UNITED STATES PATENT OFFICE

2,579,038

LUBRICANT COMPOSITION

Elliott Alfred Evans and John Scotchford Elliott, London, England, assignors to C. C. Wakefield & Company Limited, London, England, a British company

No Drawing. Application December 6, 1948, Serial No. 63,844. In Great Britain December 9,

6 Claims. (Cl. 252-46.6)

2

The present invention comprises improvements in or relating to lubricating compositions and relates more particularly, though not exclusively, to lubricating compositions for use in internal combustion engines which may be either petrolor oil-operated. In the latter case the invention is applied to the so-called "heavy duty" lubricating oils employed in diesel and other types of oil engines.

It is one object of the invention to provide a 10 lubricating composition in which the tendencies of the lubricant to form products corrosive to metals (e.g. metal bearing surfaces) and to form deleterious oxidation products in the lubricant are inhibited, and another object is to provide 15 a composition which possesses also detergent properties. The latter properties tend to secure a clean running engine during use of the lubricant by preventing the deposition of gum or lacquer on the lubricated parts and by maintain- 20 ing solid particles and sludge (formed in any part of the engine or in the lubricant) in suspension therein. Such properties are of particular importance in oil engines such as diesel engines.

The present invention contemplates the use in 25 a lubricating composition of a metallic derivative of an organic substituted dithiophosphate, some examples of which latter type of compound have already been proposed for incorporation in lubricating oils.

According to this invention a lubricating composition comprises a lubricating oil base and a minor proportion of (a) the tin-salt of an oilsoluble petroleum sulphonic acid and (b) a polyvalent metal salt (which is soluble in the oil base) 35 of an organic dithiophosphoric acid.

It has already been proposed to add a variety of metal salts of organic dithiophosphoric acids to oils.

part to the oil good resistance to oxidation and to inhibit to a greater or less extent the formation of products corrosive to composite metal bear-

Some of them also possess "detergent" or 45 sludge dispersive properties, especially effective in this connection being the alkaline earth metal salts of the straight chain dithiophosphoric acids having ten or more carbon atoms.

It has been found, however, that these dithio- 50 phosphates of relatively high molecular weight are much less effective as inhibitors of oxidation and bearing corrosion than those of low molecular weight which latter, however, are relatively ineffective as detergents and sludge dispersing 55 agents.

An advantage of the present invention lies in

the fact that by the use of the combination of additives herein disclosed lubricating compositions can be provided possessing all these properties to a high degree.

A further advantage of the compositions of the present invention is that they provide superior protection to ferrous metal surfaces against rusting (and consequent wear) due to the presence of condensed water, carbon diexide, hydrobromic acid etc. normally present in small amounts in the combustion space.

The additives of the present invention also confer upon the base oil an improved film rupture strength.

The combination of desirable features provided by the lubricating compositions of this invention cannot be obtained by the random selection of any compound possessing detergent properties with any oxidation or corrosion inhibitor, as very often the presence of the detergent militates against the normal action of the inhibitor, rendering it relatively ineffective, probably by preventing it from forming a film on the surfaces of metal catalysts that may be prevent. Furthermore many of the detergent compounds formerly proposed as lubricant additives are themselves corrosive to composite metal e. g. copperlead bearings.

A feature of the present invention is that not only do the two additives not interfere with one another's normal actions, but also in many instances they co-operate to give improved results over and above those obtained with either additive used alone.

According to one form of the present invention a lubricating composition comprises a lubricating oil base and a minor proportion each of the tin salt of an oil soluble petroleum sulphonic acid and a metal salt (which is soluble in the oil These additives are known in general to im- 40 base) of an organic di-substituted dithiophosphoric acid derived at least in part from an alkylated phenol. Such a di-substituted salt can be represented by the general formula

$$\begin{bmatrix} R_1O & S \\ R_2O & S \end{bmatrix}_n M$$

where n represents the valency of a metal M, R_1 is any suitable organic radicle and R2 is an alkylated aromatic radicle.

The radicle R2 in the general formula quoted above is conveniently such as to have not less than five carbon atoms in the alkyl group and may be derived, for example, from p-tertiary amyl phenol, p-octyl phenol or octyl cresol. The radicle R1 is such as to provide an oil soluble product and may be derived, for example, from

an aliphatic alcohol (e.g. butyl amyl or lauryl alcohol), a cyclic alcohol (e. g. cyclohexanol or methyl cyclohexanol), a phenol (e. g. cresol or octyl cresol) or an aromatic alcohol such as benzyl alcohol.

It will be understood that appropriate radicles for R1 and R2 in the general formula quoted above will always be such that the di-substituted metal salt is soluble in the lubricating oil base.

While, as already indicated, it is preferred to 10 employ compounds wherein R2 contains at least five carbon atoms in the alkyl group, it is within the scope of the invention to employ compounds in which the alkyl group of R2 is short, or even absent, provided that R is of such a nature as 15 to confer upon the metal salt adequate oil soluhility.

