

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number
WO 2015/044072 A1

(43) International Publication Date
2 April 2015 (02.04.2015)

W I P O | P C T

(51) International Patent Classification:

C07D 209/42 (2006.01) *C07D 417/14* (2006.01)
C07D 403/70 (2006.01) *C07D 471/04* (2006.01)
C07D 405/12 (2006.01) *A61K 31/404* (2006.01)
C07D 405/14 (2006.01) *A61K 31/416* (2006.01)
C07D 413/14 (2006.01) *A61P 25/28* (2006.01)

(71) Applicant (for US only): **HOFFMANN-LA ROCHE INC.** [US/US]; 340 Kingsland Street, Nutley, New Jersey 071 10 (US).

(21) International Application Number:

PCT/EP20 14/070092

(22) International Filing Date:

22 September 2014 (22.09.2014)

(25) Filing Language:

English

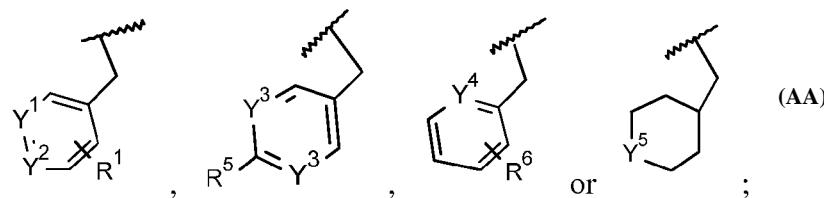
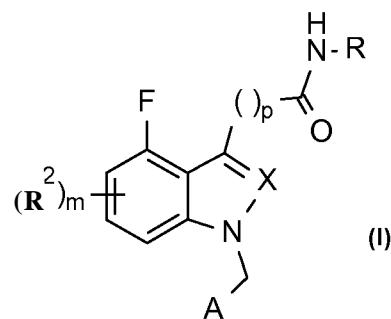
(26) Publication Language:

English

(30) Priority Data:

13 186458.9 27 September 2013 (27.09.2013) EP

(71) Applicant (for all designated States except US): **F. HOFFMANN-LA ROCHE AG** [CH/CH]; Grenzacherstrasse 124, CH-4070 Basel (CH).



(72) Inventors: **BALLARD, Theresa Maria**; 12, rue de Kiffis, F-68480 Lutter (FR). **GROEBKE ZBINDEN, Katrin**; Laubibergstrasse 61, CH-4410 Liestal (CH). **PINARD, Emmanuel**; 7, rue de Pujo, F-68480 Linsdorf (FR). **RYCKMANS, Thomas**; 47B rue de Village Neuf, F-68128 Rosenau (FR). **SCHAFFHAUSER, Herve**; 6, rue des Perdrix, F-68440 Habsheim (FR).

(74) Agent: **POPPE, Regina**; Grenzacherstrasse 124, CH-4070 Basel (CH).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,

[Continued on nextpage]

(54) Title: INDOL AND INDAZOL DERIVATIVES

(57) Abstract: The present invention relates to indole and indazole derivatives of the following formula (I) wherein A is (AA) and the remaining variables are as defined in the specification. The compounds may be used for the treatment or prophylaxis of Alzheimer's disease, cognitive impairment, schizophrenia, pain or sleep disorders.

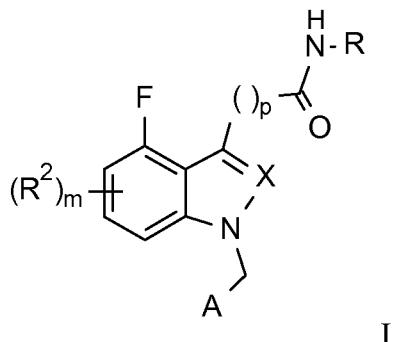
WO2015/044072 A1

SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

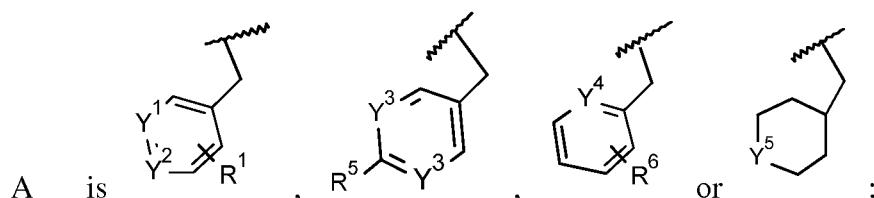
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,

Declarations under Rule 4.17:


— *of inventorship (Rule 4.17(iv))*

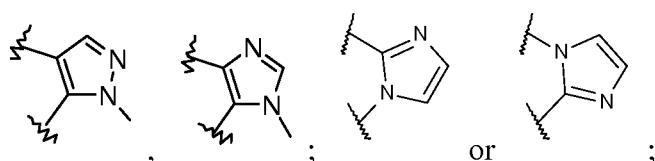
Published:


— *with international search report (Art. 21(3))*

INDOL AND INDAZOL DERIVATIVES

The present invention relates to compounds of formula

wherein

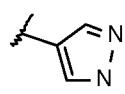

5 R is lower alkyl, $-(CH_2)_z$ -C₃₋₇-cycloalkyl or $-(CH_2)_z$ -C₄₋₆-heterocycloalkyl, which are optionally substituted by one to three hydroxy, lower alkyl, lower alkoxy or halogen, or is (endo)-7-oxabicyclo[2.2.1]heptan-2-yl;

X is CH or N;

Y¹ is CR³ or N;

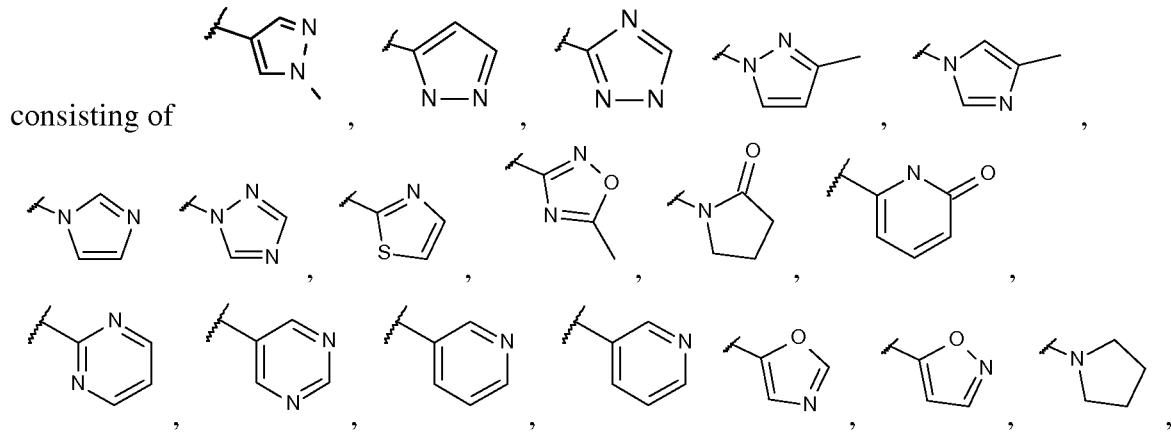
10 Y² is CR⁴; or

or Y⁴ and Y⁵ may form together with the carbon atoms to which they are attach


Y³ is N;

Y⁴ is N;

Y⁵ is NR⁷;


R¹ is hydrogen or halogen;

5 R² is hydrogen, halogen, cycloalkyl, lower alkyl or lower alkoxy;

R³ is hydrogen, halogen, , CN, -C(0)NH₂, -C(0)NHCH₃ or -C(0)N(CH₃)₂;

R⁴ is hydrogen, a 5 or 6 membered heteroaryl or heterocyclyl group, selected from the group

10 or is phenyl, -C(0)NH₂, -CH₂C(0)NH₂, -C(0)NHCH₃, -C(0)NH-cycloalkyl, -C(0)N(CH₃)₂, -NHC(0)O-lower alkyl, CN, lower alkoxy, lower alkoxy substituted by halogen, halogen or S(0)₂CH₃;

R⁵ is phenyl;

15 R⁶ is phenyl or thiazol-2-yl;

R⁷ is pyridin-2-yl or pyrimidin-4-yl;

p is 0 or 1;

m is 1, 2 or 3;

z is 0 or 1;

20 or to a pharmaceutically acceptable acid addition salt, to a racemic mixture or to its corresponding enantiomer and/or optical isomers thereof.

WO 2013/106795 describes a very broad scope of partially similar compounds for treating neurological and psychiatric disorders associated with muscarinic acetylcholine receptor dysfunction. The activity (EC₅₀, in nM) is very low between 2400 and > 10000, and therefore these compounds are not suitable for the development of corresponding drugs.

5 The compounds of the present invention are muscarinic M1 receptor positive allosteric modulators (PAM) and hence are useful in the treatment of diseases, mediated by the muscarinic M1 receptor, such as Alzheimer's disease, cognitive impairment, schizophrenia, pain or sleep disorders.

10 Acetylcholine (ACh) is a neurotransmitter which activates both nicotinic (ligand-gated ion channel) and muscarinic (metabotropic) receptors in the CNS and in the periphery.

15 The muscarinic receptors (mAChRs) are members of the class A G-protein-coupled receptors. To date, five distinct subtypes of mAChRs (M1-M5) have been cloned and sequenced. The muscarinic M1 receptors are predominantly distributed in the brain, with the highest expression in the cortex, thalamus, striatum and hippocampus. In clinical studies, Xanomeline, a M1/M4-preferring agonist, demonstrated robust efficacy on positive, negative and cognitive symptoms in schizophrenic patients and improved cognitive scores and reduced psychotic-like behaviors in patients with Alzheimer's disease (AD). The M1 receptor has been implicated in memory and learning processes, regulation of dopamine and NMDA receptor activity and has thus been proposed as a potential target for the treatment of AD and schizophrenia.

20 AD is the most common cause of dementia in later life. Pathologically AD is characterized by the deposition in the brain of amyloid in extracellular plaques and intracellular neurofibrillary tangles. The amyloid plaques are mainly composed of amyloid peptides (Abeta peptides) which originate from the β -Amyloid Precursor Protein (APP) by a series of proteolytic cleavage steps. Several forms of APP have been identified of which the most abundant are proteins of 695, 751 25 and 770 amino acids length. They all arise from a single gene through differential splicing. The Abeta peptides are derived from the same domain of the APP but differ at their N- and C- termini, the main species are of 40 and 42 amino-acid length by processing of the beta-amyloid precursor protein (APP) by the beta-amyloid protein cleaving enzyme. The processing leads to accumulation of Abeta in the brain.

30 M1 receptors are abundantly expressed postsynaptically in cortex, hippocampus and striatum which are important brain regions involved for cognition. Based on the cholinergic hypothesis i.e. degeneration of presynaptic cholinergic nerve terminals in hippocampus and

cortical regions, M1 activation should rescue the cognitive deficits which occur in AD, thus providing symptomatic treatment of this neurodegenerative disorder. Postmortem studies in AD cortical tissues have shown that M1 receptor expression are not reduced, thus providing evidence for target availability in a critical brain region. Moreover, preclinical studies have shown that

5 M1 activation has potential as a disease-modifying therapy for AD by shifting the APP processing towards the non-amyloidogenic a-secretase pathway and by decreasing tau hyperphosphorylation. Therefore, M1 PAMs provide an approach to target both symptomatic and disease-modifying treatment of AD.

Schizophrenia is a severe, disabling, lifelong disorder that affects 1% of the population and 10 is characterized by positive symptoms (such as hallucinations, delusions and paranoia), negative symptoms (such as social withdrawal and apathy) and cognitive impairment (for example, deficits in working memory, executive function and attention). Schizophrenia is a neurodevelopmental disorder with genetic risk factors and neuropathological changes. Aberrant activity occurs within the prefrontal - hippocampal - thalamic network in brains of 15 schizophrenia patients. Positive symptoms of schizophrenia are suggested to be caused by dopaminergic system dysfunction, particularly increased dopamine activity within subcortical brain regions such as the striatum. Negative symptoms are thought to occur due to impaired signaling within the neurocircuitry of the ventral tegmental area and ventral striatum. Decreased NMDA receptor function in pyramidal neurons coupled with sub-optimal dopamine release in 20 critical regions such as dorsolateral prefrontal cortex may account for some of the cognitive deficits.

M1 receptors are located in regions which are affected in schizophrenia, such as the hippocampus, cortex and striatum, in particular in the medium spiny neurons. Several reports have shown a reduction in muscarinic receptors in the prefrontal cortex and hippocampus, 25 regions where M1 is densely expressed, in a subset of schizophrenic patients. Furthermore, preclinical studies have shown that M1 knockout mice have enhanced amphetamine-induced activity and increased striatal dopamine levels. Electrophysiology studies have revealed that activation of M1 receptors potentiates NMDA mediated hippocampal activity, modulates activity of medium spiny neurons and increases activity of medial prefrontal cortex neurons. Overall, 30 activation of M1 receptors should modulate dysfunctional dopaminergic and glutamatergic signaling within the underlying neurocircuitry resulting in improvements in the symptoms of schizophrenia.

The clinical effects of Xanomeline and other muscarinic M1 agonist agents were however always associated with adverse effects attributed to their insufficient M1 muscarinic receptor subtype selectivity. The typical observed side effects, including sweating, salivation, gastrointestinal distress and bradycardia have been attributed to the non-specific activation of 5 peripheral M2 and M3 mAChRs. Despite a tremendous effort from a number of companies, the search for highly M1 selective agonists has failed because of the high degree of conservation between muscarinic receptor subtypes at their orthosteric acetylcholine ligand binding sites.

To circumvent the selectivity and safety issues associated with targeting the highly conserved 10 orthosteric ACh site, an alternative approach consists of developing M1 PAMs that act at the less highly conserved allosteric binding sites.

Recently, Merck and Vanderbilt University reported M1 PAMs from different chemical classes exhibiting, as rationalized, a good level of M1 subtype selectivity. Importantly, similar to the preclinical profile of Xanomeline and other unselective M1 agonists, these M1 allosteric agents demonstrated pro-cognitive effects (in scopolamine-induced memory deficit in mice, 15 scopolamine impaired non-human primates and in transgenic AD mice). PQCA and ML169 have been shown to promote non-amyloidogenic APP processing. Electrophysiology studies have shown that M1 PAMs potentiate carbachol-induced activity in the medial prefrontal cortex and medium spiny neurons. Moreover, unlike unselective agonists, M1 PAMs do not appear to produce side effects such as salivation at therapeutic effective doses. Additionally, they are 20 expected to be devoid of liabilities such as receptor desensitization/internalization following chronic dosing previously reported for orthosteric receptor agonists. In summary, the PAM approach, by activating in a truly selective manner M1 receptors, is a highly promising novel strategy to deliver both efficacious and safe therapeutic agents for the treatment of schizophrenia (positive, negative and cognitive symptoms) as well as AD (symptomatic and disease modifying).

25 Thus, the compounds of the invention, which are muscarinic M1 receptor positive allosteric modulators, are believed to be useful in the treatment of Alzheimer's disease and other diseases mediated by the muscarinic M1 receptor, without side effects.

Therefore, the object of the present invention was to identify compounds that are 30 muscarinic M1 receptor positive allosteric modulators. It has been found that the compounds of formula I are active in this area and they may therefore be used for the treatment of Alzheimer's disease, cognitive impairment, schizophrenia, pain or sleep disorders

The present invention relates to compounds of formula I and to their pharmaceutically acceptable salts, to these compounds as pharmaceutically active substances, to the processes for their production, as well as to the use in the treatment or prevention of disorders, relating to muscarinic M1 receptor positive allosteric modulators, and to pharmaceutical compositions 5 containing the compounds of formula I.

The following definitions of the general terms used in the present description apply irrespective of whether the terms in question appear alone or in combination.

As used herein, the term "lower alkyl" denotes a saturated, i.e. aliphatic hydrocarbon group including a straight or branched carbon chain with 1 - 7 carbon atoms. Examples for "alkyl" are 10 methyl, ethyl, n-propyl, isopropyl, n- butyl, i-butyl, 2-butyl, t-butyl and the like.

As used therein, the term " C_{3-7} -cycloalkyl" denotes a saturated carbon ring, containing from 3 to 7 carbon ring atoms, for example cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl.

The term "alkoxy" denotes a group -O-R' wherein R' is lower alkyl as defined above.

15 The term "halogen" denotes chlorine, bromine, fluorine or iodine.

The term "lower alkoxy substituted by halogen" denotes an alkyl group as defined above, wherein at least one hydrogen atoms is replaced by halogen, for example OCF_3 , OCH_2F , OCH_2CF_3 , $OCH_2CH_2CF_3$, $OCH_2CF_2CF_3$ and the like.

20 The term " C_{4-6} -heterocycloalkyl" denotes a non-aromatic heterocyclic ring with 4 to 6 ring atoms, containing at least one O atom, for example tetrahydropyran-4-yl, tetrahydrothiopyran, thiane 1,1 -dioxide, tetrahydropyran-3-yl, oxolan-3-yl, oxetan-3-yl, oxetan-2-yl or tetrahydrofuran-2-yl.

25 The term "pharmaceutically acceptable salt" or "pharmaceutically acceptable acid addition salt" embraces salts with inorganic and organic acids, such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, citric acid, formic acid, fumaric acid, maleic acid, acetic acid, succinic acid, tartaric acid, methane-sulfonic acid, p-toluenesulfonic acid and the like

One embodiment of the present invention are compounds of formula I, wherein R is $-(CH_2)_z-C_{4-6}$ -cycloalkyl, which is optionally substituted by one to three hydroxy, lower alkyl, lower alkoxy or halogen or 8endo)-7-oxabicyclo[2.2.1]heptan-2-yl; and p is 0 or 1, and the other

substituents are as described above, for example the following compounds:

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1R,2R)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

5 4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indazole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1R,2R)-2-hydroxycyclohexyl)-1H-indazole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indazole-3-carboxamide

10 N-(3,3-difluorocyclobutyl)-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

N-cyclobutyl-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-

N-((1S,2S)-2-hydroxycyclopentyl)-1H-indole-3-carboxamide

15 4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2R)-2-hydroxy-2-methylcyclohexyl)-1H-indole-3-carboxamide

N-cyclohexyl-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2R)-2-hydroxy-2-

20 methylcyclohexyl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2R)-2-hydroxycyclopentyl)-1H-indole-3-carboxamide

N-(2,2-difluorocyclohexyl)-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

25 4,5,6,7-tetrafluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4,5,6,7-tetrafluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-methoxybenzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-

30 carboxamide

1-(4-(difluoromethoxy)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-

yl)methyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-methoxybenzyl)-1H-indole-3-carboxamide

1-(4-cyanobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-1-(3-fluoro-4-methoxybenzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-
5 carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(trifluoromethoxy)benzyl)-1H-indole-3-
carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(3-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-
3-carboxamide

10 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(4-methyl-1H-imidazol-1-yl)benzyl)-1H-indole-
3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((1-methyl-1H-indazol-5-yl)methyl)-1H-indole-3-
carboxamide

15 1-(4-chlorobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(3-chlorobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(3-cyanobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(3,4-difluorobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-1-(4-fluorobenzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(3,5-difluorobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

20 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-
3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-7-
methyl-1H-indole-3-carboxamide

25 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-7-methyl-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-
1H-indole-3-carboxamide

1-benzyl-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(3-methyl-1H-pyrazol-1-yl)benzyl)-1H-indole-
3-carboxamide

30 4,5,6,7-tetrafluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-
1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((1-methyl-1H-benzo[d]imidazol-5-yl)methyl)-1H-
indole-3-carboxamide

4,5-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-

indole-3-carboxamide

4,5-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(methylcarbamoyl)benzyl)-1H-indole-3-

5 carboxamide

4,5-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(4-methyl-1H-imidazol-1-yl)benzyl)-1H-indole-3-carboxamide

4,5-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(3-methyl-1H-pyrazol-1-yl)benzyl)-1H-indole-3-carboxamide

10 4,7-difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indazole-3-carboxamide

4,7-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl)-1H-indazole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(methylcarbamoyl)benzyl)-1H-indole-3-

15 carboxamide

1-(4-carbamoylbenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(4-(2-amino-2-oxoethyl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(3-carbamoylbenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

20 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(methylsulfonyl)benzyl)-1H-indole-3-carboxamide

ethyl 4-((4-fluoro-3-((1S,2S)-2-hydroxycyclohexylcarbamoyl)-1H-indol-1-yl)methyl)phenylcarbamate

4-fluoro-1-(2-fluoro-4-(methylcarbamoyl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

25

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(methylcarbamoyl)pyridin-3-yl)methyl)-1H-indole-3-carboxamide

4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

30 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(3-(methylcarbamoyl)benzyl)-1H-indole-3-carboxamide

1-(3-(dimethylcarbamoyl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

2-(4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indol-3-yl)-N-((1S,2S)-2-hydroxycyclohexyl)acetamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1-hydroxycyclopropyl)methyl)-1H-indole-3-carboxamide

5 4-((4-fluoro-3-(2-((1S,2S)-2-hydroxycyclohexylamino)-2-oxoethyl)-1H-indol-1-yl)methyl)-N-methylbenzamide

N-((1R,2S)-3,3-difluoro-2-hydroxycyclohexyl)-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

N-((1S,2R)-3,3-difluoro-2-hydroxycyclohexyl)-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

10

N-((1R,2S)-3,3-difluoro-2-hydroxycyclohexyl)-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

N-((1S,2R)-3,3-difluoro-2-hydroxycyclohexyl)-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

15

7-cyclopropyl-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

N-cyclopropyl-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

N-cyclobutyl-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

N-cyclopentyl-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

20

N-cyclohexyl-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

N-cyclohexyl-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

N-(cyclopropylmethyl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

N-(4,4-difluorocyclohexyl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-

carboxamide

25

N-(3,3-difluorocyclohexyl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-

carboxamide

N-(3,3-difluorocyclohexyl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-

carboxamide

4-fluoro-N-(2-fluorocyclohexyl)-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

30

4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-(2-fluorocyclohexyl)-1H-indole-3-

carboxamide

4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-(2-fluorocyclohexyl)-1H-indole-3-

carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-phenylpyridin-3-yl)methyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(pyrimidin-2-yl)benzyl)-1H-indole-3-carboxamide

5 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(oxazol-5-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(isoxazol-5-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((2-phenylpyrimidin-5-yl)methyl)-1H-indole-3-carboxamide

10 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((5-phenylpyridin-2-yl)methyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((5-(thiazol-2-yl)pyridin-2-yl)methyl)-1H-indole-3-carboxamide

15 1-((6-(1H-imidazol-1-yl)pyridin-3-yl)methyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((1-(pyriirddin-4-yl)piperidin-4-yl)methyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(imidazo[1,2-a]pyridin-7-ylmethyl)-1H-indole-3-carboxamide

20 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(imidazo[1,2-a]pyridin-6-ylmethyl)-1H-indole-3-carboxamide

1-(4-(cyclopropylcarbamoyl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

25 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-7-methoxy-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-7-methoxy-1H-indole-3-carboxamide

1-(4-(1H-Pyrazol-5-yl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

30 1-(4-(1H-1,2,4-triazol-3-yl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(pyrimidin-5-yl)benzyl)-1H-indole-3-carboxamide

4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(pyridin-3-yl)benzyl)-1H-indole-3-carboxamide

4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((1-(pyridin-2-yl)piperidin-4-yl)methyl)-1H-indole-3-carboxamide

5 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(pyrrolidin-1-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(pyrrolidin-1-yl)pyridin-3-yl)methyl)-1H-indole-3-carboxamide or

10 N-(2,2-difluorocyclohexyl)-4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-1H-indole-3-carboxamide.

One further embodiment of the present invention are compounds of formula I, wherein R is -(CH₂)_Z C₄₋₆-heterocycloalkyl, which are optionally substituted by one to three hydroxy, lower alkyl, lower alkoxy or halogen or (endo)-7-oxabicyclo[2.2.1]heptan-2-yl; p is 0 or 1; and the other substituents are as described above, for example the following compounds:

15 4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3RS,4RS)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3RS,4SR)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indazole-3-carboxamide

20 4-fluoro-N-[(3S,4R)-4-methoxyoxolan-3-yl]-1-[[4-(1-methylpyrazol-4-yl)phenyl]methyl]indole-3-carboxamide

(R)-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((tetrahydrofuran-2-yl)methyl)-1H-indole-3-carboxamide

4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-3-yl)-1H-indole-3-carboxamide

25 4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(oxetan-3-ylmethyl)-1H-indole-3-carboxamide

4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(oxetan-2-ylmethyl)-1H-indole-3-carboxamide

1-(4-carbamoylbenzyl)-4-fluoro-N-((3RS,4SR)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole

3-carboxamide

1-(4-cyanobenzyl)-4-fluoro-N-((3RS,4SR)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-3-yl)-1H

5 indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3S,4S)-4-hydroxytetrahydro-2H-pyran-3-yl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

10 4-fluoro-7-methyl-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-3-yl)-1H-indole-3-carboxamide

4-fluoro-7-methyl-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(4-methyl-1H

15 imidazol-1-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-((1-methyl-1H-indazol-5-yl)methyl)-1H-indole-3-carboxamide

1-(4-cyanobenzyl)-4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

20 4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

4,5,6,7-tetrafluoro-N-((3S,4R) or (3R,4S))-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

4,5,6,7-tetrafluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(1-methyl-

25 1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

4,5,6,7-tetrafluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-1-((1-methyl-1*H*-indazol-5-yl)methyl)-N-(tetrahydro-2*H*-pyran-4-yl)-1*H*-indole-3-carboxamide

4-fluoro-1-(4-(4-methyl-1*H*-imidazol-1-yl)benzyl)-N-(tetrahydro-2*H*-pyran-4-yl)-1*H*-indole-3-carboxamide

5 4-fluoro-1-((6-(1-methyl-1*H*-pyrazol-4-yl)pyridin-3-yl)methyl)-N-(tetrahydro-2*H*-pyran-4-yl)-1*H*-indole-3-carboxamide

4-fluoro-1-(4-(1-methyl-1*H*-pyrazol-4-yl)benzyl)-N-(tetrahydro-2*H*-pyran-4-yl)-1*H*-indazole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1*H*-pyrazol-4-yl)benzyl)-N-((3*S*,4*R*) or (3*R*,4*S*)-3-

10 hydroxytetrahydro-2*H*-pyran-4-yl)-1*H*-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1*H*-pyrazol-4-yl)benzyl)-N-((3*R*,4*S*) or (3*S*,4*R*)-3-hydroxytetrahydro-2*H*-pyran-4-yl)-1*H*-indole-3-carboxamide

4,7-difluoro-1-(2-fluoro-4-(1-methyl-1*H*-pyrazol-4-yl)benzyl)-N-((3*R*,4*S*)-3-hydroxytetrahydro-2*H*-pyran-4-yl)-1*H*-indazole-3-carboxamide

15 4,7-difluoro-N-((3*R*,4*S*)-3-hydroxytetrahydro-2*H*-pyran-4-yl)-1-((6-(1-methyl-1*H*-pyrazol-4-yl)pyridin-3-yl)methyl)-1*H*-indazole-3-carboxamide

1-((6-(1*H*-1,2,4-triazol-1-yl)pyridin-3-yl)methyl)-4-fluoro-N-((3*R*,4*S*)-3-hydroxytetrahydro-2*H*-pyran-4-yl)-1*H*-indole-3-carboxamide

4-fluoro-N-((3*R*,4*S*)-3-hydroxytetrahydro-2*H*-pyran-4-yl)-1-(4-(thiazol-2-yl)benzyl)-1*H*-indole-20 3-carboxamide

4-fluoro-N-((3*R*,4*S*)-3-hydroxytetrahydro-2*H*-pyran-4-yl)-1-(4-(5-methyl-1,2,4-oxadiazol-3-yl)benzyl)-1*H*-indole-3-carboxamide

4-fluoro-N-((3*R*,4*S*)-3-hydroxytetrahydro-2*H*-pyran-4-yl)-1-(4-(2-oxopyrrolidin-1-yl)benzyl)-1*H*-indole-3-carboxamide

25 4-fluoro-1-(2-fluoro-4-(methylcarbamoyl)benzyl)-N-((1*S*,2*S*)-2-hydroxycyclohexyl)-1*H*-indole-3-carboxamide

2-[4-fluoro-1-[[2-fluoro-4-(1-methylpyrazol-4-yl)phenyl]methyl]indol-3-yl]-N-[(3*R*,4*S*)-3-hydroxyoxan-4-yl] acetamide

4,7-difluoro-1-((1-methyl-1*H*-indazol-5-yl)methyl)-N-(tetrahydro-2*H*-pyran-4-yl)-1*H*-indole-3-carboxamide

4,7-difluoro-1-(4-(1-methyl-1*H*-pyrazol-4-yl)benzyl)-N-(tetrahydro-2*H*-pyran-4-yl)-1*H*-indole-3-carboxamide

4,7-difluoro-1-(2-fluoro-4-(1-methyl-1*H*-pyrazol-4-yl)benzyl)-N-(tetrahydro-2*H*-pyran-4-yl)-

1H-indole-3-carboxamide

4-((4-fluoro-3-(2-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-ylamino)-2-oxoethyl)-1H-indol-1-yl)methyl)-N-methylbenzamide

7-cyclopropyl-4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

7-cyclopropyl-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

7-ethyl-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

10 7-ethyl-4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

N-(2,2-dimethyloxan-4-yl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]-N-(oxan-3-yl)indole-3-carboxamide

15 4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]-N-(4-methyloxan-4-yl)indole-3-carboxamide

4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]-N-(thian-4-yl)indole-3-carboxamide

N-(1,l-dioxothian-4-yl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]-N-(3-methyloxan-4-yl)indole-3-carboxamide

4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]-N-(2-methyloxan-4-yl)indole-3-carboxamide

20 7-ethyl-4-fluoro-1-((1-methyl-1H-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-1-(4-(methylcarbamoyl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-7-methyl-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

25 4-fluoro-7-methyl-1-((1-methyl-1H-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-((1-(pyridin-2-yl)piperidin-4-yl)methyl)-1H-indole-3-carboxamide

30 4-fluoro-1-((6-(methylcarbamoyl)pyridin-3-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-7-methoxy-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-7-methoxy-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-7-methoxy-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

5 4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-7-methoxy-1H-indole-3-carboxamide

4-fluoro-7-methoxy-1-((1-methyl-1H-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

10 1-(4-(1H-1,2,4-triazol-3-yl)benzyl)-4-fluoro-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-Fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-Fluoro-1-(2-fluoro-4-(methylcarbamoyl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

15 N-(2,2-dimethyltetrahydro-2H-pyran-4-yl)-4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-1H-indole-3-carboxamide

4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-(tetrahydro-2H-thiopyran-4-yl)-1H-indole-3-carboxamide or

20 4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-(3-methyltetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide.

One embodiment of the invention are compounds of formula I, wherein X is N, for example the following compounds

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indazole-3-carboxamide

25 4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1R,2R)-2-hydroxycyclohexyl)-1H-indazole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3RS,4SR)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indazole-3-carboxamide

4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indazole-3-carboxamide

30 4,7-difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-

hydroxycyclohexyl)-1H-indazole-3-carboxamide

4,7-difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indazole-3-carboxamide

4,7-difluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-((6-(1-methyl-1H-pyrazol-4-

5 yl)pyridin-3-yl)methyl)-1H-indazole-3-carboxamide or

4,7-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl)-1H-indazole-3-carboxamide.

