(54) 发明名称
一种应用于管道保温的环保型组合料及其制备方法

(57) 摘要
一种应用于管道保温的环保型组合料，由A组分和B组分构成，其中A组份由聚醚多元醇、聚酯多元醇、泡沫稳定剂、催化剂和物理发泡剂组成；B组份为聚合二苯基甲烷二异氰酸酯。使用时，将A、B组份料混合即可制成应用于管道保温的环保型聚氨酯泡沫。本发明A组份料是在常温下进行，既节约能源又减少供能设备和繁琐的操作。由A、B组份料生产应用于管道保温的环保型聚氨酯泡沫材料也是在常温、常压下进行，工艺简单，易操作。利用HFC-365/227的混合物为物理发泡剂配置管道保温型组合聚醚的制作，在达到环保目的的同时，降低了泡沫的导热系数，各项指标达到了国标的要求。
1. 一种应用于管道保温的环保型组合料，其特征在于由 A 组分和 B 组分构成，其中：
 A 组分以重量百分数计：
 聚醚多元醇 A：30–50
 聚醚多元醇 B：20–40
 聚酯多元醇：10–20
 泡沫稳定剂：1.0–3.0
 化学发泡剂：1.0–3.0
 无氨类催化剂：0.3–2.5
 物理发泡剂：15–25
 B 组分为：
 聚合二苯基甲烷二异氰酸酯
其中：
所述聚醚多元醇 A 为 4.6 官能度，数均分子量为 530–630 的聚醚多元醇；
所述聚醚多元醇 B 为 4.2 官能度，数均分子量为 570–670 的聚醚多元醇；
所述聚酯多元醇为 3.0 官能度，数均分子量为 500–600 的聚酯多元醇；
所述物理发泡剂为 1,1,1,3,3-五氟丁烷和 1,1,1,2,3,3,3-七氟丙烷的混合物
HFC-365/227，其中 1,1,1,3,3-五氟丁烷的质量含量为 87%。
2. 根据权利要求 1 所述应用于管道保温的环保型组合料，其特征是：所述稳定剂为非水解硅碳类表面活性剂。
3. 根据权利要求 2 所述应用于管道保温的环保型组合料，其特征是：所述稳定剂为 L-6865。
4. 根据权利要求 1 所应用于管道保温的环保型组合料，其特征是：所述化学发泡剂为水。
5. 根据权利要求 1 所述应用于管道保温的环保型组合料，其特征是：所述催化剂选自
N,N二甲基环己胺和 N,N二甲基苯胺。
6. 一种制备权利要求 1 所述应用于管道保温的环保型组合料的方法，其特征是：
制备 A 组份时，将称量好的聚醚多元醇、聚酯多元醇、泡沫稳定剂、化学发泡剂、催化剂、物理发泡剂依序加入反应釜中，在常温下搅拌 2 小时，即可装桶；
B 组分则将聚合二苯基甲烷二异氰酸酯，直接装桶。
一种应用于管道保温的环保型组合料及其制备方法

技术领域
[0001] 本发明提供一种用 HFC-365/227（1,1,1,3,3-五氟丁烷和 1,1,1,2,3,3,3-七氟丙烷）的混合物为发泡剂制作应用于管道保温的环保型组合料及其制备方法，特别涉及制作应用于管道保温的环保型的组合料。

背景技术
[0002] HFC-365/227（1,1,1,3,3-五氟丁烷和 1,1,1,2,3,3,3-七氟丙烷）混合物发泡剂，为聚氨酯物理发泡剂中的新品种。365mfc（1,1,1,3,3-五氟丁烷）属于第三代发泡剂，其 ODP=0。HFC-365/227 混合物热导率（25℃）为 9.9。故用其所生产的组合聚醚属于无氟型组合聚醚，具用环保的作用，用异氰酸酯与此组合聚醚反应，所制得泡沫具有导热系数低

发明内容
[0003] 目前，在管道保温型组合聚醚中所使用的物理发泡剂以 141b（一氟二氯乙烷）为主，因 141b（一氟二氯乙烷）的 ODP=0.11, 要想达到完全环保的目的是做不到的，所以决定

发明内容
[0004] 本发明所要解决的技术问题是提供一种应用于管道保温的环保型组合料及其制备方法，利用 HFC-365/227（1,1,1,3,3-五氟丁烷和 1,1,1,2,3,3,3-七氟丙烷）的混合物为物理发泡剂配置管道保温型组合聚醚的制作，在达到环保目的的同时，降低泡沫的导热系数，各项指标达到国标的要求。

