A chance device particularly useful in playing of a chance-controlled game such as an oil well discovery game, includes a playing board with boundaries drawn significant of property and enclosing perforations in the surface, the perforations being alignable with slots in movable discs supported beneath the perforated playing board surface, the surfaces spaced from the slots in these movable discs being electroconductive.

A probe comprising an electrode may be inserted through the perforations in aligned slots in the discs to come into contact with an electroconductive surface at a position having no aligned slot to signal the particular surface contacted whereby, electrically, according to various rules of the game, the contacted surface may be significant of an oil discovery by the alignment of perforations and slots to indicate the position of the probe. The game may include means for moving playing pieces, the disposition of property upon which perforations are located and rights to insert the probe at regular intervals for regulating the prices to determine chance alignment of the slots and perforations.
LIQUIDATION
ALL OIL WELLS & MINERAL RIGHTS LIQUIDATED TO RESERVE ARE YOURS FREE

VICTORIA PASS
20

SQUATTERS VALLEY
21

QUICK SILVER CREEK
22

CROSS JUNCTION
15

STILLWATER PLATEAU
14

DUDES CORNER
13

WICK PEAK
12

CLARKS FORK
14

ANT ELOPE CREEK
18

SHOSHONE PASS
16

SYLAS LAKE
15

NEW HAVEN
10

WATERFORD NO. 1
26

S. T. VALLEY
27

SEMINOLE PLATTS
29

BASS LAKE
29

CIRCUIT TEST LIGHT

OFF
ON

OIL TAX
YOU PAY RESERVE
$5000 EA. WILDCAT
$1500 EA. 500 BB.
$750 EA. 200 BB.

FIG. 2A
PROBE CHANCE DEVICE HAVING ELECTRICAL SIGNALLING READOUT

This invention relates to a chance-controlled device usually used as or part of a game comprising an assembly of relatively movable perforated or slotted plates having electrically activated and conductive surfaces, and normally activatable by an electroconductive probe penetrating the upper perforated surface and identifying one of the lower surfaces by chance alignment of the slots therein and contacting of an impenetrable surface to complete the circuit and signal the position or identity thereof.

More particularly, the device relates to a game in which the chance device is incorporated, including selected indicia mounted upon a perforated game board and playing elements. The game herein may be a game in which oil well prospecting is played as a game with various degrees of success, signaled by the surface contacted according to the degree of penetration of the probe as well as the simulated significance of that contacted surface to award the player with an oil discovery of a selected quantity. The oil discovery is regulated or simulated by the random alignment of plate perforations and slots which controls the ultimate contact of the probe with a surface and in terms of the relative degree of penetrability of the lamina by the probe inserted into one of the perforations of the upper surface for each chance.

The sub-surfaces are upon plates, usually discs, assembled to be relatively movable, such as rotatable about a common axis, one with respect to the next, the uppermost surface being perforated in a pattern of perforations and the lower sub-surfaces having elongated slots cut therein, usually arcuate, cut through the rotatable discs and distributed at random, but in equal radial positions, randomly alignable with the perforations in the upper surface, whereby the perforations and arcuate slots may become aligned or disaligned by relative movement of the discs to receive and pass through or prevent further passage, making contact with an electroconductive probe as inserted through the upper perforated disc. Both the disc surfaces and probe, being conductive, will complete the circuit at the point of contact, whichever conductive surface impedes and comes into electroconductive contact with the probe, to signal the particular surface to which the probe has penetrated.