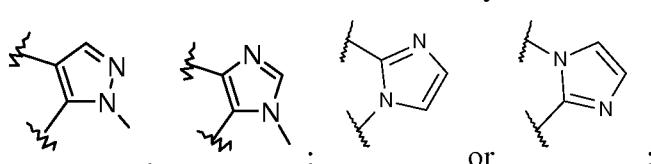
One embodiment of the invention are compounds of formula I, wherein Y¹ is N, for example the following compounds

10 4,5,6,7-tetrafluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-1H-indole-3-carboxamide

4,5-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-1H-indole-3-carboxamide

4-fluoro-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

15


4,7-difluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-1H-indazole-3-carboxamide

4,7-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-1H-indazole-3-carboxamide

20 1-((6-(1H-1,2,4-triazol-1-yl)pyridine-3-yl)methyl)-4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(methylcarbamoyl)pyridine-3-yl)methyl)-1H-indole-3-carboxamide

One embodiment of the invention are compounds of formula I, wherein Y¹ and Y² may form together with the carbon atoms to which they are attach

for example the following compounds

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((1-methyl-1H-indazol-5-yl)methyl)-1H-indole-3-carboxamide

4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-((1-methyl-1H-indazol-5-yl)methyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((1-methyl-1H-benzo[d]pyridine-5-yl)methyl)-1H-indole-3-carboxamide

4-fluoro-1-((1-methyl-1H-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

10 4,7-difluoro-1-((1-methyl-1H-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

7-ethyl-4-fluoro-1-((1-methyl-1H-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

15 4-fluoro-7-methyl-1-((1-methyl-1H-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(imidazo[1,2-a]pyridin-7-ylmethyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(imidazo[1,2-a]pyridin-6-ylmethyl)-1H-indole-3-carboxamide

20 4-fluoro-7-methoxy-1-((1-methyl-1H-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

One embodiment of the invention are compounds of formula I, wherein the five-membered heteroaryl group for R⁴ is not a pyrazole group, substituted by methyl, for example the following compounds

25 1-(4-carbamoylbenzyl)-4-fluoro-N-((3RS,4SR)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

1-(4-cyanobenzyl)-4-fluoro-N-((3RS,4SR)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-

carboxamide

4-fluoro-1-(2-fluoro-4-methoxybenzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(4-(difluoromethoxy)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-

5 carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-methoxybenzyl)-1H-indole-3-carboxamide

1-(4-cyanobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-1-(3-fluoro-4-methoxybenzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

10 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(trifluoromethoxy)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(3-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(4-methyl-1H-imidazol-1-yl)benzyl)-1H-indole-3-15 carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((1-methyl-1H-indazol-5-yl)methyl)-1H-indole-3-carboxamide

1-(4-chlorobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(3-chlorobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

20 1-(3-cyanobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(3,4-difluorobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-1-(4-fluorobenzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(3,5-difluorobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-benzyl-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

25 4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(4-methyl-1H-yridine-1-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-((1-methyl-1H-indazol-

5-yl)methyl)-1H-indole-3-carboxamide

1-(4-cyanobenzyl)-4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((1-methyl-1H-benzo[d]pyridine-5-yl)methyl)-

5 1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(methylcarbamoyl)benzyl)-1H-indole-3-carboxamide

4,5-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(4-methyl-1H-imidazol-1-yl)benzyl)-1H-indole-3-carboxamide

10 4-fluoro-1-((1-methyl-1H-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-1-(4-(4-methyl-1H-imidazol-1-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(methylcarbamoyl)benzyl)-1H-indole-3-

15 carboxamide

1-(4-carbamoylbenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-((6-(1H-1,2,4-triazol-1-yl)pyridine-3-yl)methyl)-4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

1-(4-(2-amino-2-oxoethyl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-
20 carboxamide

1-(3-carbamoylbenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(methylsulfonyl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(5-methyl-1,2,4-oxadiazol-3-
25 yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(2-oxopyrrolidin-1-yl)benzyl)-1H-indole-3-carboxamide

ethyl 4-((4-fluoro-3-((1S,2S)-2-hydroxycyclohexylcarbamoyl)-1H-indol-1-yl)methyl)phenylcarbamate

4-fluoro-1-(2-fluoro-4-(methylcarbamoyl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

5 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(methylcarbamoyl)pyridine-3-yl)methyl)-1H-indole-3-carboxamide

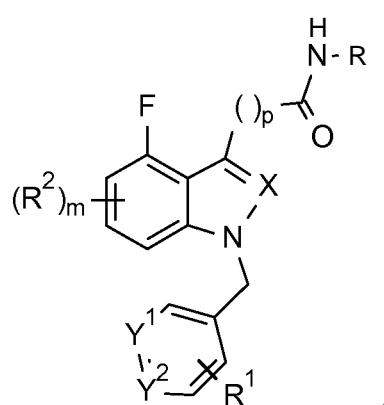
4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(3-(methylcarbamoyl)benzyl)-1H-indole-3-carboxamide

10 1-(3-(dimethylcarbamoyl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(methylcarbamoyl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

15 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(oxazol-5-yl)benzyl)-1H-indole-3-carboxamide


4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(isoxazol-5-yl)benzyl)-1H-indole-3-carboxamide

1-(4-(1H-Pyrazol-5-yl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

20 1-(4-(1H-1,2,4-triazol-3-yl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide or

1-(4-(1H-1,2,4-triazol-3-yl)benzyl)-4-fluoro-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide.

One further embodiment of the invention are compounds of formula IA

IA,

which compounds are

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1R,2R)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

5 1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indazole-3-carboxamide 4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1R,2R)-2-hydroxycyclohexyl)-1H-indazole-3-carboxamide

10 4,6-difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3RS,4RS)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3RS,4SR)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indazole-3-carboxamide

15 4-fluoro-N-[(3S,4R)-4-methoxyxolan-3-yl]-1-[[4-(1-methylpyrazol-4-yl)phenyl]methyl]indole-3-carboxamide

N-(3,3-difluorocyclobutyl)-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

20 (R)-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((tetrahydrofuran-2-yl)methyl)-1H-indole-3-carboxamide

N-cyclobutyl-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-3-yl)-1H-indole-3-carboxamide

25 4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(oxetan-3-ylmethyl)-1H-indole-3-carboxamide

4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(oxetan-2-ylmethyl)-1H-indole-3-carboxamide

1-(4-carbamoylbenzyl)-4-fluoro-N-((3RS,4SR)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

30 1-(4-cyanobenzyl)-4-fluoro-N-((3RS,4SR)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-

N-((1S,2S)-2-hydroxycyclopentyl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2R)-2-hydroxy-2-methylcyclohexyl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-3-yl)-1H-indole-3-carboxamide

5 N-cyclohexyl-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3S,4S)-4-hydroxytetrahydro-2H-pyran-3-yl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-

10 indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2R)-2-hydroxy-2-methylcyclohexyl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2R)-2-hydroxycyclopentyl)-1H-indole-3-carboxamide

15 N-(2,2-difluorocyclohexyl)-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

4,5,6J-tetrafluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4,5,6,7-tetrafluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-methoxybenzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(4-(difluoromethoxy)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

25 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-methoxybenzyl)-1H-indole-3-carboxamide

1-(4-cyanobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-1-(3-fluoro-4-methoxybenzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

30 carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(trifluoromethoxy)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(3-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-

3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(4-methyl-1H-imidazol-1-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((1-methyl-1H-indazol-5-yl)methyl)-1H-indole-3-carboxamide

5 carboxamide

1-(4-chlorobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(3-chlorobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(3-cyanobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(3,4-difluorobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

10 4-fluoro-1-(4-fluorobenzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(3,5-difluorobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

15 4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-7-methyl-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-7-methyl-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

1-benzyl-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

20 4-fluoro-7-methyl-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-3-yl)-1H-indole-3-carboxamide

4-fluoro-7-methyl-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(3-methyl-1H-pyrazol-1-yl)benzyl)-1H-indole-3-carboxamide

25 4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(4-methyl-1H-imidazol-1-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-((1-methyl-1H-indazol-5-yl)methyl)-1H-indole-3-carboxamide

30 4,5,6,7-tetrafluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

1-(4-cyanobenzyl)-4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(1-methyl-1H-

pyrazol-4-yl)benzyl)-IH-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((1-methyl-IH-benzo[d]pyridine-5-yl)methyl)-IH-indole-3-carboxamide

4,5-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(1-methyl-IH-pyrazol-4-yl)benzyl)-IH-indole-3-carboxamide

5 4,5-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(1-methyl-IH-pyrazol-4-yl)pyridine-3-yl)methyl)-IH-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(methylcarbamoyl)benzyl)-IH-indole-3-carboxamide

10 4,5-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(4-methyl-IH-imidazol-1-yl)benzyl)-IH-indole-3-carboxamide

4,5-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(3-methyl-IH-pyrazol-1-yl)benzyl)-IH-indole-3-carboxamide

4,5,6,7-Tetrafluoro-N-((3S,4R) or (3R,4S))-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(1-methyl-IH-pyrazol-4-yl)benzyl)-IH-indole-3-carboxamide

15 4,5,6,7-Tetrafluoro-N-((3R,4S) or (3S,4R))-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(1-methyl-IH-pyrazol-4-yl)benzyl)-IH-indole-3-carboxamide

4,5,6,7-Tetrafluoro-1-(2-fluoro-4-(1-methyl-IH-pyrazol-4-yl)benzyl)-N-((3R,4S) or (3S,4R))-3-hydroxytetrahydro-2H-pyran-4-yl)-IH-indole-3-carboxamide

20 Fluoro-1-(4-(1-methyl-IH-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-IH-indole-3-carboxamide

4-fluoro-1-((1-methyl-IH-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-IH-indole-3-carboxamide

4-fluoro-1-(4-(4-methyl-IH-imidazol-1-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-IH-indole-3-carboxamide

25 4-fluoro-1-((6-(1-methyl-IH-pyrazol-4-yl)pyridine-3-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-IH-indole-3-carboxamide

4-fluoro-1-(4-(1-methyl-IH-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-IH-indazole-3-carboxamide

30 4-fluoro-1-(2-fluoro-4-(1-methyl-IH-pyrazol-4-yl)benzyl)-N-((3S,4R) or (3R,4S))-3-hydroxytetrahydro-2H-pyran-4-yl)-IH-indole-3-carboxamide

4-Fluoro-1-(2-fluoro-4-(1-methyl-IH-pyrazol-4-yl)benzyl)-N-((3R,4S) or (3S,4R))-3-hydroxytetrahydro-2H-pyran-4-yl)-IH-indole-3-carboxamide

4,7-difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indazole-3-carboxamide

4,7-difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indazole-3-carboxamide

5 4,7-difluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-1H-indazole-3-carboxamide

4,7-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-1H-indazole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(methylcarbamoyl)benzyl)-1H-indole-3-

10 carboxamide

1-(4-carbamoylbenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-((6-(1H-1,2,4-triazol-1-yl)pyridine-3-yl)methyl)-4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(thiazol-2-yl)benzyl)-1H-indole-

15 3-carboxamide

1-(4-(2-amino-2-oxoethyl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(3-carbamoylbenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(methylsulfonyl)benzyl)-1H-indole-3-

20 carboxamide

4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(5-methyl-1,2,4-oxadiazol-3-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(2-oxopyrrolidin-1-yl)benzyl)-1H-indole-3-carboxamide

25 ethyl 4-((4-fluoro-3-((1S,2S)-2-hydroxycyclohexylcarbamoyl)-1H-indol-1-yl)methyl)phenylcarbamate

4-fluoro-1-(2-fluoro-4-(methylcarbamoyl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(methylcarbamoyl)pyridin-3-yl)methyl)-1H-

30 indole-3-carboxamide

4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(3-(methylcarbamoyl)benzyl)-1H-indole-3-

carboxamide

1-(3-(dimethylcarbamoyl)benzyl)-4-fluoro-N-((1*S*,2*S*)-2-hydroxycyclohexyl)-1*H*-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(methylcarbamoyl)benzyl)-N-((1*S*,2*S*)-2-hydroxycyclohexyl)-1*H*-indole-

5 3-carboxamide

2-[4-fluoro-1-[[2-fluoro-4-(1-methylpyrazol-4-yl)phenyl]methyl]indol-3-yl]-N-[(3*R*,4*S*)-3-hydroxyoxan-4-yl]acetamide

2-(4-fluoro-1-(2-fluoro-4-(1-methyl-1*H*-pyrazol-4-yl)benzyl)-1*H*-indol-3-yl)-N-((1*S*,2*S*)-2-hydroxycyclohexyl)acetamide

10 4,7-difluoro-1-((1-methyl-1*H*-indazol-5-yl)methyl)-N-(tetrahydro-2*H*-pyran-4-yl)-1*H*-indole-3-carboxamide

4,7-difluoro-1-(4-(1-methyl-1*H*-pyrazol-4-yl)benzyl)-N-(tetrahydro-2*H*-pyran-4-yl)-1*H*-indole-3-carboxamide

4,7-difluoro-1-(2-fluoro-4-(1-methyl-1*H*-pyrazol-4-yl)benzyl)-N-(tetrahydro-2*H*-pyran-4-yl)-

15 1*H*-indole-3-carboxamide

4,7-difluoro-1-(2-fluoro-4-(1-methyl-1*H*-pyrazol-4-yl)benzyl)-N-(tetrahydro-2*H*-pyran-4-yl)-1*H*-indole-3-carboxamide

4-((4-fluoro-3-(2-((3*R*,4*S*)-3-hydroxytetrahydro-2*H*-pyran-4-ylamino)-2-oxoethyl)-1*H*-indol-1-yl)methyl)-N-methylbenzamide

20 4-((4-fluoro-3-(2-((1*S*,2*S*)-2-hydroxycyclohexylamino)-2-oxoethyl)-1*H*-indol-1-yl)methyl)-N-methylbenzamide

N-((1*R*,2*S*)-3,3-difluoro-2-hydroxycyclohexyl)-4-fluoro-1-(4-(1-methyl-1*H*-pyrazol-4-yl)benzyl)-1*H*-indole-3-carboxamide

N-((1*S*,2*R*)-3,3-difluoro-2-hydroxycyclohexyl)-4-fluoro-1-(4-(1-methyl-1*H*-pyrazol-4-

25 yl)benzyl)-1*H*-indole-3-carboxamide

N-((1*R*,2*S*)-3,3-difluoro-2-hydroxycyclohexyl)-4-fluoro-1-(2-fluoro-4-(1-methyl-1*H*-pyrazol-4-yl)benzyl)-1*H*-indole-3-carboxamide

N-((1*S*,2*R*)-3,3-difluoro-2-hydroxycyclohexyl)-4-fluoro-1-(2-fluoro-4-(1-methyl-1*H*-pyrazol-4-yl)benzyl)-1*H*-indole-3-carboxamide

30 N-((endo)-7-oxabicyclo[2.2.1]heptan-2-yl)-4-fluoro-1-(2-fluoro-4-(1-methyl-1*H*-pyrazol-4-yl)benzyl)-1*H*-indole-3-carboxamide

7-cyclopropyl-4-fluoro-N-((1*S*,2*S*)-2-hydroxycyclohexyl)-1-(4-(1-methyl-1*H*-pyrazol-4-yl)benzyl)-1*H*-indole-3-carboxamide

7-cyclopropyl-4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

7-cyclopropyl-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

5 7-ethyl-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

7-ethyl-4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-methyl-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

10 N-cyclopropyl-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

N-cyclobutyl-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

N-cyclopentyl-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

N-cyclohexyl-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

N-cycloheptyl-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

15 N-(cyclopropylmethyl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

N-(4,4-difluorocyclohexyl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

N-(3,3-difluorocyclohexyl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

20 N-(2,2-dimethyloxan-4-yl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

N-(2,2-difluorocyclohexyl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

4-fluoro-N-(2-fluorocyclohexyl)-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

25 4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]-N-(oxan-3-yl)indole-3-carboxamide

4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]-N-(4-methyloxan-4-yl)indole-3-carboxamide

4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]-N-(thian-4-yl)indole-3-carboxamide

N-(1,1-dioxothian-4-yl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]-N-(3-methyloxan-4-yl)indole-3-carboxamide

30 4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]-N-(2-methyloxan-4-yl)indole-3-carboxamide

7-ethyl-4-fluoro-1-((1-methyl-1H-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-(2-fluorocyclohexyl)-1H-indole-3-

carboxamide

N-(3,3-difluorocyclohexyl)-4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-phenylpyridin-3-yl)methyl)-1H-indole-3-

5 carboxamide

4-fluoro-1-(4-(methylcarbamoyl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-7-methyl-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

10 4-fluoro-7-methyl-1-((1-methyl-1H-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(pyrimidin-2-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(oxazol-5-yl)benzyl)-1H-indole-3-carboxamide

15 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(isoxazol-5-yl)benzyl)-1H-indole-3-carboxamide

1-((6-(1H-imidazol-1-yl)pyridin-3-yl)methyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

20 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(imidazo[1,2-a]pyridin-7-ylmethyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(imidazo[1,2-a]pyridin-6-ylmethyl)-1H-indole-3-carboxamide

1-(4-(cyclopropylcarbamoyl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

25 4-fluoro-1-((6-(methylcarbamoyl)pyridin-3-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-7-methoxy-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

30 4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-7-methoxy-1H-indole-3-carboxamide

4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-7-methoxy-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-7-methoxy-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-

indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-7-methoxy-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3R,4S)-3-hydroxytetrahydro-2H-

5 pyran-4-yl)-7-methoxy-1H-indole-3-carboxamide

4-fluoro-7-methoxy-1-((1-methyl-1H-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

1-(4-(1H-Pyrazol-5-yl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

10 1-(4-(1H-1,2,4-triazol-3-yl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(4-(1H-1,2,4-triazol-3-yl)benzyl)-4-fluoro-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(pyrimidin-5-yl)benzyl)-1H-indole-3-carboxamide

15

4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(pyridin-3-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(pyrrolidin-1-yl)benzyl)-1H-indole-3-carboxamide

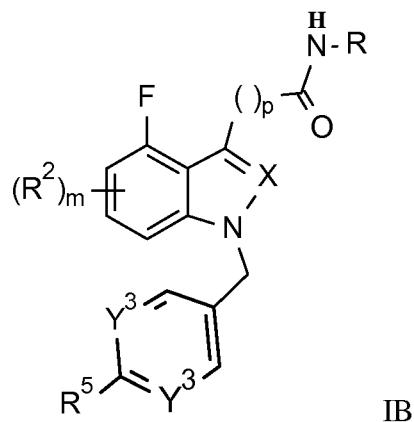
20 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(pyrrolidin-1-yl)pyridin-3-yl)methyl)-1H-indole-3-carboxamide

4-Fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

25

4-Fluoro-1-(2-fluoro-4-(methylcarbamoyl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

N-(2,2-difluorocyclohexyl)-4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-1H-indole-3-carboxamide

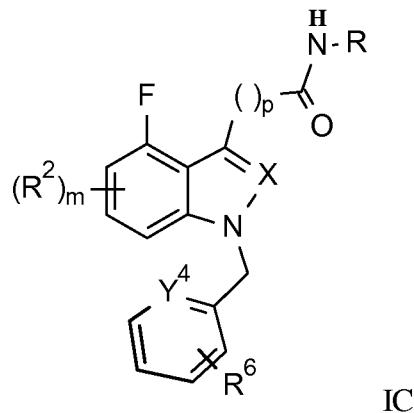

N-(2,2-dimethyltetrahydro-2H-pyran-4-yl)-4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-

1H-indole-3-carboxamide

30 4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-(tetrahydro-2H-thiopyran-4-yl)-1H-indole-3-carboxamide or

4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-(3-methyltetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide.

One further embodiment of the invention are compounds of formula IB

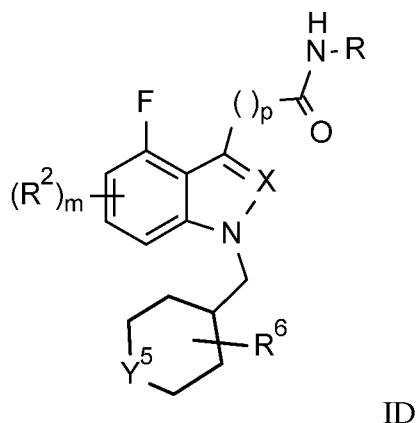


which compound is

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((2-phenylpyrimidin-5-yl)methyl)-1H-indole-3-

5 carboxamide.

One further embodiment of the invention are compounds of formula IC

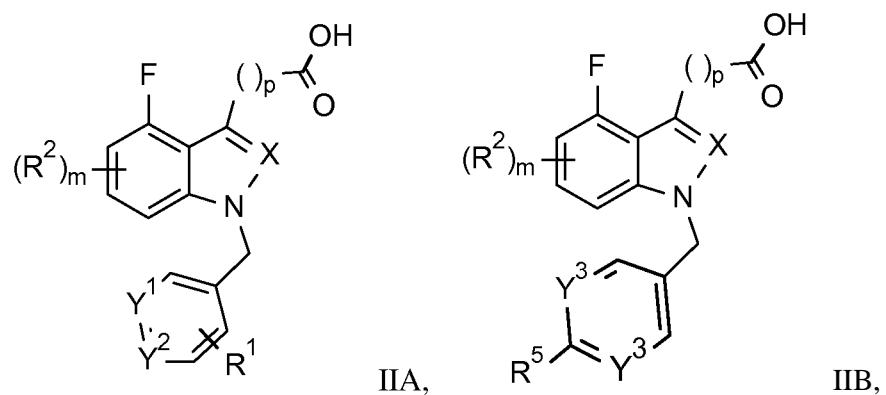

which compounds are

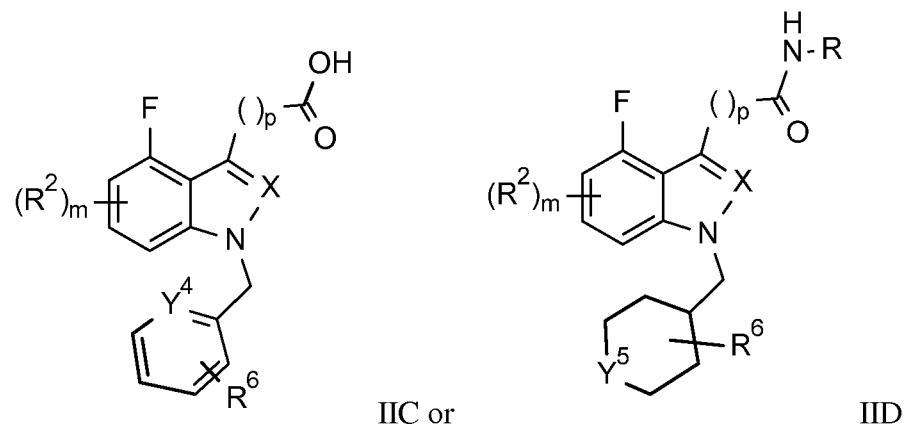
4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((2-phenylpyrimidin-5-yl)methyl)-1H-indole-3-

10 carboxamide or

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((5-(thiazol-2-yl)pyridin-2-yl)methyl)-1H-indole-3-carboxamide.

One further embodiment of the invention are compounds of formula ID

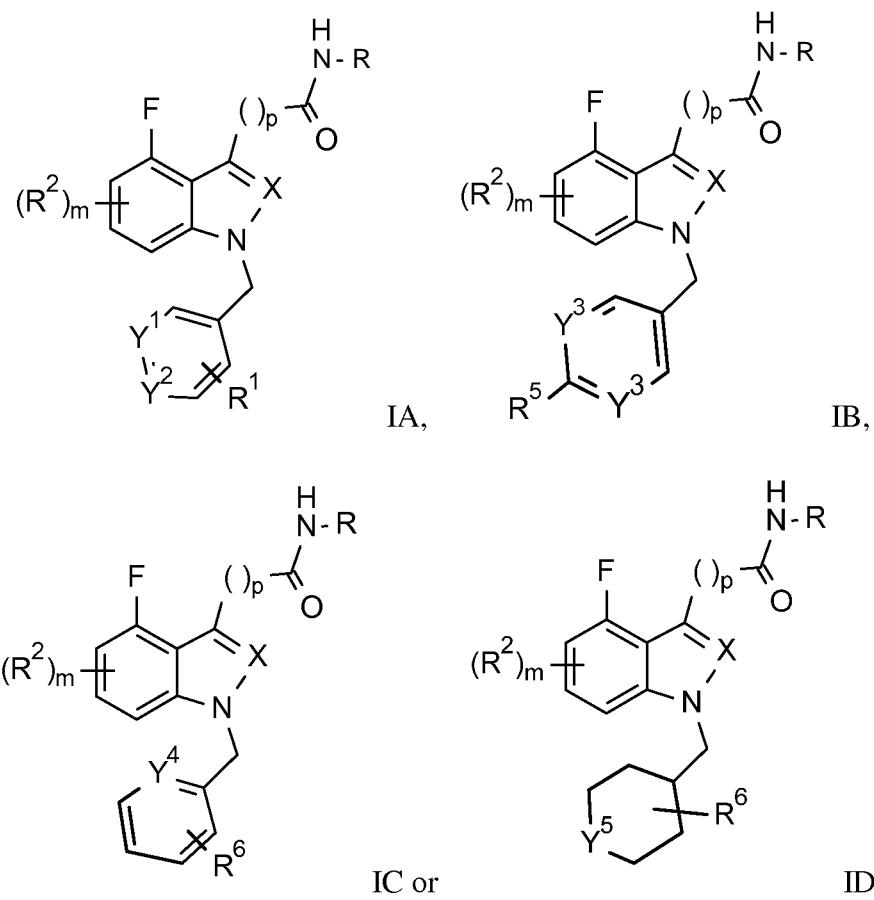

which compounds are


4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-((1-(pyridin-2-yl)piperidin-4-yl)methyl)-1H-indole-3-carboxamide

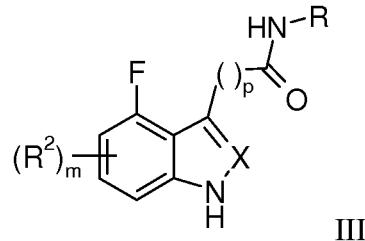
5 4-fluoro-N-((1*S*,2*S*)-2-hydroxycyclohexyl)-1-((1-(pyrimidin-4-yl)piperidin-4-yl)methyl)-1*H*-indole-3-carboxamide or
4-Fluoro-N-((1*S*,2*S*)-2-hydroxycyclohexyl)-1-((1-(pyridin-2-yl)piperidin-4-yl)methyl)-1*H*-indole-3-carboxamide.

The present compounds of formula I and their pharmaceutically acceptable salts can be prepared by methods known in the art, for example, by processes described below, which process comprises

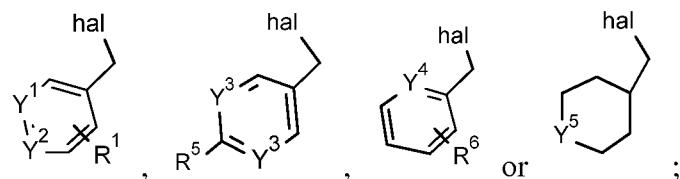
a) reacting a compound of formula



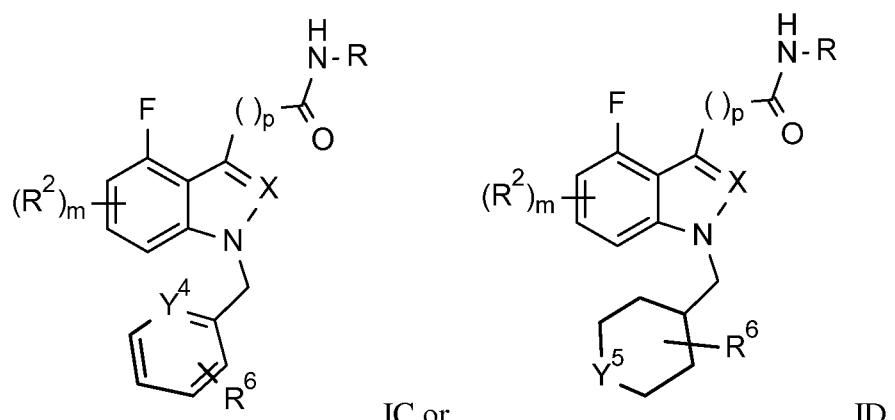
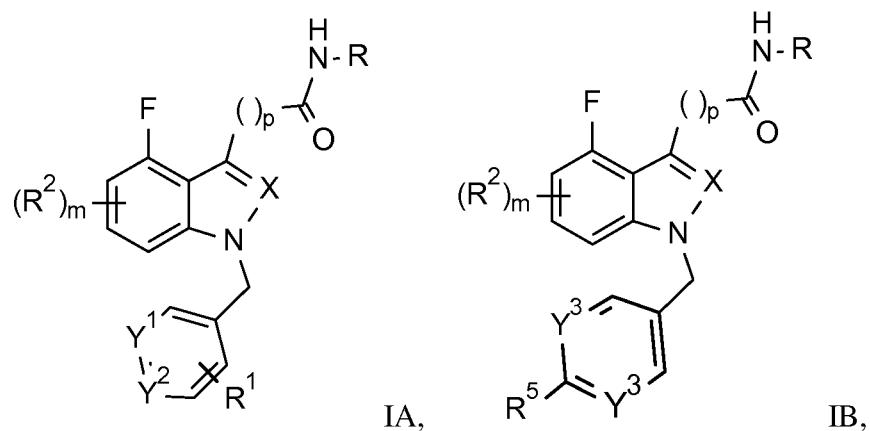
with a compound of formula


5 in the presence of an activating agent such as BOP (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate or thionyl chloride

to a compound of formula

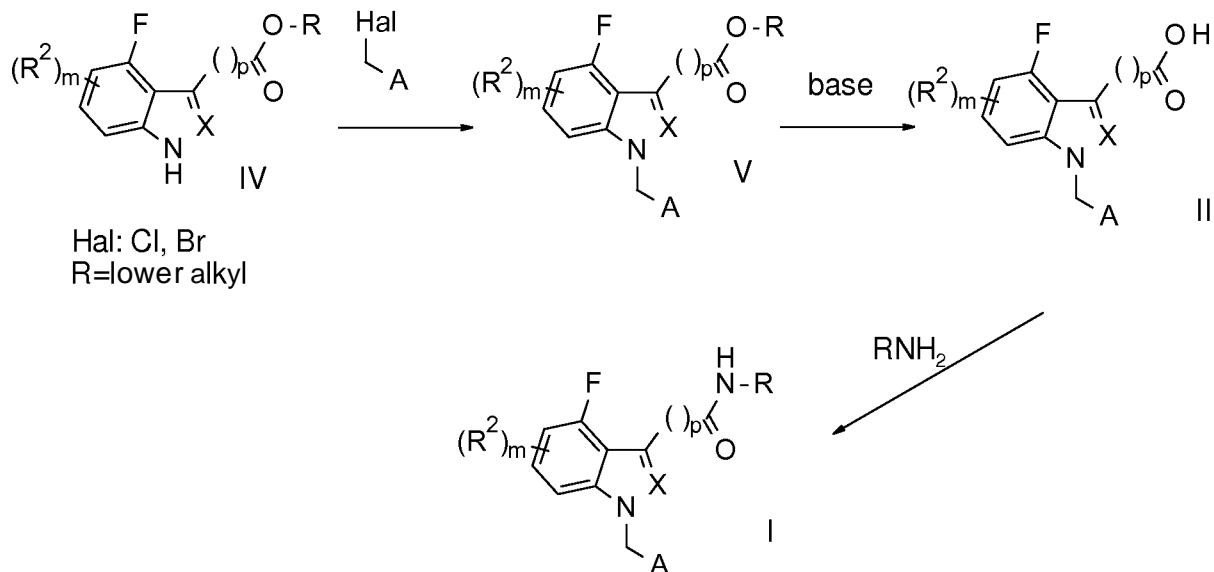


wherein the substituents are as defined above, or



b) reacting a compound of formula

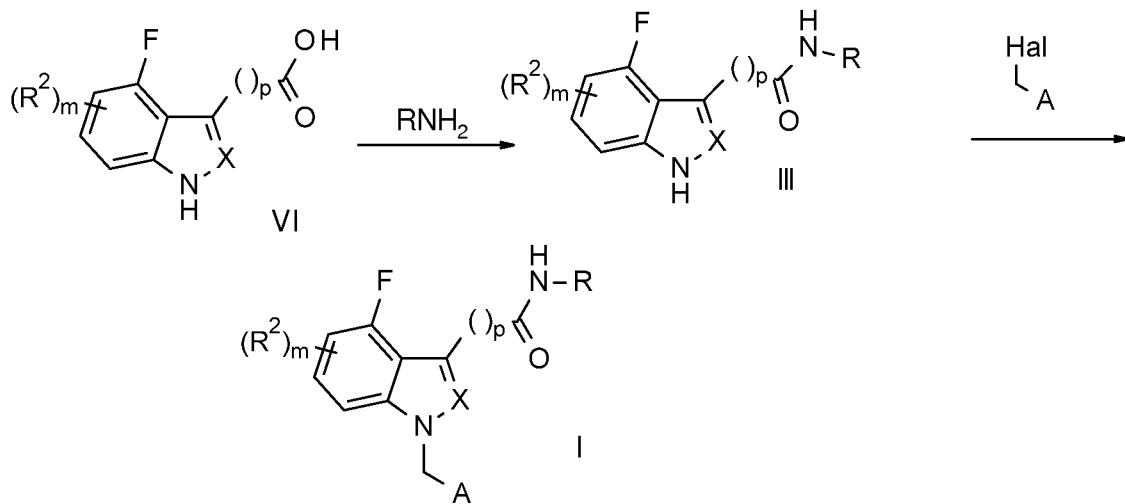
5 with a compound of formula

in the presence of base like cesium carbonate or sodium hydride to a compound of formula



wherein Hal is halogen and the other substituents are as defined above, and, if desired, converting the compounds obtained into pharmaceutically acceptable acid addition salts.

