Thermoplastic elastomers can be produced by (co)polymerising monomers from the group of C_2-C_6-α-olefins, C_8-C_16-diolols and other monomers in the solid phase, in solution, as slurry or in the gas phase where metalloccen compounds or π-complex compounds of formulas (I) or (XIII), are used as catalysts, in which Cpl and Cpl' represent carbaniols with a structure containing cyclopentadienyl, π 1 and π 1I represent charged or electrically neutral π-systems, D represent a donor atom and A an acceptor atom, wherein D and A are linked by a reversible, coordinate bond such that the donor group adopts a positive (partial) charge and the acceptor group a negative (partial) charge, M stands for a transition metal of the IIIrd, IVth, Vth or VIth subgroup of the periodic system of elements including lanthanides and actinoids, X stands for an anion equivalent and n, depending on the charge of M, is 0, 1, 2, 3 or 4.
(57) Zusammenfassung

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäß dem PCT veröffentlichen.

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albanien</td>
</tr>
<tr>
<td>AM</td>
<td>Armenien</td>
</tr>
<tr>
<td>AT</td>
<td>Österreich</td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
</tr>
<tr>
<td>AZ</td>
<td>Aserbaidschan</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnien-Herzegowina</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
</tr>
<tr>
<td>CF</td>
<td>Zentralafrikanische Republik</td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
</tr>
<tr>
<td>CU</td>
<td>Kuba</td>
</tr>
<tr>
<td>CZ</td>
<td>Tschechische Republik</td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
</tr>
<tr>
<td>EE</td>
<td>Estland</td>
</tr>
<tr>
<td>ES</td>
<td>Spanien</td>
</tr>
<tr>
<td>FI</td>
<td>Finnland</td>
</tr>
<tr>
<td>FR</td>
<td>Frankreich</td>
</tr>
<tr>
<td>GA</td>
<td>Gabun</td>
</tr>
<tr>
<td>GB</td>
<td>Vereinigtes Königreich</td>
</tr>
<tr>
<td>GE</td>
<td>Georgien</td>
</tr>
<tr>
<td>GH</td>
<td>Ghana</td>
</tr>
<tr>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>GR</td>
<td>Griechenland</td>
</tr>
<tr>
<td>HU</td>
<td>Ungarn</td>
</tr>
<tr>
<td>IE</td>
<td>Irland</td>
</tr>
<tr>
<td>IL</td>
<td>Israel</td>
</tr>
<tr>
<td>IS</td>
<td>Island</td>
</tr>
<tr>
<td>IT</td>
<td>Italien</td>
</tr>
<tr>
<td>JP</td>
<td>Japaa</td>
</tr>
<tr>
<td>KE</td>
<td>Kenia</td>
</tr>
<tr>
<td>KG</td>
<td>Kirgisistan</td>
</tr>
<tr>
<td>KP</td>
<td>Demokratische Volksrepublik</td>
</tr>
<tr>
<td>KR</td>
<td>Republik Korea</td>
</tr>
<tr>
<td>KZ</td>
<td>Kasachstan</td>
</tr>
<tr>
<td>LC</td>
<td>St. Lucia</td>
</tr>
<tr>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>LR</td>
<td>Liberia</td>
</tr>
<tr>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td>LT</td>
<td>Litauen</td>
</tr>
<tr>
<td>LU</td>
<td>Luxemburg</td>
</tr>
<tr>
<td>LV</td>
<td>Lettland</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>MD</td>
<td>Republik Moldau</td>
</tr>
<tr>
<td>MG</td>
<td>Madagaskar</td>
</tr>
<tr>
<td>MK</td>
<td>Die ehemalige jugoslawische Republik Macedonien</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolei</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritaniyen</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>MX</td>
<td>Mexiko</td>
</tr>
<tr>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>NL</td>
<td>Niederland</td>
</tr>
<tr>
<td>NO</td>
<td>Norwegen</td>
</tr>
<tr>
<td>NZ</td>
<td>Neuseeland</td>
</tr>
<tr>
<td>PL</td>
<td>Polen</td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Rumänien</td>
</tr>
<tr>
<td>RU</td>
<td>Russische Föderation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Schweden</td>
</tr>
<tr>
<td>SG</td>
<td>Singapur</td>
</tr>
<tr>
<td>SI</td>
<td>Slowenien</td>
</tr>
<tr>
<td>SK</td>
<td>Slowakei</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SZ</td>
<td>Swasiland</td>
</tr>
<tr>
<td>TD</td>
<td>Tschad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tadschikistan</td>
</tr>
<tr>
<td>TM</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>TR</td>
<td>Türkei</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad und Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>US</td>
<td>Vereinigte Staaten von Amerika</td>
</tr>
<tr>
<td>UZ</td>
<td>Usbekistan</td>
</tr>
<tr>
<td>VN</td>
<td>Vietnam</td>
</tr>
<tr>
<td>YU</td>
<td>Jugoslawien</td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
</tbody>
</table>
Verfahren zur Herstellung von thermoplastischen Elastomeren

Die vorliegende Erfindung bezieht sich auf den Einsatz von \(\pi \)-Systemen oder von Metallocen-Verbindungen, in denen ein Übergangsmetall mit zwei \(\pi \)-Systemen und zwar insbesondere mit aromatischen \(\pi \)-Systemen, wie anionischen Cyclopentadienyl-Liganden (Carbanionen), komplexiert ist und die beiden Systeme durch mindestens eine Brücke aus einem Donor und einem Akzeptor reversibel miteinander verbunden sind, als metallorganische Katalysatoren in einem Verfahren zur Herstellung von thermoplastischen Elastomeren durch (Co)Polymerisation von Monomeren aus der Gruppe der C2-C8-\(\alpha \)-Olefine, der C4-C_{15}-Diolefine, der ein- oder zweifach halogenierten Diolefine, der Vinylester, (Meth)Acrylate und Styrol. Die zwischen dem Donoratom und dem Akzeptoratom entstehende koordinative Bindung erzeugt in der Donorgruppe eine positive (Teil)Ladung und in der Akzeptorgruppe eine negative (Teil)Ladung:

\[
\Delta^+ \quad \Delta^-
\]

[Donorgruppe \(\rightarrow \) Akzeptorgruppe]

und Anmeldungen auf diesem Gebiet besteht weiterhin der Wunsch nach verbesserten Katalysatoren, die sich durch hohe Aktivität auszeichnen, so daß die Menge des im Polymer verbleibenden Katalysators gering angesetzt werden kann, und die sich gleichermaßen für die Polymerisation und Copolymerisation von Olefinen zu Thermoplasten und zu elastomeren Produkten als auch für die Polymerisation und Copolymerisation von Diolefinen, gegebenenfalls mit Olefinen, eignen.

toren aktiviert werden können, das dadurch gekennzeichnet ist, daß als metallorganische Katalysatoren Metallocen-Verbindungen der Formel

\[\Delta + D \xrightarrow{\text{CPI}} MX_n \]
\[\Delta - A \xrightarrow{\text{CpII}} \]

(la)

\[\xrightarrow{\text{CpI}} \]
\[\xrightarrow{\text{CpII}} A \]

(lb)

in der

D ein Donoratom bedeutet, das zusätzlich Substituenten tragen kann und das in seinem jeweiligen Bindungszustand mindestens über ein freies Elektronenpaar verfügt,

A ein Akzeptoratom bedeutet, das zusätzlich Substituenten tragen kann und das in seinem jeweiligen Bindungszustand eine Elektronenpaar-Lücke aufweist,

wobei D und A durch eine reversible koordinative Bindung derart verknüpft sind, daß die Donorgruppe eine positive (Teil)Ladung und die Akzeptorgruppe eine negative (Teil)Ladung annehmen.
für ein Übergangsmetall der III., IV., V. oder VI. Nebengruppe des Periodensystems der Elemente (Mendeleyew) einschließlich der Lanthaniden und Actiniden steht,

ein Anionäquivalent bedeutet und

in Abhängigkeit von der Ladung von M die Zahl Null, Eins, Zwei, Drei oder Vier bedeutet,

oder π-Komplex-Verbindungen und insbesondere Metallocen-Verbindungen der Formel

\[
\Delta^+ \quad D \quad \pi I \quad \xrightarrow{\text{(XIIIa)}} \quad \Delta^- \quad A \quad \pi II \quad \xrightarrow{\text{MX}_n} \quad D \quad \pi I \quad \pi II \quad A
\]

in der

πI und πII voneinander verschiedene geladene oder elektrisch neutrale π-Systeme darstellen, die ein- oder zweifach mit ungesättigten oder gesättigten Fünf- oder Sechtringen kondensiert sein können,

ein Donoratom bedeutet, das Substituent von πI oder Teil des π-Systems von πI ist und das in seinem jeweiligen Bindungszustand mindestens über ein freies Elektronenpaar verfügt,

ein Akzeptoratom bedeutet, das Substituent von πII oder Teil des π-Systems von πII ist und das in seinem jeweiligen Bindungszustand eine Elektronenpaar-Lücke aufweist,
wobei D und A durch eine reversible koordinative Bindung derart verknüpft sind, daß die Donorgruppe eine positive (Teil)Ladung und die Akzeptorgruppe eine negative (Teil)Ladung annehmen und wobei mindestens eines von D und A Teil des jeweils zugehörigen π-Systems ist,

wobei D und A ihrerseits Substituenten tragen können,

wobei jedes π-System bzw. jedes ankondensierte Ringsystem eines oder mehrere D oder A oder D und A enthalten kann und

wobei in πI und πII in der nicht kondensierten oder in der kondensierten Form unabhängig voneinander eines bis alle H-Atome des π-Systems durch gleiche oder verschiedene Reste aus der Gruppe von linearem oder verzweigtem C_1-C_20-Alkyl, das 1-fach bis vollständig durch Halogen, 1-3fach durch Phenyl sowie 1-3fach durch Vinyl substituiert sein kann, C_6-C_12-Aryl, Halogenaryl mit 6 bis 12 C-Atomen, Organometall-Substituenten, wie Silyl, Trimethylsilyl, Ferrocenyl sowie ein- oder zweifach durch D und A substituiert sein können, so daß die reversible koordinative D→A-Bindung (i) zwischen D und A, die beide Teile des jeweiligen π-Systems oder des ankondensierten Ringsystems sind, oder (ii) von denen D oder A Teil des π-Systems oder des ankondensierten Ringsystems und das jeweils andere Substituent des nicht kondensierten π-Systems oder des ankondensierten Ringsystems ist (sind), ausgebildet wird,

M und X die obige Bedeutung haben und

n in Abhängigkeit von den Ladungen von M sowie denen von π-I und π-II die Zahl Null, Eins, Zwei, Drei oder Vier bedeutet,

eingesetzt werden.

Erfindungsgemäß π-Systeme sind substituiertes und nicht substituiertes Ethylen, Allyl, Pentadienyl, Benzyl, Butadien, Benzol, das Cyclopentadienylanion und die sich
durch Ersatz mindestens eines C-Atoms durch ein Heteroatom ergebenden Spezies. Unter den genannten Spezies sind die cyclischen bevorzugt. Die Art der Koordination solcher Liganden (π-Systeme) zum Metall kann vom σ-Typ oder vom π-Typ sein.

Solche erfindungsgemäß einzusetzenden Metallocen-Verbindungen der Formel (I) können hergestellt werden, indem man entweder je eine Verbindung der Formeln (II) und (III)

5

![Diagram](image)

oder je eine Verbindung der Formeln (IV) und (V)

10

![Diagram](image)

oder je eine Verbindung der Formeln (VI) und (VII)

15

![Diagram](image)

unter Austritt von MX in Gegenwart eines aprotischen Lösungsmittels oder je eine Verbindung der Formeln (VIII) und (III)

20
oder je eine Verbindung der Formeln (IV) und (IX)

oder je eine Verbindung der Formeln (X) und (VII)

unter Austritt von \(\text{E}(\text{R}^1\text{R}^2\text{R}^3)\text{X} \) und \(\text{F}(\text{R}^4\text{R}^5\text{R}^6)\text{X} \) in Abwesenheit oder in Gegenwart eines aprotischen Lösungsmittels miteinander umsetzt, wobei

\(\text{CpI}, \text{CpII}, \text{D}, \text{A}, \text{M}, \text{X} \) und \(n \) die obige Bedeutung haben,

\(\text{CpIII} \) und \(\text{CpIV} \) zwei gleiche oder verschiedene ungeladene Moleküleite mit einer Cyclopentadien-haltigen Struktur darstellen, ansonsten aber \(\text{CpI} \) und \(\text{CpII} \) gleichen,

\(\text{M'} \) ein Kationäquivalent eines (Erd)Alkalimetalls oder Tl bedeutet,

\(\text{E} \) und \(\text{F} \) unabhängig voneinander eines der Elemente Si, Ge oder Sn bedeuten und
R^1, R^2, R^3, R^4, R^5 und R^6 unabhängig voneinander für geradkettiges oder verzweigtes C_1-C_{20}-Alkyl, C_6-C_{12}-Aryl sowie C_1-C_{20}-Alkyl-C_6-C_{12}-Aryl und C_6-C_{12}-Aryl-C_1-C_{20}-Alkyl, Vinyl, Alkyl oder Halogen stehen,

wobei weiterhin in den Formeln (VIII), (IX), (X) anstelle von E(R^1R^2R^3) und F(R^4R^5R^6) Wasserstoff stehen kann und in diesem Falle X auch für ein Amidanion vom Typ R_2N^0 oder ein Carbanion vom Typ R_3C^0 oder ein Alkoholatanion vom Typ RO^0 stehen kann, und wobei es weiterhin möglich ist, Verbindungen der Formeln (II) oder (VIII) in Gegenwart von Verbindungen der Formeln (V) oder (IX) direkt mit einer Übergangsmetall-Verbindung der Formel (VII) umzusetzen.

Bei der Reaktion von (VIII) mit (III) bzw. (IV) mit (IX) bzw. (X) mit (VII) bildet sich bei der zuletzt genannten Variante die Struktur (I) unter Austritt von Amin R_2NH bzw. R_2NE(R^1R^2R^3) bzw. R_2NF(R^4R^5R^6) oder einer Kohlenwasserstoffverbindung der Formel R_3CH bzw. R_3CE(R^1R^2R^3) bzw. R_3CF(R^4R^5R^6) oder eines Ethers ROE(R^1R^2R^3) bzw. ROF(R^4R^5R^6), worin die organischen Reste R gleich oder verschieden und unabhängig voneinander C_1-C_{20}-Alkyl, C_6-C_{12}-Aryl, substituiertes oder unsubstituiertes Allyl, Benzyl oder Wasserstoff sind. Beispiele für austretendes Amin oder Kohlenwasserstoff, Ether, Silan, Stannan oder German sind etwa Dimethylamin, Diethy lam in, Di-(n-propyl)-amin, Di-(isopropyl)-amin, Di-(tertiär-butyl)-amin, Tertiärbutylamin, Cyclohexylamin, Anilin, Methyl-phenyl-amin, Di-(allyl)-amin bzw. Methan, Toluol, Trimethylsilylamin, Trimethylsilyl-ether, Tetramethylsilan und ähnliches.

Es ist auch möglich, Verbindungen der Formeln (II) oder (VIII) in Gegenwart von Verbindungen der Formeln (V) oder (IX) direkt mit einer Übergangsmetall-Verbindung der Formel (VII) umzusetzen.

π-Komplex-Verbindungen der Formel (XIII), in denen die π-Systeme cyclisch und aromatisch sind (Metallocene), können analog hergestellt werden, wobei sinngemäß die folgenden Verbindungen eingesetzt werden:
Die erfindungsgemäß einsetzbaren Katalysatoren der Formeln (I) bzw. (XIII) können sowohl in monomerer als auch in dimerer oder oligomerer Form vorliegen.

Erfindungsgemäß wird in der Masse-, Lösungs-, Slurry- oder Gas-Phase bei -60 bis 250°C, bevorzugt 0 bis +200°C und 1 bis 65 bar und in Gegenwart oder Abwesenheit von gesättigten oder aromatischen Kohlenwasserstoffen oder von gesättigten oder aromatischen Halogenkohlenwasserstoffen und in Gegenwart oder Abwesenheit von Wasserstoff gearbeitet, wobei die Metallocen-Verbindungen bzw. die π-Komplex-Verbindungen als Katalysatoren in einer Menge von 10^1 bis 10^{12} mol aller Monomeren pro mol Metallocen bzw. die π-Komplex-Verbindungen eingesetzt werden und wobei weiterhin in Gegenwart von Lewis-Säuren, Brönstedt-Säuren oder Pearson-Säuren oder zusätzlich in Gegenwart von Lewis-Basen gearbeitet werden kann.

Erfindungsgemäß können weiterhin die Reaktionsprodukte solcher ionisierender Agentien mit Metallocen-Verbindungen der Formel (I) eingesetzt werden. Sie lassen sich durch die Formeln (XIA) bis (XID) beschreiben

\[
\begin{array}{c}
\Delta^+ \quad \text{D} \\
\Delta^- \quad \text{A}
\end{array}
\]

\[
\begin{array}{c}
\text{Cpl} \\
\text{MX}_{n-1}
\end{array}
\]

\[\text{Anion}^-(XIA)\]
oder

\[
\begin{align*}
\Delta^+ & \quad D \quad \text{Cpl} \quad \text{MX}_{n-1} \quad \text{Base} \\
\Delta^- & \quad A \quad \text{CplII} \\
\end{align*}
\]

\[\text{Anion}^- \] \quad (Xlb)

5

bzw.

\[
\begin{align*}
\Delta^+ & \quad D \quad \text{\pi I} \\
\Delta^- & \quad A \quad \text{\pi II} \\
\end{align*}
\]

\[\text{Anion}^- \] \quad (Xlc)

10

oder

\[
\begin{align*}
\Delta^+ & \quad D \quad \text{\pi I} \\
\Delta^- & \quad A \quad \text{\pi II} \\
\end{align*}
\]

\[\text{Anion}^- \quad \text{MX}_{n-1} \quad \text{Base} \] \quad (Xld)

in denen

Anion für das gesamte sperrige, schlecht koordinierende Anion und Base für eine Lewis-Base stehen.

Beispiele für solche schlecht koordinierende Anionen sind z.B.
oder Sulfonate, wie Tosylat oder Triflat, Tetrafluorborate, Hexafluorphosphate oder -antimonate, Perchlorate, sowie voluminöse Cluster-Molekülanionen vom Typ der Carborane, beispielsweise $\text{C}_2\text{B}_9\text{H}_{12}^\Theta$ oder $\text{CB}_{11}\text{H}_{12}^\Theta$. Beim Vorliegen solcher Anionen können Metallocen-Verbindungen auch bei Abwesenheit von Aluminoxan als hochwirksame Polymerisationskatalysatoren wirken. Das ist vor allem dann der Fall, wenn ein X-Ligand eine Alkylgruppe, Allyl oder Benzyl darstellt. Es kann aber auch vorteilhaft sein, solche Metallocen-Komplexe mit voluminösen Anionen in Kombination mit Aluminiumalkylen, wie $(\text{CH}_3)_3\text{Al}$, $(\text{C}_2\text{H}_5)_3\text{Al}$, $(n-/i-\text{Propyl})_3\text{Al}$, $(n-/t-\text{Butyl})_3\text{Al}$, $(i-\text{Butyl})_3\text{Al}$, die isomeren Pentyl-, Hexyl- oder Octyl-Aluminiumalkyle, oder Lithiumalkylen, wie Methyl-Li, Benzyll-Li, Butyl-Li oder den entsprechenden Mg-organischen Verbindungen, wie Grignard-Verbindungen oder Zn-Organylen, einzusetzen. Solche Metallalkyle übertragen einerseits Alkylgruppen auf das Zentralmetall, andererseits fangen sie Wasser oder Katalysatorgifte aus dem Reaktionsmedium bzw. Monomer bei Polymerisationsreaktionen ab. Metallalkyle der beschriebenen Art können auch vorteilhaft in Kombination mit Aluminoxan-Cokatalysatoren eingesetzt werden, etwa um die benötigte Menge an Aluminoxan zu erniedrigen. Beispiele für Borverbindungen, mit denen solche Anionen eingeführt werden können, sind:

- Triethylammonium-tetraphenyloborat,
- Tripropylammonium-tetraphenyloborat,
- Tri$(n$-butyl)ammonium-tetraphenyloborat,
- Tri$(t$-butyl)ammonium-tetraphenyloborat,
- N,N-Dimethylanilinium-tetraphenyloborat,
N,N-Diethylanilinium-tetraphenylborat,
N,N-Dimethyl(2,4,6-trimethylanilinium)tetraphenylborat,
Trimethylammonium-tetrakis(pentafluorophenyl)borat, Triethylammonium-tetrakis(pentafluorophenyl)borat,
Tripropylammonium-tetrakis(pentafluorophenyl)borat,
Tri(n-butyl)ammonium-tetrakis(pentafluorophenyl)borat, Tri(sec-butyl)ammonium-tetrakis(pentafluorophenyl)borat,
N,N-Dimethylanilinium-tetrakis(pentafluorophenyl)borat,
N,N-Diethylanilinium-tetrakis(pentafluorophenyl)borat, N,N-dimethyl(2,4,5-trimethylanilinium)-tetrakis(pentafluorophenyl)borat,
Trimethylammonium-tetrakis(2,3,4,6-tetrafluorophenyl)borat,
Triethylammonium-tetrakis(2,3,4,6-tetrafluorophenyl)borat,
Tripropylammonium-tetrakis(2,3,4,6-tetrafluorophenyl)borat,
Tri(n-butyl)ammonium-tetrakis(2,3,4,6-tetrafluorophenyl)borat,
Dimethyl(t-butyl)ammonium-tetrakis(2,3,4,6-tetrafluorophenyl)borat,
N,N-Dimethylanilinium-tetrakis(2,3,4,6-tetrafluorophenyl)borat,
N,N-Diethylanilinium-tetrakis(2,3,4,6-tetrafluorophenyl)borat,
N,N-Dimethyl-(2,4,6-trimethylanilinium)-tetrakis-(2,3,4,6-tetrafluorophenyl)borat;
Diarylammonium-Salze, wie:
Di-(i-propyl)ammonium-tetrakis(pentafluorophenyl)borat und
Dicyclohexylammonium-tetrakis(pentafluorophenyl)borat;
Tri-substituierte Phosphonium-Salze, wie:
Triphenylphosphonium-tetrakis(pentafluorophenyl)borat,
Tri(o-tolyl)phosphonium-tetrakis(pentafluorophenyl)borat,
Tri(2,6-dimethylphenyl)phosphonium-tetrakis(pentafluorophenyl)borat,
Tri(tolyl)imethyl-tetrakis(pentafluorophenyl)borat,
Triphenylmethy-tetraphenylborat (Trityl-tetraphenylborat),
Trityl-tetrakis(pentafluorophenyl)borat,
Silber-tetrafluorborat,
Tris(pentafluorophenyl)boran,
Tris(trifluormethyl)boran.
Die erfindungsgemäß einzusetzenden Metallocen-Verbindungen bzw. die π-Komplex-Verbindungen können isoliert als Reinstoffe zur (Co)Polymerisation eingesetzt werden. Es ist aber auch möglich, sie "in situ" im (Co)Polymerisationsreaktor in einer dem Fachmann bekannten Weise zu erzeugen und zu verwenden.