Preferred specific examples of di-substituted dithiophosphoric acids a metal salt of which is employed in accordance with the invention are: 20

Di(octyl-cresyl) dithiophosphoric acid Octyl-cresyl cresyl dithiophosphoric acid Octyl cresyl 2-ethyl hexyl dithiophosphoric acid Di(p-octyl phenyl) dithiophosphoric acid Di(t-butyl cresyl) dithiophosphoric acid Octyl cresyl n-butyl dithiophosphoric acid Octyl cresyl cyclohexyl dithiophosphoric acid

Preparation of such metal salts is conveniently effected by first reacting the alkylated phenol with phosphorus pentasulphide with or without the presence of an appropriate hydroxylic organic compound for simultaneous reaction to produce a mixed di-substituted dithiophosphate. The acid is conveniently neutralized with caustic soda and a desired metal salt produced by the addition of a suitable salt of the said metal.

According to another form of the present invention the lubricating composition last referred to is modified by the incorporation in the lubricating oil base (either in place of or in addition to the organic di-substituted dithiophosphate derived from an alkylated phenol) of a minor proportion of an oil soluble metal salt of an organic di-alkyl or di-cycloalkyl dithiophosphoric acid. The last-mentioned salt is represented by the 45

following general formula:

$$\begin{bmatrix} R_1O & S \\ R_2O & S \end{bmatrix}_n^M$$

where R₁ and R₂ are alkyl or cyclo-alkyl groups having at least five and preferably not more than ten carbon atoms either in a straight or branched chain or ring, and where n represents the valency of the metal M.

Radicles R₁ and R₂ of the formula quoted above are preferably, but not necessarily, similar and may, for example, be derived from amyl alcohol, the hexyl alcohols such as n-hexyl alcohol, methyl isobutyl carbinol and 2-ethyl (13) butanol, 2 ethyl hexanol, nonyl alcohol, cyclohexanol and methyl cyclohexanol.

Preferred specific examples of di-alkyl or dicycloalkyl dithiophosphoric acids, a metal salt of which is employed in accordance with the 65 present invention, are:

Di(n-hexyl) dithiophosphoric acid Di(2-ethyl hexyl) dithiophosphoric acid Di(methyl cyclohexyl) dithiophosphoric acid Diamyl dithiophosphoric acid, and $Di(\alpha$ -methyl isoamyl) dithiophosphoric acid.

It will be appreciated however that mixed dithiophosphoric acids may be employed in the production of the oil soluble salts.

Preparation of the di-alkyl or di-cycloalkyl dithiophosphates may be effected by first reacting an appropriate alcohol or mixture of alcohols with phosphorous pentasulphide to produce the thiophosphoric acid from which the desired metal salt may be prepared for example by first neutralising the acid with caustic soda and then adding a suitable salt of the metal the dithiophosphate of which is desired. It is possible, however, to prepare certain salts, e. g. those of zinc by direct reaction of a metal oxide with the dithiophosphoric acid.

According to one form of the invention a chromium salt of the organic di-substituted dithiophosphate is employed, the desirability of employing organic compounds of both tin and chromium in a lubricating composition having been already proved. Other dithiophosphate salts may, however, be employed such as those of barium, calcium, strontium, magnesium, zinc, aluminium, nickel, cobalt, tin, cadmium and manganese.

According to the invention also the lubricating compositions of the kind above referred to may 25 also include in its composition (1) a hydroxysubstituted aromatic thioether and/or di- or polysulphide, and/or (2) an aromatic phosphite or thiophosphite ester derived from such an aromatic thioether and/or di- or polysulphide. As an alternative to ingredients (1) and (2) or in addition thereto a yet further ingredient viz. (3) a tri-aryl phosphite may be included in the lubricating composition.

As examples of the third addition agent may be quoted:

(1) Di(3-carbomethoxy-4-hydroxyphenyl) thioether, disulphide or polysulphides.

(2) Di(3-carbomethoxy-4-hydroxyphenyl) thioether cresyl phosphite.

Triphenyl phosphite, tri(p.t-amyl phenyl) phosphite.

EXAMPLE 1

Preparation of chromium di(octyl-cresyl) dithiophosphate

88 grams of octyl cresol (a mixture of diisobutyl cresols commercially available) were placed in a 250 c. c. round-bottomed flask, heated to 130° C., and treated with 24.3 grams of pow-50 dered phosphorus pentasulphide, added in small portions over a period of 30 minutes with mechanical stirring, the temperature being maintained at 130-140° C. until evolution of hydrogen sulphide was almost complete and most of the phosphorus pentasulphide had disappeared.

The reaction was then completed by heating slowly to 150° C. and maintaining this temperature with stirring for five minutes.

After cooling, the product was dissolved in petroleum ether and filtered from a little sulphur and unreacted phosphorus pentasulphide, the solvent being then distilled off under reduced pressure, yielding an amber viscous liquid.

