A jet injector that includes a prefilled syringe. The syringe includes a fluid chamber that contains a medicament. The syringe also has an injection-assisting needle, and a plunger is movable within the fluid chamber. A housing is configured for allowing insertion of the needle to a penetration depth. The housing includes a retractable guard and an interference component, e.g., a lock ring, adjacent to the retractable guard that interferes with the movement of the retractable guard. An energy source is configured for biasing the plunger to produce an injecting pressure to jet inject the medicament from the fluid chamber through the needle to an injection site.
TITLE
Prefilled Syringe with Breakaway Force Feature

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority of U.S. Provisional Patent Application No. 61/607,339 filed March 6, 2012, which is incorporated by reference herein for all purposes.

BACKGROUND OF THE INVENTION

[0002] The present invention relates to a jet injector and in some embodiments a needle-assisted jet injector that uses a low jet injection pressure and has a lock ring that provides breakaway force resistance.

[0003] Certain jet injection devices have needle guards that must be retracted prior to insertion of the needle and triggering of the jet injection. A certain amount of force is normally required to trigger the jet injection. To assure sufficient needle guard travel for needle insertion and triggering, it is at times desirable to require a breakaway force prior to significant needle guard retraction to assure that insertion of the needle and triggering of triggering force is overcome. The present invention addresses this problem.

SUMMARY OF THE INVENTION

[0004] In certain embodiments, the invention relates to a jet injector. In one embodiment, the jet injector includes a prefilled syringe having a container portion defining a fluid chamber containing a medicament; an injection-assisting needle disposed at the distal end of the chamber, having an injecting tip configured for piercing an insertion location, and defining a fluid pathway in fluid communication with the chamber for injecting the fluid from the chamber into an injection site; a plunger movable within the fluid chamber; a housing that houses the prefilled syringe and is configured for allowing insertion of the needle at the injection location to an insertion point that is at a penetration depth below the surface, the housing including: a retractable guard that is movable between a protecting position in which the needle is disposed within the guard and an injecting position in which the tip of the needle is exposed for insertion to the insertion point, and an interference component adjacent to the retractable guard that interferes with the movement of the retractable guard when the retractable component is moved at least partially from the protecting position toward the injecting position; a syringe support supportively mounting the prefilled syringe in the housing; an energy source configured for
biasing the plunger with a force selected to produce an injecting pressure on the medicament in the fluid chamber to inject the medicament from the fluid chamber through the needle to the injection site.

[0005] In certain embodiments, the energy source and prefilled syringe are configured such that the injecting pressure remains between about 80 p.s.i. and about 1000 p.s.i. during injection of the medicament. In one embodiment, the energy source and prefilled syringe are configured such that the injecting pressure remains below about 500 p.s.i. and above about 90 p.s.i. during the injection of the medicament. In another embodiment, the energy source and prefilled syringe are configured to produce the injecting pressure that remains at least at about 100 p.s.i. during the injection of the medicament. In one embodiment, the energy source and prefilled syringe are configured such that the injecting pressure remains up to about 350 p.s.i. during the injection of the medicament.

[0006] In certain embodiments, the prefilled syringe has a distal portion in which the injection-assisting needle is located, and a proximal portion opposite the distal portion; and the syringe support axially supports the proximal portion of the pre-filled syringe during the jet injection of the medicament, such that the distal portion of the prefilled syringe is substantially unsupported in an axial direction. In one embodiment, the container portion of the pre-filled syringe is made of blown glass. In another embodiment, the injection-assisting needle is adhered to the glass.

[0007] In certain embodiment, the interference component is a ring having at least one abutment arm extending distally from a proximal end dimensioned to fit within the housing, the abutment arm having at least one tapered portion. In one embodiment, the at least one abutment arm has an engagement portion axially adjacent to the at least one tapered portion that is configured to cause resistance to the movement of the retractable guard when the retractable guard is moved at least partially from the protecting position toward the injecting position.

[0008] In one embodiment, the energy source comprises a spring. In one embodiment, the jet injector further includes a ram that is biased by the spring against the plunger to produce the injecting pressure, wherein the ram comprises a bell portion on which the spring is seated, and the bell portion defines a hollow interior configured for receiving the prefilled syringe when the device is fired, such that the spring surrounds the prefilled syringe.
In some embodiments, the jet injector further includes a trigger mechanism operably associated with the energy source for activating the energy source to jet inject the medicament, wherein the trigger mechanism is configured for activating the energy source after the retractable guard is retracted from the protecting position. In one embodiment, the retractable guard is operably associated with the trigger mechanism to cause the trigger mechanism to activate the energy source when the guard is retracted to the injecting position.

