wo 2017/067586 A1 |11 I N0F 00O 0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/067586 A1l

(51

eay)

(22)

(25)
(26)
1

(72

74

27 April 2017 (27.04.2017) WIPOIPCT
International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 9/50 (2006.01) kind of national protection available). AE, AG, AL, AM,
. L . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
PCT/EP2015/074319 DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
21 October 2015 (21.10.2015) KZ, IA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
. MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
Applicant: DEUTSCHE TELEKOM AG [DE/DE]; . L
Friedrich-Ebert-Allee 140, 53113 Bonn (DE). (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
Inventors: HUI, Pan; Hong Kong University of Science GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
and Technology, 1 University Road Apartment 29, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
HKUST, Clear Water Bay, Hong Kong (CN). HUANG, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
Di; Hong Kong University of Science and Technology, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
Clear Water Bay, Hong Kong (CN). YANG, Ji; Hong LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
Kong University of Science and Technology, Clear Water SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
Bay, Hong Kong (CN). PEYLO, Christoph; Nordweg 14, GW, KM, ML, MR, NE, SN, TD, TG).
49401 Damme (DE). .
Published:

Agent: RAINER, Viktor; VOSSIUS & PARTNER Pat-
entanwilte Rechtsanwilte mbB, Siebertstrale 3, 81675
Miinchen (DE).

with international search report (Art. 21(3))

(54) Title: METHOD AND SYSTEM FOR CODE OFFLOADING IN MOBILE COMPUTING

_
100 |

FIG. 1

(57) Abstract: A hybrid offloading network system for off-
loading computational tasks, comprises a server cloud that
is adapted, when receiving an offloading task, to execute
the offloading task; an ambient cloud comprising a plural-
ity of smart devices, wherein each smart device is adapted
to deliver, as an offloader, its oftloading task and attributes
of the offloading task, and/or is adapted, when receiving an
offloading task, to execute, as an offloadee, the offloading
task. A smart router manages information on currently
available computational resources both in the server cloud
and the ambient cloud. The smart router receives offload-
ing tasks from the ambient cloud, decides which candidate
among the server cloud and the oftloadee(s) of the ambient
cloud, each received oftloading task is to be forwarded to,
based on the resource information of each candidate, the at-
tributes of the offloading task and/or network bandwidth,
and forwards the oftloading task to the decided candidate.

WO 2017/067586 PCT/EP2015/074319

METHOD AND SYSTEM FOR CODE OFFLOADING IN MOBILE COMPUTING

The present invention is related to building a hybrid code offloading system in mobile
computing. This hybrid offloading system is a combination of a cloud comprising one or more
servers (also known as server cloud) and an ambient cloud comprising a plurality of smart

devices (also known as cirrus cloud or mobile devices cloud).

Mobile computing has been proposed for long with the rapid growth of smart device users.
The smart device such as smartphone (e.g. iPhone ™) is a computational device. Mobile
computing involves the interaction of humans, laptops, cloud servers and smart devices. And
there are many components in mobile computing such as communication and hardware.
Despite the fact that hardware has been upgraded with a tremendous speed, the application

execution speed still bothers both the developer and the smart device users.

The emergence of smart devices such as smartphones has inspired the developers to
develop more fantastic applications like mobile gaming and mobile augmented reality. Even
with the rapid growth of hardware technology, smart devices still cannot meet the demand of
these computation-exhausting applications. To cope with such contradiction, researches these
years start to focus on the software solutions-based computation from the cloud (i.e. server
cloud). Mobile cloud computing (MCC) is proposed to speed up the smart device applications.

Actually there have been presented many initial works on how to solve the execution
problem in MCC by computation offloading. The concept of computation offloading comes
from cyber foraging [1], [2], which was proposed a decade ago. The cyber foraging systems
utilize nearby resource-rich infrastructures like desktops to help mobile phones execute. They
believe that public areas are equipped with such infrastructures in the future. Since then a great
amount of works start to exploit cloud offloading [3], [5], [8], [9], [10]. MAUI [5] builds the
system based on .NET framework to automatically create both the cloud and smartphone
versions of code, which greatly benefits the developers. CloneCloud [3], ThinkAir [10],
COMET [8] and Cuckoo [9] create VMs to configure smartphones’ running environment on
cloud servers, where offloadable methods in smartphones can be directly executed. These
systems work well when network bandwidth is high. More recently, researches started to work
on the device to device (D2D) offloading, where mobile phones offload tasks to other devices
when network bandwidth is poor [12], [11]. These two case studies show the potential and

feasibility of D2D offloading by measuring the execution capabilities and energy savings.

WO 2017/067586 PCT/EP2015/074319

Some programming frameworks like Honey bee [7], Misco [6] are also proposed to support
device to device computing. The more systemic work for device to device offloading was done
by Serendipity [14]. Serendipity takes a PNP-block as input and tries to minimize the
execution time with task allocation algorithm. However, the link predictability in the algorithm
is too strong to implement in real world. COSMOS [13] tries to provide services for

offloading users, which minimizes the offloading cost while maintaining performance.

To sum up, these offloading systems can be categorized into two categories: cloud
offloading and ambient offloading. In cloud offloading, smart devices (mobile computational
devices) can offload tasks to the cloud server, e.g. with 3G or WiFi connections. Smart devices
achieve execution speedup and energy saving when they are well connected to the remote
cloud. Usually such a system creates various several VMs (virtual machines) for fast execution,
which increases a lot of monetary cost. And the offloading performance degrades as the
bandwidth goes down. More recent works consider ambient offloading, the other extreme
where smart devices have no Internet access. Smart devices leverage the intermittent
connection opportunities with nearby devices for offloading. They can offload tasks to other
devices when they are connected e.g. with WiFiDirect or Bluetooth. These ambient offloading
systems can work as a supplementary solution for offloading when cloud offloading (by means
of a server cloud which is built by mainframes) is inaccessible. Ambient offloading, however,
suffers from vulnerability since the connections are often broken up due to mobility. The
drawbacks in both the remote and ambient cloud hinder the popularization of offloading

systems.

[1] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H.-I. Yang. The case for cyber
foraging. In Proceedings of the 10th workshop on ACM SIGOPS European workshop, pages 87-92.
ACM, 2002.

[2] R. K. Balan, D. Gergle, M. Satyanarayanan, and J. Herbsleb. Sim- plifying cyber foraging for
mobile devices. In Proceedings of the 5th international conference on Mobile systems, applications
and services, pages 272-285. ACM, 2007.

[3] B.-G. Chun, S. Thm, P. Maniatis, M. Naik, and A. Patti. Clonecloud: elastic execution between
mobile device and cloud. In Proc. of ACM EuroSys, pages 301-314, 2011.

[4] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273-297, 1995.

[5] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and P. Bahl. Maui:
making smartphones last longer with code offload. In Proc. of ACM MobiSys, pages 49-62, 2010.

