Office de la Proprieté Canadian
Intellectuelle Intellectual Property
du Canada Office

Un organisme An agency of
d'Industrie Canada Industry Canada

CA 2650539 A1 200//12/06

(21) 2 650 539

122 DEMANDE DE BREVET CANADIEN

CANADIAN PATENT APPLICATION
13) A1

(86) Date de déepot PCT/PCT Filing Date: 2007/05/25

(87) Date publication PCT/PCT Publication Date: 200//12/06
(85) Entree phase nationale/National Entry: 2008/10/27

(86) N° demande PCT/PCT Application No.: US 200//069803
(87) N° publication PCT/PCT Publication No.: 200//140338
(30) Priorité/Priority: 2006/05/25 (US11/441,696)

(51) Cl.Int./Int.Cl. GO6F 9/38(2006.01),
G067 1/20(2006.01)

(71) Demandeur/Applicant:
QUALCOMM INCORPORATED, US

(72) Inventeurs/Inventors:
BOURD, ALEXEI V., US;
DU, YUN, US;

YU, CHUN, US;
JIAO, GUOFANG, US

(74) Agent: SMART & BIGGAR

(54) Titre : PROCESSEUR GRAPHIQUE AVEC DES UNITES DE FONCTIONS ARITHMETIQUES ET ELEMENTAIRES
54) Title: GRAPHICS PROCESSOR WITH ARITHMETIC AND ELEMENTARY FUNCTION UNITS

Threads from
Graphics
Application 1

420

Thread Scheduler
& Context Register
Threads from

Shader Core/Processor

140

Texture
Engine

Graphics : |
Application N 5
i 5 na Uni Load
i rocessing Unit Instruction Control
s 40 Cache Uit
| ——>
i ALU Core i
: (e.g., 1 quad ALU |
: or 4 scalar ALUs) '
i Constant :
E Buffer E
: I 480 | Results for
E Elementary 5 Graphics
i Function Core Application 1
: (e.g., 4 units) Register File Banks/ N\ L .
i Output Buffer x :
E _' Results for
E : Graphics
e e e e e e e e Application N
(57) Abréegée/Abstract:

A graphics processor capable of efficiently performing arithmetic operations and computing elementary functions Is described. The
graphics processor has at least one arithmetic logic unit (ALU) that can perform arithmetic operations and at least one elementary
function unit that can compute elementary functions. The ALU(s) and elementary function unit(s) may be arranged such that they

can operate In parallel to improve throughput.

he graphics processor may also include fewer elementary function units than ALUs,

e.g., four ALUs and a single elementary function unit. The four ALUs may perform an arithmetic operation on (1) four components

C an adg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca

EORUIORIOR . o
g0
s

=

OPIC

OPIC - CIPO 191

CA 2650539 A1 200//12/06

en 2 650 539
13) A1

(57) Abrege(suite)/Abstract(continued):

of an attribute for one pixel or (2) one component of an attribute for four pixels. The single elementary function unit may operate on
one component of one pixel at a time. The use of a single elementary function unit may reduce cost while still providing good
performance.

40338 A3 |INFI0NA OV 0000 A A AR A

CA 02650539 2008-10-27

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization [

International Bureau

(43) International Publication Date
6 December 2007 (06.12.2007)

(51) International Patent Classification:
GO6F 9/38 (2006.01) GO6T 1720 (2006.01)

(21) International Application Number:
PCT/US2007/069803

(22) International Filing Date: 25 May 2007 (25.05.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

11/441,696 25 May 2006 (25.05.2006) US

(71) Applicant (for all designated States except US): QUAL-
COMM Incorporated [US/US]; Attn: International IP
Administration, 5775 Morehouse Drive, San Diego, Cal-
ifornia 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BOURD, Alexei, V.
[RU/US]; 10310 Caminito Agadir, San Diego, California
92131 (US). DU, Yun [CN/US]; 12341 Katydid Circle, San
Diego, California 92129 (US). YU, Chun [CN/US]; 11496
Cypress Woods Dr., San Diego, California 92131 (US).
JIAO, Guofang [CN/US]; 10680 Hunters Glen Dr., San
Diego, California 92130 (US).

(74) Agent: OGROD, Gregory, D.; Attn: International IP Ad-

ministration, 5775 Morehouse Drive, San Diego, Califor-
nia 92121 (US).

(10) International Publication Number

WO 2007/140338 A3

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN,
IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX,
MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO,
RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, 8Z, TZ, UG, ZM,
/W), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, 1,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, B, CFE, CG, CI, CM,

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
with international search report

(88) Date of publication of the international search report:
6 March 2008

(54) Title: GRAPHICS PROCESSOR WITH ARITHMETIC AND ELEMENTARY FUNCTION UNITS

13Ca

S — AR

Threads from | 41f)

Shader Core/Processor

460 : 140
o,

Texture
Engine

—

Graphics ’ 420
Application 1 |i=> =
‘ . “L*‘;' Thread Scheduler
y * X & Context Register
Threads from
Graphics : iI
430
Z

Application N

T
A

Processing Unit
44f
P

Instruction
Cache \l/: Unit

H 156
o

Cache

Load
Control

ALV Core
(e.q., Tquad ALU

432
i

System

<:5:> Memory

or 4 scalar ALUs)