In some embodiments, the interference component is a sleeve having an engagement portion extending outwardly from an outer surface of the sleeve that is configured to cause resistance to the movement of the retractable guard when the retractable guard is moved at least partially from the protecting position toward the injecting position. In other embodiments, the interference component is a latch coupled to the housing that is configured to cause resistance to the movement of the retractable guard when the retractable guard is moved at least partially from the protecting position toward the injecting position.

In certain embodiments, the housing is configured for allowing insertion of the needle to the penetration depth, which is between about 0.5 mm and about 5 mm below the surface at the insertion location.

In certain embodiments, the housing is configured for allowing insertion of the needle to the penetration depth, which is between about 11 mm and about 13 mm below the surface at the insertion location.

In certain embodiments, the chamber contains about between 0.02 mL and about 4 mL of the medicament.

In certain embodiments, the penetration depth and injecting pressure are sufficient to substantially prevent backflow of the injected medicament.

In other embodiments, the jet injector further includes a syringe cushion associated with the syringe support and prefilled syringe to compensate for shape irregularities of the pre-filled syringe.

In certain embodiments, the invention relates to a lock ring for a jet injector. In other embodiments, the lock ring includes at least one abutment arm extending distally from a proximal end of a body dimensioned to fit within in a housing of the jet injector, the abutment arm having at least one tapered portion and at least one engagement portion axially adjacent to the at least one tapered portion, the engagement portion being configured to cause resistance to
the movement of a retractable guard of the jet injector; and at least one flap radially adjacent to
the at least one abutment arm extending distally from the proximal end of the body.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0017] The foregoing summary, as well as the following detailed description of embodiments
of the present invention, will be better understood when read in conjunction with the appended
drawings of exemplary embodiments. It should be understood, however, that the invention is not
limited to the precise arrangements and instrumentalities shown.

[0018] In the drawings:

[0019] FIG. 1 is a side view of an embodiment of a jet injector constructed according to the
present invention, showing the injector prior to injection;

[0020] FIG. 2 is a cross-sectional view of the jet injector of FIG. 1 thereof taken along plane
II-II;

[0021] FIG. 3 is a perspective view of a prefilled syringe for use in the jet injector of FIG. 1;

[0022] FIG. 4 is a perspective view of a syringe cushion of the jet injector of FIG. 1;

[0023] FIG. 5 is a cross-sectional view of the jet injector of FIG. 1, showing the injector at
the start of the jet injection;

[0024] FIG. 6 is a graph showing the pressure present in the polluted chamber over time that
contains medicament in an embodiment during jet injection;

[0025] FIG. 7 is a side view of another embodiment of an injector that is configured for
using a narrow diameter prefilled syringe;

[0026] FIG. 8 is a cross-sectional view of the jet injector of FIG. 1; taken along plane VIII-
VIII;

[0027] FIG. 9 is a cross-sectional view of another embodiment of an injector using a needle
for intramuscular jet-injection;

[0028] FIG. 10A is a side view of an interference component of a jet injector in accordance
with an exemplary embodiment;

[0029] FIG. 10B is a perspective view of an interference component of a jet injector in
accordance with an exemplary embodiment; and
FIG. 11 is a graph showing the breakaway force over time of a jet injector in accordance with an exemplary embodiment.

DETAILED DESCRIPTION OF THE INVENTION

With reference to the accompanying drawings, various embodiments of the present invention are described more fully below. Some but not all embodiments of the present invention are shown. Indeed, various embodiments of the invention may be embodied in many different forms and should not be construed as limited to the embodiments expressly described. Like numbers refer to like elements throughout. The singular forms "a," "an," and "the" include the singular and plural unless the context clearly dictates otherwise.

Referring to FIGS. 1 and 2, an embodiment of an injector 10 has a housing 12 configured for allowing a user to handle the injector 10. The housing 12 includes an outer housing member 14 that substantially houses most of the components shown in FIG. 2. A syringe support member 16 is housed within and mounted with the housing 12. The syringe support member 16 is configured to hold and position a prefilled syringe 18, which is shown in FIG. 3. In one embodiment, the syringe support member 16 is substantially fixed to the housing 12, such as by snaps, an adhesive, a weld, or another known attachment. The prefilled syringe 18 has a container portion 20 that defines in its interior a fluid chamber 22, which is prefilled with medicament to be injected. At the distal end of the prefilled syringe 18 is an injection-assisting needle 24. Needle 24 has an injecting tip 26 configured as known in the art to penetrate the tissue of a patient, in certain embodiments, the skin of the patient. A needle bore extends through the needle 24, as known in the art. The bore is in fluid communication with the medicament in the fluid chamber 22 and is open at the needle tip 26 to inject the medicament.

At a proximal side of the fluid chamber 22, opposite from the needle 24, is a plunger 28 that seals the medicament in the fluid chamber 22. In certain embodiments, a syringe wall 30 comprises a tubular portion, in some embodiments closed at a distal end and open at a proximal end, to define the fluid chamber 22. Plunger 28 is slideably received in the tubular portion. The prefilled syringe 20 is configured such that when the plunger 28 is displaced in a distal direction,
the volume of the fluid chamber 22 is decreased, forcing the medicament out therefrom and through the bore of the needle 24.