In broad aspect, several discs are assembled upon a spindle for rotation relative to each other, such as three or four additional discs. The stationary upper gameboard surface may be merely perforated with holes sized to accommodate the shank for insertion through of the electroconductive probe. The perforations of the upper playing board surface will usually be but not necessarily be evenly spaced in a series of concentric circles forming a pattern and the rotatable discs underlying the surface will be slotted in elongated arcuate slots of various arcuate lengths and randomly distributed at the same radial disposition from their axes as the circles of perforations in the upper surface pattern. Thus, the arcuate slots despite random arcuate spacing as well as elongation dimension, as disposed in the same radius of spacing from the central axis of a disc, may or may not be penetrated by the probe inserted from the top, depending upon whether a slot underlies the particular perforation in which the probe is inserted. Each disc will have progressively fewer arcuate slots ranging from the disc next adjacent to the upper perforated surface down to that of the lowermost slotted disc. With this arrangement, in any random disc position, the probability, following insertion of the probe, penetrating through one or more arcuately slotted positions vertically aligned with the entering perforation, decreases from disc to disc, reaching a relatively scarce or rare position of penetration of the entire group of discs. The surfaces of the discs except in the area of the perforations and slots are covered with electroconductive material whereby the probe completes contact with whichever disc terminates further penetration by having no slot aligned at that point and thereby signals the position and depth of penetration of the probe. For each use of the chance device or playing of the game, or if desired at some intermediate game point, in which it is used, the discs may be reset by movement at random by rotation upon their axes relative to each other and to the fixed perforations upon the upper playing surface, thus bringing into play thereby a completely different alignment of perforations and slots.

The invention is further described with relation to the drawings wherein:

FIG. 1 is an isometric view of an assembled game having parts broken away to show the interior;
FIGS. 2 and 2A are a plan view of FIG. 1 illustrating a gameboard covering mounted upon the assembly of FIG. 1;
FIG. 3 is an elevational section through the center of the device showing one way of mounting the rotary discs for chance movement;
FIG. 4 is a modified elevational view in section similar to FIG. 3 and taken on the line 4—4 of FIG. 1 showing an alternate method of mounting the discs in said assembly;
FIG. 5 is a plan view of one of the discs showing random arcuate positions of the slots;
FIG. 6 is a wiring diagram for the device;
FIG. 7 is a fragment illustrating play money;
FIG. 8 illustrates playing dice;
FIG. 9 is a playing piece symbolic of an oil well drilling rig;
FIG. 10 illustrates playing cards used in conjunction with the game;
FIG. 11 illustrates playing pegs;
FIG. 12 illustrates pieces symbolic of the players; and
FIG. 13 is a modified wiring diagram to include both household 120 volt power as well as battery power alternately useful for operation of the device.

Referring to FIGS. 1 and 2, a gameboard 10 is built with an outer marginal portion 12 around the perimeter of a box-like container 13 having an upper playing board surface 14. The container which houses a chance device 16 includes an upper surface 14 which simulates an oil well drilling game comprising map-like configurations as shown in FIG. 2 for playing the preferred game hereof having, usually in multi-colors and lines, various plots of land drawn upon the top surface 14 of the game container 13.

As shown in FIG. 1, numerous perforations 18 are cut into the top surface 14 of the box, usually as circular holes cut in several concentric circles and spaced, as shown in FIG. 2, usually divided by the land plots with three or four per plot of land. The chance device
as shown in elevation in FIGS. 3 and 4 comprises the perforated container top playing board 14 having preferably a continuous box closure bottom 15 in the same plane as the marginal playing sides 12, and separated from the top 14 by square perimetric sides 17, separably secured together as a box, which also houses the several operating elements. In FIG. 3, beneath the upper surface 14 are first discs 20, 22, 23 and 24 and a base or lowermost disc 26. While four intermediate discs 20, 22, 23 and 24 are shown, this may be varied in number as desired; for instance, as shown in FIG. 4, three discs are shown, thus increasing or decreasing the element of chance for probing for aligned slots to the lowermost as will appear.

Each of the discs have a coating of electroconductive substance such as a metal film or foil 28, typically aluminum foil, upon their upper surfaces; and the conductive film may also be present at least upon the marginal portions 30 of the lower surfaces. The discs may be mounted at their centers upon an inner sleeve 32 supported for rotation by a spindle 36 fastened by a nut 39 to the bottom 15. The discs are separated by spacer-washers 34, preferably of low friction material such as polytetrafluoroethylene, Teflon, to allow rotation. A spring 38 mounted about the lower end of the spindle 36 resiliently compresses the lowermost disc 26 together with the intermediate discs vertically slidable as a group against their separating washer-spacers 34 and thence against the upper board 14. In such assembly the sleeve 32 extending outward as shown above the board surface 14 is slidable upon the spindle 36; and, by depressing of the outermost collar 40 manually against the compression of spring 38, the discs and the lowermost plate 26 are depressed downward upon the spindle 36, thus freeing the intermediate discs 20, 22, 23 and 24 for rotation and thus resetting of their respective slotted positions.