Solche Cyclopentadiengerüste sind in Form ihrer Anionen ausgezeichnete Liganden für Übergangsmetalle, wobei jedes Cyclopentadienyl-Carbanion der genannten, gegebenenfalls substituierten Form eine positive Ladung des Zentralmetalls im Komplex kompensiert. Einzelbeispiele für solche Carbanionen sind: Cyclopentadienyl, Methyl-cyclopentadienyl, 1,2-Dimethyl-cyclopentadienyl, 1,3-Dimethyl-cyclopentadienyl, Indenyl, 2-Phenylindenyl, 2-Methyl-indenyl, 2-Methyl-4-phenyl-indenyl, 2,4,7-tri-
methyl-indenyl, 1,2-Diethyl-cyclopentadienyl, Tetramethyl-cyclopentadienyl, Ethyl-
cyclopentadienyl, n-Butyl-cyclopentadienyl, n-Octyl-cyclopentadienyl, β-Phenyl-
propyl-cyclopentadienyl, Tetrahydroindenyl, Propyl-cyclopentadienyl, t-Butyl-cyclo-
pentadienyl, Benzyl-cyclopentadienyl, Diphenylmethyl-cyclopentadienyl, Trimethyl-
germyl-cyclopentadienyl, Trimethylstannyl-cyclopentadienyl, Trimethylstannyl-cyclo-
pentadienyl, Trifluormethyl-cyclopentadienyl, Trimethylsilyl-cyclopentadienyl, Pent-
methylcyclopentadienyl, Fluorenyl, Tetrahydro- bzw. Octahydro-fluorenyl, am Sechs-
ring benzoanellierte Fluorenyle und Indenyle, N,N-Dimethylamino-cyclopentadienyl,
Dimethylphosphino-cyclopentadienyl, Methoxy-cyclopentadienyl, Dimethylboranyl-
cyclopentadienyl, (N,N-Dimethylaminomethyl)-cyclopentadienyl Zur Herstellung
hoch isotaktischer Blöcke (Sequenzen) eignen sich beispielsweise quasi-rac-
Bis(indenyl)-Metallocene mit D/A-Brücke, die zusätzlich z.B. Alkyl-, Aryl- und/oder
Silyl-Substituenten bzw. Benz-anellierte Strukturen, etwa in 2-Position bzw. 4,5,6,7-
Position, zur Steigerung von Molekulargewicht und Isotaktizität sowie Schmelz-
temperatur tragen können. Aber auch D/A-Bis(cyclopentadienyl)-Metallocene mit
Substitutionsmustern (3,3′) vergleichbarer Symmetrie kommen in Frage. Ent-
sprechend eigenen sich z.B. für die Herstellung syndiotaktischer Blöcke (Sequenzen)
D/A-verbrückte (cyclopentadienyl)(fluorenyl)-Metallocene oder aber (cyclopentadi-
enyl)(3,4-disubstituierte cyclopentadienyl)-Metallocene.

Neben der obligatorisch vorhandenen ersten Donor-Akzeptor-Bindung zwischen D
und A können weitere Donor-Akzeptor-Bindungen gebildet werden, wenn zusätzliche
D und/oder A als Substituenten der jeweiligen Cyclopentadiensysteme oder Substitu-
enten oder Teile der π-Systeme vorliegen. Alle Donor-Akzeptor-Bindungen sind
durch ihre oben dargestellte Reversibilität gekennzeichnet. Für den Fall mehrerer D
bzw. A können diese verschiedene der genannten Positionen einnehmen. Die Erfin-
dung umfaßt demnach sowohl die verbrückten Molekül-Zustände (Ia) bzw. (XIIIa) als
auch die unverbrückten Zustände (Ib) bzw. (XIIIb). Die Anzahl der D-Gruppen kann
gleich oder verschieden zur Anzahl der A-Gruppen sein. In bevorzugter Weise werden
CpI und CpII bzw. πI und πII über nur eine Donor-Akzeptor-Brücke verknüpft.

- D ist Teil des π-Systems, A ist Substituent des π-Systems;
- D ist Substituent des π-Systems, A ist Teil des π-Systems;
- D und A sind Teile ihres jeweiligen π-Systems.

Beispielsweise seien folgende heterocyclische Ringsysteme genannt, in denen D oder A Teile des Ringsystems sind:

tragen keine Substituenten. Dies wird am Beispiel von Phosphor P, Sauerstoff O und
Chlor Cl als Donoratome wie folgt verdeutlicht, wobei "Subst." solche genannten
Substituenten und "-Cp" die Bindung an das Cyclopentadienyl-haltige Carbanion
darstellen, ein Strich mit einem Pfeil, die in Formel (I) angegebene Bedeutung einer
koordinativen Binding hat und sonstige Striche vorhandene Elektronenpaare
bedeuten:

\[
\text{Subst.} \quad \begin{array}{c}
\text{Subst.} \quad \begin{array}{c}
\downarrow \\
\text{Cp}
\end{array}
\end{array}
\]

Als Akzeptorgruppen kommen vor allem solche in Frage, deren Akzeptoratom A ein
Element aus der 3. Hauptgruppe des Periodensystems der Elemente (Mendeljew), wie
Bor, Aluminium, Gallium, Indium und Thallium ist, sich in einem Bindungszustand
mit Substituenten befindet und eine Elektronenlücke besitzt.

D und A sind durch eine koordinative Binding verknüpft, wobei D eine positive

Es wird demnach zwischen dem Donoratom D und der Donorgruppe bzw. zwischen
dem Akzeptoratom A und der Akzeptorgruppe unterschieden. Die koordinative Bin-
dung \(D \rightarrow A \) wird zwischen dem Donoratom D und dem Akzeptoratom A hergestellt.

Die Donorgruppe bedeutet die Einheit aus dem Donoratom D, den gegebenenfalls
 vorhandenen Substituenten und den vorhandenen Elektronenpaaren; entsprechend
bedeutet die Akzeptorgruppe die Einheit aus dem Akzeptoratom A, den Substituenten
und der vorhandenen Elektronenlücke.

Die Bindung zwischen dem Donoratom bzw. dem Akzeptoratom und dem Cyclopent-
dadienyln-haltigen Carbanion kann durch Spacergruppen im Sinne von D-Spacer-Cp
bzw. A-Spacer-Cp unterbrochen sein. Im dritten der obigen Formelbeispiele stellt
\(=C(R) \)- einen solchen Spacer zwischen O und Cp dar. Solche Spacergruppen sind
beispielsweise:
Dimethylsilyle, Diethyldimethylsilyle, Di-n-propyldimethylsilyle, Di-n-butyldimethylsilyle, Di-t-butyldimethylsilyle, Di-n-hexylsilyle, Methylphenylsilyle, Ethylmethyldimethylsilyle, Diphenyldimethylsilyle, (p-t-butylphenylmethylsilyle), n-Hexyldimethylsilyle, Cyclopentamethylenilsilyle, Cyclotetramethylenilsilyle, Cyclotrimethylenilsilyle, Dimethyldiisopropylsilyle, Phenyldimethylsilyle, t-Butylamino, Methylamino, t-Butylphosphino, Ethylphosphino, Phenylphosphino, Methylphosphino, Dimethylphosphino, Diisopropylphosphino, Diethylphosphino, Ethylphosphine, Phosphine, Methylphosphine, Dimethylphosphine, Diisoo-

Donorgruppen sind solche, bei denen das freie Elektronenpaar am N, P, As, Sb, Bi, O, S, Se, Te, F Cl, Br, I lokalisiert ist; bevorzugt hiervon sind N, P, O, S. Beispielsweise als Donorgruppen seien genannt: (CH₃)₂N-, (C₂H₅)₂N-, (C₃H₇)₂N-, (C₄H₉)₂N-, (C₆H₁₃)₂N-, (CH₃)₂P-, (C₂H₅)₂P-, (C₃H₇)₂P-, (i-C₃H₇)₂P-, (C₄H₉)₂P-, (t-C₄H₉)₂P-, (Cyclohexyl)₂P-, (C₆H₅)₂P-, CH₃O-, CH₃S-, C₆H₅S-, -C(C₆H₅)=O, -C(CH₃)=O, -OSi(CH₃)₃, -OSi(CH₃)₂-t-butyl, in denen N und P je ein freies Elektronenpaar und O und S je zwei freie Elektronenpaare tragen und wobei in den beiden zuletzt genannten Beispielen der doppelt gebundene Sauerstoff über eine Spacergruppe gebunden ist, sowie Systeme, wie der Pyrrolidonring, wobei die von N verschiedenen Ringglieder ebenfalls als Spacer wirken.

Akzeptorgruppen sind solche, bei denen eine Elektronenpaar-Lücke am B, Al, Ga, In oder Tl, bevorzugt B, Al vorhanden ist; beispielsweise seien genannt: (CH₃)₂B-, (C₂H₅)₂B-, H₂B-, (C₆H₅)₂B-, (CH₃)(C₆H₅)B-, (Vinyl)₂B-, (Benzyl)₂B-, Cl₂B-, (CH₃O)₂B-, Cl₂Al-, (CH₃)₂Al-, (i-C₄H₉)₂Al-, (Cl)(C₂H₅)Al-, (CH₃)₂Ga-, (C₃H₇)₂Ga-, ((CH₃)₃Si-CH₂)₂Ga-, (Vinyl)₂Ga-, (C₆H₅)₂Ga-, (CH₃)₂In-, ((CH₃)₃Si-CH₂)₂In-, (Cyclopentadienyl)₂In-.

Bevorzugte Donor-Akzeptor-Brücken zwischen Cpl und CplII sind beispielsweise folgende:

\[
\begin{array}{cccc}
\text{N-Cpl} & \text{N-Cpl} & \text{P-Cpl} & \text{P-Cpl} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\text{B-CplII} & \text{Al-CplII} & \text{B-CplII} & \text{Al-CplII} \\
\end{array}
\]

Eines oder beide \(\pi\)-Systeme \(\pi\)I bzw. \(\pi\)II kann als Heterocyclus in Form der obigen Ringsysteme (a) bis (r) vorliegen. D ist hierbei bevorzugt ein Element der 5. oder 6. Hauptgruppe des Periodensystems der Elemente (Mendelejew); A ist hierbei bevorzugt Bor. Einzelbeispiele für solche Hetero-\(\pi\)-Systeme, insbesondere Heterocyclen sind:

\[
\begin{align*}
\text{H}_2\text{N} &= \text{C} = \text{C} \\
\text{H}_3\text{CN} &= \text{C} = \text{C} \\
\text{RH}_4\text{C}_6\text{N} &= \text{CH} = \text{HC} = \text{HC} = \text{C}_6\text{H}_4\text{R'}
\end{align*}
\]

\[
\begin{align*}
\text{R} &= \text{H, Alkyl, Aryl, Alkaryl z.B. Methyl, Ethyl, t-Butyl, Phenyl, o,o'-Di-(i-Propyl)-phenyl}
\end{align*}
\]
Beispiele für Heterocyclen sind: Pyrrol, Methylpyrrol, Dimethylpyrrol, Trimethylpyrrol, Tetramethylpyrrol, t-Butylpyrrol, Di-t-butylpyrrol, Indol, Methylinindol, Dimethylinindol, t-Butylindol, Di-t-butylindol, Tetramethylphospholyl, Tetraphenylphospholyl, Triphenylphospholyl, Trimethylphospholyl, Phosphaindenyl, Dibenzophospholyl (Phosphafluorenyl), Dibenzopyrrol.
Bei der Ausbildung der Metallocen-Struktur bzw. der π-Komplex-Struktur wird je eine positive Ladung des Übergangsmetalls M durch je ein Cyclopentadienyl-haltiges Carbanion kompensiert. Noch verbleibende positive Ladungen am Zentralatom M werden durch weitere, zumeist einwertige Anionen X abgesättigt, von denen zwei gleiche oder verschiedene auch miteinander verknüpft sein können (Dianionen \(\text{D}^x\), beispielsweise einwertig oder zweiwertig negative Reste aus gleichen oder verschieden, linearen oder verzweigten, gesättigten oder ungesättigten Kohlenwasserstoffen, Aminen, Phosphinen, Thioalkoholen, Alkoholen oder Phenolen. Einfache Anionen wie \(\text{CR}_3^-\), \(\text{NR}_2^-\), \(\text{PR}_2^-\), \(\text{OR}^-\), \(\text{SR}^-\) usw. können durch gesättigte oder ungesättigte Kohlenwasserstoff- oder Silan-Brücken verbunden sein, wobei Dianionen entstehen und die Anzahl der Brückenatome 0, 1, 2, 3, 4, 5, 6 betragen kann, bevorzugt sind 0 bis 4 Brückenatome, besonders bevorzugt 1 oder 2 Brückenatome. Die Brückenatome können außer H-Atomen noch weitere KW-Substituten R tragen. Beispiele für Brücken zwischen den einfachen Anionen sind etwa \(-\text{CH}_2^-\), \(-\text{CH}_2\text{CH}_2^-\), -(CH\(_2\))\(_3^-\), CH=CH, -(CH=CH\(_2\))\(_2^+\), -CH=CH-CH=CH\(_2^-\), CH\(_2^-\text{CH}=\text{CH}-\text{CH}_2^-\), -Si(CH\(_3\))\(_2^+\), C(CH\(_3\))\(_2^-\). Beispiele für X sind: Hydrid, Chlorid, Methyl, Ethyl, Phenyl, Fluorid, Bromid, Iodid, der n-Propylrest, der i-Propylrest, der n-Butylrest, der Amylrest, der i-Amylrest, der Hexylrest, der i-Butylrest, der Heptylrest, der Octylrest, der Nonylrest, der Decylrest, der Cetylrest, Methoxy, Ethoxy, Propoxy, Butoxy, Phe noxy, Dimethy lamino, Diethylamino, M ethylethylamino, Di-t-Butylamino, Diphenylamino, Diphenylphosphino, Dicyclohexylphosphino, Dimethylphosphino, M ethylen, Ethyliden, Propyldien, das Ethylenglykoladion. Beispiele für Dianionen sind 1,4-Diphenyl-1,3-butadienyl, 3-Methyl-1,3-pentadienyl, 1,4-Dibenzyl-1,3-butadienyl, 2,4-Hexadienyl, 1,3-Pentadienyl, 1,4-Ditolyl-1,3-butadienyl, 1,4-Bis(trimethylsilyl)-1,3-butadienyl, 1,3-Butadienyl. Besonders bevorzugt sind 1,4-Diphenyl-1,3-butandi enyl, 1,3-Pentadienyl, 1,4-Dibenzyl-1,3-butadienyl, 2,4-Hexadienyl, 3-Methyl-1,3-pentadienyl, 1,4-Ditolyl-1,3-butadienyl und 1,4-Bis(trimethylsilyl)-1,3-buta dienyl. Weitere Beispiele für Dianionen sind solche mit Heteroatomen, etwa der Struktur

\[R_2C\overset{\text{O}}{\text{O}}, R_2C\overset{\text{S}}{\text{S}}, R_2C\overset{\text{NR}}{\text{NR}}, \text{bzw. } R_2C\overset{\text{PR}}{\text{PR}}. \]
wobei die Brücke die angegebene Bedeutung hat. Besonders bevorzugt sind darüber hinaus zur Ladungskompensation schwach oder nicht koordinierende Anionen der obengenannten Art.

Der Index \(n \) nimmt in Abhängigkeit von der Ladung von M den Wert Null, Eins, Zwei, Drei oder Vier, bevorzugt Null, Eins oder Zwei an. Die oben genannten Nebengruppenmetalle können nämlich, unter anderem abhängig von ihrer Zugehörigkeit zu den Nebengruppen, Wertigkeiten/Ladungen von Zwei bis Sechs, bevorzugt Zwei bis Vier annehmen, von denen durch die Carbanionen der Metallocen-Verbindung jeweils zwei kompensiert werden. Im Falle von \(\text{La}^{3+} \) nimmt demnach der Index \(n \) den Wert Eins und im Falle von \(\text{Zr}^{4+} \) den Wert Zwei an; bei \(\text{Sm}^{2+} \) wird \(n = \text{Null} \).

Zur Herstellung der Metallocen-Verbindungen der Formel (I) kann man entweder je eine Verbindung der obigen Formeln (II) und (III) oder je eine Verbindung der obigen Formeln (IV) und (V) oder je eine Verbindung der obigen Formeln (VI) und (VII) oder je eine Verbindung der obigen Formeln (VIII) und (III) oder je eine Verbindung der obigen Formeln (IV) und (IX) oder je eine Verbindung der obigen Formeln (X)
und (VII) unter Austritt bzw. Abspaltung von Alkalimetall-X-, Erdalkalimetall-X₂-, Silyl-X-, Germyl-X-, StannyI-X- oder HX-Verbindungen in einem aprotischen Lösungsmittel bei Temperaturen von -78°C bis +120°C, vorzugsweise von -40°C bis +70°C und in einem Molverhältnis von (II):(III) bzw. (IV):(V) bzw. (VI):(VII) bzw. (VIII):(III) bzw. (IV):(IX) bzw. (X):(VII) von 1:0,5-2, vorzugsweise 1:0,8-1,2, besonders bevorzugt 1:1, miteinander umzusetzen. In den Fällen der Umsetzung von (VIII) mit (III) bzw. (IV) mit (IX) bzw. (X) mit (VII) ist es möglich, auf ein aprotisches Lösungsmittel zu verzichten, wenn (VIII), (IX) oder (X) unter Reaktionsbedingungen flüssig ist. Beispiele für solche austretenden bzw. abgespaltenen Verbindungen sind: TiCl, LiCl, LiBr, LiF, LiI, NaCl, NaBr, KCl, KF, MgCl₂, MgBr₂, CaCl₂, CaF₂, Trimethylchlorsilan, Triethylchlorsilan, Tri- (n-butyl)-chlorsilan, Triphenylchlorsilan, Trimethylchlorgerman, Trimethylchlorstannan, Dimethylamin, Diethylamin, Dibutylamin und weitere Verbindungen, die aus dem oben genannten Substitutionsmuster für den Fachmann erkennbar sind.

