title: Processor task scheduler that can selects tasks when the task's deadline is reached

(57) Disclosed is an apparatus 100 with scheduling circuitry 120, which selects a task to be performed from a queue of
tasks, each task having an associated priority, the selection based on the associated priority of the tasks.
Escalating circuitry 140 increases the associated priority of each of the queued tasks after a period of time. The
queued tasks including a time-sensitive task having an associated deadline and in response to the associated
deadline being reached, the scheduling circuitry selects the time-sensitive task to be performed. The scheduling
circuitry may select the time sensitive task by increasing the priority of the task, may be to the maximum. The
apparatus may bring forward the deadline of a lower priority task if the duration of a higher priority time sensitive
task is such that executing the higher priority task would cause the deadline of the lower priority task to be reached.

+— o
1] Ly -

vV 6080¥9¢ 99

1/7
()
0
/

e

B i I —

SR

BrE IES - wasw\

o 207

i P

O

Y

!
|

A%8nk ad

o
IOy Myﬁﬂwa
e

3/7

Qs

mﬂ/www Ty tz&j)
.) % ?Q/ M\

»«)i\wfw 3 blx avv,

\

Y= N
f\wﬂwl, i3 !

- H

) . ,,
FUW, t .“m))o e@

477

L

o
Y @)
7/ }

A 4
N
e

5/7

6/7

i - Jore Vosks,
- f%((“ £55 EG;"\ A@ 2

1 OO

LUy
L ot on

e -
e YA =T
%Wf%&www\\
WS &{l‘w) |
s ,f P tfﬁ £ e L % C} ’ f\/

7

™
\l ~ iy o
%\&@(}‘\ ,\,. (\50(5\2%\\&“{

<;S\J\r\(
\ _QUstok 8

10

15

20

25

30

TASK SCHEDULING

The present technique relates to the field of data processing, particularly the

field of task scheduling.

It has been previously proposed to use a scheduler to select a task to be
performed from a plurality of queued tasks. When time-sensitive tasks must be
performed, scheduling becomes more difficult. In particular, if a time-sensitive task
occupies a particular resource for an extended period of time, then it is desirable to
schedule the time-sensitive task so that the impact on other tasks is limited. However,
it is also undesirable to excessively delay the time-sensitive task since, being time-

sensitive, its delay may affect performance of the system.

Viewed from a first example configuration, there is provided an apparatus
comprising: scheduling circuitry to select a task as a selected task to be performed
from a plurality of queued tasks, each having an associated priority, in dependence on
the associated priority of each queued task; and escalating circuitry to increase the
associated priority of each of the plurality of queued tasks after a period of time,
wherein the plurality of queued tasks comprises a time-sensitive task having an
associated deadline; and in response to the associated deadline being reached, the

scheduling circuitry selects the time-sensitive task as the selected task to be performed.

Viewed from a second example configuration, there is provided a method
comprising: selecting a task as a selected task to be performed from a plurality of
queued tasks, each having an associated priority, in dependence on the associated
priority of each queued task; and increasing the associated priority of each of the
plurality of queued tasks after a period of time, wherein the plurality of queued tasks
comprises a time-sensitive task having an associated deadline; and in response to the
associated deadline being reached, selecting the time-sensitive task as the selected task

to be performed.

10

15

20

25

30

Viewed from a third example configuration, there is provided an apparatus
comprising: scheduling means for selecting a task as a selected task to be performed
from a plurality of queued tasks, each having an associated priority, in dependence on
the associated priority of each queued task; and escalating means for increasing the
associated priority of each of the plurality of queued tasks after a period of time,
wherein the plurality of queued tasks comprises a time-sensitive task having an
associated deadline; and in response to the associated deadline being reached, the

scheduling means selects the time-sensitive task as the selected task to be performed.

The present technique will be described further, by way of example only, with
reference to embodiments thereof as illustrated in the accompanying drawings, in
which:

Figure 1 illustrates, schematically, an apparatus in accordance with one
embodiment;

Figure 2 illustrates, schematically, an apparatus performing as a dynamic
memory controller in accordance with one embodiment;

Figure 3 illustrates, schematically, scheduling circuitry in accordance with one
embodiment;

Figure 4 illustrates, the “promotion” of a task whose deadline has expired, in
accordance with one embodiment;

Figure 5 illustrates, the pre-selection of a time-sensitive task in based on the
estimated duration of a higher priority time-sensitive task;

Figure 6 illustrates, in flow-chart form, a method for managing the priority of
tasks to be performed, in accordance with one embodiment; and

Figure 7 illustrates, in flow-chart form, a further method for managing the

priority of tasks to be performed, in accordance with one embodiment.