[6] A.Dou,V Kalogeraki,D.Gunopulos,T.Mielikainen,andV.H.Tuulos. Misco: a mapreduce framework

WO 2017/067586 PCT/EP2015/074319

for mobile systems. In Proc. of ACM PETRA, page 32, 2010.

[7]1 N. Fernando, S. W. Loke, and W. Rahayu. Honeybee: A programming framework for mobile
crowd computing. In Proc. of MobiQuitous, pages 224-236. Springer, 2013.

[8] R.Geambasu,A.A Levy,T.Kohno,A Krishnamurthy,andH.M.Levy. Comet: An active distributed
key-value store. In Proc. of USENIX OSDI, pages 323-336, 2010.

[9] R. Kemp, N. Palmer, T. Kielmann, and H. Bal. Cuckoo: a computation offloading framework for
smartphones. In Mobile Computing, Applica- tions, and Services, pages 59-79. Springer, 2012.

[10] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang. Thinkair: Dynamic resource allocation
and parallel execution in the cloud for mobile code offloading. In Proc. of IEEE INFOCOM, pages
945-953, 2012.

[11] A Mtibaa,A Fahim,K.A .Harras,andM.H.Ammar.Towardsresource sharing in mobile device
clouds: Power balancing across mobile devices. In Proc. of ACM MCC, pages 51-56, 2013.

[12] C. Shi, M. H. Ammar, E. W. Zegura, and M. Naik. Computing in cirrus clouds: the challenge of
intermittent connectivity. In Proc. of ACM MCC, pages 23-28, 2012.

[13] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and E. Zegura. Cosmos: Computation
offloading as a service for mobile devices. In Proc. of ACM MobiHoc, 2014.

[14] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura. Serendipity: enabling remote computing
among intermittently connected mobile devices. In Proc. of ACM MobiHoc, pages 145-154, 2012.

[15] L. Zhang and Tiwana, Birjodh et. al: Accurate online power estimation and automatic battery
behavior based power model generation for smartphones. In Proc. of CODES/ISSS, pages 105-114,
2010.

SUMMARY OF THE INVENTION

The present invention provides a brand new offloading system, which leverages both the
cloud and ambient offloading to build a powerful offloading system. The system contains
three components: a remote cloud (server cloud), a smart router and an ambient cloud.
Remote cloud serves as the basic infrastructure for the offloading systems. It has the most
powerful computational resources. The server cloud includes at least a server and storage
means. The cloud can be any number of remote servers that are networked to allow a
centralized data storage. Most computational exhausting tasks are usually delivered to these
places when bandwidth is good. Ambient cloud is formed by the smart devices connected to
the smart router. These smart devices serve as masters or slaves. When a smart device is busy
with its own tasks, it would be a master. Otherwise it is a slave who is idle and can wait for

execution. Smart router is the controller of the offloading systems. When master node decides

WO 2017/067586 PCT/EP2015/074319

to offload tasks to the cloud (which will be either a server cloud or other smart device), it will
send tasks to the smart router, which decides the executor of this task according to the
optimization goal. In the context of the present invention, the router is a computational

device (comprising an operating system) and therefore a smart router.

The present invention aims at overcoming the drawbacks and limitations brought by both
the cloud and ambient offloading. That is, the present invention is directed towards combining
both the cloud and the smart devices together, to build a hybrid offloading architecture to

dynamically allocate computational resources.

More specifically, according to an aspect of the present invention, a hybrid offloading
network system for offloading computational tasks is provided. The system comprises a first
cloud comprising one or more servers and adapted, when receiving an offloading task, to
execute the offloading task; and a second cloud comprising a plurality of smart devices. Each
smart device is adapted to deliver, as an offloader, its offloading task and attributes of the
offloading task, and/or is adapted, when receiving an offloading task, to execute, as an
offloadee, the offloading task. A router manages information on currently available
computational resources both in the first cloud and the second cloud, receives offloading tasks
from the second cloud, decides which candidate among the first cloud and the offloadee or
offloadees of the second cloud, each received offloading task is to be forwarded to, based on
said resource information of each candidate, said attributes of the offloading task and/or

network bandwidth, and forward the offloading task to the decided candidate.

The attributes of the offloading task may preferably include a data size and/or an

instruction count

In a preferred embodiment, the router may apply a linear programming to make the
decision. The linear programming includes an optimization function to optimize a total cost
under the constraints of (i) the network bandwidth and execution time of each offloading task
and/or (i1) energy consumption of said offloading task. The total cost is a sum of sub-costs
that are each defined per candidate, each sub-cost being a cost that will be incurred if the

offloading task is executed by said candidate.

BRIEF DESCRIPTION OF THE DRAWINGS

WO 2017/067586 PCT/EP2015/074319

FIG. 1 illustrates the architecture of a hybrid offloading system according to an

embodiment of the present invention.
FIG. 2 illustrates the software architecture of a cloud shown in FIG. 1.
FIG. 3 illustrates the software architecture of a smart router shown in FIG. 1.
FIG. 4 illustrates the software architecture of a smart device shown in FIG. 1.
FIG. 5 is a flowchart illustrating how to process a task in the smart device.
FIG. 6 is a flowchart illustrating how to process multiple tasks in the smart router.

FIG. 7 is a flowchart illustrating how to train a decision model in the smart device.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Some preferred embodiments will be described with reference to the drawings. For
explanation purpose, various specific details are set forth, without departing from the scope of

the present invention as claimed.

SYSTEM OVERVIEW

This section mainly explains the system architecture of a hybrid offloading system
according to an embodiment shown in FIG. 1. Three different kinds of software are deployed

in cloud servers (component 102 and 103), a smart router 104 and smart devices 106.

The cloud server end 101 has two different types: a main server 102 and a plurality of
sub-servers 103. The main server 102 comprises a virtual machine manager 201 (FIG. 2).
The virtual machine manager 201 responds to requests from the smart router 104, manages
creation and destruction of virtual machines 203 (FIG. 2). The virtual machine manager 201
creates virtual machines 203 using resources of the sub-servers 103. Virtual machines 203 are
only responsible for execution. These two components (virtual machine manager 201 and

virtual machines 203) together form an essential part of the remote cloud 101.

In the smart router end 104, a task scheduler 302 (FIG. 3) allocates the executors of tasks
submitted by smart devices as offloaders. The smart router 104 serves to minimize the total

cost for renting cloud servers while maintaining the offloading performance.

WO 2017/067586 PCT/EP2015/074319

In the smart device end 106, a master decision maker 403 (FIG. 4) will decide whether to
offload or not according to performance need. All of the smart devices that are connected with

the smart router 104 form an ambient cloud 105.

The remote cloud 101, the ambient cloud 105, and the smart router 104 form a hybrid

offloading system according to the present embodiment.

