METHODS AND SYSTEMS OF FOUR-VALUED MONTE CARLO SIMULATION FOR FINANCIAL MODELING

Fig. 6

(51) International Patent Classification: G06Q 40/00 (2012.01)

(21) International Application Number: PCT/US20 14/056 152

(22) International Filing Date: 17 September 2014 (17.09.2014)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 14/05 1,722 11 October 2013 (11.10.2013) US

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG),

Published: — with international search report (Art. 21(3))

(54) Title: METHODS AND SYSTEMS OF FOUR-VALUED MONTE CARLO SIMULATION FOR FINANCIAL MODELING

(57) Abstract: Automatic trading environments with their high degree of automation have become the backbone of modern financial markets. The ability to process orders and manage risk in these systems while maintaining a low latency between participants is crucial for the safety and liquidity of these markets. The disclosed system describes a four valued Monte Carlo simulation for the stochastic modeling of risk and syntactic pattern matching techniques to facilitate the design of these systems. The system is a self-compiling, machine independent system capable of dividing, scaling and communicating multiple-asset instruments efficiently in a parallel environment. The system also allows for the integration of computerized financial heuristics on financial instruments and user interfaces for creating trading strategies to monitor and hedge risk over a trading desk for financial institutions.
Methods and Systems of Four-Valued Monte Carlo Simulation for Financial Modeling

[0001] Copyright and Trademark Notice

[0002] This application includes material which is subject or may be subject to copyright and/or trademark protection. The copyright and trademark owner(s) has no objection to the facsimile reproduction by any of the patent disclosure, as it appears in the Patent and Trademark Office files or records, but otherwise reserves all copyright and trademark rights whatsoever.

[0003] Background of the Invention

[0004] (1) Field of the Invention

[0005] The invention generally relates to Monte Carlo simulations. More particularly, the invention relates to means and methods

[0006] (2) Description of the Related Art

[0007] In the related art, various other logic systems or truth tables have been disclosed. But, the prior art lacks the efficiency of the presently disclosed embodiments.

[0008] Brief Summary of the Invention

[0009] The present invention overcomes shortfalls in the related art by presenting an unobvious and unique combinations, configurations and use of methods, systems and means reducing the time and computational costs traditionally associated with testing, manipulation and analysis of data in computer architectures.

[0010] Disclosed embodiments overcome the shortfalls in the related art by presenting a notation that allows for the encoding of both syntactic and semantic information into a two bit vector notation within associated with a semantic node in a semantic network. Disclosed embodiments also overcome shortfalls in the art by encoding the property each feature assumes in recursive predicate analysis.

[0011] Brief Description of the Drawings
[001 2] Fig. 1 depicts a disclosed logic
[001 3] Fig. 2 depicts a machine implementation
[001 4] Fig. 3 depicts graphical representation of a semantic network
[001 5] Fig. 4 depicts the assignment of a property to a particular index within array
[001 6] Fig. 5 depicts a disclosed conditional testing of market data for Monte Carlo simulation and syntactic pattern matching
[001 7] Fig. 6 depicts a disclosed system of a futures contract market
[001 8] These and other aspects of the present invention will become apparent upon reading the following detailed description in conjunction with the associated drawings.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

[001 9] The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways as defined and covered by the claims and their equivalents. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout.

[0020] Unless otherwise noted in this specification or in the claims, all of the terms used in the specification and the claims will have the meanings normally ascribed to these terms by workers in the art.

[0021] Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise," "comprising" and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of "including, but not limited to." Words using the singular or plural number also include the plural or singular number, respectively. Additionally, the words "herein," "above," "below," and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application.

[0022] The above detailed description of embodiments of the invention is not intended to be exhaustive or to limit the invention to the precise form disclosed above.
While specific embodiments of, and examples for, the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. For example, while steps are presented in a given order, alternative embodiments may perform routines having steps in a different order. The teachings of the invention provided herein can be applied to other systems, not only the systems described herein. The various embodiments described herein can be combined to provide further embodiments. These and other changes can be made to the invention in light of the detailed description.

