wo 2013/155310 A 1[I 0000000000 O

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

17 October 2013 (17.10.2013)

WIPOIPCT

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2013/155310 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

International Patent Classification:
GO6T 1/00 (2006.01) GO6T 9/00 (2006.01)

International Application Number:
PCT/US2013/036182

International Filing Date:
11 April 2013 (11.04.2013)

Filing Language: English
Publication Language: English
Priority Data:

13/445,104 12 April 2012 (12.04.2012) US
Applicant: ACTIVEVIDEO NETWORKS, INC.

[US/US]; 333 W. San Carlos Street, Suite 400, San Jose,
CA 95110 (US).

Inventors: BROCKMANN, Ronald, A.; Bilstraat 140,
NL-3572 BL Utrecht (NL). DEV, Anuj; Knsm-Iaan 566,
NL-1019 LP Amsterdam (NL). GORTER, Onne; Ruiter-
sweg 70-1, NL-1211 KX Hilversum (NL). HIDDINK,
Gerrit; Beukstraat 54, NL-3581 XH Utrecht (NL).
HOEBEN, Maarten; Muurhuizen 199, NL-3811 EH
Amersfoort (NL).

Agents: SUNSTEIN, Bruce, D. et al; Sunstein Kann
Murphy & Timbers LLP, 125 Summer Street, Boston, MA
02110 (US).

(8D

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
IM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: GRAPHICAL APPLICATION INTEGRATION WITH MPEG OBJECTS

21

22

Client Device
20
—>| Input | | Decoder |— I
Interface V
Service Encoded
Request audiovisual data stream
Servide, repaint
Layout request E_nclogletd Block-based
Engine) Controller pixel data Encoder
Dirty 1591
231 Rectangles I 234
Paint Paint/no-paint Cache Blocks
Instructions cache requests 1592 of pixels
. Rendering Pixel
Shim - Library Buffer
1593 Paint Pixel
Instructions 232 Data 233
Application Engine
159

FIG.

3

(57) Abstract: System and methods are provided to cache encoded graphical objects that may be subsequently combined with other
encoded video data to form a data stream decodable by a client device according to a format specification. Paint instructions relating
to a graphical object are sent from a layout engine to a rendering library. A shim intercepts these instructions and determines whether
the graphical object already has been rendered and encoded. If so, a cached copy of the object is transmitted to the client device. If
not, the shim transparently passes the instructions to the rendering library, and the object is rendered, encoded, and cached. Hash
values are used for efficiency. Methods are disclosed to detect and cache animations, and to cut and splice cached objects into en -
coded video data.

WO 2013/155310 PCT/US2013/036182

Graphical Application Integration with MPEG Objects

Technical Field

[0001] The present invention relates to computer graphics display memory systems
and methods, and more particularly to providing a graphical user interface having cached

graphical elements.

Background Art

[0002] Content providers are experiencing a growth in demand for interactive
applications, such as interactive menus, games, web browsing, and the like. Each such
interactive application must provide an output that is tailored to the individual requesting it.
This is done by establishing a session between the content provider and a client device over a
data network, for example the Internet or a cable television system. Furthermore, the
audiovisual data for each application is typically encoded or compressed according to an
encoding scheme, such as MPEG, to reduce the amount of data that must be transferred.
However, encoding audiovisual data for transmission over such a data network is
computationally expensive. As the number of requests for interactive sessions grows, it
becomes problematic to both render and encode the output of a large number of application
sessions, each output destined for a different viewer.

[0003] It is known in the art to reuse audiovisual content by caching it. In this way, a
frame of video content may be produced once, and sent to as many client devices as required.
However, many applications generate reusable images that are smaller than a full frame of
video. For example, a menuing application may generate a pulsating menu button animation,
or a video game may draw a spaceship image at nearly any location on the screen. Prior art
systems must re-render and re-encode these sub-frame images for each video frame
produced. Caching mechanisms cannot be used, because the encoding process often uses a

state-based data compression system that does not permit insertion of images into an existing

WO 2013/155310 PCT/US2013/036182

data stream. As rendering and encoding are computationally expensive operations, prior art

systems require a large hardware and software investment to keep up with demand.

Summary of Illustrated Embodiments

[0004] To solve the aforementioned problems, various embodiments of the present
invention permit caching of encoded or compressed images that can be composited together
with an audiovisual data source. In particular, for each application that defines a graphical
user interface, various embodiments insert a small software hook, or shim, between layers in
the application execution environment that intercepts rendering commands and determines
whether the image to be rendered is already cached in an encoded state. If so, the encoded
image is inserted into the video without being completely decoded and re-encoded. Slice
cutting and slice linking techniques as separately disclosed herein may be used to accomplish
such an insertion.

[0005] Thus, in a first embodiment there is given a method of providing an image to
a client device from an application execution environment having a layout engine that
assembles graphical components into a graphical user interface screen for a graphical
application, and a rendering library that renders graphical components into pixels. The
method includes receiving, from the layout engine, one or more paint instructions having
parameters that pertain to a given graphical object. Next, the method requires computing a
hash value based on the received one or more paint instructions. There are two paths,
depending on whether the hash value is contained within a cache memory. If so, the method
calls for retrieving, from the cache, encoded audiovisual data that are uniquely associated
with the hash value, and transmitting the retrieved audiovisual data to the client device. If
not, the method requires several more steps. The first such step is forwarding the received
one or more paint instructions to the rendering library for rendering the graphical object into
pixels according to the paint instruction. The second such step is encoding the rendered
pixels into encoded audiovisual data. The third such step is storing the hash value and the
encoded audiovisual data in the cache, whereby the hash value and the encoded audiovisual
data are uniquely associated. Finally, the fourth such step is transmitting the encoded

audiovisual data to the client device. Determining that the hash value is contained within the

WO 2013/155310 PCT/US2013/036182

cache may be done by comparing the hash value to a stored hash value of a cached image
that forms part of an animation.

[0006] The client device may be a television, a television set-top box, a tablet
computer, a laptop computer, a desktop computer, or a smartphone. The graphical
application may be, for example, a web browser or a menu interface.

[0007] Encoding may include dividing the screen into blocks of pixels. In one such
related embodiment, the method may be extended, after receiving the painting data and
before computing the hash value, by determining the smallest rectangle consisting of whole
blocks of pixels that surrounds the at least one graphical object; requesting that the layout
engine repaint the smallest surrounding rectangle; and receiving, from the layout engine,
second painting data that include at least one paint instruction having parameters that reflect
the smallest surrounding rectangle, wherein computing the hash value is based on the second
painting data.

[0008] In a separate related embodiment, the method may be extended by
determining the smallest rectangle consisting of whole blocks of pixels that surrounds the at
least one graphical object; copying current image data into a pixel buffer having the size and
shape of the smallest surrounding rectangle; and requesting that the rendering library render
the graphical object into the pixel buffer according to the painting data, wherein computing
the hash value is based on the pixel data in the pixel buffer.

[0009] Sometimes an interactive application will provide a repeating sequence of
images that forms an animation, and images in the sequence may benefit from other
optimizations. For example, regarding these sequences of images as an animation allows
motion detection to be performed, resulting in much more efficient inter-encoding (e.g.,
producing P-frames and B-frames). This increase in efficiency may manifest as, for
example, a lower bandwidth required to transmit a video that includes the animation, or a
higher quality for the same bandwidth.

[0010] Thus, in a second embodiment there is provided a method of transmitting, to a
client device, images that comprise an animation. The method requires first receiving a
current image into a computing processor. As with the first method embodiment, there are
two paths. When the current image is identical to a previously rendered image, the

previously rendered image being uniquely associated with an encoded image in a cache

WO 2013/155310 PCT/US2013/036182

memory, the method concludes by transmitting to the client device the cached, encoded
image without encoding the current image. However, when the current image is not identical
to a previously rendered image, but shares at least a given minimum percentage of its pixels
with a given, previously rendered image, the method continues with a number of additional
steps. The first such step is identifying the current image and the given, previously rendered
image as belonging to a common animation. The second such step is encoding the current
image according to a predictive encoding scheme. The third such step is storing the encoded
current image in the cache memory. The fourth such step is transmitting to the client device
the encoded current image.

[0011] The predictive encoding scheme may be an MPEG encoding scheme. The
previously rendered image may not have been rendered immediately previously to the
current image, but may be an image rendered earlier. The previously rendered image may be
uniquely associated with a predictively encoded image in the cache memory. This second
method may be extended by computing a hash value for each unique chain of images that
forms an animation, the hash value being a function of all images in the chain of images and
a screen displacement between two consecutive images in the chain.

[0012] On occasion, it is more efficient to form a row of encoded data by combining
currently-displayed visual data with newly rendered rectangles or animations than it is to re-
render and re-encode an entire screen. Thus, it is necessary to develop methods for cutting
rows of the currently-displayed data into slices, and methods for combining slices of data
together again to form whole rows.

[0013] Therefore, in a third embodiment there is provided a method of forming two
encoded slices from data comprising a given encoded slice, each encoded slice comprising a
sequence of macroblocks that are encoded according to a variable length code. This method
includes locating, in the given slice, a location of a macroblock. Then, the method requires
altering a DC luma value or a DC chroma value of the located macroblock without fully
decoding the macroblock according to the variable length code. The first formed slice
consists of the data of the given slice up to but not including the altered macroblock, and the
second formed slice consists of the encoded macroblock and any subsequent encoded
macroblocks in the given slice. Altering the DC luma value or the DC chroma value may be

performed through a bit-shifting operation.

WO 2013/155310 PCT/US2013/036182

[0014] Further, in a fourth embodiment there is provided a method of combining a
first encoded slice and a second encoded slice to form a third encoded slice, each encoded
slice comprising a sequence of macroblocks that are encoded according to a variable length
code. The method first requires altering a DC luma value or a DC chroma value in the first
macroblock of the second slice without fully decoding the macroblock according to the
variable length code. The method ends by concatenating the data of the first slice with the
altered macroblock and the undecoded data of the second slice to form the third encoded
slice. As before, altering the DC luma value or the DC chroma value may be performed
through a bit-shifting operation.