Referring to FIG. 2, the software stack for the main server 102 will be explained. In
addition to the virtual machine manager 201, the main server 102 comprises a request listener
202 for responding to requests from the smart router 104. The identification of each request is
verified in this listener 202 to make sure that the request comes from the smart router 104. If
the verification is passed, the socket connection between the main server 102 and the smart
router 104 can be set up and preserved. And the request listener 202 will respond to all the
requests from the smart router 104. The core component in the virtual machine manager 201
is a virtual machine scheduler 201. It has two basic functions: managing all the virtual
machines 203 and performing the scheduling for all tasks received from the smart router 104.
The scheduling algorithm is greedy but highly efficient, which takes only O(nlog(n)) time for
n submitted tasks. It should be noted that in the context of the present invention, “scheduling”
in the virtual machine manager 201 is determining which task is to be sent to which virtual
machine, while “scheduling” in the smart router 104 (which will be explained below) is
determining which task is to be sent to which executor (i.e. server cloud or offloadee of the

ambient cloud).

Referring to FIG. 3, the smart router 104 according to the present embodiment of the
hybrid offloading system comprises a recovery machine 301, a task scheduler 302, a network

manager 303, and a task queue 304.

When the master decision maker 403 of the smart device 106 decides to offload a task,
the smart router 104 will immediately receive it and add it to the task queue 304. The task
queue 304 estimates a current arrival rate of a plurality of submitted tasks (i.e. how many
tasks are submitted to the queue in one unit time (usually in one second)), which will help the

task scheduler 302 for fast and efficient task allocation.

The task scheduler 302 is the core part in this router 104. The smart router 104 works as

WO 2017/067586 PCT/EP2015/074319

the proxy for all the smart devices connected to this router. The smart router 104 manages the
resources (e.g. number of virtual machines) both in the server cloud 101 and the ambient
cloud 105. The network manager 303 is used to measure the network condition (in particular,
network bandwidth) with the server cloud 101. As will be explained in detail below,
according to current resources of both the server cloud 101 and the ambient cloud 105,
attributes of each received offloading task, and/or the network bandwidth notified from the
network manager 303, the task scheduler 302 is configured to decide which executor the task

is forwarded to.

The recovery machine 301 in the smart router 104 is different in terms of operation from
a local recovery machine 406 (FIG. 4) integrated in the smart device 106: the recovery
machine 301 of the smart router 104 does not request the local execution of this task, but
request the smart router 104 itself to execute the task). It must instruct another executor

(another smart device or the cloud) to execute the task.

Referring to FIG 4, the smart device 106 according to the present embodiment of the
hybrid offloading system comprises an application tracker 402, a master decision maker 403,

an energy model 404, a profiler 405, and a local recovery machine 406.

The application tracker 402 tracks all applications 401 running in the smart device 106
and specifies (identifies) each offloadable method. The application tracker 402 uses a task
queue (not shown) to maintain all the offloadable methods submitted by the applications 401.
The task queue applies a first-come-first-serve strategy where each offloadable method is

equally served. Node who wants to offload tasks is called master node.

Every offloadable method in the task queue should be sent to the master decision maker
403 to decide whether to offload or not the offloadable method. The decision maker 403 also
invokes the profiler 405 to obtain hardware parameters (e.g. CPU status such as CPU
utilization, CPU frequency, and battery level) and method parameters (i.e., instruction count)

before decision.

For this purpose, the smart device 106 may further comprise a (not shown) execution
time estimation means for estimating execution time of each offloadable method based on the
hardware parameters and the instruction count of the offloadable method by referring to the

profiler 405. The decision maker 403 uses the estimated execution time when making the

WO 2017/067586 PCT/EP2015/074319

decision. The smart device 106 delivers, when the decision maker 403 decides that the
offloadable method is to be offloaded, to deliver the estimated execution time as an attribute

of the offloadable method to the smart router 104.

Once the tasks are offloaded to the smart router 104, the local recovery machine 406 is
invoked to monitor the remote execution. The local recovery machine 406 backs up each
delivered offloading task, monitors a remote execution of the offloading task. For this
purpose, the smart router 104 is adapted to monitor a remote execution of each received
offloading task in the server cloud 104 or in the ambient cloud 105 and report a monitoring
result to the smart device 106. The local recovery machine 406 monitors a remote execution
on the basis of the monitoring result from the smart router 104. If errors happen in this
system, the local recovery machine 406 will respond immediately to call a local execution of

this task.

The energy model (energy consumption estimation means) 404 is the individual part in
this system where the energy consumption of offloadable methods is estimated. Specifically,
the energy model 404 estimates energy consumption of each offloadable method based on the
hardware parameters and the instruction count of the offloadable method by referring to the
profiler 405. The estimation is saved in the local database of the smartphone for future use.
Using this value (i.e. energy consumption estimation) with respect to the offloadable method,
the decision maker 403 may learn to perform a more precise estimation by actually executing
the offloadable method within the smart device 106 and compare the actual energy
consumption with an estimated value. In this case, the actual execution time may also be
compared with an estimated execution time to allow the smart device 106 to perform a more

precise estimation of the execution time of a current task.
WORK FLOW

This section mainly discusses how the system operates when a task is generated at a

smart device and submitted to this system.

A. Smart device workflow

Reference is made to FIG 5. For application developers, there are generally two
programming choices. One way is to do precompiling (step 502), which means that the
developers only have to annotate the offloadable method and use precompiling program to
convert the original java method to the version that can be posted to the offloading system.

Another way is to use the system API (application programming interface) (step 501), which

WO 2017/067586 PCT/EP2015/074319

means that the developers have to explicitly post the tasks to the offloading system (step 503)
at the point of method invocation. As will be appreciated by the skilled person, any other

platform than Java may be used.

Once the task has been posted, the smart device 106 starts the profiling by the profiler
405 (step 504), which are useful for the master decision maker 403 and the energy model 404.
Then the master decision maker 403 makes the offloading decision (step 505) according to
SVM (support vector machine) model (FIG. 7). The SVM classifier decides whether to
offload or not according to the profiling information. After the decision, the smart device
starts to send the code to the smart router 104 (step 506). If the code starts execution on an
executor selected by the smart router 104, the program will use e.g. the “future” mechanism
provided by java to wait for notification of an execution result (step 507). In the end the
profiler 405 is stopped and all collected data will be written into a (not shown) local database

(storage) of the smart device 104 (step 508).

B. Smart router workflow

Like the application tracker 402 in the smart device 106, the smart router 104 also has a
task queue 304 to maintain all the tasks submitted to the router. There will be an individual
thread to query and fetch tasks from the queue. As shown in FIG. 6, the smart router 104 will
probe available computation resources (step 601) and the current bandwidth (step 602) by
sending requests to the connected devices of the ambient cloud 105 and the server cloud 101.
With these resources, the router 104 decides the offloading targets with linear programming
(step 603). Afterwards each task is sent to the decided offloading target (step 604) and the
recovery module 301 is invoked (step 605). Finally the result is sent back through the smart
router 104 to the original smart device (step 607) which has offloaded the task.