Before discussing the embodiments with reference to the accompanying
Figures, the following description of embodiments and associated advantages is

provided.

10

15

20

25

30

In accordance with one example configuration there is provided an apparatus
comprising: scheduling circuitry to select a task as a selected task to be performed
from a plurality of queued tasks, each having an associated priority, in dependence on
the associated priority of each queued task; and escalating circuitry to increase the
associated priority of each of the plurality of queued tasks after a period of time,
wherein the plurality of queued tasks comprises a time-sensitive task having an
associated deadline; and in response to the associated deadline being reached, the

scheduling circuitry selects the time-sensitive task as the selected task to be performed.

In accordance with the above, the plurality of tasks are held within a queue and
ordered, for example, by their associated priority. Throughout this description, the
term “priority” is used to refer a relative importance of a task and not any priority level
(numeric or otherwise) being used to represent that importance. The task to be
performed next is selected based on the associated priority of each task. For example,
if the tasks are stored in a queue and ordered by priority then the head of the queue
will be the task having the highest priority and this task is selected as the next task to
be performed. After a period of time, the associated priority of each queued task is
increased by the escalating circuitry. A task’s associated priority is therefore increased
by virtue of being in the queue before this period of time elapses. This escalation
helps to ensure that tasks remain in the queue for a finite period of time. However, it
does not occur at the cost of time-sensitive tasks because if the deadline of a time-
sensitive task 1s reached, that task is selected as the task to be performed.

Accordingly, the time-sensitive nature of a time-sensitive task is respected.

In some embodiments, the scheduling circuitry selects the time-sensitive task
as the selected task to be performed by increasing the associated priority of the time-
sensitive task. Since the scheduling circuitry selects a task in dependence on the

associated priority of that task, the time-sensitive task is more likely to be selected.

There are a number of ways in which the associated priority of the time-
sensitive task may be increased. However, in some embodiments, the scheduling

circuitry selects the time-sensitive task as the selected task to be performed by

10

15

20

25

30

increasing the associated priority of the time-sensitive task to a maximum priority.
Since the selection of the task is made in dependence on the associated priority of the
task, increasing the associated priority of the time-sensitive task to a maximum priority

increases the likelihood that the time-sensitive task will be selected to be performed.

In some embodiments, the scheduling circuitry selects a task with a highest
associated priority from the plurality of queued tasks as the selected task.
Accordingly, more important (higher priority) tasks are selected to be performed in
preference to less important (lower priority) tasks. In some embodiments, tasks having
the same associated priority maintain a relative ordering between them. This ordering
could, for example, be established based on the order in which each task acquired that
same priority. In these embodiments, the scheduling circuitry will therefore select the
task at the end of a queue of tasks ordered by priority (for example, at the head of the

queue).

In some embodiments, in response to receiving a new task, the apparatus is
configured to add the new task to the plurality of queued tasks. The position of the
new task in the plurality of queued tasks may be based on the associated priority of the
new task. New tasks that are added to the plurality of queued tasks will not have had
their priority increased by the escalating circuitry. Accordingly, tasks that were
previously added to the plurality of queued tasks and that originally had the same
priority as the new task could have a higher priority than the new task due to their
priority having been increased by the escalating circuitry. This mechanism helps to
ensure that older tasks are given higher priorities, which helps to prevent tasks from

waiting to be performed forever.

There are a number of ways in which the escalating circuitry may determine
when to increase the associated priority of each of the plurality of queued tasks. In
some embodiments, the escalating circuitry is to increase the associated priority of
each of the plurality of queued tasks every period of time. Accordingly, over time,
lower priority tasks will continually increase in priority regardless of how many tasks

are actually performed. In some other embodiments, the escalating circuitry is to

10

15

20

25

30

increase the associated priority of each of the plurality of queued tasks in response to
the scheduling circuitry selecting a task as the selected task a predefined number of
times. Accordingly, over time, lower priority tasks will continually increase in
priority. However, this will only occur as tasks are performed. Accordingly, this may
help to prevent the situation in which the relative priority between tasks is lost due to
some tasks reaching the highest priority (at which point their associated priority cannot

be increased further) while other tasks continue to have their priority increased.