[0034] At the distal end of the fluid chamber 22 is a needle hub portion 32 to which the needle is mounted. In one embodiment, a syringe flange 34 extends radially from the proximal end of the syringe wall 30.

[0035] In one embodiment, the syringe 18 has a syringe body 36 that includes the flange 34, wall 30 and hub portion 32. In one embodiment, syringe body 36 that includes flange 34, wall 30, and hub portion 32 is of unitary construction. A preferred material for the syringe body 36 is glass, but other materials can be used in other embodiments. A suitable prefilled syringe is the BD Hypak™, which is available in various sizes and volumes and is sold prefilled with medicament. The glass of the syringe body 36 is adhered to the needle 24. Typical medicaments and medicament categories include epinephrine, atropine, sumatriptan, antibiotics, antidepressants, and anticoagulants. Using a prefilled syringe 18 facilitates handling of the medicament when the injector 10 is assembled, and there is an extensive body of knowledge of how the medicaments keep and behave in a prefilled syringe.

[0036] A syringe cushion 38, which is shown in detail in FIG. 4, is in certain embodiments made of an elastomeric material or other resilient material. A flange 40 of the syringe cushion 38 extends radially and is disposed and serves as an interface between the distal side of the syringe support member 16 and the syringe flange 34. Elevated portions, such as nubs 42 extend proximately from the cushion flange 40 and are configured and dimensioned to abut the syringe flange 34.

[0037] Prefilled syringes that are manufactured by a blown glass process can have significant dimensional tolerances and unevenness, particularly in the glass body 36. The cushion 38 can serve to accommodate the shape irregularities and to properly position and locate the prefilled syringe 18 within the syringe support 16. Typically, the axial thickness of glass blown syringe flanges on a 1 mL prefilled syringe is within about ±0.5 mm. For a BD Hypak™ 1 mL standard prefilled syringe, the thickness of the syringe flange 34 is 2 mm±0.5 mm or -0.4 mm, and in a 1 mL long configuration BD Hypak™ syringe, the flange axial thickness is about 1.65 mm±0.25 mm. Other dimensional variations that occur in typical glass prefilled syringes are in the internal and external diameters of the tubular wall 30. These variations can be accommodated by the resilient sleeve portion 44 of the syringe cushion 38, which extends axially around the interior of
the syringe support 16. In one embodiment, the syringe cushion 38 is received in the interior of
the syringe support member 16 and receives the syringe body 36, in certain embodiments fitting
snugly therein.

[0038] In one embodiment, the sleeve portion 44 has radially inwardly extending protrusions
46 with a surface area and configuration selected to allow the insertion of the prefilled syringe 18
therein during assembly, but providing sufficient friction to maintain the syringe 18 in place and
to provide cushioning and shock absorption during the firing of the injector 10. Outward
protrusions 48 are also provided on the sleeve portion 44, which can be received in
corresponding recesses of the syringe support 16 to prevent axial rotation therebetween.

Recessed areas 50 can be provided on the interior and exterior of the syringe cushion 38 opposite
corresponding protrusions 48 on the opposite radial side of the sleeve portion 44 if an increased
wall thickness of the sleeve portion 44 is not desired. In an alternative embodiment one or both
of the flange 40 and sleeve 44 of the syringe cushion 38 are substantially smooth, substantially
without any protrusions. In one embodiment, the material and configuration of the syringe
cushion 38 is also sufficient to entirely support the prefilled syringe 20 to withstand a firing force
applied axially in a distal direction on the plunger 28. Thus, the entire support for the prefilled 20
can be provided on the syringe flange 34, while the distal end of the syringe 18 may itself be
substantially unsupported in an axial direction. This can help withstand the shock on the glass
body 36 of the prefilled syringe 20 produced by the elevated pressures within the fluid chamber
22.

[0039] To radially position the distal end of the prefilled syringe 18, the syringe support 16
in certain embodiments has a narrowed bore portion 51 that is in certain embodiments configured
to abut the outside of the syringe wall 30. This is especially beneficial when the needle 24 is
inserted into the patient's skin. The narrowed bore portion 51 can be made of a resilient material,
such as an elastomer, or it can be made unitarily with the rest of the syringe support 16, in certain
embodiments of a plastic material.