[0015] It is contemplated that the invention may be embodied in a tangible medium
on which is stored non-transitory computer program code for performing any of the above
methods.

[0016] It is also contemplated that the invention may be embodied in a system for
providing an image to a client device from an application execution environment having a
layout engine that assembles graphical components into a graphical user interface screen for
a graphical application, and a rendering library that renders graphical components into pixels.
The system may include a memory. The system may also include a shim comprising
hardware or a combination of hardware and software that is configured to: receive, from the
layout engine, one or more paint instructions having parameters that pertain to a given
graphical object, compute a hash value based on the received one or more paint instructions,
and, when the hash value is not contained within the memory, forward the received one or
more paint instructions to the rendering library for rendering the graphical object into pixels
according to the one or more paint instructions. The system may also include a controller
comprising hardware or a combination of hardware and software that is configured to:

retrieve, from the memory, encoded audiovisual data that are uniquely associated
with the hash value, and transmit the retrieved audiovisual data to the client device when the
hash value is contained within the memory; and transmit, to the client device, encoded
audiovisual data comprising a rendering of the graphical object into pixels according to the
received one or more paint instructions when the hash value is not contained within the

memory.

WO 2013/155310 PCT/US2013/036182

[0017] The client device may be a television, a television set-top box, a tablet
computer, a laptop computer, a desktop computer, or a smartphone. The graphical
application may be, for example, a web browser or a menu interface. The memory may store
a sequence of images that collectively form an animation, in which case the controller is
further configured to determine that the hash value is contained within the cache by
comparing the hash value to a stored hash value of a cached image that forms part of the
animation. The audiovisual data may be encoded according to an MPEG encoding scheme.

[0018] The system may also include a block-based encoder that is configured to form
two encoded MPEG slices from data comprising a given encoded MPEG slice, each encoded
MPEG slice comprising a sequence of encoded macroblocks. Forming the slices may be
performed by locating, in the given MPEG slice, a location of a macroblock that is encoded
according to a variable length code; then decoding the encoded macroblock according to the
variable length code; then altering a DC luma value in the decoded macroblock; and finally
encoding the altered macroblock according to the variable length code, wherein the first
formed MPEG slice consists of the data of the given MPEG slice up to but not including the
encoded macroblock, and the second formed MPEG slice consists of the encoded
macroblock and any subsequent encoded macroblocks in the given MPEG slice.

[0019] The system may also include a block-based encoder that is configured to
combine a first encoded MPEG slice and a second encoded MPEG slice to form a third
encoded MPEG slice, each encoded MPEG slice comprising a sequence of encoded
macroblocks. Combining the slices may be performed by decoding the first macroblock of
the second slice according to a variable length code; then altering a DC luma value in the
decoded macroblock; then encoding the altered macroblock according to the variable length
code; and finally concatenating the data of the first slice with the encoded macroblock and

the undecoded data of the second slice to form the third slice.

Brief Description of the Drawings

[0020] The foregoing features of embodiments will be more readily understood by
reference to the following detailed description, taken with reference to the accompanying

drawings, in which:

WO 2013/155310 PCT/US2013/036182

[0021] Fig. 1 is a schematic diagram of a typical system in which various
embodiments of the invention may be used;

[0022] Fig. 2 is a block diagram showing functional modules and data flow in a prior
art web browser system;

[0023] Fig. 3 is a block diagram showing functional modules and data flow in
accordance with an embodiment of the invention;

[0024] Fig. 4 is a flowchart showing a method of generating an initial screen for a
graphical user interface in accordance with an embodiment of the invention;

[0025] Figs. SA-5C collectively comprise a flowchart showing a method of
generating a screen update in accordance with the embodiment of Fig. 4;

[0026] Figs. 6A-6D show an exemplary screen area that is being updated at various
stages of the methods of Figs. 4 and 5;

[0027] Fig. 6E shows a pixel buffer relating to the exemplary screen area of Fig. 6;

[0028] Fig. 7 is a flowchart showing a method of detecting an animation in
accordance with an embodiment of the invention;

[0029] Figs. 8A-8C show a “rolling update” of several rows of macroblocks;

[0030] Figs. 9A-9E illustrate the concept of slice cutting and slice linking, as used in
accordance with an embodiment of the invention;

[0031] Fig. 10 is a flowchart showing a method of cutting an MPEG slice in
accordance with an embodiment of the invention;

[0032] Figs. 11A-11D show the effects of slice cutting at the level of slice data;

[0033] Fig. 12 is a flowchart showing a method of linking MPEG slices in
accordance with an embodiment of the invention; and

[0034] Figs. 13A-13D show the effects of slice linking at the level of slice data.

Detailed Description of Specific Embodiments

[0035] Definitions. As used in this description and the accompanying claims, the
following terms shall have the meanings indicated, unless the context otherwise requires:

[0036] The term “application” refers to an executable program, or a listing of
instructions for execution, that defines a graphical user interface (‘GUI”) for display on a

display device. An application may be written in a declarative language such as HTML or

WO 2013/155310 PCT/US2013/036182

CSS, a procedural language such as C, JavaScript, or Perl, any other computer programming
language, or a combination of languages.

[0037] A “rectangle” is a rectangular area on a screen of the display device. The
screen area may in fact reside within a window in a windowed user interface.

[0038] A rectangle is “clean” if its contents match what is currently being output to
the display device, and “dirty” if its contents do not match what is currently being output.

[0039] A “layout engine” is a computing service that is used to convert a document
into graphical objects placed on a display screen. For example, Trident, WebKit, and Gecko
are software layout engines that convert web pages into a collection of graphical objects (text
strings, images, and so on) arranged, according to various instructions, within a page display
area of a web browser. The instructions may be static, as in the case of parts of HTML, or
dynamic, as in the case of JavaScript or other scripting languages, and the instructions may
change as a function of user input. Trident is developed by Microsoft Corporation and used
by the Internet Explorer web browser; WebKit is developed by a consortium including
Apple, Nokia, Google and others, and is used by the Google Chrome and Apple Safari web
browsers; Gecko is developed by the Mozilla Foundation, and is used by the Firefox web
browser.

[0040] A “rendering library” is a computing service that is used by a layout engine to
convert graphical objects into images. Graphical objects include, without limitation,
alphanumeric symbols, shapes such as circles and rectangles, and images defined according
to an image format such as GIF or JPEG. For example, Cairo is a software rendering library
that converts two-dimensional objects defined using vector graphics into either pixel data or
into drawing commands for underlying graphical systems such as X Windows, the Windows
32-bit graphics device interface, or OpenGL. Cairo is developed by Carl Worth of Intel
Corporation, Behdad Esfahbod of Google (Waterloo, Canada), and a host of others.

[0041] A “pixel buffer” is a data buffer used to temporarily store the pixel data of a
screen rectangle.

[0042] A “pixel hash” is a hash value that is calculated over all pixels in a pixel

buffer.

WO 2013/155310 PCT/US2013/036182

[0043] A “repaint request” is a request from a controller to a layout engine to repaint
the contents of a rectangle for output. Repaint requests may be used to“clean” a dirty
rectangle.

[0044] A “graphical object” is a collection of data that permits a shape to be drawn
on a display. For example, a graphical object that represents a square may include data
pertaining to coordinates of the square’s vertices, a line thickness, a line color, and so on. A
graphical object that represents a text character may include data pertaining to a font name, a
letter height, a color, a font weight, and so on. A graphical object may contain other
graphical objects; for example, a text string may include a number of letters.

[0045] A “paint instruction” is an instruction from the layout engine to a rendering
library to generate pixel data, in a pixel buffer, that relates to a given graphical object.

[0046] A “paint hash” is a hash value that is calculated as a function of a sequence of
paint instructions that are generated to repaint a rectangle’s content, including their
parameters (or certain appropriately chosen representations of their parameters).

[0047] An “MPEG fragment” is one or more MPEG-encoded macroblocks, as
disclosed in U.S. patent application 12/443,571, filed October 1, 2007, the contents of which
are incorporated by reference in their entirety.

[0048] “Audiovisual data” are data that represent audio, video, or a combination of
audio and video.

[0049] An “animation” is a repeating sequence of individual images.

[0050] A “slice”, in the context of video encoding and especially in the context of a
H.264 / MPEG-4 encoding format, is a group of one or more horizontally contiguous
macroblocks, in raster order, that can be encoded independently from other slices according
to the encoding format.

[0051] Fig. 1 is a schematic diagram of a typical system in which various
embodiments of the invention may be used. These embodiments transmit streaming
audiovisual data to a variety of client devices for playback, including a smart television,
cable set top box, or a desktop computer in house 11, a tablet computer 12, a laptop computer
13, and a smartphone 14. The audiovisual data are typically streamed from an operator

headend 15. The operator may obtain content via a public data network, shown here as the

WO 2013/155310 PCT/US2013/036182

Internet 16, from a content provider, shown here as a web server 17. The operator also may
obtain the content from an operator-controlled web server via a private data network.

[0052] The operator headend 15 is connected to each of the various client devices via
a gateway. Thus, the headend is connected to house 11 through a cable gateway 151, which
may be, for example, a cable modem termination system for terminating a cable system
1511. The headend is connected to the tablet computer 12 via a wireless gateway 152, such
as an antenna, that transmits and receives on a wireless data network 1521. The headend is
connected to the laptop computer 13 via a wired network gateway 153, such as a router, that
uses a wired data network 1531. And the headend is connected to the smartphone 14 via a
cellular network gateway 154 that uses a cellular telephone network 1541. Similarly, the
headend is connected to the Internet 16 via a network gateway 155 (which typically includes
a firewall, as indicated, to prevent unauthorized access). The headend may be connected to
other client devices known in the art using similar, ordinary means.