Verbindungen der Formel (II) bzw. (IV) stellen somit Carbanionen mit einem Cyclopentadienylgerüst oder einem heterocyclischen Gerüst dar, die zur D/A-Brückenbildung genutzte 1 bis 3 Donorgruppen kovalent gebunden oder als heterocyclische Ringglieder inkorporiert enthalten und als Gegenion zur negativen Ladung des Cyclopentadienylgerüstes ein Kation aufweisen. Verbindungen der Formel (VIII) sind ungeladene cyclische Gerüste mit ebenfalls zur D/A-Brückenbildung genutzten 1 bis 3 Donorgruppen, aber mit leicht abspaltbaren Abgangsgruppen E(R₁R₂R₃), wie Silyl-, Germyl- oder StannyIgruppen oder Wasserstoff, an Stelle der ionischen Gruppen.

Die zweite Komponente zur Ausbildung der erfindungsgemäß einzusetzenden Metallocen-Verbindungen, nämliche die Verbindung der Formel (III) bzw. (V) stellt ebenfalls ein Carbanion mit einem Cyclopentadienylgerüst dar, das gleich dem Cyclopentadienylgerüst der Verbindung (II) bzw. (IV) oder verschieden von ihm ist, jedoch 1 bis 3 Akzeptorgruppen an Stelle der Donorgruppen trägt. In entsprechender Weise sind Verbindungen der Formel (IX) ungeladene Cyclopentadien-Gerüste mit 1 bis 3 Akzeptorgruppen und ebenfalls leicht abspaltbaren Abgangsgruppen F(R⁴R⁵R⁶).
In völlig analoger Weise stellen Verbindungen der Formeln (VI) bzw. (X) Ausgangsstoffe mit vorgebildeter D → A-Bindung dar, die Carbanionen-Gegenkationen-Verbindungen bzw. ungeladene Cyclopentadien-Gerüste mit insgesamt möglichen 1 bis 3 D → A-Bindungen bedeuten und durch Reaktion mit Verbindungen der Formel (VII) die Metallocen-Verbindungen (I) ergeben.

Beide Ausgangsstoffe des Herstellungsverfahrens, nämlich (II) und (III) bzw. (IV) und (V) bzw. (VI) und (VII) bzw. (VIII) und (III) bzw. (IV) und (IX) bzw. (X) und (VII) reagieren beim Zusammentreffen spontan unter gleichzeitiger Ausbildung der Donor-Akzeptor-Gruppe -D → A- bzw. der Komplexierung des Metallkations M unter Austritt von M'X bzw. E(R₁R₂R₃)X bzw. F(R₄R₅R₆)X bzw. HX. Bei der Darstellung der Donor-Akzeptor-Gruppe wurden die Substituenten an D und A der Übersichtlichkeit halber weggelassen.

M' ist ein Kationäquivalent eines (Erd)Alkalimetalls, wie Li, Na, K, ½ Mg, ½ Ca, ½ Sr, ½ Ba, oder Thallium.

In der oben angegebenen Weise werden analog die Verbindungen der Formel (XIII a + b) hergestellt.

Die Ausgangsstoffe der Formeln (II), (III), (IV) und (V) können gemäß literaturbekannten Verfahren oder analog zu diesen hergestellt werden. So läßt sich beispielsweise analog zu J. of Organometallic Chem. (1971), 29, 227, das marktgängige Tri-

dung kann mit Titan tetrachlorid zu Phosphoryl-Titan tetrachlorid (Formel IV) umgesetzt werden.

\[
\begin{align*}
\text{Al} - \text{O} \\
\text{R} \\
\text{n}
\end{align*}
\]

verstanden, in der

\(R \)

für C₁–C₂₀-Alkyl, C₆–C₁₂-Aryl oder Benzyl steht und

\(n \)

eine Zahl von 2 bis 50, bevorzugt 10 bis 35 bedeutet.

Es ist ebenso möglich, ein Gemisch verschiedener Aluminoxane oder ein Gemisch von deren Vorläufern (Aluminiumalkylen) in Kombination mit Wasser (in gasförmiger, flüssiger, fester oder gebundener Form, etwa als Kristallwasser) einzusetzen. Das Wasser kann auch als (Rest)Feuchte des Polymerisationsmediums, des Monomers oder eines Trägers wie Silikagel zugeführt werden.

oder körniger Struktur ergeben. Aluminoxane sind marktgängige Verbindungen. Im speziellen Fall von \(R = \text{CH}_3 \) wird von Methylaluminoxanen (MAO) gesprochen.

Die π-Komplex-Verbindungen bzw. Metallocen-Verbindungen und die Aluminoxane bzw. die Bor-haltigen Aktivatoren können sowohl als solche in homogener Form als auch einzeln oder gemeinsam in heterogener Form auf Trägern eingesetzt werden. Das Trägermaterial kann hierbei anorganischer oder organischer Natur sein, wie Kieselgel, \(\text{Al}_2\text{O}_3 \), \(\text{MgCl}_2 \), \(\text{NaCl} \), Cellulosederivate, Stärke und Polymere. Hierbei kann sowohl erst die π-Komplex-Verbindung bzw. Metallocen-Verbindung als auch erst das Aluminoxan bzw. die Bor-haltigen Aktivatoren auf den Träger gebracht werden und die jeweils andere Komponente danach zugesetzt werden. Gleichermaßen kann man aber auch die π-Komplex-Verbindung bzw. Metallocen-Verbindung in homogener oder heterogener Form mit dem Aluminoxan oder einer geeigneten Borverbindung aktivieren und danach die aktivierte Metallocen-Verbindung auf den gegebenenfalls Aluminoxan-beladenen Träger bringen.

Trägermaterialien werden vorzugsweise thermisch und/oder chemisch vorbehandelt um den Wassergehalt bzw. die OH-Gruppenkonzentration definiert einzustellen oder möglichst niedrig zu halten. Eine chemische Vorbehandlung kann z.B. in der Umsetzung des Trägers mit Aluminiumalkyl bestehen. Anorganische Träger werden gewöhnlich vor Verwendung auf 100°C bis 1000°C während 1 bis 100 Stunden erhitzt.
Die Oberfläche solcher anorganischer Träger, insbesondere von Silica (SiO₂), liegt zwischen 10 und 1000 m²/g, vorzugsweise zwischen 100 und 800 m²/g. Der Teilchendurchmesser liegt zwischen 0,1 und 500 Mikrometer (μ), vorzugsweise zwischen 10 und 200 μ.

Durch (Co)Polymerisation umzusetzende Olefine, Diolefine, halogenierte Diolefine, (Meth)Acrylate und Vinylester sind beispielsweise Ethylen, Propylen, Buten-1, Penten-1, Hexen-1, Octen-1, 3-Methyl-buten-1, 4-Methyl-penten-1-, 4-Methyl-hexen-1, 1,3-Butadien, Isopren, 1,4-Hexadien, 1,5-Hexadien und 1,6-Octadien, Chloropren, Vinylacetat, Vinylpropionat und weitere dem Fachmann bekannte. Solche Olefine und Diolefine können weiterhin substituiert sein, beispielsweise mit Phenyl, substituiertem Phenyl, Halogen, der veresterten Carboxylgruppe, der Säureanhydridgruppe; Verbindungen dieser Art sind beispielsweise Styrol, Methylstyrol, Chlorostyrol, Fluorostyrol, Inden, 4-Vinyl-biphenyl, Vinyl-fluoren, Vinyl-anthracen, Methylmethacrylat, Ethylacrylat, Vinylsilan, Trimethylallylsilan, Vinylvchlorid, Allylendichlorid, Tetrafluorethylfen, Vinylcarbazol, Vinlypyrrolidon, Vinylether und Vinylester. Bevorzugte Monomere sind: Ethylen, Propylen, Buten, Hexen, Octen, 1,4-Hexadien, 1,6-Octadien, Methylmethacrylat und Acetylen.

Neben den genannten Dienen seien weiter als offenkettige, mono- und polycyclische die folgenden genannt: 5-Methyl-1,4-hexadien, 3,7-Dimethyl-1,6-octadien; Cyclopentadien, 1,4-Hexadien, 1,5-Cyclooctadien; Tetrahydroindien, Methyl-tetrahydroindien, Dicyclopentadien, Bicyclo-(2,2,1)-heptadien(2,5), Norbornene mit Substituenten, wie Alkenyl, Alkyliden, Cycloalkenyl, Cycloalkyliden, so etwa 5-Methyliden-2-norbornen (MNB), 5-Ethyldien-2-norbornen, 5-Isopropyliden-2-norbornen; Allylcyclohexen, Vinyl-cyclohexen.

Das erfindungsgemäße Verfahren wird in der Masse-, Lösungs-, Slurry- oder Gas-Phase durchgeführt, je nachdem, ob ein löslicher oder ein unlöslicher Katalysator

Zur Anwendung gelangen die obengenannten Temperaturen und Drücke. Für die Masse-, Lösungs- und Slurry-Verfahrensweise werden Temperaturen im unteren Bereich, etwa 0 bis 150°C, bevorzugt, für die Gasphase im Bereich von etwa 20 bis 100°C. Die Drücke übersteigen aus ökonomischen Gründen vielfach den Wert von 30 bar, bevorzugt 20 bar, nicht. Erfindungsgemäß wird in einem oder mehreren Reaktoren oder Reaktionszonen, z.B. in einer Reaktorkaskade, gearbeitet; im Falle mehrerer Reaktoren können verschiedene Polymerisationsbedingungen eingestellt werden.

Bei der Herstellung von thermoplastischen Elastomeren müssen demnach alternierende Polymerisationsbedingungen eingestellt werden, unter denen geordnete bzw. ungeordnete Blöcke entstehen.

Bei Monomeren mit 3 oder mehr C-Atomen sind bei gleicher chemischer Zusammensetzung, also dem Einsatz nur eines Monomeren, solche Strukturen möglich. Dies sei am Beispiel von thermoplastisch-elastomerem Propylen (e-PP) formelmäßig wie folgt dargestellt:

\[
\begin{align*}
(i\text{-PP} \rightarrow a\text{-PP})_n \\
(s\text{-PP} \rightarrow a\text{-PP})_n
\end{align*}
\] stellen beide e-PP dar.

\[i = \text{isotaktisch, } s = \text{syndiotaktisch, } a = \text{ataktisch, } n = \text{Anzahl der wiederkehrenden Einheiten.}\]

In beiden Fällen wechseln hochgeordnete isotaktische oder syndiotaktische und damit kristalline Blöcke mit ungeordneten ataktischen und damit elastischen Blöcken ab. e-PP ist ein wichtiger Vertreter thermoplastischer Elastomere. In analoger Weise ergeben sich solche Blockstrukturen auch von Buten-1, Hexen-1, Styrol, 3-Methylpenten-1,4-Methyl-penten-1 und weiteren dem Fachmann bekannten Monomeren.

Der elastische Block kann jedoch auch durch Elastomer-Strukturen gebildet werden, deren Monomere oder Comonomere chemisch verschieden vom Monomer des kristallinen Blocks sind, so daß insgesamt ein Copolymer aus mindestens 2 verschiedenen Comonomeren gebildet wird. Beispiele dieses Typs sind:

\[
\begin{align*}
(PE \rightarrow EPM)_n \\
(PE \rightarrow EBM)_n \\
(PE \rightarrow EHM)_n \\
(PE \rightarrow EOM)_n
\end{align*}
\]

mit \(E = \text{Ethylen, } P = \text{Propylen, } B = \text{Buten, } H = \text{Hexen, } O = \text{Octen.}\)

Weitere Beispiele sind:
(PE - a-PP)\textsubscript{n} \\
(i-PP - EPM (bzw. -EBM oder -EHM oder -EOM))\textsubscript{n} \\
(s-PP - EPM (bzw. -EBM oder -EHM oder -EOM))\textsubscript{n}

Die kristalline Phase kann auch auf Basis hochtaktischer (iso-, syndio-) Strukturen des Polybutens, Polyhexens, Polyoctens aufgebaut werden; umgekehrt bilden die ataktischen Strukturen dieser Polymere geeignete amorphe Phasen.

Unter Einbeziehung von Dienen erhält man z.B.:

(PE - EPDM)\textsubscript{n} \\
(i-PP - EPDM)\textsubscript{n} \\
(s-PP - EPDM)\textsubscript{n}

In allen genannten Beispielen ist der in den Klammerausdrücken zuehrste aufgeführte Block der hochkristalline Anteil und der danach aufgeführte Block der nicht-kristalline, statistisch aufgebaute Anteil, z.B. ist PE ein überwiegend oder ausschließlich Ethylen enthaltender Block (unter Einschluß von LLDPE), während etwa a-PP einen nicht-kristallinen, ataktischen und überwiegend oder ausschließlich Propen enthaltenden Block darstellt.

Die erfindungsgemäß einzusetzenden \(\pi\)-Komplex-Verbindungen, besonders die Metallocen-Verbindungen ermöglichen durch die Donor-Akzeptor-Brücke eine definierte Öffnung der beiden Cyclopentadienyleruste in der Art eines Schnabels, wobei neben einer hohen Aktivität eine hohe Stereoselektivität, eine kontrollierte Molekulargewichtsverteilung und ein einheitlicher Einbau von (Co)Monomeren gewährleistet sind. Infolge einer definierten schnabelartigen Öffnung ist auch Platz für voluminöse (Co)Monomere. Eine hohe Einheitlichkeit in der Molekulargewichtsverteilung ergibt sich weiterhin aus dem einheitlichen und definierten Ort der durch Einschub (Insertion) erfolgenden Polymerisation (Single Site Catalyst) und kann durch die Wahl der Polymerisationstemperatur eingestellt werden.

Der gleichzeitige Einsatz mindestens zweier Metallocen-Katalysatoren, von denen mindestens einer ein D/A-Metallocen ist und die unterschiedliche Stereoselektivitäten besitzen, etwa einer für α-PP und eine andere für i-PP, kann wirksam zur Entwicklung eines optimalen TPE durch ausgewogene Beteiligung der amorphen und kristallinen Phasen genutzt werden.

Es wurde weiterhin beobachtet, daß erfindungsgemäß einzusetzende Metallocenverbindungen in Abhängigkeit von der Temperatur ein unterschiedliches Kopolymerisationsverhalten zeigen. Diese Erscheinung ist noch nicht vollständig untersucht, könnte jedoch in Übereinstimmung mit der Beobachtung stehen, daß koordinative Bindungen, die von einer ionischen Bindung überlagert sind, wie die Donor-Akzeptor-Bindungen in den erfindungsgemäßen Metallocen-Verbindungen, eine zunehmende Reversibilität bei höherer Temperatur zeigen. So wurde beispielsweise bei der Ethylen-Propylen-Copolymerisation beobachtet, daß bei gleichem Angebot beider Comonomer bei tiefer Copolymerisationstemperatur ein hoch Propylen-haltiges Copolymer gebildet wird, während mit steigender Polymerisationstemperatur der Propylengehalt zurückgeht, bis schließlich bei hoher Temperatur überwiegend Ethylen enthaltende Polymere entstehen. Die reversible Dissoziation und Assoziation der D/A-
Struktur und die dadurch möglich werdende gegeneinander erfolgende Rotation der \(\pi \)-Gerüste kann schematisch wie folgt dargestellt werden:

\[
\begin{align*}
&\text{D/A-verbrückt} & & \text{D/A-} \text{Dissoziation} & & \text{D/A-} \text{Assoziation} & & \text{syn} & & \text{Ring-} \text{Rotation} & & \text{unverbrückt} & & \text{anti} \\
&\begin{array}{c}
\text{Cpl} \\
\text{Cpl}'
\end{array} & & \begin{array}{c}
\text{D} \\
\text{A}
\end{array} & & \begin{array}{c}
\text{MX}_{n-1}
\end{array} & & \begin{array}{c}
\text{Cpl} \\
\text{Cpl}'
\end{array} & & \begin{array}{c}
\text{D} \\
\text{A}
\end{array} & & \begin{array}{c}
\text{MX}_{n-1}
\end{array} & & \begin{array}{c}
\text{D} \\
\text{A}
\end{array} & & \begin{array}{c}
\text{MX}_{n-1}
\end{array}
\end{align*}
\]

bzw.

\[
\begin{align*}
&\text{D/A-verbrückt} & & \text{D/A-} \text{Dissoziation} & & \text{D/A-} \text{Assoziation} & & \text{syn} & & \text{Ring-} \text{Rotation} & & \text{unverbrückt} & & \text{anti} \\
&\begin{array}{c}
\pi \text{I} \\
\text{MX}_{n-1}
\end{array} & & \begin{array}{c}
\text{D} \\
\text{A}
\end{array} & & \begin{array}{c}
\pi \text{II}
\end{array} & & \begin{array}{c}
\text{D} \\
\text{A}
\end{array} & & \begin{array}{c}
\pi \text{II}
\end{array} & & \begin{array}{c}
\text{MX}_{n-1}
\end{array} & & \begin{array}{c}
\text{D} \\
\text{A}
\end{array} & & \begin{array}{c}
\pi \text{II}
\end{array}
\end{align*}
\]

Durch den Wechsel zwischen verbrückter und unverbrückter Katalysator-Struktur stehen erstmals Katalysatoren zur Verfügung, die geeignet sind, unter wechselnden Bedingungen definiert wechselnde stereospezifische/aspezifische Liganden-Anordnungen oder auch wechselnde Substrat-Selektivität unter Benutzung nur eines Katalysators zu erzeugen.

Eine weitere wertvolle Eigenschaft der erfindungsgemäßen D/A-\(\pi \)-Komplex-Verbindungen, beispielsweise D/A-Metallocen-Verbindungen, besteht in der Möglichkeit zur Selbstaktivierung und damit einem Verzicht auf teure Cokatalysatoren, insbesondere im Falle von dianionischen \(\mathbf{X} \) \(\mathbf{X} \)-Derivaten.

Hierbei bindet das Akzeptoratom A in der geöffneten Form der D/A-\(\pi \)-Komplex-Verbindungen, beispielsweise D/A-Metallocen-Verbindung einen \(\mathbf{X} \)-Liganden, beispielsweise eine Seite eines Dianions unter Ausbildung einer zwitterionischen Metallocen-Struktur und erzeugt damit beim Übergangsmetall eine positive Ladung.
während das Akzeptoratom A eine negative Ladung annimmt. Eine solche Selbstaktivierung kann intramolekular oder intermolekular erfolgen. Dies sei am Beispiel der bevorzugten Verknüpfung zweier X-Liganden zu einem Chelat-Liganden, nämlich des Butadiendiyyl-Derivates, verdeutlicht:

Die Bindungsstelle zwischen dem Übergangsmetall M und H oder substituiertem oder nicht substituiertem C, im Formelbeispiel substituiertem C des gezeigten Butadiendiyyl-Dianions, ist sodann der Ort für die Olefin-Insertion zur Polymerisation.

Das temperaturabhängige dynamische Verhalten der erfindungsgemäßen π-Komplex-Verbindungen bzw. Metallocen-Verbindungen bei verschiedenen Temperaturen ermöglicht es dann, bei verschiedenen Temperaturen unterschiedliche Stereoblock-Copolymerisate herzustellen, etwa solche des Typs von isotaktischem und ataktischem Polypropylen (i-PP-a-PP)$_n$, die von unterschiedlicher Zusammensetzung (a) bezüglich der relativen Mengen von isotaktischem Polypropylen (i-PP) und ataktischem Polypropylen (a-PP) und (b) bezüglich der Block- bzw. Sequenzlängen sein können.
Beispiele

Alle Reaktionen wurden unter streng anaeroben Bedingungen und unter Verwendung von Schlenk-Techniken bzw. der Hochvakuumtechnik durchgeführt. Die verwendeten Lösungsmittel waren trocken und mit Argon gesättigt. Chemische Verschiebungen \(\delta \) sind in ppm angegeben, relativ zum jeweiligen Standard: \(^1H \) (Tetramethyilsilan), \(^13C \) (Tetramethyilsilan), \(^31P \) (85%ige \(H_3PO_4 \)), \(^11B \) (Bortrifluorid-Etherat-18,1 ppm). Negative Vorzeichen bedeuten eine Verschiebung zu höherem Feld.

Beispiel 1
(Bis-(trimethylsilyl)-cyclopentadien, Verbindung 1)

\(^1H \)-NMR (400 MHz, \(C_6D_6 \)): \(\delta = 6,74 \) (m,2H), 6,43 (m,2H), -0,04 (s,18H).
Beispiel 2 (Trimethylsilyl-cyclopentadienyl-dichlorboran, Verbindung 2)

In einen Rundkolben, der mit einem Trockeneis-Kühlbad ausgerüstet war, wurden 16 g (0,076 mol) der Verbindung 1 gegeben. 8,9 g (0,076 mol) BCl₃ wurden bei -78°C in ein Schlenk-Rohr kondensiert und danach tropfenweise während einer Zeit von 5 Minuten in den Rundkolben gegeben. Die Reaktionsmischung wurde langsam während 1 Stunde auf Zimmertemperatur erwärmt und dann für weitere 2 Stunden auf 55 bis 60°C gehalten. Alle flüchtigen Verbindungen wurden im Vakuum (3 mm Hg = 4 mbar) entfernt. Die anschließende Destillation bei 39°C und 0,012 mbar ergab 14,1 g der Verbindung 2 (85 % der theoretischen Ausbeute). Das ¹H-NMR stimmt mit den Literaturangaben überein und zeigte, daß eine Reihe von Isomeren hergestellt worden waren (vgl. J. Organometallic Chem. 169 (1979), 327). ¹¹B-NMR (64,2 MHz, C₆D₆): δ = +31,5.