[0040] Referring to FIG. 2, in one embodiment, a trigger mechanism 52 is also housed
within housing 12. The trigger mechanism 52 includes an inner housing 54 that can be attached
to the outer housing 14, such as by snaps, an adhesive, a weld, or other known attachment.
Trigger protrusions 56 extend inwardly from the proximal end of the inner housing 54 and are
resiliently biased outwardly. Trigger protrusions 56 are received in a recess 58 of ram 60 in
blocking association therewith to prevent distal movement of the ram 60 prior to the firing of the device. The ram 60 is urged towards the distal end of the injector 10 by an energy source, which in certain embodiments is a compression spring 52, although other suitable energy sources can alternative be used such as elastomer or compressed-gas springs. In one embodiment, the compression spring is a coil spring.

A trigger member of the trigger mechanism 52, such as a latch housing 64, is provided exterior to the inner housing to retain the trigger protrusions 56 in the blocking association in the recess 58 to prevent premature firing of the injector 10. The latch housing 64 is slideable inside the outer housing 14 with respect to the inner housing 54, in certain embodiments in an axial direction, and the latch housing 64 in certain embodiments surrounds the inner housing 54.

The housing 12 has a needle guard 66 that is moveable with respect to the outer housing 14. The needle guard 66 is shown in FIGS. 1 and 2 in a protecting position, in which the needle 24 is disposed within the guard 66. The needle guard 66 is retractable, in one embodiment into the outer housing 14, in a proximal direction to an injecting position, in which the needle tip 26 and an end portion of the needle 24 is exposed as shown in FIG. 5 for insertion into a patient. In one embodiment, the proximal movement of the guard is prevented substantially at the injecting position.

In one embodiment, an interference component 134 interferes with the movement of the needle guard when the needle guard is moved at least partially from the protecting position toward the injecting position.

In one embodiment, the housing 12 has an interference component 134, e.g., a lock ring, adjacent to the needle guard 66, the interference component 134 interferes with the movement of the needle guard when the needle guard is moved at least partially from the protecting position toward the injecting position. Interference component prevents movement of the needle guard until the breakaway force 146 is exceeded. The interference component 134 is shown in FIGS. 10A and 10B. In one embodiment, the interference component 134 is included as part of a ring having at least one abutment arm 136 extending distally from a proximal end 138 dimensioned to fit within the housing 14, the abutment arm 136 having at least one tapered portion 140. The abutment arm 136 may also have an engagement portion 142 axially adjacent to the at least one tapered portion 140 that is configured to cause resistance to the movement of
the needle guard 66 when the needle guard 66 is moved at least partially from the protecting position toward the injecting position. While interference component 134 may have more than one abutment arm 136 and correspondingly more than one engagement portion 142, certain embodiments include only one abutment arm 136 having an engagement portion 142. The interference component may also include at least one flap 144 radially adjacent to the at least one abutment arm 136 extending distally from the proximal end 138 of the interference component 134.

[0045] The interference component 134 may also be coupled to the housing 12, incorporated in a sleeve separate from the housing 12, or include a latch.

[0046] Referring to FIG. 11, breakaway force 146 is needed to overcome the resistance on the needle guard 66 caused by the engagement portion 142 when the needle guard 66 is moved at least partially from the protecting position toward the injecting position. Referring to Fig. 11, breakaway force 146 is the resistance to retraction that is exerted on the needle guard 66 when an initial attempt to retract the needle guard 66 occurs. Breakaway force 146 is a distinct force from the triggering force 148 that is needed to cause jet injection of the medicament and is a greater force than that provided by the spring 62 that biases the needle guard 66 in the extended position. Breakaway force 146 is sometimes also a greater force than what occurs due to the friction of the needle guard 66 retracting motion sliding on other mating components in the device. In one embodiment the breakaway force 146 is controlled and only occurs as a single event.

[0047] Referring to FIG. 2, the needle guard 66 is associated with the latch housing 64 such that when the guard 66 is displaced distally it slides the latch housing 64 also in a distal direction to release the trigger protrusions 56 from the recess 58. In one embodiment, the latch housing 64 has a latching portion 68 that abuts the inner housing 54 in an association to bias and maintain the trigger protrusions 58 positioned in the blocking association with the ram 60 prior to the firing of the device 10. When the latch is slid proximally by the retracting of the guard 66 to the injecting position, the latching portion 68 slides beyond the portion of inner housing 54 that is contacts to flex the trigger protrusions 56 into the recess 58 of the ram 60, allowing the trigger protrusions 56 to move radially outwardly from the recess 58 and therefore from the blocking association. When this happens, spring 62 biases the ram 60 against plunger 28 to fire the jet injector 10. In certain embodiments, latch housing 64 defines trigger openings 70 adjacent to
latching portions 68, which is configured to receive a portion of the inner housing 54, such as the surface disposed radially outwardly from the trigger protrusions 56.

[0048] In certain embodiments, the guard 66 is resiliently biased distally towards the protecting position by compression coil spring 72. Also, the needle guard 66 has an axial opening 74 to allow the needle 24 pass there through, and which may be sized according to the type of injector desired. The construction of the present embodiment allows a user to push the distal end of the injector 10 against the patient's skin, pushing the needle 24 into the skin at an insertion location, substantially at the same speed as the injector is pushed. Once the needle 24 is fully inserted to an insertion point at a penetration depth, the trigger mechanism 56 fires the jet injection to an injection site.