A hole 42 cut in the top 14 near the edge of the discs, and sized for this purpose, allows a finger to be inserted through the top 14 for movement of the several discs to different angular positions when the sleeve 32 is depressed together with the base disc 26 against the spring 38. The threaded lower end of the spindle 36 is secured in operative positioning by a nut 39, as shown, tightened against the lower container bottom surface 15 of the spindle. Upon release, the spring 38 compressed all the discs upward into a stationary unit ready for playing.

The lowermost disc 26 carries electroconductive contact members 44, one each to the several marginally extending conductive portions of each disc to complete the electrocontact of the discs 20, 22, 23 and 24 with the conductive disc surface 28 of the base disc 26. The base disc 26 is placed in ultimate circuit as further described below, whereby each of the intermediate discs 20, 22, 23 and 24 become part of that circuit by way of the electroconductive surface films or foils thereon.

As shown in FIG. 1, the upper surface 14 has a large number of small perforations 18 disposed in a pattern of concentric circles. The intermediate discs 20, 22, 23 and 24 will each have numerous elongated arcuate slots 46 cut through the surface thereof at the same radius as the circles of perforations of the surface 14. There will be fewer slots 46 distributed at random but corresponding to the same circles in the same radius as the perforations 18 in the upper surface 14. There will be the least number of slots in the lowermost disc 24 than would be present in the next upper disc 23, and most slots in the disc 20 adjacent to the upper surface 14. The lowermost disc 26 has no perforations. It has only an imperforate electroconductive upper surface 27 through which the probe can contact, but not penetrate, as will appear.

As thus described, the assembly of discs under pressure of spring 38 are each fixed with their slots in whatever random position they have been placed. That fixed position, on depression of the sleeve 32, can be reset from time to time playing of the game.

As shown in FIGS. 1, 13 and 6, a probe 48 has a narrow needle-like shank 50 sized in diameter to slidingly fit into the holes or perforations 18 when the probe is inserted through the upper surface 14. The probe is long enough to penetrate the several discs passing through any open slots 46 that may be disposed beneath the entering perforation and through one or more randomly aligned slots 46 of the discs 20, 22, 23 and 24, beneath the entering perforation of the probe and in contact with the lowest conductive surface 27. Where the alignment of slots is discontinued, at any one disc, it will come into contact with the unaligned surface. Thus, penetration will be terminated at that intermediate point. The probe through a perforation 18 will first contact any impending surface if slots therein are not aligned for further penetration; or if slot alignment is present in the first disc it will pass on through to the next disc in sequence until the probe is stopped by a disc having no aligned slot, or will pass on through the entire assembly of discs to contact the electroconductive surface 27. The conductive surface may come close to any of the slots, but is sufficiently separated from the slot edge as to avoid electrical contact with the probe when the probe is able to penetrate the slot. Thus the probe will complete electrical contact only against a disc surface when it cannot be penetrated through alignment of a slot. The probe is preferably mounted in a jack-type connector 52 through which the conductive probe 50 is connected to a conductive wire 54 leading to a probe point through which the circuit carried by the probe is completed.

For purposes of converting the chance assembly of FIG. 1 into a game, suitable markings are placed upon the surface 14 as well as upon the marginal playing edge 12.

In use of the chance device for playing the game, several electrical signals are electrically connected to indicate by light or sound the position of the probe 48 inserted through discovery the perforations 18 and in contact with a conductive surface of a disc. For this purpose, as shown in FIGS. 1 and 2, the electroconductive surface of the first disc 20 is connected in circuit with an electric light bulb 74 or an electric bell or buzzer 76, and it may be preferred to use both. Consequently, when the probe 48 is inserted and contacts the conductive surface on the plate 20, it will actuate the light 74 or the buzzer 76 to emit their characteristic signals, indicating that the probe has penetrated only to that first surface. Since this first surface 20 is the most commonly intercepted, it will be designated as a dry hole in the subsequent playing of the oil well drilling game. A second light 78 is placed in circuit with the conductive disc surface 22, and when the probe passes through a slot 46 in disc 20, but contacts the conductive surface of the next disc 22 therebeneath, it will ac-
uate the light 78, indicating that the probe has penetrated to the second disc. For purposes of playing the game described below in further detail, this will be the 200 barrel discovery level. Again, in playing the same procedure, a light 80 in circuit with the third disc 23 will be lighted when the probe 48 penetrates that disc to complete the circuit there. That level in playing the game may be a 500 barrel level. The fourth plate 24 may be omitted as shown in FIG. 4 or it may be assigned a somewhat larger discovery level of perhaps a thousand barrel level and a suitable light (not shown) provided for indicating this as for lights 78 and 80. Finally, for the lowest plate surface 27, when this is contacted by the probe, indicating full vertical alignment of slots in each disc with the top entering perforation 18, a light 82 and perhaps optionally, a bell 84, will be activated by the circuit to signal a wildcat or maximum successful drilling according to the desirable goals of the game being played.