Beispiel 3 (Dichlorboranyl-cyclopentadienyl-titantrichlorid, Verbindung 3)

In ein 250 ml-Schlenk-Rohr wurden 11,4 g (0,052 mol) der Verbindung 2 und 100 ml Methylenclorid (CH₂Cl₂) gegeben. Diese Lösung wurde auf -78°C gekühlt, und 9,8 g (5,6 ml, 0,052 mol) Titantrichlorid wurden während 10 Minuten zuge tropft. Die erhaltene rote Lösung wurde langsam auf Raumtemperatur erwärmt und während weiterer 3 Stunden gerührt. Das Lösungsmittel wurde im Vakuum entfernt, und man erhielt ein schmutzig-gelbes Produkt. 200 ml Hexan wurden zum rohen Feststoff gegeben, und die erhaltene gelbe Lösung wurde filtriert und über Nacht im Kühl schrank gekühlt, wobei 12,3 g (79 % der theoretischen Ausbeute) gelber Kristalle der Verbindung 3 erhalten wurden. Es sei darauf hingewiesen, daß in J. Organometallic Chem. 169 (1979), 373, 62 % der theoretischen Ausbeute erhalten wurde, wobei die Reaktion in einem Kohlenwasserstoff-Lösungsmittel, wie Petroleumther oder Methylcyclohexan ausgeführt wurde.
1H-NMR (400 MHz, CD$_2$Cl$_2$): $\delta = 7.53$ (t, $J = 2.6$ Hz, 2H), 7.22 (t, $J = 2.6$ Hz, 2H).

11B-NMR (64.2 MHz, CD$_2$Cl$_2$): $\delta = +33$.

Beispiel 4 (Dimethylboranyl-cyclopentadienyl-titanchlorid, Verbindung 4)

\[
\begin{array}{c}
\text{B(CH$_3$)$_2$} \\
\text{TiCl$_3$} \\
\end{array}
\]

In einem Rundkolben wurden 2.37 g (0.0079 mol) der Verbindung 3 in 100 ml Hexan gelöst. Diese Lösung wurde auf 0°C gekühlt und tropfenweise mit 4 ml einer 2-molaren Lösung von Aluminiumtrimethyl in Toluol (0.008 mol) versetzt. Nach vollständiger Zugabe wurde das Kältebad entfernt und alle flüchtigen Anteile im Vakuum entfernt. Der verbleibende gelbe Feststoff wurde nunmehr in Pentan aufgelöst, feste Anteile wurden abfiltriert, und das klare Filtrat wurde auf -78°C abgekühlt, wobei 1.5 g (74 % der theoretischen Ausbeute) an Verbindung 4 erhalten wurden. Es sei ange-merkt, daß in J. Organometallic Chem. 169 (1979), 373 eine Ausbeute von 87 % der theoretischen Ausbeuten angegeben werden, wobei Tetramethylzinn als Alkylierungsmittel verwendet wurde, es war jedoch nicht möglich, die Verbindung 4 frei vom entstehenden Trimethylzinnchlorid zu erhalten.

1H-NMR (400 MHz, CD$_2$Cl$_2$): $\delta = 7.48$ (t, $J = 2.5$ Hz, 2H), 7.23 (t, $J = 2.5$ Hz, 2H).

11B-NMR (64.2 MHz, CD$_2$Cl$_2$): $\delta = +56$.

Beispiel 5 (Diphenylphosphin-cyclopentadienyl-lithium, Verbindung 6)

\[
\begin{array}{c}
P(C_6H$_5$)$_2$ \\
P(C_6H$_5$)$_2$ \\
\end{array}
\]

50 g (0.186 mol) Cyclopentadienyl-thallium (bezogen von Fa. Fluka) wurden gemeinsam mit 300 ml Diethylether in einen 500 ml-Kolben eingefüllt. Die Aufschlammung
wurde auf 0° C gekühlt und 34,2 ml (0,186 mol) Diphenylchlorophosphin innerhalb von 10 Minuten zugetropft. Die Aufschlammung wurde danach auf Zimmertemperatur angewärmt und während einer Stunde gerührt und schließlich durch eine Fritte filtriert. Das Lösungsmittel wurde sodann im Vakuum abgezogen und hinterließ 39,5 g (85 % der theoretischen Ausbeute) des Zwischenproduktes Diphenylphosphino-cyclopentadien, Verbindung 5. Ein Anteil von 18,6 g (0,074 mol) der Verbindung 5 wurde sodann mit Toluol verdünnt und auf 0°C abgekühlt. Zu dieser Lösung wurden 33,2 ml einer 2,24-molaren Lösung von Butyl-lithium in Hexan (0,074 mol) während 10 Minuten zugegeben. Nach dem Anwärmen auf Raumtemperatur und nach Rühren während 2 Stunden ergab die gelbe Lösung einen Niederschlag, der filtriert und mit Toluol und anschließend mit Hexan gewaschen wurde. Nach dem Trocknen im Vakuum wurden 13,2 g der Verbindung 6 (70 % der theoretischen Ausbeute) als bräunliches Pulver erhalten (vgl. J. Am. Chem. Soc. 105 (1983); 3882; Organometallics 1 (1982), 1591).

1H-NMR (400 MHz, d8THF): δ = 7,3 (m, 4H), 7,15 (m, 6H), 5,96 (m, 2H), 5,92 (m, 2H), 31P-NMR (161,9 MHz, d8THF): δ = -20.

Beispiel 6
\(((\text{C}_6\text{H}_5)_2\text{P})\rightarrow\text{B}(\text{CH}_3)_2\text{-verbrücktes Bis-(cyclopentadienyl)-titandichlorid, Verbindung 7})

\[
\begin{tikzpicture}
 \node (P) [shape=circle,draw] at (0,0) {\((\text{C}_6\text{H}_5)_2\text{P}\)};
 \node (B) [shape=circle,draw] at (2,0) {\((\text{CH}_3)_2\text{B}\)};
 \node (Ti) [shape=circle,draw] at (1,-1) {\text{TiCl}_2};
 \draw [->] (P) -- (Ti);
 \draw [->] (B) -- (Ti);
\end{tikzpicture}
\]

In einen Rundkolben wurden 0,36 g (0,00139 mol) der Verbindung 6 und 20 ml Toluol gegeben. Die entstehende Lösung wurde auf -20°C gekühlt und eine Lösung von 0,36 g (0,00139 mol) der Verbindung 4 in 20 ml Toluol während 20 Minuten zuge- tropft. Nach Beendigung des Zutropfens wurde die Lösung innerhalb von 2 Stunden auf Raumtemperatur erwärmt und bei dieser Temperatur für eine zusätzliche Stunde gerührt. Unlösliches Material wurde über eine Fritte entfernt, und das Lösungsmittel wurde im Vakuum abdestilliert. Der rote ölige Feststoff wurde dann mit Hexan gewa-
schen, das abdekaniert wurde, und der Feststoff wurde erneut im Vakuum getrocknet. Dabei erhielt man 0,28 g (42 % der theoretischen Ausbeute) der Verbindung 7 als rotes Pulver.

1H-NMR (300 MHz, CD$_2$Cl$_2$): $\delta = 7,6 - 7,3$ (br, m, 10H), 6,92 (m, 2H), 6,77 (m, 4H), 6,60 (m, 2H), 0,29 (d, J$_{PH} = 19$ Hz, 6H); 31P-NMR (161,9 MHz, CD$_2$Cl$_2$): $\delta = 17,1$ (br); 11B-NMR (64,2 MHz, CD$_2$Cl$_2$): $\delta = -29$ (br).

Beispiel 7 (Tributylstannyl-diphenylphosphino-inden, Verbindung 8)

10 g (0,086 mol) Inden wurden in einen Rundkolben gegeben, mit 200 ml Diethyl ether verdünnt und auf -20°C gekühlt. Zu dieser Lösung wurden 36 ml einer 2,36 molaren Lösung von Butyl-lithium (0,085 mol) in n-Hexan gegeben, wobei die Lösung sofort eine gelbe Farbe annahm. Das Kältebad wurde entfernt, und man ließ das Reaktionsgemisch auf Raumtemperatur erwärmen und rührte das Reaktionsgemisch während einer weiteren Stunde. Danach wurde das Reaktionsgemisch wieder auf 0°C abgekühlt, und 19 g (15,9 ml, 0,086 mol) Diphenylchlorphosphin wurden unter Bildung eines Niederschlags zugegeben. Das Kältebad wurde wieder entfernt, und die Lösung konnte sich auf Zimmertemperatur erwärmen, während für eine weitere Stunde nachgerührt wurde. Die Lösung wurde dann erneut auf -20°C gekühlt, und 36 ml (0,085 mol) Butyl-lithium in n-Hexan wurden zugetropt. Nach beendetem Zugabe wurde das Kältebad wieder entfernt, und die Temperatur stieg auf Raumtemperatur; die Lösung wurde für weitere 1,5 Stunden nachgerührt. Die Aufschlammung wurde dann wiederum auf 0°C gekühlt und 28 g (0,086 mol) Tributylzinnchlorid wurden tropfenweise zugefügt. Die erhaltene Aufschlammung wurde auf Raumtemperatur erwärmt und für weitere 1,5 Stunden gerührt, danach durch eine Fritte filtriert und das Lösungsmittel im Vakuum entfernt. Es hinterblieben 46,9 g der Verbindung 8 (92 % der theoretischen Ausbeute) als ein schweres gelbes Öl.

1H-NMR (400 MHz, CDCl$_3$): $\delta = 7,5 - 7,3$ (m, 6H), 7,28 (br s, 6H), 7,14 (pseudo-d t, 7,3 Hz/1,0 Hz, 1H), 7,08 (t, J = 7,3 Hz, 1H), 6,5 (br m, 1H), 4,24 (br s, 1H), 1,4 - 1,25 (m, 6H), 1,25 - 1,15 (m, 6H), 0,82 (t, J = 7,2 Hz, 9H), 0,53 (t, J = 8 Hz, 6H),

31P-NMR (161,9 MHz, CDCl$_3$): $\delta = -20,6$.
Beispiel 8 (Diphenylphosphino-indenylen-zirkoniumtrichlorid, Verbindung 9)

Eine Lösung von 37 g (0,0628 mol) der Verbindung 8 in 300 ml Toluol wurde während 3 Stunden zu einer Aufschlammung von 14,6 g ZrCl₄ (99,9 %ig, 0,0628 mol, bezogen von Fa. Aldrich) in 100 ml Toluol bei Raumtemperatur gegeben. Die Lösung wurde sofort rot und ging langsam in orange und schließlich in gelb über. Nach 4-stündigem Nachrühren wurde der gelbe Niederschlag abfiltriert und mit Toluol und dann mit Hexan gewaschen. Der Feststoff wurde im Vakuum getrocknet und ergab 15,3 g (50 % der theoretischen Ausbeute) der Verbindung 9 als ein frei fließendes gelbes Pulver. Die Ausbeute ließ sich ohne weiteres auf über 70 % steigern, wenn man bei tieferer Temperatur arbeitete, z.B. 30 min bei -30°C und 5 Stunden bei 0°C. Das Produkt konnte weiter gereinigt werden, indem man restliche Zinnverbindung unter Benutzung von Pentan in einem Soxhlet-Extraktor auswusch (Extraktionszeit: 8 Stunden).

Beispiel 9 ((C₆H₅)₂P-BCl₂-verbrücktes Indenyln-cyclopentadienyl-zirkoniumdichlorid, Verbindung 10)

In ein Schlenk-Rohr wurden 4,43 g (0,0089 mol) der gereinigten Verbindung 9 und 100 ml Toluol gegeben. Zu dieser Aufschlammung wurden 1,95 g (0,0089 mol) der Verbindung 2 gegeben. Die gelbe Aufschlammung wurde während 6 Stunden bei
Raumtemperatur gerührt; während dieser Zeit bildete sich ein blaßweißer Niederschlag. Dieser Niederschlag (4,1 g, 75 % der theoretischen Ausbeute) wurde durch Filtration gewonnen und als im wesentlichen reinem Material gefunden.

1H-NMR (500 MHz, CD$_2$Cl$_2$): $\delta = 7,86$ (pseudo ddd, $J = 8,5/2,5/1$ Hz, 1H), 7,75 - 7,55 (m,10H), 7,35 (pseudo ddd, $J = 8,5/6,9/0,9$ Hz, 1H), 7,32 (br t, $J = 3,1$ Hz, 1H), 7,22 (pseudo ddd, $J = 8,8/6,8/1,1$ Hz, 1H), 7,06 (pseudo ddd, $J = 3,4/3,4/0,8$ Hz, 1H), 6,92 (m,1H), 6,72 (m, 1H), 6,70 (br m, 1H), 6,61 (pseudo q, $J = 2,3$ Hz, 1H), 6,53 (br d, 8,7 Hz, 1H), 31P-NMR (161,9 MHz, CD$_2$Cl$_2$): $\delta = 6,2$ (br, m), 11B (64,2 MHz, CD$_2$Cl$_2$): $\delta = -18$ (br).

Beispiel 10 ((C$_6$H$_5$)$_2$P-B(CH$_3$)$_2$-verbrücktes Indenyl-cyclopentadienyl-zirkonium-dichlorid, *Verbindung 11*)

![Chemical Structure](image)

Zu 1,5 g (0,00247 mol) *Verbindung 10* aus Beispiel 9 wurden 50 ml Toluol gegeben. Die Aufschlammung wurde auf 0°C gekühlt, und 1,2 ml einer 2-molaren Lösung von Trimethylaluminium in Hexan (0,0024 mol) wurden während 5 Minuten dazugetropft. Nach vollständiger Zugabe wurde das Kühlbad entfernt, und die Lösung konnte sich auf Raumtemperatur erwärmen, während für 2 Stunden weiter gerührt wurde. Der restliche Niederschlag wurde abfiltriert und das Lösungsmittel vom Filtrat im Vakuum abgezogen, wobei 0,37 g (26 % der theoretischen Ausbeute) der *Verbindung 11* als ein bräunlicher Feststoff zurückblieben.

31P-NMR (161,9 MHz, CD$_2$Cl$_2$): $\delta = 14,6$; 11B-NMR (64,2 MHz, CD$_2$Cl$_2$): $\delta = -28$
Beispiel 11 (Trimethylsilyl-inden, Verbindung 12)

\[\text{Diagramm 12} \]

In einen Rundkolben, der 100 ml THF enthielt und auf 0°C gekühlt war, wurden 25 ml Inden (0,213 mol, über CaH\(_2\) im Vakuum destilliert) gegeben. 94 ml einer 2,3-molaren Lösung von Butyl-lithium in Hexan (0,216 mol) wurden während 20 min zugegeben. Nach vollständiger Zugabe wurde 20 min lang gerührt, dann auf Raumtemperatur erwärmt und weitere 30 min gerührt. Nach Abkühlung auf -20°C wurden 27,5 ml (0,216 mol) Trimethylchlorsilan zugetropft, wobei eine leicht trübe orangefarbene Lösung entstand. Nach 1 h Rühren bei -10°C und 1,5 h bei 0°C wurde auf Raumtemperatur erwärmt und das Lösungsmittel im Vakuum entfernt. Nach erneuter Auflösung in Hexan wurde LiCl abfiltriert und das Hexan im Vakuum entfernt. Destillation des Produktes (0,045 mbar, 58 bis 60°C) ergab 26,6 g (66 % der theoretischen Ausbeute) 12.

\(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 7,49\) (t, \(J = 7,6\) Hz, 1 H), 7,28 (ddd, \(J = 7,3/7,2/1\) Hz, 1 H), 7,21 (ddd, \(J = 7,3/7,3/1,1\) Hz, 1 H), 6,96 (dd, \(J = 5,6/1,2\) Hz, 1 H), 6,69 (dd, \(J = 5,3/1,8\) Hz, 1 H), 3,56 (s, 1 H), 0,0 (s, 9 H).

Beispiel 12 (Bis-(trimethylsilyl)-inden, Verbindung 13)

25,4 g (0,135 mol) der Verbindung 12 wurden in einen Rundkolben gegeben, der 100 ml THF enthielt und auf 0°C gekühlt war. 59 ml einer 2,3-molaren Lösung von Butyl-lithium in Hexan (0,136 mol) wurden während 20 min zugegeben. Nach vollständiger Zugabe wurde 20 min gerührt und dann auf Raumtemperatur erwärmt. Nach 30 min Rühren wurde auf -20°C gekühlt, und es wurden 17,3 ml Trimethylchlorsilan (0,136 mol) zugetropft, wobei eine leicht trübe orangefarbene Lösung entstand. Es wurde 1 h bei 0°C und 1 h bei Raumtemperatur gerührt und dann das Lösungsmittel im Vakuum entfernt. Nach Wiederauflösung in Hexan wurde LiCl abfiltriert und das

1H-NMR (400 MHz, CDCl$_3$): $\delta = 7,62$ (d, J = 7,6 Hz, 1 H), 7,52 (d, J = 7,5 Hz, 1 H), 7,23 (ddd, J = 7,35/7,3/0,9 Hz, 1 H), 6,9 (d, J = 1,7 Hz, 1 H), 3,67 (d, J = 1,6 Hz, 1 H), 0,38 (s, 9 H), 0,0 (s, 9 H).

Beispiel 13 (Trimethylsilyl-dichlorboranyl-inden, Verbindung 14)

In ähnlicher Weise wie zur Herstellung von Verbindung 2 wurden 12,3 g (0,047 mol) Verbindung 13 in einen Rundkolben gegeben, der auf -30°C gekühlt war und einen mit Trockeneis gekühlten Rückflußkühler hatte. Hierzu wurden 5,6 g (0,046 mol) BCl$_3$ gegeben. Nach vollständiger Zugabe wurde das Köhlbad entfernt, und das Reaktionsgemisch erwärmte sich auf Raumtemperatur und wurde 3 h gerührt. Die Temperatur wurde dann 6 h lang auf 55°C angehoben. Nach Abkühlung und Entfernung der flüchtigen Anteile im Vakuum wurde das Rohprodukt erhalten. Destillation unter Hochvakuum lieferte das gereinigte Produkt, dessen Hauptisomer wie folgt identifiziert wurde:

1H-NMR (200 MHz, CDCl$_3$): $\delta = 8,3$ (d, J = 7 Hz, 1 H), 8,1 (d, J = 1,8 Hz, 1 H), 7,5 (dd, J = 7,0/1,2 Hz, 1 H), 7,4 (m, 3 H), 4,0 (d, J = 1,8 Hz, 1 H), 0,1 (s, 9 H); 11B (64,2 MHz, CD$_2$Cl$_2$): $\delta = 38$ (br).

Beispiel 14 ((C$_6$H$_5$)$_2$P-BCl$_2$-verbrücktes Bis-(indenyl)-zirkoniumdichlorid, Verbindung 15)
Zu einer Aufschlämmung von 8,3 g von Verbindung 9 (0,017 mol) in 200 ml Toluol wurden 4,5 g der Verbindung 14 (0,017 mol) gegeben; das Gemisch wurde auf 50°C erwärmt und 5 h gerührt. Nach Abkühlen und Filtration wurden 200 ml Hexan zugegeben, worauf aus der klaren gelben Lösung ein Niederschlag ausfiel, der filtriert und im Vakuum getrocknet wurde. Das Produkt wurde als meso-Isomer von 15 gemäß seiner Röntgenanalyse identifiziert. Die P B-Bindungslänge der Brücke wurde zu 2,01 bestimmt. Durch Konzentration der Toluol/Hexan-Lösung auf etwa 10 ml und weitere Zugabe von 200 ml Hexan erhielt man einen zweiten Niederschlag, der als das racemische Isomer von 15 bestimmt wurde.

Beispiel 15 (N,N-Dimethyl-O-(methylsulfonyl)-hydroxylamin, Verbindung 16)

\[(\text{CH}_3)_2\text{NOSO}_2\text{CH}_3\]

9,0 g N,N-Dimethyl-O-hydroxylamin-hydrochlorid (0,092 mol) wurden in 70 ml CH\(_2\)Cl\(_2\) suspendiert, das 20 g Triethylamin (0,2 mol) enthielt, und auf -10°C gekühlt. 9,5 g Methylsulfonylchlorid (0,083 mol), gelöst in 70 ml CH\(_2\)Cl\(_2\), wurden langsam zur gekühlten Suspension getropft. Nach vollständiger Zugabe wurde 1 h nachgerührt. Danach wurde Eiss Wasser zum Reaktionsgemisch gegeben und die organische Phase abgetrennt. Das übriggebliebene Wasser wurde mit Ether gewaschen. Wasch-ether und die CH\(_2\)Cl\(_2\)-Fraktion wurden vereinigt, über Na\(_2\)SO\(_4\) getrocknet, und die Lösungsmittel wurden im Vakuum bei -10°C entfernt. Es hinterblieben 5,9 g (46 % der theoretischen Ausbeute) an Verbindung 16 als Öl, das bei -20°C aufbewahrt wurde. Vgl. Angew. Chem., Int. Ed. Engl. 17 (1978), 687.