C. SVM training workflow

Before the usage of the master decision maker 403 in smart devices, the system
preferably has to train the parameters (i.e. runtime parameters and profiling information
mentioned below) in this model. As shown in FIG. 7, the training process first runs multiple
applications to collect the data (step 701). The data collection needs to monitor the runtime
parameters like CPU usage and bandwidth. So the training flow will also get the profiling
information (e.g. battery usage) and stores these data into the local database of the smart
device (step 702 and 703). With enough data entries, the system will use the training
algorithm to get the initial decision parameters of SVM (step 704 and 705). However, these

10
WO 2017/067586 PCT/EP2015/074319

initial parameters could have the over-fitting problems if the training process uses only this
small partial of data. To overcome this problem, an algorithm may be used to dynamically
correct the parameters (step 706). Finally the training process can get the corrected SVM

parameters (step 707).

DESIGN DETAILS

The design of this system can be divided into three parts: the smart devices, the smart
router and the server cloud. The specific details of these parts will be explained in the

following subsections.

A. Smart Device Design Details

Preferably, the design for the smart device has to meet the requirements of both the end
users and the application developers. For the application end users, the hybrid offloading
system should be efficient and powerful enough to deal with the speedup and the energy
problem. Therefore the master decision maker 403 (FIG. 4) of the smart device can make
right decisions according to current local hardware status. For the application developers, they
mainly focus on their application designs rather than the optimization over the ambient cloud
105. But we have to acknowledge that the application can run smoother if the application
developers obey some rule. Therefore we provide two levels of programming for these

application designers.

1) Profiler 405: profiler design contains all the information of the hardware parameters,
the application parameters and the network. It should be noted that the master decision maker
403 of the smart device 106 is able to decide that tasks should not be offloaded if the network

condition is not good (or does not satisfy a predetermined criteria).
As a hardware profiler the profiler 405 may monitor the following things:
+ CPU utilization and CPU frequency state
» Screen brightness which ranges from 0 to 16
» WiFi signal strengths indicated by RSSI value
» Power state of the WiFi interfaces

As an application profiler, the profiler 405 mainly monitors the applications in the

11
WO 2017/067586 PCT/EP2015/074319

runtime. It can monitor the following things:
» Execution time of a method
* Number of instructions of a method (i.e. instruction count)
* Input and output parameters of a method (e.g. data type, data size)
* Number of threads invoked by a method

Since we only use WiFi to setup connections, the profiler 405 as a network profiler is

simplified by considering:
* RTT of the remote execution servers
» Bandwidth of the remote execution servers
* The connected stream interfaces

2) Energy model 404: Energy model serves two functions in this system: i) providing
benchmarks for the master decision maker 403 as to whether to offload the offloadable task
and ii) evaluating energy consumption in experiments. In the hybrid offloading system, we
take the inspiration from PowerTutor [15], a powerful tool that can have measurement error
less than 6.27%. PowerTutor takes the CPU, screen, GPS, WiFi into consideration. We also

add the Bluetooth estimation into the PowerTutor to improve the estimation accuracy.

3) Programming rule with the hybrid offloading system: In our design, we propose two
different architectures for the application developers to use. In these two proposed
architectures, we can both use the Java reflection mechanism to call the method in the remote

execution.
Annotation mechanism

This architecture is very friendly to the application developers. Like what has been
proposed in previous offloading architectures, the programmers only need to mark the
offloadable method before the definition with annotation(@offloadable). The hybrid
offloading system invokes the analyzer to generate a runnable version with the offloading
services. And the developer’s version of code is also added to the remote code version for
rewriting and generation of a new apk file. This annotation mechanism has little limitations
on the programmers. They just need to specify the code that can be run in other machines.

However, this mechanism is not powerful enough to support better optimization like parallel

12
WO 2017/067586 PCT/EP2015/074319

execution.
Post task mechanism

Actually most of the programmers are aware of the code they write. Usually they know
how to make the system efficient by parallel method invocation. So in this way, we propose
the other programming rules for the developers: to post offloadable tasks to the hybrid
offloading system and then fetch the results when necessary. For example, a batch of methods
is invoked in a loop. But all the results are collected after for loop. This case can be well dealt
in the post task mechanism since all of these methods can be posted to the hybrid offloading
system without being blocked by the previous invocation. All results will be preserved in the
ResultTicket class and the programmers can fetch the return parameters at the time when the
program needs. Compared with the annotation method, this post task mechanism can support

better for parallel execution while it takes some troubles for the programmers to adapt.

4) Recovery machine 406: A recovery machine 406 is preferable in the offloading since
tasks submitted for remote execution often suffer from failures in terms of network and
operating systems. The recovery machine 406 of the smart device (offloader) 106 is needed to
specify what occurs and make quick response when failure occurs. To make failure detection
easier, we define two exception types: RemoteException and NetworkException.
RemoteException designates errors which may occur within remote devices (cloud servers or
offloadees in the ambient cloud). If RemoteException happens, the smart device will call a
local execution. For this purpose, the smart router 104 monitors a remote execution of each
offloading task in the server cloud 101 or the ambient cloud 105 and report a monitoring
result to the smart device (offloader). The local recovery machine 406 backs up each
delivered offloading task, monitors a remote execution of the offloading task on the basis of
the monitoring result from the smart router 104, and calls a local execution of the offloading

task in the smart device.

The master decision maker 403 may mark each exceptional remote device. For example,

the remote device will be excluded if it continuously throws exceptions 2 times.

NetworkException designates errors which may occur when connection is lost or the
socket streams are blocked. In this case, the smart router 104 will reping and reconnect the
remote device. The master decision maker 403 of the smart device 106 waits for the remote
device’s results provided that the remote device and the smart router 104 are re-connected.

Otherwise the smart router 104 reports to the smart device 106 that the reconnection fails, and

13
WO 2017/067586 PCT/EP2015/074319

the smart device 106 then calls a local execution in a similar manner as in the case of

RemoteException.

B. Smart Router Design Details

The smart router end is actually the local decision center. Besides the basic connection
and communications, the smart router 104 may contain a recovery machine 301, which is

different in terms of operation from the recovery machine 406 in the smart device end.

The offloading target in the smart router 104 contains two types: the cloud servers and
the smart device executors (i.e. offloadees). Cloud servers are usually regarded as the stable
computational resources where few errors happen except the API version. But the smart
devices often suffer from vulnerability since the smart devices (such as smartphones)
sometimes move and disconnect to the smart router 104. The main contributor for the
recovery machine 301 in the smart router end is to deal with the abrupt failure brought by
smart device executor. In an embodiment, the smart router may make backup for every task in
the smart device, putting them in a waiting list. In this case, if any of the executors has some

problems for the execution, the smart router itsclf may start execution immediately.

C. Cloud Server Design

The cloud server provides a general service entrance for all users who want to offload.
The java reflection mechanism requires the applications to be compiled and send the apk file
for dynamic calling and indexing. And each time before the sending of offloading method, the
cloud will check whether the corresponding apk file exists or not. Every apk file is installed
with the name of the hash (apk) value. This naming has an advantage which can specify the
version changes of the applications. Thus different versions of the same application can be

dynamically invoked at the same time.