In some embodiments, the plurality of queued tasks comprises a higher priority
time-sensitive task and a lower priority time sensitive task, each having an associated
deadline; and the apparatus comprises compensation circuitry to bring forward the
associated deadline of the lower priority time-sensitive task in response to a duration
of the higher priority time-sensitive task being such that performing the higher priority
time-sensitive task will cause the associated duration of the lower priority time-
sensitive task to be reached. Accordingly, when a higher priority time-sensitive task is
due to be performed, the apparatus may firstly determine whether or not there is any
other lower priority time-sensitive task that may over-run (its deadline will be reached)
during performance of the higher priority task as a result. This is calculated based on
the associated duration of the higher priority task and the deadline of the lower priority
task. If there is such a task, then the compensation circuitry causes the lower priority
time-sensitive task’s deadline to be brought forward. The deadline is brought forward
such that it is reached. This causes the lower priority time-sensitive task to be selected
to be performed. Accordingly, the lower priority time-sensitive task is selected over
the higher priority time-sensitive task. Consequently, the deadline of the lower
priority time-sensitive task will not expire during performance of the higher priority

tfime-sensitive task.

In some embodiments, the compensation circuitry brings forward the
associated deadline of the lower priority time-sensitive task on the condition that a
duration of the lower priority time-sensitive task is such that performing the lower
priority time-sensitive task will cause the associated deadline of the higher priority

time-sensitive task to be unreached. Accordingly, in these embodiments, the

10

15

20

25

30

compensation circuitry will only cause the lower priority time-sensitive task to be
performed in preference to the higher priority time-sensitive task if the deadline of the
higher priority time-sensitive task is not reached. The compensation circuitry will not,
therefore, avoid missing the deadline of the lower priority time-sensitive task at the

expense of the higher priority time-sensitive task’s deadline being missed.

In some embodiments, the duration is an estimated duration. Accordingly, it
may be possible to determine or estimate whether or not lower priority time-sensitive
tasks will unnecessarily over-run based on an estimate of the time taken for another

task to be performed.

In some embodiments, the apparatus is a dynamic memory controller. The
dynamic memory controller may, for example, control the interaction with and manage

ranks of memory banks.

In some embodiments, the apparatus is a non-volatile memory controller.
Accordingly, the apparatus may control the interaction with and manage areas of non-

volatile memory.

In some embodiments, the time-sensitive task is a maintenance operation.
Often it is necessary to perform a maintenance operation in order to ensure that a
particular device works correctly. This may include house-keeping operations, control
operations, or operations that are necessary in order to prevent errors. For example,
the time sensitive task may be a DRAM refresh operation. This may be performed on
DRAM memory in order to refresh the contents thereby helping to prevent the contents
from being lost. Another example of such a maintenance operation may be a training
operation such as a PHY training operation. Analog circuits may, over time, get out of
phase due to drift. A training operation such as that performed by the PHY of a

memory interface circuit may be performed in order to correct the phase.

In some embodiments, the apparatus is a radio. In such cases, the tasks may

be, for example, radio transmissions. Time-sensitive tasks may be control

10

15

20

25

30

transmissions that must be transmitted to advertise the presence of a device or to

provide a schedule for multiplexing, for example.

In some embodiments, the apparatus comprises storage circuitry to store, for
each task in the plurality of queued tasks, a priority level representing the associated
priority of that task, wherein the escalating circuitry increases the associated priority of
each of the plurality of queued tasks by changing the priority level of that task in a first
direction. Priority may be represented as a priority level in many different ways. For
example, the highest priority may have a low numeric priority level and the lowest
priority may have a high numeric priority level. When the associated priority of a task
is increased, therefore, the priority level is changed in a first direction (e.g. decreased).
The skilled person will appreciate, of course, that the reverse representation is equally
acceptable and that this will result in the priority level being increased as a

consequence of the priority increasing.

Particular embodiments will now be described with reference to the Figures.

Figure 1 schematically illustrates an apparatus 100 in accordance with one
embodiment. One or more agents 110 issue tasks to a scheduling circuitry 120 of the
apparatus 100. In this embodiment, a task is an operation to be performed. For
example, a task could be a unit of processing to be executed, or could be a data packet
to be transmitted by a radio. It could also be a request to a dynamic memory controller
or non-volatile memory controller. In any event, the tasks are submitted to the
scheduling circuitry 120 which is responsible for determining which task is selected to

be performed next.