[0053] All of these gateways are connected, typically via one or more firewalls or
data routing devices (not shown), to a central headend data network 150. Also connected to
the central network are various other useful headend systems, such as an administrative
system 156 and media storage server 157. Various embodiments of the invention are
particularly directed to the creation and use of transcoders and image scalers 158, and
application engine and session manager 159. These functional components are described in
more detail in connection with Figs. 3-6 below. The administrative functions 157, media
storage 157, transcoders and scalers 158, and application engine and session manager 159
may be implemented in software and/or hardware using general purpose computers or
special-purpose computing systems. It will be appreciated that any or all of these
components may be implemented in parallel to handle large numbers of concurrent users.
Thus, for example, a given headend 15 may execute a plurality of transcoder instances, scaler
instances, and/or application engine instances at any given time. Moreover, these instances
need not be executed within one physical premises, but may be distributed as required by the
service provider.

[0054] Transcoders may be used to re-encode data from a first data format (such as a
broadcast format or storage format) into a second data format (such as a data streaming

format). Scalers may be used to dynamically resize video streams, for example to provide a

10

WO 2013/155310 PCT/US2013/036182

“mosaic” of multiple video streams on a single display. An application engine may be used
to run an application having a graphical user interface, such as an HTML page or a web
browser, in a user session with a particular client device. Such user sessions may be
managed by the session manager.

[0055] Typically, a client device forms a data connection to the operator headend and
requests a particular interactive service, such as a menuing interface or a web browser. In
response, the headend requests a new session from the session manager, and allocates an
application engine associated with the requested service. If the particular service requires
transcoding or scaling, the session manager will also allocate these resources. The
application engine communicates with the client device, and requests transcoding and scaling
operations (as well as access to administrative functions 156 such as billing, and stored
media 157) to provide an enjoyable interactive experience to a user of the client device.
When the service is terminated, either by the headend or the client device, the session
manager frees up the allocated resources. In accordance with these processes, many
thousands of client devices may be simultancously supported.

[0056] For purposes of illustration, and not by way of limitation, one service that
may be requested is web browsing. Fig. 2 is a block diagram showing functional modules
and data flow in a prior art web browser system having a remote browser engine. In this
system, a client device 20, such as a cable set top box, is coupled to an input device, such as
video keyboard 21, and a display device, such as monitor 22. It will be understood that these
components are shown separately for clarity, but they may be integrated into a single form
factor, such as a tablet computer or other computing device.

[0057] The input device 21 transmits a request for a web page through the client
device 20 to a remote browser 23. The remote browser includes four components: a layout
engine 231, one or more rendering libraries 232, a pixel buffer 233, and a block-based
streaming data encoder 234. The layout engine receives the request and downloads the
linked content. This content must be rendered, and when the layout engine wishes to render
a graphical object, such as a text string or an image file, it issues one or more paint
instructions to a rendering library 232 using an application programming interface (API) for
the library. The rendering library then renders the graphical object into a pixel buffer 233 at

a location determined by the layout engine.

11

WO 2013/155310 PCT/US2013/036182

[0058] File formats for encoded image data may be recognized by humans using a
(e.g. three or four letter) filename extension such as GIF or JPEG. However, often these
extensions are incorrect, so the layout engine may resort to reading a“magic number” inside
the file itself at industry-standard byte offsets. Such magic numbers are well known in the
art, and their careful management across the industry permits unambiguous identification of
file formats by the application execution environment. Correct identification of the file
format for an image graphical object permits the layout engine to invoke the proper rendering
library 232 to draw its encoded data.

[0059] Once the pixel data have been drawn into the pixel buffer 233, the block-
based encoder 234 receives blocks of pixels from the buffer and encodes them according to
an encoding. Encodings are used to compress the data for transmission, as it is often the case
that data transmission capabilities between the remote browser and the client device are
limited. One encoding used in the art is the MPEG encoding, although it will be understood
that the scope of the invention is not limited only to MPEG. Once the pixel data are
encoded, they are transmitted from the remote browser 23 to the client device 20, where they
are decoded and displayed on the display 22.

[0060] Interactive behavior typically is controlled from the client device as part of a
session established between the client device and the remote browser. Further input received
from the client device, such as a repeated key press or a held key on a remote control or a
keyboard, causes the layout engine to execute any application logic (e.g., JavaScript). If the
application logic requires the screen output to change in response to this interactive input, as
it often does, the process may begin again as if a new page request (or update request) were

received, thereby causing a modified pixel buffer to be encoded and sent to the client device.

Screen Updates

[0061] Fig. 3 is a block diagram showing functional modules and data flow in
accordance with an embodiment of the invention. As can be seen, the application engine 159
of this embodiment, also referred to as the application execution environment, differs
substantially from the remote browser of Fig. 2. Some of the components of the remote
browser 23 (i.e., the layout engine 231, rendering library 232, pixel buffer 233, and block-

based encoder 234) operate as described above in connection with Fig. 2. However, the

12

WO 2013/155310 PCT/US2013/036182

application engine 159 adds a controller 1591, a data cache 1592, and a*“shim” 1593, that
cooperate to perform novel functionality as described below. Therefore, the application
engine leverages the functions of the remote browser components 231-234 without
modifying them. Because of this design, when newer and improved versions of remote
browser components are released by third party developers, this embodiment advantageously
may be adapted to integrate with the new components without requiring substantial
modification.

[0062] The controller 1591 is responsible for controlling and optimizing the encoding
of portions of the graphical user interface of an application. For purposes of concreteness,
the application execution environment described herein provides a web browser, but the
invention may be used with other application engines having modules that interact via an
API. The controller receives service requests from a client device 20 and returns encoded
audiovisual data.

[0063] The controller is coupled to a data cache 1592. This cache stores encoded
audiovisual data that may be decoded by the client device 20 for display on a display device
22. For example, and not by way of limitation, the audiovisual data may be encoded
according to an MPEG standard. The cached data may include either full frame, intracoded
data (I-frames), intercoded data (P-frames, or B-frames) or MPEG fragments as disclosed in
U.S. patent application 12/443,571. It will be appreciated that the data cache 1592 may be
shared between application engine instances, so that it may be accessed by any number of
controllers.

[0064] A shim 1593 is a software mechanism that is interposed between the layout
engine 231 and the rendering library 232. As described above in connection with Fig. 2, a
prior art layout engine sends paint instructions to a rendering library according to the
library’s API. However, in accordance with the embodiment shown in Fig. 3, the shim
intercepts these instructions and processes them. The shim passes some instructions through
to the rendering library automatically, so that the instructions appear to have been issued by
the layout engine. For example, if the paint instruction modifies a state in the library (e.g.,
instructs the library to use a particular coordinate system), or obtains information from the
rendering library, then the shim forwards the instruction and returns any response to the

layout engine. However, the shim may or may not forward certain other paint instructions to

13

WO 2013/155310 PCT/US2013/036182

the rendering library, such as rendering instructions, depending on whether it is in a
‘forwarding’ state or a ‘non-forwarding’ state. The controller instructs the shim as to which
of these two states it should have, as described below. By avoiding unnecessary rendering,
the shim advantageously saves processing time and memory.

[0065] The operation of the embodiment of Fig. 3 is now explained in more detail
with reference to Figs. 4, 5, and 6. Fig. 4 is a flowchart showing a method of generating an
initial screen for a graphical user interface in accordance with an embodiment of the
invention. Figs. SA-5C collectively comprise a flowchart showing a method of generating a
screen update. Figs. 6A-6D show various screen areas affected by these methods, and Fig. 6E
shows an exemplary pixel buffer.

[0066] With reference to Fig. 4, a method to generate an initial screen for a client
device begin in process 40, in which the controller receives a page request from the client
device. This request may be generated, for example, when an individual presses a button on
remote control 21, thereby activating the requested application. In process 41, the layout
engine (having performed any necessary preprocessing such as retrieving HTML data
associated with a URL) determines and positions graphical objects according to methods
known in the art. After the data are properly positioned based on their dimensions and other
factors, they are rendered in process 42, in which the layout engine requests rendering from
one or more rendering libraries. In process 43, the initial pixel buffer data are populated with
the drawing outputs of the one or more rendering libraries. In process 44, the pixel buffer
data are encoded according to an audiovisual encoding scheme. As known in the art, this
scheme may be a block-based encoding scheme such as MPEG. In process 45, the encoded
data are sent to the client device 20 for eventual display on display device 22. An example
of an initial screen generated as a result of this method is shown in Fig. 6A.

[0067] A method of providing a screen update to a client device begins in Fig. SA.
This method may be triggered when an individual activates a control in the graphical user
interface that causes a portion of the screen to be updated. The method causes only the
portion of the screen to be encoded, and a new image to be transmitted to the client device
20, thereby saving memory and computing resources in the application engine. For encoding
schemes other than MPEG, the method potentially saves bandwidth between the application

engine and the client device. An example of a screen update request is shown by comparing

14

WO 2013/155310 PCT/US2013/036182

Fig. 6A to Fig. 6B. Fig. 6A represent an initial screen prompting an individual to choose
between tomatoes and potatoes. Fig. 6B represents the desired output of highlighting a button
around the “potatoes” element. Highlighting the button is a “screen update” that does not
require a full-screen refresh.

[0068] The screen update method begins in process 50, in which the application
engine receives a screen update request from the client device. Upon receiving the user
input, the controller passes it to the layout engine. In process 51, the layout engine creates
and returns to the controller a list of dirty rectangles; i.e., rectangular areas of the screen that
must be repainted (redrawn) in response to the request. Fig. 6C shows an example of such a
dirty rectangle that corresponds to the button of Fig. 6B. This dirty rectangle is the smallest
rectangle that may be drawn completely around the affected button. The size and location of
dirty rectangles may be determined in accordance with methods known in the art of layout
engines.

[0069] In process 52, the controller instructs the shim to prevent rendering; that is, to
enter the ‘non-forwarding’ state. Therefore, any rendering paint instructions received by the
shim from the layout engine will not be sent to the rendering library.