As shown in FIGS. 6 and 13, the wiring diagram illustrates the probe 48 having a lead wire in circuit with a starting off-on switch 56 by way of lines 54 and 55. Both outer lead wire terminals 58 will be joined to a connector leading to a suitable source of power, and a test light 86 indicating that the circuit is active, will light when the off-on switch 56 is closed. Usually the line 54 will connect the probe 48 by a plug-in jack 57 for ready removal of the probe connection when the game is stored. For purpose of wiring, each of the lights have one terminal connected to one pole of the input circuit 88 by way of contacts 87, and thence to the connector 58. The light 74 and buzzer 76 are connected to the input by way of current source line 89, the light 78 by way of line 90, the light 80 by way of line 91 and the light and bell 82 and 84 by way of line 92. The opposite circuit completing ends of the lights are connected to the contacts 44 in circuit with the conductive margin of each disc; the light 74 or buzzer 76 contacting the conductive surface of upper disc 20 by way of line 94; the light 78 completing its circuit to the conductive surface of disc 22 by way of line 96; light 80 completing its circuit to plate 23 by way of line 98; and the lowermost disc 24 completing its circuit to light 82 and bell 84 by way of line 100.

In the modification shown in FIG. 4, the discs are inverted so that the larger diameter disc is lowermost and its margin consequently extends outward a greater distance whereby the lowermost disc 24 has the larger diameter. The lowermost disc may be conductive, at least on its upper surface, and is placed in circuit through contact point 25. The remaining discs 20, 22 and 23 are progressively smaller in diameter, the lowermost to the uppermost, and need have only their upper surfaces formed of electroconductive substance such as metal foil or plate. This allows the contacts for the discs to be mounted upon an upper hinge plate 102 hinged to a fixed support 104 by pivot 106. The plate 102 carries screw contacts, these screw contacts each being adjustable by threading and setting. The first screw 108 contacts the margin of disc 20. A second screw 110 is adjusted to the necessary height to engage the marginally extending portion of plate 22 for contact therewith, and screw 112 is adjusted to contact the marginal edge of disc 23. Thus each of the discs are contacted by lead wires 94 for disc 20 in circuit with the contact 108; lead wire 96 in circuit with contact 110; lead wire 98 in contact with contact screw 112; and lead wire 100 in contact with screw 112. The lowermost disc 24, as above, has its circuit completed through contact 25 by way of line 98.

FIG. 13 further includes a testing switch 114, the equivalent of the light 86, to indicate that the circuit is operational. It further includes a transformer 116 interconnected with a rectifier 118 whose circuit is completed through rectifier switch 119 to reduce the 120 volt AC input line current to 6 volt DC for use with the game. Alternately, the input current may be supplied by a battery 120 made available by battery crossing switch 122 for battery operation of the circuit. The modified electrical scheme of FIG. 13 substitutes the buzzer for the light, but this is a matter of choice, since either or both can be used. The upper playing surface 14 of the box can be hinged at one edge so that it may be opened for observing, connecting or repairing the circuitry or storing of playing elements when the game is not in use.