The compounds of formula I may be prepared in accordance with process variant a) or b)


5 and with the following schemes 1- 2. The starting material is commercially available or may be prepared in accordance with known methods.

Scheme 1

The substituents are as described above.

10 Compounds of general formula I can be prepared by reacting ester derivatives of formula IV with an alkylating agent in the presence of a base such as sodium hydride to provide V followed by a saponification of V in the presence of a base such as lithium hydroxide and coupling of the resulting acid II with an amine RNH_2 .

Scheme 2

The substituents are as described above.

Compounds of general formula I can be prepared by coupling acid derivatives of formula VI

5 with an amine RNH_2 to provide amide III followed by reaction of III with an alkylating agent in the presence of a base such as cesium carbonate or sodium hydride.

All reactions are typically performed in a suitable solvent and under an atmosphere of argon or nitrogen.

Some substituents substituents R^1 may be derived from another precursor substituent at

10 the end of the reaction sequence. For instance, a compound of formula I may be synthesized bearing an ester group as R^1 , which is converted to a carboxamide substituent by standard procedures.

Insofar as their preparation is not described in the examples, the compounds of formula (I) as well as all intermediate products can be prepared according to analogous methods or 15 according to the methods set forth above. Starting materials are commercially available, known in the art or can be prepared by methods known in the art or in analogy thereto.

Isolation and purification of the compounds

Isolation and purification of the compounds and intermediates described herein can be

20 effected, if desired, by any suitable separation or purification procedure such as, for example, filtration, extraction, crystallization, column chromatography, thin-layer chromatography, thick-layer chromatography, preparative low or high-pressure liquid chromatography or a combination

of these procedures. Specific illustrations of suitable separation and isolation procedures can be had by reference to the preparations and examples herein below. However, other equivalent separation or isolation procedures could, of course, also be used.

Salts of compounds of formula I

5 The compounds of formula I are basic and may be converted to a corresponding acid addition salt. The conversion is accomplished by treatment with at least a stoichiometric amount of an appropriate acid, such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malic acid, malonic acid, succinic acid, maleic acid, fumaric acid, 10 tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like. Typically, the free base is dissolved in an inert organic solvent such as diethyl ether, ethyl acetate, chloroform, ethanol or methanol and the like, and the acid added in a similar solvent. The temperature is maintained between 0 °C and 50 °C. The resulting salt precipitates spontaneously or may be brought out of 15 solution with a less polar solvent.

The acid addition salts of the basic compounds of formula I may be converted to the corresponding free bases by treatment with at least a stoichiometric equivalent of a suitable base such as sodium or potassium hydroxide, potassium carbonate, sodium bicarbonate, ammonia, and the like.

20 The compounds of formula I and their pharmaceutically usable addition salts possess valuable pharmacological properties. Specifically, it has been found that the compounds of the present invention have an activity as neurogenic agents.

The compounds were investigated in accordance with the test given hereinafter.

M1 PAM assay

25 The assay is designed to select compounds that possess modulator activity at the acetylcholine muscarinic receptor expressed in CHO cells by measuring the intracellular calcium with a Fluorometric Imaging Plate Reader System (FLIPR, Molecular Devices). The assay study the effect of several concentrations of test compounds on basal or acetylcholine- stimulated Ca^{2+} levels using FLIPR.

CHO human M1 are plated the day before the experiments at 2×10^5 cells/ml in PDL BioCoat 96 well black/clear plate (Becton 35 4640). The cells are grown at 37°C and 5% CO₂ in the following medium: F12 Nut Mix (Gibco 21765), 10% FCS heat inactivated (GIBCO 16000-044), 1 % Pen Strep (Gibco,15140) and 200 µg/ ml Geneticin (Gibco 11811). On the day of the experiment, the medium was removed and replaced by 100 ml of dye loading buffer containing Hanks Balanced Salt solution (HBSS, 14065-049, Gibco) with 20 mM HEPES (Gibco 15630-056), 2 mM Probenicid (Sigma P8761), 2mM Fluo-4AM ester (Molecular Probes F-14202), 10% Pluronic acid Molecular Probes P-3000) pH=7.4 and incubated at 37°C. After 60 minutes extracellular dye was removed and the cells were washed five times with FLIPR buffer containing HBSS (Gibco 14065-049) with 20 mM HEPES (Gibco, 15630-056), 2 mM Probenicid (Sigma P8761) pre-warmed at 37°C using and Ebml cell washer leaving 100 ml of FLIPR buffer in each well. The cell plate and the diluted compounds (1% DMSO final concentration) are placed on the platform of the FLIPR and the door closed. A signal test to check background fluorescence and basal fluorescence signal is performed. Laser intensity is adjusted if necessary. Two minutes preincubation with the diluted test compounds is provide to determine any agonist activity on the M1 receptor by comparison to 30 nM Acetylcholine control. In order to determine any modulator activity the diluted compounds were added to cells and after two minutes preincubation, the EC₂₀ of acetylcholine is added followed by another two minutes preincubation before the measurement of intracellular Ca²⁺ with a FLIPR (Molecular Devices).

Table with activity data

Example	hM1 EC ₅₀ / ratM1 EC ₅₀	Example	hM1 EC ₅₀ / ratM1 EC ₅₀	Example	hM1 EC ₅₀ / ratM1 EC ₅₀
1	0.00564/ 0.06265	58	0.17359/ 10	114	0.017/ 0.015
2	0.03897/ 0.20758	59	0.00433/ 0.00435	115	0.05/ 0.028
3	0.02518/ 0.09056	60	0.10092/ 0.18255	116	0.074/ 0.32

4	0.29451/ 1.29408	61	0.34281/ 0.51525	117	0.014/ 0.029
5	0.08375/ 0.23056	62	0.43262/ 0.56325	118	0.009/ 0.029
6	0.07002/ 0.14723	63	0.01955/ 0.05425	119	0.006/ 0.012
7	0.07002/ 0.14723	64	0.0547/ 0.07993	120	0.015/ 0.032
8	0.27812/ 0.4268	65	0.03236/ 0.05995	121	0.006/ 0.017
9	0.36503/ 0.41052	66	0.21649/ 0.41204	122	0.062/ 0.154
10	0.25567/ 0.39796	67	0.08278/ 0.18328	123	0.364/ 0.68
11	0.41296/ 0.61775	68	0.26659/ 0.18163	124	0.011/ 0.024
12	0.12931/ 0.39801	69	0.34401/ -	125	0.166/ 0.623
13	0.19182/ 0.24956	70	0.10203/ 0.28411	126	0.019/ 0.051
14	0.12088/ 0.19809	71	0.00592/ 0.01202	127	0.019/ 0.026

15	0.01243/ 0.00961	72	0.0428/ 0.133	128	0.289/ 1.238
16	0.23702/ 0.3368	73	0.0658/ 0.0943	129	0.027/ 0.066
17	0.1004/ 0.1694	74	0.0548/ 0.0489	130	0.034/ 0.058
18	0.06116/ 0.18456	75	0.0401/ 0.046	131	0.036/ 0.152
19	0.22859/ 0.57922	76	0.00433/ 0.00435	132	0.003/ 0.022
20	0.20379/ 0.42486	77	0.00221/ 0.00247	133	0.048/ 0.084
21	0.06054/ 0.175	78	0.522/ 0.728	134	0.025/ 0.076
22	0.01776/ 0.06046	79	0.0168/ 0.0256	135	0.097/ 0.384
23	0.01495/ 0.02579	80	0.11/ 0.263	136	0.134/ 0.428
24	0.04629/ 0.08446	81	0.351/ -	137	0.009/ 0.034
25	0.35873/ -	82	0.435/ -	138	0.016/ 0.038

26	0.08061/ 0.20053	83	0.184/ 0.16	139	0.423/ 2.627
27	0.05596/ 0.08072	84	0.182/ 0.169	140	0.103/ 0.518
28	0.27196/ -	85	0.0429/ -	141	0.155/ 0.453
29	0.22564/ -	86	0.00691/ 0.013	142	0.075/ 0.21
30	0.01324/ 0.01411	87	0.0734/ 0.12	143	0.409/ 1.072
31	0.09063/ 0.16046	88	0.0143/ 0.0158	144	0.07/ 0.172
32	0.1047/ 0.22344	89	0.319/ -	145	0.017/ 0.036
33	0.10375/ 0.22165	90	0.341/ -	146	0.002/ 0.005
34	0.34213/ -	91	0.0249/ -	147	0.197/ 0.323
35	0.22606/ -	92	0.035/ 0.057	148	0.084/ 0.139
36	0.01546/ 0.02591	93	0.191/ 1.881	149	0.438/ 0.348

37	0.04381/ 0.03954	94	0.066/ 0.141	150	0.05/ 0.034
38	0.13074/ 0.38163	95	0.027/ 0.05	151	0.194/ 0.299
39	0.20524/ -	96	0.028/ 0.073	152	0.26/ 0.609
40	0.47648/ -	97	0.465/ 1.886	153	0.056/ 0.056
41	0.21875/ 0.45572	98	0.032 0.134	154	0.272/ 0.837
42	0.11046/ 0.20003	99	0.054/ 0.195	155	0.011/ 0.005
43	0.48838/ 0.63158	100	0.004/ 0.015	156	0.003/ 0.01
44	0.006/ 0.0098	101	0.014/ 0.042	157	0.095/ 0.117
45	0.03613/ 0.07408	102	0.029/ 0.088	158	0.023/ 0.061
46	0.0103/ 0.02216	103	0.007/ 0.032	159	0.02/ 0.047
47	0.11766/ 0.39292	104	0.165/ 0.196	160	0.196/ -

48	0.25074/ 0.52781	105	0.288/ 0.627	161	0.121/ 0.307
49	0.04448/ 0.05247	106	0.189/ 0.187	162	0.214/ 0.751
50	0.01831/ 0.01388	107	0.482/ 0.767	163	0.059/ 0.082
51	0.01228/ 0.01116	108	0.414/ 0.952	164	0.048/ 0.088
52	0.01786/ 0.027	109	0.061/ 0.079	165	0.043/ -
53	0.04414/ 0.04752	110	0.141/ 0.482	166	0.035/ -
54	0.06964/ 0.1218	111	0.127/ 0.408	167	0.047/ -
55	0.00211/ 0.00282	112	0.072/ 0.168	168	0.097/ -
56	0.13603/ 0.28466	113	0.034/ 0.077		
57	0.13923/ -				

The 168 compounds of formula (I) and pharmaceutically acceptable salts thereof can be used as medicaments, e.g. in the form of pharmaceutical preparations. The pharmaceutical preparations

can be administered orally, e.g. in the form of tablets, coated tablets, dragees, hard and soft gelantine capsules, solutions, emulsions or suspensions. However, the administration can also be effected rectally, e.g. in the form of suppositories, or parenterally, e.g. in the form of injection solutions.

5 The compounds of formula (I) and pharmaceutically acceptable salts thereof can be processed with pharmaceutically inert, inorganic or organic carriers for the production of pharmaceutical preparations. Lactose, corn starch or derivatives thereof, talc, stearic acid or its salts and the like can be used, for example, as such carriers for tablets, coated tablets, dragees and hard gelantine capsules. Suitable carriers for soft gelantine capsules are, for example, 10 vegetable oils, waxes, fats, semi-solid and liquid polyols and the like; depending on the nature of the active substance no carriers are, however, usually required in the case of soft gelantine capsules. Suitable carriers for the production of solutions and syrups are, for example, water, polyols, sucrose, invert sugar, glucose and the like. Adjuvants, such as alcohols, polyols, glycerol, vegetable oils and the like, can be used for aqueous injection solutions of water-soluble 15 salts of compounds of formula (I), but as a rule are not necessary. Suitable carriers for suppositories are, for example, natural or hardened oils, waxes, fats, semi-liquid or liquid polyols and the like.

20 In addition, the pharmaceutical preparations can contain preservatives, solubilizers, stabilizers, wetting agents, emulsifiers, sweeteners, colorants, flavorants, salts for varying the osmotic pressure, buffers, masking agents or antioxidants. They can also contain still other 25 therapeutically valuable substances.

As mentioned earlier, medicaments containing a compound of formula (I) or pharmaceutically acceptable salts thereof and a therapeutically inert excipient are also an object of the present invention, as is a process for the production of such medicaments which comprises 25 bringing one or more compounds of formula (I) or pharmaceutically acceptable salts thereof and, if desired, one or more other therapeutically valuable substances into a galenical dosage form together with one or more therapeutically inert carriers.

As further mentioned earlier, the use of the compounds of formula (I) for the preparation of medicaments useful in the prevention and/or the treatment of the above recited diseases is also an 30 object of the present invention.

The dosage can vary within wide limits and will, of course, be fitted to the individual requirements in each particular case. In general, the effective dosage for oral or parenteral administration is between 0.01-20 mg/kg/day, with a dosage of 0.1-10 mg/kg/day being preferred for all of the indications described. The daily dosage for an adult human being 5 weighing 70 kg accordingly lies between 0.7-1400 mg per day, preferably between 7 and 700 mg per day.

Pharmaceutical compositions comprising compounds of the invention:

Tablet Formulation (Wet Granulation)

<u>Item</u>	<u>Ingredients</u>	mg/tablet			
10		5 mg	25 mg	100 mg	500
	mg				
1.	Compound of formula I	5	25	100	500
2.	Lactose Anhydrous DTG	125	105	30	150
3.	Sta-Rx 1500	6	6	6	30
15	4. Microcrystalline Cellulose	30	30	30	150
	5. Magnesium Stearate	1	1	1	1
	Total	167	167	167	831

Manufacturing Procedure

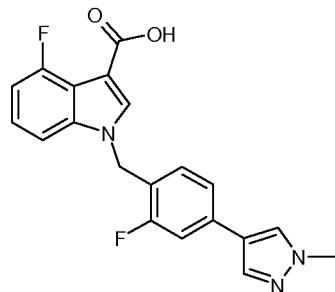
1. Mix items 1, 2, 3 and 4 and granulate with purified water.
- 20 2. Dry the granules at 50°C.
3. Pass the granules through suitable milling equipment.
4. Add item 5 and mix for three minutes; compress on a suitable press.

Capsule Formulation

Item	Ingredients	mg/capsule			
		5 mg	25 mg	100 mg	500
mg					
5	1. Compound of formula I	5	25	100	500
	2. Hydrous Lactose	159	123	148	—
	3. Corn Starch	25	35	40	70
	4. Talc	10	15	10	25
	5. Magnesium Stearate	1	2	2	5
10	Total	200	200	300	600

Manufacturing Procedure

1. Mix items 1, 2 and 3 in a suitable mixer for 30 minutes.
2. Add items 4 and 5 and mix for 3 minutes.
3. Fill into a suitable capsule.


15

Experimental part

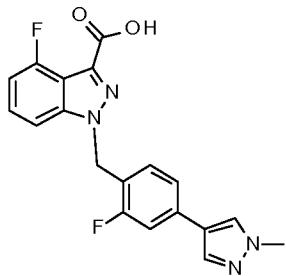
Preparation of intermediates

Example A.1

4-Fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxylic acid

20 Step 1 :Methyl 4-fluoro- 1-(2-fluoro-4-(1-methyl- 1H-pyrazol-4-yl)benzyl)- 1H-indole-3-carboxylate

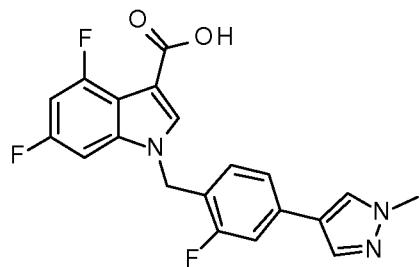
A suspension of methyl 4-fluoro- 1H-indole-3-carboxylate (150 mg, 777 μmol) in N,N-dimethylformamide (2 ml) was cooled in ice-bath. Sodium hydride 60% dispersion in oil (37.3 mg, 932 μmol) was added at once. The mixture was stirred at 0°C for 15 minutes. 4-(4-


(chloromethyl)-3-fluorophenyl)-1-methyl-1H-pyrazole (example B.2) (174 mg, 777 μmol) was added at once. The mixture was stirred at 0°C for 1 hour, quenched with a 20% ammonium chloride solution, diluted with water and extracted with ethyl acetate. The combined extracts were dried over sodium sulfate, filtered and concentrated in vacuo. The crude oil was purified with a flash column chromatography on silica (10 g) eluting with a gradient formed from n-heptane and ethyl acetate (0 to 100 %) to provide 208 mg (70 %) of the title compound as a light brown solid. MS (m/e): 382.5 (M+H)⁺.

Step 2: 4-Fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxylic acid

To a solution of methyl 4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxylate (195.9 mg, 514 μmol) in THF (1.6 ml), MeOH (0.8 ml) and water (0.8 ml) was added lithium hydroxide monohydrate (64.7 mg, 1.54 mmol). The mixture was stirred at room temperature for 1 hr, then heated to 50°C for 5 hrs and finally stirred at room temperature for 2 days. The mixture was diluted with water and the solvent was evaporated in vacuo. The residue was taken up in water and HCl 2N was added dropwise to adjust the pH to 2-3. The solid was filtered and dried to provide the title compound (170 mg, 90 %) as a white solid. MS (m/e): 366.2 (M-H)⁻.

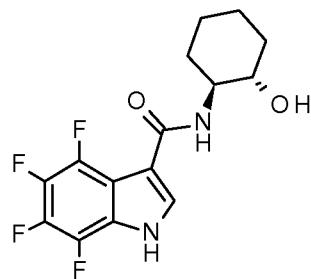
Example A.2


4-Fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indazole-3-carboxylic acid

In analogy to the procedures described for the synthesis of example A.1, the title compound was prepared from methyl 4-fluoro-1H-indazole-3-carboxylate (CAS 1427504-03-7) and 4-(4-(chloromethyl)-3-fluorophenyl)-1-methyl-1H-pyrazole (example B.2) White solid. MS (m/e): 369.4 (M+H)⁺.

Example A.3

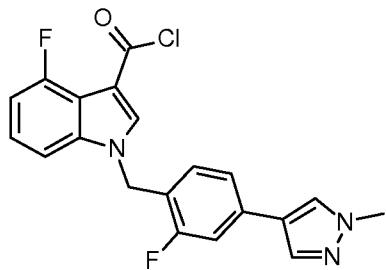
25 4,6-Difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxylic acid



In analogy to the procedures described for the synthesis of example A.1, the title compound was prepared from ethyl 4,6-difluoro-1H-indole-3-carboxylate and 4-(4-(chloro-methyl)-3-fluorophenyl)-1-methyl-1H-pyrazole (example B.2). White solid. MS (m/e): 386.4 (M+H)⁺.

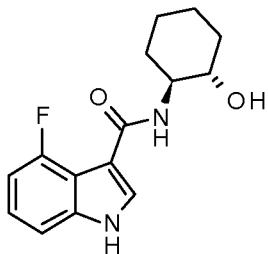
5

Example A.4


4,5,6,7-Tetrafluoro-1H-indole-3-carboxylic acid ((1S,2S)-2-hydroxy-cyclohexyl)-amide

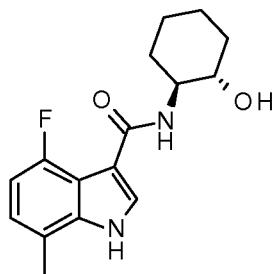
In a 10 mL pear-shaped flask, 4,5,6,7-tetrafluoro-1H-indole-3-carboxylic acid (200 mg, 815 μmol), (1S,2S)-(+)-2-aminocyclohexanol hydrochloride (136 mg, 897 μmol) and (1H-10 benzo[d][1,2,3]triazol-1-yl)tris(dimethylamino)phosphonium hexafluorophosphate(V) (469 mg, 1.1 mmol) were combined with CH₂Cl₂ (4.9 ml) and triethylamine (330 mg, 452 μl, 3.26 mmol) to give an off-white suspension. The reaction mixture was stirred at r.t. for 2 days. The reaction mixture diluted with H₂O and extracted with CH₂Cl₂. The aqueous layer extracted with EtOAc. This organic layer was dried over MgSO₄, filtrated and concentrated to give the title 15 compound (390 mg, 70% pure) as an off-white solid. MS (m/e): 331.4 (M+H)⁺.

Example A.5

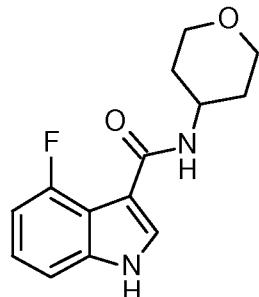

4-Fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carbonyl chloride

To a solution of 4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxylic acid (Example A.1) (200 mg, 544 μ mol) in dichloroethane (2 ml) under nitrogen at room temperature, was added 1 drop of N,N-dimethylformamide, followed by oxalyl chloride 5 (212 mg, 143 μ l, 1.63 mmol). The reaction mixture was stirred at room temperature for 3.5 hours. The mixture was evaporated to dryness to provide the title compound (222 mg, 106 %) as an off-white solid.

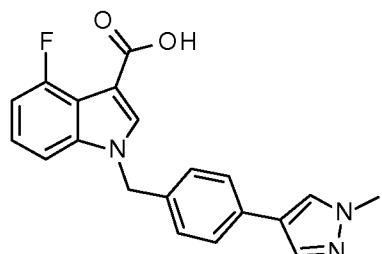
Example A.6


4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

10


To a stirred suspension of 4-fluoro-1H-indole-3-carboxylic acid (1 g, 5.58 mmol; CAS 23077-42-1) at r.t. in dichloromethane (60 ml) under an argon atmosphere were added (1S,2S)-2-aminocyclohexanol hydrochloride (931 mg, 6.14 mmol), BOP (2.96 g, 6.7 mmol) and triethylamine (2.26 g, 3.1 ml, 22.3 mmol). The resulting light brown solution was stirred at r.t. 15 for 17 hrs. The mixture was concentrated and the residue was purified by silica gel chromatography (50 g) chromatography using a $\text{CH}_2\text{Cl}_2/\text{MeOH}$ 9:1 gradient as eluent. The product-containing fractions were combined and concentrated to leave a viscous oil. It was triturated in $\text{CH}_2\text{Cl}_2/\text{n-heptane}$ 3:2 (25 ml). The resulting suspension was stirred at r.t. for 1 hr. The product was collected by filtration, washed with a 1:1 mixture of CH_2Cl_2 and n-heptane, and 20 dried to give the title compound (1.2 g, 75%) as an off-white solid. MS (m/e): 275.3 ($\text{M}-\text{H}$)⁻

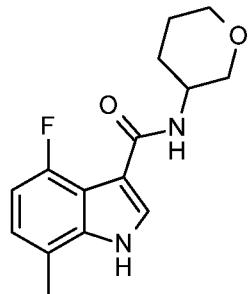
-50-


Example A.7**4-Fluoro-7-methyl-1H-indole-3-carboxylic acid ((1S,2S)-2-hydroxy-cyclohexyl)-amide**

In analogy to the procedure described for the synthesis of example A.6, the title compound was

5 prepared from 4-fluoro-7-methyl-1H-indole-3-carboxylic acid and (1S,2S)-(+)-2-amino-cyclohexanol hydrochloride. White solid.

Example A.8**4-Fluoro-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide**

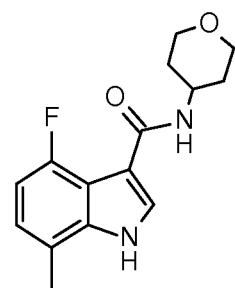

10 In analogy to the procedure described for the synthesis of example A.6, the title compound was prepared from 4-fluoro-1H-indole-3-carboxylic acid (CAS 23077-42-1) and tetrahydro-2H-pyran-4-amine. White solid. MS (m/e): 263.2 (M+H)⁺.

Example A.9**4-Fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxylic acid**

In analogy to the procedures described for the synthesis of example A.1, the title compound was prepared from methyl 4-fluoro-1H-indole-3-carboxylate and 4-(4-(chloromethyl)phenyl)-1-methyl-1H-pyrazole (example B.5). Off-white solid. MS (m/e): 350.6 (M+H)⁺.

Example A.10

5 **4-Fluoro-7-methyl-1H-indole-3-carboxylic acid (tetrahydro-pyran-3-yl)-amide**

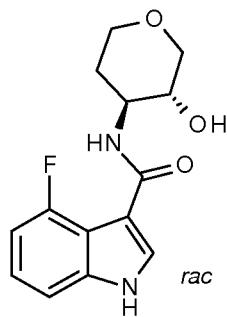


In analogy to the procedure described for the synthesis of example A.6, the title compound was prepared from 4-fluoro-7-methyl-1H-indole-3-carboxylic acid and tetrahydro-pyran-3-ylamine. Light yellow solid.

10

Example A.11

4-Fluoro-7-methyl-1H-indole-3-carboxylic acid (tetrahydro-pyran-4-yl)-amide



In analogy to the procedure described for the synthesis of example A.6, the title compound was prepared from 4-fluoro-7-methyl-1H-indole-3-carboxylic acid and tetrahydro-pyran-4-ylamine.

15 White foam. MS (m/e): 277.2 (M+H)⁺.

Example A.12

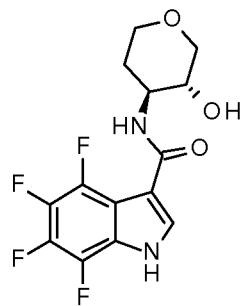
4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

Step 1 : 4-Fluoro-N-((3RS,4SR)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

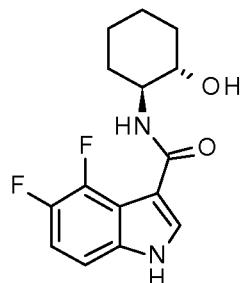
In analogy to the procedure described for the synthesis of example A.6, the title compound was prepared from methyl 4-fluoro-1H-indole-3-carboxylate and (3RS,4SR)-4-aminotetrahydro-2H-

5 pyran-3-ol (CAS 215940-92-4). Light yellow solid. MS (m/e): 279.4 (M+H)⁺.

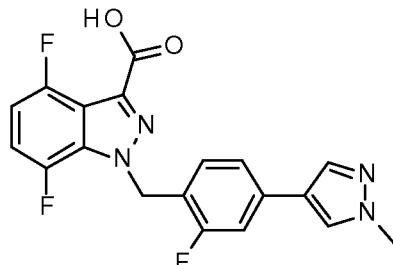
Step 2: 4-Fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide


4-Fluoro-N-((3RS,4SR)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (310 mg,

1.1 mmol) was separated on a Reprosil Chiral NR column to provide 136 mg (44%) of the title


10 compound as an off-white solid (+ enantiomer). MS (m/e): 279.4 (M+H)⁺.

Example A.13


4,5,6,7-Tetrafluoro-1H-indole-3-carboxylic acid ((3RS,4SR)-3-hydroxy-tetrahydro-pyran-4-yl)-amide

15 In analogy to the procedure described for the synthesis of example A.6, the title compound was prepared from 4,5,6,7-tetrafluoro-1H-indole-3-carboxylic acid and (3RS,4SR)-4-amino-tetrahydro-2H-pyran-3-ol (CAS 215940-92-4). White solid.

Example A.14**4,5-Difluoro-1H-indole-3-carboxylic acid ((1S,2S)-2-hydroxy-cyclohexyl)-amide**

In analogy to the procedure described for the synthesis of example A.6, the title compound was
 5 prepared from 4,5-difluoro-1H-indole-3-carboxylic acid and (1S,2S)-(+)-2-aminocyclohexanol hydrochloride. Light brown solid.

Example A.15**4,7-Difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indazole-3-carboxylic acid**

10

Step 1: 4,7-Difluoro-1H-indazole-3-carboxylic acid

A solution of 4,7-difluoroindoline-2,3-dione (2.0 g, 10.9 mmol) in 1N NaOH (11.8 ml) was stirred at 50°C for 30 mins. The solution was allowed to cool to r.t. and maintained for 1hr. The reaction mixture was cooled to 0°C and treated with a pre-cooled (0°C) solution of sodium nitrite 15 (754 mg in 2.8 ml H₂O). This solution was added to a stirred solution of H₂SO₄ (1.2 ml in 22 ml H₂O) at 0°C and the reaction mixture was maintained at that temperature for 30 min. A cold (0°C) solution of SnCl₂ (5.9 g, 26.2 mmol) in concentrated HCl (4.2 ml) was slowly added to the reaction mixture within 10 min; and the reaction mixture was maintained for 60 min. The reaction mixture was extracted with 15% MeOH/CH₂Cl₂. Evaporation of the solvent provided 20 the title compound as a brown sticky solid (600 mg, 55%) which was used in the next step without purification.

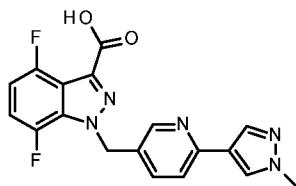
Step 2: Methyl 4,7-difluoro-1H-indazole-3-carboxylate

A solution of 4,7-difluoro-1H-indazole-3-carboxylic acid (4.5 g, 22.7 mmol) in MeOH (45 ml) was treated with H₂SO₄ (0.41 ml) and stirred at 50°C over night. After completion of the reaction, the reaction mixture was concentrated. The crude product was purified by silica gel

5 chromatography using 15% EtOAc in hexane as eluent to provide the title compound as an off-white solid (500 mg, 10%).