The virtual machine manager 201 (FIG. 2) serves as two main functions: to manage the
virtual machines and to schedule the tasks (i.e. determining which task is to be supplied to
which virtual machine for execution). The virtual machine manager 201 finds the daily
patterns for the traffic and tries to open corresponding numbers of virtual machines 203. The
creation and destruction of virtual machine instances is implemented, for example, by
installing the AWS CLI packages. By this way the virtual machine manager 201 can directly

create and stop the virtual machines 203.

14
WO 2017/067586 PCT/EP2015/074319

DECISION AND SCHEDULING

Generally, there are three parts for the offloading decisions and scheduling. These three
parts are logically independent but they can cooperate to achieve both the performance
improvement and cost minimization. In the smart device end, people are more concentrated
on the performance the system achieves. They tend to take the execution speedup or the
energy saving as the ultimate goal. For this purpose, we use a support vector machine (SVM)
to decide whether each offloadable method should be offloaded or not based on hardware
parameters (such as CPU status, battery life) and instruction count of said offloadable method.
When the offloadable method is delivered, as an offloading task, to the smart router, it starts
the second level decision on which instance to offload the task, preferably by optimizing a
total cost under predetermined constraints by applying a linear programming, which will be
explained below. The goal in this decision machine is to make balances between the smart
device helpers and the cloud virtual machines. If the task scheduler 302 (FIG. 3) of the smart
router 104 decides to offload the task to the ambient cloud, the task will be directly offloaded
to the selected candidate. If the task is sent to the server cloud, the virtual machine manager
201 (FIG. 2) of the server cloud will schedule the task to balance the load between the virtual
machines 203 (i.e. decide the virtual machine to which the task is to be sent). And the virtual
machine manager 201 will manage the VM creation and destruction to save the cost (typically,

monetary cost).

A. Master Decision Maker 403

When smart device users access the cloud services, they tend to care about two things:
computation speedup and energy saving. They usually want to acquire more computational
resources for faster execution while they prefer to save energy in extreme cases where the

battery level is lower than some level.

To achieve these goals, we design a support vector machine (SVM) based model to make
binary decisions. In this model, we train two classifiers respectively: time incentive classifier

and energy incentive classifier.

1) SVM Background: SVM [4] has become a fundamental classification algorithm in
supervised learning. Unlike probabilistic linear classifier, SVM classifies the
training examples with space mapping and decision. Examples with n features are
mapped into an n-dimensional space and the SVM is to find one or several

hyperplanes to divide these labeled points. So the hyperplane (also the classifier)

15

WO 2017/067586 PCT/EP2015/074319

2)

is defined as following:
fO)=wx+b)

where x is the feature vector of an example. For an example xi, it belongs to one
class if f{x;)<0, otherwise it belongs to the other class. Specific w and b
determine a classifier. When there is some x, we calculate f(x) and check if it is

less than zero.

Feature Selection & Classification: Although there are two classifiers for this
application, the parameter selections are similar because of the correlation
between energy consumption and execution speedup. Due to space limitation, we
only present the feature choice of time incentive classifier.

G(T)=t +t .+t +t -, @

As presented in Eq. 2, we use the G(T)) to denote the loss of remote execution,
The remote execution is beneficial only when G(T}) < 0. tc is the connection setup
time with the router, f is the method sending time, te is the remote execution
time, f, is the time for results return and # is the time for local execution. ¢, is
usually O or a certain value that can be directly estimated by the profiler. ¢ is
determined by the data size(s) and the current bandwidth estimated by the signal
strength (rssi). £, is determined by the executor CPU frequency and the number of
instructions (inum). t, is estimated by the return parameter size (r) and the future
bandwidth which can also estimated as the rssi. And the t, is determined by both
inum and current CPU utilization (util). Finally the feature x in Eq. 1 for time
incentive classifier is x = (¢, s, rssi, inum, r, util). Besides features used in time
incentive classifier, the energy incentive classifier also takes current battery level
(bat) and the screen brightness (sb) into consideration. Therefore the feature

selected for energy classifier is x = (t, s, b, rssi, inum, r, util, bat, sb).

In SVM classification model, we need to know whether these classes are linearly
separable. In our scenario, it is obvious that the features we select are linearly
inseparable. To deal with this we use the Gaussian kernel to make it separable:

1% =% |

)
o}

k(x,x,)= exp(~ 7)

16
WO 2017/067586 PCT/EP2015/074319

3) Deployment: Our SVM based master decision maker has a training process whose
training dataset comes from running test of applications. The training process
randomly generates tasks and each task has two copies, one of which runs on the
cloud while the other runs in the smart device. The profiler records all the features
and labels the data according to the performance of this task. After the testing, the
profiler offloads all these data to the cloud to do parameter training. The cloud

will return the vector back to the smart device when the training is done.

B. Task Scheduler 302

This section will explain a preferable method of deciding, at the smart router end, the
candidate to which each offloading task is to be forwarded. In this method, the smart router
104 makes a balance between smart devices and cloud servers while causing less harm to the
smart devices. The smart router 104 minimizes the total cost for the task execution, preferably

with linear programming.

1) Problem Formulation: With the decision made by the master decision maker 403 of the
smart device 106, the task profiles are sent to the smart router with the goal of time or energy
saving. Although these goals are different in the smart device end, these goals are the same to
the router because execution speedup for tasks in the smart router end means both the time

and energy savings. Therefore we omit the energy concern in the smart router end.

The linear programming includes an optimization function to optimize a total cost under
the constraints of (i) the network bandwidth and execution time of each offloading task and/or
(i1) energy consumption of said offloading task. Sub-costs are each defined per candidate,
each sub-cost being a cost that will be incurred if the offloading task is executed by said
candidate. A sum of sub-costs is defined for each offloading task. A total cost is a sum of the

sum of sub-costs for multiple tasks.

As one example, let us assume that a task 7; (i.e. i-th task received by the task queue 304)
arrives and then the smart router decides which instance (including both the VMs and smart

devices) I; (i.e. k-th execution instance) to execute. We formulate the scheduling problem as:

17

WO 2017/067586 PCT/EP2015/074319

Min 3" Y C(Ti, 1) 4

=1 k=1
st Y L(T) =1

k=1

D(T;) + D.(T;

M(Ty, Ix) + S(T’): r(Ty) < L(Ty)

Eo(Ix) — Ec({k)

—e . <)

Eo(Ik)

where n and m are the number of tasks and instances respectively. n and m are an integer
of 2 or more (as will be explained below, n can take a value of 1). D; is an original data size
(to be sent from the smart device through the smart router to the execution instance via the
network), D, is a result data size (to be sent back from the execution instance to the smart
device via the network; the smart router may receive and forward the result, but the result may
be directly sent from the execution instance to the smart device) and b is the bandwidth (e.g.
in units of kbps). M(T; 1) is an estimated execution time in the chosen execution instance and
L(T;) 1s a remaining lifetime (i.e. execution time in the offloader which would be required for
Ti plus waiting time in the task queue 304 of the router) of the task 7;. The optimization goal
of this smart router is to minimize the total cost of the execution of all these tasks submitted to

the smart router and preserved in the queue.