The preferred game herein is one consisting of prospecting for oil. For this purpose the border has markings 58 which simulate identification of property located on the surface 14 to be acquired and explored, each of which will correspond to a graphical area as further outlined upon the surface 14 and as shown in FIG. 2. The markings in the margin also will indicate positions useful to control operation of the game. Other components of the game may include play money 60 as shown in FIG. 7; conventional dice 62 as shown in FIG. 8; simulated drilling rigs 64 having lower round shank portions insertable in perforations 18 as shown in FIG. 8; a deck of marked cards 66 indicating title to mineral rights as shown in FIG. 10; and small pegs 68 having characteristically colored top portions 70 and lower round peg shanks alternately insertable in perforations 18 to identify the outcome of drilling. For instance, several hundred perforations 18 and pegs 68 will be provided, most of the pegs with differently colored tops 70 such as a hundred white to indicate a dry hole; and 75 yellow to indicate successful penetration to the second hole; perhaps 50 pegs colored blue to indicate penetration to the third disc 23; and 25 black pegs 68 for indicating a successful wildcat strike. In addition, there may be conventional small cylindrical player pieces 72, as shown in FIG. 12, each of different colors, to designate the position on the playing board of individual players, there being as many as may likely play the game at any one time, such as perhaps half a dozen, more or less. There will be a dozen or two drilling rigs and as many cards as there are available properties.

The preferred game is simply an exercise in buying property, searching for oil and reaping the benefits or disappointments when the locations are drilled.

Money may be borrowed; however, interest must be paid. The most successful players will be subjected to the higher taxes. The game is not 100 percent luck in the drilling; the skill used to trade and sell and buy other properties and the use of the royalty money will no doubt be a major factor in the success of the individual playing the game.

The following are typical suggested rules for playing the game, which, of course, may be changed as desired:

Each player is given $10,000 to begin the game. Each player is given mineral rights to three properties. (The cards are shuffled prior to disposition)
3,844,567

The first player shakes the dice and advances on the board the number he has rolled on the dice. The starting point is on the Royalty square. If the mineral rights on the property he lands on do not belong to another player, they may be purchased from the reserve for $2,000; and if he intends to drill (insert probe in one of the holes on the property) he must pay $200. For each hole drilled, the amount of $200 is constant; however, only one hole per turn is allowed.

Assuming a player decides to drill, he places the rig on the property and must wait until he goes around the board one full revolution from where the property is located before he may proceed and drill. (The money must be paid before he continues on with the required revolution). If another player lands on the property in the meantime he may rent the rig from the first player for $100 and drill immediately on the property. If a discovery is found, the player renting the rig will get the initial money for discovery and the player that holds the mineral rights and the rig will be allowed to collect all the royalties. Each player will be allowed to have only three rigs in play at one time.

The discovery money paid to the player by the reserve may be as follows:

<table>
<thead>
<tr>
<th>Mineral Rights</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildcat</td>
<td>$20,000.00</td>
</tr>
<tr>
<td>500 Barrel</td>
<td>$6,000.00</td>
</tr>
<tr>
<td>200 Barrel</td>
<td>$3,000.00</td>
</tr>
<tr>
<td>Dry Hole</td>
<td>-</td>
</tr>
</tbody>
</table>

Royalties from the reserve may be paid to the players when they pass the Royalties square and may be as follows:

<table>
<thead>
<tr>
<th>Mineral Rights</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildcat</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>500 Barrel</td>
<td>$300.00</td>
</tr>
<tr>
<td>200 Barrel</td>
<td>$150.00</td>
</tr>
</tbody>
</table>

If a player lands on a property where the mineral rights have already been purchased, the player may drill on the property with the consent of the mineral rights holder only and after he pays the reserve $100 to drill and the mineral rights holder $400. The initial discovery money will go to the player drilling; the royalties will go to the mineral rights holder.

The players take turns moving pieces clockwise upon shaking the dice.

If a player is in financial trouble he may sell properties to another player as negotiated or liquidate some of his holdings to the reserve for the following amounts:

<table>
<thead>
<tr>
<th>Mineral rights on undeveloped areas or areas with paying discoveries</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Reduce this price by $500 per dry hole)</td>
<td>$2,000.00</td>
</tr>
<tr>
<td>Wildcat</td>
<td>$6,000.00</td>
</tr>
<tr>
<td>500 Barrel</td>
<td>$1,800.00</td>
</tr>
<tr>
<td>200 Barrel</td>
<td>$900.00</td>
</tr>
</tbody>
</table>

All property turned into the reserve for cash will be given free to the first person to land on the liquidation square. That person must keep the property for two full turns before he may re-sell it to the reserve or another player for cash.