[0049] Referring to FIG. 5, in one embodiment, the prefilled syringe 18 and its needle 24 are not shuttled forward automatically into the patient's skin, such as by the firing energy source during the injection firing. The user preferably gently pushes the entire device forward to insert the needle 24, in certain embodiments retracting a guard against the skin in the process. In one embodiment, the prefilled syringe 18 is substantially stationary within the housing 12, and, in one embodiment, is substantially fixed thereto. In this manner, the present invention provides for a gentler treatment of the syringe during injection that enables the use of a sufficiently powerful spring 62 or other energy source to produce a jet injection without the risk of damaging the relatively fragile and complex shapes of the prefilled syringe, also allowing, for example, the injection of high viscosity solutions, where the risk of breaking a syringe, such as at the flange, is elevated in prior art injectors that shuttle the syringe forward in the housing and into the patient. Residual stresses are also often present in the glass bodies of prefilled syringes, and this configuration reduces the additional stresses imposed thereon during use, further protecting the syringe. Also, misalignments in the prefilled syringe are also rendered operationally less significant due to the gentle insertion of the needle that is possible with this configuration.

[0050] In one embodiment, the injecting position of the guard 66 is such that a predetermined length of the end of needle 24 is exposed from the guard 66. In some embodiments, such as where the opening 74 is of a sufficiently large diameter, the skin of the patient maybe allowed to extend into the opening 74 when the device 10 is pressed there against, and a needle that does not protrude beyond the distal end of the guard 66 can be used while still penetrating the skin to a certain depth. In most embodiments, the distance 76 by which the needle
tip 26 extends past the distal end of the guard 66 will be fairly close to the depth of the insertion of the needle.

[0051] In one embodiment, such as for subcutaneous injection, the guard 66 is configured to allow insertion of the needle 24 to a penetration depth in the skin that is up to about 5 mm below the skin surface. In another embodiment, the penetration depth is less than about 4 mm, and in one embodiment is less than about 3 mm. In one embodiment, the insertion depth is at least about 0.5 mm and, in other embodiments, at least about 1 mm. In another embodiment, the distance 76 by which the needle extends past the guard 66 or the distal surface of the guard 66 that contacts the skin is up to about 5 mm, in one embodiment, up to about 4 mm, and in another embodiment up to about 3 mm. In certain embodiments, extension distance 76 is at least about 0.5 mm, in one embodiment at least about 1 mm, and in another embodiment at least about 2 mm. In one embodiment, tip 26 extends by a distance 76 of around 2.5 mm beyond the portion of the guard 66 that contacts the skin in the injecting position.

[0052] In another embodiment, such as for intramuscular injection, the injector is configured to allow the needle 24 to be inserted into the patient to a penetration depth in the skin, or alternatively beyond the distal surface of the guard, by a distance of up to about 15 mm. In one embodiment, this distance is about between 10 mm and 14 mm. In an embodiment for jet injection of epinephrine for instance, a penetration depth or distance beyond the guard is between about 11 mm and about 17.0 mm, and, in other embodiments, between about 13 to about 15 mm. Jet injection with this length needle improves the distribution of the medicament in the patient tissue compared to non-jet injection. Other exposed needle lengths can be selected for jet injection to different depths below the skin, with, in certain embodiments, an overall penetration length of between about 0.5 mm and about 20 mm. In certain embodiments, the needle guard is configured for retracting from a protecting position, in one embodiment covering the entire needle 24 (See FIG. 2), to an injecting position, in which the desired length of the end of the needle 24 is exposed (See FIG. 5).

[0053] In some embodiments, the spring 62 and the prefilled syringe 18 are configured to jet inject the medicament. Thus, the spring 62 applies a force on the plunger 28 that is sufficient to elevate the pressure within the fluid chamber 22 to a level high enough to eject the medicament from the needle 24 as a jet. Jet injection is to be understood as an injection with sufficient velocity and force to drive the medicament to locations remote from the needle tip 26. In manual
and autoinjector-type injections, in which the injection pressures are very low, the medicament exits the needle tip inside the patient and is typically deposited locally around the needle in a bolus. On the other hand, with the present jet injection device 10, the medicament is jet injected distally or in other directions, such as generally radially by the elevated pressure jet, which beneficially improves the distribution of the medicament after the injection and keeps a large bolus from forming that can detrimentally force the medicament to leak back out of the patient around the needle or through the hole left behind by the needle after it is removed.