Step 3: Methyl 4,7-difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indazole-3-carboxylate

To a stirred solution of methyl 4,7-difluoro-1H-indazole-3-carboxylate (250 mg, 1.2 mmol) at 10 0°C in DMF (3.00 ml) under an argon atmosphere was added sodium hydride 60% dispersion in mineral oil (47.1 mg, 1.2 mmol) in one portion. After stirring for 15 min at 0°C, 4-(4-

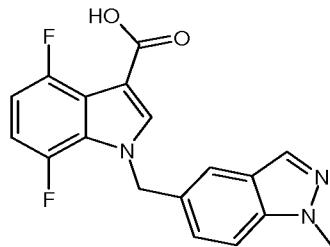

chloromethyl)-3-fluorophenyl)-1-methyl-1H-pyrazole (example B.2; 265 mg, 1.2 mmol) was added in one portion. The ice bath was removed, and stirring at r.t. was continued for 17 hrs.

The reaction mixture was taken up in H₂O (10 ml) and sat. aq. NaCl (10 ml) and extracted with 15 EtOAc. The aqueous phase was back-extracted with EtOAc (10 ml). The combined organics were washed with water (20 ml) and brine (20 ml), dried over MgSO₄, filtered and concentrated. The crude product was purified by silica gel chromatography using a EtOAc/heptane gradient as eluent providing the title compound (251 mg, 53 mg) as yellow solid, along with its regioisomer (103 mg, 22 mg) methyl 4,7-difluoro-2-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-2H-

20 indazole-3-carboxylate. MS (m/e): 401.1 (M+H)⁺.

Step 4: 4,7-Difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indazole-3-carboxylic acid

To a stirred solution of methyl 4,7-difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indazole-3-carboxylate (246mg, 614 μmol) at r.t. in THF (2 ml) and methanol (1 ml) under 25 an argon atmosphere were added water (1.7 ml) and 1 N NaOH (1.23 ml, 1.23 mmol). Stirring at r.t. was continued for 17 hrs. The mixture (clear orange solution) was treated with 1 N HCl (1.2 ml). The light yellow suspension was stirred at r.t. for 1 hr. The solid was collected by filtration, washed with H₂O and dried to provide the title compound (221 mg, 93%) as light yellow solid. MS (m/e): 385.1 (M-H)⁻.



The title compound was prepared in analogy to the procedures described in example A.15, using 5-(chloromethyl)-2-(1-methyl-1H-pyrazol-4-yl)pyridine (example B.1) as alkylating agent in the 3rd step. Off-white solid. MS (m/e): 368.2

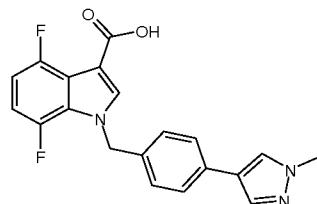
5

Example A.17

4,7-Difluoro-1-((1-methyl-1H-indazol-5-yl)methyl)-1H-indole-3-carboxylic acid

Step 1: Methyl 4,7-difluoro-1-((1-methyl-1H-indazol-5-yl)methyl)-1H-indole-3-carboxylate

The title compound was obtained in analogy to the procedure described in example 26, reacting 10 methyl 4,7-difluoro-1H-indole-3-carboxylate and 5-(bromomethyl)-1-methyl-1H-indazole hydrobromide. White solid. MS (m/e): 356.5 (M+H)⁺.

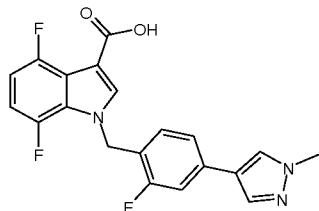

Step 2: 4,7-Difluoro-1-((1-methyl-1H-indazol-5-yl)methyl)-1H-indole-3-carboxylic acid

The title compound was obtained in analogy to the procedure described in example A.1, step 2. White solid. MS (m/e): 342.5 (M+H)⁺.

15

Example A.18

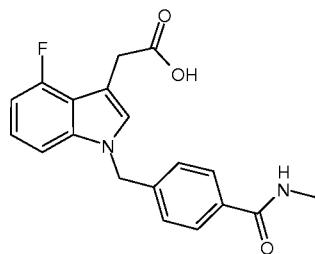
4,7-Difluoro-1-((4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxylic acid



In analogy to the procedures described for the synthesis of example A.17, the title compound was prepared from methyl 4,7-difluoro-1H-indole-3-carboxylate and 4-(4-(chloromethyl)phenyl)-1-methyl-1H-pyrazole (example B.5). White solid. MS (m/e): 368.5 (M+H)⁺.

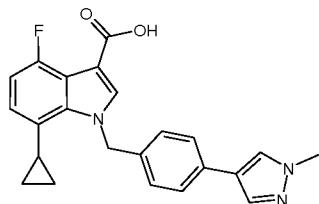
5

Example A.19


4,7-Difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxylic acid

In analogy to the procedures described for the synthesis of example A.17, the title compound was prepared from methyl 4,7-difluoro-1H-indole-3-carboxylate and 4-(4-(chloromethyl)-3-fluorophenyl)-1-methyl-1H-pyrazole (example B.2). White solid. MS (m/e): 386.5 (M+H)⁺.

Example A.20


2-(4-Fluoro-1-(4-(methylcarbamoyl)benzyl)-1H-indol-3-yl)acetic acid

In analogy to the procedures described for the synthesis of example A.17, the title compound was prepared from ethyl 2-(4-fluoro-1H-indol-3-yl)acetate (CAS 919295-78-6) and 4-(chloromethyl)-N-methylbenzamide (example B.6). Brown solid. MS (m/e): 341.2 (M+H)⁺.

Example A.21

7-Cyclopropyl-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxylic acid

5 Step 1: 1-(7-Bromo-4-fluoro- 1H-indol-3-yl)-2,2,2-trifluoro-ethanone

To a solution of 7-bromo-4-fluoro-1H-indole (23 g, 107.4 mmol) in DMF (220 ml) under nitrogen at room temperature was added trifluoro acetic anhydride (29.8 ml, 214.95 mmol). The reaction mixture was stirred at 40°C for 8 hours, cooled to room temperature, diluted with water (250 ml) and extracted with ethyl acetate (2x500 ml). The combined organic layers were washed with brine (250 ml), aqueous sodium carbonate solution (200 ml) and dried over sodium sulfate, filtered and concentrated. The residue was purified with flash column chromatography on silica eluting with 15% ethyl acetate in hexane to provide 20 g (60 %) of the title compound as an off-white solid. LC-MS (ESI): 310 (M).

Step 2: 7-Bromo-4-fluoro-1H-indole-3-carboxylic acid

15 To a solution of 1-(7-bromo-4-fluoro-1H-indol-3-yl)-2,2,2-trifluoro-ethanone (5 g, 16.12 mmol) in methanol (60 ml) and water (60 ml) under nitrogen at room temperature was added NaOH (9.6 g, 241.93 mmol). The mixture was stirred at 140°C for 16 hours, cooled to room temperature and concentrated. The residue was diluted with water (150 ml) and washed with ethyl acetate (100 ml). The aqueous layer was treated with 50% aqueous HC1 until pH~4 and extracted with ethyl acetate (2x 200 ml). The combined organics were washed with brine (100 ml) and aqueous sodium carbonate solution (100 ml), dried over sodium sulfate, filtered and concentrated to provide the title compound as a off white-solid (2.3 g, 55 %). LC-MS (ESI): 256 (M-H)⁻.

Step 3: Methyl 7-bromo-4-fluoro-1H-indole-3-carboxylate

25 HC1 gas was bubbled through a solution of 7-bromo-4-fluoro-1H-indole-3-carboxylic acid (11.2 g, 43.4 mmol) in methanol (200 ml) at room temperature for 30 min. The reaction mixture was then stirred at 60°C for 16 hours and concentrated. The residue was diluted with water (200 ml)

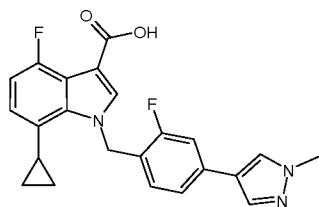
and extracted with ethyl acetate (2x 500 ml). The combined organics were washed with brine (250 ml) and aqueous sodium carbonate solution (250 ml), dried over sodium sulfate, filtered and concentrated. The residue was purified with flash column chromatography on silica eluting with 20% ethyl acetate in hexane to provide the title compound as a brown solid (7.1 g, 60 %).

5 LC-MS (ESI): 271 (M-H)⁻.

Step 4: Methyl 7-cyclopropyl-4-fluoro-1H-indole-3-carboxylate

To a solution of 7-bromo-4-fluoro-1H-indole-3-carboxylic acid methyl ester (4.5 g, 16.5 mmol) in toluene (200 ml) were added cyclopropyl boronic acid (2.8 g, 33.08 mmol), tricyclohexylphosphine (0.232 g, 0.827 mmol), and K₃PO₄ (7.01 g, 33.08 mmol). The reaction 10 mixture was purged with argon for 20 min. Pd(OAc)₂ (0.371 g, 1.65 mmol) was added and the mixture was purged with argon for another 10 min. The reaction mixture was then heated to 100°C and stirred at this temperature for 16 hours in a sealed tube. The mixture was cooled to room temperature and filtered through a celite pad which was washed with EtOAc (100 ml). Water (200 ml) was added to the filtrate. The aqueous layer was extracted with EtOAc (3x 200 15 ml). The combined organics were washed with water (100 ml) and brine (100 ml), dried over Na₂SO₄ and concentrated. The residue was purified with flash column chromatography on silica eluting with 20% ethyl acetate in hexane to provide the title compound as a grey solid (2.3 g, 60 %). LC-MS (ESI): 234 (M+H)⁺.

Step 5: 7-Cyclopropyl-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxylic

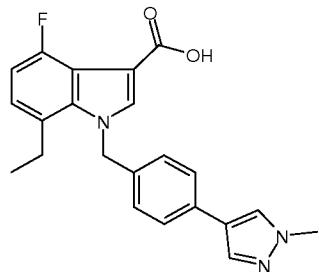

20 acid

In analogy to the procedures described for the synthesis of example A.17, the title compound was prepared from methyl 7-cyclopropyl-4-fluoro-1H-indole-3-carboxylate and 4-(4-(chloromethyl)phenyl)-1-methyl-1H-pyrazole (example B.5). Off-white solid. MS (m/e): 388.3 (M-H)⁻.

25

Example A.22

7-Cyclopropyl-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxylic acid



In analogy to the procedures described for the synthesis of example A.21, the title compound was prepared from methyl 7-cyclopropyl-4-fluoro-1H-indole-3-carboxylate and 4-(4-chloromethyl)-3-fluorophenyl-1-methyl-1H-pyrazole (example B.2). Off-white solid. MS

5 (m/e): 406.2 (M-H)⁻.

Example A.23

7-Ethyl-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxylic acid

Step 1: Methyl 4-fluoro-7-vinyl-1H-indole-3-carboxylate

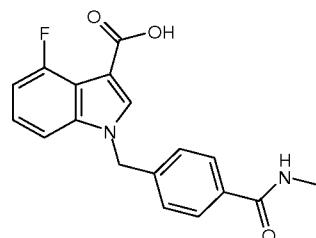
10 To a solution of methyl 7-bromo-4-fluoro-1H-indole-3-carboxylate (example A.21, step 3) (1.0 g, 3.68 mmol) and 4,4,5,5-tetramethyl-2-vinyl-[1,3,2]dioxaborolane (1.13 g, 7.35 mmol) at room temperature in 1,4-dioxane (30 ml) and water (3 ml) was added CS₂CO₃ (2.39 g, 7.35 mmol) and the mixture was purged with argon for 10 min. [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II) dichloromethane adduct (0.08 g, 0.37 mmol) was added and the reaction mixture was purged with argon for another 10 min. The reaction mixture was then heated to 80°C and stirred at this temperature for 16 hours under argon. The reaction mixture was cooled to room temperature, filtered through a celite pad which was washed with EtOAc (50 ml). The filtrate was diluted with water (100 ml) and extracted with EtOAc (2x100 ml). The combined organics were washed with water (50 ml) and brine (50 ml), dried over Na₂SO₄ and concentrated. The residue was purified with flash column chromatography on silica eluting with

20

20% ethyl acetate in hexane to provide the title compound as a white solid (500 mg, 62 %). LC-MS (ESI): 220 (M+H)⁺.

Step 2: Methyl 7-ethyl-4-fluoro-1H-indole-3-carboxylate

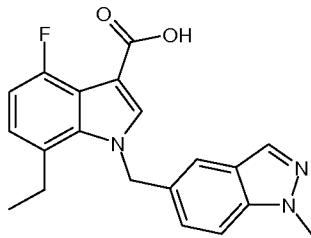
A mixture of methyl 4-fluoro-7-vinyl-1H-indole-3-carboxylate (500 mg, 2.28 mmol) and 10% palladium on activated charcoal (4 mg, 0.039 mmol) in methanol (10 ml) was stirred for 4 hours at room temperature under hydrogen atmosphere (balloon pressure). The palladium catalyst was filtered off and the filtrate was concentrated. The residue was purified with flash column chromatography on silica eluting with 20% ethyl acetate in hexane to provide the title compound as an off-white solid (450 mg, 89 %). LC-MS (ESI): 220 (M-H)⁻.


10 Step 3: 7-Ethyl-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxylic acid

In analogy to the procedures described for the synthesis of example A.17, the title compound was prepared from methyl 7-ethyl-4-fluoro-1H-indole-3-carboxylate and 4-(4-(chloromethyl)phenyl)-1-methyl-1H-pyrazole (example B.5). White solid. MS (m/e): 378.2 (M+H)⁺.

15

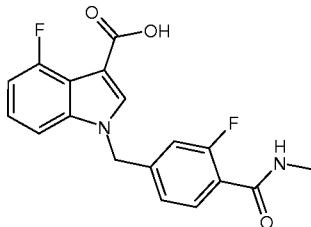
Example A.24


4-Fluoro-1-[4-(methylcarbamoyl) phenyl] methyl-1H-indole-3-carboxylic acid

In analogy to the procedures described for the synthesis of example A.17, the title compound was prepared from methyl 4-fluoro-1H-indole-3-carboxylate and 4-(chloromethyl)-N-methylbenzamide (example B.6). Off-white solid. LC-MS (ESI): 327.0 (M+H)⁺.

Example A.25

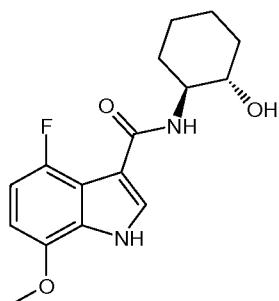
7-Ethyl-4-fluoro-1-((1-methyl-1H-indazol-5-yl)methyl)-1H-indole-3-carboxylic acid



In analogy to the procedures described for the synthesis of example A.17, the title compound was prepared from methyl 7-ethyl-4-fluoro-1H-indole-3-carboxylate and 5-(bromomethyl)-1-methyl-1H-indazole hydrobromide. White solid. MS (m/e): 355.2 (M+H)⁺.

5

Example A.26


4-Fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-1H-indole-3-carboxylic acid

In analogy to the procedures described for the synthesis of example A.17, the title compound was prepared from methyl 4-fluoro-1H-indole-3-carboxylate and 4-(chloromethyl)-2-fluoro-N-10 methylbenzamide (example B.7). Off-white solid. MS (m/e): 345.1 (M+H)⁺.

Example A.27

4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-7-methoxy-1H-indole-3-carboxamide

To a stirred solution of (1S,2S)-2-aminocyclohexanol hydrochloride (CAS 13374-30-6) (111 mg, 15 734 μmol) at room temperature in dichloromethane (5 ml) under an argon atmosphere were

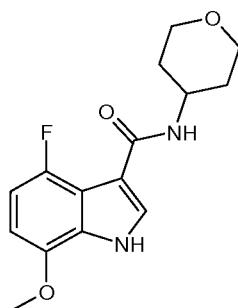

added 4-fluoro-7-methoxy-1*H*-indole-3-carboxylic acid (150 mg, 667 μmol), (benzotriazol-1-yl)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) (354 mg, 800 μmol) and triethylamine (270 mg, 370 μl, 2.67 mmol). Stirring at r.t. was continued for 17 hours. The reaction mixture was concentrated and the residue was purified with flash column

5 chromatography on silica eluting with a gradient formed from dichloromethane and methanol (0 to 10%) to provide the title compound as an off-white solid (162 mg, 79 %). MS (m/e): 305.2 (M-H)⁻.

Example A.28

4-Fluoro-N-((3*R*,4*S*)-3-hydroxytetrahydro-2*H*-pyran-4-yl)-7-methoxy-1*H*-indole-3-carboxamide

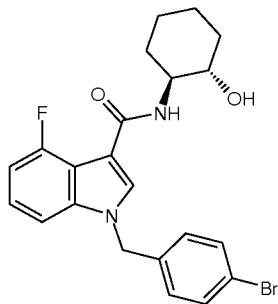
10



In analogy to the procedure described for the synthesis of example A.27, the title compound was prepared from 4-fluoro-7-methoxy-1*H*-indole-3-carboxylic acid and (3*R*,4*S*)-4-aminotetrahydropyran-3-ol hydrochloride (example C.1). Off-white solid. MS (m/e): 307.1 (M-H)⁻.

15

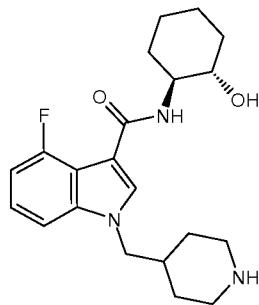
Example A.29


4-Fluoro-7-methoxy-N-(tetrahydro-2*H*-pyran-4-yl)-1*H*-indole-3-carboxamide

In analogy to the procedure described for the synthesis of example A.27, the title compound was prepared from 4-fluoro-7-methoxy-1H-indole-3-carboxylic acid and 4-aminotetrahydropyran. Off-white solid. MS (m/e): 291.2 (M-H)⁻.

Example A.30

5 **1-(4-Bromobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide**



In analogy to the procedure described for the synthesis of example A.17, step 1, the title compound was prepared from 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 1-bromo-4-(bromomethyl)benzene. White solid. MS (m/e):

10 445.3 (M+H)⁺.

Example A.31

4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(piperidin-4-ylmethyl)-1H-indole-3-carboxamide

15 Step 1: tert-Butyl 4-((4-fluoro-3-((1S,2S)-2-hydroxycyclohexylcarbamoyl)-1H-indol-1-yl)methyl)piperidine-1-carboxylate

In analogy to the procedure described for the synthesis of example A.17, step 1, the title compound was prepared from 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 4-methanesulfonyloxymethylpiperidine-1-carboxylic acid tert-butyl ester (CAS 161975-39-9). White solid. MS (m/e): 474.4 (M+H)⁺.

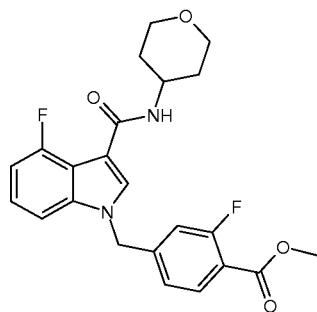
Step 2: 4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(piperidin-4-ylmethyl)-1H-indole-3-carboxamide

To a solution of tert-butyl 4-((4-fluoro-3-((1S,2S)-2-hydroxycyclohexylcarbamoyl)-1H-indol-1-yl)methyl)piperidine-1-carboxylate (200 mg, 422 μ mol) at 0°C in dioxane (5 ml) under an argon atmosphere was added HCl 4M solution in dioxane (528 μ l, 2.11 mmol). The mixture was stirred at room temperature for 5 hours. The reaction mixture was cooled again to 0°C and HCl 4M solution in dioxane (528 μ l, 2.11 mmol) was added and the mixture was stirred at room temperature for another 17 hours. The mixture was concentrated. The residue was dissolved in CH₂Cl₂/MeOH (95:5) and washed with aqueous saturated Na₂CO₃ solution. The organic layer was dried over MgSO₄, filtered and concentrated to provide the title compound as a light yellow solid (149 mg, 89%). MS (m/e): 374.3 (M+H)⁺.

Example A.32

1-((6-Bromopyridin-3-yl)methyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

15

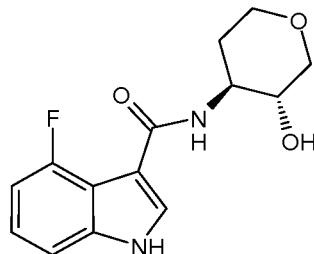


In analogy to the procedure described for the synthesis of example A.17, step 1, the title compound was prepared from 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 2-bromo-5-pyridylmethyl chloride. White solid. MS(m/e): 448.2 (M+H)⁺.

Example A.33

Methyl 2-fluoro-4-((4-fluoro-3-(tetrahydro-2H-pyran-4-ylcarbamoyl)-1H-indol-1-yl)methyl)benzoate

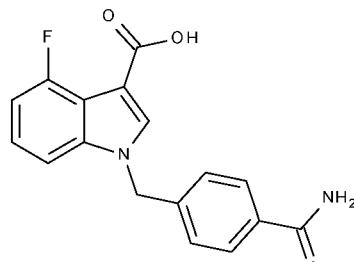
-65-



In analogy to the procedure described for the synthesis of example A.17, step 1, the title compound was prepared from 4-fluoro-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (example A.8) and methyl 4-(bromomethyl)-2-fluorobenzoate. White solid. MS (m/e): 429.3

5 (M+H)⁺.

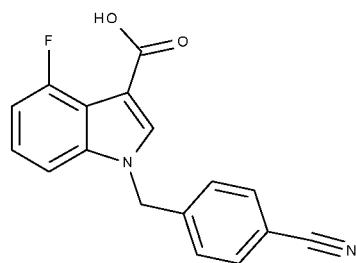
Example A.34


4-Fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

In analogy to the procedure described for the synthesis of example A.27, the title compound was
10 prepared from 4-fluoro-indole-3-carboxylic acid (CAS 23077-42-1) and (3R,4S)-4-aminotetrahydropyran-3-ol hydrochloride (example C.1). Light-yellow solid. MS (m/e): 279.1 (M+H)⁺.

Example A.35

1-(4-Carbamoyl-benzyl)-4-fluoro-1H-indole-3-carboxylic acid


15

In analogy to the procedure described for the synthesis of example A.1 (step: 1 and 2), the title compound was prepared from methyl 4-fluoro-1H-indole-3-carboxylate and 4-chloromethylbenzonitrile. MS (m/e): 313.4 (M+H)⁺.

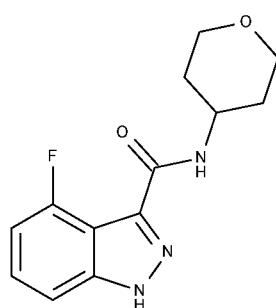
Example A.36

5

1-(4-Cyanobenzyl)-4-fluoro-1H-indole-3-carboxylic acid

Step 1: Methyl 1-(4-cyanobenzyl)-4-fluoro-1H-indole-3-carboxylate

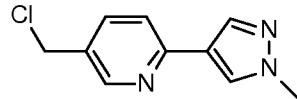
In analogy to the procedure described for the synthesis of example A.1 (step 1), the title compound was prepared from methyl 4-fluoro-1H-indole-3-carboxylate and 4-chloromethylbenzonitrile.


10

Step 2: 1-(4-Cyanobenzyl)-4-fluoro-1H-indole-3-carboxylic acid

In a sealed tube, methyl 1-(4-cyanobenzyl)-4-fluoro-1H-indole-3-carboxylate (187 mg, 607 μmol) and lithium iodide (812 mg, 6.1 mmol) were combined with pyridine (8.7 ml). The reaction mixture was stirred at 135°C for 19 hrs, then treated with water and HCl 2N. The precipitate was filtered, washed with water and dried to provide 85 mg (48%) of the title compound as an off white solid. MS (m/e): 295.4 (M+H)⁺.

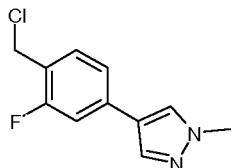
Example A.37


4-Fluoro-N-tetrahydropyran-4-yl-1H-indazole-3-carboxamide

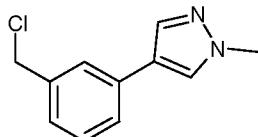
In analogy to the procedure described for the synthesis of example A.6, the title compound was prepared from 4-fluoro-1H-indazole-3-carboxylic acid and tetrahydro-pyran-4-ylamine. MS (m/e): 264.4 (M+H)⁺.

Example B.1

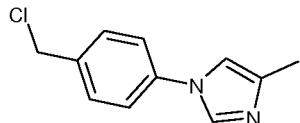
5-(Chloromethyl)-2-(1-methyl-1H-pyrazol-4-yl)pyridine


Step 1: (6-(1-Methyl-1H-pyrazol-4-yl)pyridine-3-yl)methanol

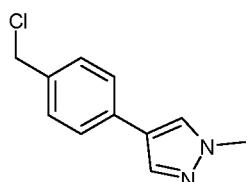
To a solution of (6-chloropyridin-3-yl)methanol (1 g, 6.8 mmol) in dioxane (20 ml) under nitrogen at room temperature was added 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (2.16 g, 10.2 mmol) followed by [1,1'-bis(diphenylphosphino)ferrocene] dichloropalladium(II) dichloromethane adduct (276 mg, 341 μ mol). A solution of sodium carbonate (2.17 g, 20.5 mmol) in water (16 ml) was added to the mixture. The reaction mixture was stirred at 80°C for 1 hour and cooled to room temperature. Ethyl acetate (20 ml) and water (10 ml) were added. The aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate and concentrated. The crude brown solid was purified with flash column chromatography on silica eluting with a gradient formed from n-heptane and ethyl acetate (0 to 100%) to provide 1 g (77%) of the title compound as a grey solid. MS (m/e): 190.2 (M+H)⁺.


Step 2: 5-(Chloromethyl)-2-(1-methyl-1H-pyrazol-4-yl)pyridine

To a 0°C solution of (6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methanol (1 g, 5.3 mmol) in dichloromethane (30 ml) was added a solution of thionyl chloride (1.27 g, 775 μ l, 10.6 mmol) in dichloromethane (5 ml). The reaction mixture was stirred at room temperature for 3 hours and quenched with a saturated solution of sodium hydrogen carbonate (30 ml). The aqueous layer was extracted with dichloromethane. The combined organic layers were dried over sodium sulfate and evaporated. The crude material was purified with flash column chromatography on silica eluting with a gradient formed from n-heptane and ethyl acetate (0 to 20%) to provide 930 mg (85%) of the title compound as a light grey solid. MS (m/e): 208.2 (M+H)⁺.

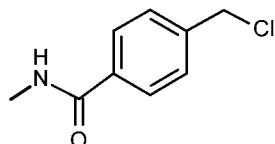

-68-

Example B.2**4-(4-(Chloromethyl)-3-fluorophenyl)-1-methyl-1H-pyrazole**


In analogy to the procedures described for the synthesis of example B.1, the title compound was
5 prepared from 4-bromo-2-fluorophenyl-methanol. MS (m/e): 225.4 (M+H)⁺.

Example B.3**4-(3-(Chloromethyl)phenyl)-1-methyl-1H-pyrazole**

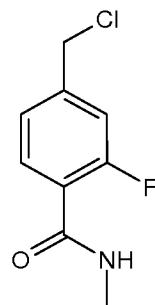
In analogy to the procedure described for the synthesis of example B.1, the title compound was
10 prepared from 3-bromophenyl-methanol. MS (m/e): 207.4 (M+H)⁺.


Example B.4**1-(4-Chloromethyl-phenyl)-4-methyl-1H-imidazole**

In analogy to the procedure described for the synthesis of example B.1 (step 2), the title
15 compound was prepared from (4-(4-methyl-1H-imidazol-1-yl)phenyl)methanol. MS (m/e): 207.3
(M+H)⁺.

Example B.5**4-(4-(Chloromethyl)phenyl)-1-methyl-1H-pyrazole**

In analogy to the procedure described for the synthesis of example B.1, the title compound was prepared from 4-bromophenyl-methanol. MS (m/e): 207.4 (M+H)⁺.


Example B.6
4-(Chloromethyl)-N-methylbenzamide

5

To a stirred, cooled solution of 4-(chloromethyl)benzoyl chloride (1.6 g, 8.49 mmol) at 0°C in dichloromethane (15 ml) under an argon atmosphere were added methylamine hydrochloride (521 mg, 7.72 mmol). A solution of triethylamine (3.12 g, 4.28 ml, 30.9 mmol) in dichloromethane (15 ml) was added dropwise. Stirring at 0°C was continued for 44 hrs. The 10 mixture was concentrated and the residue was purified with flash column chromatography on silica eluting with a gradient formed from dichloromethane and methanol (0 to 10 %) to provide 10 mg (y: 0.6%) of the title compound as a white solid. MS (m/e): 184.2 (M+H)⁺.

Example B.7
4-(Chloromethyl)-2-fluoro-N-methylbenzamide

15

Step 1: 2-Fluoro-4-formyl-N-methylbenzamide

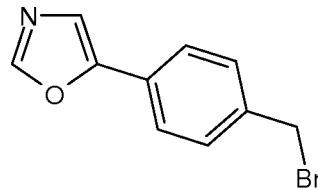
To a stirred suspension of 2-fluoro-4-formylbenzoic acid (1 g, 5.95 mmol) at r.t. in dichloromethane (3 ml) under an argon atmosphere was added dropwise thionyl chloride (849 mg, 521 μ l, 7.14 mmol). DMF (0.25 ml) was then added dropwise. The mixture was then 20 refluxed for 2 hours. The mixture was cooled to room temperature and it was added dropwise to stirred, cooled (0°C) methylamine 40% solution in water (1.66 g, 1.85 ml, 21.4 mmol) for 15 min. When the addition was complete, stirring at 0°C was continued for 1 hour. The mixture was concentrated and the residue was purified with flash column chromatography on silica

eluting with a gradient formed from dichloromethane and methanol (0 to 10 %) to provide the title compound as an off-white solid (330 mg, 36 %). MS (m/e): 182.1 (M+H)⁺.

Step 2: 2-Fluoro-4-(hydroxymethyl)-N-methylbenzamide

To a stirred, cooled (0°C) solution of 2-fluoro-4-formyl-N-methylbenzamide (320 mg, 1.77 mmol) in dichloromethane (8 ml) and methanol (2 ml) under an argon atmosphere was added portionwise sodium borohydride (134 mg, 3.53 mmol). The cooling bath was removed and stirring at room temperature was continued for 6 hours. The mixture was concentrated and the residue was purified with flash column chromatography on silica eluting with a gradient formed from dichloromethane and methanol (0 to 10 %) to provide the title compound as an off-white solid (288 mg, 89 %). MS (m/e): 184.1 (M+H)⁺.

Step 3: 4-(Chloromethyl)-2-fluoro-N-methylbenzamide


To a stirred, cooled (0°C) suspension of 2-fluoro-4-(hydroxymethyl)-N-methylbenzamide (275 mg, 1.5 mmol) in dichloromethane (10 ml) under an argon atmosphere was added dropwise a solution of thionyl chloride (357 mg, 219 μ l, 3.00 mmol) in dichloromethane (2 ml). The cooling bath was removed and stirring at room temperature was continued for 6 hours.

The mixture was concentrated and the residue was purified with flash column chromatography on silica eluting with a gradient formed from dichloromethane and methanol (0 to 10 %) to provide the title compound as a white solid (255 mg, 84 %). MS (m/e): (M+H)⁺.