The acidity of the product, determined by titrating an alcoholic solution with standard caustic soda solution in the presence of a phenolphthalein indicator, corresponded to an apparent molecular weight of 529 as compared with a theoretical molecular weight of 533 for di(octyl-10 cresyl) dithiophosphoric acid.

This product was mixed with nine times its weight of water in a beaker, heated to 40-50° C. and neutralised by adding caustic soda solution gradually with stirring until alkaline to phenol-75 phthalein indicator.

5

This sodium salt solution was then heated to 90° C. and a further small amount of caustic soda added, a clear solution just alkaline to phenolphthalein thereby being obtained.

To this solution was added rapidly with stir- 3 ring a 10% aqueous solution of chrome alum (at 90° C.) containing 15% excess of the theoretical chromium, when the violet chromium dithiophosphate was precipitated as a viscous liquid.

After cooling, the aqueous solution was decanted from this liquid which was then dissolved in petroleum ether, dried over anhydrous sodium sulphate, filtered, and freed from solvent by distillation. An 82% theoretical yield of the product was obtained.

Of a number of products prepared by this method, one typical one prepared on a larger scale had the following approximate analysis:

Chromium, 1.20%; sulphur, 8.4%; phosphorus, 23 4.3%

Chromium salt of di(octyl-cresyl) dithiophosphoric acid, 43%

Sodium salt of di(octyl-cresyl) dithiophosphoric

Free di(octyl-cresyl) dithiophosphoric acid, 29% Octyl cresol and other neutral products, 23%

(The molecular weight of the free acid in this case was 600.)

The mixed product obtained by this method 30 is referred to subsequently as "chromium di-(octyl-cresyl) dithiophosphate A."

Using the method of Example 1, with the ex- 35 ception that the temperature of precipitation of the cromium salt was 50-60° C. instead of 90° C. and that the concentration of the sodium salt solution was 5 per cent instead of 10 per cent, products were obtained having a higher 40 concentration of chromium salt.

One such product, prepared from a free acid of molecular weight about 675 had the following analysis:

Chromium, 1.86%; phosphorus, 4.34%

Chromium salt of di(octyl-cresyl) dithiophosphoric acid, 72%

Sodium salt of di(octyl-cresyl) dithiophosphoric acid. 13%

Free di(octyl-cresyl) dithiophosphoric acid, 15%

This product is referred to subsequently as "chromium di(octyl-cresyl) dithiophosphate B."

It will be understood that in employing the compounds of this invention either pure metal salts may be used, or mixtures such as products of Examples 1 and 2. While minor amounts of the free dithiophosphoric acids and their sodium salts in the products are not objectionable it is preferred to utilise materials containing not more 60 than about 20% of the free acid (and preferably less) and not less than about 65% of the polyvalent metal salt.

If desired, the residual free acid may be substantially neutralised by heating the product (preferably in oil solution) with a metal oxide or hydroxide (such as zinc oxide or calcium or barium hydroxide) to produce, for example, a mixture of chromium and zinc salts associated with a minor amount of sodium salt.

EXAMPLE 3

Using the method of Example 1, 1170 grams of 2-ethyl hexanol were reacted with 500 grams

perature of 100 to 110° C. proving adequate and the reaction being concluded by heating to 130° C. A dark liquid was obtained having a molecular weight of 380 as compared with a theoretical molecular weight of 354 for di(2-ethyl hexyl) dithiophosphoric acid.

The zinc salt of the latter acid was prepared in the present example by heating a mixture of 101 grams of the acid and 11.1 grams of zinc oxide for half an hour at 120° C. to 130° C. The reaction product was dissolved in petroleum ether, filtered from excess of zinc oxide and the solvent removed by distillation to yield a yellow viscous liquid having 8.30% by weight of zine 15 as compared with a theoretical amount of 8.22% for zinc dioctyl dithlophosphate.

EXAMPLE 4

Tin salt of octyl cresyl 2-ethyl hexyl dithiophosphoric acid

Using the method of Example 1, there were obtained from a mixture of 330 grams of octyl cresol and 195 grams of 2-ethyl hexanol by the action of 166.5 grams of phosphorus pentasulphide, 647 grams of a viscous amber liquid, representing a 97% yield.

This had a molecular weight of 540, as compared with a theoretical value of 444.

Using the method of Example 2, there were obtained from 42 grams of this material, and 12.4 grams of stannous chloride in cold concentrated aqueous solution, 34.6 grams (72%) of an extremely viscous brown liquid containing 12.5% of tin.

EXAMPLE 5

Mixed chromium-zinc salt of di(2-ethyl hexyl) dithiophosphoric acid

19 grams of di(2-ethyl hexyl) dithiophosphoric acid (of M. W. 380) prepared as described in Example 3 were stirred for 20 minutes at 70-80° C. with moist chromic hydroxide freshly precipitated from a 10% aqueous solution containing 4.2 grams of chrome alum by the addition of ammonia. 1.5 grams of zinc oxide were then added and the heating continued for a further 15 minutes, after which the temperature was slowly raised to 130° C. to complete the reaction and eliminate the water formed.