[0054] Referring to the graph shown in FIG. 6, numeral 78 represents the point in time when device 10 is fired, and numeral 80 represents the point in time of completion of the medicament injection, in certain embodiments when the plunger 28 hits the forward wall of the container portion 20. Numeral 82 represents the initial and peak pressure during the injection, and numeral 84 represents the final and low pressure during the injection. Since the spring 62 of one embodiment has a linear spring constant and an injection-assisting needle is used to puncture the skin before commencing the injection, the pressure drops substantially linearly from the start of the injection 78 until the injection is completed. The final pressure 84 at the end 80 of the injection is sufficiently elevated so that even at the end of the firing stroke of ram 60, the medicament is still jet injected, and a very small amount or none of the medicament is deposited in a bolus around the needle tip 26.

[0055] In one embodiment, the peak pressure during the injection is less than about 1,000 p.s.i., in one embodiment less than about 500 p.s.i., and in another embodiment less than about 350 p.s.i. At the end 80 of the injection, the pressure 84 applied to the medicament in the fluid chamber 22 is in one embodiment at least about 80 p.s.i., in one embodiment at least about 90 p.s.i., and in another embodiment at least about 100 p.s.i. In one embodiment of the invention, the initial pressure 82 is around 330 p.s.i., and the final pressure is about 180 p.s.i., while in another embodiment the initial pressure 82 is about 300 p.s.i., dropping to around 110 p.s.i. at the end 80 of the injection. The needles used in these embodiments are between 26 and 28 gauge, and are in certain embodiments around 27 gauge, but alternatively other needle gages can be used where the other components are cooperatively configured to produce the desired injection. In an embodiment for jet injection of epinephrine for instance, certain embodiments of the needles are between 20 and 25 gauge, and in other embodiments, 22 gauge. In one embodiment,
the components of the injector 10 are configured to jet inject the medicament to a subterraneous injection site.

[0056] The amount of medicament contained and injected from fluid chamber 22 is in one embodiment between about 0.02 mL and about 4 mL, in certain embodiments less than about 3 mL, and in other embodiments is around 1 mL. Larger volumes may also be selected depending on the particular medicament and dosage required. In one embodiment, the prefilled syringe is assembled into the remaining parts of the jet injector 10 already containing the desired amount of medicament. In one embodiment, the prefilled syringe contains about 1 mL of medicament.

[0057] In one embodiment, injection rates are below about 0.75 mL/sec, in one embodiment preferably below about 0.6 mL/sec, in one embodiment at least about 0.2 mL/sec, in one embodiment at least about 0.3 mL/sec, and in other embodiments at least about 0.4 mL/sec. In one embodiment, the injection of the entire amount of medicament is completed in less than about 4 seconds, in one embodiment in less than about 3 seconds, and in other embodiments in less than about 2.5 seconds. In one embodiment, the medicament injection takes at least about 1 second, in one embodiment at least 1.5 seconds, and in other embodiments at least about 1.75 seconds. In one embodiment, the injector 10 injects the medicament at about 0.5 mL/sec, completing the injection of 1 mL in about 2 seconds.

[0058] U.S. Pat. No. 6,391,003 discloses several experimental results of pressures that can be applied to medicament in a glass cartridge, using 26 and 27 gauge needles. The following table illustrates injections with different peak pressures that can be used with glass prefilled syringes:

<table>
<thead>
<tr>
<th>Pressure (p.s.i.)</th>
<th>26 Gauge Needle (sec.)</th>
<th>27 Gauge Needle (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>2.1</td>
<td>4.2</td>
</tr>
<tr>
<td>200</td>
<td>1.9</td>
<td>3.9</td>
</tr>
<tr>
<td>240</td>
<td>1.7</td>
<td>3.3</td>
</tr>
<tr>
<td>375</td>
<td>1.4</td>
<td>3.1</td>
</tr>
</tbody>
</table>

[0059] [0060] It is foreseen that higher pressures and flow rates will be used with shorter needle penetration into the patient skin to achieve jet injections to a particular desired depth substantially without medicament leakback.
It has been found that using the jet injection of the present device, short needles can be used to inject medicament to different parts of the skin, in certain embodiments subcutaneously, substantially without any leakback. Using a needle 24 that extends by about 2.5 mm from the needle guard 66, a 27 gauge needle 24, and a pressure in the fluid chamber 22 peaking at around 300 p.s.i. and ending at around 100 p.s.i., resulting in a flow rate of about 0.5 mL/sec, 1 mL of medicament has been found to successfully be injected without leakback in close to 100% of the tested injections. Thus, the needle-assisted jet injector 10 of the present invention permits jet injection of the medicament using a very short needle reliably regardless of the thickness of the patient's skin or the patient's age, weight or other typical factors that complicate non-jet injecting with short needles.