[0005] 本发明应用于管道保温的环保型组合料，其特征在于由 A 组分和 B 组分构成，其中：

A 组份为，以重量百分数计：
- 聚醚多元醇 A：30–50
- 聚醚多元醇 B：20–40
- 聚醚多元醇：10–20
- 泡沫稳定剂：1.0–3.0
- 化学发泡剂：1.0–3.0
- 催化剂：0.3–2.5
- 物理发泡剂：15–25

B 组份为：

3
聚合二苯基甲烷二异氰酸酯

所述聚醚多元醇 A 为 4.6 官能度，数均分子量为 530~630 的聚醚多元醇。

【0006】所述聚醚多元醇 B 为 4.2 官能度，数均分子量为 570~670 的聚醚多元醇。

【0007】所述聚醚多元醇 C 为 3.0 官能度，数均分子量为 500~600 的聚醚多元醇。

【0008】所述泡沫稳定剂为非水解硅酸类表面活性剂，优选 L-6865（迈图公司生产，市售产品）。

【0009】所述化学发泡剂优选采用去离子水。

【0010】所述催化剂为叔胺类催化剂，优选 PC8 (N, N 二甲基环已胺) 和 Y-27 (N, N 二甲基苄胺)。

【0011】所述物理发泡剂为 1,1,1,3-五氟丙烷和 1,1,1,2,3,3,3-七氟丙烷的混合物，HFC-365/227，其中 HFC-365mfc (1,1,1,3-五氟丙烷) 的质量含量为 87%。

【0012】制备应用于管道保温的环保型组合料的方法，主要是制备 A 组份料：将称量好的聚醚多元醇、聚醚多元醇、稳定剂、化学发泡剂、催化剂、物理发泡剂，依次加入反应釜中，在常温下搅拌 2.0 小时，即可装桶；

B 组分料为聚合二苯基甲烷二异氰酸酯，直接装桶。

【0013】使用时，将 A、B 组份料按 A:B=100:100 110 的重量配比混合即可制成环保型聚氨酯泡沫材料。

【0014】本发明的优点：A 组份料是在常温下进行，既节约能源又减少供能设备和繁琐的操作。由 A、B 组份料生产管道保温的环保型聚氨酯泡沫材料也是在常温、常压下进行，工艺简单，易操作，挥发低，无三废，产品质量稳定，生产成本低。利用 HFC-365/227（1,1,1,3,3-五氟丙烷和 1,1,1,2,3,3,3-七氟丙烷）的混合物为物理发泡剂配置管道保温型组合聚醚的制作，在达到环保目的的同时，降低泡沫的导热系数，各项指标达到国标的要求。经检测应用于管道保温的环保型聚氨酯泡沫产品质量指标，可以达到：

- 密度：
 \[\geq 60 \text{kg/m}^3 \]

- 抗压强度：
 \[\geq 0.3 \text{MPa} \]

- 导热系数：
 \[\leq 0.033 \text{W/m.k} \]

- 吸水率：
 \[\leq 10 \% \]

- 尺寸稳定性（100℃）：
 \[\leq 1.5 \% \]

- 平均孔径：
 \[\leq 0.5 \text{mm} \]

- 闭孔率：
 \[\geq 88\% \]

性能完全达到了 CJ/T 114-2000 管道保温硬质聚氨酯泡沫塑料的要求。

具体实施方式

【0015】以下结合实施例说明本发明，但不限定本发明。

【0016】实施例 1：

制备 A 组份料 100 公斤，分别称量：聚醚多元醇 A (4.6 官能度，分子量为 530~630) 40 公斤，聚醚多元醇 B (4.2 官能度，分子量为 570~670) 30.4 公斤，聚醚多元醇 C (3.0 官能度，分子量为 500~600) 9.6 公斤，催化剂 PC8 (N, N 二甲基环己胺) 0.64 公斤，Y-27 (N, N 二甲基苄胺) 0.8 公斤，水 0.96 公斤，L-6865 1.6 公斤，HFC-365/227 16 公斤。将称量好的
聚醚多元醇、聚酯多元醇、稳定剂、化学发泡剂、催化剂、物理发泡剂，依次加入反应釜中，在常温下搅拌2小时，取出进行检验，满足工艺参数，发出满意泡沫，即得A组份合格产品，从反应釜中取出装桶入库。