The scheduling circuitry 120 also receives time-sensitive tasks from control
circuitry 130. The time-sensitive tasks are, similarly, operations to be performed, but
the operations in question must be performed within a particular period of time. Such
tasks, if performed late, may be invalid or may even affect the performance of the

overall system. In extreme cases, performing time-sensitive tasks late may cause the

10

15

20

25

30

system to fail. The time-sensitive tasks are received by the scheduling circuitry 120

and are also taken into account in determining the task that is to be performed next.

Each of the tasks that are submitted to the scheduling circuitry 120 has an
associated priority. The task that is selected by the scheduling circuitry 120 to be
performed next is selected based on the priority associated with each of the tasks
submitted to the scheduling circuitry 120. The scheduling circuitry 120 also comprises
escalating circuitry 140. The escalating circuity 140 increases the associated priority
of each of the tasks submitted to the scheduling circuitry 120 after a period of time.
The period of time may be predetermined and may also be repetitive. In this way, the
priority of each task being considered by the scheduling circuitry 120 will increase
over time. In other embodiments, the escalating circuitry 140 increases the associated
priority of each of the tasks after selecting a predetermined number of tasks. This may

also be repetitive.

The tasks being considered by the scheduling circuitry 120 (i.e. those tasks that
have been submitted to the scheduling circuitry 120 and not yet selected), form part of
a queue. The queue is ordered based on the associated priority of each of the tasks in
question. Increasing the associated priority of a single task therefore causes that task
to move forward in the queue. Increasing the priority of each task in the queue in a
constant manner would, of course, not affect the order in which each task is held
within the queue. In any event, the selected task may be selected by merely ‘popping’

the head of the queue, i.e. retrieving the task and removing it from the queue.

In the above embodiment, if the deadline associated with a time-sensitive task
is reached, then the scheduling circuitry 120 causes that time-sensitive task to be
selected as the task to be performed. In this embodiment, this is achieved by
increasing the associated priority of the time-sensitive task to a maximum priority.
Hence, such a task will change position so that it is at the head of the queue and will

thereby be selected as the task to be performed next.

10

15

20

25

30

In the above embodiment, the control circuitry 130 forms part of the apparatus
100. However, in other embodiments, the apparatus may only comprise the scheduling

circuitry 120.

Figure 2 schematically illustrates a dynamic memory controller 200 in
accordance with one embodiment. In the embodiment shown in Figure 2, one or more
system agents 210 (which are examples of the agents 110 in the embodiment of Figure
1) issue system requests (an example of tasks) to a scheduler 220 (which is an example
of scheduling circuitry 120). A maintenance agent 230 (which is an example of
control circuitry 130) is responsible for issuing maintenance requests to the scheduler
220. In a dynamic memory controller, maintenance requests are performed in order to
refresh the memory 270 periodically, for example. These requests are time-sensitive
since if the memory does not get refreshed sufficiently frequently, then the contents of
the memory 270 can be lost. However, a DRAM refresh can take a period of time to
be performed, and during this time, it is not be possible to access the memory 270.
Accordingly, the maintenance requests must be scheduled having regard to their time-
sensitive nature, but must also be scheduled having regard to the other system requests
issued by the system agent 210, which may themselves be high priority. This process
becomes particularity complicated if the system requests issued by the system agents
210 are issued uniformly randomly, for example, if the system requests issued by the

system agents 210 are not issued in a predictable manner.

When the scheduler 220 selects a particular request to be performed, that
request 1s provided to memory interface circuitry 250, which is the circuitry that acts
on the ranks of memory banks 270 themselves via a PHY 260. The PHY 260 is also
responsible for indicating to the maintenance agent 230 that a maintenance operation

must be performed.

The scheduler 220 and the escalating circuitry 240 work in a similar manner to
the scheduling circuitry 120 and the escalating circuitry 140 illustrated in the
embodiment of Figure 1. Accordingly, the maintenance requests issued by

maintenance agent 230 have their priority increased to a maximum priority when the

10

15

20

25

30

10

deadline of the maintenance request is reached. This helps to ensure that the
maintenance request deadlines are met and therefore that such maintenance requests
may be given their own maximum bound for service. Similarly, the process in which
the escalating circuitry 240 causes the priority of all requests queued in the scheduler
220 to increase (in this embodiment, every period) helps to ensure that system requests
are not kept around forever as a consequence of maintenance requests being issued by
the maintenance agent 230. In other words, the longer a request remains in the queue
of the scheduler 220, the higher the priority of that request becomes. Accordingly, it
becomes more and more likely, over time, that a particular request will be selected to

be performed.