(—

450
Z

Constant
Buffer

(—

Elementary

480 E Results far

. D
,/

Function Core
(e.g., 4 unils)

=

Register File Banks/
Qutput Buffer

? Graphics
:v.:> Application 1

:i:> Results for
f Graphics

i /><C3tDD‘<

Application N

w={ (57) Abstract: A graphics processor capable of efficiently performing arithmetic operations and computing elementary functions
[~ is described. The graphics processor has at least one arithmetic logic unit (ALU) that can perform arithmetic operations and at least
& one elementary function unit that can compute elementary functions. The ALU(s) and elementary function unit(s) may be arranged
& such that they can operate in parallel to improve throughput. The graphics processor may also include fewer elementary function
N nits than ALUs, e.g., four ALUs and a single elementary function unit. The four ALUs may perform an arithmetic operation on (1)
four components of an attribute for one pixel or (2) one component of an attribute for four pixels. The single elementary function
unit may operate on one component of one pixel at a time. The use of a single elementary function unit may reduce cost while still

providing good performance.

CA 02650539 2008-10-27
WO 2007/140338 PCT/US2007/069803

GRAPHICS PROCESSOR WITH ARITHMETIC AND
ELEMENTARY FUNCTION UNITS

BACKGROUND
1. Field

[0001] The present disclosure relates generally to circuits, and more specifically to

graphics processors.

I1I. Background

[0002] Graphics processors are widely used to render 2-dimensional (2-D) and 3-
dimensional (3-D) mmages for various applications such as video games, graphics,
computer-aided design (CAD), simulation and visualization tools, imaging, etc. A 3-D
image may be modeled with surfaces, and each surface may be approximated with
polygons (typically triangles). The number of triangles used to represent a 3-D 1mage 1s
dependent on the complexity of the surfaces as well as the desired resolution of the
image and may be quite large, ¢.g., in the millions. Each triangle 1s defined by three
vertices, and each vertex 1s associated with various attributes such as space coordinates,
color values, and texture coordinates. Each attribute may have up to four components.
[0003] A graphics processor may perform various graphics operations to render an
image. The graphics operations may include rasterization, stencil and depth tests,
texture mapping, shading, etc. The 1mage 1S composed of many triangles, and ecach
triangle 1S composed of picture elements (pixels). The graphics processor renders ecach
triangle by determining the values of the components of each pixel within the triangle.
10004] A graphics processor may employ a shader core to perform certain graphics
operations such as shading. Shading 1s a highly complex graphics operation involving
lighting, shadowing, etc. The shader core may need to compute transcendental
clementary functions such as sine, cosine, reciprocal, logarithm, exponential, square
root, and reciprocal square root. These elementary functions may be approximated with
polynomial expressions, which may be evaluated with relatively simple 1nstructions
executed by an arithmetic logic unit (ALU). However, shader performance may suffer

orcatly from computing the elementary functions in this manner using an ALU.

CA 02650539 2008-10-27

WO 2007/140338 PCT/US2007/069803
2
SUMMARY
[0005] Graphics processors capable of efficiently performing arithmetic operations

and computing clementary functions are described herein. The terms “operation” and
“function” are sometimes used interchangeably. A graphics processor comprises a
shader core and possibly other units. The shader core has at least one ALU that can
perform arithmetic operations and at least one eclementary function unit that can
compute clementary functions. In some embodiments, the ALU(s) and clementary
function unit(s) are arranged and interconnected such that they can operate 1n parallel on
instructions for the same or different threads to improve throughput. For example, the
ALU(s) may execute one instruction for one thread, and the elementary function unit(s)
may concurrently execute another instruction for another thread. These threads may be
for the same or different graphics applications.

[0006] In other embodiments, the shader core has fewer elementary function units
than ALUs, ¢.g., four ALUs and a single clementary function unit. The four ALUs may
perform an arithmetic operation on (1) up to four components of an attribute for one
pixel or (2) one component of an attribute for up to four pixels. The single clementary
function unit may operate on one component of one pixel at a time. The use of a single
clementary function unit may reduce cost (since clementary function units are more
complex and costly than ALUs) while still providing good performance (since
clementary functions have lower average usage than arithmetic operations).

[0007] Various aspects and embodiments of the invention are described in further

detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The features and nature of the present invention will become more apparent
from the detailed description set forth below when taken 1n conjunction with the
drawings 1n which like reference characters 1dentify correspondingly throughout.

[0009] FIG. 1 shows a graphics processor supporting graphics applications.

[0010] FIG. 2 illustrates attributes and components of a pixel.

[0011] FIG. 3A shows pixel-parallel processing with four scalar ALUES.

[0012] FIG. 3B shows component-parallel processing with one quad ALU.

[0013] FIG. 4 shows a shader core with a 4-unit ALU core and a 4-unit clementary

function (EF) core.

CA 02650539 2008-10-27
WO 2007/140338 PCT/US2007/069803

3

[0014] FIG. 5 shows a shader core with parallel ALU core and EF core.
[0015] FIG. 6 shows a shader core with a 4-unit ALU core and a 1-unit EF core.