\(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 3,03\) (s, 3H), 2,84 (s, 6H).

Beispiel 16 (N,N-Dimethylamino-cyclopentadienyllithium, Verbindung 17)
Eine Lösung von 3 g Cyclopentadienyl-lithium (0,042 mol) in 30 ml THF wurde bei -30°C langsam zu einer Lösung von 5,9 g der Verbindung 16 (0,042 mol) in 20 ml THF gegeben. Das Gemisch wurde dann auf -20°C erwärmt und 30 min gerührt. Dann wurde Hexan zugegeben und die Lösung filtriert. Danach wurden 1,8 ml einer 2,3-molaren Lösung von Butyl-lithium (0,042 mol) in Hexan bei -20°C zugesetzt, wodurch ein Niederschlag entstand. Der Niederschlag wurde abfiltriert und 2 mal mit je 20 ml Hexan gewaschen. Nach Trocknung im Vakuum erhielt man 2,0 g (40 % der theoretischen Ausbeute) der Verbindung 17 als weißes Pulver. Vgl. Angew. Chem., Int. Ed. Engl. 19 (1980), 1010.

1H-NMR (400 MHz, THF): δ = 5,34 (br d, J = 2,2 Hz, 2H), 5,15 (br d, J = 2,2 Hz, 2H), 2,56 (s, 6H).

Beispiel 17 — ((CH3)2N-B(CH3)2-verbrücktes Bis-(cyclopentadienyl)-titandichlorid, Verbindung 18)

![Diagramm](image)

Eine Lösung von 0,18 g der Verbindung 4 (0,7 mmol) in 10 ml Toluol wurde bei -20°C während 10 min zu einer Suspension von 0,081 g der Verbindung 17 (0,7 mmol) in 10 ml Toluol gegeben, wobei eine tiefrote Lösung entstand. Nach Anwärmen auf Raumtemperatur während 2 h wurde die Lösung filtriert und das Lösungsmittel im Vakuum entfernt. Nach Wiederauflösung des entstandenen roten Pulvers in 10 ml warmen Toluol und Abfiltrieren von unlöslichem Material wurde die Lösung über Nacht im Kühlschrank aufbewahrt, wobei sich 0,1 g (43 % der theoretischen Ausbeute) als rote Nadeln bildeten.

1H-NMR (400 MHz, CD2Cl2): δ = 6,85 (t, J = 2,3 Hz, 2H), 6,15 (t, J = 2,3 Hz, 2H), 6,1 (t, J = 2,8 Hz, 2H), 5,57 (t, J = 2,8 Hz, 2H), 1,98 (s, 6H), 0,35 (s, 6H); 11B-NMR (64,2 MHz, CD2Cl2): δ = 2,8 (br).
Beispiel 18 (Tributylstannyl-diisopropylphosphine-inden, Verbindung 19)

\[\text{SnBu}_3 \]

\[\text{P(i-Pr)}_2 \]

5

In einen Rundkolben, der 3,8 g (0,033 mol) Inden enthielt, wurden 100 ml Ether gegeben; es wurde auf -20°C gekühlt. Zu dieser Lösung wurden 14,4 ml einer 2,3 molaren Lösung von Butyl-lithium in Hexan (0,033 mol) innerhalb 5 Minuten gegeben, wobei eine gelbe Lösung entstand. Nach Entfernung des Kältebades wurde die Lösung auf Raumtemperatur erwärmt und 1,5 h nachgerührt. Danach wurde das Reaktionsgemisch auf 0°C abgekühlt und 5,0 g Chlordiisopropylphosphin (0,033 mol) zugegeben, wodurch ein Niederschlag entstand. Nach Entfernung des Kältebades wurde die Lösung auf Raumtemperatur erwärmt und 1 h gerührt. Danach wurde die Lösung auf -20°C gekühlt und 14,4 ml einer 2,3 molaren Lösung von Butyl-lithium in Hexan (0,033 mol) zugetropft. Nach vollständiger Zugabe wurde das Kältebad entfernt, die Lösung langsam auf Raumtemperatur erwärmt und 1,5 h nachgerührt. Nach Abkühlung der Aufschlammung auf 0°C wurden 10,1 g Chlortributylzinn (0,031 mol) zugetropft. Die entstehende Aufschlammung wurde auf Raumtemperatur erwärmt und 1,5 h gerührt. Der Ether wurde i. Vak. entfernt und das Rohprodukt erneut in Hexan aufgelöst, abfiltriert und das Filtrat i. Vak. getrocknet, wobei 16,6 g der Verbindung 19 (Ausbeute: 97 %) als schweres gelbes Öl übrigblieben. Zwei Isomere wurden in einem Verhältnis von 1,5:1 erhalten. Das Hauptisomer wurde wie folgt identifiziert: 1H NMR (400 MHz, CD$_2$Cl$_2$) δ 7,71 (d, J = 7,2 Hz, 1 H), 7,41 (d, J = 7,3 Hz, 1 H), 7,13 (m, 2 H), 6,96 (m, 1 H), 4,28 (s mit Sn Satelliten, 1 H), 2,21 (m, 1 H), 1,54 (m, 1 H), 1,45 - 0,65 (m, 39 H). 31P NMR (161,9 MHz, CD$_2$Cl$_2$) δ - 11,3 ppm. Das Nebenisomer wurde wie folgt identifiziert: 1H NMR (400 MHz, CD$_2$Cl$_2$) δ 7,6 (d, J = 7,4 Hz, 1 H), 7,46 (d, J = 7,2 Hz, 1 H), 7, 26 (t, J = 7,5 Hz, 1 H), 7,1 (m, 1 H), 6,71 (m, 1 H), 3,48 (m, 1 H), 2,21 (m, 1 H), 1,54 (m, 1 H), 1,45 - 0,65 (m, 39 H). 31P NMR (161,9 MHz, CD$_2$Cl$_2$) d -11,5 ppm.
Beispiel 19 (Diisopropylphosphino-indeny1-zirkoniumtrichlorid, Verbindung 20)

Eine Lösung von 15,0 g der Verbindung 19 (0,029 mol) in 50 ml Toluol wurde zu einer Aufschlammung von 6,7 g (0,029 mol) 99,9 %igem ZrCl₄ in 300 ml Toluol bei -78°C gegeben. Nach vollständiger Zugabe wurde das Reaktionsgemisch 0,5 h bei -30°C und anschließend 4 h bei 0°C gerührt. Der entstehende gelbe Niederschlag wurde abfiltriert und mit Toluol und Hexan gewaschen. Die Feststoffe wurden i. Vak. getrocknet, wobei 8,8 g der Verbindung 20 (Ausbeute: 71 %) als freifließendes gelbes Pulver übrigblieben. Das Pulver wurde durch Entfernung der verbliebenen Zinnverbindingen mittels Extraktion mit unter Rückfluß geführtem Toluol über einen Zeitraum von 3 h bei 30 mm Hg und danach mit Pentan über einen Zeitraum von 2 h in einem Soxhlet-Extraktor weitergereinigt. Wegen der Unlöslichkeit der entstehenden Verbindung wurde kein ¹H NMR erhalten.
Beispiel 20 (Diisopropylphosphino-dichlorboranyl-verbrücktes Indenyl-cyclopentadienyl-zirkonium-dichlorid, Verbindung 21)

\[
\begin{align*}
\text{(i-Pr)₂P} \quad ZrCl₂
\end{align*}
\]

In ein Schlenk-Rohr wurden 0,52 g (0,0012 mol) der Verbindung 20 und 30 ml Toluol gegeben. 0,27 g (0,0012 mol) der Verbindung 2 wurden innerhalb 5 Minuten zu dieser Aufschlammung gegeben. Die gelbe Aufschlammung wurde 3 h bei Raumtemperatur gerührt, wobei eine leicht trübe Lösung übrigblieb. Der Niederschlag wurde durch Filtration entfernt, wobei eine hellgelbe Toluollösung übrigblieb. Nach Entfernung des Toluols i. Vak. blieb das Produkt als weißlicher Feststoff in einer Menge von 0,47 g (Ausbeute: 87 %) übrig. \(^1\)H NMR (400 MHz, CD₂Cl₂) \(\delta\) 7,84 (pseudo dd, J = 8,5, 0,8 Hz, 1 H), 7,73 (d, J = 8,8 Hz, 1 H), 7,5 (pseudo dt, J = 7,8, 0,8 Hz, 1 H), 7,38 (m, 2 H), 6,98 (m, 1 H), 6,67 (m, 1 H), 6,64 (m, 1 H), 6,54 (m, 1 H), 6,29 (m, 1 H), 3,39 (Septett, J = 7,1 Hz, 1 H), 2,94 (m, 1 H), 1,68 (dd, J\(_{\text{H-P}} = 18,1\) Hz, J = 7,2 Hz, 3 H), 1,64 (dd, J\(_{\text{H-P}} = 17,4\), J = 7,2 Hz, 3 H), 1,45 (dd, J\(_{\text{H-P}} = 15\) Hz, J = 7,2 Hz, 3 H), 1,33 (dd, J\(_{\text{H-P}} = 14,6\) Hz, J = 7,3 Hz, 3 H). \(^{31}\)P NMR (161,9 MHz, CD₂Cl₂) \(\delta\) 23,1 (br, m); \(^{11}\)B (80 MHz, CD₂Cl₂) \(\delta\) -14,8 (br d, J = 110 Hz).

Beispiel 21 (Tributylstannyl-dimethylphosphino-inden, Verbindung 22)

\[
\begin{align*}
\text{SnBu₃} \quad \text{PMe₂}
\end{align*}
\]
In einen Rundkolben, der 5,5 g (0,047 mol) Inden enthielt, wurden 150 ml Ether gegeben; es wurde auf -20°C abgekühlt. Zu dieser Lösung wurden 20,8 ml einer 2,3 molaren Lösung von Butyl-lithium in Hexan (0,048 mol) innerhalb 5 min gegeben, wobei eine gelbe Lösung entstand. Nach Entfernung des Kältebades wurde die Lösung auf Raumtemperatur erwärmt und 1 h nachgerührt. Nach Abkühlung des Reaktionsgemisches auf -30°C wurden 4,6 g Chlordimethylphosphin (0,048 mol) in 30 ml Ether innerhalb 20 min zugegeben, wobei ein Niederschlag entstand. Nach 2-stündiger Rühren bei -20°C wurden 20,8 ml einer 2,3 molaren Lösung von Butyl-lithium in Hexan (0,048 mol) zugetropft. Nach vollständiger Zugabe wurde das Kältebad entfernt, die Lösung langsam auf Raumtemperatur erwärmt und 1,5 h nachgerührt. Nach Abkühlung der Aufschlammung auf 0°C wurden 15,6 g Chlortributylzinn (0,048 mol) zugetropft. Die entstehende Aufschlammung wurde auf Raumtemperatur erwärmt und 1,5 h gerührt. Der Ether wurde i. Vak entfernt und das Rohprodukt erneut in Hexan aufgelöst, abfiltriert und das Filtrat i. Vak. getrocknet, wobei 17,4 g der Verbindung 22 (Ausbeute: 78 %) als schweres gelbes Öl übrigblieben. 1H NMR (400 MHz, CD$_2$Cl$_2$) δ 7,67 (d, J = 7,5 Hz, 1 H), 7,47 (d, J = 7,4 Hz, 1 H), 7,18 (m, 2 H), 6,83 (m, 1 H), 4,28 (s mit Sn-Satelliten, 1 H), 1,43 - 0,78 (m, 33 H). 31P NMR (161,9 MHz, CD$_2$Cl$_2$) δ - 61,6 ppm.

Beispiel 22 (Dimethylphosphino-indenyl-zirconiumtrichlorid, Verbindung 23)

![Diagramm](https://via.placeholder.com/150)

Zu einer Aufschlammung von 8,5 g (0,036 mol) 99,9 %igem ZrCl$_4$ in 200 ml Toluol wurde eine Lösung von 17,0 g der Verbindung 22 (0,037 mol) in 50 ml Toluol bei 78°C gegeben. Nach vollständiger Zugabe wurde das Reaktionsgemisch 0,5 h bei 30°C und danach 4 h bei 0°C gerührt. Der entstehende gelbe Niederschlag wurde abfiltriert und mit Toluol und Hexan gewaschen. Die Feststoffe wurden in Vak. getrocknet, wobei 8,3 g der Verbindung 23 (Ausbeute: 61 %) als flüssiges gelbes
Pulver übrigblieb. Das Pulver wurde durch Entfernung der verbliebenen Zinnverbindungen mittels Extraktion mit unter Rückfluß geführtem Toluol über einen Zeitraum von 3 h bei 30 mm Hg und danach mit Pentan über einen Zeitraum von 2 h in einem Soxhlet-Extraktor weitgereinigt, wobei 7,2 g (Ausbeute: 53 %) des Produktes übrigblieben. Wegen der Unlöslichkeit dieser Verbindung wurde kein 1H NMR erhalten.

Beispiel 23 (Dimethylphosphino-dichlorboranyl-verbrücktes Indenyl-cyclopenta-dienyl-zirconiumdichlorid, Verbindung 24)

![Diagramm]

In ein Schlenk-Rohr wurden 30 ml Toluol und 0,55 g der Verbindung 23 (0,0015 mol) gegeben. Zu dieser Aufschlüsselung wurden 0,31 g (0,0014 mol) der Verbindung 2 innerhalb 5 min gegeben. Die gelbe Aufschlüsselung wurde 6,5 h bei Raumtemperatur gerührt, wobei eine leicht trübe Lösung verblieb. Der Niederschlag wurde durch Filtration entfernt, wobei eine hellgelbe Toluollösung übrigblieb. Nach Entfernung des Toluols i. Vak. verblieb das Produkt als weißlicher Feststoff. Nachdem das Produkt mit Hexan gewaschen und i. Vak. getrocknet wurde, blieb die Verbindung 24 als bläulöslicher Feststoff (0,54 g; Ausbeute: 76%) übrig. 1H NMR (400 MHz, CD$_2$Cl$_2$) δ 7,84 (pseudo dd, J = 7,4 Hz 1,0 Hz, 1 H), 7,60 (m, 2 H), 7,51 (m, 1 H), 7,38 (m, 1 H), 6,93 (m, 1 H), 6,71 (m, 1 H), 6,66 (m, 1 H), 6,49 (m, 1 H), 6,30 (br s, 1 H), 2,11 (d $J_{H,P}$ = 11,9 Hz, 3 H), 1,94 (d, $J_{H,P}$ = 11,9 Hz, 3 H). 31P NMR (161, 9 MHz, CD$_2$Cl$_2$) δ - 5,9 (br, m); 11B (80 MHz, CD$_2$Cl$_2$) δ - 14,6 (br d, $J_{B,P}$ = 126 Hz).
Beispiel 24 (2-Methylinden, Verbindung 26)

In einen Rundkolben wurden 38,7 g (0,29 mol) 2-Indanon und 300 ml Ether gegeben. In einen zweiten Kolben wurden 96,7 ml einer 3,0 molaren Lösung von CH₃MgI in Ether (0,29 mol), die mit 150 ml Ether verdünnt war, gegeben. Danach wurde die 2-Indanon-Lösung zu der CH₃MgI-Lösung über eine Kanüle in einer solchen Menge gegeben, daß der Rückfluß aufrechterhalten wurde, wobei ein Niederschlag entstand. Nach vollständiger Zugabe wurde die Aufschlammung weitere 4 h unter Rückfluß geführt und auf 0°C abgekühlt, wonach 100 ml einer gesättigten Lösung von NH₄Cl langsam zugegeben wurden. Das Produkt wurde mit Ether extrahiert und über MgSO₄ getrocknet. Nach Entfernung des Lösungsmittels i. Vak. wurden 30,1 g (Ausbeute: 70 %) 2-Methyl-2-indanol (Verbindung 25) als öliger Feststoff erhalten. ¹H NMR (400 MHz, CDCl₃) δ 7,15 (br m, 4 H), 3,01 (s, 2 H), 2,99 (s, 2 H), 1,5 (s, 3 H); OH variabel.

In einen Rundkolben mit einem Dean-Stark-Auffanggefaß wurden 25,5 g (0,17 mol) der Verbindung 25, 3,2 g (0,017 mol) p-Toluolsulfonsäure und 500 ml Hexan gegeben. Diese Aufschlammung wurde 3 h unter Rückfluß gehalten. Nach Abkühlung wurde die Hexanfraktion von den unlöslichen Produkten dekantiert und das Lösungsmittel i. Vak. entfernt, wobei ein Öl übrigblieb, das anschließend in einer kurzen Destillationskolonne bei 45°C und 0,03 mbar destilliert wurde, wodurch 15 g (Ausbeute: 68 %) der Verbindung 26 erhalten wurden. ¹H NMR (400 MHz, CDCl₃) δ 7,33 (d, J = 7,6 Hz, 1 H), 7,21 (m, 2 H), 7,06 (pseudo d t, J = 7,2, 1,4 Hz, 1 H), 6,45 (br s, 1 H), 3,25 (s, 2 H), 2,12 (s, 3 H).
Es wird verwiesen auf:

Beispiel 25 *(Tributylstannyldiisopropylphosphino-2-methyliden, Verbindung 27)*

![Structural formula](image)

In einen Rundkolben, der 5.08 g (0,039 mol) 2-Methyliden 26 enthielt, wurden 150 ml Ether gegeben, es wurde auf -20°C abgekühlt. Zu dieser Lösung wurden 17,0 ml einer 2,3-molaren Lösung von Butyl-lithium in Hexan (0,039 mol) innerhalb 5 min gegeben, wobei eine gelbe Lösung entstand. Nach Entfernung des Kältebades wurde die Lösung auf Raumtemperatur erwärmt und 1 h nachgerührt. Danach wurde das Reaktionsgemisch auf -20°C gekühlt, und es wurden 5,8 g (0,039 mol) Chlordiisopropylphosphan innerhalb 5 min zugegeben, wobei ein Niederschlag entstand. Danach wurde das Kältebad entfernt und das Reaktionsgemisch 1 h bei Raumtemperatur gerührt. Nach Abkühlung auf -20°C wurden 17,0 ml einer 2,3 molaren Lösung von Butyl-lithium in Hexan (0,039 mol) zugetropft. Nach vollständiger Zugabe wurde das Kältebad entfernt, die Lösung langsam auf Raumtemperatur erwärmt und 1,5 h nachgerührt. Nach Abkühlung der Aufschlammung auf 0°C, wurden 12,4 g (0,038 mol) Chlorotributylzinn zugetropft. Die entstehende Aufschlammung wurde auf Raumtemperatur erwärmt und 1,5 h gerührt. Der Ether wurde i. Vak. entfernt und das Rohprodukt erneut in Hexan aufgelöst, abfiltriert und das Filtrat i. Vak. getrocknet, wobei 20.4 g (Ausbeute: 98 %) der Verbindung 27 als schweres gelbes Öl übrigblieben. Zwei Isomere wurden durch 31P NMR identifiziert. 31P NMR (161,9 MHz, CD$_2$Cl$_2$) δ -5,9 und -6,6 in einem Verhältnis von 2:1.
Beispiel 26 (Diisopropylphosphino-2-methylindenyl-zirkonium-trichlorid, Verbindung 28)

Eine Lösung von 17.7 g (0.033 mol) der Verbindung 27 in 100 ml Methylenechlorid wurde zu einer Aufschlüsselung von 7.7 g (0.033 mol) 99.9 %igem ZrCl₄ in 200 ml Methylenechlorid innerhalb 10 min bei -25°C gegeben. Nach vollständiger Zugabe wurde das Reaktionsgemisch langsam auf 10°C über einen Zeitraum von 3 h erwärmt, wonach eine klare, orangefarbene Lösung entstand. Nach 1 h bei Raumtemperatur wurde das Lösungsmittel i. Vak. entfernt und das entstehende Öl mit 2 x 50 ml Hexan gewaschen, wodurch ein öliger Rohprodukt (28) erhalten wurde, das direkt zur Herstellung der Verbindung 29 verwendet wurde. Wegen der Unlöslichkeit dieser Verbindung wurde kein ¹H NMR erhalten.