Example B.8

20

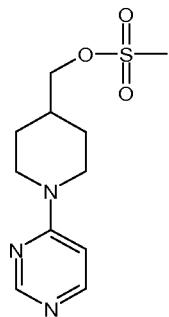
5-(4-Bromomethyl-phenyl)-oxazole

To a stirred solution of 5-(4-methylphenyl)-1,3-oxazole (2 g) at room temperature in tetrachloromethane (60 ml) were added NBS (2.9 g) and dibenzoylperoxide (150 mg). The mixture was stirred at 77°C under a 150 watt lamp for 6 hours and then cooled to room temperature. The insoluble material was filtered off. The filtrate was washed with water and aqueous NaHCO₃ solution, dried (MgSO₄), filtered and concentrated. The residue was purified

with flash column chromatography on silica eluting with 50 % heptane in diisopropylether to provide the title compound (1.35 g, 45 %). MS (m/e): 237 (M).

Example B.9

2-(4-(Chloromethyl)phenyl)thiazole



5

To a solution at 0° of (5-(thiazol-2-yl)pyridin-2-yl)methanol (65 mg, 338 μmol) in dichloromethane (5 ml) was added under an argon atmosphere sulfurous dichloride (80.5 mg, 49.1 μl, 676 μmol). The mixture was stirred at r.t for 3 h. The solvent was evaporated. The residue was purified with flash column chromatography on silica eluting with a gradient formed from dichloromethane and methanol (0 to 5 %) to provide the title compound (40 mg, 56%) as light yellow solid. MS (m/e): 211.1 (M+H)⁺.

Example B.10

(1-(Pyrimidin-4-yl)piperidin-4-yl)methyl methanesulfonate

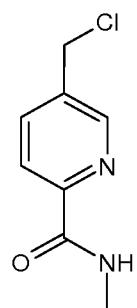
15

Step 1: Ethyl 1-(pyrimidin-4-yl)piperidine-4-carboxylate

A mixture of 4-bromopyrimidine hydrochloride (200 mg, 1.02 mmol), cesium carbonate (333 mg, 1.02 mmol) and ethyl piperidine-4-carboxylate (161 mg, 158 μl, 1.02 mmol) in 1,4-dioxane (5 ml) under an argon atmosphere was stirred at 100° for 17 hours. The reaction mixture was cooled to room temperature and concentrated. The residue was purified with flash column chromatography on silica eluting with a gradient formed from dichloromethane and methanol (0

to 5 %) to provide the title compound as a light yellow viscous oil (153 mg, 63 %). MS (m/e): 236.3 (M+H)⁺.

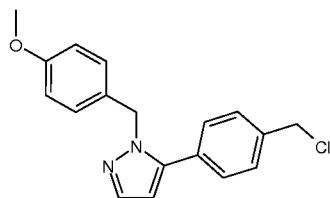
Step 2: (1-(Pyrimidin-4-yl)piperidin-4-yl)methanol


To a solution of ethyl 1-(pyrimidin-4-yl)piperidine-4-carboxylate (150 mg, 638 μηοΐ) in 5 methanol (5 ml) and dichloromethane (5 ml) at 0°C under argon was added sodium borohydride (145 mg, 3.83 mmol) in one portion. The cooling bath was removed and the mixture was stirred at room temperature for 4 hours. The mixture was cooled again to 0°C and sodium borohydride (145 mg, 3.83 mmol) was added in one portion. The mixture was stirred at room temperature for 10 17 hr and concentrated. The residue was purified with flash column chromatography on silica eluting with a gradient formed from dichloromethane and methanol (0 to 5 %) to provide the title 15 compound as a white solid (80 mg, 65 %). MS (m/e): 194.2 (M+H)⁺.

Step 3: (1-(Pyrimidin-4-yl)piperidin-4-yl)methyl methanesulfonate

To a stirred solution of (1-(pyrimidin-4-yl)piperidin-4-yl)methanol (80 mg, 414 μηοΐ) and triethylamine (83.8 mg, 115 μΐ, 828 μηοΐ) in dichloromethane (2 ml) at 0°C under argon was 15 added dropwise a solution of methanesulfonyl chloride (94.8 mg, 64.3 μΐ, 828 μηοΐ) in dichloromethane (2 ml). The reaction mixture was stirred at room temperature for 3 hours. Sodium bicarbonate (34.8 mg, 414 μηοΐ) was added and the mixture was stirred for 5 min and filtered. The filtrate was concentrated and the residue was purified with flash column chromatography on silica eluting with a gradient formed from dichloromethane and methanol (0 20 to 5 %) to provide the title compound as a yellow viscous oil (34.5 mg, 31 %). MS (m/e): 272.2 (M+H)⁺.

Example B.ll


5-(Chloromethyl)-N-methylpicolinamide

In analogy to the procedures described for the synthesis of example B.10, step 2 and example B.9, the title compound was prepared from methyl 6-(methylcarbamoyl)nicotinate (CAS 173371-36-3). Off-white solid. MS (m/e): 185.1 (M+H)⁺.

Example B.12

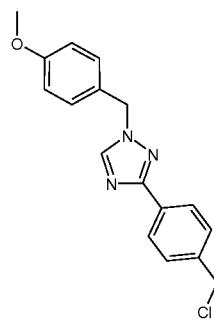
5 **5-(4-(Chloromethyl)phenyl)-1-(4-methoxybenzyl)-1H-pyrazole**

Step 1: 5-Iodo-1-(4-methoxybenzyl)-1H-pyrazole

To a solution of 5-iodo-1H-pyrazole (0.2 g, 1.03 mmol) in dimethyl acetamide (3 ml) at 0°C under argon was added sodium hydride 60% dispersion in mineral oil (41.2 mg, 1.03 mmol) in one portion. After stirring at 0°C for 15 min, 1-(bromomethyl)-4-methoxybenzene (207 mg, 1.03 mmol) was added in one portion. The cooling bath was removed and the mixture was stirred at room temperature for 17 hours. The mixture was diluted with ethyl acetate, and washed with water. The aqueous phase was back extracted with ethyl acetate. The combined organics were washed with water, dried over MgSO₄, filtered and evaporated. The residue was purified with 15 flash column chromatography on silica eluting with a gradient formed from heptane and ethyl acetate (0 to 50 %) to provide the title compound as a colorless viscous oil (270 mg, 83 %). MS (m/e): 315.1 (M+H)⁺.

Step 2: (4-(1-(4-Methoxybenzyl)-1H-pyrazol-5-yl)phenyl)methanol

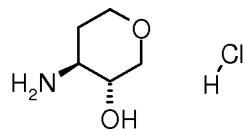
A mixture of 5-iodo-1-(4-methoxybenzyl)-1H-pyrazole (0.27 g, 860 μmol) and 4-(hydroxymethyl)phenylboronic acid (170 mg, 1.12 mmol) at room temperature in 1,2-dimethoxyethane (6 ml) and 2M aqueous Na₂CO₃ solution (1.43 ml, 2.86 mmol) was purged with argon in an ultrasonic bath for 5 min. Then triphenylphosphine (45.1 mg, 172 μmol) and palladium(II) acetate (19.3 mg, 86.0 μmol) were added and the mixture was stirred at 85°C under argon for 17 hr. The mixture was cooled to room temperature, poured onto water and extracted 25 with ethyl acetate. The organic layer was washed with water, dried with MgSO₄, filtered and evaporated. The residue was purified with flash column chromatography on silica eluting with a


gradient formed from heptane and ethyl acetate (0 to 50 %) to provide the title compound as a colorless viscous oil (160 mg, 63 %). MS (m/e): 295.2 (M+H)⁺.

Step 3: 5-(4-(Chloromethyl)phenyl)-1-(4-methoxybenzyl)-1H-pyrazole

In analogy to the procedures described for the synthesis of example B.9, the title compound was 5 prepared from (4-(1-(4-methoxybenzyl)-1H-pyrazol-5-yl)phenyl)methanol. Off-white solid. MS (m/e): 313.2 (M+H)⁺.

Example B.13


3-(4-(Chloromethyl)phenyl)-1-(4-methoxybenzyl)-1H-1,2,4-triazole

10 In analogy to the procedures described for the synthesis of example B.13, the title compound was prepared from 5-bromo-1H-1,2,4-triazole. White solid. MS (m/e): 314.2 (M+H)⁺.

Example C.1

(3R,4S)-4-Aminotetrahydropyran-3-ol hydrochloride

15 Step 1: Methanesulfonic acid tetrahydro-pyran-4-yl ester

To a solution of tetrahydro-2H-pyran-4-ol (25 g, 245 mmol) and triethyl amine (40.1 ml, 294 mmol) in CH₂Cl₂ (500 ml) at 0°C was added dropwise methanesulfonylchloride (20.7 ml, 269 mmol) over a period of 40 min, keeping the temperature between 0° - 4°C. The reaction mixture was then allowed to stir at 0°C for 1hr. The cooling bath was removed and the mixture was 20 stirred for another 90 mins at 25°C. The mixture was washed with water (2 x 125ml), dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum to get methanesulfonic acid tetrahydro-pyran-4-yl ester (38 g, 86%; crude) as a liquid that was used in the next step without any further purification.

Step 2: 3, 6-Dihydro-2H-pyran

A mixture of tetrahydro-2H-pyran-4-yl methanesulfonate (20 g, 111 mmol) and DBU (18.8 ml, 125.6 mmol) was distilled under normal atmospheric pressure. The fraction at 90° - 96°C was 6-dihydro-2H-pyran (6 g, 64%) as a colourless liquid.

5 Step 3: (1SR, 6RS)-3 J-Dioxa-bicycloK.l.Olheptane

To a solution of 3,6-dihydro-2H-pyran (6 g, 71.4 mmol,) in CH₂Cl₂ (300 ml) was added 3-chloroperbenzoic acid (25 g, 107.1 mmol) portionwise at 25°C, and stirred at that temperature for 21 hrs. The resultant white suspension was diluted with water (250 ml) and then with aqueous solution of Na₂SO₃. The mixture was stirred at 25°C for 10 min, then basified by 10 addition of saturated aqueous solution of NaHCO₃. The organic layer was separated, and the aqueous layer was re-extracted with CH₂Cl₂. The combined organic layers were washed with saturated aqueous solution of NaHCO₃ (100 ml), and brine (80 ml), dried over anhydrous Na₂SCN⁴, filtered and concentrated in vacuo to afford the title compound (5 g, 70%; crude) as a yellow liquid.

15 Step 4: (3SR,4RS)-4-Azidotetrahydropyran-3-ol

To a solution of (1SR,6RS)-3,7-dioxabicyclo[4.1.0]heptane (5 g, 49.9 mmol) in MeOH (50ml) were added sodium azide (24.3 g, 374.6 mmol), ammonium chloride (20 g, 374.6 mmol) and water (5 ml), and the resultant mixture was stirred at 25°C for 19 hrs, and then at 70°C for 2 hrs. The mixture was cooled 0°C, and the precipitated solid was filtered and washed with methanol. 20 The filtrate was concentrated in vacuo. Resultant residue was taken in ethyl acetate, and filtered. Removal of the filtrate in vacuo yielded the title compound (5 g, 70%; crude) as a yellow liquid.

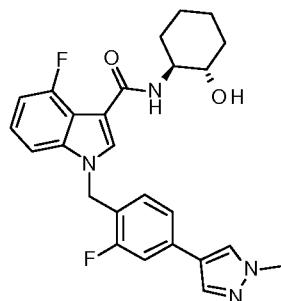
Step 5: (3SR,4RS)-4-Aminotetrahydropyran-3-ol

To a solution of (3SR,4RS)-4-azidotetrahydropyran-3-ol (5g, 35 mmol) in ethyl acetate (50 ml), was added Pd(OH)₂ on charcoal (1.25 g, 1.4 mmol). The mixture was purged with argon, and 25 then allowed to stir under a balloon pressure of hydrogen for 21 hrs at 25°C. Removal of the catalyst by filtration followed by evaporation of the filtrate in vacuo afforded the title compound (4 g, crude).

Step 6: (3S, 4R)-3-Hydroxy-tetrahydro-pyran-4-yl)-carbamic acid benzyl ester and ((3R, 4S)-3-hydroxy-tetrahydro-pyran-4-yl)-carbamic acid benzyl ester

30 To a solution of (3SR,4RS)-4-aminotetrahydropyran-3-ol (10 g, 85.4 mmol) and Et₃N (23.6 ml, 170.9 mmol) in CH₂Cl₂ (100 ml) was added benzyl chloroformate (9.8 ml, 59.9 mmol) dropwise

at 0°C. After completion of addition, the mixture was stirred at 25°C for 2 hrs. The mixture was washed with water (60 ml). The aqueous layer was re-extracted with CH₂Cl₂. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo to get the mixture the two regioisomeric pairs of enantiomers (16 g). This crude product was purified by 5 silica gel chromatography using 45% EtOAc in hexane as eluent to get the pair of enantiomers with the desired regioisomery as white solid (4.5 g, 21%). This enantiomeric mixture was subject to chiral separation by SFC to afford (3S,4R)-3-hydroxy-tetrahydro-pyran-4-yl)-carbamic acid benzyl ester (1.7 g, 8%) and ((3R,4S)-3-hydroxy-tetrahydro-pyran-4-yl)-carbamic acid benzyl ester (1.7 g, 8 %) both as a white solid.


10 **Step 7: (3R,4S)-4-Amino-tetrahydro-pyran-3-ol hydrochloride**

To a solution of ((3R,4S)-3-hydroxy-tetrahydro-pyran-4-yl)-carbamic acid benzyl ester (1.1 g, 4.4 mmol) in MeOH (50 ml) was added 10% palladium on charcoal (140 mg, 0.13 mmol), and stirred the reaction mixture under hydrogen atmosphere for 1hr. The catalyst was filtered off. The filtrate was acidified with 1.25 M HCl in MeOH and concentrated in vacuo to get (3R,4S)-4-15 amino-tetrahydro-pyran-3-ol hydrochloride as an off white solid (500 mg, 97%).

Description of examples

Example 1

4-Fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

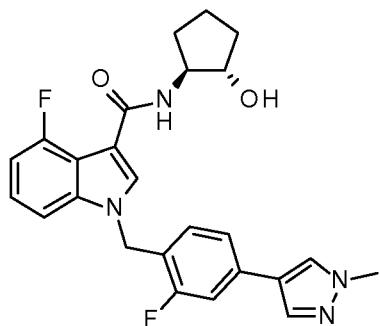
20

To a suspension of 4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxylic acid (example A.1) (30 mg, 81.7 μmol) in N,N-dimethylformamide (1 ml) was added triethylamine (41.3 mg, 56.8 μl, 408 μmol). The mixture was stirred at room temperature for 15 minutes. (Benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) 25 (47.0 mg, 106 μmol) was added. The suspension was stirred at room temperature for 1 hour. (1S,2S)-2-Aminocyclohexanol hydrochloride (12.4 mg, 81.7 μmol) was added. The mixture was

stirred at room temperature for 16 hours. The solvent was removed in vacuo. The residue was taken in water. The aqueous layer was extracted with ethyl acetate. The combined extracts were dried over sodium sulfate, filtered and concentrated in vacuo. The crude oil was purified with flash column chromatography on silica eluting with a gradient formed from heptane and ethyl acetate (0 to 100%) to provide 10 mg (25%) of the title compound as a light yellow solid. MS 5 (m/e): 465.5 (M+H)⁺.

In analogy to example 1, examples 2 to 16 of the following table were prepared by coupling an acid derivative with an amine.

Example No.	Structure	Systematic Name	Starting materials	MW found (MH ⁺)
2		4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide (example A.1) and (1R,2R)-2-aminocyclohexanol hydrochloride	4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxylic acid (example A.1) and (1R,2R)-2-aminocyclohexanol hydrochloride	465.5
3		4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indazole-3-carboxamide (example A.2) and (1S,2S)-2-aminocyclohexanol hydrochloride	4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indazole-3-carboxylic acid (example A.2) and (1S,2S)-2-aminocyclohexanol hydrochloride	466.5


4		4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indazole-3-carboxamide (example A.2) and (1R,2R)-2-aminocyclohexanol hydrochloride	466.5
5		4,6-difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide (example A.3) and (1S,2S)-2-aminocyclohexanol hydrochloride	483.6
6		4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide (example A.1) and (3RS,4SR)-4-aminotetrahydro-2H-pyran-3-ol (CAS: 215940-92-4)	467.5
7		4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indazole-3-carboxamide (example A.2) and (3RS,4SR)-4-aminotetrahydro-2H-pyran-3-ol (CAS: 215940-92-4)	468.5

8		4-fluoro-N-[(3S,4R)-4-methoxyoxolan-3-yl]-1-[(4-(1-methylpyrazol-4-yl)phenyl)methyl]indole-3-carboxamide (example A.9) and (3S,4R)-4-methoxytetrahydro-furan-3-ylamine	419.5
9		N-(3,3-difluorocyclobutyl)-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide (example A.9) and 3,3-difluorocyclobutylamine	439.6
10		(R)-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((tetrahydrofuran-2-yl)methyl)-1H-indole-3-carboxamide (example A.9) and [-1-(tetrahydrofuran-2-yl)]-methylamine	433.7
11		4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide (example A.9) and cyclobutylamine	403.6
12		4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide (example A.9) and tetrahydro-pyran-3-ylamine	433.7

13		4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide (example A.9) and oxetan-3-ylmethylamine	419.6
14		4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide (example A.9) and oxetan-2-ylmethylamine	419.6
15		1-(4-carbamoylbenzyl)-4-fluoro-1H-indole-3-carboxylic acid (example A.35) and (3RS,4SR)-4-aminotetrahydro-2H-pyran-3-ol (CAS: 215940-92-4)	412.5
16		1-(4-cyanobenzyl)-4-fluoro-1H-indole-3-carboxylic acid (example A.36) and (3RS,4SR)-4-aminotetrahydro-2H-pyran-3-ol (CAS: 215940-92-4)	394.6

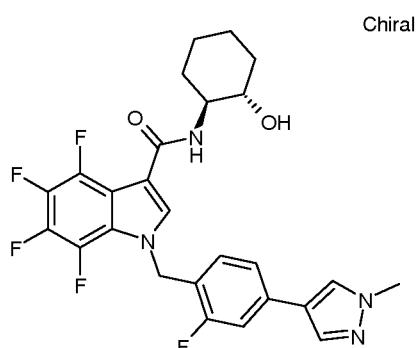
Example 17

**4-Fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-
N-((1S,2S)-2-hydroxycyclopentyl)-1H-indole-3-carboxamide**

5 To a solution of 4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carbonyl chloride (example A.5) (30 mg, 77.8 μmol) and triethylamine (31.5 mg, 43.3 μl , 311 μmol) in dichloromethane (1.2 ml) was added (1S,2S)-2-aminocyclopentanol hydrochloride (12.3 mg, 85.5 μmol). The mixture was stirred at room temperature overnight. The solvent was removed in vacuo. Water was added. The resulting precipitate was filtrated, washed with diethyl ether and dried to provide 26 mg (74%) of the title compound as an off-white solid. MS (m/e): 451.4 ($\text{M}+\text{H}$)⁺.

10

In analogy to Example 17, compounds 18 to 25 of the following table were prepared from 4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carbonyl chloride (example A.5) and an amine derivative:

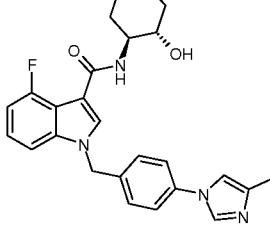
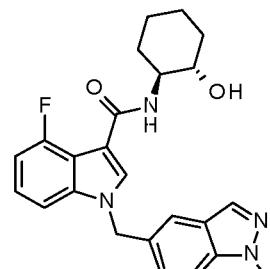
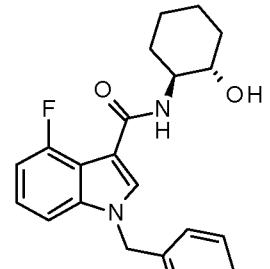
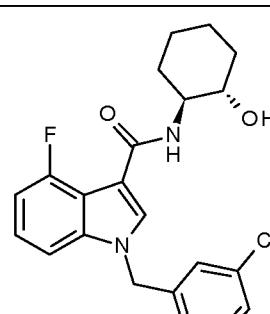

Expl. No.	Structure	Systematic Name	Starting materials	MW found (MH^+)
18		4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclopentyl)-1H-indole-3-carboxamide	4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carbonyl chloride (example A.5) and (1S,2S)-2-amino-1-methylcyclohexanol hydrochloride	479.5

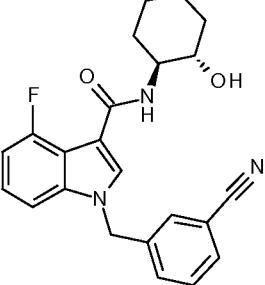
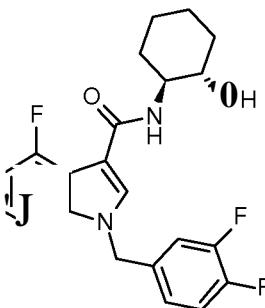
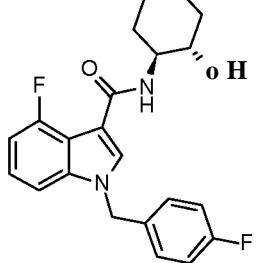
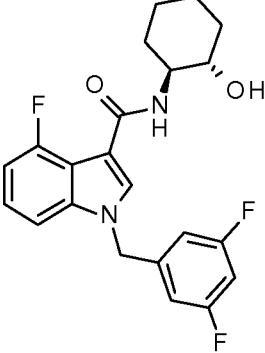
19		4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-3-yl)-1H-indole-3-carboxamide	4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carbonyl chloride (example A.5) and tetrahydro-2H-pyran-3-amine hydrochloride	451.4
20		N-cyclohexyl-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide	4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carbonyl chloride (example A.5) and cyclohexanamine	449.5
21		4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide	4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carbonyl chloride (example A.5) and tetrahydro-2H-pyran-4-amine	451.4
22		4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3S,4S)-4-hydroxytetrahydro-2H-pyran-3-yl)-1H-indole-3-carboxamide	4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carbonyl chloride (example A.5) and (3S,4S)-3-aminotetrahydro-2H-pyran-4-ol	467.5
23		4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1SR,2RS)-2-hydroxy-2-methylcyclohexyl)-1H-indole-3-carboxamide	4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carbonyl chloride (example A.5) and (1RS,2SR)-2-amino-1-methylcyclohexanol hydrochloride	479.4

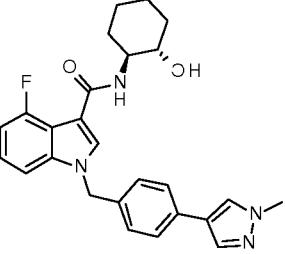
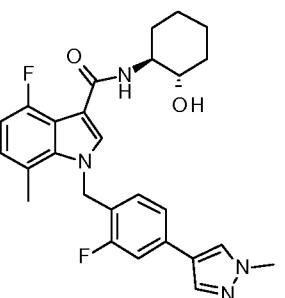
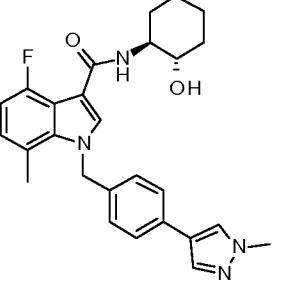
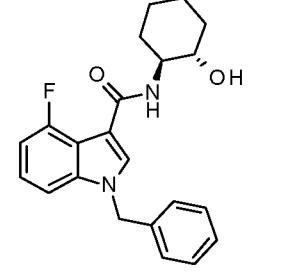
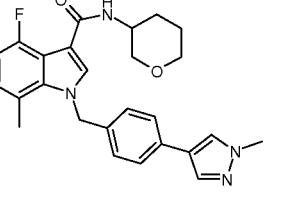
24		4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2R)-2-hydroxycyclopentyl)-1H-indole-3-carboxamide	4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxyl chloride (example A.5) and (1S,2R)-2-aminocyclopentanol hydrochloride	451.4
25		N-(2,2-difluorocyclohexyl)-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide	4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxyl chloride (example A.5) and 2,2-difluorocyclohexanamine hydrochloride	485.4

Example 26

4,5,6,7-Tetrafluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide





In a microwave tube, 4,5,6,7-tetrafluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (50 mg, 104 μ mol; example A.4), 4-(4-(chloromethyl)-3-fluorophenyl)-1-methyl-1H-pyrazole (34 mg, 151 μ mol; example B.2) and cesium carbonate (98.7 mg, 303 μ mol) were combined with N,N-dimethylacetamide (633 μ L) to give a colorless suspension. The reaction mixture was stirred at r.t. for 2 days, then was taken up in H_2O and extracted with EtOAc. The organic layers were washed H_2O and then with saturated NaCl solution, dried over MgSO₄ and concentrated in vacuo. The crude material was purified by silica gel chromatography using a CH₂Cl₂/MeOH gradient as eluent to provide the title compound (39 mg, 72%) as colorless solid.





MS (m/e): 519.4 (M+H)⁺






In analogy to Example 26, compounds 27 to 61 of the following table were prepared by reaction of the indicated amides with an alkylating agent.

Expl. No.	Structure	Systematic Name	Starting materials	MW found (MH ⁺)
27		4,5,6,7-tetrafluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-1H-indole-3-carboxamide	4,5,6,7-tetrafluoro-1H-indole-3-carboxylic acid ((1S,2S)-2-hydroxycyclohexyl)-amide (example A.4) and 5-(chloromethyl)-2-(1-methyl-1H-pyrazol-4-yl)pyridine (example B.1)	502.4
28		4-fluoro-1-(2-fluoro-4-methoxybenzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide	4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 1-(chloromethyl)-2-fluoro-4-methoxybenzene	415.5
29		1-(4-(difluoromethoxy)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide	4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 1-(bromomethyl)-4-(difluoromethoxy)benzene	433.4
30		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-1H-indole-3-carboxamide	4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 5-(chloromethyl)-2-(1-methyl-1H-pyrazol-4-yl)pyridine (example B.1)	448.5

31		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 1-(bromomethyl)-4-methoxybenzene		397.5
32		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 4-(chloromethyl)benzonitrile		392.5
33		4-fluoro-1-(3-fluoro-4-methoxybenzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 4-(bromomethyl)-2-fluoro-1-methoxybenzene		415.5
43		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 1-(trifluoromethoxy)benzyl-4-(bromomethyl)-4-trifluoromethoxybenzene		451.4
35		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 4-(3-(1-methyl-1H-pyrazol-4-yl)phenyl)-1H-pyrazole		447.5

36		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 1-(4-chloromethyl-phenyl)-4-methyl-1H-imidazole (example B.4)	447.5
37		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((1-methyl-1H-indazol-5-yl)methyl)-1H-indole-3-carboxamide (example A.6) and 5-(bromomethyl)-1-methyl-1H-indazole hydrobromide	421.5
38		1-(4-chlorobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 1-chloro-4-(chloromethyl)benzene	401.4
39		1-(3-chlorobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 1-chloro-3-(chloromethyl)benzene	401.4

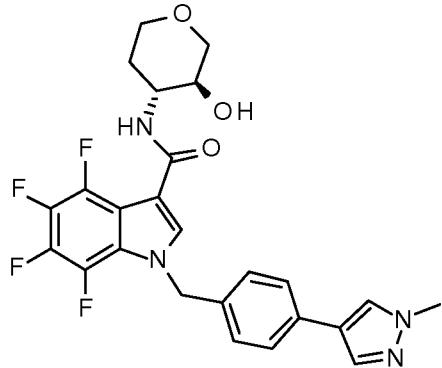
40		1-(3-cyanobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 3-(bromomethyl)benzonitrile	4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 3-(bromomethyl)benzonitrile	392.5
41		1-(3,4-difluorobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 4-(chloromethyl)-1,2-difluorobenzene	4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 4-(chloromethyl)-1,2-difluorobenzene	403.4
42		4-fluoro-1-(4-fluorobenzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 1-(chloromethyl)-4-fluorobenzene	4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 1-(chloromethyl)-4-fluorobenzene	385.5
43		1-(3,5-difluorobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 1-(chloromethyl)-3,5-difluorobenzene	4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 1-(chloromethyl)-3,5-difluorobenzene	403.5

44		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide	4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 4-(4-chloromethyl)phenyl)-1-methyl-1H-pyrazole (example B.5)	447.5
45		4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-7-methyl-1H-indole-3-carboxamide	4-fluoro-7-methyl-1H-indole-3-carboxylic acid ((1S,2S)-2-hydroxycyclohexyl)-amide (example A.7) and 4-(4-chloromethyl)-3-fluorophenyl)-1-methyl-1H-pyrazole (example B.2)	479.6
46		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-7-methyl-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide	4-fluoro-7-methyl-1H-indole-3-carboxylic acid ((1S,2S)-2-hydroxycyclohexyl)-amide (example A.7) and 4-(4-chloromethyl)phenyl)-1-methyl-1H-pyrazole (example B.5)	461.7
47		1-benzyl-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide	4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and (bromomethyl)benzene	367.5
48		4-fluoro-7-methyl-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-3-yl)-1H-indole-3-carboxamide	4-fluoro-7-methyl-1H-indole-3-carboxylic acid (tetrahydro-pyran-3-yl)-amide (example A.10) and 4-(4-(chloromethyl)phenyl)-1-methyl-1H-pyrazole (example B.5)	447.5

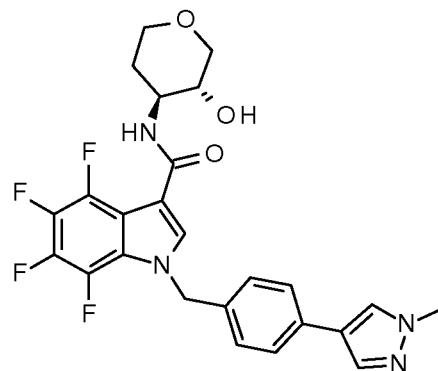
49		4-fluoro-7-methyl-1H-indole-3-carboxylic acid (tetrahydro-pyran-4-yl)-amide (example A.11) and 4-(4-(chloromethyl)phenyl)-1-methyl-1H-pyrazole (example B.5)	447.7
50		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 1-(4-chloromethyl-phenyl)-3-methyl-1H-pyrazole	447.4
51		4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (example A.12) and 1-(4-chloromethyl-phenyl)-4-methyl-1H-imidazole (example B.4)	449.4
52		4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-((1-methyl-1H-indazol-5-yl)methyl)-1H-indole-3-carboxamide (example A.12) and 5-(bromomethyl)-1-methyl-1H-indazole hydrobromide	441.2

53		4,5,6,7-tetrafluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide	4,5,6,7-tetrafluoro-1H-indole-3-carboxylic acid ((1S,2S)-2-hydroxy-cyclohexyl)-amide (example A.4) and 4-(4-(chloromethyl)phenyl)-1-methyl-1H-pyrazole (example B.5)	501.6
54		1-(4-cyanobenzyl)-4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide	4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (example A.12) and 4-(chloromethyl)benzonitrile	394.5
55		4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide	4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (example A.12) and 4-(4-(chloromethyl)phenyl)-1-methyl-1H-pyrazole (example B.5)	449.4
56		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((1-methyl-1H-benzo[d]pyridine-5-yl)methyl)-1H-indole-3-carboxamide	4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 5-(chloromethyl)-1-methyl-1H-benzo[d]imidazole	421.5

57		4,5-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide	4,5-difluoro-1H-indole-3-carboxylic acid ((1S,2S)-2-hydroxy-cyclohexyl)-amide (example A.14) and 4-(4-(chloromethyl)phenyl)-1-methyl-1H-pyrazole (example B.5)	465.5
58		4,5-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-1H-indole-3-carboxamide	4,5-difluoro-1H-indole-3-carboxylic acid ((1S,2S)-2-hydroxy-cyclohexyl)-amide (example A.14) and 5-(chloromethyl)-2-(1-methyl-1H-pyrazol-4-yl)pyridine (example B.1)	466.7
59		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(methylcarbamoyl)benzyl)-1H-indole-3-carboxamide	4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 4-(chloromethyl)-N-methylbenzamide (example B.6)	424.7
60		4,5-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(4-methyl-1H-imidazol-1-yl)benzyl)-1H-indole-3-carboxamide	4,5-difluoro-1H-indole-3-carboxylic acid ((1S,2S)-2-hydroxy-cyclohexyl)-amide (example A.14) and 1-(4-chloromethyl-phenyl)-4-methyl-1H-imidazole (example B.4)	465.5
61		4,5-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(3-methyl-1H-pyrazol-1-yl)benzyl)-1H-indole-3-carboxamide	4,5-Difluoro-1H-indole-3-carboxylic acid ((1S,2S)-2-hydroxy-cyclohexyl)-amide (example A.14) and 1-(4-chloromethyl-phenyl)-4-methyl-1H-imidazole (example B.4) and 1-(4-(chloromethyl)phenyl)-3-methyl-1H-pyrazole	465.5


Example 62

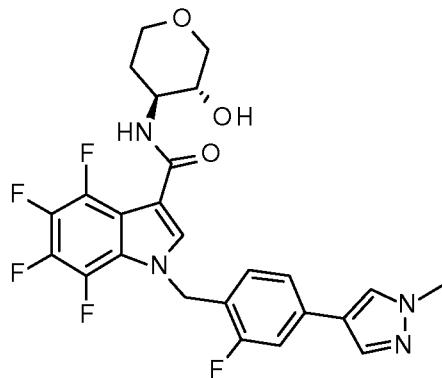
4,5,6,7-Tetrafluoro-N-((3S,4R) or (3R,4S))-3-hydroxytetrahydro-2H-pyran-4-yl)-l-(4-(l-methyl-lH-pyrazol-4-yl)benzyl)-lH-indole-3-carboxamide


and

Example 63

4,5,6,7-Tetrafluoro-N-((3R,4S) or (3S,4R))-3-hydroxytetrahydro-2H-pyran-4-yl)-l-(4-(l-methyl-lH-pyrazol-4-yl)benzyl)-lH-indole-3-carboxamide

and

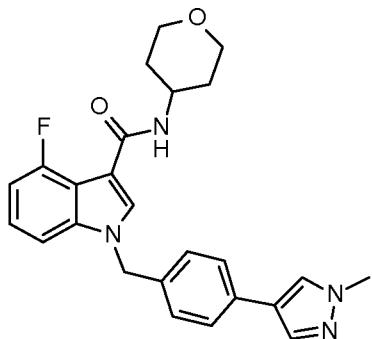

5

In analogy to the procedure described for the synthesis of example 26, the title compounds were
10 prepared from 4,5,6,7-tetrafluoro-lH-indole-3-carboxylic acid ((3RS,4SR)-3-hydroxytetrahydro-pyran-4-yl)-amide (example A.13) and 4-(4-(chloromethyl)phenyl)-l-methyl-lH-pyrazole (example B.5) followed by chiral separation on a Reprosil chiral NR column. Example 62: (-) enantiomer, MS (m/e): 503.4 (M+H)⁺ and example 63: (+) enantiomer, MS (m/e): 503.4 (M+H)⁺.