[0016] FIG. 7 shows a block diagram of a wireless device with a graphics processor.
DETAILED DESCRIPTION
[0017] The word “exemplary” 1s used herein to mean “serving as an example,

instance, or illustration.” Any embodiment or design described herein as “exemplary”
1S not necessarily to be construed as preferred or advantageous over other embodiments
or designs.

[0018] FIG. 1 shows a block diagram of a graphics system 100 that supports N
graphics applications/programs 110a through 110n, where in general N >1. Graphics
system 100 may be a stand-alone system or part of a larger system such as a computing
system, a wireless communication device, etc. Graphics applications 110a through
110n may be for video games, graphics, etc., and may run concurrently. Each graphics
application 110 may generate threads to achieve the desired results. A thread (or thread
of execution) indicates a specific task that may be performed with a sequence of one or
more 1nstructions. Threads allow a graphics application to have multiple tasks
performed simultancously by different units and further allow different graphics
applications to share resources.

[0019] A graphics processor 120 receives the threads from graphics applications
110a through 110n and performs the tasks indicated by these threads. In the
embodiment shown 1n FIG. 1, graphics processor 120 includes a shader core/processor
130, a texture engine 140, and a cache memory system 150. A core generally refers to a
processing unit within an integrated circuit. The terms “core”, “engine”, “processor’
and “processing unit” are often used interchangeably. Shader core 130 may perform
certain graphics operations such as shading and may compute transcendental elementary
functions. Texture engine 140 may perform other graphics operations such as texture
mapping. Cache memory system 150 may include one or more caches, which are fast
memories that can store data and instructions for shader core 130 and texture engine
140.

[0020] Graphics processor 120 may include other processing and control unaits,

engines, and memories. For example, graphics processor 120 may include one or more

additional engines that perform triangle setup, rasterization, stencil and depth tests,

CA 02650539 2008-10-27
WO 2007/140338 PCT/US2007/069803

4

attribute setup, pixel interpolation, etc. The various graphics operations described
herein are known 1n the art. The additional engine(s) may be coupled between graphics
applications 110 and shader core 130 or may be coupled to shader core 130. Graphics

processor 120 may implement a software interface such as Open Graphics Library

(OpenGL), Direct3D, etc. OpenGL 1s described in a document entitled “The OpenGL®
Graphics System: A Specification,” Version 2.0, dated October 22, 2004, which 1s
publicly available.

[0021] A main memory 160 1s a large, slower memory located further away (e.g.,
off-chip) from graphics processor 120. Main memory 160 stores data and instructions
that may be loaded into the caches within cache memory system 150.

[0022] FIG. 2 1llustrates attributes and components of a pixel. As noted above, a
2-D or 3-D image may be composed of many triangles, and cach triangle may be
composed of pixels. Each pixel may have various attributes such as space coordinates,
color values, texture coordinates, etc. Each attribute may have up to four components.
For example, space coordinates may be given by three components for horizontal and
vertical coordinates (x and y) and depth (z) or by four components x, y, z, and w, where
w 18 a fourth term for homogencous coordinates. Homogencous coordinates are useful
for certain graphics operations such as translation, scaling, rotation, e¢tc. Color values
are typically given by red (r), green (g), and blue (b). Texture coordinates are typically
given by horizontal and vertical coordinates (# and v). A pixel may also be associated
with other attributes.

[0023] In many cases, 1t 18 desirable to operate on groups of pixels in an image to be

rendered. The group size may be selected based on various factors such as hardware

requirements, performance, etc. A group size of 2x2 may provide a good tradeoff

between the various factors. Processing on four pixels in a 2x2 grid may be performed
in several manners.

[0024] FIG. 3A shows pixel-parallel processing on four pixels 1 through 4 with
four 1dentical scalar ALUs, ALU1 through ALU4, respectively. In this example, the
four components of an attribute being operated on are denoted as A, Ap2, Apz and

A, 4, where p 1s a pixel index and pefl, 2, 3, 4} for pixels 1 through 4. These

components may be for space coordinates, color values, texture coordinates, etc. The
four operands to be applied to the four components are denoted as B, 1, Bp2, Bpz and

B,4, for pe{l, 2, 3, 4} and may be constants. In this example, the ALUs perform a

CA 02650539 2008-10-27
WO 2007/140338 PCT/US2007/069803

S

multiply and accumulate (MAC) operation. The four components of each pixel are thus
multiplied with the four operands, and the four intermediate results are accumulated to
generate a final result for that pixel.

[0025] For pixel-parallel processing in FIG. 3A, each scalar ALU operates on the
four components of one pixel, and the four ALUs concurrently operate on the four
pixels. ALUI multiplies component A;; with By 1n the first clock period Ty, then
multiplies component A, with B, and accumulates this result with the prior result n
the second clock period T,, then multiplies component A, ; with B; 3 and accumulates
this result with the prior result mn the third clock period Ts, then multiplies component
A1 4 with B; 4 and accumulates this result with the prior result in the fourth clock period
T4. ALU2 through ALU4 similarly operate on the components of pixels 2 through 4,
respectively.

[0026] FIG. 3B shows component-parallel processing on four pixels with one quad
ALU, which may also be called a vector-based ALU. For component-parallel
processing, the quad ALU operates on all four components of one pixel at a time. Thus,
the quad ALU multiplies components A, A1z, A1z and A4 with operands By, By,
B3 and B4, respectively, and accumulates the four intermediate results to obtain the
final result for the first pixel in the first clock period T,. The quad ALU similarly
operates on the components of the second, third and fourth pixels m clock periods T,, T
and T4, respectively.