The product, after dissolving in petroleum ether, filtering and removal of solvent, contained 1.30% of chromium, and 5.10% of zinc, the composition being approximately as follows:

55 Chromium salt of di(2-ethyl hexyl) dithiophosphoric acid, 29%

Zinc salt of di(2-ethyl hexyl) dithiophosphoric acid. 67%

Free di(2-ethyl hexyl) dithiophophoric acid, 3%

Other known methods for the preparation of the metal dithiophosphates of this invention may also be employed e. g. direct reaction between the free acid and a metal oxide in alcohol-benzene solution at 40-50° C. (applicable especially to 65 the alkaline earth metal and magnesium salts), or direct reaction between a metal hydroxide, such as barium hydroxide and the free acid by heating together in mineral oil solution in presence of a current of air to remove liberated water.

Alternatively metathesis may be carried out in alcoholic solution between an alkali metal salt of a dithiophosphoric acid and an alcohol soluble metal salt.

Many of the salts can be prepared in good yield of phosphorus pentasulphide, a reaction tem- 75 by the method of Example 2, the conversion to

the metal salt being in many cases (e. g. tin, cadmium, nickel, cobalt) more satisfactory than that obtained in the case of chromium. Better conversion is also obtined in the case of the dialkyl dithiophosphates than with the alkylated 5 arvl dithiophosphates.

EXAMPLE 6

Tin petroleum sulphonate for use in conjunction with the product of Examples 1 to 5 was 10 prepared as follows:

4 lbs. of an oil-concentrate containing 45% of sodium petroleum sulphonate (derived from the so-called "mahogany acids" of molecular weight about 400 to 420) was mixed with 31/2 gallons of 15 ance of the compositions proposed by the present water and heated to 90° C., a milky solution being obtained. To this solution was added while being stirred, a cold solution of 1/2 lb. of stannous chloride (SnCl22H2O) in 500 ccs. of water. Tin petroleum sulphonate in oil solution was precipi- 20 tated.

After cooling, the aqueous solution was decanted and the product washed by boiling with 1 gallon of water. The boiled mixture was further mixed position passed through a De Laval centrifuge. The oil concentrate mainly free from water was heated at 250° F. in a stream of air to remove further moisture.

By this procedure there was obtained 7 lbs. 30

which serve to illustrate in various respects the desirability of the lubricating compositions provided by the present invention.

For purposes of comparison, test results include those for unmodified lubricating oil bases employed in producing the examples of compositions proposed by the present invention, and also, in certain instances, for compositions including only one of the additives. The constituents of said compositions are given in percentage proportions by weight in all tests.

Test 1.—Oxidation resistance

As a means of examining the oxidation resistinvention, a modification of the well-known British Air Ministry oxidation test was employed. In this test 40 ccs. of the oil were oxidised by heating at 160° C. for two periods of 6 hours in glass tubes in the presence of a stream of air blown through at a rate of 15 litres per hour. Lubricating compositions were oxidised under the standard conditions of the British Air Ministry oxidation test except that a temperature of with 4 lbs. of mineral oil and the resulting com- 25 160° C. was employed and that a copper catalyst, consisting of a rolled polished piece of copper foil 21/4" x 1", was present. The catalyst was replaced by a fresh one at the end of the first period of 6 hours' oxidation.

The test results obtained were:

Test No.	Lubricating Composition	Viscosity Increase (per cent)	Acidity (mgs. of KOH per gram)	Per cent insoluble in petroleum ether (B. P. below 40° C.)
1	Oil "B"	33.6	1.00	0.45.
2	Oil "B"+0.5% Zinc di(α-methyl isoamyl)dithiophosphate +0.2% Tin Petroleum Sulphonate	25.0	0.45	0.34.
3	Oil "B"+0.6% Chromium di(octyl cresyl)dithiophosphate "B"- +0.2% Tin Petroleum Sulphonate	21.5	0.56	Trace.
4	Oil "B"+0.6% Zinc di(octyl cresyl)dithiophosphate +0.2% Tin petroleum Sulphonate	22.7	0. 56	Very slight
5	Oil "B"+0.6% Chromium di(2-ethyl hexyl)dithiophosphate	} 19.3	0. 56	trace. Slight trace.
6	Oil "B" +0.5% Zinc di-n-hexyl dithiophosphate +0.5% Chromium octyl cresyl cresyl di-thiophosphate +0.2% Tin Petroleum Sulphonate	17. 5	0.45	D 0.
7	Oll "B"+1.0% Cobalt Octyl cresyl n-butyl dithlophosphate +0.5% Tin Petroleum sulphonate	19.3	0. 56	Trace.

Oil "B" as employed in these and in ensuing tests consisted of a blend of 94% of a solvent refined paraffinic type mineral oil of viscosity about 150 seconds Redwood at 140° F. and 6% of a blend of viscosity about 330 seconds Redwood at 140° F. containing a brightstock.