The first constraint means that only one copy of method is executed. The second
constraint means that the total time of offloading should meet the deadline of 7). The third
constraint, however, is to protect the helpful smart devices from energy hole when it helps
others with offloading. Eo here means an original energy level of the executing instance I.
Ec is a remaining energy level after the execution of that task. We set a threshold & in order to
ensure that a large among of energy will not be consumed when assigning the offloading task
to the smart device (offloadee) in the ambient cloud. Apparently, if the executing instance I,

is a virtual machine instance in the cloud, the third constraint is not considered.

Besides the above-mentioned linear programming model, we can have multiple other
alternatives to solve the cost optimization problem by using different constraints. For example,
in order to make sure that the offloader can get the results from the executing instance before

the time constraint, we can make the first constraint like this:

18
WO 2017/067586 PCT/EP2015/074319

2!

Min i ZC(T-:JU
FE=3 B == |

8.1, ij.(:r,») =9
K 1

D.(T) + D.(T,
M 1)+ 2B DT

Bo(ly) - L) _
Eo(,I.i:))

4’)
In this case, we can guarantee that once one offloadee fails to transfer the results back,

the smart device can get the results from the other device.

Furthermore, we can take the reputation of each smart device into consideration. Some of
the smart device may be malicious which can return false results. So the linear programming

is like this:

T

Min i ZC(]%IH

FEZH QR S22 |

st. Y (L) =1
Jou
R(I) >0
M(T 1)+

E (I;;) — E.(I})
E (1)

DT+ DT
b
<A

< L(T})

(47)

where R(Ix) is the reputation of instance I,. We set a threshold 6 for choosing the
instance that has good executing reputation. This reputation value is calculated via evaluating
the execution history of that node. For example, if a smart device (offloadee) only returns a
result once every 3 times, the reputation can be calculated as 1/3 and compared with a

predetermined value such as 0.5.

2) Equilibrium Based Cost Definition: In order to solve the linear programming defined

in the previous subsection, we have to define the sub-cost C (T, Ix) (i.e. cost of allocating T;

19
WO 2017/067586 PCT/EP2015/074319

to Ii) in formula (4). In actual scenarios, if task Ti chooses a smart device to execute, the real
cost (i.e. monetary cost) is zero. If task Ti chooses the server to execute, the cost should be
based on the quantity of computation the user uses (i.e. charge). But this falls into a greedy
cycle where tasks will be allocated to the smart devices first when it meets the satisfaction for
task deadline. And helpers cannot get paid after helping execution. In this way, we need to set
a total cost or sub-cost to make balance, which can inspire the helpers to help. The baseline
for the cost design is to do less harm to the smart devices when they are ready to help. As one

example, we set a sub-cost as:

1-E,
— (1= . .C
cry=1"E (1-avg(w))-avg(p)- ¢ l,e§
2-avg(w)-avg(p)- l,eS

®)

where avg(w) and avg(p) are an average workload of the virtual machines on the cloud
servers (or cloud server in case where there is a single cloud server) and an average charge of
the virtual machines on the cloud servers (or cloud server in case where there is a single
cloud server) per unit time. They range from 0 to 1. With respect to avg(w), O represents the
virtual machine being not loaded at all; 1 represents the virtual machine being fully loaded.
With respect to avg(p), the system designer can set its unit (e.g. currency like Euro) and range.
¢; is an instruction count of 7;. S; refers to the smart device, and the first half of Eq. 5
designates a cost in case of a smart device executor. S, refers to the cloud server, and the
second half of Eq. 5 designates a cost in case of a cloud server executor. E,; designates a
remaining energy of the smart device after offloading and ranges from 0 to 1. 0 represents no

energy; 1 represents full energy.

(1-EVE)) means that the cost is inversely proportional to E;. (1-Ey/Ey) is larger than 0.

This will be large when E; is close to 0.

Regarding the first half relating to smart device executor, the multiplication with avg(p)
relating to virtual machines on the cloud servers has been made in order to set reasonable cost
of smart device executor (first half) so as to be comparable with the cost of server executor
(second half). In other words, it will take some cost even if the task is executed on the smart
device in order to reach a balance of task allocation. Furthermore, we assume the cost of
executing certain task on the server is twice as that on the smart device, not considering other

conditions (energy or workload).

Regarding the second half, avg(w) x avg(p) means that the cost is proportional to avg(w)

20
WO 2017/067586 PCT/EP2015/074319

as well as proportional to avg(p).

As is apparent from (1-avg(w)) in the first half for the smart device executor and avg(w)
in the second half for the server executor, Eq. 5 provides a comparison between the costs of
the smart device and the server so that the user tends to choose the lower one. When avg(w)
(server workload) increases, the cost of the server gets higher while the cost of the smart
device gets lower. It is possible to generalize what is specifically defined in Eq. 5. If certain
task is executed on the server, the cost only depends on the workload of the server and the
charge. Higher workload or higher charge will lead to higher cost. However, if the task is
executed on the smart device, the cost will also largely depend on the energy level of the

smart device. If the energy level is low, it will significantly increase the cost.

The definition in Eq. 5 actually can make balance between the cloud servers and the
smart devices. If the cost is set to real cost (i.e. monetary cost), the final optimization
algorithm would go into greedy strategy where all tasks that can meet the constraints will be
offloaded to the especially powerful smart devices. However, these smart devices cannot get
any reward from it and thus will deny cooperation. To avoid this problem, we propose to
assign some cost from the task submitters and reward the task executors. The cost, however,
also changes according to the server runtime environment. When the server is very busy with
task execution, the cost of cloud computing would be more expensive while the cost for the
smart devices execution will be lower. This strategy can greatly protect the system from

sudden job jams when the cloud server is busy.

As will be appreciated by the skilled person, the total cost to be optimized (minimized)
may be differently defined as those defined in formulae (4), (4°), (4>°) and (5). For example,
the total cost may be defined with respect to each task (i.e. n=1), instead of being defined with
respect to multiple tasks in a queue. In this case, the total cost is a sum of sub-costs that are
each defined per candidate, and the sub-cost is a cost that will be incurred if the single

offloading task is executed by the candidate.

Furthermore, although the linear programming is a preferable method, the smart router
may decide which candidate each offloading task is to be forwarded using another method

that uses resource of information of each candidate, attributes of the offloading task and/or

21
WO 2017/067586 PCT/EP2015/074319

network bandwidth as criteria. Preferably, a data size and/or an instruction count of each

offloading task may be used as such attributes of the offloading task.

C. Offloadee Design

Here steps that may be performed by an offloadee who actually executes a task to further

improve our invention will be explained.