[0027] FIGS. 3A and 3B show two schemes for performing quad processing on up
to four components of an attribute for up to four pixels. Quad processing for arithmetic
operations may be performed by a single quad ALU or four scalar ALUs. In the
following description, ALUs are assumed to be scalar ALUs unless noted otherwise.
Quad processing may substantially improve performance. Thus, shader core 130 may
be designed with capability to perform quad processing.

[0028] FIG. 4 shows a block diagram of an embodiment of a shader core/processor
130a with a 4-unit ALU core 440 and a 4-unit clementary function core 450. Shader
corc 130a may be used for shader core 130 1n FIG. 1.

[0029] Within shader core 130a, a multiplexer (Mux) 410 receives threads from
oraphics applications 110a through 110n and provides these threads to a thread
scheduler and context register 420. Thread scheduler 420 performs various functions to

schedule and manage execution of threads. Thread scheduler 420 determines whether

CA 02650539 2008-10-27
WO 2007/140338 PCT/US2007/069803

6

to accept ncw threads, creates a register map table for cach accepted thread, and
allocates resources to the threads. The register map table indicates mapping between
logical register address to physical register file address. For cach thread, thread
scheduler 420 determines whether resources required for that thread are ready, pushes
the thread mto a sleep queue if any resource (e.g., instruction, register file, or texture
read) for the thread 1s not ready, and moves the thread from the sleep queue to an active
queue when all of the resources are ready. Thread scheduler 420 interfaces with a load
control unit 460 1n order to synchronize the resources for the threads.

[0030] Thread scheduler 420 also manages execution of threads. Thread scheduler
420 fetches the instruction(s) for cach thread from an mstruction cache 422, decodes
cach 1nstruction 1f necessary, and performs flow control for the thread. Thread
scheduler 420 selects active threads for execution, checks for read/write port conflict
among the selected threads and, 1f there 1s no conflict, sends instruction(s) for one
thread into a processing core 430 and sends instruction(s) for another thread to load
control unit 460. Thread scheduler 420 maintains a program/instruction counter for
cach thread and updates this counter as instructions are executed or program flow 1s
altered. Thread scheduler 420 also 1ssues requests to fetch for missing instructions and
removes threads that are completed.

[0031] Instruction cache 422 stores instructions for the threads. These instructions
indicate specific operations to be performed for each thread. Each operation may be an
arithmetic operation, an clementary function, a memory access operation, etc.
Instruction cache 422 may be loaded with mstructions from cache memory system 150
and/or main memory 160, as needed, via load control unit 460

[0032] In the embodiment shown 1n FIG. 4, processing core 430 includes ALU core
440 and clementary function core 450. ALU core 440 performs arithmetic operations
such as addition, subtraction, multiplication, multiply and accumulate, absolute,
negation, comparison, saturation, e¢tc. ALU core 440 may also perform logical
operations such as AND, OR, XOR, c¢tc. ALU core 440 may also perform format
conversion, ¢.g., from integers to floating point numbers, and vice versa. In the
embodiment shown 1n FIG. 4, ALU core 440 may be a single quad ALU or four scalar
ALUs. ALU core 440 may perform pixel-parallel processing on one component of an

attribute for up to four pixels, as shown in FIG. 3A. Alternatively, ALU core 440 may

CA 02650539 2008-10-27
WO 2007/140338 PCT/US2007/069803

7

perform component-parallel processing on up to four components of an attribute for a
single pixel, as shown 1n FIG. 3B.

[0033] In the embodiment shown in FIG. 4, clementary function core 450 1s
composed of four elementary function units that can compute an elementary function
for one component of an attribute for up to four pixels (pixel-parallel) or up to four
components of an attribute for one pixel (component-parallel). Elementary function
corc 450 may compute transcendental clementary functions such as sine, cosine,
reciprocal, logarithm, exponential, square root, reciprocal square root, e¢tc, which are
widely used in shader instructions. Elementary function core 450 may improve shader
performance by computing the elementary functions in much less time than the time
required to perform polynomial approximations of the clementary functions using
simple 1nstructions.

[0034] LLoad control unit 460 controls the flow of data and instructions for various
units within shader core 130a. Load control unit 460 interfaces with cache memory
system 150 and loads instruction cache 422, a constant buffer 432, and register file
banks/output buffer 470 with data and 1nstructions from cache memory system 150.
Load control unit 460 also saves the data in output buffer 470 to cache memory system
150. Load control unit 460 also provides instructions to texture engine 140.

[0035] Constant buffer 432 stores constant values used by ALU core 440. Output
buffer 470 stores temporary results as well as final results from ALU core 440 and
clementary function core 450 for threads. A demultiplexer (Demux) 480 receives the
final results for the executed threads from output buffer 470 and provides these results
to the graphics applications.

[0036] In the embodiment shown 1n FIG. 4, processing core 430 includes both ALU
core 440 and clementary function core 450. This embodiment allows ALU core 440
and clementary function core 450 to share buses that couple cores 440 and 450 to other
units (e.g., thread scheduler 420 and output buffer 470) within shader core 130a.