[0023] All the above references and U.S. patents and applications are incorporated herein by reference. Aspects of the invention can be modified, if necessary, to employ the systems, functions and concepts of the various patents and applications described above to provide yet further embodiments of the invention.

[0024] Reference Numbers

[0025] 100 non transitory machine readable medium sometimes containing machine readable instructions

[0026] 200 a general or specialized processor

[0027] 300 memory, sometimes non volatile

[0028] 410 database of one or more semantic networks

[0029] 420 database of vector arrays

[0030] 430 database of logical connectives

[0031] 440 database of grammar phrase structure implementations

[0032] 450 database of system reports

[0033] 600 runtime stack and heap

[0034] 700 system clock

[0035] 800 top down / bottom up parser

[0036] 900 a contract market for futures or other assets
[0037] 910 a risk engine or risk analysis system for screening orders

[0038] 920 a flow of information between the contract market 900 and a direct market access participant 930

[0039] 930 a direct market access participant

[0040] 940 a risk engine or risk analysis for the direct market access automated trading system between the contract market 900 and the direct market access participant 930

[0041] 950 risk analysis for the direct market access and the clients of the direct market access

[0042] 960 a flow of information between 930 and swap dealers 970

[0043] 970 swap dealers

[0044] 980 swap dealer risk analysis engine

[0045] 990 communication of information between swap dealers 970, sometimes occurring in OTC or over the counter transactions

[0046] 1000 market A

[0047] 1001 market B

[0048] 1002 market C

[0049] 1010 a market participant, Alpha

[0050] 1020 values mapped to an array by Alpha

[0051] 1022 explanation of encoding

[0052] 1023 asset Z

[0053] 1030 data from market C for asset Z

[0054] 1032 encoding into the four value logic and showing how numbers are mapped
1040 encoding of conditional tests for asset Z

1042 encoding of the conditional test for asset Z

Referring to Fig. 1, a diagram for the basic binary operators and negation, ignoring monotonic arguments for negation, for a four valued logic is described. These operators are used in proving the completeness for a family of logics. These logics can be derived from a variety of different arguments. From considerations of Boolean groupings on the truth values, a pre-ordering of the truth tables into a lattice structure, or from set theoretic and recursive definitions. All are constructed to preserve some of the primary axioms in classical logic. By modeling the recursive values the truth values assume explicitly in the semantic network simplifies the testing of conditionals and the quantification of variables. The undefined value, the default value for growth to the system, allows for the dynamic benign encoding into the network, a logic property attributable to many Kleene logics. The fourth property allows for the proper quantification and binding of variables for the elimination of the effects of the newer truth values for subsequent steps in the calculation. It also provides the possibility for the introduction of an intuitionistic acceptable "terium non datur" for decision procedures for modeling Markov processes into the logic.

By encoding properties with a specific bit into the bit vector the linear scaling may be maintained. This system is a departure from prior art in compiler design for creating symbol tables, testing of features and aids extended stack compiler implementations.

In first column of Fig. 1, the logical not sign is shown as \neg, in the second column of Fig. 1 the AND operator is shown as \wedge, in the third column of Fig. 1 the OR operator is shown as \vee. The first column shows the values before application of the not operator. For example, in the first row of the first column, the value of F is shown before application of the not operator and T is shown as a result.

In the second column, a OR operator takes one value from the first column and one value from the first row and shows the result of the logical operator where the
column value and row value intersect. In the third column a AND operator is applied in a similar manner as in the second column. For example, in the third column, at the first row and selecting the last element, at the first column in selecting the second element D and F are shown and result in a value of D.