FIGS. 7 and 8 show another embodiment of the present invention that uses a prefilled syringe that has a long, but smaller-diameter configuration than the embodiment of FIG. 2. While in the embodiment of FIG. 2, the firing spring 62 extends into the bore of the prefilled syringe 18 during the firing stroke, the narrower prefilled syringe 88 of injector 86 does not provide as much space to accommodate a spring. Consequently, the ram 90 of injector 86 includes a bell portion 92 defining a hollow interior 94 that is configured to receive the proximal end of the prefilled syringe 88 and the syringe support 96 when the injector 86 is fired. Similarly, a bell-receiving space 98 is defined around the exterior of the prefilled syringe 88 and syringe support 96 to receive the bell portion 92 during the firing. The bell portion 92 includes a spring seat 100 extending radially outwardly and configured and disposed to seat a compression spring 102. When the trigger mechanism 56 is activated and the device 86 is fired, spring 102 acts against seat 100 to drive the ram 90 against plunger 104 to jet inject the medicament from the fluid chamber 106. As a result, after firing, the spring 102 radially surrounds the prefilled syringe 88. The outer housing portion 108 is wider than outer housing portion 14 of injector 10 to accommodate the bell portion 92 and larger diameter spring 102.

One available long configuration syringe with a 1 mL capacity has a cylindrical syringe body portion with a diameter of 8.15 mm, which would in certain embodiments be used in the injector of FIGS. 7 and 8, while one available shorter configuration syringe of the same capacity has a cylindrical syringe body portion with a diameter of 10.85 mm, which would in certain embodiments be used in the injector of FIGS. 1 and 2. While the embodiment with a bell portion 92 can be used with wider/shorter syringes, in certain embodiments, the prefilled
syringes have an outer diameter cylindrical wall of less than about 10 mm, and in other embodiments less than about 9 mm.

[0064] Injector 86 also includes a cap 110 fitted around the needle guard 66, and associated with the outer housing 108 to prevent retraction of the needle guard 66 and the triggering of the device 86. Additionally, the cap 110 seals off the needle tip 26 and can be removed prior to using the device 86. In one embodiment, the cap 110 is configured to fit over the needle guard 66 in a snap-fit association therewith, such as by including a narrower diameter portion 112 associated with an enlarged diameter portion 114 of the needle guard 66.

[0065] Additionally, injector 86 employs a syringe cushion cap 116 that extends around the outside of the syringe flange 34 from the syringe cushion 118 to help trap and retain the prefilled syringe 88. In one embodiment, a cushion cap 122 is connected to the cushion 118 and is, in certain embodiments, of unitary construction therewith. The cushion cap 122 abuts the distal end of the syringe body 120 to radially position and hold the proximal end of the body 120 while the needle 24 is being inserted into the patient. Similarly to the embodiment of FIG. 2, the syringe holder 96 is associated with the housing in a substantially fixed position, such as by mounting portion 124, which traps protrusions 126 of the syringe holder.

[0066] Referring to FIG. 9, injector 128 has a needle guard 130 configured to retract further into the injector housing than the injector of FIGS. 1 and 2 or FIG. 5 before the trigger mechanism 52 fires the jet injection. The injector in this figure is shown in a position in which the trigger mechanism 52 is being released and about to fire the injection. The distance 76 by which the needle extends past the guard 130 or the distal surface of the guard 130 that contacts the skin in certain embodiments between about 12.5 and 13 mm. In one embodiment, the guard is preferably configured to reextend to a protecting position after the device is fired and removed from the patient, such as under the bias of spring 72, and is locked in that position by locking members 132, as known in the art to prevent reuse on the injector.

[0067] In other embodiments, the guard length, the location of the guard injecting position with respect to the needle tip (including the guard throw between the protecting and injecting positions), and the length of the needle from the syringe body can be selected to allow for shallower or deeper needle insertions before the device is fired, providing lesser or greater distances 76, respectively. In one embodiment, the guard is kept from sliding further back than substantially at the firing position, to better control in insertion depth into the patient.
Each and every reference herein is incorporated by reference in its entirety. The entire disclosure of U. S. Patent Application 2011/0144494, U.S. Pat. Nos. 8,021,335 and 6,391,003 are hereby incorporated herein by reference thereto as if fully set forth herein.

While illustrative embodiments of the invention are disclosed herein, it will be appreciated that numerous modifications and other embodiments may be devised by those skilled in the art. For example, the features for the various embodiments can be used in other embodiments, such as the needle and guard cap of FIGS. 7 and 8, which can be applied to the embodiment of FIG. 1. Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments that come within the spirit and scope of the present invention.
What is claimed is:

1. A jet injector, comprising:
 a prefilled syringe comprising:
 a container portion defining a fluid chamber containing a medicament;
 an injection-assisting needle disposed at the distal end of the chamber, having an injecting tip configured for piercing an insertion location, and defining a fluid pathway in fluid communication with the chamber for injecting the fluid from the chamber into an injection site;
 a plunger movable within the fluid chamber;
 a housing that houses the prefilled syringe and is configured for allowing insertion of the needle at the injection location to an insertion point that is at a penetration depth below the surface, the housing comprising:
 a retractable guard that is movable between a protecting position in which the needle is disposed within the guard and an injecting position in which the tip of the needle is exposed for insertion to the insertion point, and
 an interference component adjacent to the retractable guard that interferes with the movement of the retractable guard when the retractable component is moved at least partially from the protecting position toward the injecting position;
 a syringe support supportively mounting the prefilled syringe in the housing;
 an energy source configured for biasing the plunger with a force selected to produce an injecting pressure on the medicament in the fluid chamber to jet inject the medicament from the fluid chamber through the needle to the injection site.