[0037] Elementary function units are generally more complex than ALUs. Even
with cost-cffective implementations, elementary function units typically occupy much
larger circuit arca than ALUs and are thus more expensive than ALUs. To achieve high
shader throughput for all shader instructions, the number of elementary function units
may be selected to match the number of ALUs, which is four 1n the embodiment shown

in FIG. 4. However, studies have shown that even though elementary functions are

CA 02650539 2008-10-27
WO 2007/140338 PCT/US2007/069803

8

widely used, the average usage of elementary functions 1s fairly lower than the average
usage of ALU operations. The lower average usage results from elementary functions
being called less often than arithmetic operations as well as fewer components being
operated on by clementary functions than arithmetic operations. For example,
clementary functions are typically called less often than arithmetic operations and may
thus be adequately supported by fewer elementary function units. Furthermore, while 1t
may be common to perform addition or multiplication on all four components of an
attribute, which would then benefit from having four ALUs, it 1s less common to
perform an clementary function on all four components. Hence, fewer elementary
function units may be able to provide good performance in many cases in which
clementary functions are performed on only a subset of the components, ¢.g., one or two
components. Implementing fewer elementary function units may reduce cost while still
providing good performance.

[0038] FIG. 5 shows a block diagram of an embodiment of a shader core 130b with
a 4-unit ALU core 540 and an L-unit clementary function core 550, where 1<L < 4.
Shader core 130b may also be used for shader core 130 1n FIG. 1. Shader core 130b
includes a multiplexer 510, a thread scheduler and context register 520, an instruction
cache 522, a constant buffer 532, ALU core 540, clementary function core 550, a load
control unit 560, register file banks/output buffer 570, and a demultiplexer 580 that
opcrate 1in similar manner as units 410, 420, 422, 432, 440, 450, 460, 470 and 480,
respectively, in FIG. 4.

[0039] ALU core 540 may be a single quad ALU or four scalar ALUs. ALU core
540 couples to thread scheduler 520, constant buffer 532, and output buffer 570 via one
set of buses. Elementary function core 550 may be composed of one, two or three (L)
clementary function units that can compute an clementary function for either L
components of one pixel or one component of L pixels. Elementary function core 550
couples to thread scheduler 520, constant buffer 532, and output buffer 570 via another
set of buses. In the embodiment shown in FIG. 5, ALU core 540 and clementary
function core 550 are implemented separately from one another and are coupled to other
units within shader core 130b via separate buses. ALU core 540 and clementary
function core 550 may then operate on different mstructions in parallel. These

instructions may be for the same or different graphics applications.

CA 02650539 2008-10-27
WO 2007/140338 PCT/US2007/069803

9

[0040] In the embodiment shown 1n FIG. 5, the number of elementary function units
1s fewer than the number of ALUs and may be selected based on a tradeoff between cost
and performance. In many cases, elementary function core 550 will be able to keep
pace with ALU core 540 because of the lower average usage of elementary functions.
Thread scheduler 520 appropriately schedules elementary function operations with
knowledge that L (instead of four) elementary function units are available for use.

[0041] FIG. 6 shows a block diagram of an embodiment of a shader core/processor
130c with a 4-unit ALU core 640 and a 1-unit elementary function core 650. Shader
core 130c may also be used for shader core 130 in FIG. 1. Shader core 130c includes a
multiplexer 610, a thread scheduler and context register 620, an 1nstruction cache 622, a
constant buffer 632, ALU core 640, clementary function core 650, a load control unit
660, register file banks/output buffer 670, and a demultiplexer 680 that operate in
similar manner as units 410, 420, 422, 432, 440, 450, 460, 470 and 480, respectively, in
FIG. 4.

[0042] ALU core 640 may be a single quad ALU or four scalar ALUs. ALU core
640 couples to thread scheduler 620, constant buffer 632, and output buffer 670 via a set
of buses. Elementary function core 650 may be composed of a single clementary
function unit that can compute an e¢lementary function for one component of one pixel
at a time. In the embodiment shown 1n FIG. 6, elementary function core 650 couples to
load control unit 660 and output buffer 670. This embodiment reduces the number of
buses to support separate ALU core 640 and clementary function core 650. This
embodiment may also provide other benefits such as more efficient sharing of resources
such as register file read/write port, instruction decode, ctc.

[0043] Instructions for elementary functions (or EF instructions) may be generated
in an appropriatec manner given the design as well as the placement of clementary
function core 650 within shader core 130c. If the number of EF units 1s equal to the
number of ALU units (¢.g., as shown 1n FIG. 4) and if the EF units have the same
pipeline latency as the ALU units, then the EF 1nstructions may be treated as ALU
instructions with predictable pipeline delay. However, uneven implementations of ALU
core 640 and clementary function core 650 may result in uneven throughput. Thus, 1n
an embodiment, shader core 130c¢ treats elementary function core 650 as a load resource
and processes EF instructions 1n similar manner and with the same synchronization as,

¢.g., a texture load or a memory load. For example, a shader compiler may compile EF

CA 02650539 2008-10-27
WO 2007/140338 PCT/US2007/069803

10

Instructions as mstructions related to texture load mstead ot as ALU 1nstructions, which
may be the case 1n the embodiments shown in FIGS. 4 and 5.