[0070] In process 53, the controller determines whether any rectangles need resizing.
This determination is made with knowledge of the size of the blocks of pixels encoded by the
block-based encoder. Thus, if the encoder operates on MPEG macroblocks that are 16 pixels
by 16 pixels (256 pixels in each block), the controller optionally may determine whether
each dirty rectangle is aligned on 16 pixel boundaries. If a rectangle is not so aligned, the
controller may determine to resize the dirty rectangles, and proceed to a process 531 in which
the controller snaps the rectangles to pixel block boundaries. Fig. 6D shows the dirty
rectangle of Fig. 6C, expanded to align with 16 pixel macroblocks. If one or more rectangles
were resized, then the controller modifies the received repaint request (or creates a new
repaint request) in a process 532, so that the layout engine will cause the proper screen area
to be repainted. Thus, in accordance with these optional latter two processes 531, 532, the
controller determines the smallest rectangle consisting of macroblocks that surrounds the
graphical object being repainted. In this case, the repaint request sent to the layout engine
reflects this smallest surrounding rectangle, and the output of the layout engine will include

parameters that reflect the smallest surrounding rectangle. The above processes may be

15

WO 2013/155310 PCT/US2013/036182

performed using a pixel buffer provided by the controller and having the size and shape of
the smallest surrounding rectangle, into which current screen image data have been copied,
so that any newly rendered image will be drawn on top of the current screen image.
Alternately, the above processes may be performed without such a pixel buffer.

[0071] Whether or not the controller determines to resize any rectangles, in process
54 the layout engine processes the list of dirty rectangles to produce one or more paint
instructions. These instructions have parameters that indicate how the instructions should be
executed. For example, the parameters may define the size and coordinates of a dirty
rectangle having an image to be re-rendered, and they may define properties of a graphical
object, such as a font, weight, and size for a text string. In prior art systems, these
instructions would be sent from the layout engine 231 directly to the rendering library 232,
but in accordance with this embodiment of the invention, the shim 1593 instead intercepts
the instructions.

[0072] Continuing the method in Fig. 5B as indicated, recall that the shim is in the
‘non-forwarding’ state. Thus, in process 55, rather than forwarding the instruction to the
rendering library, instead the shim computes a hash value based on the received painting
data. This hash value may be computed using a hash function known in the art for producing
a small number (a hash) based on a large number according to a computationally inexpensive
algorithm that deterministically distributes hash values uniformly and approximately
randomly across the set of small output numbers. Because hash values are calculated
deterministically, applying the function to the same input twice will yield the same output
both times. Because hash values are distributed approximately randomly, applying the
function to different inputs will yield different outputs in all but a vanishing number of cases.
Thus, hash values are small numbers that may be used to discriminate between large data sets
without requiring expensive comparison of the large data sets themselves.

[0073] The hash value may be calculated based on the painting data received by the
shim, and especially the parameters of at least one paint instruction. In one embodiment,
pixel data pertaining to a graphical object are used to produce the hash value. In another
embodiment, the hash is calculated as a function of a series of incremental paint instructions
that pertain to a particular rectangle. Other variations are contemplated, so long as the hash

function is applied uniformly to paint instructions that would result in identical output

16

WO 2013/155310 PCT/US2013/036182

graphics. Thus, if multiple users of the same menuing interface, accessing the menu at
different times, request identical behaviors of the interface, then the same hash value is
produced for both users. This is true even if the two users access different application engine
instances, and even if some of the parameters (such as a session identifier) are different.
Moreover, such identical output graphics could occur at different locations on the screen.
For example, a menu button may be rendered at different locations in different menu screens,
but otherwise appear identical.

[0074] In process 56, the shim transmits the hash value to the controller. The
controller 1591 then consults the cache 1592 using the received hash value to determine
whether there is an associated entry in the cache. Ifthe data are determined to be in the
cache in process 57, then in process 571 the controller immediately retrieves the encoded
audiovisual data from the cache, and in process 572 the controller transmits the retrieved data
to the client device. Because MPEG does not allow a system to send encoded images that
represent less than a full frame to a client device, and because the encoded audiovisual data
may represent less than a full frame, the encoded data may be stitched or composited into
other encoded data to form a full frame prior to transmission, in accordance with methods
known in the art. In process 573, the controller instructs the shim to discard the paint
instruction it received from the layout engine, as it is no longer needed.

[0075] Thus, if the data are already cached, no further rendering or encoding is
necessary to deliver the content to the client device that requested it. If, however, in process
57 the data are determined not to be in the cache, then they must be rendered and encoded.
In this case, in process 58 the controller instructs the shim to permit painting (that is, to enter
the ‘forwarding’ state), and in process 59 the controller resends the previous repaint request
to the layout engine. At this point, the controller also temporarily stores the received hash
value for later use as described below.

[0076] Continuing the process in Fig. 5C as indicated, in process 510 the layout
engine resends the repaint request to the shim. Unlike previously, the shim now has been
configured to forward the received paint instruction to the rendering library, which it does in
process 511. This pass-through effect may be accomplished using the rendering library API
in the same manner as the layout engine would if the shim were not present. In process 512,

the rendering library creates a pixel buffer having the appropriate pixel data. For example,

17

WO 2013/155310 PCT/US2013/036182

Fig. 6E shows a pixel buffer associated with the (expanded) dirty rectangle of Fig. 6D. In
Fig. 6E, the word “potatoes” is visible along with the button around it. Therefore, this
rectangle corresponds to the pixel data (of Fig. 6B) that must be encoded by the encoder.

[0077] At this point in the process, an optional animation detection method may be
invoked. The purpose of the optional method is to determine whether any optimizations may
be made to the encoding process. This optional method is described below in connection
with Fig. 7.

[0078] In process 513, the encoder encodes the rendered pixel data in the pixel buffer
to form encoded audiovisual data. Process 513 may be performed according to methods
known in the art, or it may be performed according to methods described in further detail
below in connection with detecting and encoding animations, and/or performing slice linking
and cutting. Inprocess 514, the controller receives the encoded pixel data and stores it in the
screen update cache 1592. These encoded data are stored in unique association with the hash
value previously received by the controller in process 56. Thus, if a future screen update
request causes the shim 1593 to generate an identical hash value, the encoded data will be
available in the cache for immediate retrieval. Next, in process 515, the encoded pixel data
are formed into an audiovisual data stream. This process may include generating a
continuous stream of frames according to a fixed number of frames per second, in
accordance with an industry encoding standard such as MPEG. During this process, any
number (zero or more) MPEG fragments may be combined with output from a scaled and/or
transcoded input video stream to form the final encoded audiovisual data stream. Finally, in
process 516 the controller transmits the encoded audiovisual data stream to the client device.
Advantageously, this method does not require an MPEG motion search on the entire
displayed screen, but only the “dirty” rectangle that is being updated. The method therefore
requires less processing power than in the prior art.

[0079] The above method may be modified as follows. In process 58, the shim
receives a command from the controller to permit painting. The purpose of this command is
to permit the system to render the received painting data. However, these painting data
already are stored in the shim. Therefore, in an alternate embodiment, rather than executing

processes 59, 510, and 511 (which collectively require a further repaint request being issued

18

WO 2013/155310 PCT/US2013/036182

to the layout engine), the shim may forward the painting data directly to the rendering library
in process 58 upon receiving notification that there was a cache “miss”.

[0080] The above method also may be modified in a different manner. Some paint
instructions read back pixel information from the pixel buffer used by the rendering library.
However, the pixel buffer may include incorrect data (i.c., data of a previously rendered
image) if the controller and shim bypassed the previous paint instruction because the image
was found in the cache. In this case, the cached image may be retrieved, and the shim may
either simulate the effect of the paint instruction directly, or update the state of the rendering
library to use the retrieved, cached image and then pass the paint instruction to the library for
execution. The information read from the pixel buffer might also be cached for later retrieval

if a similar sequence of paint commands is issued.

Detecting Animations

[0081] According to the embodiments described above, each image is individually
compressed in isolation; for example, the images may be compressed using MPEG intra-
encoding. However, sometimes an application will provide a repeating sequence of images
that forms an animation, and images in the sequence may benefit from other optimizations.
For example, regarding these sequences of images as an animation allows motion detection
to be performed, resulting in much more efficient inter-encoding (e.g., producing P-frames
and B-frames). This increase in efficiency may manifest as, for example, a lower bandwidth
required to transmit a video that includes the animation, or a higher quality for the same
bandwidth.

[0082] Fig. 7 is a flowchart showing a method of detecting an animation in
accordance with an embodiment of the invention. The method may be applied for any given
screen update during or just before process 513 (in which the encoder encodes the frame
pixel data).

[0083] The method begins with process 70, in which the controller compares the
current rendered image with a previously rendered image to determine screen arca overlap.
The locations and sizes of the two images, but not necessarily their content, are compared to
determine a percentage overlap in their respective pixel“surface area”. For example, a

50x100 pixel image having upper left coordinate (100,100) and a 50x100 pixel image having

19

WO 2013/155310 PCT/US2013/036182

upper left coordinate (105,95) have an overlap of 45x95 pixels, or a percentage surface area
overlap of 4275/ 5000 = 85.5%. A sequence of screen updates for a flashing button, or a
graphical object that is simply changing color, will have rectangles that do not change
position on the screen, and will therefore have 100% screen area overlap. The controller
stores a list including coordinates of previously rendered rectangles for this purpose.
Because such a list includes only coordinate data, it may include data pertaining to a large
number of previously rendered frames; therefore, the two images being compared need not
be in consecutively rendered frames.

[0084] In process 71, a choice is made depending on whether the percentage overlap
is substantial, as defined by a given minimum percentage. For illustrative purposes, and not
by way of limitation, the minimum percentage may be 50%, so that two rectangles that share
at least half of their pixel coordinates in common are considered to contain images that are
part of a single animation. If there is not a substantial overlap, then in process 711 the
controller determines whether there are any other previously rendered images in the list
against which to compare the current image. Ifso, the method restarts at process 70 using a
different previously rendered image, but if not, then the method ends.

[0085] However, if there is substantial overlap between the two compared image
coordinates, then the algorithm concludes that the images form part of a single animation.
To prevent loops, in process 72 a choice is made depending on whether the currently
rendered image is identical to a first image in a previously-rendered chain of overlapping
images. Rather than comparing the image pixel data directly, the hash values of the two
images may be compared for improved efficiency. Ifthe hash values are equal, then the
current image is the first image of the animation cycle, and it does not need to be re-encoded.
Thus, in process 721 the cached, encoded image is transmitted and the method ends.