60

 $6\frac{1}{2}$ ozs. (representing a 96% yield) of an oil solution of tin petroleum sulphonate which was shown by analysis to contain 21% of tin petroleum sulphonate and 2.74% of tin by weight. The 55 product was free from sodium, and is capable of use as an oil solution in appropriate quantity with a lubricating oil base for introducing into the latter a desired proportion of tin petroleum sulphonate.

PROPORTIONS

While the terms "minor proportion" would cover the use of the additives of this invention in a general way, the following proportions give an indication of the amounts contemplated:

The metal dithiophophate, 0.1-2% (preferably 0.2-1%)

The tin petroleum sulphonate, 0.05-2% (preferably 0.1-1%)

The third additive, 0.01-1% (preferably 0.05-0.5%).

TEST RESULTS

Numerous examples of the invention are given below in conjunction with the results of tests 75 closed allowed sufficient clearance for centrally

It would seem that whereas all the compositions tested have greatly improved oxidation resistance as compared with the base oil, those comprising metal salts of alkylated aromatic dithiophosphates are especially effective, particularly as regards the inhibition of sludge formation.

Test 2.—Bearing corrosion

The following test was employed for obtaining information as to the tendency for corrosion of composite metal bearings, particularly copperlead bearings, to occur in use of lubricating compositions provided by the invention.

400 ml. of lubricant was weighed into 1500 ml. tall lipless glass beakers, eight of which were heated in a circular electrically heated oil bath thermostatically controlled to maintain the 70 lubricant temperature at 140° C. The beakers were equipped with closely fitting aluminum covers having central slides which were normally closed but capable of being opened for the insertion of a test specimen. The slides when

placed steel stirring rods to revolve freely. The latter were electrically driven from a common driving shaft at 400±40 R. P. M. and carried at their lower end slotted holders to which lead testpieces were attached by means of screws. For the test-pieces rectangular plates of pure lead 134" by 1" were mounted vertically just below the surface of the lubricant with the longer axis horizontal. Copper strips, as catalysts, 1/2' wide and bent into a semicircle 334" in diameter were 10 placed wholly below the surface of the lubricant and attached by means of vertical copper wires to corks fitted in the beaker covers. Each beaker was also fitted with a thermometer.

Tests were conducted for a maximum total 15 time of 30 hours in periods of six hours, the copper and lead specimens being removed every two hours and replaced by fresh clean ones. Copper catalysts were cleaned with carborundum powder and washed in petroleum ether. Lead 20 specimens were flattened, scraped with a special Skartsen scraper and finally polished, by brushing in one direction with a type of stiff wire brush known as "file carding" before washing in benzene and weighing. After a 2-hour 25 period a further washing in benzene, brushing with a camel hair brush and re-weighing was effected. The cumulative corrosion at any given time was calculated by adding together the weight losses of the lead specimens after each 2-hour 30 leum ether, were weighed and completely imperiod. These cumulative losses were plotted against time, and from the curves obtained, the times required for certain fixed corrosion losses to be reached, were read off.

The following results were obtained:

It will be seen from the foregoing test results, and particularly from tests 8-13, that a higher degree of protection against corrosion is obtained by the use of the combination of additives of this invention than would be obtained by the use of either additive separately in comparable proportions, and that furthermore the use of tin petroleum sulphonate gave results superior to those obtained by the use of other metal petroleum sulphonates such as those of calcium and sodium, especially as regards the retardation of the rate of increase of corrosion in the later stages of the test. The remaining test results are quoted to illustrate the wide range of compounds and proportions which may be employed in order to obtain lubricating compositions possessing a high degree of resistance against the formation of products corrosive to composite metal bearings.

Test 3.—Protection against rusting

A simple test was devised to demonstrate the effectiveness of the lubricating compositions of this invention in affording protection against the rusting of ferrous metal surfaces in presence of moisture and carbon dioxide.

Rectangular plates of mild steel 3" x 1", polished with emery cloth and washed with petromersed in the oil under test for five seconds at room temperature, allowed to drain in a vertical position for 15 minutes, and placed horizontally across two short pieces of glass rod at the bot-35 tom of a 4" diameter glass dish.