This process also makes it possible for system requests to be issued at high
priority such that, in many cases, they will not be interrupted by abrupt maintenance
requests. In particular, a newly inserted maintenance request may have a lower
priority than a high priority system request. In this instance, unless the deadline of the
maintenance request is reached, the high priority system request will be selected to be

performed over the maintenance request.

Figure 3 illustrates an example of scheduling circuitry 120 in accordance with
one embodiment. The scheduling circuitry 120 receives tasks and time-sensitive tasks
at insertion circuitry 150. The insertion circuitry 150 is responsible for inserting tasks
into the queuing circuitry 160. The location at which a task is inserted into the queue
is, in this embodiment, dependant on the priority associated with that task. For
example, higher priority tasks are inserted nearer the front of the queue, whilst lower
priority tasks are inserted towards the tail of the queue. Note that the queuing circuitry
160 need not store the actual task to be performed itself. Instead, the queuing circuitry
160 may store references to tasks to be performed, with the tasks themselves being
stored elsewhere. In the embodiment shown in Figure 3, the associated priority of
each task is represented by a priority level (Q;). In this embodiment, a lower priority
level corresponds with a lower priority and vice versa. Accordingly, the task with the
highest priority level is considered to be the most important (highest priority) task.
The selected task may therefore be selected by merely ‘popping’ the head of the queue

10

15

20

25

30

11

(the top entry in the queuing circuitry 160). The act of ‘popping’ the top entry causes
that entry to be removed from the queue. As previously described, the escalating
circuitry 140 increments the priority of each of the queued tasks each period of time.
For example, task 5, which has a priority level of 4, will obtain a priority level of 5

after a first period of time has elapsed.

In this embodiment, a time-sensitive task (task 2) is shown in the queuing
circuitry 160. At present, the deadline associated with task 2 is 22. 1In this
embodiment, the deadline represents the amount of time remaining before the task’s
deadline is reached. It will be appreciated, however, that such information may be
represented in a number of different ways. For example, the deadline stored with the
task could be the value of a system clock at which the task deadline is considered to be
reached. Alternatively, the deadline could be replaced with a “lifetime”, which is
incremented every period of time such that it corresponds with the amount of time that
the task has been stored in the queue. This lifetime may be matched with a further
number to indicate the point at which the deadline is considered to be reached. Other
means of representing time-sensitivity may also be used. In any event, task 2 has not
yet reached its deadline. Accordingly, task 2 is merely treated like any other task in
the queuing circuitry 160.

Optional compensation circuitry 170 may also be present in the scheduling
circuitry 120. The compensation circuitry 170 may be used to help prevent a time-
sensitive task from unnecessarily overrunning due to a long higher-priority time-
sensitive task whose deadline is not yet reached, being selected to be performed. An

example of this will be shown with regards to Figure 5.

Figure 4 illustrates the effect when a task deadline is reached. For example,
taking the case of the queuing circuitry 160 shown in the embodiment of Figure 3,
when the deadline of task 2 is reached, its priority is increased to a maximum priority
(represented by the priority level of 15). Accordingly, the task is moved to the front of
the queue. Hence, next time a task is to be selected, task 2 will be selected as the task

to be performed.

10

15

20

25

30

12

Figure 5 illustrates an embodiment in which the duration of a task is considered
using compensation circuitry 170. The duration may, for example, be an estimated
duration. In this embodiment, task 13 would ordinarily be selected, since it has the
highest priority. However, in this embodiment, the compensation circuitry 170
determines that if task 13 is to be performed, based on the estimated duration, task 15’s
deadline will be reached during performance of task 13. This is because the estimated
duration of task 13 is 40 ms, whereas the deadline of task 15 will be reached in 10 ms.
However, it is possible to perform task 15 prior to the deadline of task 13 being met.
Accordingly, in this embodiment, the scheduling circuitry 120 causes the deadline of
task 15 to be brought forward. Accordingly, the deadline of task 15 is met and, as per
the previously described process, the priority of task 15 will be increased to a
maximum priority. Accordingly, task 15 will be the next task to be selected, in place
of task 13. Consequently, even though task 15 has a lower priority than task 13, the
compensation circuitry 170 helps to prevent the situation in which the deadline of task

15 is passed unnecessarily merely to perform a higher priority task first.