[0086] Ifthe image was not previously animated, then in process 73 the current
image is intra-encoded. Further images that are determined to belong to the same animation
chain are subsequently inter-encoded with respect to the previous image in the animation.
Once the controller has determined that an animation is ongoing, new images generated by
an application are checked against corresponding images, in sequence, in the stored
animation. In case the current image does not match the corresponding stored image, a new

animation sequence is started, and the first image in the sequence is intra-coded.

20

WO 2013/155310 PCT/US2013/036182

[0087] In accordance with the above discussion, an animation starts with intra-coded
macroblocks, and subsequent images are generated as predictive macroblocks (P or B). It is
sometimes the case that an animation starts at an intermediate image that has been
predictively encoded, rather than the first, intra-coded image. Such an animation has a
unique encoder history, so it needs to be identified as a different object in the cache. In
particular, it has a different hash value than an animation that begins with the*“first” image in
the chain. Therefore, each chain of images in an animation is assigned a unique hash,
calculated over the pixels of all individual images that are part of the chain. The

displacement on the screen between images is also included in the hash calculation.

Slice cutting and slice linking

[0088] By way of background to inform another aspect of the invention, it is known
in prior art MPEG systems to perform a periodic refresh of a screen by providing, to a client
device, an entirely intra-coded frame (I-frame) of image data. Such refreshes eliminate
screen artifacts caused by errors in the transmission of audiovisual data. However, intra-
coded frames (I-frames) encode all pixel data in the image, and therefore require the use of
more data than inter-coded frames (e.g. P-frames and B-frames) that merely encode the
differences between successive images. I-frame transmissions therefore use more bandwidth
than predictively coded frame transmissions. Moreover, they must be transmitted on a
regular basis, or accumulating screen artifacts will eventually degrade the displayed image
beyond usefulness.

[0089] Typically the high peak bitrate of an I[-frame is handled by large buffers in the
client, however this is detrimental for latency sensitive applications such as the interactive
TV services that are the subject of the present invention. As a result of this problem, it is
known to spread out the bitrate of a single I-frame across multiple transmitted frames by
using a “rolling update”. In a rolling update, sometimes also called a “curtain refresh”, each
consecutive frame updates a portion of the screen area using intra-encoded macroblocks. For
example, each consecutive frame may update two or more rows of macroblocks, starting
from the middle of the screen and progressing upwards and downwards simultancously. The
advantage to this type of refresh is that a rolling update distributes the large, intra-encoded

macroblocks over multiple frames. As a result, the bitrate is slightly elevated over multiple

21

WO 2013/155310 PCT/US2013/036182

frames, instead of spiking as it would if all intra-encoded data were transmitted in a single
frame. An alternative method of handling bitrate spikes by encoding I-frames at a very low
bitrate, known as “I-frame pumping”, is known in the art but not discussed further herein.

[0090] An example of a vertical rolling update is shown graphically in Figs. 8 A-8C.
The example screen here consists of 10 rows of macroblocks, where each macroblock is a
square of pixels. Rows having a right-slanted appearance represent predictively encoded
image data from before a screen update, rows that are unshaded represent intra-encoded rows
used in the rolling update, and rows having a left-slanted appearance represent predictively
encoded image data having updated image data.

[0091] In Fig. 8A, central rows 5 and 6 are updated with intra-encoded macroblock
data. Asis known in the art, rows 5 and 6 may be represented by an intra-encoded MPEG
slice (an I-slice). During this update, rows 1-4 and 7-10 may be updated with inter-encoded
macroblock data pertaining to the current image (i.e., the image that is in the process of being
replaced). Thus, each of these other rows may be represented by a P-slice or a B-slice. In
Fig. 8B, rows 5 and 6 are updated with data (a P-slice or a B-slice) pertaining to the updated
image, while rows 4 and 7 are updated with intra-encoded data (an I-slice) pertaining to the
updated image, and the other rows are updated with inter-encoded data pertaining to the
current image. In Fig. 8C, rows 3 and 8 are updated with intra-encoded data, while the other
rows are updated with inter-encoded data. This process continues until each row has
received intra-encoded macroblock data. It should be noted that newly refreshed slices can
only perform motion searching and prediction within the refreshed screen area, and cannot
refer to the non-refreshed areas.

[0092] One system in accordance with the invention stores screen objects as intra-
encoded macroblocks, called “MPEG fragments”. To generate [-frames or intra-refresh rows
based upon stored MPEG fragments, slices of one or more rows have to be cut and linked.
The cutting and linking methods described below may be used during active periods where
there are many screen updates.

[0093] The cutting and linking principles are illustrated with reference to Figs. 9A
and 9B. Fig. 9A represents a “current image” displayed on a screen that is 14 rows of
macroblocks in height and 24 columns of macroblocks (only the rows are marked). Thus, if

a macroblock is a square 16 pixels on a side, this screen has a resolution of 384 by 224

22

WO 2013/155310 PCT/US2013/036182

pixels. Fig. 9B shows an “updated image” on the same screen, obtained by performing a
screen update in accordance with an embodiment of the invention, has caused a rectangle 91
to be displayed. Rectangle 91 is five rows tall and 10 rows wide.

[0094] A method for integrating the image data of rectangle 91 into the rows of the
screen is illustrated using Figs. 9C-9E. While these figures show the method as applied to
only one row of macroblocks, it should be understood that this method must be repeated for
each row of macroblocks that is covered (or partially covered) by rectangle 91. Fig. 9C
shows one full-row slice of the screen 92. Logically superimposed on this slice is a slice 91a
of MPEG fragments that represents a single row of macroblocks of the rectangle 91. To
insert slice 91a into the row, the slice 92 is cut using a slice cutting method to form two
partial-row slices 92a, 92b as shown in Fig. 9D. The slice cutting method is described in
more detail below in connection with Figs. 10 and 11. Note that the three slices 92a, 91a,
92b together form 24 macroblocks; that is, when placed side-by-side, they have the width of
a single row. However, they do not yet form a single slice. While the MPEG standard
permits a row of macroblocks to be described by multiple slices, some display devices place
a limit on the number of slices that may be used in a given frame (or the number of slices per
second). In some extreme cases, a given frame of data may only permit as many slices as
there are rows of macroblocks. Therefore, to account for such limitations, these three slices
(or any two adjacent slices) may be linked to form a single slice, as shown in Fig. 9E. Slice
linking is performed according to a slice linking method, described in more detail in
connection with Figs. 12 and 13.

[0095] Slice cutting is a procedure that is required to perform an intra-refresh of the
entire screen, built up of several possibly overlapping MPEG fragments. To compose the
intra-encoded frame, only the non-obscured macroblocks of fragments are needed.
Consequently, the slices in such fragments are cut.

[0096] Fig. 10 is a flowchart showing a method of cutting an MPEG4 slice in
accordance with an embodiment of the invention. An MPEG slice includes macroblock
image data. For sake of terminology, an original slice ‘S’ is cut to form two slices ‘S1° and
‘S2°, where slice ‘S1° includes those macroblocks earlier in the data stream and slice‘S2’
includes those macroblocks later in the data stream. It will be understood that this method

may be applied to standards other than MPEG4 by appropriate modification.

23

WO 2013/155310 PCT/US2013/036182

[0097] The method begins with a slice encoded (compressed) using a variable-length
code (VLC) for transmission over a data network. For example, the slice shown in Fig. 11A
is compressed, as indicated by the slanted lines, and contains 13 macroblocks. An arrow
indicates where the slice should be cut. In process 1001, metadata are added to the slice S,
for example in its elementary stream, as shown in Fig. 11B. In particular, these metadata
pertain at least to the DC context of each macroblock in the slice. Next, in process 1002, the
location in the compressed data stream of the start of the first macroblock of the new slice S2
is determined. This may be done by either VLC decoding the entire slice, or, if present,
using macroblock pointers in the slice metadata. In process 1003, the found (compressed)
macroblock is partially VLC decoded to produce uncompressed macroblock data, as shown
in Fig. 11C. However, only DC luma and DC chroma information needs to be decoded; the
full image data of the macroblock should not be decoded in the interest of efficiency. In
process 1004, the DC luma and DC chroma information is located in the uncompressed data.
Locating these data values may be done using methods known in the art. For example, in the
H.264 standard, this information is stored in the Intral 6x16DCLevel data block. The method
only requires decoding of this information; other image data may remain compressed. In
process 1005, the primary coefficient of the DC luma or DC chroma level is patched to
match the DC context of the default slice start context, as shown in Fig. 11C. In this way,
the macroblock may act as the first macroblock of an entire slice, namely the new slice S2.
Patching may be accomplished using a bit-shifting operation; that is, the bits of the DC luma
value or the DC chroma value may be shifted according to low-level, efficient bit-shifting
instructions. In process 1006, the decoded portions of the patched macroblock are VLC re-
encoded, as shown in Fig. 11D. Note that, in embodiments in which the slice metadata
includes pointers to macroblocks in the compressed data stream, only the data of the patched
macroblock must be VLC decoded and re-encoded; data of the other macroblocks in original
slice S (including all data of slice S1 and the other macroblocks of slice S2) remain
undisturbed by the method.

[0098] Fig. 12 is a flowchart showing a method of linking MPEG slices in
accordance with an embodiment of the invention. Screen updates that consist of multiple
fragments may result in more slices per line than can be permitted for certain end devices,

especially for H.264 encodings. The purpose of slice linking is to reduce the number of slices

24

WO 2013/155310 PCT/US2013/036182

by linking two or more slices together. For the sake of simplicity, the process is described
with respect to only two slices; those having ordinary skill in the art should understand that
the process may be repeated to operate on more than two slices.