Test No.	Lubricating composition	Lead specimen weight loss (mgs.) after—		Hours run to weight loss of—		
		12 hrs.	18 hrs.	20 mgs.	50 mgs.	100 mgs.
81	QIIBa	283		4	6	8
9 10 ¹	Oil "B" + 0.5% Tin Petroleum Sulphonate Oil "B" + 0.3% Chromium di(octyl cresyl) dithio-	113	فيرووب الم	4	6	10 ت
4 17	Phosphate "B" Chromath dictary cresy) dismo- Phosphate "B" As test No. 10 + 0.2% Tin Petroleum Sulphonate. As test No. 10 + 0.2% Calcium Petroleum Sulphonate. As test No. 10 + 0.2% sodium petroleum sulphonate.	20	281	12	14	15
11 1 12 1	As test No. 10 + 0.2% Tin Petroleum Sulphonate	24	63	10	17	20
13	As test No. 10 + 0.2% Calcium Petroleum Sulphonate	15 19	143 83	13 12	15 16	17 18
14	Oli D T U.3% Zinc (na-methyl isoamyl)dithia-)		ev .		and the second
	phosphate	∫ 19	25	16	26	30
15	Oil "B" + 0.4% Chromium di(p-octyl phenyl)dithio- + 0.1% Tin petroleum sulphonate	20	142	12	15	17
16	+ 0.1% Tin petroleum sulphonate	}				
10	Oil "B" + 0.4% Magnesium di(2-ethyl hexyl)dithio- phosphate	37		11	10	
	+ 0.4% Tin petroleum sulphonate	J "		7.	12	14
17	Oil"B" + 0.3% Cadmium octyl cresyl cyclohexyl di- thiophosphate]				
	+ 0.1% Tin petroleum sulphonate	16	203	13	14	16
18	Oil "B" + 0.5% Nickel di(methyl cyclohexyl)dithio-	j l	17.5	3 t [] t [80 × 4.	
1	phosphate+ 0.2% Tin petroleum sulphonate	14	18.5	22	over 30	
19	Oil "B" + 0.6% Manganese di(tertiary, butyl cresyl)	'		e		
	dithiophosphate + 0:4% Tin petroleum sulphonate	35	103	9	16	28
20	Oil "B" + 0.8% Tin octyl cresyl 2-ethyl hexyl dithio-	{				•
	phosphate	17	24	15	over 30	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21	+ 25% Tin petroleum sulphonate. Oil "B" + 2.0% Zinc di(2-ethyl hexyl) dithiophosphate.					T
	+ 0.2% Till Petroleum Sulphonate	10	13	29	over 30	t pro
00	+0.2% tri(n-tertiary amyl phenyl) phosphite	10		20	0101 00	
22	Oil "B" + 0.5% Zinc di(methyl cyclohexyl) dithio- phosphate) i i i i i i
	+ 2.0% Tin petroleum sulphonate	47.5		8	12	16
	+ 0.5% Octyl cresol thioether.	[1]				

¹ Figures quoted against tests marked thus were the mean of 2 or 3 tests.

The compound described as octyl cresol thioether in test No. 22 was prepared by the action of sulphur dichloride on octyl cresol in carbon 70 tetrachloride solution.

It would seem that to obtain the most effective inhibition of corrosion, the amount of tin petroleum sulphonate employed should not exceed the amount of metal dithiophosphate.

The dish was then filled with distilled water saturated with carbon dioxide so that the steel was approximately 1/2" below the surface of the water and allowed to stand open to the air, the level being kept approximately constant.

After standing for one month, the plates were removed, freed from loose rust by rubbing with muslin, and weighed.

Test No.	Oil used	Loss in weight of plate (milligrams)
23 24	Oil "B" Oil "B"+0.5% Zinc di(a-methyl isoamyl) di- thiophosphate. 0.2% Chromium di(octyl cresyl) dithiophosphate "B".	41.7
	0.2% Tin Petroleum sulphonate 0.05% df(3-earbomethoxy-4- hydroxyphenyl)thioether cresyl phosphite.	

	Tests were carried out in standar	
5	Lauson engines, under the following	conditions:
	Jacket temperature	210°±2° F.
	Oil sump temperature	280°±2° F.
10	Test Duration	60 hours
	Test results were as follows:	

		Piston		Used Oil	Analysis	
Test No.	Lubricant	lacquer rating (C. R. C. vis- ual rating)	Bearing weight loss (mgs.)	Per cent visc. inc.	Per cent insol. in pet. ether (B. P. below 40° C.)	Acidity
28 29	Oil "B" (average of over 20 tests) Oil "B"+0.6% chromium di(octyl cresyl) dithio- phosphate "B."	6. 2 7. 3	92 5	39. 9 20. 4	0. 94 0. 64	1.04 0.28
30 31	As test 29+0.2% tin petroleum sulphonate. Oii "B"+0.6% chromium di(octyl cresyl) dithio- phosphate "A"+0.2% tin petroleum sulphonate.	8. 4 8. 5	10 39	28. 0 33. 3	0. 62 0. 70	0. 53 0. 60
32	hospitate A +0.2% of letters and state. As test 31+0.2% di(3-carbomethoxy-4-hydroxy-phenyl) thioether cresyl phosphite. As test 31+0.1% di(3-carbomethoxy-4-hydroxy-	7.9 8.5	7 17	33. 8 34. 5	0.61	0. 63 0. 39
34	phenyl)polysulphide. Oil "B"+0.5% zinc di(α-methyl isoamyl) dithio-	7.5	5	16.0	0.41	0. 28
35 36 37	phosphate. As test 34+0.5% tin petroleum sulphonate As test 34+1.0% tin petroleum sulphonate As test 34+0.2% tin petroleum sulphonate+0.2%	9. 0 9. 5 9. 0	8 17 6	23. 6 19. 0 13. 8	0. 10 0. 06 0. 12	0. 28 0. 45 0. 21
38	chromium di(octyl cresyl)dithiophosphate "B." Oil "B"+0.6% zinc octyl cresyl 2-ethyl hexyl di- thiophosphate+0.2% tin petroleum sulphonate.	8.7	18	16.4	0.17	0.39
39 40	oil "B"+0.6% chromium octyl cresyl 2-ethyl hexyl dithiophosphate+0.2%tin petroleum sulphonate. Oil "B"+0.6% chromium di(2-ethyl hexyl) dithio- phosphate+0.2% tin petroleum sulphonate.	8. 6 7. 7	6 7	20. 0 25. 6	0.14	0. 42 0. 34