[0061] Referring to Fig. 2, a machine implementation is shown using a machine readable, non-transitory media 100, the media 100 having machine readable instructions sent to a general or specialized processor 200. The processor 200 may be in communication with memory 300, a plurality of databases and other components, such as a network, user interfaces and other implements. The plurality of databases may include a database 410 of one or more semantic networks, such as the network system of Fig. 3, a database 420 of vector arrays the arrays may be associated with each semantic node or other network component, a database 430 of logical connectives, such as the connectives of Fig. 1, a database 440 of grammar phrase structure implementations, such as the and a database of other disclosed components Fig. 5 also depicts a system clock 700, top down / bottom up parser 800 and runtime stack and heap 600.

[0062] Referring to Fig. 3, a graphical representation of a semantic network 500 is shown with objects 510 and relations 520, with all objects and relations being nodes in memory or in a database.

[0063] Fig. 4 depicts a graphical representation of the two bit vector array associated with the semantic node in memory. Fig. 4 further shows the assignment of the truth value across the two arrays, with X being a specific index into the array. The word size in the figure is a consequence of word size limitations in computer architecture. This causes a chunking factor for implementations of the array.

[0064] Referring to Fig. 5,

[0065] Referring to Fig. 5, a system is disclosed wherein a market participant tests conditionals to attempt to take advantage of price discrepancies between markets or
other risk analysis in pre-ordering. Disclosed systems also pertain to post order analysis as well.

[0066] Referring to 1040 encoding of conditional tests to isolate the asset class Z from all three markets, A 1000, B 1001 and C 1002 or other markets, this can be used to partition computational time in a parallel environment for the market participant by designating specific processor(s) to perform risk analysis on the subject asset to their specific risk profile.

[0067] The displaced information pertains to data from market C. Conditional tests and filters are shown as executed by market participant Alpha. Test may be used to filter asset classes, risk and for resource allocation.

[0068] Referring to Fig. 6 a system and order matching engine is disclosed wherein a risk analysis is performed prior to execution of orders within the disclosed system. Fig. 6 may be considered a diagram of the major and minor participants of a futures contract, derivatives market or other market.

[0069] These and other changes can be made to the invention in light of the above detailed description. In general, the terms used in the following claims, should not be construed to limit the invention to the specific embodiments disclosed in the specification, unless the above detailed description explicitly defines such terms. Accordingly, the actual scope of the invention encompasses the disclosed embodiments and all equivalent ways of practicing or implementing the invention under the claims.

[0070] While certain aspects of the invention are presented below in certain claim forms, the inventors contemplate the various aspects of the invention in any number of claim forms.

[0071] Disclosed embodiments include the following Items:

[0072] Item 1. A machine implemented method of executing a four-valued logic to model financial instruments:
using symbols comprising (F, T, U, D) to represent the values false, true, undefined, and defined, mapped into a two vector dynamic array; the values further mapped into indexes within the two vector dynamic arrays and stored as nodes within a semantic network;

for F, T, U, D, defined into set theory, such as {} for undefined, {T} for true, {F} for false, {} for undefined and {T, F} for defined, these values are interpreted as properties {P} for T and, {-P} for false, {} for undefined and {P, -P} for defined, which are the properties used for testing the conditionals and quantifying variables for successive recursive steps in the predicate calculus;

c) defining a logic with a negation, ignoring monotonic argumentations, with the following binary connectives: for the logical AND (^), NOT (-); and logical OR (V) connectives as follows used to prove the completeness of the logics:

\[-F \text{ is } T,\]
\[-T \text{ is } F,\]
\[-U \text{ is } D,\]
\[-D \text{ is } U;\]

for the ^ connective

\[^ F\]
\[^ T\]
\[^ U\]
\[^ D\]
\[F\]
\[TTTT\]
\[TTTT\]
\[TTTT\]
\[TTTT\]
\[TTTT\]

for the V connective

\[V\]
\[VVVV\]
\[VVVV\]
\[VVVV\]
\[VVVV\]
\[VVVV\]
\[VVVV\]
\[VVVV\]
\[VVVV\]

f) optimizing short term memory maximizing long term storage by the linear encoding of syntactic and semantic information into the semantic network;

g) in a parallel context optimizing short term memory to maximize long term storage becomes optimizing communication and memory between different knowledge sources (processes) and
[0078] h) using defined and undefined to help separate asset classes in the simulation.