2. The jet injector of claim 1, wherein the energy source and prefilled syringe are configured such that the injecting pressure remains between about 80 p.s.i. and about 1000 p.s.i. during injection of the medicament.

3. The jet injector of claim 2, wherein the energy source and prefilled syringe are configured such that the injecting pressure remains below about 500 p.s.i. and above about 90 p.s.i. during the injection of the medicament.

4. The jet injector of claim 2, wherein the energy source and prefilled syringe are configured to produce the injecting pressure that remains at least at about 100 p.s.i. during the injection of the medicament.
5. The jet injector of claim 4, wherein the energy source and prefilled syringe are configured such that the injecting pressure remains up to about 350 p.s.i. during the injection of the medicament.

6. The jet injector of claim 1, wherein the prefilled syringe has a distal portion in which the injection-assisting needle is located, and a proximal portion opposite the distal portion; and the syringe support axially supports the proximal portion of the pre-filled syringe during the jet injection of the medicament, such that the distal portion of the prefilled syringe is substantially unsupported in an axial direction.

7. The jet injector of claim 6, wherein the container portion of the pre-filled syringe is made of blown glass.

8. The jet injector of claim 7, wherein the injection-assisting needle is adhered to the glass.

9. The jet injector of claim 1, wherein the interference component is a ring having at least one abutment arm extending distally from a proximal end dimensioned to fit within the housing, the abutment arm having at least one tapered portion.

10. The jet injector of claim 9, wherein the at least one abutment arm has an engagement portion axially adjacent to the at least one tapered portion that is configured to cause resistance to the movement of the retractable guard when the retractable guard is moved at least partially from the protecting position toward the injecting position.

11. The jet injector of claim 1, wherein the energy source comprises a spring.

12. The jet injector of claim 11, further comprising a ram that is biased by the spring against the plunger to produce the injecting pressure, wherein the ram comprises a bell portion on which the spring is seated, and the bell portion defines a hollow interior configured for receiving the prefilled syringe when the device is fired, such that the spring surrounds the prefilled syringe.

13. The jet injector of claim 1, further comprising a trigger mechanism operably associated with the energy source for activating the energy source to jet inject the medicament, wherein the trigger mechanism is configured for activating the energy source after the retractable guard is retracted from the protecting position.

14. The jet injector of claim 13, wherein the retractable guard is operably associated with the trigger mechanism to cause the trigger mechanism to activate the energy source when the guard is retracted to the injecting position.

15. The jet injector of claim 1, wherein the interference component is a sleeve having an engagement portion extending outwardly from an outer surface of the sleeve that is configured to cause resistance to the movement of the retractable guard when the retractable guard is moved at least partially from the protecting position toward the injecting position.
16. The jet injector of claim 1, wherein the interference component is a latch coupled to the housing that is configured to cause resistance to the movement of the retractable guard when the retractable guard is moved at least partially from the protecting position toward the injecting position.

17. The jet injector of claim 1, wherein the housing is configured for allowing insertion of the needle to the penetration depth, which is between about 0.5 mm and about 5 mm below the surface at the insertion location.

18. The jet injector of claim 1, wherein the housing is configured for allowing insertion of the needle to the penetration depth, which is between about 11 mm and about 13 mm below the surface at the insertion location.

19. The jet injector of claim 1, wherein the chamber contains about between 0.02 mL and about 4 mL of the medicament.

20. The jet injector of claim 1, wherein the penetration depth and injecting pressure are sufficient to substantially prevent backflow of the injected medicament.

21. The jet injector of claim 1, further comprising a syringe cushion associated with the syringe support and prefilled syringe to compensate for shape irregularities of the pre-filled syringe.

22. A lock ring for a jet injector, the lock ring comprising:

 at least one abutment arm extending distally from a proximal end of a body dimensioned to fit within a housing of the jet injector, the abutment arm having at least one tapered portion and at least one engagement portion axially adjacent to the at least one tapered portion, the engagement portion being configured to cause resistance to the movement of a retractable guard of the jet injector; and

 at least one flap radially adjacent to the at least one abutment arm extending distally from the proximal end of the body.