Figure 6 illustrates a flowchart 300 for performing a method in accordance
with one embodiment. At step 310, a variable x is set to 0. At step 320, it is
determined whether or not x is less than the number of tasks in the queuing circuitry
160. If not, then the process proceeds to step 370, where the tasks stored in the
queuing circuitry 160 are sorted. For example, such sorting may take place on the
basis of the priority associated with each task. Alternatively, if it is determined at step
320 that x is less than the number of tasks held in the queuing circuitry 160, then the
priority level of task x is incremented by 1 (up to a maximum priority level) at step
330. At step 340, it is determined whether or not the deadline of task x has been
reached. If not, then at step 350, x is incremented by 1, and the flow returns to step
320. Alternatively, if the deadline of task x has been reached, then the flow proceeds
to step 360, where the priority level of task x is set to 15. In this embodiment, it is
considered that a priority level of 15 is the maximum priority level. Flow then
proceeds to step 315 where x is incremented by 1, before flow returns to step 320.

Accordingly, by the virtue of steps 310, 320, and 350, a loop is implemented in which

10

15

20

25

30

13

each of the tasks is iterated through. For each of the tasks, the priority level is
incremented at step 330. Furthermore, if any of the task deadlines have been reached,
then the priority level of that task is immediately increased to the maximum level of
15. The sorting process performed at step 370 is performed after all of the priority
levels have been changed. In general, unless any of the task deadlines have been
reached, no sorting actually need take place. In this embodiment, the sorting process
performed at step 370 preserves the existing order for each task having the same
priority level. For example, if a task’s priority level is increased to 15 at step 360, then
it will be placed behind any other tasks whose priority level is already 15. This
process is aided if the iteration through each of the tasks occurs from head to tail. In
other words, it is helped if the lower numbered tasks represent the head of the queue of

tasks.

Figure 7 illustrates a flowchart 400 for performing a method in accordance
with one embodiment. This embodiment attempts to avoid the situation in which the
deadline of a low priority task is missed as a consequence of a higher priority task
(with a deadline further in the future) being selected to be performed. This
embodiment uses a different representation of deadlines. In particular, the deadline of
a task is fixed and, at each iteration, an age field associated with the task is
incremented. The deadline field therefore represents the number of iterations (or

selections) that may occur before the deadline is reached.

At step 410, a variable x is set to the number of tasks in the queuing circuitry
160. At step 420, it is determined whether or not x is greater than 0. If not, then the
process proceeds to step 470, where the tasks stored in the queuing circuitry 160 are
sorted. For example, such sorting may take place on the basis of the priority
associated with each task. Alternatively, if it is determined at step 420 that x is greater
than O, then at step 430, the variable sum_duration is incremented by the duration
(which may be an estimated duration) of task x, and the age of task x is incremented
by 1. The variable sum_ duration therefore represents a total of all durations
encountered so far. At step 440, it is determined whether or not the deadline of task x

has been reached (i.e. whether or not the age is equal to the deadline) or whether the

10

15

20

25

30

14

deadline of task x is less than or equal to the variable sum_duration. In other words, it
is determined whether the deadline of task x is reached or if the deadline of task x is
such that it has no chance to run before its deadline will be reached. If neither of these
conditions is met then at step 450, x is decremented by 1, and the flow returns to step
420. Alternatively, if either of the conditions are met then flow proceeds to step 460,
where the priority level of task x is set to 15. In this embodiment, it is considered that
a priority level of 15 is the maximum priority level. Flow then proceeds to step 415
where x is decremented by 1, before flow returns to step 420. Accordingly, by the
virtue of steps 410, 420, and 450, a loop is implemented in which each of the tasks is
iterated through from the head of the queue (e.g. the task that is currently next to be
executed) to the tail of the queue (e.g. the task that is currently last to be executed). If
it is determined that the deadline of a task has been reached, or if the deadline is such
that the deadline will be reached by the time that other tasks have been selected, then
the task’s priority will be immediately increased to the maximum level of 15, which is
the highest level in this embodiment. In this embodiment, the priority of tasks is not
incremented at each step. However, in other embodiments, the priority of tasks will
increment by one at each iteration. The sorting process performed at step 470 is
performed after all of the priority levels have been changed. In this embodiment, the
sorting process performed at step 470 preserves the existing order for each task having
the same priority level. For example, if a task’s priority level is increased to 15 at step

460, then it will be placed behind any other tasks whose priority level is already 15.