Beispiel 27 (Diisopropylphosphino-dichlorboranyl-verbrücktes 2-Methylindenyl-cyclopentadienyl-zirkonium-dichlorid, Verbindung 29)

In einen Rundkolben, der 0,025 mol der unreinen Verbindung 28 in 200 ml Toluol bei 0°C enthielt, wurden 5,5 g (0,025 mol) der Verbindung 2 über einen Zeitraum von 5 min gegeben. Nach 1 h bei 0°C wurde das Rühren beendet und die lösliche Toluolfraction vom entstandenen Öl dekantiert. Nach Entfernung des Toluols i. Vak. wur-
den 100 ml Hexan zu dem ölichen Feststoff gegeben, wobei 7,4 g (Ausbeute: 54\%) eines gelben Pulvers mit einer Reinheit von ca. 90 \% entstanden. Das Produkt wurde in einem Soxhlet-Extraktionsgerät mit unter Rückfluß geführtm Pentan weitergereinigt. Das Endprodukt bestand aus einem hellgelben Pulver. \(^1\)H NMR (400 MHz, CD\(_2\)Cl\(_2\)) \(\delta\) 8,67 (br d, \(J = 7,6\) Hz, 1 H), 7,71 (m, 1 H), 7,35 (m, 2 H), 6,62 (br s, 1 H), 6,54 (br s, 1 H), 6, 47 (m, 1 H), 6,33 (m, 1 H), 6,06 (br s, 1 H), 3,3 (br m, 1 H), 3,2 (br m, 1 H), 2,6 (s, 3 H), 1,78 (dd, \(J = 7,1\) Hz, \(J_{\text{H-}p} = 15,3\) Hz, 3 H), 1,70 (dd, \(J = 7,2\) Hz, \(J_{\text{H-}p} = 15,7\) Hz, 3 H). 1,57 (dd, \(J = 7,1\) Hz, \(J_{\text{H-}p} = 15,3\) Hz, 3H), 1,12 (dd, \(J = 7,1\) Hz, \(J_{\text{H-}p} = 14,0\) Hz, 3H). \(^{31}\)P NMR (161,9 MHz, CD\(_2\)Cl\(_2\)) 28,4 (br m), \(^{11}\)B (80 MHz, CD\(_2\)Cl\(_2\)) \(\delta\) - 14,3 (br d, \(J_{\text{P-B}} = 106\) Hz).

Beispiel 28 (Bistrimethylsilyl-((diphenylphosphino)-cyclopentadien,

Verbindung 30)

\[
\begin{array}{c}
\text{TMS} \quad \text{TMS} \\
\text{PPh}_2 \\
\text{TMS} = \text{-Si(CH}_3)_3 \\
\end{array}
\]

76,6 ml einer 2,5-molaren Lösung von Butyl-lithium in Hexan (0,19 mol) wurden zu einer Lösung der Verbindung 1 (40,2 g; 0,19 mol) in 500 ml Ether innerhalb 10 min bei 0\(^\circ\)C gegeben. Nach vollständiger Zugabe wurde das Bad entfernt und die Lösung 1 h bei Raumtemperatur gerührt. Nach Abkühlung auf 0\(^\circ\)C, wurden 42,2 g (0,19 mol) Chlordiphenylphosphin innerhalb 10 min zugegeben, wonach das Bad entfernt und die Aufschlammung auf Raumtemperatur erwärmt wurde. Nach 1-stündigem Rühren bei Raumtemperatur wurde der Ether i. Vak. entfernt und das Produkt in Hexan erneut aufgelöst. Nach Abfiltrieren der Salze wurde das Hexan i. Vak. entfernt, wobei 69,1 g (Ausbeute: 91 \%) der Verbindung 30 als Öl übrigblieben. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7,45 (m, 4H), 7,35 (m, 6 H), 6,8 (m, 1 H), 6,65 (m, 1 H), 6,6 (m, 1H), 0 (s, 18 H). \(^{31}\)P NMR (161,9 MHz, CDCl\(_3\)) : \(\delta\) - 19,5 ppm.
Beispiel 29 (Trimethylsilyl-diphenylphosphino-cyclopentadienyl-zirkonium-trichlorid, Verbindung 31)

![Chemical structure](image)

Eine Lösung der Verbindung 30 (69,1 g, 0,175 mol) in 200 ml Methylenchlorid wurde über eine Kanüle zu einer Suspension von 41,5 g (0,178 mol) 99,9 %igem ZrCl₄ in 200 ml Methylenchlorid gegeben und 8 h bei Raumtemperatur gerührt. Während dieser Zeit trübte sich die Lösung. Die Feststoffe wurden abfiltriert, mit 2 x 20 ml Toluol und anschließend 2 x 20 ml Hexan gewaschen und i. Vak. getrocknet. Das Produkt bestand aus 35 g (Ausbeute: 39 %) eines hellgelben Pulvers. Wegen der Unlöslichkeit des Produktes wurde kein ¹H NMR erhalten.

Beispiel 30 (Diphenylphosphino-dichlorboranyl-verbrücktes Trimethylsilylcyclopentadienyl-cyclopentadienyl-zirkonium-dichlorid, Verbindung 32)

![Chemical structure](image)

Eine Lösung der Verbindung 2 (2,6 g, 0,012 mol) wurde bei 0°C zu einer Aufschlammung der Verbindung 31 (5,6 g, 0,011 mol) in 100 ml Toluol gegeben. Nach 5-stündigem Rühren bei 0°C wurde der gelbbraune Feststoff durch Filtration entfernt, wobei eine weiße Lösung übrigblieb. Nach Entfernung des Toluols i. Vak. und Waschen des übriggebliebenen Feststoffes mit Pentan, verblieb die Verbindung 32 als hochluftempfindliches weißliches Pulver (5,5 g; Ausbeute: 81 %). ¹H NMR (400 MHz, CD₂Cl₂) δ : 7,8 - 7,5 (m, 10 H), 7,06 (m, 1 H), 6,92 (m, 1 H), 6,83 (m, 1 H), 6,75
(m, 2 H), 6.68 (m, 1 H), 6.63 (m, 1 H), 0.26 (s, 9 H). 31P NMR (161.9 MHz, CD$_2$Cl$_2$) δ 0 (br, m); 11B (80 MHz, CD$_2$Cl$_2$) δ -16.3 (br d, J$_{B,p}$ = 82 Hz).

Beispiel 31 (Diisopropyphosphino-cyclopentadienyl-lithium, Verbindung 33)

![Diagram](image)

In einen Rundkolben, der 1.68 g (0.023 mol) Cyclopentadienyl-lithium enthielt, wurden 50 ml Ether gegeben. Nach Abkühlung des Reaktionskolbens auf -20°C wurden 3.6 g (0.023 mol) Chlordiisopropylphosphin zugetropft. Nach vollständiger Zugabe wurde das Kältebad auf 0°C erwärmt und das Reaktionsgemisch 1 h gerührt. Danach wurde Ether i. Vak. entfernt und das Produkt in Toluol gelöst und abfiltriert. Nach Durchspülen der Fritte mit 2 x 10 ml Toluol wurde das Reaktionsgemisch auf -20°C abgekühlt und 9.3 ml einer 2,5 molaren Lösung von Butyllithium in Hexan (0.023 mol) zugegeben, wobei eine orangefarbene Lösung entstand. Eine kleine Fraktion wurde für NMR-Untersuchungen entnommen und nach Abtrennung des Toluols i. Vak. und Waschen des entstehenden Öls mit Hexan ein hellgelber Feststoff (33) erhalten. 1H NMR (400 MHz, THF) δ : 5.89 (m, 2 H), 5.83 (br s, 2 H), 1.86 (m, 2 H), 1.0 - 0.8 (m, 12 H). Die Hauptmenge wurde direkt zur Herstellung der Verbindung 34 verwendet.

Beispiel 32 (Diisopropyphosphino-dimethylboranyl-verbrücktes Bis-cyclopentadienyl-titandichlorid, Verbindung 34)

![Diagram](image)
Eine Lösung von 6,1 g (0,023 mol) der Verbindung 4 in 50 ml Toluol wurde zu einer Toluollösung der Verbindung 33 (0,023 mol) aus der obengenannten Reaktion bei 78°C gegeben. Nach 30-minütigem Rühren bei 78°C wurde das Kältebad entfernt und die Lösung 2 h bei Raumtemperatur nachgerührt. Danach wurden die Feststoffe durch Filtration und das Toluol i. Vak. entfernt. Anschließend wurde Hexan zu dem roten öligen Produkt gegeben, wobei ein rotes Pulver entstand, das abfiltriert, mit 2 x 20 ml Hexan gewaschen und i. Vak. getrocknet wurde, wodurch die Verbindung 34 als rotes Pulver (5,95 g, Ausbeute, bezogen auf C6Li: 61%) entstand. 1H NMR (400 MHz, CD2Cl2) δ: 6,96 (m, 2 H), 6,94 (pseudo t, J = 2,4 Hz, 2 H), 6,59 (m, 2 H), 6,42 (m, 2 H), 2,58 (m, 2 H), 1,44 (dd, J = 7,3 Hz, JH-P = 14,7 Hz, 6 H), 1,27 (dd, J = 7,2 Hz, JH-P = 13,1 Hz, 6 H), 0,31 (d, JH-P = 16,4 Hz, 6 H). 31P-NMR (161,9 MHz, CD2Cl2) δ 28,7 (br m); 11B-NMR (80 MHz, CD2Cl2) δ -29,7 (br m).

Beispiel 33 (Dimethylphosphino-tributylstannyl-2-methylinden, Verbindung 35)

\[\text{In einen Rundkolben, der 6,76 g (0,052 mol) 2-Methylinden (Verbindung 26) enthielt, wurden 100 ml Ether gegeben; es wurde und auf -20°C gekühlt. Zu dieser Lösung wurden 21 ml einer 2,5 molaren Lösung von Butyl-lithium in Hexan (0,052 mol) innerhalb 5 min gegeben, wobei eine gelbe Lösung entstand. Nach Entfernung des Kältebades wurde die Lösung auf Raumtemperatur erwärmt und 1 Stunde nachgerührt. Nach Abkühlung des Reaktionsgemisches auf -20°C wurden 5,0 g (0,052 mol) Chlordimethylphosphin innerhalb 5 min zugegeben, wobei ein Niederschlag entstand. Anschließend wurde das Kältebad entfernt und das Reaktionsgemisch 1 h bei Raumtemperatur gerührt. Nach Abkühlung auf -20°C wurden 21,0 ml einer 2,5 molaren Lösung von Butyl-lithium in Hexan (0,052 mol) zugetropft. Nach vollständiger Zugabe wurde das Kältebad entfernt, woraufhin die Lösung langsam auf Raumtemperatur erwärmt und 1,5 h gerührt wurde. Nach Abkühlung der Aufschlammung auf 0°C} \]
wurden 16,9 g (0,052 mol) Chlortributylzinn zuge tropft. Die entstehende Aufschläm mung wurde auf Raumtemperatur erwärmt und 1,5 h gerührt. Nach Entfernung des Ethers i. Vak. wurde das Rohprodukt erneut in Hexan aufgelöst, abfiltriert und das Filtrat i. Vak. getrocknet, wobei 24,3 g (Ausbeute: 98 %) der Verbindung 35 als schweres gelbes Öl übrigblieben. 31P NMR (161,9 MHz, CD$_2$Cl$_2$) δ - 68,5 (s).

Beispiel 34 (Dimethylphosphino-2-methylindenyl-zirkoniumtrichlorid, Verbindung 36)

Eine Lösung von 17,4 g (0,036 mol) der Verbindung 35 in 100 ml Toluol wurde zu einer Aufschlammung von 8,5 g (0,036 mol) 99,9 %igem ZrCl$_4$ in 100 ml Toluol innerhalb 10 min bei 0°C gegeben. Nach vollständiger Zugabe wurde das Reaktionsgemisch langsam auf 10°C über einen Zeitraum von 1 h erwärmt und danach 6 h bei Raumtemperatur gerührt. Anschließend wurde der gelbe Niederschlag abfiltriert, mit 2 x 20 ml Toluol und 2 x 20 ml Hexan gewaschen und i. Vak. getrocknet. Das Pulver wurde durch Entfernung der verbliebenen Zinnverbindungen mittels Extraktion mit unter Rückfluß geführtem Toluol über einen Zeitraum von 3 h bei 30 mm Hg und danach mit Pentan über einen Zeitraum von 2 h in einem Soxhlet-Extraktor weiter gereinigt, wobei 5,8 g (Ausbeute: 41 %) der Verbindung 36 als leuchtend gelbes Pulver übrigblieben. Wegen der Unlöslichkeit dieser Verbindung wurde kein 1H NMR erhalten.
Beispiel 35 (Dimethylphosphino-dichlorboranyl-verbrücktes 2-Methylindenyl-cyclopentadienyl-zirkonium-dichlorid, Verbindung 37)

![Chemical structure](image)

5 In einen Rundkolben, der 4,8 g (0.012 mol) der Verbindung 36 in 125 ml Toluol bei Raumtemperatur enthielt, wurden 2,7 g (0.012 mol) der Verbindung 2 innerhalb 5 min gegeben. Nach 7-stündigem Rühren wurde der dunkelgelbe Feststoff filtriert, mit 2 x 20 ml Hexan gewaschen und i. Vak. getrocknet, wobei 5,5 g (Ausbeute: 89%) der Verbindung 37 als hellgelber Feststoff erhalten wurden. 1H NMR (400 MHz, CD$_2$Cl$_2$) δ 8,39 (d, $J = 8,5$ Hz, 1 H), 7,71 (m, 1 H), 7,4 (m, 2 H), 6,64 (m, 2 H), 6,46 (pseudo q, $J = 5,3$, 2,9 Hz, 1 H), 6,37 (m, 1 H), 6,08 (m, 1 H), 2,51 (s, 3 H), 2,1 (d, $J_{\text{H-B}} = 12$ Hz, 3 H), 2,0 (d, $J_{\text{H-B}} = 12$ Hz, 3 H); 31P NMR (161,9 MHz, CD$_2$Cl$_2$) 5,3 (br m), 11B (80 MHz, CD$_2$Cl$_2$) δ -16,5 (br d, $J_{\text{B-B}} = 116$ Hz).

Beispiel 36 (Dicyclohexylboranylcyclopentadienyl-lithium, Verbindung 39)

![Chemical structure](image)

40 ml einer 1-molaren Lösung von Chlordicyclohexylboran in Hexan (0,04 mol) wurden zu 20 ml Cyclopentadienyl-Natrium (2 M in THF; 0,04 mol) in 100 ml Hexan bei - 78°C gegeben. Nach Entfernung des Kältebades wurde das Reaktionsgemisch auf Raumtemperatur erwärmt und 1 h gerührt. Nach Filtration und Entfernung des
Lösungsmittels i. Vak. blieben 9,1 g (Ausbeute: 94%) der Verbindung 38 als gelbes Öl übrig, das direkt bei der Synthese der Verbindung 39 verwendet wurde.

In einen Rundkolben, der 40 ml THF enthielt, wurden 5,3 g (0,038 mol) 2,2,6,6-Tetramethylpiperidin gegeben. Nach Abkühlung auf -20°C und Zugabe von 15 ml einer 2,5 molaren Lösung von Butyl-lithium in Hexan (0,038 mol) wurde die Mischung 1 h bei -20°C gerührt und danach auf -78°C abgekühlt. Zu dieser Lösung wurden 9,1 g (0,038 mol) der Verbindung 38 in 20 ml Hexan innerhalb 10 Minuten gegeben. Das Kältebad wurde entfernt und die Lösung 1 h bei Raumtemperatur gerührt. Nach Entfernung des Lösungsmittels i. Vak. und Zugabe von Hexan wurde 2 h nachgerührt, wobei eine weiße Suspension entstand, die filtriert und i. Vak. getrocknet wurde. Es entstand 4,6 g (Ausbeute: 50%) der Verbindung 39 als weißes Pulver. \(^{11}\text{B-NMR (80 MHz, THF) }\delta 43,9.\)

Beispiel 37 (Diphenylphosphino-dicyclohexylboranyl-verbrücktes Trimethylsilylcyclopentadienyl-cyclopentadienyl-zirkonium-dichlorid, Verbindung 40)

![Diagram](image)

Nach Abkühlung eines Schlenk-Kolbens, der 1,4 g (0,0056 mol) der Verbindung 39 und 2,9 g (0,0056 mol) der Verbindung 31 enthielt, auf -20°C wurden 100 ml Toluol zugegeben. Nach Entfernung des Bades wurde die Aufschlammung 6 h bei Raumtemperatur gerührt und anschließend filtriert. Das Lösungsmittel wurde i. Vak. entfernt, wobei ein öliger Feststoff übrigblieb, der mit Hexan gewaschen und filtriert wurde. Nach Trocknung des Feststoffs i. Vak. verblieben 1,9 g (Ausbeute: 48%) der Verbindung 40 als rosafarbener Feststoff. \(^{1}\text{H NMR (400 MHz, CD}_{2}\text{Cl}_{2}) \delta 7,6 - 7,2 (br m, 10 H), 7,04 (br s, 1 H), 6,95 (m, 1 H), 6,82 (m, 1 H), 6,76 (br s, 1 H), 6,66 (m.
1 H), 6,63 (m, 1 H), 6,52 (m, 1 H), 1,6 - 1,1 (br m, 22 H), 0,26 (s, 9 H); 31P NMR (161,9 MHz, CD$_2$Cl$_2$) δ 16,3; 11B-NMR (80 MHz, CD$_2$Cl$_2$) δ -13,8.

Beispiel 38 (4,7-Dimethylinden, Verbindung 41)

Eine 30 %ige Lösung von 153 g (2,8 mol) Natriummethoxid in Methanol wurde mit 60 ml Methanol verdünnt und auf 0°C abgekühlt. Zu dieser Lösung wurden 34 g (0,52 mol) Cyclopentadien gegeben. Nach 15 min wurden 39 g (0,34 mol) 2,5-Hexandion zugetropft, wonach das Kältebad entfernt und das Reaktionsgemisch 2 h bei Raumtemperatur gerührt wurde. Anschließend wurden 200 ml Wasser und 200 ml Ether zugegeben. Die Etherschicht wurde entfernt, mit Wasser und Kochsalzlösung gewaschen und anschließend über Na$_2$SO$_4$ getrocknet. Nach Entfernung des Lösungsmittels i. Vak. und Destillation bei 65°C und 0,1 mbar verblieb die Verbindung 41 als orangefärbenes Öl (40 g; Ausbeute: 81 %). 1H NMR (400 MHz, CDCl$_3$) δ 7,35 - 7,27 (m, 2 H), 7,23 (d, $J = 7,6$ Hz, 1 H), 6,82 (m, 1 H), 3,51 (s, 2 H), 2,75 (s, 3H), 2,63 (s, 3 H).
Beispiel 39 (Diisopropylphosphino-tributylstannyl-4,7-dimethylinden, Verbindung 42)

5
In einen Rundkolben, der 5,0 g (0,035 mol) 4,7-Dimethylinden (Verbindung 41) enthielt, wurden 100 ml Ether gegeben; es wurde auf - 20°C abgekühlt. Zu dieser Lösung wurden 14 ml einer 2,5 molaren Lösung von Butyl-lithium in Hexan (0,035 mol) innerhalb 5 min gegeben, wobei eine gelbe Lösung entstand. Nach Entfernung des Kältebades wurde die Lösung auf Raumtemperatur erwärmt und 1 h nachgerührt. Nach Abkühlung des Reaktionsgemisches auf - 20°C wurden 5,3 g (0,035 mol) Chlordiisopropylphosphin innerhalb 5 min zugegeben, wobei ein Niederschlag entstand. Danach wurde das Kältebad entfernt und das Reaktionsgemisch 1 h bei Raumtemperatur gerührt. Nach Abkühlung auf - 20°C wurden 14,0 ml einer 2,5 molaren Lösung von Butyl-lithium in Hexan (0,035 mol) zugeropft. Nach vollständiger Zugabe wurde das Kältebad entfernt, die Lösung langsam auf Raumtemperatur erwärmt und 1,5 h gerührt. Nach Abkühlung der Aufschlüsselung auf 0°C wurden 11,4 g Chortributylzinn (0,035 mol) zugeropft. Die entstehende Aufschlüsselung wurde auf Raumtemperatur erwärmt und 1,5 h gerührt. Der Ether wurde i. Vak. entfernt und das Rohprodukt erneut in Hexan aufgelöst, filtriert und das Filtrat i. Vak. eingeengt, wobei 16 g (Ausbeute: 83%) der Verbindung 42 als schweres gelbes Öl übrigblieben.

\[^{31}P \text{NMR (161,9 MHz, CD}_{2}\text{Cl}_{2}) \delta \text{ -9 ppm.} \]
Beispiel 40 (Diisopropylphosphino-4,7-dimethylidenyl-zirkonium-trichlorid, Verbindung 43)

![Structure of 43]

Eine Lösung von 16,0 g (0,029 mol) der Verbindung 42 in CH₂Cl₂ (100 ml) wurde zu einer Aufschlammung von 6,4 g (0,029 mol) 99,9 %igem ZrCl₄ in 100 ml CH₂Cl₂ bei -20°C innerhalb 10 min gegeben. Nach vollständiger Zugabe wurde das Reaktionsgemisch langsam über einen Zeitraum von zwei Stunden auf Raumtemperatur erwärmt und anschließend weitere 2 h bei Raumtemperatur gerührt. Danach wurden die Feststoffe durch Filtration entfernt und das Lösungsmittel i. Vak. entfernt, wobei die Rohverbindung 43 als Öl übrigblieb, das direkt zur Herstellung der Verbindung 44 verwendet wurde.