[0044] The shader compiler may include synchronization (sync) bits in instructions
as appropriate. A sync bit may indicate that the current instruction which contains the
sync bit has data dependency with one or more previous instructions, which may have
unpredictable delay or latency. The unpredictable latency may be due to several
sources. First, unpredictable latency of texture load or memory load may result from
unpredictable execution conditions such as cache hit/miss, memory access competence,
memory access sequence, etc. Second, unpredictable latency may be caused by uneven
implementations of the ALU core and the clementary function core. The shader
compiler may 1nsert sync bits 1n instructions that have data dependency with previous
EF 1instructions, which may have unpredictable delay. These sync bits ensure that the
instructions follow their dependent EF 1nstructions and hence operate on the proper
data.

[0045] In the embodiment shown 1n FIG. 6, thread scheduler 620 may gencrate
clementary function requests that may share a bus with data load requests. This shared
bus may comprise the bus from thread scheduler 620 to load control unit 660.
However, elementary function core 650 may execute 1n parallel with load mstructions in
load control unit 660. In another embodiment, elementary function core 650 1s coupled
directly to thread scheduler 620 via a dedicated bus, ¢.g., as shown 1in FIG. 5. In this
embodiment, e¢lementary function requests and data load requests may use separate
buses. In both embodiments, thread scheduler 620, ALU core 640, clementary function
corc 650, and load control unit 660 may operate 1n parallel on different threads for
improved performance.

[0046] FIGS. 4 through 6 show specific embodiments of shader cores 130a, 130b
and 130c. Other variations of shader cores 130a, 130b and 130c arc also possible. For
example, clementary function core 450 in FIG. 4 may include fewer than four
clementary function units. As another example, clementary function core 650 1in FIG. 6
may include more than one e¢lementary function unit, ¢.g., two clementary function
units.

[0047] In general, a shader core may include any number of processing, control and
memory units, which may be arranged 1n any manner. These units may also be referred

to by other names. For example, a load control unit may also be called an 1nput/output

CA 02650539 2008-10-27
WO 2007/140338 PCT/US2007/069803

11

(I/O) interface unit. In some embodiments, a shader core may include fewer elementary
function units than ALUs to reduce cost with little degradation in performance. In other
embodiments, a shader core may include separate ALU core and elementary function
corc that can operate on different instructions for the same or different graphics
applications in parallel. The ALUs and elementary function units may be implemented
with various designs known 1n the art. A shader core may also interface with external
units via synchronous and/or asynchronous interfaces.

[0048] The graphics processors and shader cores described herein may be used for
wireless communication, computing, networking, personal eclectronics, etc. An
exemplary use of a graphics processor for wireless communication 1s described below.
[0049] FIG. 7 shows a block diagram of an embodiment of a wireless device 700 1n
a wircless communication system. Wireless device 700 may be a cellular phone, a
terminal, a handset, a personal digital assistant (PDA), or some other device. The
wireless communication system may be a Code Division Multiple Access (CDMA)
system, a Global System for Mobile Communications (GSM) system, or some other
system.

[0050] Wireless device 700 1s capable of providing bi-directional communication
via a receive path and a transmit path. On the receive path, signals transmitted by base
stations are received by an antenna 712 and provided to a receiver (RCVR) 714,
Receiver 714 conditions and digitizes the received signal and provides samples to a
digital section 720 for further processing. On the transmit path, a transmitter (TMTR)
716 receives data to be transmitted from digital section 720, processes and conditions
the data, and generates a modulated signal, which 1s transmitted via antenna 712 to the
base stations.

[0051] Digital section 720 includes various processing and interface units such as,
for example, a modem processor 722, a video processor 724, an application processor
726, a display processor 728, a controller/processor 730, a graphics processor 740, and
an external bus interface (EBI) 760. Modem processor 722 performs processing for
data transmission and reception (e.g., encoding, modulation, demodulation, and
decoding). Video processor 724 performs processing on video content (e.g., still
images, moving videos, and moving texts) for video applications such as camcorder,
video playback, and wvideo conferencing. Application processor 726 performs

processing for various applications such as multi-way calls, web browsing, media

CA 02650539 2008-10-27
WO 2007/140338 PCT/US2007/069803

12

player, and user interface. Display processor 728 performs processing to facilitate the
display of videos, graphics, and texts on a display unit 780. Controller/processor 730
may direct the operation of various processing and interface units within digital section
720.

[0052] Graphics processor 740 performs processing for graphics applications and
may be implemented as described above. For example, graphics processor 740 may
include shader core/processor 130 and texture engine 140 in FIG. 1. A cache memory
system 750 stores data and/or instructions for graphics processor 740. Cache memory
system 750 may be implemented with (1) configurable caches that may be assigned to
different engines within graphics processor 740 and/or (2) dedicated caches that are
assigned to specific engines. EBI 760 facilitates transfer of data between digital section
720 (e.g., the caches) and main memory 770.

[0053] Digital section 720 may be implemented with one or more digital signal
processors (DSPs), micro-processors, reduced instruction set computers (RISCs), etc.
Digital section 720 may also be fabricated on one or more application specific
integrated circuits (ASICs) or some other type of integrated circuits (ICs).