After executing an offloaded task, the offloadee may record execution information of the
task and/or energy consumption required for the task in its local database. The execution
information may include execution time and CPU status such as CPU utilization when
executing the task. The execution information and/or the energy consumption (which are
referred to as history execution information and history energy consumption, respectively)
may be provided to the smarter router in order to assist the smart router in allocating future

tasks.

By comparing the history execution information (i.e. actually required time and actual
CPU status for executing an offloaded, past task) of an offloadee with its corresponding
estimated time of the past task, the smart router can more accurately estimate execution time
of the same offloadee as a candidate for a current, different task to be offloaded. Furthermore,
by comparing the history energy consumption (i.e. actually consumed energy of an offloaded,
past task) of an offloadee with its corresponding estimated energy consumption of the past
task, the smart router can more accurately estimate energy consumption of the same offloadee

as a candidate for a current, different task to be offloaded.

D. Cloud Optimization

When tasks are submitted to the cloud, the cloud should be able to scale (allocate) almost
all the tasks submitted by an application. The initial goal for the cloud optimization is to
satisfy the deadline requirement of the application while balancing the load for the servers.
Besides that, the cloud server manager should preferably try to minimize the total cost for this

application. The cost here refers to the resource used in the cloud or the load thereof.

Load Balancing: In our offloading system, we design an online load balancing algorithm

22
WO 2017/067586 PCT/EP2015/074319

to let a faster execution and lower latency for the tasks submitted by the smart router.
Actually, the virtual machine manager can also benefit from this algorithm according to the
average workload of the virtual machines on the cloud servers. As has been proved by the
approximation theory, the solution to find the optimal scheduling is NP-hard. In order to save

the scheduling and allocation time, we design a longest processing time based balancing

algorithm.

This algorithm sorts the task queue according to the load first and then greedily submit
these tasks to the least loaded servers. The time complexity for this algorithm is only O(nlogn)

where n is the number of tasks in this queue.

1 Q and S are the submitted task queue and servers.

2 while true do

3 S.sortByExeTimeDes(); // sort S by execution time in descending order
4 for i=1 to S.size() do //go through each server
5 L; = 0//load of 1’s server;
6 T(i) =¢ [//tasks allocated to server i;
7 end for
8 for j=1 to Q.size() do //go through each task in the task queue
9 i = serverWithLeastLoad();
10 T(@)=T(1)+j //allocate task j to server i
11 Ll
iy
12 end for
13 end
14 return RQueue
SYSTEM IMPLEMENTATION

A. Applications

To test the effectiveness of this system, we design four different types of methods and a

real application. These four different methods are used to test the performance of offloading

23
WO 2017/067586 PCT/EP2015/074319

in terms of execution speed and energy saving while the real world application is used to

demonstrate the overall performance and user experience.

1) Specific methods: The testing methods should cover most of the application types.
They must be intensive either in computation, memory or bandwidth. Therefore we design

four applications: FaceDetection, N- Queen, QuickSort and Sudoku.

FaceDetection. This method detects how many faces are there in a picture. We directly
use the FaceDetector class in Android AP, which takes a Bitmap object as the method input.
The attributes of this method varies according to the parameter input. If the picture size is

large, the FaceDetection method can be both computation and bandwidth intensive.

N-Queen. This method is designed to find the possible solutions for N queens on an NxN
chessboard. We use a brute force method to traverse all the possible cases, which takes O(NV*")

time complexity. This method is only a representation of computational intensive method.

QuickSort. QuickSort has been regarded as the most efficient and representative sorting
algorithm. We design this method to take an unsorted array as the input and return a sorted
array. This method is computation and bandwidth intensive if the input array is very large.

Besides, the method can also be memory intensive since the method is invoked recursively.

Sudoku. Apart from the previous applications, we also design a Sudoku solver method,
which takes a 9x9 matrix as input and returns whether there exists solutions of this matrix.

Sudoku therefore can be regarded as a lightweight method.

2) Sharplens Application: Sharplens is an augmented application developed with Google
glass ™ Google glass is used to help the poor visual or blind people to recognize the context
in front of them. This application first recognizes the hand in the video taken by the camera
embedded in the glass. Then it locates the position of the finger and recognizes the paragraph
around the finger. Finally the paragraph is presented in prism or read out by the speaker. In
this application, this patent applies both of the two types of programming rules to show the

execution efficiency.

WO 2017/067586 PCT/EP2015/074319

24

Claims

1. A hybrid offloading network system for offloading computational tasks, comprising:

a first cloud (101) comprising one or more servers and adapted, when receiving an
offloading task, to execute the offloading task;

a second cloud (105) comprising a plurality of smart devices (106), wherein each
smart device is adapted to deliver, as an offloader, its offloading task and attributes of the
offloading task, and/or is adapted, when receiving an offloading task, to execute, as an
offloadee, the offloading task; and

a router (104) adapted to manage information on currently available computational
resources both in the first cloud (101) and the second cloud (105), receive offloading tasks
from the second cloud (105), decide which candidate among the first cloud (101) and the
offloadee or offloadees of the second cloud (105), each received offloading task is to be
forwarded to, based on said resource information of each candidate, said attributes of the
offloading task and/or network bandwidth, and forward the offloading task to the decided

candidate.

2. The system according to claim 1, wherein said attributes of the offloading task

include a data size and/or an instruction count.

3. The system according to claim 1 or 2, wherein the router (104) is adapted to apply a
linear programming to make the decision,

the linear programming includes an optimization function to optimize a total cost
under the constraints of (i) the network bandwidth and execution time of each offloading
task and/or (ii) energy consumption of said offloading task, and

the total cost is a sum of sub-costs that are each defined per candidate, each sub-cost

being a cost that will be incurred if the offloading task is executed by said candidate.

4. The system according to claim 3, wherein the resource information of each offloadee
includes a battery level, and

the sub-cost for the offloadee is higher as the battery level is lower.

WO 2017/067586 PCT/EP2015/074319

25

5. The system according to claim 3 or 4, wherein the resource information of each
offloadee includes a CPU status such as CPU frequency, and the router (104) is adapted to
estimate, as said execution time of each offloading task, execution time that will be taken by

each candidate, based on said CPU status and said instruction count.

6. The system according to claim 5, wherein each offloadee is adapted to store, as
history execution information, execution information such as execution time in its local
database when executing a task (referred to as a past task), and supply said history execution
information to the router (104), and

the router (104) is adapted, when estimating said execution time of each offloading
task, to estimate execution time that will be taken by said offloadee, based on a comparison
between said history execution information and its corresponding estimated time of the past

task, in addition to the CPU status and the instruction count.

7. The system according to any one of claims 3 to 6, wherein the router (104) is adapted
to estimate, as said energy consumption of each offloading task, energy that will be
consumed by each candidate among the offloadee or offloadees, based on said resource

information and said instruction count.