15

Example 64

4,5,6,7-Tetrafluoro-l-(2-fluoro-4-(l-methyl-lH-pyrazol-4-yl)benzyl)-N-((3R,4S) or (3S,4R))-3-hydroxytetrahydro-2H-pyran-4-yl)-lH-indole-3-carboxamide



In analogy to the procedure described for the synthesis of example 26, the title compound was prepared from the chiral version of 4,5,6,7-tetrafluoro-1*H*-indole-3-carboxylic acid ((3*RS*,4*SR*)-3-hydroxy-tetrahydro-pyran-4-yl)-amide (example A.13) and 4-(4-(chloromethyl)-3-fluorophenyl)-1-methyl-1*H*-pyrazole (example B.2) followed by purification with separation chromatography with a gradient formed from methylene chloride and methanol (0-5%) to provide 53 mg (44%) of the title compound as a white solid. MS (m/e): 519.5 (M+H)⁺.

Example 65

Fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

10

To a suspension of 4-fluoro-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (example A.8) (50 mg, 191 μ mol) in N,N-dimethylformamide (500 μ L) under nitrogen at 0°C was added sodium hydride 60% dispersion in oil (9.15 mg, 229 μ mol). The mixture was stirred at 0°C for 15 15 minutes. After this time, 4-(4-(chloromethyl)phenyl)-1-methyl-1H-pyrazole (example B.5) (39.4 mg, 191 μ mol) was added at once. The mixture was stirred under ice-bath cooling for 5 hours, quenched with a 20% ammonium chloride solution and diluted with water. The crude material was purified with flash column chromatography on amine eluting with a gradient formed from n-heptane and ethyl acetate (0 to 80%) to provide 60 mg (73 %) of the title 20 compound as a white solid. MS (m/e): 433.5 (M+H)⁺.

In analogy to Example 65, compounds 66 to 69 of the following table were prepared by reaction of the indicated amides with an alkylating agent.

Expl. No.	Structure	Systematic Name	Starting materials	MW found (MH ⁺)
66		4-fluoro-1-((1-methyl-1H-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide	4-fluoro-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (example A.8) and 5-(bromomethyl)-1-methyl-1H-indazole hydrobromide	407.5
67		4-fluoro-1-(4-(4-methyl-1H-imidazol-1-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide	4-fluoro-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (example A.8) and 1-(4-chloromethyl-phenyl)-4-methyl-1H-imidazole (example B.4)	433.5
68		4-fluoro-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide	4-fluoro-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (example A.8) and 5-(chloromethyl)-2-(1-methyl-1H-pyrazol-4-yl)pyridine (example B.1)	434.4
69		4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indazole-3-carboxamide	4-fluoro-N-(tetrahydro-2H-pyran-4-yl)-1H-indazole-3-carboxamide (example A.37) and 4-(4-(chloromethyl)phenyl)-1-methyl-1H-pyrazole (example B.5)	434.5

Example 70

4-Fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3S,4R) or (3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

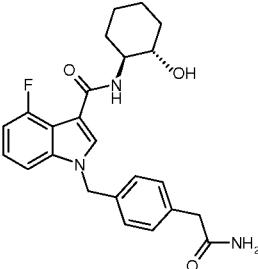
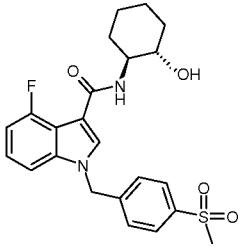
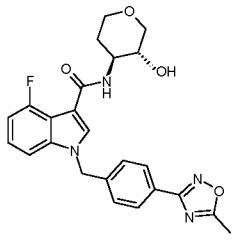
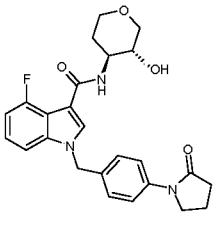
and

Example 71

4-Fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

5

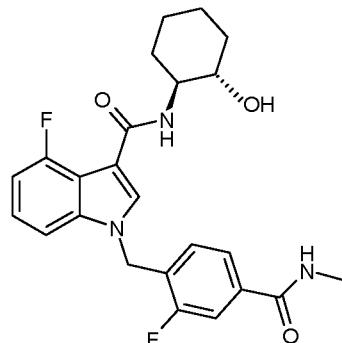
4-Fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3RS,4SR)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (example 6) (220 mg) was separated on a Reprosil Chiral NR column to provide 94 mg (43%) of the title compound (example 81, (-) enantiomer) as an off-white solid, MS (m/e): 467.3 ($M+H$)⁺ and 91 mg (41%) of the compound (example 82, (+) enantiomer) as an off-white solid. MS (m/e): 467.4 ($M+H$)⁺.





In analogy to example 1, examples 72 to 75 of the following table were prepared by coupling an acid derivative with an amine.

Example No.	Structure	Systematic Name	Starting materials	MW found (MH^+)
72		4,7-difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indazole-3-carboxamide	4,7-difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indazole-3-carboxylic acid (example A.15) and (1S,2S)-2-aminocyclohexanol hydrochloride	484.2

73		4,7-difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indazole-3-carboxamide	4,7-difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indazole-3-carboxylic acid (example A.15) and (3R,4S)-4-aminotetrahydropyran-3-ol hydrochloride (example C.1)	486.1
74		4,7-difluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-1H-indazole-3-carboxamide	4,7-difluoro-1-[[6-(1-methylpyrazol-4-yl)pyridine-3-yl]methyl]indazole-3-carboxylic acid (A.16) and (1S,2S)-2-aminocyclohexanol hydrochloride	469.3
75		4,7-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-1H-indazole-3-carboxamide	4,7-difluoro-1-[[6-(1-methylpyrazol-4-yl)pyridine-3-yl]methyl]indazole-3-carboxylic acid (A.16) and (3R,4S)-4-aminotetrahydropyran-3-ol hydrochloride (example C.1)	467.3

In analogy to Example 26, compounds 76 to 85 following table were prepared by reaction of the indicated amides with an alkylating agent.


Expl. No.	Structure	Systematic Name	Starting materials	MW found (MH ⁺)
76		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(methylcarbamoyl)benzyl)-1H-indole-3-carboxamide (example A.6) and 4-(chloromethyl)-N-methylbenzamide (CAS 220875-88-7)	4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 4-(chloromethyl)-N-methylbenzamide (CAS 220875-88-7)	424.7
77		1-(4-carbamoylbenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 4-(chloromethyl)benzamide (CAS 84545-14-2)	4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 4-(chloromethyl)benzamide (CAS 84545-14-2)	410.3
78		1-((6-(1H-1,2,4-triazol-1-yl)pyridine-3-yl)methyl)-4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (A.12) and 5-(chloromethyl)-2-(1H-1,2,4-triazol-1-yl)pyridine (CAS 1250524-50-5)	4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (A.12) and 5-(chloromethyl)-2-(1H-1,2,4-triazol-1-yl)pyridine (CAS 1250524-50-5)	437.3
79		4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(thiazol-2-yl)benzyl)-1H-indole-3-carboxamide (A.12) and 2-(4-(chloromethyl)phenyl)thiazole (CAS 906352-61-2)	4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (A.12) and 2-(4-(chloromethyl)phenyl)thiazole (CAS 906352-61-2)	452.3

80		1-(4-(2-amino-2-oxoethyl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide	4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 2-(4-(bromomethyl)phenyl)acetamide (CAS 847486-99-1)	424.3
81		1-(3-carbamoylbenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide	4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 3-(chloromethyl)benzamide (CAS 135654-16-9)	410.3
82		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 1-(bromomethyl)-4-(methylsulfonyl)benzene (CAS 53606-06-7)	445.2	
83		4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(5-methyl-1,2,4-oxadiazol-3-yl)benzyl)-1H-indole-3-carboxamide	4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (A.12) and 3-(4-(chloromethyl)phenyl)-5-methyl-1,2,4-oxadiazole (CAS 449209-35-2)	451.3
84		4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(2-oxopyrrolidin-1-yl)benzyl)-1H-indole-3-carboxamide	4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (A.12) and 1-(4-(chloromethyl)phenyl)pyrrolidin-2-one (CAS 36152-29-1)	452.3

85		ethyl 4-((4-fluoro-3-((1S,2S)-2-hydroxycyclohexylcarbamoyl)-1H-indol-1-yl)methyl)phenylcarbamate	4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and (4-chloromethyl-phenyl)-carbamic acid ethyl ester (CAS 873372-18-0)	452.4
----	--	--	--	-------

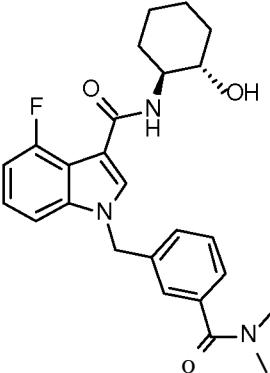
Example 86

Preparation of 4-fluoro-1-(2-fluoro-4-(methylcarbamoyl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

5

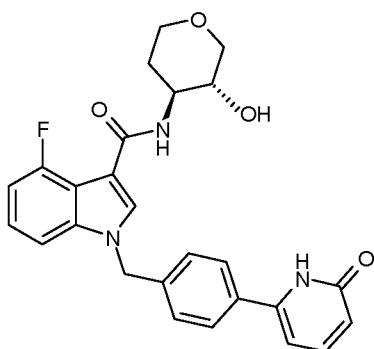
Step 1: Methyl 3-fluoro-4-((4-fluoro-3-((1S,2S)-2-hydroxycyclohexylcarbamoyl)-1H-indol-1-yl)methyl)benzoate

The title compound was obtained in analogy to the procedure described in example 26, reacting 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 4-bromomethyl-3-fluoro-benzoic acid methyl ester (CAS 128577-47-9). Off-white solid. MS (m/e): 443.5 (M+H)⁺.


Step 2: 4-Fluoro-1-(2-fluoro-4-(methylcarbamoyl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

To a stirred suspension of methylamine hydrochloride (22.9 mg, 339 μmol) at r.t. in dioxane (3 ml) under an argon atmosphere was added trimethylaluminum 2M solution in toluene (170 μl, 339 μmol) in one portion. After stirring for 2 hrs at r.t., methyl 3-fluoro-4-((4-fluoro-3-((1S,2S)-2-hydroxycyclohexylcarbamoyl)-1H-indol-1-yl)methyl)benzoate (50 mg, 113 μmol) was added in one portion. The reaction mixture was heated to 100°C and stirring at that temperature was

continued overnight. The orange slurry was cooled to r.t. and treated with 0.5 ml of water. Then, MgSO₄ was added. After stirring for 15 min at r.t., the mixture was filtered and the cake was washed with methanol. The filtrate was concentrated. The crude product was purified by silica gel chromatography using a CH₂Cl₂/MeOH gradient as eluent to provide the title compound (18 5 mg, 36 %) as white solid. MS (m/e): 442.2 (M+H)⁺.


In analogy to Example 86, compounds 87 to 90 of the following table were prepared by reaction of the indicated amides with an alkylating agent, followed by conversion of the ester with methyl- or dimethylamine hydrochloride in the presence of trimethylaluminium.

Expl. No.	Structure	Systematic Name	Starting materials	MW found (MH ⁺)
87		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide ((6-(methylcarbamoyl)pyridin-3-yl)methyl)-1H-indole-3-carboxamide (example A.6) and 5-chloromethyl-pyridine-2-carboxylic acid ethyl ester (CAS 39977-48-5), then methylamine hydrochloride		425.3
88		4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and methyl 4-(bromomethyl)-2-fluorobenzoate (CAS 85070-57-1), then methylamine hydrochloride		442.3
89		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and methyl 3-(bromomethyl)benzoate (CAS 1129-28-8), then methylamine hydrochloride		424.3

90		1-(3-(dimethylcarbamoyl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide	4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and methyl 3-(bromomethyl)benzoate (CAS 1129-28-8), then dimethylamine hydrochloride	438.3
----	---	--	---	-------

Example 91

Preparation of 4-fluoro-1-(2-fluoro-4-(methylcarbamoyl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

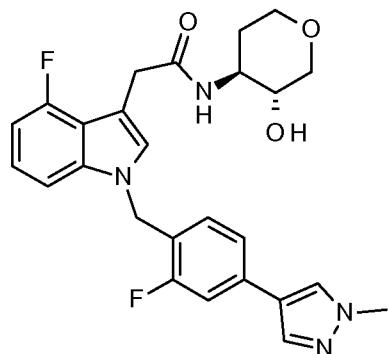
5

Step 1: 1-(4-Bromobenzyl)-4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

The title compound was obtained in analogy to the procedures described in example 26, reacting 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.12) and 1-bromo-4-(chloromethyl)benzene. White solid. MS (m/e): 447.1 (M+H)⁺.

Step 2: 4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(6-methoxypyridin-2-yl)benzyl)-1H-indole-3-carboxamide

To a solution of 1-(4-bromobenzyl)-4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (128 mg, 286 μmol) and 6-methoxypyridin-2-ylboronic acid (65.7 mg, 429 μmol) in 1,2-dimethoxyethane (2 ml) under an argon atmosphere was added cesium carbonate (186 mg, 572 μmol), water (0.2 ml) and tetrakis(triphenylphosphine)palladium(0) (9.9 mg, 8.6 μmol). The reaction mixture was stirred at 90° overnight, cooled to r.t and concentrated.


The crude product was purified by silica gel chromatography using a $\text{CH}_2\text{Cl}_2/\text{MeOH}$ gradient as eluent to provide the title compound (92 mg, 68%) as a white solid. MS (m/e): 476.3 ($\text{M}+\text{H}$)⁺.

Step 3: 4-Fluoro-1-(2-fluoro-4-(methylcarbamoyl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

5 To a solution of 4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(6-methoxy-pyridin-2-yl)benzyl)-1H-indole-3-carboxamide (50 mg, 105 μmol) in acetonitrile (0.6 ml) at r.t under an argon atmosphere was added sodium iodide (23 mg, 155 μmol) and trimethylchlorosilane (17 mg, 20.2 μl , 158 μmol). To this mixture was added dropwise a solution of acetonitrile (0.1 ml)/water (52 μl). The mixture was stirred at 60° for 7 hrs. After cooling to 10 r.t. the mixture was poured on 10% aqueous $\text{Na}_2\text{S}_2\text{O}_3$ solution and extracted with CH_2Cl_2 . The organic phase was washed with water, dried over MgSO_4 , filtered and concentrated. The crude product was purified by silica gel chromatography using a $\text{CH}_2\text{Cl}_2/\text{MeOH}$ gradient as eluent to provide the title compound (15 mg, 28%) as a white solid. MS (m/e): 462.3 ($\text{M}+\text{H}$)⁺.

Example 92

15 **2-[4-Fluoro-1-[[2-fluoro-4-(1-methylpyrazol-4-yl)phenyl]methyl]indol-3-yl]-N-[(3R,4S)-3-hydroxyoxan-4-yl]acetamide**

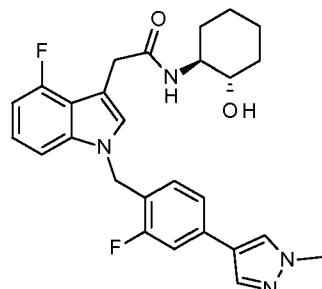
Step 1: Ethyl 2-(4-fluoro-1H-indol-3-yl)acetate

To a stirred mixture of 4-fluoro-1H-indole (1 g, 7.4 mmol) and ethyl 2-diazoacetate (1.06 g, 973 μl , 9.25 mmol) in dichloromethane (50 ml) was added at r.t. and under an argon atmosphere copper(II)trifluoromethanesulfonate (134 mg, 370 μmol) (exothermic). The mixture was stirred at r.t overnight, then diluted with CH_2Cl_2 , washed with water, dried over MgSO_4 , filtered and evaporated. The crude product was purified by silica gel chromatography using a heptane/EtOAc gradient as eluent to obtain the title compound as a mixture with the isomeric

ethyl 2-(4-fluoroindol-1-yl)acetate (815 mg) which was used in the next step without further purification. MS (m/e): 222.2 (M+H)⁺.

Step 2: Ethyl 2-(4-fluoro-1-(2-fluoro-4-(1-methyl-lH-pyrazol-4-yl)benzyl)-lH-indol-3-yl)acetate

To a stirred solution of ethyl 2-(4-fluoro-lH-indol-3-yl)acetate (0.8 g, 2.17 mmol) in N,N-

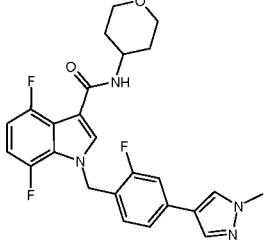
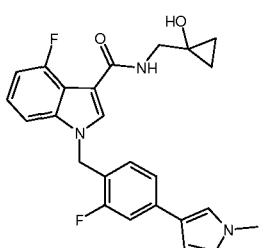
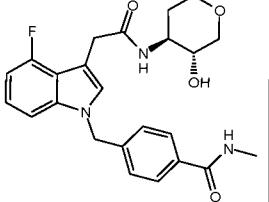
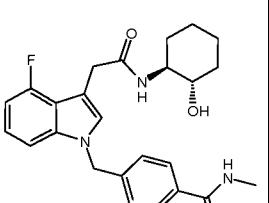

5 dimethylacetamide (10 ml) was added at r.t. and under an argon atmosphere 4-(4-
(chloromethyl)-3-fluorophenyl)-1-methyl-lH-pyrazole (487 mg, 2.17 mmol) and cesium
carbonate (707 mg, 2.2 mmol). The mixture was stirred at r.t overnight, then diluted with EtOAc
and washed with water. The aqueous layer was back extracted with EtOAc. The combined
organics were washed with water, dried over MgS0₄, filtered and evaporated. The crude
10 product was purified by silica gel chromatography using a heptane/EtOAc gradient as eluent to
obtain the title compound (548 mg, 62%) as a colorless viscous oil. MS (m/e): 410.3 (M+H)⁺.

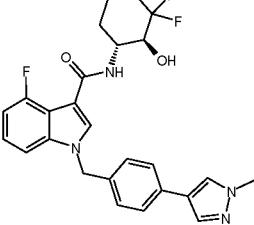
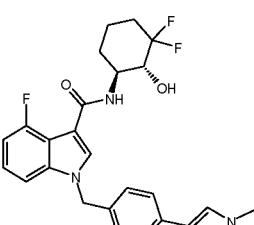
Step 3: 2-(4-Fluoro-1-(2-fluoro-4-(1-methyl-lH-pyrazol-4-yl)benzyl)-lH-indol-3-yl)acetic acid

To a suspension of ethyl 2-(4-fluoro-1-(2-fluoro-4-(1-methyl-lH-pyrazol-4-yl)benzyl)-lH-indol-
3-yl)acetate (0.54 g, 1.32 mmol) in MeOH (1.5 ml) and THF (1.5 ml) was added at r.t. and under
15 an argon atmosphere potassium hydroxide solution 1 M in water (2.64 ml, 2.64 mmol). The
mixture was stirred at 75° for 4 hrs, then cooled to r.t.. 2M HC1 in water (2.64 ml, 5.3 mmol)
was added under stirring at 0°. The mixture was stirred at r.t for 30 min. The precipitate was
filtered, washed with water, collected and dried to provide the title compound (475 mg, 94%) as
an off-white solid. MS (m/e): 382.3 (M+H)⁺.

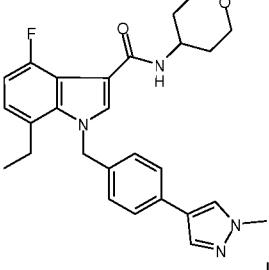
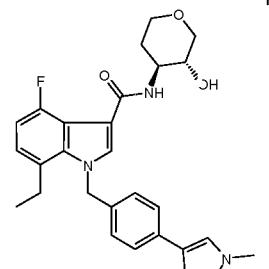
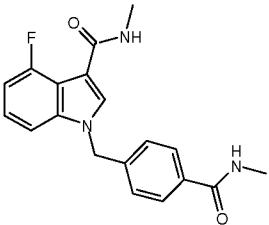
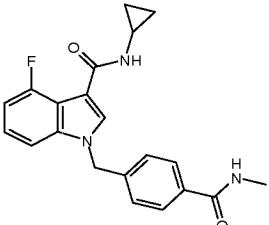
20 Step 4: 2-r4-Fluoro- 1-rr2-fluoro-4-(1-methylpyrazol-4-yl)phenylmethyllindol-3-yl1-N-r(3R,4S)-
3-hydroxyoxan-4-yl1 acetamide

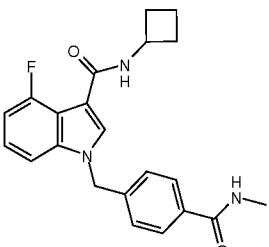
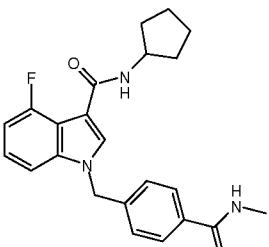
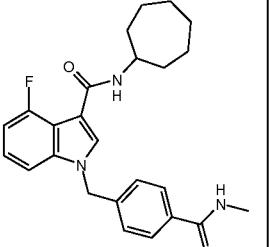
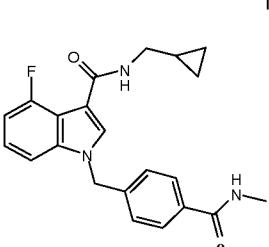
To a solution of 2-(4-fluoro-1-(2-fluoro-4-(1-methyl-lH-pyrazol-4-yl)benzyl)-lH-indol-3-
yl)acetic acid (50 mg, 131 μηοΐ) in DMF (1 ml) was added at r.t. and under an argon atmosphere
(3R,4S)-4-aminotetrahydro-2H-pyran-3-ol hydrochloride (20.1 mg, 131 μηοΐ), DIEA (50.8 mg,
25 68.7 μΐ, 393 μηοΐ) and HATU (59.8 mg, 157 μηοΐ). The yellow solution was stirred at r.t
overnight. The mixture was poured on water and extracted with EtOAc. The organic layer was
washed with water, dried with MgS0₄, filtered and evaporated. The crude product was purified
by silica gel chromatography using a CH₂Cl₂/MeOH gradient as eluent to obtain the title
compound (30 mg, 48%) as a white solid. MS (m/e): 481.3 (M+H)⁺.

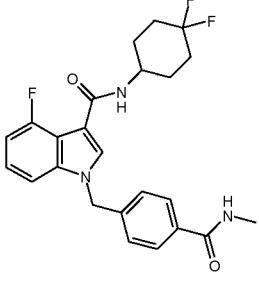
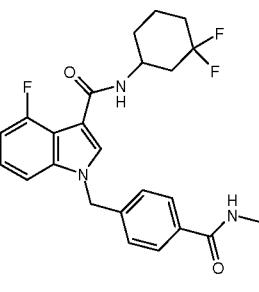
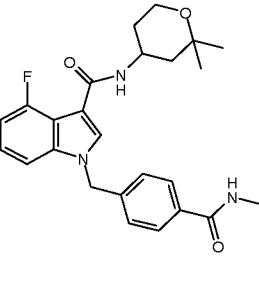
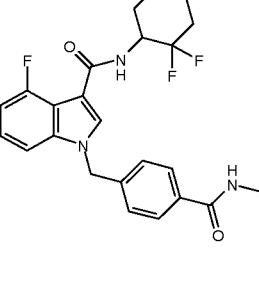
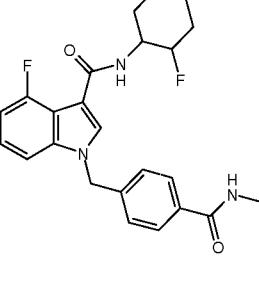




Example 93**Preparation of 2-(4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indol-3-yl)-N-((1S,2S)-2-hydroxycyclohexyl)acetamide**



5 The title compound was obtained in analogy to the procedures described in example 92. Off-white solid. MS (m/e): 479.3 (M+H)⁺.

Examples 94 to 131





In analogy to example 1, examples 94 to 131 of the following table were prepared by coupling an acid derivative with an amine.