The water in test 23 was full of red rust whereas that in test 24 was only slightly affected.

Test 4.—Protection against rusting in presence of hydrobromic acid

The method of British Ministry of Supply specification D. T. D. 698 (Appendix 1) was em-

This method, in which sand-blasted mild steel strips were immersed first in a solution of hydrobromic acid in kerosine, then in the oil under test (diluted with 15% petroleum ether) and finally suspended for 24 hours in a closed vessel over saturated zinc sulphate solution, was designed to simulate conditions in an internal combustion engine where, after a period of running the engine is allowed to remain idle. Corrosion of the cylinder walls, with consequent loss of power due to unduly large piston clearances, thereupon tends to take place due to the presence of condensed moisture, carbon dioxide, and fuel combustion products, notable among which is hydrobromic acid produced in small quantities from the combustion of the ethylene dibromide normally present in leaded fuel.

The following results were obtained:

Test No.	Oil used	Gain in weight of steel strips due to rust formation (milligrams)
25 ¹ 26 ¹ 27 ¹	Oil "B" Oil "B"+0.6% Chromium di(octyl cresyl) dithiophosphate "B". As test 26+0.2% Tin petroleum Sulphonate.	20. 7 12. 2 5. 4

¹ Figures quoted are the mean of at least three tests.

The C. R. C. visual rating was according to the method laid down by the Co-ordinating Research 40 Council for rating piston cleanliness in the standard Chevrolet 36-hour L-4 test, in which a clean piston would have a rating of 10.0.

The majority of the figures quoted were the mean of at least two tests.

It will be seen from the results of tests 29 and and 30 and 34 to 37 that the combination of two additives according to the present invention yielded results superior to those obtained by the use of the metal dithiophosphate only, as regards piston cleanliness.

The advantage of a third addition agent as proposed by this invention is demonstrated by the results of tests 31 to 33, in which the metal dithiophosphate was present in insufficient quantity to effect by itself adequate protection of the bearings against corrosion.

The result of test 37 confirmed the results of oxidation tests already quoted, that a certain additional improvement as regards oil oxida-60 tion might be expected from the employment with tin petroleum sulphonate of both a metal dialkyl dithiophosphate and a metal alkylated aryl dithiophosphate.

Further tests were carried out in standard H-2 type Lauson engines, under different conditions, as follows:

Jacket temperature _____°F__ 350 Oil sump temperature _____°F__ 225 Duration _____hours_ 100

These tests were designed more particularly to illustrate the effectiveness of the lubricating compositions of this invention under "heavy duty" conditions as in high-speed diesel engines 75 operating under heavy load.

Tests results were as follows:

			; i	100	Used Oil	Analysis:(100 hours)
Test No.	Lubricant	Piston lac- quer rating (C. R. C. visual rating)	Piston rings stuck	Bearing Wt. loss (mgs.)	Per cent- vise, inc.		Acidity
41 42 43 44	Oil "B". Oil "B".(repeat test). Oil "B"+0.7% di(a-methyl isosmyl) dithiophosphate. Oil "B"+0.5% di(a-methyl isosmyl). dithiophosphate +0.5% tin petroleum sulphonate.	1. 5. 1. 5. zinc 3. 2. zinc 7. 5.	1 2 1 None	118 109 12 14	176. 1 197. 0 137. 1 107. 8	0: 32: 0: 39; 0: 09 0: 06	0, 45 0, 45 0, 28 0, 28

The considerable superiority of the combination of additives of the present invention was thus amply demonstrated.