8. The system according to claim 7, wherein each offloadee is adapted to store, as
history energy consumption, energy consumption in its local database when executing a task
(referred to as a past task), and supply said history energy consumption to the router (104),
and

the router (104) is adapted, when estimating said energy consumption of each
offloading task, to estimate energy that will be consumed by said offloadee, based on a
comparison between said history energy consumption and its corresponding estimated
energy consumption of the past task, in addition to the resource information and the

instruction count.

9. The system according to claim 3 or 4, wherein the router (104) comprises:
a task queue (304) for preserving offloading tasks received from the second cloud

(105) in a queue; and

WO 2017/067586 PCT/EP2015/074319

26

a task scheduler (302) for scheduling forwarding of the offloading tasks preserved in
the task queue (304),

the task scheduler (302) is adapted to optimize said total cost, said total cost being
defined with respect to a predetermined number “n” of the tasks preserved in the queue, “n”

being an integer of 2 or more.

10. The system according to any one of claims 2 to 9, wherein each smart device
comprises:

an application tracker (402) for tracking all applications (402) running in the smart
device (106) and identifying each offloadable method;

a task queue for preserving offloadable methods submitted by the application tracker
(402) in a queue;

a profiler (405) for profiling hardware parameters of the smart device (106) and an
instruction count of each offloadable method; and

a decision maker (403) for deciding whether to offload each offloadable method as an

offloading task by invoking the profiler (405).

11. The system according to claim 10, wherein the smart device (106) further comprises:
an energy consumption estimation means (404) for estimating energy consumption of
each offloadable method based on the hardware parameters and the instruction count of said
offloadable method by referring to the profiler (405), and
the decision maker (403) is adapted to use the estimated energy consumption when

making the decision.

12. The system according to claim 10 or 11, wherein the smart device (106) further
COmprises:

an execution time estimation means for estimating execution time of each offloadable
method based on the hardware parameters and the instruction count of said offloadable
method by referring to the profiler (405),

the decision maker (403) is adapted to use the estimated execution time when making

the decision, and

WO 2017/067586 PCT/EP2015/074319

27

the smart device (106) is adapted, when the decision maker (403) decides that the
offloadable method is to be offloaded, to deliver the estimated execution time as one of said

attributes of the offloadable method to the router (104).

13. The system according to any one of claims 1 to 12, wherein the router (104) is
adapted to monitor a remote execution of each received offloading task in the first cloud
(101) or the second cloud (105) and report a monitoring result to the smart device (106) as
an offloader, and

the smart device (106) further comprises:

a local recovery machine (406) for backing up each delivered offloading task,
monitoring a remote execution of the offloading task on the basis of the monitoring result
from the router (104), and calling a local execution of the offloading task in the smart device

when a failure occurs in the hybrid offloading network system.

14. The system according to any one of claims 1 to 13, wherein

the first cloud (101) comprises a main server (102) and a plurality of sub-servers
(103),

the main server (102) comprises a virtual machine manager (201) for creating virtual
machines (103) using resources of the sub-servers (104), and

the virtual machine manager (201) is adapted, when receiving one or more offloading
tasks from the router (104), to cause a virtual machine (103) to execute each of said received

offloading tasks while balancing load between the virtual machines (103).

WO 2017/067586 PCT/EP2015/074319
1/7

100

FIG. 1

WO 2017/067586 PCT/EP2015/074319

2/7
13’1 102
| | !-, ,
203 VM Virtual s g
Machine |@» ¢ U
VM Manager g s

FIG.2

WO 2017/067586 PCT/EP2015/074319
3/7

104
Recovery ;
X Machine <« 301 X
: Task Scheduler |[€«— 302

FIG. 3

WO 2017/067586 PCT/EP2015/074319
4/7

5401 —> Applications . App <«— 402

Tracker :
403 —>» Master Decision Maker
: Energy Recovery
: Model € Profiler Machine X
; 404 405 406 5

WO 2017/067586

57

401 —> Application

E 501 — Precompile

< 502

o Post tasks

<« 503

y

Start profiling

<«— 504

y

Make offl oading
decision

<— 505

Execute

<«— 506

y

Wait for notification
of results

<«— 507

. A

End profiling

PCT/EP2015/074319

WO 2017/067586

6/7

304 —> Task queue

\ 4

Probe available
computation resources

<« 601

A

Probe network
condition

< 602

y

Schedule tasks

<«— 603

Send tasks

[« 604

y

Start recovery module

[€— 605

y

Wait for results

<«— 606

A

Send back to
smartphone

PCT/EP2015/074319

WO 2017/067586 PCT/EP2015/074319
717

Run different
applications

A

Profile the application

running data 702

: A
Store data in the
database

l&— 703

Y :
. Train the data with
N SVM 704

A

Get initial decision
model

<«— 705

A

Adjust parameters [€«— 706 .

A

Get final offl cading
decision model

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2015/074319

ADD.

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

BOWEN ZHOU ET AL: "A Context Sensitive
O0ffloading Scheme for Mobile Cloud
Computing Service",
2015 TEEE 8TH INTERNATIONAL CONFERENCE ON
CLOUD COMPUTING,
27 June 2015 (2015-06-27), - 2 July 2015
(2015-07-02), pages 869-876, XP055269353,
DOI: 10.1109/CLOUD.2015.119
ISBN: 978-1-4673-7287-9
figure 1; table 1
abstract
page 869, left-hand column, line 25 -
right-hand column, line 24
page 869, right-hand column, line 32 -
page 870, left-hand column, line 4
page 870, left-hand column, line 30 - page
871, right-hand column, line 16
page 872, left-hand column, line 14 -
right-hand column, line 15

_/__

1-14

Further documents are listed in the continuation of Box C.

See patent family annex.

means

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other

* Special categories of cited documents :

"T" later document published after the international filing date or priority

date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is
combined with one or more other such documents, such combination

being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed

"&" document member of the same patent family

9

Date of the actual completion of the international search

Date of mailing of the international search report

June 2016 20/06/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,

Authorized officer

Fax: (+31-70) 340-3016 Wirtz, Hanno

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2015/074319

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

page 873, left-hand column, line 4 - line
9

page 874, left-hand column, line 18 - line
37

A US 2013/205158 Al (LIN YING-DAR [TW] ET
AL) 8 August 2013 (2013-08-08)

figures 1-3

paragraph [0005] - paragraph [0007]
paragraph [0011] - paragraph [0016]
paragraph [0038] - paragraph [0049]

A US 2013/290755 Al (WOLMAN ALASTAIR [US] ET
AL) 31 October 2013 (2013-10-31)

figures 1, 3, 5-8

paragraph [0006] - paragraph [0010]
paragraph [0025] - paragraph [0029]
paragraph [0034] - paragraph [0036]
paragraph [0044] - paragraph [0054]

1-14

1-14

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2015/074319
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2013205158 Al 08-08-2013 TW 201333839 A 16-08-2013
US 2013205158 Al 08-08-2013
US 2013290755 Al 31-10-2013 US 2011231469 Al 22-09-2011
US 2013290755 Al 31-10-2013

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - wo-search-report
	Page 37 - wo-search-report
	Page 38 - wo-search-report