It will be appreciated that the method described above could also be achieved
in hardware in parallel. For example, for each entry in the queue, it is possible to
determine and store an expected service time based on the task’s position in the queue.
For example, if a task has the fifth entry in the queue (from the head) and if a normal
request’s duration is 8 cycles, then the expected service time for that task would be 32
cycles ((5-1) * 8) = 32. Additionally, exceptional cases can also be considered. For
example, a DRAM refresh task may take 50 cycles. If such a task is pending then the
expected service time for later tasks may be increased appropriately. The scheduling
circuitry can then determine whether a given task can tolerate the expected service

time before the deadline for the task is reached.

10

15

20

25

30

15

Additionally, the promotion performed at step 460 could be reduced so that the
task is only promoted so far in the queue as is required so that the task’s deadline is
less than or equal to the variable sum_duration at that point in the queue. However,
this would require the use of an iterative process in order to determine the most

appropriate point in the queue, to insert the task.

A more lightweight alternative implementation is to sample task age at the
point at which a task is selected and to track the average lifetime for each priority
value. Real-time requests (with deadlines) can thereby be inserted to the queue on the
basis of their deadline. The probability of a task’s deadline being reached would
therefore be reduced and so the promotion mechanism would be less likely to occur
unnecessarily. The timeout mechanism in which a task is promoted if the deadline is
reached would still be included and would catch outlying cases in which the deadline
is still reached, despite the insertion point of a task having been selected. Such a
mechanism would also be useful for a “context change” in which the average lifetime
for each priority value must be re-determined. Additionally, the data of the average
lifetime for each priority value can assist in dynamic/automated feedback to regulation

systems, and/or for user analysis of scenarios.

Accordingly, it can be seen how the aforementioned apparatus and method can
be used to reason about the maximum latency that will be experienced by a (time-
sensitive) task. In particular, such reasoning may be possible where tasks are provided
with uniform randomness. The aforementioned apparatus and method therefore makes
it possible to implement an escalating priority system, such that tasks will eventually
be performed, regardless of other high priority tasks that are added to the system.
However, the embodiments described help to do this in such a way that time-sensitive

tasks are not adversely affected.

In the present application, the words “configured to...” are used to mean that
an element of an apparatus has a configuration able to carry out the defined operation.

In this context, a “configuration” means an arrangement or manner of interconnection
¢l

10

16

of hardware or software. For example, the apparatus may have dedicated hardware
which provides the defined operation, or a processor or other processing device may
be programmed to perform the function. “Configured to” does not imply that the
apparatus element needs to be changed in any way in order to provide the defined
operation.

Although illustrative embodiments of the invention have been described in
detail herein with reference to the accompanying drawings, it is to be understood that
the invention is not limited to those precise embodiments, and that various changes,
additions and modifications can be effected therein by one skilled in the art without
departing from the scope and spirit of the invention as defined by the appended claims.
For example, various combinations of the features of the dependent claims could be
made with the features of the independent claims without departing from the scope of

the present invention.

10

15

20

25

30

17

CLAIMS

1.

An apparatus comprising:

scheduling circuitry to select a task as a selected task to be performed
from a plurality of queued tasks, each having an associated priority, in
dependence on the associated priority of each queued task; and

escalating circuitry to increase the associated priority of each of the
plurality of queued tasks after a period of time, wherein

the plurality of queued tasks comprises a time-sensitive task having an
associated deadline; and

in response to the associated deadline being reached, the scheduling

circuitry selects the time-sensitive task as the selected task to be performed.

An apparatus according to claim 1, wherein
the scheduling circuitry selects the time-sensitive task as the selected
task to be performed by increasing the associated priority of the time-sensitive

task.

An apparatus according to claim 2, wherein
the scheduling circuitry selects the time-sensitive task as the selected
task to be performed by increasing the associated priority of the time-sensitive

task to a maximum priority.

An apparatus according to any preceding claim, wherein
the scheduling circuitry selects a task with a highest associated priority

from the plurality of queued tasks as the selected task.

An apparatus according to any preceding claim, wherein
in response to receiving a new task, the apparatus is configured to add

the new task to the plurality of queued tasks.

10

15

20

25

30

10.

11.

12.

18

An apparatus according to any one of claims 1-5, wherein
the escalating circuitry is to increase the associated priority of each of

the plurality of queued tasks every period of time.

An apparatus according to any one of claims 1-5, wherein
the escalating circuitry is to increase the associated priority of each of
the plurality of queued tasks in response to the scheduling circuitry selecting a

task as the selected task a predefined number of times.