Test 6-36 hour Chevrolet test

Tests were carried out on a 6-cylinder Chevrolet engine of standard type and according to the standard Co-ordinating Research Council procedure L-4.

leum sulphonate and an oil-soluble metal salt of an organic di-substituted dithiophosphoric acid. We claim:

1. A lubricating composition, which comprises, 20 a hydrocarbon lubricating oil base in major proportion between 0.05% and 2.0% by weight of said base, a proportion between 0.05% and 2.0% by weight of said base of a tin salt of an oilsoluble petroleum sulphonic acid and a propor-

Test No.	Oil Composition	A verage Corrosion loss per whole brg.	Piston Varnish Rating	Total Varnish Rating	Total Sludge Rating
45 46	Oil "B" Oil "B"+0.6% Chromium di(octyl cresyl dithiophosphate)	0. 856	8.4	48. 4	46.0
	"A" 0.2% Tin Petroleum Sulphonate. 0.2% di(3-carbomethoxy-4-hydroxyphenyl)thioether cresyl phosphite.	0. 109	9. 2	49. 4	47.4
48	Oil "B"+0.5% Zinc di(a-methyl iso- amyl) dithiophosphate. +0.5% tin petroleum sul- phonate. Oil "B"+0.5% Zinc di(a-methyl iso- amyl) dithiophosphate.	0. 192	8. 95	48. 95	46.4
	0.2% tin petroleum sul- phonate. 0.2% chromium di(octyl cresyl). dithiophosphate "B" 0.05% di(3-earbomethoxy-4- hydroxyphenyl) thloether	0. 127	8. 85	48.85	43.9
	cresyl phosphite.)			

			Used Oil	Analysis ((36 hours)	
	${f Test}$	No.	viscosity leum (mg	Acidity (mgs KOH per gram)	s per	
45 46 47 48			52. 3 59. 1 24. 1 22. 1	0. 85 0. 68 0. 37 0. 32	0. 62 0. 75 0. 45 0. 22	6

In all the foregoing examples, the tin petroleum sulphonate employed was prepared as described in Example 6.

It will be understood that in all the foregoing 65 tests the metal dithiophosphate additives were employed as prepared by the methods already illustrated, some being relatively pure organic compounds and others associated with varying minor amounts of other compounds, notably the free dithiophosphoric acids and their sodium

The invention will be understood as including an additive for use in a lubricating oil base, tion between 0.1% and 2.0% by weight of said base of an oil-soluble chromium salt of an octyl cresyl dithiophosphoric acid.

2. A lubricating composition in accordance with claim 1 in which the chromium salt is from 0.3 per cent to 2 per cent, the tin salt is from 0.05 per cent to 0.5 per cent by weight of the base and the proportion of the tin salt is never 55 more than that of the chromium salt.

3. A lubricating composition in accordance with claim 1 in which there is included, in an amount from 0.1 per cent to 1 per cent by weight of the base, a derivative of a hydroxy substituted aromatic thioether selected from the group consisting of di(3-carbomethoxy-4-hydroxy phenyl) thioether cresyl phosphite and (3-carbomethoxy-4-hydroxy phenyl) polysulphide.

4. A lubricating composition which comprises a hydrocarbon lubricating oil base in major proportion, a proportion between 0.05 per cent and 2 per cent by weight of said base of a tin salt of an oil-soluble petroleum sulphonic acid, and a proportion between 0.1 per cent and 2 per cent by weight of said base of an oil-soluble chromium salt of an organic dithiophosphoric acid selected from the group consisting of; chromium di(octyl cresyl) dithiophosphate, chromium di(p-octyl phenyl) dithiophosphate, chromium di(a-methyl which additive comprises in admixture tin petro- 75 isoamyl) dithiophosphate, chromium di(2-ethyl hexyl) dithiophosphate, chromium octyl cresyl 2-ethyl hexyl dithiophosphate, and chromium octyl cresyl cresyl dithiophosphate.

5. A lubricating composition in accordance with claim 4 in which the chromium salt is from 0.3 per cent to 2 per cent, the tin salt is from 0.05 per cent to 0.5 per cent by weight of the base and the proportion of the tin salt is never more than that of the chromium salt.

6. A lubricating composition in accordance 10 with claim 4 in which there is included, in an amount from 0.1 per cent to 1 per cent by weight of the base, a derivative of a hydroxy substituted aromatic thioether selected from the group consisting of di (3-carbomethoxy-4-hydroxy phenyl) 15 thioether cresyl phosphite and (3-carbomethoxy-4-hydroxy phenyl) polysulphide.
ELLIOTT ALFRED EVANS.

eri i de _jere pleshinja dikeci e erus di an a Publikario

Europa de la composition della composition della

Reference de la la companya de la companya del companya del companya de la compan Colora-Soft, assistantila per l'épote pode.

JOHN SCOTCHFORD ELLIOTT.

The following references are of record in the file of this patent:

UNITED STATES PATENTS

•	Number	Name	Date
	2,125,936	Liberthson	Aug. 6, 1938
	2,228,659	Farrington et al.	Jan. 14, 1941
	2,252,984	Rutherford	Aug. 19, 1941
)	2,322,307	Neely et al	June 22, 1943
	2,344,392	Cook et al	Mar. 19, 1944
	2,369,632	Cook et al	Feb. 13, 1945
	2,383,917	Morgan	Aug. 28, 1945
	2,414,257	Evans et al	Jan. 14, 1947
5	2,417,876	Lewis	Mar. 27, 1947
	2,418,422	Palmer	Apr. 1, 1947