Example No.	Structure	Systematic Name	Starting materials	MW found (MH ⁺)
94		4,7-difluoro-1-((1-methyl-1H-indazol-5-yl)methyl)-1H-indole-3-carboxamide (example A.17) and tetrahydro-pyran-4-yl-amine		425.3
95		4,7-difluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide (example A.18) and tetrahydro-pyran-4-yl-amine		451.3






96		4,7-difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (example A.19) and tetrahydro-pyran-4-ylamine	469.3
97		4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxylic acid (example A.1) and 1-(aminomethyl)cyclopropanol	437.3
98		4-((4-fluoro-3-(2-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-ylamino)-2-oxoethyl)-1H-indol-1-yl)methyl)-N-methylbenzamide (example A.20) and (3R,4S)-4-aminotetrahydropyran-3-ol hydrochloride (example C.1)	440.3
99		4-((4-fluoro-3-(2-((1S,2S)-2-hydroxycyclohexylamino)-2-oxoethyl)-1H-indol-1-yl)methyl)-N-methylbenzamide (example A.20) and (3R,4S)-4-aminotetrahydro-2H-pyran-3-ol hydrogen chloride	438.4

100		N-((1R,2S)-3,3-difluoro-2-hydroxycyclohexyl)-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide (example A.9) and (1S,6R)-6-amino-2,2-difluorocyclohexanol (CAS 1109284-40-3)	483.3
101		N-((1S,2R)-3,3-difluoro-2-hydroxycyclohexyl)-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide (example A.9) and (1R,6S)-6-amino-2,2-difluorocyclohexanol	483.3
102		N-((1R,2S)-3,3-difluoro-2-hydroxycyclohexyl)-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide (example A.1) and (1S,6R)-6-amino-2,2-difluorocyclohexanol (CAS 1109284-40-3)	501.3
103		N-((1S,2R)-3,3-difluoro-2-hydroxycyclohexyl)-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide (example A.1) and (1R,6S)-6-amino-2,2-difluorocyclohexanol	501.3

104		N-((endo)-7-oxabicyclo[2.2.1]heptan-2-yl)-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide (example A.1) and (endo)-7-oxabicyclo[2.2.1]heptan-2-amine dihydrochloride	463.2
105		7-cyclopropyl-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxylic acid (example A.21) and (3R,4S)-4-aminotetrahydro-2H-pyran-3-ol hydrogen chloride	487.3
106		7-cyclopropyl-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxylic acid (example A.21) and (3R,4S)-4-aminotetrahydropyran-3-ol hydrochloride (example C.1)	489.3
107		7-cyclopropyl-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxylic acid (example A.22) and (3R,4S)-4-aminotetrahydropyran-3-ol hydrochloride (example C.1)	507.3

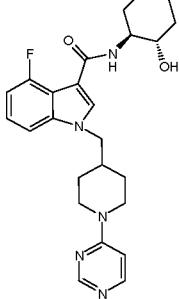
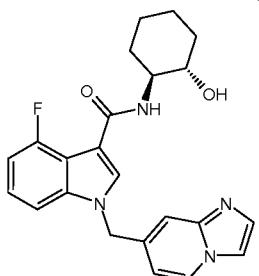
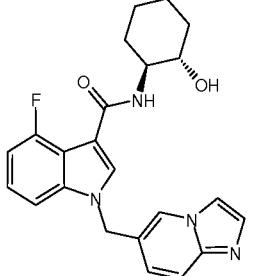
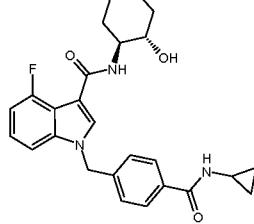
108		7-ethyl-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide (example A.23) and tetrahydro-pyran-4-yl-amine	461.3
109		7-ethyl-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide (example A.23) and (3R,4S)-4-aminotetrahydropyran-3-ol hydrochloride (example C.1)	477.3
110		4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]-1H-indole-3-carboxylic acid (example A.24) and methylamine hydrochloride	340
111		4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]-1H-indole-3-carboxylic acid (example A.24) and cyclopropylamine	365.6

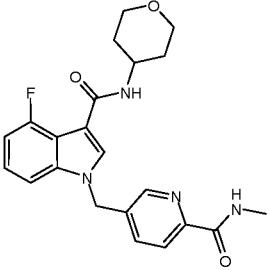
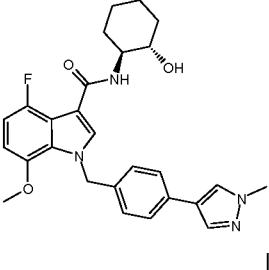
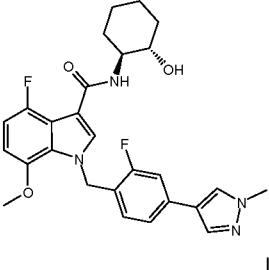
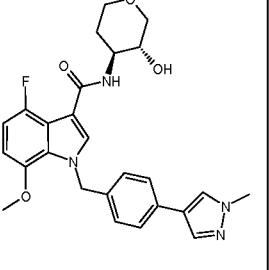
112		N-cyclobutyl-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide	4-fluoro-1-{{4-(methylcarbamoyl)phenyl} methyl}-1H-indole-3-carboxylic acid (example A.24) and cyclobutylamine	380
113		N-cyclopentyl-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide	4-fluoro-1-{{4-(methylcarbamoyl)phenyl} methyl}-1H-indole-3-carboxylic acid (example A.24) and cyclopentylamine	394
114		N-cyclohexyl-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide	4-fluoro-1-{{4-(methylcarbamoyl)phenyl} methyl}-1H-indole-3-carboxylic acid (example A.24) and cyclohexylamine	408
115		N-cycloheptyl-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide	4-fluoro-1-{{4-(methylcarbamoyl)phenyl} methyl}-1H-indole-3-carboxylic acid (example A.24) and cycloheptylamine	422
116		N-(cyclopropylmethyl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide	4-fluoro-1-{{4-(methylcarbamoyl)phenyl} methyl}-1H-indole-3-carboxylic acid (example A.24) and (cyclopropylmethyl) amine	380

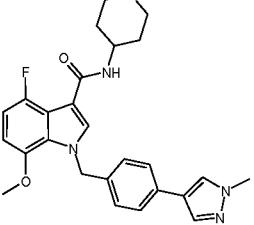
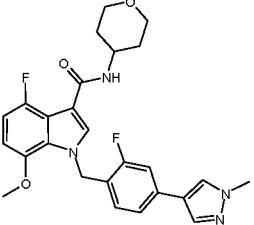
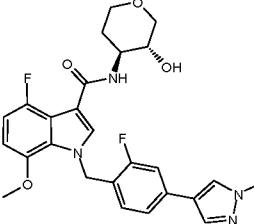
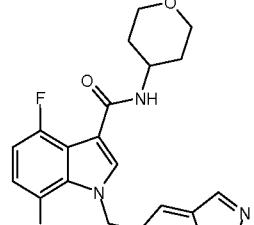
117		N-(4,4-difluorocyclohexyl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide 4-fluoro-1-{{4-(methylcarbamoyl)phenyl} methyl}-1H-indole-3-carboxylic acid (example A.24) and 4,4-difluorocyclohexan-1-amine	444
118		N-(3,3-difluorocyclohexyl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide 4-fluoro-1-{{4-(methylcarbamoyl)phenyl} methyl}-1H-indole-3-carboxylic acid (example A.24) and 3,3-difluorocyclohexan-1-amine hydrochloride	444
119		N-(2,2-dimethyloxan-4-yl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide 4-fluoro-1-{{4-(methylcarbamoyl)phenyl} methyl}-1H-indole-3-carboxylic acid (example A.24) and 2,2-dimethyloxan-4-amine	438
120		N-(2,2-difluorocyclohexyl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide 4-fluoro-1-{{4-(methylcarbamoyl)phenyl} methyl}-1H-indole-3-carboxylic acid (example A.24) and 2,2-difluorocyclohexan-1-amine	444
121		4-fluoro-N-(2-fluorocyclohexyl)-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide 4-fluoro-1-{{4-(methylcarbamoyl)phenyl} methyl}-1H-indole-3-carboxylic acid (example A.24) and 2-fluorocyclohexan-1-amine	426

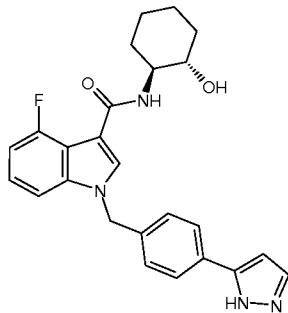
122		4-fluoro-1-[(4-(methylcarbamoyl)phenyl)methyl]-1H-indole-3-carboxamide (example A.24) and oxan-3-amine	410
123		4-fluoro-1-[(4-(methylcarbamoyl)phenyl)methyl]-1H-indole-3-carboxamide (example A.24) and 4-methyloxan-4-amine	424
124		4-fluoro-1-[(4-(methylcarbamoyl)phenyl)methyl]-1H-indole-3-carboxamide (example A.24) and thian-4-amine	426
125		4-fluoro-1-[(4-(methylcarbamoyl)phenyl)methyl]-1H-indole-3-carboxamide (example A.24) and 4-aminotetrahydrothiopyrandioxide	458
126		4-fluoro-1-[(4-(methylcarbamoyl)phenyl)methyl]-1H-indole-3-carboxamide (example A.24) and 3-methyloxan-4-amine	424

127		4-fluoro-1-[(4-(methylcarbamoyl)phenyl)methyl]-1H-indole-3-carboxylic acid (example A.24) and 2-methyloxan-4-amine	424
128		7-ethyl-4-fluoro-1-((1-methyl-1H-indazol-5-yl)methyl)-1H-indole-3-carboxylic acid (example A.25) and tetrahydro-pyran-4-ylamine	435.4
129		4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-1H-indole-3-carboxylic acid (example A.26) and 2-fluorocyclohexan-1-amine	444.3
130		4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-1H-indole-3-carboxylic acid (example A.26) and 3,3-difluorocyclohexan-1-amine hydrochloride	462.3





Examples 131 to 154





In analogy to example 26, examples 131 to 154 of the following table were prepared by reaction of the indicated amides with an alkylating agent.





Example No.	Structure	Systematic Name	Starting materials	MW found (MH ⁺)
131		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-phenylpyridin-3-yl)methyl)-1H-indole-3-carboxamide (example A.6) and 2-chloromethyl-5-phenylpyridine (CAS 146775-28-2)	4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 2-chloromethyl-5-phenylpyridine (CAS 146775-28-2)	444.4
132		4-fluoro-1-(4-(methylcarbamoyl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (example A.8) and 4-(chloromethyl)-N-methylbenzamide (example B.6)	4-Fluoro-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (example A.8) and 4-(chloromethyl)-N-methylbenzamide (example B.6)	410.3
133		4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-7-methyl-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide	4-fluoro-7-methyl-1H-indole-3-carboxylic acid (tetrahydro-pyran-3-yl)-amide (example A.11) and 4-(4-(Chloromethyl)-3-fluorophenyl)-1-methyl-1H-pyrazole (example B.2)	465.3
134		4-fluoro-7-methyl-1-((1-methyl-1H-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide	4-fluoro-7-methyl-1H-indole-3-carboxylic acid (tetrahydro-pyran-3-yl)-amide (example A.11) and 5-(bromomethyl)-1-methyl-1H-indazole hydrobromide	421.3


135		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(pyrimidin-2-yl)benzyl)-1H-indole-3-carboxamide	4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 2-[4-(chloromethyl)phenyl]pyrimidine	445.3
136		4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(1-(pyridin-2-yl)piperidin-4-yl)methyl-1H-indole-3-carboxamide	4-Fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (example A.34) and [1-(2-pyridyl)-4-piperidyl]methyl methanesulfonate (CAS 199117-81-2)	453.3
137		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(oxazol-5-yl)benzyl)-1H-indole-3-carboxamide	4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 5-(4-bromomethyl-phenyl)-oxazole (example B.8)	434.3
138		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(isoxazol-5-yl)benzyl)-1H-indole-3-carboxamide	4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 5-(4-bromomethyl-phenyl)-isoxazole (CAS 169547-50-6)	434.3

139		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((2-phenylpyrimidin-5-yl)methyl)-1H-indole-3-carboxamide (example A.6) and 5-(chloromethyl)-2-phenyl-pyrimidine	445.3
140		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((5-phenylpyridin-2-yl)methyl)-1H-indole-3-carboxamide (example A.6) and 2-chloromethyl-5-phenylpyridine (CAS 146775-28-2)	444.3
141		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((5-(thiazol-2-yl)pyridin-2-yl)methyl)-1H-indole-3-carboxamide (example A.6) and 2-(4-(chloromethyl)phenyl)thiazole (example B.9)	451.3
142		4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 5-(chloromethyl)-2-(1H-imidazol-1-yl)pyridine	434.2

143		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((1-(pyrimidin-4-yl)piperidin-4-yl)methyl)-1H-indole-3-carboxamide (example A.6) and (1-(pyrimidin-4-yl)piperidin-4-yl)methyl methanesulfonate (example B.10)	4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and (1-(pyrimidin-4-yl)piperidin-4-yl)methyl methanesulfonate (example B.10)	452.4
144		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(imidazo[1,2-a]pyridin-7-ylmethyl)-1H-indole-3-carboxamide	4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 7-(chloromethyl)imidazo[1,2-a]pyridine	407.3
145		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(imidazo[1,2-a]pyridin-6-ylmethyl)-1H-indole-3-carboxamide	4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 6-(chloromethyl)imidazo[1,2-a]pyridine hydrochloride	407.3
146		1-(4-(cyclopropylcarbamoyl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide	4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 4-chloromethyl-N-cyclopropylbenzamide (CAS 873371-67-6)	450.2

147		4-fluoro-1-((6-(methylcarbamoyl)pyridin-3-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (example A.8) and 5-(chloromethyl)-N-methylpicolinamide (example B.11)	411.2
148		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-7-methoxy-1H-indole-3-carboxamide (example A.27) and 5-(chloromethyl)-2-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide (example B.1)	477.3
149		4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-7-methoxy-1H-indole-3-carboxamide (example A.27) and 4-(4-(chloromethyl)-3-fluorophenyl)-1-methyl-1H-pyrazole (example B.2)	495.2
150		4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-7-methoxy-1H-indole-3-carboxamide (example A.28) and 5-(chloromethyl)-2-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide (example B.1)	479.2

151		4-fluoro-7-methoxy-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (example A.29) and 5-(chloromethyl)-2-(1-methyl-1H-pyrazol-4-yl)pyridine (example B.1)	463.2
152		4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-7-methoxy-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (example A.29) and 4-(4-(chloromethyl)-3-fluorophenyl)-1-methyl-1H-pyrazole (example B.2)	481.2
153		4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-7-methoxy-1H-indole-3-carboxamide (example A.28) and 4-(4-(chloromethyl)-3-fluorophenyl)-1-methyl-1H-pyrazole (example B.2)	497.2
154		4-fluoro-7-methoxy-1-((1-methyl-1H-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (example A.29) and 5-(bromomethyl)-1-methyl-1H-indazole hydrobromide	437.2

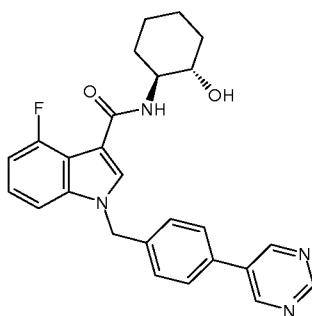
Example 155**1-(4-(1H-Pyrazol-5-yl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide**

5 Step 1: 4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(1-methoxybenzyl)-1H-pyrazol-5-yl)benzyl-1H-indole-3-carboxamide

In analogy to the procedure described for the synthesis of example 26, the title compound was prepared from 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 5-(4-(chloromethyl)phenyl)-1-(4-methoxybenzyl)-1H-pyrazole (example B.12). White 10 solid. MS (m/e): 553.5 (M+H)⁺.

Step 2: 1-(4-(1H-pyrazol-5-yl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

A mixture of 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(1-methoxybenzyl)-1H-pyrazol-5-yl)benzyl-1H-indole-3-carboxamide (95 mg, 172 µmol) and 10 % palladium on 15 activated charcoal (91.5 mg, 86.0 µmol) at room temperature in EtOH (3 ml) and acetic acid (3.00 ml) was stirred under a hydrogen atmosphere (balloon pressure) for 17 hours. The catalyst was filtered and rinsed with EtOH. The filtrate was concentrated and the residue was purified with flash column chromatography on silica eluting with a gradient formed from dichloromethane and methanol (0 to 5 %) to provide the title compound as a white solid (11.9 20 mg, 16 %). MS (m/e): 433.3 (M+H)⁺.


Examples 156 and 157

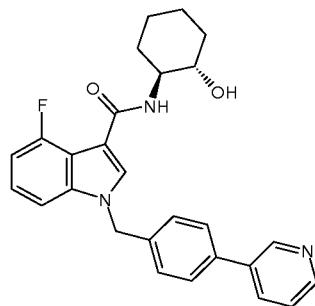
In analogy to the procedures described for the synthesis of example 155, examples 156 and 157 of the following table were prepared by the reaction of the indicated amides with an alkylating agent, followed by hydrogenation.

Example No.	Structure	Systematic Name	Starting materials	MW found (MH ⁺)
156		1-(4-(1H-1,2,4-triazol-3-yl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 3-(4-(chloromethyl)phenyl)-1.4-methoxybenzyl)-1H-1,2,4-triazole (example B.13)	4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.6) and 3-(4-(chloromethyl)phenyl)-1.4-methoxybenzyl)-1H-1,2,4-triazole (example B.13)	433.5
157		1-(4-(1H-1,2,4-triazol-3-yl)benzyl)-4-fluoro-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (example A.8) and 3-(4-(chloromethyl)phenyl)-1.4-methoxybenzyl)-1H-1,2,4-triazole (example B.13)	4-Fluoro-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (example A.8) and 3-(4-(chloromethyl)phenyl)-1.4-methoxybenzyl)-1H-1,2,4-triazole (example B.13)	420.3

Example 158

4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(pyrimidin-5-yl)benzyl)-1H-indole-3-carboxamide

To a solution of 1-(4-bromobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.30) (0.1 g, 225 μmol) and pyrimidin-5-ylboronic acid (41.7 mg, 337

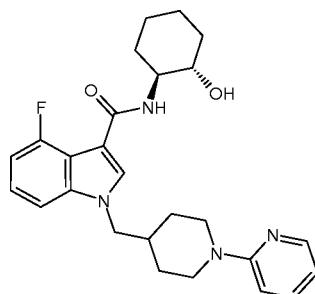

μηοϊ) in 1,2-dimethoxyethane (2 ml) under argon was added cesium carbonate (146 mg, 449 μηοϊ), water (0.2 ml) and tetrakis(triphenylphosphine)palladium(0) (7.78 mg, 6.74 μηοϊ). The mixture was stirred at 90°C for 17 hours, cooled to room temperature and filtered. The cake was rinsed with dichloromethane. The filtrate was concentrated and the residue was purified with

5 flash column chromatography on silica eluting with a gradient formed from dichloromethane and methanol (0 to 5 %) to provide the title compound as a white solid (48.3 mg, 43 %). MS (m/e): 445.3 (M+H)⁺.

Example 159

4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(pyridin-3-yl)benzyl)-1H-indole-3-carboxamide

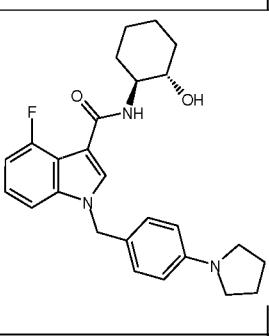
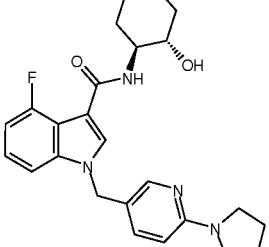
10

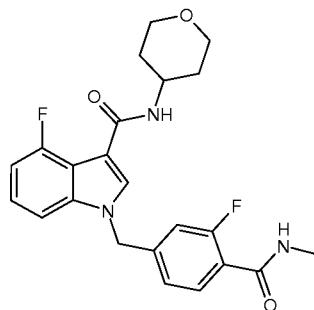


In analogy to the procedure described for the synthesis of example 158, the title compound was prepared by the reaction of 1-(4-bromobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.30) and pyridin-3-ylboronic acid. Off-white solid. MS (m/e):

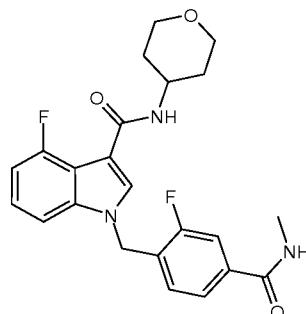
15 444.3 (M+H)⁺.

Example 160



4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((1-(pyridin-2-yl)piperidin-4-yl)methyl)-1H-indole-3-carboxamide



To a stirred mixture of 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(piperidin-4-ylmethyl)-1H-indole-3-carboxamide (example A.31) (150 mg, 402 μmol), 2-bromopyridine (63.5 mg, 38.5 μl, 402 μmol), potassium carbonate (99.9 mg, 723 μl) and water (15.2 mg, 15.2 μl, 843 μl) in xylene (9 ml) at room temperature under argon were added palladium(II) acetate (3.61 mg, 16.1 μl) and 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene (11.6 mg, 20.1 μl). The reaction mixture was degassed and back-filled with argon (3 times). The mixture was then heated to 140°C for 17 hours, cooled to room temperature, diluted with dichloromethane, stirred at room temperature for 5 min and filtered. The filtrate was concentrated and the residue was purified with flash column chromatography on silica eluting with a gradient formed from dichloromethane and methanol (0 to 5 %) to provide the title compound as an off-white solid (27 mg, 15 %). MS (m/e): 451.3 (M+H)⁺.


Example 161 and 162

In analogy to the procedure described for the synthesis of example 160, examples 161 and 162 of the following table were prepared.

Example No.	Structure	Systematic Name	Starting materials	MW found (MH ⁺)
161		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(pyrrolidin-1-yl)benzyl)-1H-indole-3-carboxamide (example A.30) and pyrrolidine	1-(4-bromobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.30) and pyrrolidine	436.4
162		4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(pyrrolidin-1-yl)pyridin-3-yl)methyl)-1H-indole-3-carboxamide (example A.32) and pyrrolidine	1-((6-bromopyridin-3-yl)methyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide (example A.32) and pyrrolidine	437.4

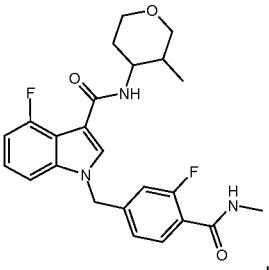
Example 163**4-Fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide**

5 The title compound was obtained in analogy to the procedure described in example 86, reacting methyl 2-fluoro-4-((4-fluoro-3-(tetrahydro-2H-pyran-4-ylcarbamoyl)-1H-indol-1-yl)methyl)benzoate (example A.33) and methylamine hydrochloride. White solid. MS (m/e): 423.3 (M+H)⁺.

Example 164**10 4-Fluoro-1-(2-fluoro-4-(methylcarbamoyl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide**Step 1: methyl 3-fluoro-4-((4-fluoro-3-(tetrahydro-2H-pyran-4-ylcarbamoyl)-1H-indol-1-yl)methyl)benzoate

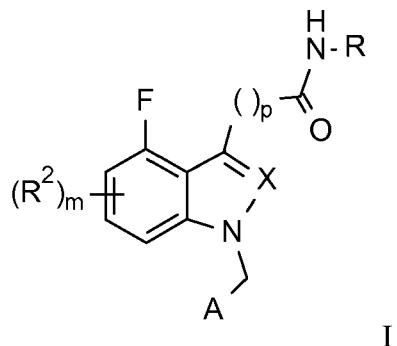
15 The title compound was obtained in analogy to the procedure described in example 26, reacting 4-fluoro-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide (example A.8) and methyl 4-(bromomethyl)-3-fluorobenzoate (CAS 128577-47-9). Off-white solid. MS (m/e): 429.3 (M+H)⁺.

Step 2: 4-Fluoro-1-(2-fluoro-4-(methylcarbamoyl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-IH-indole-3-carboxamide

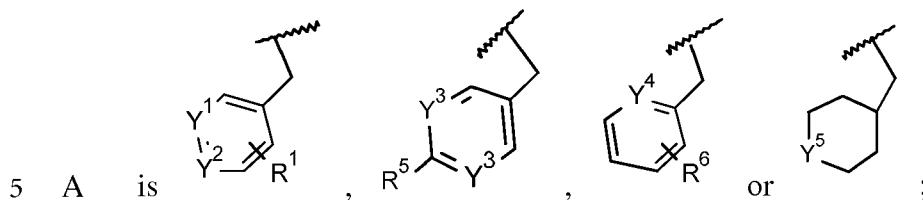

The title compound was obtained in analogy to the procedure described in example 86, reacting methyl 3-fluoro-4-((4-fluoro-3-(tetrahydro-2H-pyran-4-ylcarbamoyl)-IH-indol-1-

5 yl)methyl)benzoate and methylamine hydrochloride. White solid. MS (m/e): 428.3 (M+H)⁺.

Examples 165 to 168


In analogy to example 1, examples 165 to 168 of the following table were prepared by coupling an acid derivative with an amine.

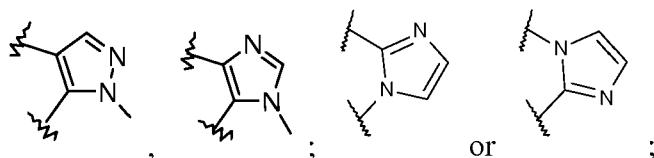
Example No.	Structure	Systematic Name	Starting materials	MW found (MH ⁺)
165		N-(2,2-difluorocyclohexyl)-4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-IH-indole-3-carboxamide	4-Fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-IH-indole-3-carboxylic acid (example A.26) and 2,2-difluorocyclohexan-1-amine	462.2
166		N-(2,2-dimethyltetrahydro-2H-pyran-4-yl)-4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-IH-indole-3-carboxamide	4-Fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-IH-indole-3-carboxylic acid (example A.26) and 2,2-dimethyloxan-4-amine	456.2
167		4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-(tetrahydro-2H-thiopyran-4-yl)-IH-indole-3-carboxamide	4-Fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-IH-indole-3-carboxylic acid (example A.26) and thian-4-amine	444.2


168		4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-(3-methyltetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide	4-Fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-1H-indole-3-carboxylic acid (example A.26) and 3-methyloxan-4-amine	442.3
-----	---	--	---	-------

Claims

1. A compound of formula I

wherein

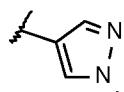

R is lower alkyl, $-(CH_2)_z-C_{3-7}$ -cycloalkyl or $-(CH_2)_z-C_{4-6}$ -heterocycloalkyl, which are optionally substituted by one to three hydroxy, lower alkyl, lower alkoxy or halogen, or is (endo)-7-oxabicyclo[2.2.1]heptan-2-yl;

X is CH or N;

10 Y¹ is CR³ or N;

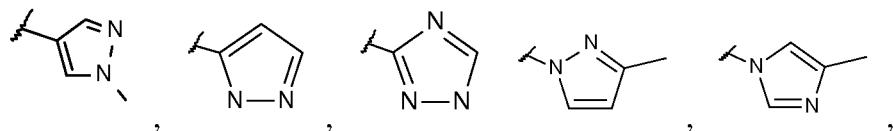
Y² is CR⁴; or

or Y¹ and Y² may form together with the carbon atoms to which they are attach

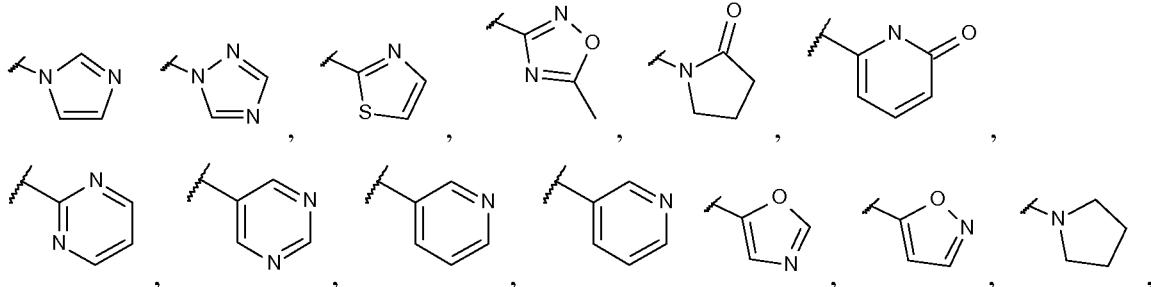

Y³ is N;

15 Y⁴ is N;

Y⁵ is NR⁷;


R¹ is hydrogen or halogen;

R^2 is hydrogen, halogen, cycloalkyl, lower alkyl or lower alkoxy;



R^3 is hydrogen, halogen, CN , $-\text{C}(0)\text{NH}_2$, $-\text{C}(0)\text{NHCH}_3$ or $-\text{C}(0)\text{N}(\text{CH}_3)_2$;

R^4 is hydrogen, a 5 or 6 membered heteroaryl or heterocyclyl group, selected from the group

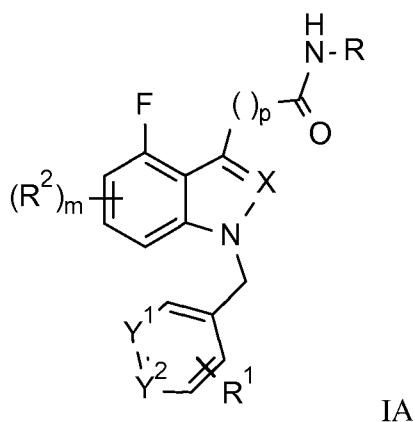
consisting of

or is phenyl, $-\text{C}(0)\text{NH}_2$, $-\text{CH}_2\text{C}(0)\text{NH}_2$, $-\text{C}(0)\text{NHCH}_3$, $-\text{C}(0)\text{NH}$ -cycloalkyl, $-\text{C}(0)\text{N}(\text{CH}_3)_2$, $-\text{NHC}(0)\text{O}$ -lower alkyl, CN, lower alkoxy, lower alkoxy substituted by halogen, halogen or $\text{S}(0)_2\text{CH}_3$;

10 R⁵ is phenyl;

R⁶ is phenyl or thiazol-2-yl;

R⁷ is pyridin-2-yl or pyrimidin-4-yl;


p is 0 or 1;

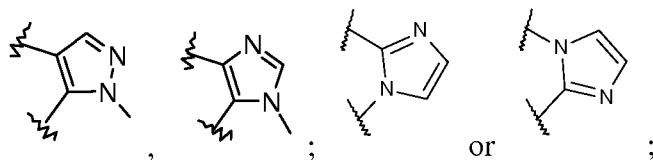
m is 1, 2 or 3;

15 z is 0 or 1;

or a pharmaceutically acceptable acid addition salt, a racemic mixture or its corresponding enantiomer and/or optical isomers thereof.

2. Compounds of formula IA according to claim 1

wherein


R is lower alkyl, $-(CH_2)_z-C_3-7$ -cycloalkyl or $-(CH_2)_z-C_4-6$ -heterocycloalkyl, which are optionally substituted by one to three hydroxy, lower alkyl, lower alkoxy or halogen, or is 5 (endo)-7-oxabicyclo[2.2.1]heptan-2-yl;

X is CH or N;

Y¹ is CR³ or N;

Y² is CR⁴; or

or Y¹ and Y² may form together with the carbon atoms to which they are attach

10

Y³ is N;

Y⁴ is N;

Y⁵ is NR⁷;

R¹ is hydrogen or halogen;

15 R² is hydrogen, halogen, cycloalkyl, lower alkyl or lower alkoxy;

R³ is hydrogen, halogen, , CN, -C(0)NH₂, -C(0)NHCH₃ or -C(0)N(CH₃)₂;

R^4 is hydrogen, a 5 or 6 membered heteroaryl or heterocyclyl group, selected from the group

5 or is phenyl, -C(0)NH₂, -CH₂C(0)NH₂, -C(0)NHCH₃, -C(0)NH-cycloalkyl, -C(0)N(CH₃)₂, -NHC(0)0-lower alkyl, CN, lower alkoxy, lower alkoxy substituted by halogen, halogen or S(0)₂CH₃;

R⁵ is phenyl;

R⁶ is phenyl or thiazol-2-yl;

10 R⁷ is pyridin-2-yl or pyrimidin-4-yl;

p is 0 or 1;

m is 1, 2 or 3;

z is 0 or 1;

or a pharmaceutically acceptable acid addition salt, a racemic mixture or its corresponding enantiomer and/or optical isomers thereof.