An apparatus according to any preceding claim, wherein

the plurality of queued tasks comprises a higher priority time-sensitive
task and a lower priority time-sensitive task, each having an associated
deadline; and

the apparatus comprises compensation circuitry to bring forward the
associated deadline of the lower priority time-sensitive task in response to a
duration of the higher priority time-sensitive task being such that performing
the higher priority time-sensitive task will cause the associated deadline of the

lower priority time-sensitive task to be reached.

An apparatus according to claim 8, wherein

the compensation circuitry brings forward the associated deadline of the
lower priority time-sensitive task on the condition that a duration of the lower
priority time-sensitive task is such that performing the lower priority time-
sensitive task will cause the associated deadline of the higher priority time-

sensitive task to be unreached.

An apparatus according to any one of claims 8-9, wherein
the associated duration is an estimated duration.
An apparatus according to any one of claims 1-10, wherein

the apparatus is a dynamic memory controller.

An apparatus according to any one of claims 1-10, wherein

10

15

20

25

30

13.

14.

15.

16.

17.

18.

19

the apparatus is a non-volatile memory controller.

An apparatus according to any preceding claim, wherein

the time-sensitive task is a maintenance operation.

An apparatus according to any one of claims 1-13, wherein

the time-sensitive task is a DRAM refresh operation.

An apparatus according to any one of claims 1-13, wherein

the time-sensitive task is a PHY training operation.

An apparatus according to any preceding claim, wherein

the apparatus is a radio.

An apparatus according to any preceding claim, wherein:

the apparatus comprises storage circuitry to store, for each task in the
plurality of queued tasks, a priority level representing the associated priority of
that task, wherein

the escalating circuitry increases the associated priority of each of the
plurality of queued tasks by changing the priority level of that task in a first

direction.

A method comprising:

selecting a task as a selected task to be performed from a plurality of
queued tasks, each having an associated priority, in dependence on the
associated priority of each queued task; and

increasing the associated priority of each of the plurality of queued
tasks after a period of time, wherein

the plurality of queued tasks comprises a time-sensitive task having an
associated deadline; and

in response to the associated deadline being reached, selecting the time-

sensitive task as the selected task to be performed.

19.

5

10
20.

15
21.

20

An apparatus comprising:

scheduling means for selecting a task as a selected task to be performed
from a plurality of queued tasks, each having an associated priority, in
dependence on the associated priority of each queued task; and

escalating means for increasing the associated priority of each of the
plurality of queued tasks after a period of time, wherein

the plurality of queued tasks comprises a time-sensitive task having an
associated deadline; and

in response to the associated deadline being reached, the scheduling

means selects the time-sensitive task as the selected task to be performed.

An apparatus substantially as hereinbefore described with reference to the

accompanying Figures.

A method substantially as hereinbefore described with reference to the

accompanying Figures.

Intellectual
Property 5
Office L

Application No: GB1513367.1 Examiner: Mr David Maskery
Claims searched: 1-19 Date of search: 5 February 2016

Patents Act 1977
Corrected Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims

XY 1 -7 and | "Scheduling (computing)" and "Fixed-priority pre-emptive scheduling"
11-19 | Wikipedia articles.

https://en. wikipedia.org/w/index. php?title=Scheduling (computing)&ol
did=669277541 30 June 2015 and
https://en.wikipedia.org/w/index.php?title=Fixed-priority pre-

emptive scheduling&oldid=658444303 22 April 2015

Y 6and 7 | US 8539493 B
(ROBERTSON et AL) See column 2.

Y 11-15 | US2009/0183162 A
(KINDEL et AL) See paragraph 39.

A - US 2015/0074674 A
(MA et AL) See paragraphs 39 - 67.

Categories:

X Document indicating lack of novelty or inventive =~ A Document indicating technological background and/or state
step of the art.

Y Document indicating lack of inventive step it P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.

& Member of the same patent tamily E Patent document published on or after, but with priority date

earlier than, the filing date of this application.

Field of Search:
Search of GB, EP, WO & US patent documents classified in the following areas of the UKC™ :

Worldwide search of patent documents classified in the following areas of the IPC
[GOGF |
The following online and other databases have been used in the preparation of this search report

| EPODOC, WPIL, TXTA, Wikipedia. |

International Classification:
Subclass Subgroup Valid From

GO6F 0009/48 01/01/2006

Intellectual Property Office is an operating name of the Patent Office www.gov.uk /ipo

	Front Page
	Drawings
	Description
	Claims
	Search Report