[0099] This method begins with two VLC-encoded slices S1° and S2” that must be
linked, as shown in Fig. 13A. Inprocess 1201, metadata are added to the slices, as shown in
Fig. 13B. These metadata comprise at least the DC context of the last macroblock (right-
most) of slice S1°, the VLC state of this macroblock, and the DC context of the first
macroblock (left-most) of the slice S2°. In process 1202, the first macroblock of slice S2’ is
partially VLC decoded using the VLC state of the last macroblock of slice SI’. As with the
method of Fig. 10, only the Intral6x16DCLevel data block needs to be decoded. In process
1203, the Intral6x16DCLevel block is obtained for the first macroblock of slice S2°. In
process 1204, the primary coefficient of this block is patched, using the metadata, to match
the DC context of the last macroblock of'the slice S1°, as shown in Fig. 13C. The VLC
tables for the left row of AC blocks are modified correspondingly. After patching, in process
1205 the decoded portions of the macroblock are VLC re-encoded. In process 1206, the
compressed data are concatenated to form a new compressed slice S, as shown in Fig. 13D.
As before, only the data of the patched macroblock must be VLC decoded and re-encoded;
all data of slice S1° and data of the other macroblocks of slice S2’ appear unchanged (and
compressed) in the new slice S’.

[0100] The embodiments of the invention described above are intended to be merely
exemplary; numerous variations and modifications will be apparent to those skilled in the art.
All such variations and modifications are intended to be within the scope of the present
invention as defined in any appended claims. For example, while H.264 stores DC luma and
DC chroma information in a Intral6x16DCLevel data block, other standards such as MPEG2
and VC-1 store this data elsewhere; the methods and systems described above may be
modified accordingly.

[0101] It should be noted that the logic flow diagrams are used herein to demonstrate
various aspects of the invention, and should not be construed to limit the present invention to
any particular logic flow or logic implementation. The described logic may be partitioned
into different logic blocks (e.g., programs, modules, functions, or subroutines) without

changing the overall results or otherwise departing from the true scope of the invention.

25

WO 2013/155310 PCT/US2013/036182

Often times, logic elements may be added, modified, omitted, performed in a different order,
or implemented using different logic constructs (e.g., logic gates, looping primitives,
conditional logic, and other logic constructs) without changing the overall results or
otherwise departing from the true scope of the invention.

[0102] The present invention may be embodied in many different forms, including,
but in no way limited to, computer program logic for use with a processor (e.g., a
microprocessor, microcontroller, digital signal processor, or general purpose computer),
programmable logic for use with a programmable logic device (e.g., a Field Programmable
Gate Array (FPGA) or other PLD), discrete components, integrated circuitry (e.g., an
Application Specific Integrated Circuit (ASIC)), or any other means including any
combination thereof.

[0103] Computer program logic implementing all or part of the functionality
previously described herein may be embodied in various forms, including, but in no way
limited to, a source code form, a computer executable form, and various intermediate forms
(e.g., forms generated by an assembler, compiler, linker, or locator). Source code may
include a series of computer program instructions implemented in any of various
programming languages (e.g., an object code, an assembly language, or a high-level
language such as Fortran, C, C++, JAVA, or HTML) for use with various operating systems
or operating environments. The source code may define and use various data structures and
communication messages. The source code may be in a computer executable form (e.g., via
an interpreter), or the source code may be converted (e.g., via a translator, assembler, or
compiler) into a computer executable form.

[0104] The computer program may be fixed in any form (e.g., source code form,
computer executable form, or an intermediate form) either permanently or transitorily in a
tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM,
PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a
diskette or fixed disk), an optical memory device (e.g., a CD-ROM), a PC card (e.g.,
PCMCIA card), or other memory device. The computer program may be fixed in any form
in a signal that is transmittable to a computer using any of various communication
technologies, including, but in no way limited to, analog technologies, digital technologies,

optical technologies, wireless technologies (e.g., Bluetooth), networking technologies, and

26

WO 2013/155310 PCT/US2013/036182

internetworking technologies. The computer program may be distributed in any form as a
removable storage medium with accompanying printed or electronic documentation (e.g.,
shrink wrapped software), preloaded with a computer system (e.g., on system ROM or fixed
disk), or distributed from a server or electronic bulletin board over the communication
system (e.g., the Internet or World Wide Web).

[0105] Hardware logic (including programmable logic for use with a programmable
logic device) implementing all or part of the functionality previously described herein may
be designed using traditional manual methods, or may be designed, captured, simulated, or
documented electronically using various tools, such as Computer Aided Design (CAD), a
hardware description language (e.g., VHDL or AHDL), or a PLD programming language
(e.g., PALASM, ABEL, or CUPL).

[0106] Programmable logic may be fixed either permanently or transitorily in a
tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM,
PROM, EEPROM, or Flash-Programmable R AM), a magnetic memory device (e.g., a
diskette or fixed disk), an optical memory device (e.g., a CD-ROM), or other memory
device. The programmable logic may be fixed in a signal that is transmittable to a computer
using any of various communication technologies, including, but in no way limited to, analog
technologies, digital technologies, optical technologies, wireless technologies .g.,
Bluetooth), networking technologies, and internetworking technologies. The programmable
logic may be distributed as a removable storage medium with accompanying printed or
electronic documentation (e.g., shrink wrapped software), preloaded with a computer system
(e.g., on system ROM or fixed disk), or distributed from a server or electronic bulletin board

over the communication system (e.g., the Internet or World Wide Web).

27

WO 2013/155310 PCT/US2013/036182

What is claimed is:

1. A method of providing an image to a client device from an application execution
environment having a layout engine that assembles graphical components into a graphical
user interface screen for a graphical application, and a rendering library that renders
graphical components into pixels, the method comprising:
receiving, from the layout engine, one or more paint instructions having parameters
that pertain to a given graphical object;
computing a hash value based on the received one or more paint instructions;
when the hash value is contained within a cache memory, retrieving, from the cache,
encoded audiovisual data that are uniquely associated with the hash value, and transmitting
the retrieved audiovisual data to the client device; and
when the hash value is not contained within the cache,
forwarding the received one or more paint instructions to the rendering library
for rendering the graphical object into pixels according to the paint instruction,
encoding the rendered pixels into encoded audiovisual data,
storing the hash value and the encoded audiovisual data in the cache, whereby
the hash value and the encoded audiovisual data are uniquely associated, and
transmitting the encoded audiovisual data to the client device.
2. The method of claim 1, wherein the client device is one of the group consisting of: a
television, a television set-top box, a tablet computer, a laptop computer, a desktop computer,
and a smartphone.
3. A method according to claim 1, wherein the graphical application is one of the group
consisting of: a web browser and a menu interface.
4. A method according to claim 1, wherein encoding comprises dividing the screen into
blocks of pixels, the method further comprising:
after receiving the painting data and before computing the hash value, determining
the smallest rectangle consisting of whole blocks of pixels that surrounds the at least one
graphical object;
requesting that the layout engine repaint the smallest surrounding rectangle; and

receiving, from the layout engine, second painting data that include at least one paint

28

WO 2013/155310 PCT/US2013/036182

instruction having parameters that reflect the smallest surrounding rectangle,
wherein computing the hash value is based on the second painting data.
5. A method according to claim 1, further comprising:
determining that the hash value is contained within the cache by comparing the hash
value to a stored hash value of a cached image that forms part of an animation.
6. A method of transmitting, to a client device, images that comprise an animation, the
method comprising:
receiving a current image into a computing processor;
when the current image is identical to a previously rendered image that is uniquely
associated with an encoded image in a cache memory, transmitting to the client device the
cached, encoded image without encoding the current image; and
when the current image is not identical to a previously rendered image, but the
current image shares at least a given minimum percentage of its pixels with a given,
previously rendered image:
identifying the current image and the given, previously rendered image as
belonging to a common animation;
encoding the current image according to a predictive encoding scheme,
storing the encoded current image in the cache memory, and
transmitting to the client device the encoded current image.
7. A method according to claim 6, wherein the predictive encoding scheme is an MPEG
encoding scheme.
8. A method according to claim 6, wherein the given previously rendered image was not
rendered immediately previously to the current image.
9. A method according to claim 6, wherein the given previously rendered image is
uniquely associated with a predictively encoded image in the cache memory.
10. A method according to claim 6, further comprising computing a hash value for each
unique chain of images that forms an animation, the hash value being a function of all
images in the chain of images and a screen displacement between two consecutive images in
the chain.
11. A method of forming two encoded slices from data comprising a given encoded slice,

cach encoded slice comprising a sequence of macroblocks that are encoded according to a

29

WO 2013/155310 PCT/US2013/036182

variable length code, the method comprising:

locating, in the given slice, a location of a macroblock; and

altering a DC luma value or a DC chroma value of the located macroblock without
fully decoding the macroblock according to the variable length code;

wherein the first formed slice consists of the data of the given slice up to but not
including the altered macroblock, and the second formed slice consists of the altered
macroblock and any subsequent macroblocks in the given slice.
12. The method of claim 11, wherein altering the DC luma value or the DC chroma value
is performed using a bit-shifting operation.
13. A method of combining a first encoded slice and a second encoded slice to form a
third encoded slice, each encoded slice comprising a sequence of macroblocks that are
encoded according to a variable length code, the method comprising:

altering a DC luma value or a DC chroma value in the first macroblock of the second
slice without fully decoding the macroblock according to the variable length code; and

concatenating the data of the first slice with the altered macroblock and the data of
the second slice to form the third encoded slice.
14. The method of claim 13, wherein altering the DC luma value or the DC chroma value
is performed through a bit-shifting operation.
15. A tangible medium on which is stored non-transitory computer program code for
providing an image to a client device from an application execution environment having a
layout engine that assembles graphical components into a graphical user interface screen for
a graphical application, and a rendering library that renders graphical components into pixels,
the medium comprising:

program code for receiving, from the layout engine, one or more paint instructions
having parameters that pertain to a given graphical object;

program code for computing a hash value based on the received one or more paint
instructions;

program code for retrieving, from the cache, encoded audiovisual data that are
uniquely associated with the hash value, and transmitting the retrieved audiovisual data to the
client device when the hash value is contained within a cache memory; and

program code for:

30

WO 2013/155310 PCT/US2013/036182

forwarding the received one or more paint instructions to the rendering library
for rendering the graphical object into pixels according to the one or more paint instructions,
encoding the rendered pixels into encoded audiovisual data,
storing the hash value and the encoded audiovisual data in the cache, whereby
the hash value and the encoded audiovisual data are uniquely associated, and
transmitting the encoded audiovisual data to the client device,
when the hash value is not contained within the cache.
16. A medium according to claim 15, wherein the client device is one of the group
consisting of: a television, a television set-top box, a tablet computer, a laptop computer, a
desktop computer, and a smartphone.
17. A medium according to claim 15, wherein the graphical application is one of the
group consisting of: a web browser and a menu interface.
18. A medium according to claim 15, wherein the program code for encoding comprises
program code for dividing the screen into blocks of pixels, the medium further comprising:
program code for determining the smallest rectangle consisting of whole blocks of
pixels that surrounds the at least one graphical object after receiving the painting data and
before computing the hash value;
program code for requesting that the layout engine repaint the smallest surrounding
rectangle; and
program code for receiving, from the layout engine, second painting data that include
at least one paint instruction having parameters that reflect the smallest surrounding
rectangle,
wherein computing the hash value is based on the second painting data.
19. A medium according to claim 15, further comprising:
program code for determining that the hash value is contained within the cache by
comparing the hash value to a stored hash value of a cached image that forms part of an
animation.
20. A medium according to claim 15, further comprising:
program code for receiving a current image into a computing processor;
program code for receiving a previously rendered image into the computer processor,

the previously rendered image being uniquely associated with an encoded image in a cache

31

WO 2013/155310 PCT/US2013/036182

memory;
program code for transmitting to the client device the cached, encoded image without
encoding the current image when the current image and the previously rendered image are
identical; and
program code for:
encoding the current image according to a predictive encoding scheme,
storing the encoded current image in the cache memory, and
transmitting to the client device the encoded current image
when the current image and the previously rendered image are not identical but share at least

a given minimum percentage of their pixels.

21. A medium according to claim 20, wherein the predictive encoding scheme is an
MPEG encoding scheme.
22, A medium according to claim 20, wherein the previously rendered image was not

rendered immediately previously to the current image.
23. A medium according to claim 20, wherein the previously rendered image is uniquely
associated with a predictively encoded image in the cache memory.
24. A medium according to claim 20, further comprising program code for computing a
hash value for each unique chain of images that forms an animation, the hash value being a
function of all images in the chain of images and a screen displacement.
25. A medium according to claim 15, further comprising program code for forming two
encoded MPEG slices from data comprising a given encoded MPEG slice, each encoded
MPEG slice comprising a sequence of encoded macroblocks, the program code comprising;:
program code for locating, in the given MPEG slice, a location of a macroblock that
is encoded according to a variable length code;
program code for decoding the encoded macroblock according to the variable length
code;
program code for altering a DC luma value in the decoded macroblock; and
program code for encoding the altered macroblock according to the variable length
code,
wherein the first formed MPEG slice consists of the data of the given MPEG slice up to but

not including the encoded macroblock, and the second formed MPEG slice consists of the

32

WO 2013/155310 PCT/US2013/036182

encoded macroblock and any subsequent encoded macroblocks in the given MPEG slice.
26. A medium according to claim 15, further comprising program code for combining a
first encoded MPEG slice and a second encoded MPEG slice to form a third encoded MPEG
slice, each encoded MPEG slice comprising a sequence of encoded macroblocks, the
program code comprising:
program code for decoding the first macroblock of the second slice according to a
variable length code;
program code for altering a DC luma value in the decoded macroblock;
program code for encoding the altered macroblock according to the variable length
code; and
program code for concatenating the data of the first slice with the encoded
macroblock and the undecoded data of the second slice to form the third slice.
27. A system for providing an image to a client device from an application execution
environment having a layout engine that assembles graphical components into a graphical
user interface screen for a graphical application, and a rendering library that renders
graphical components into pixels, the system comprising:
a memory;
a shim comprising hardware or a combination of hardware and software that is
configured to:
receive, from the layout engine, one or more paint instructions having
parameters that pertain to a given graphical object,
compute a hash value based on the received one or more paint instructions,
and
when the hash value is not contained within the memory, forward the received
one or more paint instructions to the rendering library for rendering the graphical object into
pixels according to the one or more paint instructions; and
a controller comprising hardware or a combination of hardware and software that is
configured to:
retrieve, from the memory, encoded audiovisual data that are uniquely
associated with the hash value, and transmit the retrieved audiovisual data to the client

device when the hash value is contained within the memory; and

33

WO 2013/155310 PCT/US2013/036182

transmit, to the client device, encoded audiovisual data comprising a
rendering of the graphical object into pixels according to the received one or more paint
instructions when the hash value is not contained within the memory.

28. A system according to claim 27, wherein the client device is one of the group
consisting of: a television, a television set-top box, a tablet computer, a laptop computer, a
desktop computer, and a smartphone.
29. A system according to claim 27, wherein the graphical application is one of the group
consisting of: a web browser and a menu interface.
30. A system according to claim 27, wherein the memory stores a sequence of images
that collectively form an animation, and wherein the controller is further configured to
determine that the hash value is contained within the cache by comparing the hash value to a
stored hash value of a cached image that forms part of the animation.
31. A systemaccording to claim 27, wherein the audiovisual data are encoded according
to an MPEG encoding scheme.
32. A system according to claim 27, further comprising a block-based encoder that is
configured to form two encoded MPEG slices from data comprising a given encoded MPEG
slice, each encoded MPEG slice comprising a sequence of encoded macroblocks, by:

locating, in the given MPEG slice, a location of a macroblock that is encoded
according to a variable length code;

decoding the encoded macroblock according to the variable length code;

altering a DC luma value in the decoded macroblock; and

encoding the altered macroblock according to the variable length code,
wherein the first formed MPEG slice consists of the data of the given MPEG slice up to but
not including the encoded macroblock, and the second formed MPEG slice consists of the
encoded macroblock and any subsequent encoded macroblocks in the given MPEG slice.
33. A systemaccording to claim 27, further comprising a block-based encoder that is
configured to combine a first encoded MPEG slice and a second encoded MPEG slice to
form a third encoded MPEG slice, cach encoded MPEG slice comprising a sequence of
encoded macroblocks, by:

decoding the first macroblock of the second slice according to a variable length code;

altering a DC luma value in the decoded macroblock;

34

WO 2013/155310 PCT/US2013/036182

encoding the altered macroblock according to the variable length code; and
concatenating the data of the first slice with the encoded macroblock and the

undecoded data of the second slice to form the third slice.

35

WO 2013/155310 PCT/US2013/036182

11 12 13
i‘
1511 1521 1531 1541
y y y
Cable Wireless Wired Network Cellular Network
Gateway Gateway Gateway Gateway
151 152 153 154
150 \
Administrative Media Application Engine
Functions Storage And Session Manager
156 157 159
Transcoder and
Network Gateway Imagjggalers
and Firewall — 15
155 Operator Headend
17

<

&

FIG. 1

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/036182

WO 2013/155310

2/18

¢ 'DIA

gee

Jayng <
[°Xid

elep [axid

s|axid Jo s)o0|g

[4%4

Aeaqi
Buopusy

A 4

suononasuy| luied

vee
Japoouq]
paseq-yoo|g

(%4

auibug
nohe

[%4
lasmolq sjoway

gjep [ensiaolpne
papoou]

Y

1sonboai obed

aoepaU|

v 1

¢c

18p02ag induj

A

0c
901A8Q JUBID

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/036182

WO 2013/155310

3/18

£ °OIA

6G1
auibug uoneolddy
— eleqg — SuonONASY| -
gee 1oXig) cec ured 65T
layng D —— Jeiq D —
|[ox1d Buuepuay wius
sjexid jo 7651 sisanbal a(joeo suonRoNASy|
SY00|g ayoen juied-oupuied juied
[o | » so|buejoay T€2
> 116Gl >H.__D 6
Japoou3 e1ep [oxid 19]]03U07D) auibug
paseq-400|g DopooUT - 'Senba. > 1nokeT
juedal ‘apinIag
weaJ.s ejep |ensinolpne 1sonbay
papoou3 a0IMRS
y
) aoeua| q
18p0oaQ ndu|] |
0c
/ 801A8(JuBID \ 7

¢c ¥4

SUBSTITUTE SHEET (RULE 26)

WO 2013/155310 PCT/US2013/036182

4/18

Receive page request from client device
40

!

Layout engine lays out initial page screen
41

!

Layout engine requests rendering from library
42

!

Initial pixel buffer data are populated
43

!

Pixel buffer is encoded
44

!

Encoded data are sent to client device
45

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 2013/155310 PCT/US2013/036182

5/18

C START)
!

Receive update request from client device
50

!

Layout engine creates list of dirty rectangles
51

!

Controller instructs shim to prevent rendering
52

Resize

rectangles
?

Controller snaps rectangles
to pixel block boundaries

531
I l
Layout engine sends repaint Controller modifies
command to shim Bl repaint command
54 532

!
(FIG. 5B)

FIG. 54

SUBSTITUTE SHEET (RULE 26)

WO 2013/155310

6/18

(FIG. 5A)
Y

PCT/US2013/036182

Shim calculates hash
55

!

56

Shim request cached data for hash from controller

Data

in cache
?

57

YES

Controller sends cached
data to client device

571

Controller instructs shim to permit painting
58

!

Controller resends repaint command to layout engine

?
C FIG. 5C)

FIG. 5B

SUBSTITUTE SHEET (RULE 26)

y

Controller instructs shim to
discard repaint command
572

!
C END)

WO 2013/155310 PCT/US2013/036182

7/18

(FIG. 5B)
!

Layout engine resends repaint command to shim
210

Y

Shim passes repaint command through to rendering library

511
Rendering library creates pixel buffer having pixeldata | =~~~ ;
ﬁ 4 . . T
I Animation :
‘ | Detection |
|
Encoder encodes pixel data | (FIG.7) |

513 —————]

!