B组分料为：聚合二苯基甲烷二异氰酸酯。

将A、B组配料按A:B=100:100重量配比混合制成应用于管道保温的环保型聚氨酯泡沫，检测产品质量指标。

<table>
<thead>
<tr>
<th>密度</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65.3kg/m³</td>
<td></td>
</tr>
<tr>
<td>抗压强度</td>
<td>0.33MPa</td>
</tr>
<tr>
<td>导热系数</td>
<td>0.020W/m.k</td>
</tr>
<tr>
<td>吸水率</td>
<td>4.1 V/V%</td>
</tr>
<tr>
<td>尺寸稳定性（100℃）</td>
<td>1.1%</td>
</tr>
<tr>
<td>平均孔径</td>
<td>0.3mm</td>
</tr>
<tr>
<td>闭孔率</td>
<td>92.3%</td>
</tr>
</tbody>
</table>

实施例2:

制备A组份料100公斤，分别称量：聚醚多元醇A(4.6官能度，分子量为530～630)35.2公斤，聚醚多元醇B(4.2官能度，分子量为570～670)32公斤，聚酯多元醇(3.0官能度，分子量为500～600)12.8公斤，催化剂PC8(N，N二甲基环己胺)0.48公斤 Y-27(N，N二甲基苄胺)0.64公斤，水1.28公斤，L-68651.6公斤，HFC-365/22716公斤。将称量好的聚醚多元醇、聚酯多元醇、稳定剂、化学发泡剂、催化剂、物理发泡剂，依次加入反应釜中，在常温下搅拌2小时，取出进行检验，满足工艺参数，发出满意泡沫，即得A组份合格产品，从反应釜中取出装桶入库。

将A、B组配料按A:B=100:105重量配比混合制成应用于管道保温的环保型聚氨酯泡沫。检测产品质量指标。

<table>
<thead>
<tr>
<th>密度</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65.7kg/m³</td>
<td></td>
</tr>
<tr>
<td>抗压强度</td>
<td>0.36MPa</td>
</tr>
<tr>
<td>导热系数</td>
<td>0.019W/m.k</td>
</tr>
<tr>
<td>吸水率</td>
<td>4.0 V/V%</td>
</tr>
<tr>
<td>尺寸稳定性（100℃）</td>
<td>1.0%</td>
</tr>
<tr>
<td>平均孔径</td>
<td>0.28mm</td>
</tr>
<tr>
<td>闭孔率</td>
<td>92.7%</td>
</tr>
</tbody>
</table>

实施例3:

制备A组份料100公斤，分别称量：聚醚多元醇A(4.6官能度，分子量为530～630)36公斤，聚醚多元醇B(4.2官能度，分子量为450～550)32公斤，聚酯多元醇(3.0官能度，分子量为500～600)12公斤，催化剂PC8(N，N二甲基环己胺)0.56公斤 Y-27(N，N二甲基苄胺)0.4公斤，水1.44公斤，L-68651.6公斤，HFC-365/22716.0公斤。将称量好的聚醚多元醇、聚酯多元醇、稳定剂、化学发泡剂、催化剂、物理发泡剂，依次加入反应釜中，在常温下搅拌2小时，取出进行检验，满足工艺参数，发出满意泡沫，即得A组份合格产品，从反应釜中取出装桶入库。

将A、B组配料按A:B=100:110重量配比混合制成应用于管道保温的环保型聚氨酯
泡沫。检测产品质量指标。

<table>
<thead>
<tr>
<th>参数</th>
<th>值</th>
</tr>
</thead>
<tbody>
<tr>
<td>密度</td>
<td>66.2 kg/m³</td>
</tr>
<tr>
<td>抗压强度</td>
<td>0.41 MPa</td>
</tr>
<tr>
<td>导热系数</td>
<td>0.019 W/m.k</td>
</tr>
<tr>
<td>吸水率</td>
<td>3.9%</td>
</tr>
<tr>
<td>尺寸稳定性（100℃）</td>
<td>0.9%</td>
</tr>
<tr>
<td>平均孔径</td>
<td>0.28 mm</td>
</tr>
<tr>
<td>闭孔率</td>
<td>92.8%</td>
</tr>
</tbody>
</table>