Beispiel 41 (Diisopropylphosphino-dichlorboranyl-verbrücktes 4,7-Dimethylindenylyn-cyclopentadienyln-zirkonium-dichlorid, Verbindung 44)

![Structure of 44]

In einen Rundkolben, der 10,6 g (0,023 mol) der Verbindung 43 in 125 ml Toluol bei 0°C enthielt, wurden 5,0 g (0,023 mol) der Verbindung 2 innerhalb 5 min gegeben. Nach 1,5-stündigem Rühren bei 0°C wurde das Kältebad entfernt und die Aufschlammung weitere 3 Stunden bei Raumtemperatur gerührt. Danach wurde die to-
luollösliche Fraktion vom schweren Öl, das sich während der Reaktion gebildet hatte, dekantiert und i. Vak. zur Trockne eingeengt, wobei ein schweres Öl übrigblieb. Nach Zugabe von 100 ml Hexan zu diesem Öl wurde nachgerührt und ein dunkelgelbes Pulver abfiltriert, das i. Vak. getrocknet wurde. Nach diesem Verfahren verblieben 6,3 g (Ausbeute: 48 %) der Verbindung 44 als dunkelgelbes Pulver. Das Produkt kann durch Ausfällung einer CH$_2$Cl$_2$-Lösung der Verbindung 44 in einem Kohlenwasserstoff-Lösungsmittel weitergereinigt werden. 1H NMR (400 MHz, CD$_2$Cl$_2$) δ 8,03 (pseudo t, J = 8,5 Hz, 1 H), 7,22 (d, J = 7 Hz, 1 H), 7,08 (d, J = 7,1 Hz, 1 H), 7,02 (m, 1 H), 6,77 (m, 1 H), 6,70 (m, 1 H), 6,58 (m, 1 H), 6,44 (br s, 1 H), 3,51 (m, 1 H), 2,82 (m, 1 H), 2,64 (s, 3 H), 2,50 (s, 3 H), 1,77 (dd, J = 7,2 Hz, J$_{H\cdot P}$ = 16,3 Hz, 3 H), 1,69 (dd, J = 7,1 Hz, J$_{H\cdot P}$ = 15,2 Hz, 3 H), 1,58 (dd, J = 7,1 Hz, J$_{H\cdot P}$ = 15,5 Hz, 3 H), 1,28 dd, J = 7,2 Hz, J$_{H\cdot P}$ = 14,5 Hz, 3 H); 31P-NMR (161,9 MHz, CD$_2$Cl$_2$) δ 28,4 (br, m), 11B-NMR (80 MHz, CD$_2$Cl$_2$) δ -15,3 (d, J$_{P\cdot B}$ = 107 Hz).

Beispiel 42 (Pyrrrol-lithium, Verbindung 45)

\[
\text{Li}^+ \quad \begin{array}{c}
\text{N}
\end{array} \quad \text{O}
\]

59 ml einer Lösung von Butyl-lithium (2,5 molar in Hexan, 0,148 mol) wurden langsam bei -20°C zu einer Lösung von 9,9 g Pyrrol (0,148 mol) in 200 ml Hexan gegeben, wobei sich ein weißer Festkörper bildete. Es wurde 2 Stunden bei Zimmertemperatur nachgerührt und der Festkörper durch Filtration gewonnen, 2 mal mit je 20 ml Hexan gewaschen und im Vakuum getrocknet. Dies Verfahren ergab 6 g der Verbindung 45 (56 % der theoretischen Ausbeute).

1H-NMR (400 MHz, THF): δ = 6,71 (s, 2H), 5,95 (s, 2H).
Beispiel 43 (Dimethylboranyl-verbrücktes Cyclopentadienyli-pyrrol-titandichlorid, Verbindung 46)

Eine Lösung von 1,34 g (0,005 mol) der Verbindung 4 in 20 ml Toluol wurde während 5 Minuten bei -78°C zu 0,38 g (0,005 mol) der Verbindung 45 gegeben. Das Kältebad wurde danach entfernt, und es wurde 2 Stunden bei Raumtemperatur weitergerührt. Danach wurde der gebildete rote Festkörper abfiltriert; das gelbe Filtrat wurde verworfen. Der rote Festkörper wurde mit Toluol gewaschen und im Vakuum getrocknet. Man erhielt 1,14 g mit einem geringen Anteil an LiCl.

1H-NMR (400 MHz, THF): δ = 6,89 (pseudo-t, J = 2,3 Hz, 2 H), 6,64 (m, 2 H), 6,59 (pseudo-t, J = 2,35 Hz, 2 H), 5,73 (pseudo-t, J = 1,7 Hz, 2 H), 0,06 (s, 6 H). 11B NMR (80 MHz, THF) δ = -26 ppm.

Beispiel 44 (1-Phenyl-2,3,4,5-tetramethyl-phosphol, Verbindung 47)

In Anlehnung an Organometallics 2 (1988), 921 wurde eine Lösung von 11,7 g (0,216 mol) 2-Butin in 150 ml CH$_2$Cl$_2$ langsam zu 15,3 g (0,115 mol) AlCl$_3$ in CH$_2$Cl$_2$ gegeben (0°C; 30 Min.). Es wurde 45 Minuten bei 0°C nachgerührt, dann das Kältebad entfernt und eine weitere Stunde nachgerührt. Danach wurde die Lösung
auf -50°C gekühlt und eine Lösung von 21,4 g (0,12 mol) Phenyl-dichlorphosphin in CH₂Cl₂ während 20 Minuten zugegeben. Das Kältebad wurde danach entfernt, die dunkelrote Lösung eine Stunde nachgerührt und dann bei -30°C zu einer Lösung von 27 g (0,13 mol) Tributylphosphin in 100 ml CH₂Cl₂ gegeben. Die rote Farbe verschwand sofort; es hinterblieb eine gelbe Lösung. Nachdem die Zugabe beendet war, wurde das Lösungsmittel im Vakuum entfernt; es blieb ein dickes gelbes Öl. Das Öl wurde in Hexan aufgenommen und unter Ar-Atmosphäre mit gesättigter wässriger NaHCO₃-Lösung und H₂O gewaschen. Nach Trocknung über MgSO₄ wurde das Hexan im Vakuum entfernt. Es hinterblieben 18,2 g als klares Öl (Ausbeute 78 %).

1H-NMR (400 Mhz, CDCl₃) δ: 7,3 (m, 5H), 2,0 (m, 12H), 3¹P-NMR (161,9 MHz, CDCl₃) δ: 16,8 ppm.

Beispiel 45 (Lithium-2,3,4,5-tetramethyl-phosphol, Verbindung 48)

![Chemische Strukturformel]

In Anlehnung an Organometallics 7 (1988), 921 wurden 0,52 g (0,074 mol) Lithium zu einer Lösung von 7 g (0,032 mol) der Verbindung 47 in 150 ml Tetrahydrofuran (THF) gegeben und über Nacht gerührt. Die erhaltene rote Lösung wurde zur Entfernung restlicher Feststoffe durch eine Fritte filtriert und das Filtrat auf 0°C gekühlt. Danach wurde eine Lösung von 1,45 g (0,01 mol) AlCl₃ in 20 ml THF zugetropft und die Lösung auf Raumtemperatur gebracht. Eine aliquote Menge wurde zur Analyse entnommen und die restliche Lösung direkt zur Herstellung der Verbindung 49 benutzt. ³¹P-NMR (161,9 MHz, THF) δ: 63,7 ppm.
Beispiel 46 (Dimethylboranyl-cyclopentadienyl-tetramethylphosphol-titandichlorid, Verbindung 49)

![Chemical structure image]

Die THF-Lösung aus Beispiel 45 mit 1,46 g (0,01 mol) der Verbindung 48 wurde in einen Rundkolben gegeben; THF wurde im Vakuum entfernt. Nach Zugabe von Toluol und Abkühlung auf -78°C wurde eine Lösung von 2,6 g (0,01 mol) der Verbindung 44 in 20 ml Toluol langsam unter Rühren zugegeben, wobei eine rote Aufschlammung entstand. Nachdem die Zugabe beendet war, wurde die Aufschlammung auf Raumtemperatur gebracht und 1 Stunde nachgerührt. Nach Abfiltrieren von ungelöst gebliebenem Feststoff wurde das Toluol im Vakuum entfernt, zum zurückgebliebenen öligen Feststoff wurde Hexan gegeben. Die Hexan-Lösung wurde ebenfalls von ungelöst gebliebenem Feststoff abfiltriert und über Nacht bei -20°C aufbewahrt. Nach Abdekantieren des Hexans wurden 0,5 g eines grünen Feststoffs erhalten, der als Verbindung 49 identifiziert wurde (Ausbeute 14 %). 1H-NMR (200 MHz, CD$_2$Cl$_2$) δ: 6,64 (m, 2H), 6,57 (m, 2H), 2,11 (d, J$_{H-P}$ = 10 Hz, 6H), 2,09 (s, 6H), 0,87 (d, J$_{H-P}$ = 5,3 Hz, 6H). 31P-NMR (161,9 MHz, THF) δ: 95,6 ppm, 11B-NMR (80 MHz, CD$_2$Cl$_2$) δ: 39 (br, m) ppm.

Beispiel 47 (Diphenylphosphino-dichlorboranyl-verbrüchtes Bis(indenyl)-zirkonium-dichlorid, Verbindung 50)

0,011 Mol Trimethylsilyl-dichlorboranyl-inden wurden bei Raumtemperatur zu einer Suspension von 0,012 Mol Diphenylphosphino-indenyl-zirkoniumtrichlorid in 150 ml Toluol gegeben. Das Reaktionsgemisch wurde sodann 1 Stunde bei 75°C gerührt. Nach Abkühlen und Filtration wurden zur klaren orangefarbenen Lösung 150 ml Hexan gegeben, worauf sich ein schweres rotes Öl und ein hellgelber Niederschlag

Elementaranalyse: 56,05 % C (theoretisch 55,90 %), 4,35 % H (4,38 %).

Spektrum meso-Isomer: 1H-NMR (400 MHz, CD$_2$Cl$_2$, Raumtemperatur RT): 8,01 ppm (1H, d, 8,8 Hz); 7,8-7,0 ppm (mehrere überlappende Multiplets, 28H); 6,94 ppm (1H, t, 3,3 Hz); 6,77 ppm (1H, d, 3,44 Hz); 6,31 ppm (1H, d, 8,7 Hz).

31P-NMR (161,9 MHz, CD$_2$Cl$_2$): 5,6 ppm. 11B-NMR (80,2 MHz, CD$_2$Cl$_2$): -17,0 ppm (72 Hz).

Spektrum rac-Isomer: 1H-NMR (400 MHz, CD$_2$Cl$_2$, RT): 8,39 ppm (1H, d, 8,5 Hz); 7,68-7,05 ppm (27H, verschiedene überlappende Multiplets); 6,65 ppm (1H, d, 2,9 Hz); 6,59 ppm (1H, t, 3,5 Hz); 6,51 ppm (1H, t, 2,8 Hz); 6,40 ppm (1H, d, 3,5 Hz). 31P-NMR (161,9 MHz, CD$_2$Cl$_2$): 8,1 ppm. 11B-NMR (80,2 MHz, CD$_2$Cl$_2$): -14,0 ppm ($J_{P,B} = 74$ Hz).
Beispiele 48 bis 50 (Dialkylyphosphino-dichlorboranyl-verbrücktes Bis(indenyl)-zirkonium-dichlorid; Alkyl = i-Propyl = Verbindung 51, Ethyl = Verbindung 52; Methyl = Verbindung 53)

Charakterisierung der Verbindungen (NMR-Spektren in CD₂Cl₂ bei RT; ¹H-NMR: 400 MHz, ³¹P-NMR: 161,9 MHz, ¹¹B-NMR: 80,2 MHz):

rac-Verbindung 51 (i-Pr):

¹H-NMR: 8,41 ppm (1H, d, 9,0 Hz); 8,31 ppm (1H, d, 8,4 Hz); 7,84 ppm (1H, d, 8,5 Hz); 7,64 bis 7,24 ppm (6H, verschiedene überlappende Multiplets); 6,70 ppm (2H, m); 6,60 ppm (1H, m); 3,78 ppm (1H, m, P(CH(CH₃)₂)₂); 3,21 ppm (1H, m, P(CH₃(CH₃)₂); 1,81 ppm (6H, m, P(CH(CH₃)₂)₂, 1,72 ppm (3H, dd, P(CH(CH₃)₂)₂, 14,9 Hz, 7,3 Hz), 1,32 ppm (3H, dd, P(CH(CH₃)₂)₂, 14,1 Hz, 7,4 Hz). ³¹P-NMR: 22,7 ppm. ¹¹B-NMR: -14,1 ppm (100 Hz).

Elementaranalyse: 49,4 % C (theoretisch 48,9 %), 4,6 % H (4,4 %).

meso-Verbindung 52 (Et):

¹H-NMR: 7,83 ppm (1H, d, 9,0 Hz); 7,76 ppm (1H, m); 7,63 ppm (1H, d, 7,2 Hz); 7,47 ppm (1H, d, 8,5 Hz); 7,33 ppm (2H, m); 7,20 bis 7,03 ppm (4H, verschiedene überlappende Multiplets); 6,76 ppm (2H, m); 2,68 ppm (2H, m, P(CH₂(CH₃)₂); 2,44 ppm (2H, m, P(CH₂(CH₃)₂); 1,62 ppm (3H, m, P(CH₂(CH₃)₂); 1,27 ppm (3H, m, P(CH₂(CH₃)₂). ³¹P-NMR: 7,1 ppm. ¹¹B-NMR: -15,8 ppm (100 Hz).
rac-Verbindung 52 (Et):

1H-NMR: 8,28 ppm (1H, d, 8,6 Hz); 8,10 ppm (1H, d, 8,6 Hz); 7,62 ppm (1H, d, 8,4 Hz); 7,46 ppm (1H, d, 8,5 Hz); 7,41 bis 7,10 ppm (4H, verschiedene überlappende Multiplets); 6,81 ppm (1H, m); 6,47 ppm (2H, m); 6,38 ppm (1H, d, 3,4 Hz); 2,68 ppm (2H, m, P(CH$_2$CH$_3$)$_2$); 2,35 ppm (2H, m, P(CH$_2$CH$_3$)$_2$); 1,30 ppm (6H, m, P(CH$_2$(CH$_3$)$_2$). 31P-NMR: 12,3 ppm. 11B-NMR: -15,7 ppm.

Elementaranalyse: 47,6 % C (theoretisch 47,1 %), 4,3 % H (4,0 %).

meso-Verbindung 53 (Me):

1H-NMR: 7,84 ppm (1H, d); 7,75 ppm (1H, d, 8,2 Hz); 7,68 ppm (1H, d, 7,7 Hz); 7,51 ppm (1H, d, 8,5 Hz); 7,40 bis 7,10 ppm (6H, verschiedene überlappende Multiplets); 6,77 ppm (2H, br); 2,13 ppm (3H, P(CH$_3$)$_2$, d, 11,8 Hz); 1,92 ppm (3H, P(CH$_3$)$_2$, d, 11,8 Hz). 31P-NMR: 8,4 ppm. 11B-NMR: -16,1 ppm (103 Hz).

rac-Verbindung 53 (Me):

1H-NMR: 8,21 ppm (1H, d, 8,7 Hz); 8,15 ppm (1H, d, 8,6 Hz); 7,63 ppm (1H, d, 8,5 Hz); 7,44 bis 7,07 ppm (6H, verschiedene überlappende Multiplets); 6,40 ppm (3H, br); 2,03 ppm (3H, d, P(CH$_3$)$_2$, 11,9 Hz); 1,98 ppm (3H, d, P(CH$_3$)$_2$, 11,6 Hz).

31P-NMR: -1,5 ppm. 11B-NMR: -16,0 ppm (119 Hz).

Beispiel 51 (1,3-Bis(trimethylsilyl)-2-methylindien, Verbindung 54)

500 ml Hexan und 70 ml Butyllithium (als 2,5 molare Lösung in Hexan) wurden in einen 1000 ml-Kolben gegeben. Hierzu wurden 0,175 Mol 2-Methylindien bei Umgebungstemperatur getropft; das Gemisch wurde weitere 10 Stunden gerührt. Dann wurden 0,18 Mol Trimethylsilylchlorid bei Raumtemperatur zugetropft; es wurde weitere 10 Stunden gerührt. LiCl wurde abfiltriert, und 70 ml Butyllithium (als 2,5 molare Lösung in Hexan) wurden zum klaren Filtrat gegeben. Nach weiterem Rühren für 10 Stunden wurden erneut 0,18 Mol Trimethylsilylchlorid zugegeben, und es wurde weitere 10 Stunden gerührt. LiCl wurde abfiltriert und das Lösungsmittel im
Vakuum entfernt. Verbindung 54 hinterblieb als farbloses Öl. Ausbeute: 85 % der theoretischen Ausbeute.

\[^1H\text{-NMR} \ (CD_2Cl_2): \ 7,51 \text{ ppm} \ (1H, d, 7,7 \text{ Hz}), \ 7,38 \text{ ppm} \ (1H, d, 7,5 \text{ Hz}), \ 7,19 \text{ ppm} \ (1H, t, 7,4 \text{ Hz}), \ 7,08 \text{ ppm} \ (1H, t, 7,3 \text{ Hz}), \ 3,54 \text{ ppm} \ (1H, s), \ 2,32 \text{ ppm} \ (3H, s), \ 0,41 \text{ ppm} \ (9H, s, Si(CH_3)_3); \ 0,0 \text{ ppm} \ (9H, s, Si(CH_3)_3). \]

Beispiel 52 (Trimethylsilyl-dichlorboranyl-2-methylinde, Verbindung 55)

0,096 Mol der Verbindung 54 wurden in einen 250 ml-Kolben gegeben, der mit einem Trockeneis-Kondensator (-30°C) ausgerüstet war. Dann wurden 0,096 Mol BCl_3 zugegeben und das Gemisch bei Umgebungstemperatur 3 Stunden und bei 55°C 6 Stunden gerührt. Das Nebenprodukt (CH_3)_3SiCl wurde entfernt; es hinterblieb als Rohprodukt ein braunes Öl. Eine Destillation von Kältefalle zu Kältefalle ergab die Verbindung 55 in 75 %iger Ausbeute als klebrigen Feststoff.

\[^1H\text{-NMR} \ (CD_2Cl_2): \ 8,09 \text{ ppm} \ (1H, d, 7,9 \text{ Hz}), \ 7,37 \text{ ppm} \ (1H, d, 7,6 \text{ Hz}), \ 7,26 \text{ ppm} \ (1H, t, 7,5 \text{ Hz}), \ 7,16 \text{ ppm} \ (1H, t, 7,5 \text{ Hz}), \ 3,89 \text{ ppm} \ (1H, s), \ 2,61 \text{ ppm} \ (3H, s). \]

\[^{11}B\text{-NMR} \ (CD_2Cl_2): \ 31,9 \text{ ppm}. \]

Beispiel 53 (Tributylstannany-diethylphosphino-2-methylinde, Verbindung 56)

Es wurde analog Beispiel 7 gearbeitet.

Beispiel 54 (Diethylphosphino-2-methyldienyl-zirkoniumtrichlorid, Verbindung 57)

Es wurde analog Beispiel 8 gearbeitet, jedoch wurde statt Toluol CH_2Cl_2 als Lösungsmittel benutzt. Die Reaktionstemperatur war 25°C. Die Reinigung erfolgte durch Soxhlet-Extraktion mit CH_2Cl_2. Verbindung 57 wurde als unlöslicher gelber Feststoff in 78 % der theoretischen Ausbeute erhalten.
Beispiel 55 ((C₂H₅)₂P-BCl₂-verbrücktes Bis-(2-methylindenyl)-zirkoniumdichlorid, Verbindung 58)

0,019 Mol Verbindung 55 in 50 ml Toluol wurden bei Raumtemperatur zu einer Suspension von 0,019 Mol Verbindung 57 in 350 ml Toluol gegeben.

¹H-NMR: 8,14 ppm (1H, d, 8,6 Hz); 7,96 ppm (1H, d, 8,9 Hz); 7,47 bis 7,05 ppm (6H, verschiedene überlappende Multiplets); 6,53 ppm (1H, d, 1,9 Hz); 6,47 ppm (1H, s); 3,0 ppm bis 2,55 ppm (4H, verschiedene überlappende Multiplets), P(CH₂CH₃)₂; 2,21 ppm (3H, s, CH₃); 2,08 ppm (3H, s, CH₃); 1,44 ppm (3H, m, P(CH₂CH₃)₂); 1,07 ppm (3H, m, PCH₂CH₃)₂ ³¹P-NMR: 21,4 ppm. ¹¹B-NMR: -14,7 ppm.