[0079] Item 2. The method of item 1 further comprising using the use of a phrase structure rewrite rule associated with a node within the semantic network for the testing and passing of the rewrite rule.

[0080] Item 3. The method of item 2 implementing a top-down, bottom-up parser capable of a plurality of syntactic parses of a grammar.

[0081] Item 4. The method of item 3 using a system clock, runtime stack and heap, a processor and a database of rewrite rules, a database of the semantic network and a database of syntactic and semantic information.

[0082] Item 5. A system for executing a four-valued logic to optimize short term memory and to maximize long term storage, the system comprising:

[0083] machine readable instructions stored upon a nonvolatile computer readable medium, a central processing unit, a runtime stack and heap, semantic network, top down / bottom up parser, a system clock, database with historical economic information;

[0084] the system using a Boolean encoding comprising (F, T, U, D) to represent the values false, true, undefined, and defined, mapped into a two vector dynamic array; the values further mapped into indexes within the two vector dynamic arrays and associated with nodes in a semantic network;

[0085] for (F, T, U, D) defined into set theory, such as {} for undefined, {T} for true, {F} for false, and {T,F} for defined, these values are interpreted as properties (P) for T, {-P} for false, {} for undefined and {P,-P} for defined, which are the properties used for the testing of conditionals and quantifying of variables in the predicate calculus;

[0086] d) the system defining a logic with a negation with the following binary connectives: for the logical AND (^), NOT (-); and logical OR (V) connectives as follows used to prove the completeness of the logics:
-F is T
-T is F
-U is D
-D is U;
e) for the ^ connective
^ F T U D
F F F F F
T F T U D
U F U U F
D F D F D;
f) for the V connective
V F T U D
F F T U D
T T T T T
U U T U T
D D T T D;

[0087] g) the system optimizing short term memory maximizing long term storage by the linear encoding of the information into the semantic network;

[0088] h) the system integrating memory in a parallel context to optimize communication and memory between different knowledge sources, (processes).

[0089] Item 6. The system of item 5 further comprising using the use of a phrase structure rewrite rule associated with a node within the semantic network for the testing and passing of the rewrite rule, the word size of the system imposing a chunking factor in the testing of conditionals in theoretic time 0(C).

[0090] Item 7. The system of item 5 further comprising a database of vector arrays, with each array associated with each semantic node, a database of the semantic network and a database of a grammar phrase structure implementations and a database of logical connectives.

[0091] Item 8. The system of item 7 implementing a top/down, bottom/up parser capable of a plurality of syntactic parses of a grammar to provide syntactic pattern matching abilities for modeling complex buy and sell orders for a variety of financial types in order matching engines.
[0092] Item 9. The system of item 7 implementing a risk management system for the dynamic modeling of Monte Carlo simulations, with the use of both historical and real-time data, in hedging risk for financial institutions when interacting between different market participants.

[0093] Item 10. The system of item 7 implementing a risk management system for the dynamic modeling of Monte Carlo simulation models, with the use of both historical and real-time data, in hedging risk for insurance institutions when interacting between different market participants.

[0094] Item 11. The system of item 10 further comprising real time inputs from financial markets to provide traders with accurate updates on the movements of financial assets in the market and allow efficient communication between market participants.