In the case where a discovery is liquidated, but not the mineral rights, the royalties will go to the player ending up with the discovery. A written recording will be required and should be kept in the reserve.

The oil tax square taxes each person landing on the square only in the following amounts (for each discovery they have):

<table>
<thead>
<tr>
<th>Mineral Rights</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildcat</td>
<td>$5000.00</td>
</tr>
<tr>
<td>500 Barrel</td>
<td>$1500.00</td>
</tr>
<tr>
<td>200 Barrel</td>
<td>$ 750.00</td>
</tr>
</tbody>
</table>

Half of the tax money is placed on the liquidation square to be given to the player landing on it and the other half is to be placed in the reserve.

Each player may borrow from the reserve a lump sum of $10,000. The entire amount must be borrowed at once. The player borrowing the money must pay 10 percent interest. The $1000.00 interest is placed on the liquidation square at the time the money is borrowed and the person landing on that square gets to keep the money. The player borrowing the money must pay the reserve back the $10,000 before he may qualify to borrow another $10,000. Also, no player holding the royalties (mineral rights) to a Wildcat will be able to qualify for the loan.

He may agree to transfer the Wildcat to another player for a price, but he may not receive royalties on that Wildcat while the loan is still out to him. The other player holding the Wildcat for him must collect the royalties and distribute them equally to the other players, except to the original owner. When the load is paid back, the original owner may try to get his Wildcat back, depending on the deal he made.

The game is over when all the holes have been tested (drilled) or if three players go broke. The winner is determined by liquidating all property and counting the money accumulated. Debts are obviously deducted from the totals.

The players may choose not to end the game when all the holes have been drilled, if they are all in agreement. The plates may then be rotated after the players have speculated what to keep and what to liquidate. In this event the property liquidated would go back to the reserve and would be offered as though it had never been used. Mineral rights must accompany all property liquidated in this fashion. The players basically now have a new game and may drill their property they retained for $50 a hole and at a rate of three holes per turn. Each player must always place a peg in the hole after it has been drilled to indicate the value of the hole.

Certain modifications may occur to those skilled in the art. Obviously other games can be played using the same chance device, with minor changes, particularly in the game board, such as a horse racing, gambling, or land mine game.

Accordingly, it is intended that the descriptions given herein be regarded as exemplary and not limiting except as described in the claims as they are appended hereto.

1 claim: A chance device comprising an electroconductive probe and several sheets assembled in a tier, the outermost sheet having a regular pattern of perforations with the several remaining relatively movable sheets therebeneath having slots randomly disposed therethrough to be alignable by chance with said perforations by said movement, said slots being elongated in the direction of movement and larger than said perforations, all being sized to receive the shank of said probe inserted through any one of said perforations and capa-
The chance device as defined in claim 1 wherein separate signalling means are mounted in circuit, each with the conductive surface of a respective one of said conductive sheets, and the signalling means significant of only the contacted sheet is activated by the probe inserted through a perforation into contact with the conductive surface area of that sheet.

3. The chance device as defined in claim 1 wherein the several remaining sheets are discs of plate-like thickness and are pivotally secured together, whereby rotation of any of the discs with respect to the others resets the positions of slots and perforations in the assembly to a changed pattern of vertical alignment and disalignment.

4. The chance device as defined in claim 3 wherein separate signalling means are mounted in circuit, each with the conductive surface of a respective one of said discs, and the signalling means significant of only the contacted disc is activated by the probe inserted through a perforation into contact with the conductive surface area of that disc.

5. The chance device as defined in claim 1 wherein the said signalling means emits both light and sound.

6. The chance device as defined in claim 1 wherein the movable sheets are plate-like discs having arcuate slots cut therethrough pivotally secured together, said perforations being disposed in said outermost disc which is in the form of a stationary uppermost surface in a pattern of concentric circles of different radii with respect to said pivot, and the arcuate slots of the tier of said slot bearing discs are each cut at random but spaced from said pivot to lie in concentric circles of the respective radii as said perforations.

7. The chance device as defined in claim 6 wherein there is a substantially greater number of perforations in said stationary surface than slots in the tier of discs of said assembly, the number of slots beginning with the next adjacent disc to the perforated surface being progressively reduced in number through the subsequent series of discs mounted therebeneath to provide progressively fewer slots in each respective disc.