[0054] The graphics processors and shader cores/processors described herein may
be mmplemented 1n various hardware units. For example, the graphics systems and
shader cores/processors may be implemented in ASICs, digital signal processors
(DSPs), digital signal processing device (DSPDs), programmable logic devices (PLDs),
field programmable gate array (FPGAS), processors, controllers, micro-controllers,
microprocessors, and other electronic units.

[0055] Certain portions of the graphics processors may be implemented 1in firmware
and/or software. For example, the thread scheduler and/or load control unit may be
implemented with firmware and/or software modules (e.g., procedures, functions, and
so on) that perform the functions described herein. The firmware and/or software codes
may be stored 1n a memory (¢.g., memory 750 or 770 mn FIG. 7) and executed by a
processor (€.g., processor 730). The memory may be implemented within the processor
or external to the processor.

[0056] The previous description of the disclosed embodiments 1s provided to enable
any person skilled in the art to make or use the present invention. Various
modifications to these embodiments will be readily apparent to those skilled 1n the art,

and the generic principles defined herein may be applied to other embodiments without

CA 02650539 2008-10-27
WO 2007/140338 PCT/US2007/069803

13

departing from the spirit or scope of the invention. Thus, the present invention 18 not
intended to be limited to the embodiments shown herein but 1s to be accorded the widest

scope consistent with the principles and novel features disclosed herein.

10057] WHAT IS CLAIMED IS:

CA 02650539 2008-10-27
WO 2007/140338 PCT/US2007/069803

14

CLAIMS

1. An apparatus comprising:

at least one arithmetic logic umit (ALU) operative to perform arithmetic
operations; and

at least one elementary function unit operative to compute elementary functions,
wherein the at least one elementary function unit and the at least one ALU are operable

on multiple threads 1n parallel.

2. The apparatus of claim 1 and comprising four ALUS.

3. The apparatus of claim 2, wherein the four ALUSs are operable to perform

an arithmetic operation on up to four components of an attribute for a pixel.

4. The apparatus of claim 2, wherein the four ALUSs are operable to perform

an arithmetic operation on a component of an attribute for up to four pixels.

5. The apparatus of claim 1 and comprising fewer elementary function units
than ALUES.

0. The apparatus of claim 1 and comprising a single e¢lementary function
unit.

7. The apparatus of claim 1, wherein instructions for the at least one

clementary function unit are compiled with synchronization as load mstructions.
8. The apparatus of claim 1, wherein control bits are used for
synchronization of instructions for the at least one clementary function unit with other

instructions dependent on the instructions for the at least one elementary function unit.

9. The apparatus of claim 1, wherein the at least one ALU 1s operable to

execute a first instruction for a first thread and the at least one elementary function unit

1 A

CA 02650539 2008-10-27
WO 2007/140338 PCT/US2007/069803

15

1S operable to execute a second instruction for a second thread in parallel with the at

least one ALU.

10. The apparatus of claim 1, wherein the at Ieast one ALU and the at least

on¢ ¢lementary function unit have different latency.

11. The apparatus of claim 1, further comprising;:
a load control unit operative to facilitate exchanges of data between the at least
on¢ ALU and a memory system and between the at least one elementary function unit

and the memory system.

12. The apparatus of claim 11, wherein the at Ieast one elementary function

unit 1s coupled to the load control unit.

13. The apparatus of claim 12, wherein the at Ieast one elementary function

unit 18 operable 1n parallel with the load control unat.

14. The apparatus of claim 12, wherein requests for the at least one
clementary function unit and load requests for the load control unit share a bus, and
wherein the at least one elementary function unit and the load control unit are operable

to execute different threads in parallel.

15. The apparatus of claim 1, further comprising:
a scheduler operative to receive threads from at least one graphics application
and to schedule execution of the threads by the at Ieast one ALU and the at Ieast one

clementary function unit.

16. The apparatus of claim 15, wherein the at Ieast one elementary function

unit 18 coupled to the scheduler.

1L

CA 02650539 2008-10-27
WO 2007/140338 PCT/US2007/069803

16

17. The apparatus of claim 1, further comprising:
an output buffer coupled to the at Ieast one ALU and the at least one elementary
function unit and operative to store results from the at least one ALU and the at least

on¢ elementary function unit.

18. Anintegrated circuit comprising;:

at least onec arithmetic logic unit (ALU) operative to perform arithmetic
opcerations; and

at least one elementary function unit operative to compute elementary functions,
wherein the at least one elementary function unit and the at least one ALU are operable

on multiple threads 1n parallel.

19. The integrated circuit of claim 18 and comprising four ALUs and fewer

than four elementary function unats.

20. A wireless device comprising:

a graphics processor comprising at least one arithmetic logic unit (ALU)
operative to perform arithmetic operations and at least one clementary function unit
operative to compute elementary functions, wherein the at least one elementary function
unit and the at least one ALU are operable on multiple threads in parallel; and

a memory system operative to store data for the graphics processor.

21. The wireless device of claim 20, wherein the graphics processor

comprises four ALUs and fewer than four elementary function unaits.

22. An apparatus comprising:

at least one arithmetic logic umit (ALU) operative to perform arithmetic
operations; and

at least one elementary function unit operative to compute elementary functions,
wherein the number of the at least one c¢lementary function unit 1s fewer than the

number of the at least one ALU.