Beispiel 56 (Ethen-Propen-Copolymerisation)

In einen trockenen, Sauerstoff-freien 300 ml V4A-Autoklaven wurden 100 ml trockenes, unter Inertgas destilliertes Toluol und 10 g Propen vorgelegt. Der Autoklav wurde auf 40°C temperiert und der Katalysator unter Druck mittels einer Druckschleuse zugegeben und sofort der Innendruck mit Ethen auf konstant 10 bar eingestellt. Als Katalysator dienten 5 × 10⁻⁷ mol [(cp)Ph₂PBMe₂(cp)TiCl₂], die mit 5 × 10⁻³ mol MAO während 15 Minuten bei Raumtemperatur präformiert (aktiviert) worden waren. Die Innentemperatur stieg auf 60°C. Die Polymerisation wurde nach 30 Minuten abgebrochen. Nach Aufarbeitung (Ausfällen und Waschen) mit Ethanol/Salzsäure und Ethanol wurden 0,9 g eines E-P-Copolymers isoliert.
Katalysator-Aktivität: ca. 3,5 Tonnen pro mol Katalysator und Stunde

IR-Analyse: 42 Gew.-% Propen, 58 Gew.-% Ethen

DSC-Analyse: teilkrystalines Copolymer,
Schmelzpeaks: \(T_{m1} = -31^\circ \), \(T_{m2} = 106^\circ \)C

Glasübergangstemperatur: \(T_g = -55^\circ \)C

Grenzviskosität in ortho-Dichlorbenzol bei 140°C:

\[[\eta] = 2,88 \text{ dl/g} \]

Beispiel 57 (Ethen-Propen-Copolymerisation)

Es wurde wie im vorstehenden Beispiel verfahren, wobei die Innentemperatur des Autoklaven auf 60°C und der Innendruck um 6 bar mit Ethen auf konstant 11 bar eingestellt wurde. Als Katalysator dienten 5 \(\times 10^{-7} \) mol \([(\text{CH}_3)_3\text{Si-}\text{cp})\text{Ph}_2\text{PBCl}_2(\text{cp})\text{ZrCl}_2]\),
die mit 5 \(\times 10^{-3} \) mol MAO während 15 Minuten bei Raumtemperatur präformiert worden waren. Die Innentemperatur stieg von 60°C auf 78°C.

Polymer-Ausbeute nach 30 Minuten: 9,8 g.

Katalysator-Aktivität: 39,2 Tonnen Copolymer pro mol Katalysator und Stunde

IR-Analyse: 31 Gew.-% Propen, 69 Gew.-% Ethen

DSC-Analyse: teilkrystalines Copolymer,
Schmelzpeaks: -2°C, +62°C, 102°C

Glasübergangstemperatur: \(T_g = -55^\circ \)C

Grenzviskosität in ortho-Dichlorbenzol bei 140°C:

\[[\eta] = 0,88 \text{ dl/g} \]

In einem Vergleichsversuch bei 40°C (exotherm bis ca. 50°C) bildete sich ein völlig amorphes Copolymer mit einem Propen-Gehalt von 46 Gew.-% und einem \([\eta]\)-Wert von 0,87 dl/g.
Beispiel 58 (Ethen-Propen-Copolymerisation)

Es wurde wie im vorstehenden Beispiel verfahren, wobei bei gleichen Katalysator- und Cokatalysatormengen wie dort als D/A-Metallocen \([\text{r-(ind)}\text{-Pr}_2\text{PBCl}_2\text{(ind)}\text{ZrCl}_2]\) verwendet wurde und der Druck bei 80° um 2 bar mit Ethen auf konstant 8,5 bar erhöht wurde. Die Innentemperatur stieg auf 82°C.

Katalysator-Aktivität: 4,4 Tonnen Copolymer pro mol Katalysator und Stunde
DSC-Analyse: diekristallines Copolymer

\[T_m = +37°C\]
\[T_g = -49°C\]

Grenzviskosität in ortho-Dichlorbenzol bei 140°C:
\[\eta = 1,41 \text{ dl/g}\]

Beispiel 59 (Propen-Polymerisation)

In einen trockenen, Sauerstoff-freien 300 ml V4A-Stahlausgläsern wurde ca. 1 Mol Propen vorgelegt und bei 20°C die Polymerisation in Masse durch Katalysatorzugabe mittels einer Druckschleuse gestartet. Als Katalysator dienten \(1 \times 10^{-6} \text{ Mol}\) \([(\text{Me}_3\text{Si-cp})\text{Ph}_2\text{PBCl}_2\text{(Cp)}\text{ZrCl}_2]\) und \(1 \times 10^{-2} \text{ Mol MAO in 9 ml Toluol}\)

Die Innentemperatur stieg von 20° auf 24°C. Nach einer Stunde konnten nach Aufarbeitung mit Ethanol/Salzsäure und Trocknung 3,2 g eines kautschukartigen Polypropylens isoliert werden.

Katalysator-Aktivität: 3,2 Tonnen pro mol·h
DSC: amorphes PP, \(T_g = -4°C\)
GPC (Polystyrol-Eichung):
\[M_w = 143 \text{ kg/mol}\]
\[M_n = 28 \text{ kg/mol}\]

Grenzviskosität (o-Cl₂-benzol, 140°C)
\[\eta = 0,66 \text{ dl/g}\]

NMR (Triadenanalyse)
37% isotaktisch
42% ataktisch
21 % syndiotaktisch

Beispiel 60 (Propen-Polymerisation)

Ein ausgeheizter 300 ml-V4A-Stahlautoklav wurde mit 100 ml trockenem, Sauerstoff-freien Toluol und 0,5 ml eine 1 molare Triisobutylaluminium/Toluol-Lösung beschickt. Anschließend wurde ca. 1 mol Propen in den Autoklaven übergeführt. 3,1 ml einer 30 Minuten bei RT präformierten toluolischen Katalysator-Lösung, die 1 x 10^{-6} mol rac[(2- Me-ind)Et$_2$PBCl$_2$(2-Me-ind)ZrCl$_2$] und 0,1 mmol Triisobutylaluminium (TiBA) enthielt, wurden in einer Druckschleuse mit 1 ml einer Chlorbenzol-Lösung, die 4 x 10^{-6} mol Dimethylanilinium-tetrakis(pentafluor-phenyl)borat enthielt, versetzt und mit Toluol auf 5 ml aufgefüllt. Nach Überführung der Katalysator-Lösung unter Druck in den Autoklaven stieg die Innentemperatur trotz Außenkühlung mit Trockeneis/Aceton von 20°C auf 48°C.

20 Minuten nach Katalysatorzugabe wurde die Polymerisation abgebrochen und der Autoklaveninhalt in 500 ml Ethanol und 50 ml konzentrierter wässriger Salzsäure 2 Stunden ausgerührt. Anschließend wurde das weiße Polypropylenpulver durch Filtration isoliert, mit Ethanol gewaschen und bei 115°C getrocknet.

Polymerausbeute: 11,6 g
Katalysator-Aktivität: 34,8 Tonnen: i-PP pro Mol Katalysator und Stunde
Die DSC-Messung ergab in der 2. Aufheizung eine Schmelztemperatur $T_m = 155°C$
Die NMR-Messung ergeben einen Isotaktivitätsindex I.I. = 88 %

Die Grenzviskosität, gemessen in o-Dichlorbenzol bei 140°C, betrug $[\eta] = 3,60$ dl/g, entsprechend einer Molmasse $M_{visk} = 798$ kg/mol.

In weiteren Versuchen bei ansteigender Temperatur wurde ein zunehmender Anteil an ataktischen Sequenzen beobachtet. Dies wird in der DSC-Messung durch eine zunehmend ausgeprägte Glasübergangsstufe im Temperaturbereich von 0 bis -20°C sichtbar.
Patentansprüche

1. Verfahren zur Herstellung von thermoplastischen Elastomeren durch
(Co)Polymerisation von Monomeren aus der Gruppe der C\textsubscript{2}-C\textsubscript{8}-\(\alpha\)-Olefine,
der C\textsubscript{4}-C\textsubscript{15}-Diolefine, der ein- oder zweifach halogenierten C\textsubscript{4}-C\textsubscript{15}-Diolefine,
der Vinylester, (Meth)Acrylate und Styrol in der Masse-, Lösungs-, Slurry-
der Gasphase in Gegenwart von metallorganischen Katalysatoren, die durch
Cokatalysatoren aktiviert werden können, dadurch gekennzeichnet, daß als
metallorganische Katalysatoren Metallocen-Verbindungen der Formel

\[\Delta + D \quad \triangleleft \quad \Delta - A \]

(la) \quad (lb)

in der

C\textsubscript{pl} und C\textsubscript{pll} zwei gleiche oder verschiedene Carbanionen mit einer Cyclopentadienyln-haltigen Struktur darstellen, in denen eines bis alle H-Atome
durch gleiche oder verschiedene Reste aus der Gruppe von linearem
oder verzweigtem C\textsubscript{1}-C\textsubscript{20}-Alkyl, das 1fache bis vollständig durch
Halogen, 1-3fach durch Phenyl, sowie 1-3fach durch Vinyl substituiert
sein kann, C\textsubscript{6}-C\textsubscript{12}-Aryl, Halogenaryl mit 6 bis 12 C-Atomen, Organ-
ometall-Substituenten, wie Silyl, Trimethylsilyl, Ferrocenyl sowie 1-
der 2fach durch D und A substituiert sein können,

D ein Donoratom bedeutet, das zusätzlich Substituenten tragen kann und
das in seinem jeweiligen Bindungszustand mindestens über ein freies
Elektronenpaar verfügt,
A ein Akzeptoratom bedeutet, das zusätzlich Substituenten tragen kann und das in seinem jeweiligen Bindungszustand eine Elektronenpaar-Lücke aufweist,

wobei D und A durch eine reversible koordinative Bindung derart verknüpft sind, daß die Donorgruppe eine positive (Teil)Ladung und die Akceptorgruppe eine negative (Teil)Ladung annehmen,

M für ein Übergangsmetall der III., IV., V. oder VI. Nebengruppe des Periodensystems der Elemente (Mendeleyew) einschließlich der Lanthaniden und Actiniden steht,

X ein Anionäquivalent bedeutet und

n in Abhängigkeit von der Ladung von M die Zahl Null, Eins, Zwei, Drei oder Vier bedeutet,

oder

π-Komplex-Verbindungen und insbesondere Metalocen-Verbindungen der Formel

\[\begin{align*}
\Delta^+ & \quad D \quad \pi I \\
\Delta^- & \quad \pi II \\
A & \quad MX_n
\end{align*} \]

(XIIIa)

\[\begin{align*}
D \quad \pi I \\
\pi II \quad A \\
MX_n
\end{align*} \]

(XIIIb)
πI und πII voneinander verschiedene geladene oder elektrisch neutrale π-
Systeme darstellen, die ein- oder zweifach mit ungesättigten oder ge-
sättigten Fünf- oder Sechsringen kondensiert sein können,

D ein Donoratom bedeutet, das Substituent von πI oder Teil des π-Systems
von πI ist und das in seinem jeweiligen Bindungszustand mindestens über
ein freies Elektronenpaar verfügt,

A ein Akzeptoratom bedeutet, das Substituent von πII oder Teil des π-
Systems von πII ist und das in seinem jeweiligen Bindungszustand eine
Elektronenpaar-Lücke aufweist,

wobei D und A durch eine reversible koordinative Bindung derart verknüpft sind,
daß die Donorgruppe eine positive (Teil)Ladung und die Akzeptorgruppe eine
negative (Teil)Ladung annehmen und wobei mindestens eines von D und A Teil
des jeweils zugehörigen π-Systems ist,

wobei D und A ihrerseits Substituenten tragen können,

wobei jedes π-System bzw. jedes ankondensierte Ringsystem eines oder mehrere
D oder A oder D und A enthalten kann und

wobei in πI und πII in der nicht kondensierten oder in der kondensierten Form
unabhängig voneinander eines bis alle H-Atome des π-Systems durch gleiche oder
verschiedene Reste aus der Gruppe von linearem oder verzweigtem C_{1-20}-
Alkyl, das 1-fach bis vollständig durch Halogen, 1- bis 3-fach durch Phenyl
sowie 1- bis 3-fach durch Vinyl substituiert sein kann, C_{6-12}-Aryl,
Halogenaryl mit 6 bis 12 C-Atomen, Organometall-Substituenten, wie Silyl,
Trimethylsilyl, Ferrocenyl sowie ein- oder zweifach durch D und A substituiert
sein können, sodaß die reversible koordinative D→A-Bindung (i) zwischen D
und A, die beide Teile des jeweiligen π-Systems oder des ankondensierten
Ringsystems sind, oder (ii) von denen D oder A Teil des π-Systems und das
jeweils andere Substituent des nicht kondensierten π-Systems oder des ankondensierten Ringsystems ist oder (iii) sowohl D als auch A solche Substituenten sind, wobei im Falle von (iii) mindestens ein zusätzliches D oder A oder beide Teile des π-Systems oder des ankondensierten Ringsystems ist (sind), ausgebildet wird,

M und X die obige Bedeutung haben und

\[n \] in Abhängigkeit von den Ladungen von M sowie denen von πI und πII die Zahl Null, Eins, Zwei, Drei oder Vier bedeutet,

eingesetzt werden.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Metallocen-Verbindungen bzw. die π-Komplex-Verbindungen als Katalysatoren in einer Menge von \(10^1\) bis \(10^{12}\) mol Monomere pro mol Metallocen bzw. π-Komplex-Verbindung eingesetzt werden.

4. Verfahren nach Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß in den Metallocen-Verbindungen die Carbanionen CpI und CpII bzw. das π-System πI ein Cyclopentadienylgerüst aus der Gruppe von Cyclopentadien, substituiertem Cyclopentadien, Inden, substituiertem Inden, Fluoren und substituiertem Fluoren bedeuten, in welchen je Cyclopentadien- bzw. ankondensiertem Benzolring 1 bis 4 Substituenten aus der Gruppe von \(C_1\)-\(C_{20}\)-Alkyl, \(C_1\)-\(C_{20}\)-Alkoxy, Halogen, \(C_6\)-\(C_{12}\)-Aryl, Halogenphenyl, D und A vorliegen, wobei D und A den in Anspruch 1 genannten Bedeutungsumfang haben und wobei an-
kondensierte aromatische Ringe teilweise oder vollständig hydriert sein können.

7. Verfahren nach Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß in den Metallocen-Verbindungen bzw. π-Komplex-Verbindungen Donor-Akzeptor-Brücken aus der Gruppe von

\[\text{N}\rightarrow\text{B}, \text{N}\rightarrow\text{Al}, \text{P}\rightarrow\text{B}, \text{P}\rightarrow\text{Al}, \text{O}\rightarrow\text{B}, \text{O}\rightarrow\text{Al}, \text{Cl}\rightarrow\text{B}, \text{Cl}\rightarrow\text{Al}, \text{C}=\text{O}\rightarrow\text{B}, \text{C}=\text{O}\rightarrow\text{Al} \]

coreliegen.

8. Verfahren nach Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß in den Metallocen-Verbindungen M für Sc, Y, La, Sm, Nd, Lu, Ti, Zr, Hf, Th, V, Nb, Ta, Cr, bevorzugt für Ti, Zr, Hf, V, Nb oder Ta steht.

9. Verfahren nach Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß die Metallocen-Verbindungen bzw. die π-Komplex-Verbindungen gemeinsam mit einem Aluminoxan, einem Boran oder Borat und gegebenenfalls weiteren Cokatalysatoren und/oder Metallalkylen als Katalysatorsystem eingesetzt werden.

10. Verfahren nach Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß Umlagerungsprodukte von Metallocen-Verbindungen bzw. π-Komplex-Verbindungen nach Anspruch 1 unter Selbstaktivierung, bei denen nach Öffnung der D/A-Bindung das Akzeptoratom A einen X-Liganden unter Ausbildung einer zwit-
terionischen Metallocen-Komplex-Struktur bzw. π-Komplex-Struktur bindet, wobei beim Übergangsmetall M eine positive Ladung und beim Akzeptoratom A eine negative Ladung erzeugt wird und wobei ein weiterer X-Ligand H oder substituiertes oder nicht substituiertes C darstellt, in dessen Bindung zum Übergangsmetall M die Olefin-Insertion zur Polymerisation erfolgt, wobei bevorzugt 2 X-Liganden zu einem Chelat-Liganden verknüpft sind.

12. Verfahren nach Ansprüchen 1 bis 11, dadurch gekennzeichnet, daß Reaktionsprodukte der Formel (XI) bzw. (XII) von ionisierenden Agentien mit Metallocen-Verbindungen bzw. π-Komplexen gemäß Formel (I) bzw. (XIII)

![Diagramm](image)

oder

![Diagramm](image)

bzw.
in denen

Anion für das gesamte sperrige, schlecht koordinierende Anion und Base für eine Lewis-Base stehen,

eingesetzt werden.

Verfahren nach Ansprüchen 1 bis 12, dadurch gekennzeichnet, daß es auf die Herstellung von ePP gerichtet ist.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 6 C08F10/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbol)
 IPC 6 C08F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 44 20 456 A (HOECHST AG) 14 December 1995 see the whole document</td>
<td>1-13</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 638 593 A (SHELL IRS) 15 February 1995 see the whole document</td>
<td>1-13</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Date of the actual completion of the international search

18 September 1997

Date of mailing of the international search report

30.09.97

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV RIJSWIJK
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Rinkel, L
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 4420456 A</td>
<td>14-12-95</td>
<td>AU 2027895 A</td>
<td>21-12-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9502776 A</td>
<td>12-03-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2151558 A</td>
<td>14-12-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1119648 A</td>
<td>03-04-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0687682 A</td>
<td>20-12-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 952857 A</td>
<td>14-12-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8003212 A</td>
<td>09-01-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 952307 A</td>
<td>14-12-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9504829 A</td>
<td>30-01-96</td>
</tr>
<tr>
<td>EP 638593 A</td>
<td>15-02-95</td>
<td>AU 7610394 A</td>
<td>28-02-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9407165 A</td>
<td>17-09-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2168564 A</td>
<td>09-02-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1128539 A</td>
<td>07-08-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9504087 A</td>
<td>09-02-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0717754 A</td>
<td>26-06-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8510006 T</td>
<td>22-10-96</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

Klassifizierung des Anmeldungsgegenstandes

IPK 6 CO8F10/02

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK.

B. RECHERCHIERTE GEBIETE

Rechercherter Mindestprüfstoff (Klassifikationssystem und Klassifikationsstufe)

IPK 6 COBF

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen.

Während der internationalen Recherche konzillierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der im Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0 638 593 A (SHELL IRS) 15. Februar 1995 siehe das ganze Dokument</td>
<td>1-13</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind von der Fortsetzung von Feld C zu entnehmen.

"A" Spätere Veröffentlichung, die nach dem internationalen Anmeldungsdatum oder dem Prioritätstagdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis der Erfindung zugrundeliegende Prinzipien oder der ihn zugrundeliegende Theorie angegeben ist.

"X" Veröffentlichung von besonderer Bedeutung, die beantragte Erfindung kann nicht als neu oder auf erforderlicher Sichtung beruhend betrachtet werden.

"Y" Veröffentlichung von besonderer Bedeutung, die beantragte Erfindung kann nicht als auf erforderlicher Sichtung beruhend betrachtet werden, wenn die Veröffentlichung keiner oder mehrerer der Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für den Fachmann nachweisbar ist.

Name und Postanschrift der Internationale Recherchebehörde:

Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV RIJSWIJK
Tel. (+31-70) 340-2040, Fax (+31-70) 340-2016

Bewillmachung der Bediensteteter:

Rinkel, L
<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(er) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 4420456 A</td>
<td>14-12-95</td>
<td>AU 2027895 A</td>
<td>21-12-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9502776 A</td>
<td>12-03-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2151558 A</td>
<td>14-12-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1119648 A</td>
<td>03-04-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0687682 A</td>
<td>20-12-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 952857 A</td>
<td>14-12-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8003212 A</td>
<td>09-01-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 952307 A</td>
<td>14-12-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9504829 A</td>
<td>30-01-96</td>
</tr>
<tr>
<td>EP 638593 A</td>
<td>15-02-95</td>
<td>AU 7610394 A</td>
<td>28-02-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9407165 A</td>
<td>17-09-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2168564 A</td>
<td>09-02-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1128539 A</td>
<td>07-08-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9504087 A</td>
<td>09-02-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0717754 A</td>
<td>26-06-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8510006 T</td>
<td>22-10-96</td>
</tr>
</tbody>
</table>