8. The chance device as defined in claim 6 including a lowermost disc of the assembly having an electroconductive surface which is imperforate.

9. The chance device as defined in claim 1 wherein said circuit means is completed through a source of electrical current including a wall connector for circuit supply of AC high voltage plug household current, said circuit further including a rectifier for conversion of said current to DC and a transformer for reducing said current to low voltage.

10. The chance device as defined in claim 1 wherein said circuit means is completed through a battery as DC current of low voltage.

11. A game board having a stationary playing surface including markings thereon sub-dividing said surface into areas, a pattern of perforations in said surface passing through said surface sub-divided by said markings into groups of several perforations in each area, a chance device comprising a probe and several sheets assembled into a tier of adjacent, relatively movable surfaces, the uppermost comprising said stationary gameboard playing surface having said markings and pattern of perforations, the assembled sheets beneath said upper playing surface having slots therethrough alignable with said perforations, said slots being as wide and longer than said perforations in the direction of movement of said sheets to receive said probe inserted through any chosen one of said perforations and capable of penetrating one or more of said slots when the slots in said sheets are aligned after chance movement with said chosen perforation and with other slots of the tier, said probe having an elongated shank terminating in a penetrating electroconductive tip insertable through said perforations and through any slots aligned therewith, said sheets being non-conductive with the surface area of each of said slotted sheets being electroconductive except in the areas of said slotted sheet inclusive of and immediately surrounding each of said slots whereby passage of said probe through perforations and slots avoids electrical contact with the surrounding conductive surfaces, an electrical signalling means, said signalling means, probe and conductive surfaces being in circuit with a source of electrical current to activate said signalling means to indicate completion of said circuit when the probe inserted into a perforation comes into contact with a conductive surface area and means in the surface of said gameboard for manual movement of one sheet with respect to the next to reset the same to a new pattern of alignment and disalignment of slots and perforations.

12. The game as defined in claim 11 wherein separate signalling means are mounted in circuit, each with the conductive surface of a respective one of said conductive sheets, and the signalling means significant of only the contacted sheet is activated by the probe inserted through a perforation into contact with the conductive surface area of that sheet.

13. The game as defined in claim 11 wherein the several sheets are plate-like in thickness and are pivotally secured together for rotation as discs whereby upon rotation of one with respect to the other the slots and perforations are resettatable to a changed pattern of alignment and disalignment therebetween.

14. The game as defined in claim 13 wherein separate signalling means are mounted in circuit, each with the conductive surface of a respective one of said conductive sheets, and the signalling means significant of only the contacted sheet is activated by the probe inserted through a perforation into contact with the conductive surface area of that sheet.

15. The game as defined in claim 11 wherein the said signalling means emits both light and sound.

16. The game as defined in claim 11 wherein the movable surfaces are discs pivotally secured together but separable by non-conductive spacers, said perforations being disposed in a pattern of concentric circles of different radii with respect to said pivot, and the slots
are arcuate extending a distance substantially longer than said perforations in the direction of movement of said discs and being cut at random but spaced to lie in circles of the same radii as said perforations.

17. The game as defined in claim 16 wherein there is a substantially greater number of perforations in said stationary playing board surface than slots in the lower discs of said assembly, the number of slots in the said next adjacent disc to the perforated playing board surface being substantially greater than the slots in the discs mounted in the subsequent series therebeneath to provide progressively fewer slots from disc to disc.

18. The game as defined in claim 16 including a lowermost sheet, opposite to the stationary upper perforated playing board surface of the assembly, having an electroconductive surface which is imperforate.

19. The game as defined in claim 16 wherein separate signalling means are mounted in circuit, each with the conductive surface of a respective one of said conductive sheets, and the signalling means significant of only the contacted sheet is activated by the probe inserted through a perforation into contact with a conductive surface area of that sheet.

20. The game device as defined in claim 11 wherein said circuit means is completed through a source of electrical current including a wall connector for circuit supply of AC high voltage plug household current, said circuit further including a rectifier for conversion of said current to DC and a transformer for reducing said current to low voltage.

21. The game device as defined in claim 11 wherein said circuit means is completed through a battery as DC current of low voltage.