17

CA 02650539 2008-10-27
WO 2007/140338 PCT/US2007/069803

17

23. The apparatus of claim 22, wherein the at least one ALU 1s operable 1n

parallel with the at least one elementary function unat.

24. The apparatus of claim 22, further comprising:
a load control unit operative to facilitate exchanges of data between the at least
on¢ ALU and a memory system and between the at least one elementary function unit

and the memory system.

25. The apparatus of claim 24, wherein the at least one elementary function

unit 1s coupled to the load control unit.

177

PCT/US2007/069803

¢ Ol

S | UEESSS————

quacocogﬁcoo

pannl

CA 02650539 2008-10-27

WO 2007/140338

1/6

00}

9INgLIY 91Ny 9]NQLUIY
2IN)xa | 10|09 9)euIpJoo)
} Ol

10SS920.1d so1ydeun

AJOWBS|N m m N uoneoldady
Ulep m m solyde.o)
09} w 06} 10SS990.d M oL}
“ /2400 “ .
m Japeys m “
m auIbu3 M | uonedljddy
m SINIX8 | " solydelo
m d 0¢} m 20}
~N “ “

3

CA 02650539 2008-10-27
WO 2007/140338 PCT/US2007/069803

2/6

Clock Scalar ALU1 Scalar ALU2 Scalar ALU3 Scalar ALU4
Period (Pixel 1) (Pixel 2) (Pixel 3) (Pixel 4)

Clock Quad ALU
Period (Pixels 1 - 4)

CA 02650539 2008-10-27

PCT/US2007/069803

WO 2007/140338

N uonjedjjddy
sojydelo)
10] S)INS9Yy

| uoneo||ddy
sojydelo
10] S)INS9Yy

auIbu3
aJNIXa |

4

)

layng indino
/SYueg 3|14 48)sibay

Jayng
JUBISUOY)

I

Jup SY9ED
|0J]UO0D UuoionJsu]

peOT

I

-
O
<

(syun “6°9)
9407 uoIduUN4
Alejuswa|3

(SNV Je|eds ¥ Jo
N1V penb | “6°8)
9100 N1V

Ovy
Jlun buissanoud

1918169y 1X81Uu0N) ¥
la|npayog pealy |

0cy

10SS92014/3409) Japeys

\i

N uonjed|jddy
sojydeln)
WwoJ) spealy |

| uoneoi|ddy
sojydeln)
WwoJ) spealy |

CA 02650539 2008-10-27

PCT/US2007/069803

WO 2007/140338

N uonjedjjddy
sojydelo)
10] S)INS9Yy

| uoneo||ddy
sojydelo
10] S)INS9Yy

auIbu3
aJNIXa |

4

|

lajng 1ndinp
/Hueg 3|14 Jesibay

(syun 1)
9107 uoIjPuUN4

1O5Nd Alejuswa|3

JUBISUO)

(SN Jeleos y Jo
Jun 9YIED NV penb | “6°9)
|0J]U0D uolonJsu 210D NV
pPeo]

18]SI169Y 1X9u0n R
la|npayog peaty |

N uonjeojjddy
sojydeus)
WwoJ) speauy|

| uojjeol|ddy
sojydeus)
woJ) spealy|

CA 02650539 2008-10-27

PCT/US2007/069803

WO 2007/140338

N uonjeojjddy
sojydeln)
10] S)|Nsay

| uopeol|ddy
sojydelo)
10] S)INS9Yy

auIbu3
aJNIXa |

4

|

(jun | “6°8) (SNV Je|eds Jo
9107 uonouUN NV penb | “6'9)
Alejuswia|3 910D N1V

UOoIJoNJISU] JUBISUOD)

N uonjed|jddy
so|ydelo
WwoJj spealy |

I

1918169y 1X81Uu0N) ¥
la|npayog pealy |

| uoijesl|ddy
Q— sojydelo

WoJ) speaJy |

10SS92014/3409) Japeys

L---------

\E

CA 02650539 2008-10-27

PCT/US2007/069803

WO 2007/140338

6/6

00/

08/

L Il

0./

90B1I9)U|
sng
IBUJISIXT

10SS9820.d
so|ydeln

10SS820.d

WSPOIN

0v/ ¢¢/

¢t/

10SS920.4
Aeldsiq

10SS920.
/19]10JJU0)

10SS9820.14
uoneolddy

10SS920.d
O3PIA

0€/ 92/
uonoasg |eubiq

L2 X X X X R R X X &} _§ N N J L2 2 2 N 3 N 3 X X X XK 8 % § 3 % R B B & % § J _J --------J

d1lNL

91/

dADd

47

47

Shader Core/Processor
420 460

Threads from
Graphics
Application 1

140

Thread Scheduler
& Context Register

Threads from
Graphics
Application N

| oad
Control
Unit

Processing Unit
440

Instruction

Cache

ALU Core
(e.g., 1 quad ALU
or 4 scalar ALUs)

Constant

Buffer
Results for
Elementary Graphics
Function Core Application 1

(e.g., 4 units)

Register File Banks/
Output Buffer

V.

Results for
Graphics
... Application N

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - abstract drawing