3. A compound of formula IA according to claim 2, which compounds are

4-fluoro-1-(2-fluoro-4-(1-methyl-1*H*-pyrazol-4-yl)benzyl)-N-((1*S*,2*S*)-2-hydroxycyclohexyl)-1*H*-indole-3-carboxamide

20 4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1*R*,2*R*)-2-hydroxycyclohexyl)-1*H*-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1*H*-pyrazol-4-yl)benzyl)-N-((1*S*,2*S*)-2-hydroxycyclohexyl)-1*H*-indazole-3-carboxamide 4-fluoro-1-(2-fluoro-4-(1-methyl-1*H*-pyrazol-4-yl)benzyl)-N-((1*R*,2*R*)-2-hydroxycyclohexyl)-1*H*-indazole-3-carboxamide

25 4,6-difluoro-1-(2-fluoro-4-(1-methyl-1*H*-pyrazol-4-yl)benzyl)-N-((1*S*,2*S*)-2-

hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3RS,4RS)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3RS,4SR)-3-hydroxytetrahydro-

5 2H-pyran-4-yl)-1H-indazole-3-carboxamide

4-fluoro-N-[(3S,4R)-4-methoxyxolan-3-yl]-1-[4-(1-methylpyrazol-4-yl)phenyl]methyl]indole-3-carboxamide

N-(3,3-difluorocyclobutyl)-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

10 (R)-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((tetrahydrofuran-2-yl)methyl)-1H-indole-3-carboxamide

N-cyclobutyl-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-3-yl)-1H-indole-3-carboxamide

15 4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(oxetan-3-ylmethyl)-1H-indole-3-carboxamide

4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(oxetan-2-ylmethyl)-1H-indole-3-carboxamide

1-(4-carbamoylbenzyl)-4-fluoro-N-((3RS,4SR)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

20 1-(4-cyanobenzyl)-4-fluoro-N-((3RS,4SR)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-

N-((1S,2S)-2-hydroxycyclopentyl)-1H-indole-3-carboxamide

25 4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2R)-2-hydroxy-2-methylcyclohexyl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-3-yl)-1H-indole-3-carboxamide

30 N-cyclohexyl-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3S,4S)-4-hydroxytetrahydro-2H-pyran-3-yl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-

indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2RS)-2-hydroxy-2-methylcyclohexyl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2R)-2-hydroxycyclopentyl)-1H-indole-3-carboxamide

5 1H-indole-3-carboxamide

N-(2,2-difluorocyclohexyl)-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

4,5,6,7-tetrafluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

10 4,5,6,7-tetrafluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-methoxybenzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

15 1-(4-(difluoromethoxy)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-methoxybenzyl)-1H-indole-3-carboxamide

1-(4-cyanobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

20 4-fluoro-1-(3-fluoro-4-methoxybenzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(trifluoromethoxy)benzyl)-1H-indole-3-carboxamide

25 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(3-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(4-methyl-1H-imidazol-1-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((1-methyl-1H-indazol-5-yl)methyl)-1H-indole-3-carboxamide

30 1-(4-chlorobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(3-chlorobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(3-cyanobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(3,4-difluorobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-1-(4-fluorobenzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(3,5-difluorobenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

5 4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-7-methyl-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-7-methyl-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

1-benzyl-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

10 4-fluoro-7-methyl-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-3-yl)-1H-indole-3-carboxamide

4-fluoro-7-methyl-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(3-methyl-1H-pyrazol-1-yl)benzyl)-1H-indole-

15 3-carboxamide

4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(4-methyl-1H-imidazol-1-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-((1-methyl-1H-indazol-5-yl)methyl)-1H-indole-3-carboxamide

20 4,5,6,7-tetrafluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

1-(4-cyanobenzyl)-4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-N-((3R,4S) or (3S,4R)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

25 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((1-methyl-1H-benzo[d]pyridine-5-yl)methyl)-1H-indole-3-carboxamide

4,5-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

30 4,5-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(methylcarbamoyl)benzyl)-1H-indole-3-carboxamide

4,5-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(4-methyl-1H-imidazol-1-yl)benzyl)-1H-indole-3-carboxamide

4,5-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(3-methyl-1H-pyrazol-1-yl)benzyl)-1H-indole-3-carboxamide

5 4,5,6,7-Tetrafluoro-N-((3S,4R) or (3R,4S))-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

4,5,6,7-Tetrafluoro-N-((3R,4S) or (3S,4R))-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

4,5,6,7-Tetrafluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3R,4S) or (3S,4R))-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

Fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-1-((1-methyl-1H-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

15 4-fluoro-1-(4-(4-methyl-1H-imidazol-1-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indazole-3-carboxamide

20 4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3S,4R) or (3R,4S))-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-Fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3R,4S) or (3S,4R))-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

25 4,7-difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indazole-3-carboxamide

4,7-difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indazole-3-carboxamide

4,7-difluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-1H-indazole-3-carboxamide

4,7-difluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(1-methyl-1H-pyrazol-4-yl)pyridine-3-yl)methyl)-1H-indazole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(methylcarbamoyl)benzyl)-1H-indole-3-

carboxamide

1-(4-carbamoylbenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide
1-((6-(1H-1,2,4-triazol-1-yl)pyridine-3-yl)methyl)-4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

5 4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(thiazol-2-yl)benzyl)-1H-indole-3-carboxamide

1-(4-(2-amino-2-oxoethyl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(3-carbamoylbenzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

10 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(methylsulfonyl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(5-methyl-1,2,4-oxadiazol-3-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(2-oxopyrrolidin-1-yl)benzyl)-15 1H-indole-3-carboxamide

ethyl 4-((4-fluoro-3-((1S,2S)-2-hydroxycyclohexylcarbamoyl)-1H-indol-1-yl)methyl)phenylcarbamate

4-fluoro-1-(2-fluoro-4-(methylcarbamoyl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

20 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(methylcarbamoyl)pyridin-3-yl)methyl)-1H-indole-3-carboxamide

4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

25 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(3-(methylcarbamoyl)benzyl)-1H-indole-3-carboxamide

1-(3-(dimethylcarbamoyl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(methylcarbamoyl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

30 2-[4-fluoro-1-[[2-fluoro-4-(1-methylpyrazol-4-yl)phenyl]methyl]indol-3-yl]-N-[(3R,4S)-3-hydroxyoxan-4-yl]acetamide

2-(4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indol-3-yl)-N-((1S,2S)-2-hydroxycyclohexyl)acetamide

4,7-difluoro-1-((1-methyl-1H-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4,7-difluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

5 4,7-difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4,7-difluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

10 4-((4-fluoro-3-(2-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-ylamino)-2-oxoethyl)-1H-indol-1-yl)methyl)-N-methylbenzamide

4-((4-fluoro-3-(2-((1S,2S)-2-hydroxycyclohexylamino)-2-oxoethyl)-1H-indol-1-yl)methyl)-N-methylbenzamide

N-((1R,2S)-3,3-difluoro-2-hydroxycyclohexyl)-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

15 N-((1S,2R)-3,3-difluoro-2-hydroxycyclohexyl)-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

N-((1R,2S)-3,3-difluoro-2-hydroxycyclohexyl)-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

N-((1S,2R)-3,3-difluoro-2-hydroxycyclohexyl)-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-

20 yl)benzyl)-1H-indole-3-carboxamide

N-((endo)-7-oxabicyclo[2.2.1]heptan-2-yl)-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

7-cyclopropyl-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

25 7-cyclopropyl-4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

7-cyclopropyl-4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

30 7-ethyl-4-fluoro-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

7-ethyl-4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-methyl-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide

N-cyclopropyl-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide
N-cyclobutyl-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide
N-cyclopentyl-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide
N-cyclohexyl-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide
5 N-cycloheptyl-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide
N-(cyclopropylmethyl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide
N-(4,4-difluorocyclohexyl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-
carboxamide
N-(3,3-difluorocyclohexyl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-
10 carboxamide
N-(2,2-dimethyloxan-4-yl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-
carboxamide
N-(2,2-difluorocyclohexyl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-
carboxamide
15 4-fluoro-N-(2-fluorocyclohexyl)-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide
4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]-N-(oxan-3-yl)indole-3-carboxamide
4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]-N-(4-methyloxan-4-yl)indole-3-carboxamide
4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]-N-(thian-4-yl)indole-3-carboxamide
N-(1,1-dioxothian-4-yl)-4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]indole-3-carboxamide
20 4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]-N-(3-methyloxan-4-yl)indole-3-carboxamide
4-fluoro-1-[[4-(methylcarbamoyl)phenyl]methyl]-N-(2-methyloxan-4-yl)indole-3-carboxamide
7-ethyl-4-fluoro-1-((1-methyl-1H-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-
indole-3-carboxamide
4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-(2-fluorocyclohexyl)-1H-indole-3-
25 carboxamide
N-(3,3-difluorocyclohexyl)-4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-1H-indole-3-
carboxamide
4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-phenylpyridin-3-yl)methyl)-1H-indole-3-
carboxamide
30 4-fluoro-1-(4-(methylcarbamoyl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-
carboxamide
4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-7-methyl-N-(tetrahydro-2H-pyran-4-
yl)-1H-indole-3-carboxamide

4-fluoro-7-methyl- 1-((1-methyl- 1H-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)- 1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(pyrimidin-2-yl)benzyl)-1H-indole-3-carboxamide

5 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(oxazol-5-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(isoxazol-5-yl)benzyl)-1H-indole-3-carboxamide

1-((6-(1H-imidazol-1-yl)pyridin-3-yl)methyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

10 4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(imidazo[1,2-a]pyridin-7-ylmethyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(imidazo[1,2-a]pyridin-6-ylmethyl)-1H-indole-3-carboxamide

15 1-(4-(cyclopropylcarbamoyl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

4-fluoro-1-((6-(methylcarbamoyl)pyridin-3-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-7-methoxy-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

20 4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((1S,2S)-2-hydroxycyclohexyl)-7-methoxy-1H-indole-3-carboxamide

4-fluoro-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-7-methoxy-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-1H-indole-3-carboxamide

25 4-fluoro-7-methoxy-1-(4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-7-methoxy-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

4-fluoro-1-(2-fluoro-4-(1-methyl-1H-pyrazol-4-yl)benzyl)-N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-7-methoxy-1H-indole-3-carboxamide

30 4-fluoro-7-methoxy-1-((1-methyl-1H-indazol-5-yl)methyl)-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

1-(4-(1H-Pyrazol-5-yl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(4-(1H-1,2,4-triazol-3-yl)benzyl)-4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1H-indole-3-carboxamide

1-(4-(1H-1,2,4-triazol-3-yl)benzyl)-4-fluoro-N-(tetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide

5 4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(pyrimidin-5-yl)benzyl)-1H-indole-3-carboxamide

4-Fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(pyridin-3-yl)benzyl)-1H-indole-3-carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-(4-(pyrrolidin-1-yl)benzyl)-1H-indole-3-

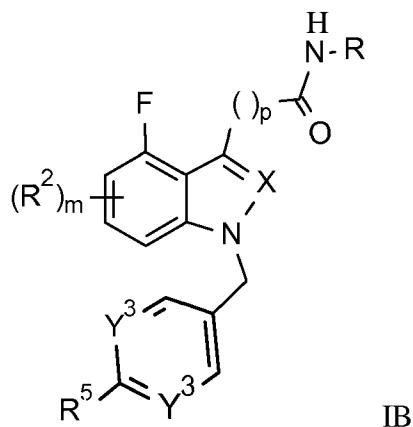
10 carboxamide

4-fluoro-N-((1S,2S)-2-hydroxycyclohexyl)-1-((6-(pyrrolidin-1-yl)pyridin-3-yl)methyl)-1H-indole-3-carboxamide

4-Fluoro- 1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)- 1H-indole-3-carboxamide

15 4-Fluoro- 1-(2-fluoro-4-(methylcarbamoyl)benzyl)-N-(tetrahydro-2H-pyran-4-yl)- 1H-indole-3-carboxamide

N-(2,2-difluorocyclohexyl)-4-fluoro- 1-(3-fluoro-4-(methylcarbamoyl)benzyl)- 1H-indole-3-carboxamide


N-(2,2-dimethyltetrahydro-2H-pyran-4-yl)-4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-

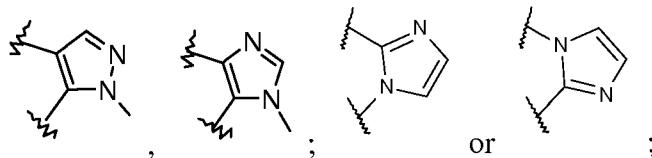
20 1H-indole-3-carboxamide

4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-(tetrahydro-2H-thiopyran-4-yl)-1H-indole-3-carboxamide or

4-fluoro-1-(3-fluoro-4-(methylcarbamoyl)benzyl)-N-(3-methyltetrahydro-2H-pyran-4-yl)-1H-indole-3-carboxamide.

25 4. A compound of formula IB according to claim 1,

wherein


5 R is lower alkyl, $-(CH_2)_z-C_{3-7}$ -cycloalkyl or $-(CH_2)_z-C_{4-6}$ -heterocycloalkyl, which are optionally substituted by one to three hydroxy, lower alkyl, lower alkoxy or halogen, or is (endo)-7-oxabicyclo[2.2.1]heptan-2-yl;

X is CH or N;

Y¹ is CR³ or N;

Y² is CR⁴; or

or Y¹ and Y² may form together with the carbon atoms to which they are attached

10 ; or ;

Y³ is N;

Y⁴ is N;

Y⁵ is NR⁷;

R¹ is hydrogen or halogen;

15 R² is hydrogen, halogen, cycloalkyl, lower alkyl or lower alkoxy;

R³ is hydrogen, halogen, , CN, -C(0)NH₂, -C(0)NHCH₃ or -C(0)N(CH₃)₂;

-140-

R^4 is hydrogen, a 5 or 6 membered heteroaryl or heterocyclyl group, selected from the group

5 or is phenyl, $-\text{C}(0)\text{NH}_2$, $-\text{CH}_2\text{C}(0)\text{NH}_2$, $-\text{C}(0)\text{NHCH}_3$, $-\text{C}(0)\text{NH-}(\text{cycloalkyl})$,
 $-\text{C}(0)\text{N}(\text{CH}_3)_2$, $-\text{NHC}(0)\text{O-lower alkyl}$, CN, lower alkoxy, lower alkoxy substituted by
halogen, halogen or $\text{S}(0)_2\text{CH}_3$;

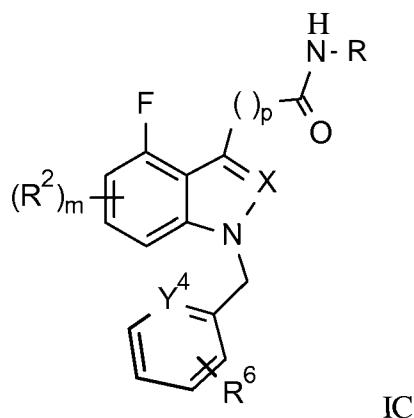
R⁵ is phenyl;

R⁶ is phenyl or thiazol-2-yl;

10 R⁷ is pyridin-2-yl or pyrimidin-4-yl;

p is 0 or 1;

m is 1, 2 or 3;


z is 0 or 1;

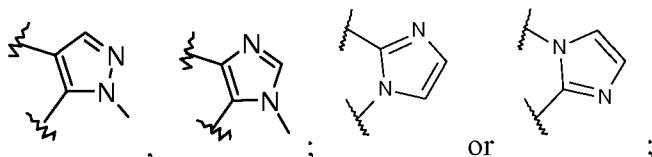
or a pharmaceutically acceptable acid addition salt, a racemic mixture or its corresponding enantiomer and/or optical isomers thereof.

5. A compound of formula IB according to claim 4, which compound is

4-fluoro-N-((1*S*,2*S*)-2-hydroxycyclohexyl)-1-((2-phenylpyrimidin-5-yl)methyl)-1*H*-indole-3-carboxamide.

20 6. A compound of formula IC according to claim 1

wherein


5 R is lower alkyl, $-(CH_2)_z-C_{3-7}$ -cycloalkyl or $-(CH_2)_z-C_{4-6}$ -heterocycloalkyl, which are optionally substituted by one to three hydroxy, lower alkyl, lower alkoxy or halogen, or is (endo)-7-oxabicyclo[2.2.1]heptan-2-yl;

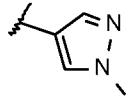
X is CH or N;

Y¹ is CR³ or N;

Y² is CR⁴; or

or Y¹ and Y² may form together with the carbon atoms to which they are attach

10


Y³ is N;

Y⁴ is N;

Y⁵ is NR⁷;

R¹ is hydrogen or halogen;

15 R² is hydrogen, halogen, cycloalkyl, lower alkyl or lower alkoxy;

R³ is hydrogen, halogen, , CN, $-C(0)NH_2$, $-C(0)NHCH_3$ or $-C(0)N(CH_3)_2$;

R^4 is hydrogen, a 5 or 6 membered heteroaryl or heterocyclyl group, selected from the group

5 or is phenyl, $-\text{C}(0)\text{NH}_2$, $-\text{CH}_2\text{C}(0)\text{NH}_2$, $-\text{C}(0)\text{NHCH}_3$, $-\text{C}(0)\text{NH-}(\text{cycloalkyl})$,
 $-\text{C}(0)\text{N}(\text{CH}_3)_2$, $-\text{NHC}(0)\text{O-lower alkyl}$, CN, lower alkoxy, lower alkoxy substituted by
halogen, halogen or $\text{S}(0)_2\text{CH}_3$;

R⁵ is phenyl;

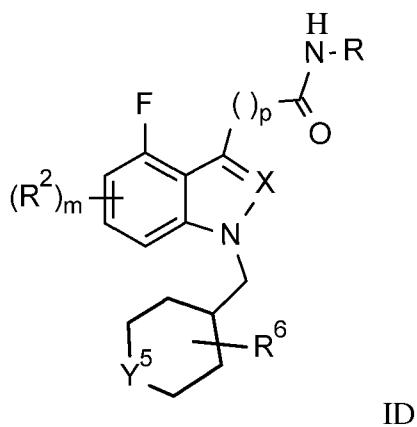
R⁶ is phenyl or thiazol-2-yl;

10 R⁷ is pyridin-2-yl or pyrimidin-4-yl;

p is 0 or 1;

m is 1, 2 or 3;

z is 0 or 1;


or a pharmaceutically acceptable acid addition salt, a racemic mixture or its corresponding enantiomer and/or optical isomers thereof.

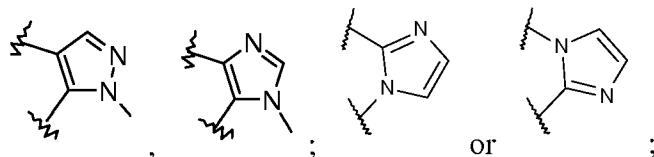
7. A compound of formula IC according to claim 6, which compounds are

4-fluoro-N-((1*S*,2*S*)-2-hydroxycyclohexyl)-1-((2-phenylpyrimidin-5-yl)methyl)-1*H*-indole-3-carboxamide or

20 4-fluoro-N-((1*S*,2*S*)-2-hydroxycyclohexyl)-1-((5-(thiazol-2-yl)pyridin-2-yl)methyl)-1*H*-indole-3-carboxamide.

8. A compound of formula ID according to claim 1

wherein


R is lower alkyl, $-(CH_2)_z-C_{3-7}$ -cycloalkyl or $-(CH_2)_z-C_{4-6}$ -heterocycloalkyl, which are optionally substituted by one to three hydroxy, lower alkyl, lower alkoxy or halogen, or is 5 (endo)-7-oxabicyclo[2.2.1]heptan-2-yl;

X is CH or N;

Y¹ is CR³ or N;

Y² is CR⁴; or

or Y¹ and Y² may form together with the carbon atoms to which they are attach

10

Y³ is N;

Y⁴ is N;

Y⁵ is NR⁷;

R¹ is hydrogen or halogen;

15 R² is hydrogen, halogen, cycloalkyl, lower alkyl or lower alkoxy;

R³ is hydrogen, halogen, , CN, -C(0)NH₂, -C(0)NHCH₃ or -C(0)N(CH₃)₂;

R^4 is hydrogen, a 5 or 6 membered heteroaryl or heterocyclyl group, selected from the group

consisting of

5 or is phenyl, $-\text{C}(0)\text{NH}_2$, $-\text{CH}_2\text{C}(0)\text{NH}_2$, $-\text{C}(0)\text{NHCH}_3$, $-\text{C}(0)\text{NH-}(\text{cycloalkyl})$,
 $-\text{C}(0)\text{N}(\text{CH}_3)_2$, $-\text{NHC}(0)\text{O-lower alkyl}$, CN, lower alkoxy, lower alkoxy substituted by
halogen, halogen or $\text{S}(0)_2\text{CH}_3$;

R⁵ is phenyl;

R⁶ is phenyl or thiazol-2-yl;

10 R⁷ is pyridin-2-yl or pyrimidin-4-yl;

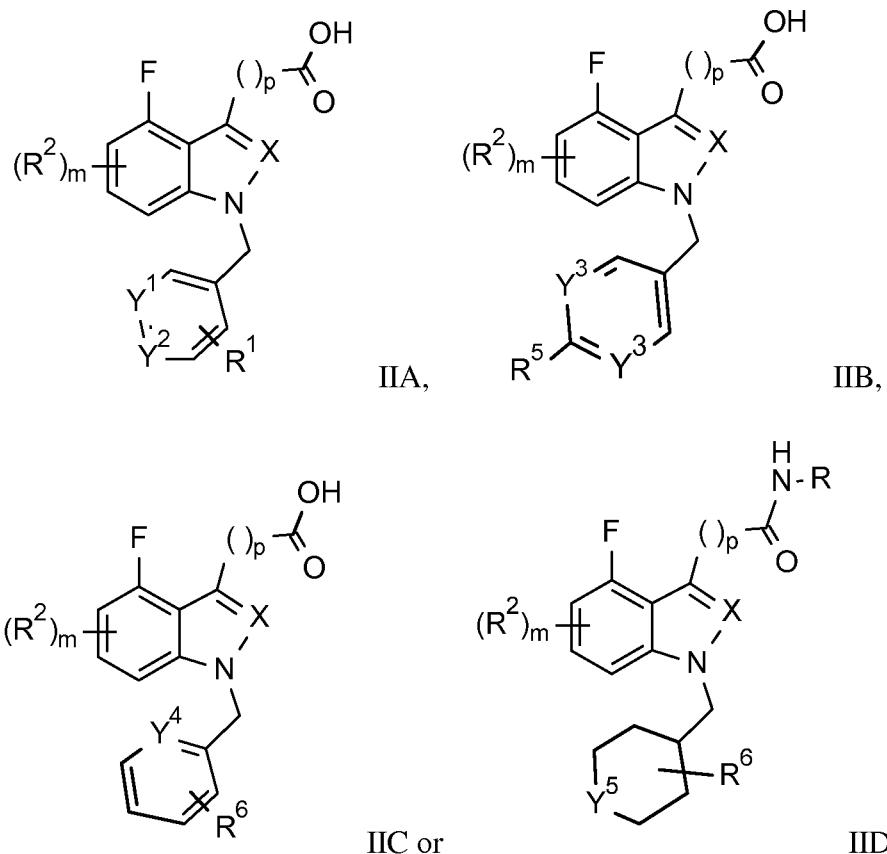
p is 0 or 1;

m is 1, 2 or 3;

z is 0 or 1;

or a pharmaceutically acceptable acid addition salt, a racemic mixture or its corresponding enantiomer and/or optical isomers thereof.

9. A compound of formula ID according to claim 8, which compounds are

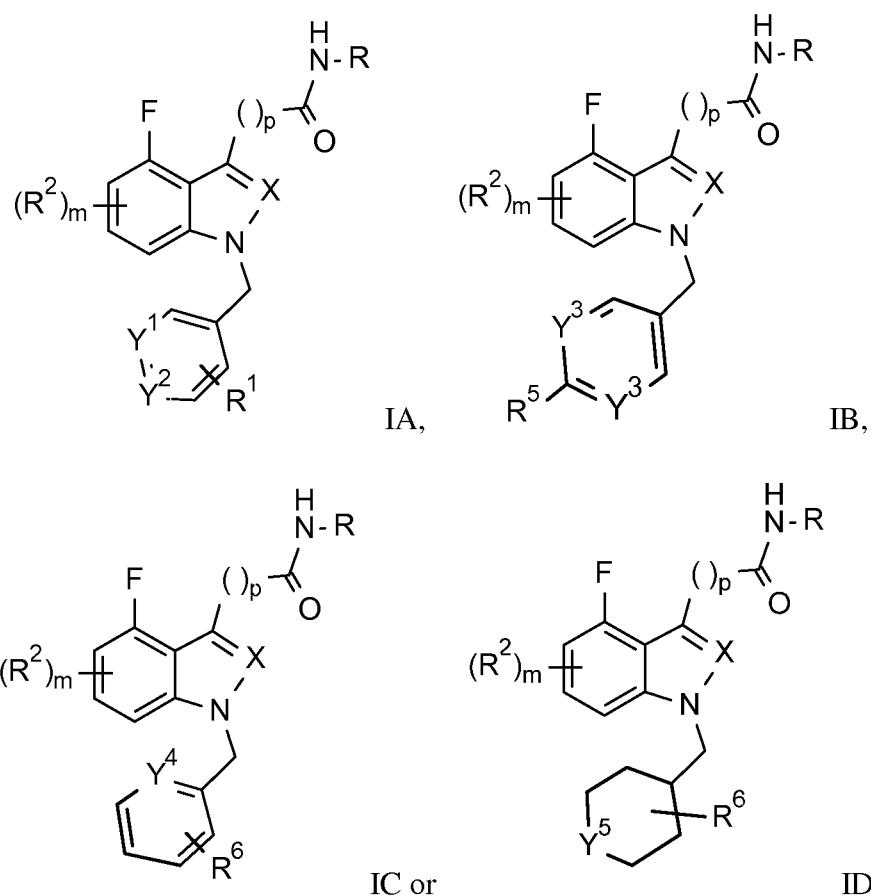

4-fluoro-N-((3*R*,4*S*)-3-hydroxytetrahydro-2*H*-pyran-4-yl)-1-((1-(pyridin-2-yl)piperidin-4-yl)methyl)-1*H*-indole-3-carboxamide

20 4-fluoro-N-((1*S*,2*S*)-2-hydroxycyclohexyl)-1-((1-(pyrimidin-4-yl)piperidin-4-yl)methyl)-1*H*-indole-3-carboxamide or

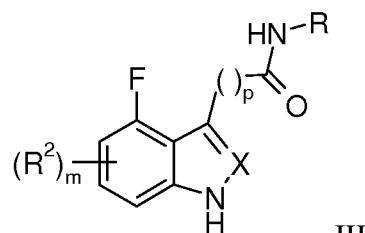
4-Fluoro-N-((1*S*,2*S*)-2-hydroxycyclohexyl)-1-((1-(pyridin-2-yl)piperidin-4-yl)methyl)-1*H*-indole-3-carboxamide.

10. A process for the manufacture of a compound of formula I as defined in any one of claims 1 to 9, which process comprises

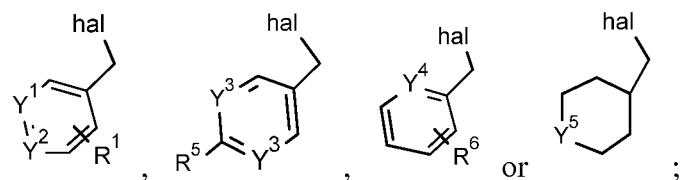
a) reacting a compound of formula


with a compound of formula

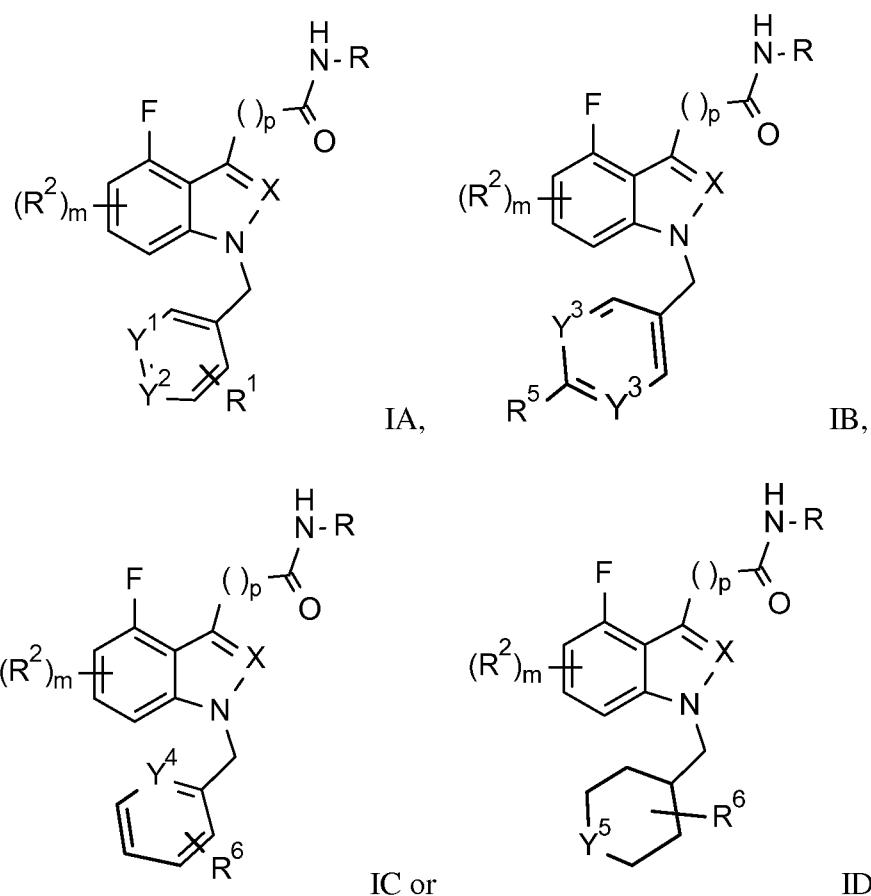
in the presence of an activating agent such as BOP (benzotriazol-1-


10 yloxy)tris(dimethylamino)phosphonium hexafluorophosphate or thionyl chloride

to a compound of formulas


wherein the substituents are as defined in claim 1, or

b) reacting a compound of formula



5

with a compound of formulas

in the presence of base like cesium carbonate or sodium hydride to a compound of formulas

wherein Hal is halogen and the other substituents are as defined in claim 1, and, if desired, converting the compounds obtained into pharmaceutically acceptable acid addition salts.

5 11. A compound according to any one of claims 1 to 9, when manufactures by a process
according to claim 10.

12. A pharmaceutical composition comprising a compound according to any one of claims 1
to 9 and a pharmaceutical acceptable carrier and/or adjuvant.

10 13. Pharmaceutical composition comprising a compound according to any one of claims 1 to 9
and a pharmaceutical acceptable carrier and/or adjuvant for use in the treatment of Alzheimer's
disease, cognitive impairment, schizophrenia, pain or sleep disorders.

14. Compounds according to any one of claims 1 to 9 for use as therapeutic active substances.

15. Compounds according to any one of claims 1 to 9 for use as therapeutic active substances
in the treatment of Alzheimer's disease, cognitive impairment, schizophrenia, pain or sleep
disorders.

-148-

16. The use of a compound according to any one of claims 1 to 9 for the preparation of medicaments for the therapeutic and/or prophylactic treatment of Alzheimer's disease, cognitive impairment, schizophrenia, pain or sleep disorders.

17. A method for the treatment or prophylaxis of Alzheimer's disease, cognitive impairment,
5 schizophrenia, pain or sleep disorders, .which method comprises administering an effective amount of a compound as defined in any one of claim 1 to 9.

18. The use of a compound according to any one of claims 1 to 9 for the treatment or prophylaxis of Alzheimer's disease, cognitive impairment, schizophrenia, pain or sleep disorders.

10 19. The invention as hereinbefore described.

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/EP2014/070092**Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: **10** because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2014/070092

A. CLASSIFICATION OF SUBJECT MATTER	INV. C07D209/42	C07D403/10	C07D405/12	C07D405/14	C07D413/14
	C07D417/14	C07D471/04	A61K31/404	A61K31/416	A61P25/28

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, CHEM ABS Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2013/106795 AI (UNIV VANDERBI LT [US]) 18 July 2013 (2013-07-18)	1-18
Y	Abstract; claims; examples, e.g. compounds B8, B9, B28. -----	1-18
Y	WO 2011/084368 AI (MERCK SHARP & DOWME [US] ; KUDUK SCOTT D [US] ; SCHLEGEL KELLY-ANN [US] ;) 14 July 2011 (2011-07-14) Abstract; claims; examples. -----	1-18

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international filing date

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"O" document referring to an oral disclosure, use, exhibition or other means

"&" document member of the same patent family

"P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

Date of mailing of the international search report

18 November 2014

27/11/2014

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Wei sbrod, Thomas

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No PCT/EP2014/070092

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 2013106795	AI 18-07-2013	US WO	2014206676 AI 2013106795 AI	24-07-2014 18-07-2013
<hr/>				
WO 2011084368	AI 14-07-2011	AR AU CA CN CO CR DO EA EP JP KR MA NZ PE SG TW US WO	079510 AI 2010340142 AI 2782347 AI 102651970 A 6551729 A2 20120327 A P2012000167 A 201290519 AI 2512243 AI 2013514358 A 20120084324 A 33920 BI 600674 A 16132012 AI 181719 AI 201130824 A 2012252808 AI 2011084368 AI	01-02-2012 14-06-2012 14-07-2011 29-08-2012 31-10-2012 30-07-2012 31-12-2012 30-01-2013 24-10-2012 25-04-2013 27-07-2012 02-01-2013 31-05-2013 02-12-2012 30-07-2012 16-09-2011 04-10-2012 14-07-2011
<hr/>				

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box II.2

Claims Nos.: 19

Claim 19 is unclear to such an extend (Article 6 PCT) that the claim has not been searched.

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure. If the application proceeds into the regional phase before the EPO, the applicant is reminded that a search may be carried out during examination before the EPO (see EPO Guidelines C-IV, 7.2), should the problems which led to the Article 17(2) declaration be overcome.