Controller caches encoded pixel data using hash
514

Y

Encoded pixel data formed into audiovisual data stream
515

Y

Controller transmits data stream to client device
516

!
(END)

FIG. 5C

SUBSTITUTE SHEET (RULE 26)

WO 2013/155310 PCT/US2013/036182

8/18
:16 PX
Your choice:
tomatoes
potatoes
FIG. 64
:16 PX
¥Your choice:
tomatoes
(potatoes)
FIG. 6B

SUBSTITUTE SHEET (RULE 26)

WO 2013/155310 PCT/US2013/036182

9/10
:16 PX
Your choiceé;
tomatoes
potatoes
FIG. 6C
:16 PX
Your choicé:
torhatoes
potatoes
FIG. 6D

SUBSTITUTE SHEET (RULE 26)

WO 2013/155310 PCT/US2013/036182

10/18

C potatoes)

FIG. 6E

SUBSTITUTE SHEET (RULE 26)

WO 2013/155310

START

PCT/US2013/036182

11/18

Compare current image to a
previously rendered image
70

Substantial
overlap ?

71

Previously
animated ?

72

Terminate
algorithm ?

711

Skip encoding; transmit
cached, encoded image
721

Inter-encode second frame
relative to first frame
73

!

Calculate hash value for all
images in the sequence
74

FIG. 7

SUBSTITUTE SHEET (RULE 26)

WO 2013/155310

—

—

—

O W W JdJO OB WN — O W W JdO O WN =

O WO OO A~ WDN =

12/18

v 7yz22z/24/4;

///A

Z

T T T T T Y

R T T} T T

N
I T T T TR

I zzz77z227/44;

v 44444

77000000000 0000000007777

@ @ @ @@ @ @ @ @ @i

A R Y

v /444,

/4

(7277727777277

Ypizyz7?2z72z7z4;

0000000000000

T i i T T T T

R T

N
N

%
/44

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/036182

FIG.84

FIG.8B

FIG.8C

WO 2013/155310

PCT/US2013/036182

13/18

FIG. 94

FIG. 9B

SUBSTITUTE SHEET (RULE 26)

WO 2013/155310

PCT/US2013/036182

14/18
92
)
L B Z]
91a/
FIG.9C
92a 91a 95b
| ' | 1
FIG.9D
93
)
L %]
FIG.9E

SUBSTITUTE SHEET (RULE 26)

WO 2013/155310

15/18

PCT/US2013/036182

Add metadata to slice
1001

Y

Determine location of first macroblock
of new slice
1002

!

Decode located macroblock
1003

Y

Located Intra16x16DCLevel
block in decodeD macroblock data
1004

Y

Patch primary coefficient of block
1005

!

Encode patched macroblock
1006

FIG. 10

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/036182

WO 2013/155310

dil ‘Old

yored
elepelow i Blepelow ; elepelaWl | Blepelow ; ejlepejau i ejepelow [ejepejow| i elepejawi ejepelowi elepelaul; elepejaw; ejepelaul i ejlepejdw
25 —" XIS
[]
III "DIA
yored s
™~
Z m
elepelow i Blepelow ;i elepelaWl | Blepelow § ejlepejow i ejepelaw [ejepejsw| i elepejswi ejepelowi elepelail; elepejaw; ejepelaul i ejlepejaw m
me|\« s <3
[]
T
= qgII ‘OIH m
)
m
T
—
=
elepelouw | erepelaw | elepelow | erepeisw [eiepelosw | erepersw | elepeisw] erepersw | elepersw [eepersw | erepeisw] elepelsw | elepersw ﬂ
A
/. S m

VII ‘OI4d

WO 2013/155310

17/18

PCT/US2013/036182

Add metadata to slices
1201

'

Decode first macroblock of second
slice based on VLC context
1202

'

Locate Intra16x16DCLevel block in
decoded macroblock data
1203

'

Patch primary coefficient of block
1204

'

Encode patched macroblock
1205

'

Concatenate compressed data
1206

FIG.12

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/036182

WO 2013/155310

asl ‘OId

77

yored

g

elepeloll | ((lw
DEI DI
\ yored
C [eepeiou | Biepelsw |
w rmwl\\ /rvw
qg€1 'OIH
elepelsw elepelsw
= o <
VEL "OIA
1CS - X—Is

SUBSTITUTE SHEET (RULE 26)

International application No.

INTERNATIONAL SEARCH REPORT
PCT/US2013/036182

A. CLASSIFICATION OF SUBJECT MATTER
GO06T 1/00(2006.01)i, GO6T 9/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classitication system followed by classification symbols)
GO6T 1/00; GO6F 15/16; GO6F 15/00; GO6F 17/00; GO6T 15/00; HO4B 1/66; GO6T 9/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKOMPASS(KIPO internal) & Keywords: paint instruction, hash value, rendering library, graphical
object, audiovisual data, encoding, caching

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 7830388 Bl (LU, YANG) 9 November 2010 1-33
See column 3, lines 57-67, column 7, lines 17-67; claims 1, 5, 6, 11;
and figure 5.
A US 2009-0003446 A1 (WU, YOUNGJUN et al.) 1 January 2009 1-33
See paragraphs [0020], [0731]; claims 1-5; and figure 53.
A US 2009-0189890 A1 (CORBETT, TIM et al.) 30 July 2009 1-33
See paragraphs [0008]-[0024], [0042], [0105], [0118]-[0125]; and figures 4-7.
A US 8136033 Bl (BHARGAVA, GAURAV et al.) 13 March 2012 1-33
See column 8, line 9 - column 10, line 58; claims 1-3; and figures 2-3.
A US 2006-0242570 A1 (CROFT, LAWRENCE et al.) 26 October 2006 1-33
See paragraphs [0075]-[0077], [0083]-[0084], [0202]-[0205];
and figures 3-4, 22.
A US 2010-0146139 A1 (BROCKMANN, RONALD) 10 June 2010 1-33
See paragraphs [0096]-[0100]; and figure 5.
|:| Further documents are listed in the continuation of Box C. g See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered
to be of particular relevance

date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive

filing date
"L" document which may throw doubts on priority claim(s) or which is

step when the document is taken alone

cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be

special reason (as specified)
"Q" document referring to an oral disclosure, use, exhibition or other
means

than the priority date claimed

considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

Date of the actual completion of the international search

26 July 2013 (26.07.2013)

Date of mailing of the international search report

29 July 2013 (29.07.2013)

Name and mailing address of the ISA/KR Authorized officer
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Dagjeon Metropolitan City, HWANG Yun Koo

3 302-701, Republic of Korea
Facsimile No. +82-42-472-7140

Telephone No. +82-42-481-5715

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/036182

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:

3. |:| Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

This ISA found multiple inventions as follows:

Group [, claims 1-10 and 15-33, drawn to a method, a medium, and a system of providing an image to a client device comprising
the hash value and the encoded audiovisual data.

Group II, claims 11-14, drawn to a method of forming two encoded slices, comprising altering a DC luma value or a DC chroma
value.

The inventions listed as Groups I and II do not relate to a single general inventive concept under PCT Rule 13.1 because, under
PCT Rule 13.2 they lack the same or corresponding special technical features for the following reasons; they are separate
inventions with distinct fields of search.

1. |:| As all required addtional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. }X{ As all searchable claims could be searched without effort justitfying an additional fee, this Authority did not invite payment
of any additional fee.

3. |:| As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. |:| No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest |:| The additional search fees were accompanied by the applicant's protest and, where applicable, the
payment of a protest fee.
The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.
|:| No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2009)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2013/036182

Patent document

Publication

Patent family

Publication

cited in search report date member(s) date

US 7830388 Bl 09/11/2010 US 2009-0305790 Al 10/12/2009

US 2009-0003446 Al 01/01/2009 None

US 2009-0189890 Al 30/07/2009 AU 2009-206251 Al 30/07/2009
CA 2700225 Al 30/07/2009
CN 101918921 A 15/12/2010
EP 2245536 A2 03/11/2010
EP 2293192 A2 09/03/2011
EP 2293192 A3 04/05/2011
EP 2315122 A2 27/04/2011
EP 2315122 A3 04/05/2011
EP 2315123 A2 27/04/2011
EP 2315123 A3 11/05/2011
EP 2315124 A2 27/04/2011
EP 2315124 A3 04/05/2011
IL 205332 DO 30/12/2010
US 2009-0189891 Al 30/07/2009
US 2009-0189892 Al 30/07/2009
US 2009-0189893 Al 30/07/2009
US 2009-0189894 Al 30/07/2009
US 2012-218260 Al 30/08/2012
US 8169436 B2 01/05/2012
US 8350863 B2 08/01/2013
US 8405654 B2 26/03/2013
WO 2009-094673 A2 30/07/2009
WO 2009-094673 A3 01/10/2009

US 8136033 Bl 13/03/2012 None

US 2006-0242570 Al 26/10/2006 EP 1741038 Al 10/01/2007
EP 1875374 Al 09/01/2008
JP 2007-535044 A 29/11/2007
JP 2008-539479 A 13/11/2008
JP 4448537 B2 14/04/2010
JP 4448549 B2 14/04/2010
US 2005-0240858 Al 27/10/2005
US 2005-0262430 Al 24/11/2005
US 2009-0193331 Al 30/07/2009
US 2009-0222719 Al 03/09/2009
US 7536636 B2 19/05/2009
US 7555712 B2 30/06/2009
US 7694217 B2 06/04/2010
US 7925969 B2 12/04/2011
US 8032824 B2 04/10/2011
WO 2005-103935 Al 03/11/2005
WO 2006-113989 Al 02/11/2006

US 2010-0146139 Al 10/06/2010 EP 2105019 A2 30/09/2009

Form PCT/ISA/210 (patent family annex) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2013/036182
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 2477414 A2 18/07/2012
EP 2487919 A2 15/08/2012
JP 2010-505330 A 18/02/2010
WO 2008-044916 A2 17/04/2008
WO 2008-044916 A3 16/04/2009
WO 2008-044916 A8 31/07/2008

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - wo-search-report
	Page 56 - wo-search-report
	Page 57 - wo-search-report
	Page 58 - wo-search-report