[0095] Item 12. The system of item 11 further comprising a self-compiling computerized monitoring system for the design and implementation of complex hybrid human-computer financial strategies.
Claims

What is claimed is:

[Claim 1] A machine implemented method of executing a four-valued logic to model financial instruments:

a) using symbols comprising \((F, T, U, D) \) to represent the values false, true, undefined, and defined, mapped into a two vector dynamic array; the values further mapped into indexes within the two vector dynamic arrays and stored as nodes within a semantic network;

b) for \(F, T, U, D \) defined into set theory, such as \({} \) for undefined, \(\{T\} \) for true, \(\{F\} \) for false, \(\{\} \) for undefined and \(\{T,F\} \) for defined, these values are interpreted as properties \(\{P\} \) for \(T \) and, \(\{-P\} \) false, \(\{\} \) for undefined and \(\{P,-P\} \) for defined, which are the properties used for testing the conditionals and quantifying variables for successive recursive steps in the predicate calculus;

c) defining a logic with a negation, ignoring monotonic argumentations, with the following binary connectives: for the logical AND \((\land) \), NOT \((\neg) \); and logical OR \((\lor) \) connectives as follows used to prove the completeness of the logics:

\[
\begin{array}{c|cccc}
\neg & F & T & U & D \\
\hline
F & T & F & F & F \\
T & F & T & U & D \\
U & F & U & U & F \\
D & F & D & F & D \\
\end{array}
\]

d) for the \(\land \) connective

\[
\begin{array}{c|cccc}
\land & FT & UD \\
\hline
F & F & F & F & F \\
T & F & T & U & D \\
U & F & U & U & F \\
D & F & D & F & D \\
\end{array}
\]
e) for the \(\lor \) connective
f) optimizing short term memory maximizing long term storage by the linear encoding of syntactic and semantic information into the semantic network;
g) in a parallel context optimizing short term memory to maximize long term storage becomes optimizing communication and memory between different knowledge sources (processes); and
h) using defined and undefined to help separate asset classes in the simulation.

[Claim 2] The method of claim 1 further comprising using the use of a phrase structure rewrite rule associated with a node within the semantic network for the testing and passing of the rewrite rule.

[Claim 3] The method of claim 2 implementing a top/down, bottom/up parser capable of a plurality of syntactic parses of a grammar.

[Claim 4] The method of claim 3 using a system clock, runtime stack and heap, a processor and a database of rewrite rules, a database of the semantic network and a database of syntactic and semantic information.

[Claim 5] A system for executing a four-valued logic to optimize short term memory and to maximize long term storage, the system comprising:

a) machine readable instructions stored upon a nonvolatile computer readable medium, a central processing unit, a runtime stack and heap, semantic network, top down / bottom up parser, a system clock, database with historical economic information;

b) the system using a Boolean encoding comprising (F, T, U, D) to represent the values false, true, undefined, and defined, mapped into a two vector dynamic array; the
values further mapped into indexes within the two vector dynamic arrays and associated with nodes in a semantic network;
c) for \{F, T, U, D\} defined into set theory, such as {} for undefined, {T} for true, {F} for false, and {T,F} for defined, these values are interpreted as properties \(P\) for \(T\), \(-P\) for false, {} for undefined and \(\{P, -P\}\) for defined, which are the properties used for the testing of conditionals and quantifying of variables in the predicate calculus;
d) the system defining a logic with a negation with the following binary connectives: for the logical AND (\(^\wedge\)), NOT (\(-\)); and logical OR (\(\lor\)) connectives as follows used to prove the completeness of the logics:
\[
\begin{align*}
\neg F & \text{ is } T \\
\neg T & \text{ is } F \\
\neg U & \text{ is } D \\
\neg D & \text{ is } U;
\end{align*}
e) for the \(^\wedge\) connective
\[
\begin{array}{cccc}
^\wedge & F & T & U & D \\
F & F & F & F & F \\
T & F & T & U & D \\
U & F & U & U & F \\
D & F & D & F & D;
\end{array}
\]
f) for the \(\lor\) connective
\[
\begin{array}{cccc}
\lor & F & T & U & D \\
F & F & T & U & D \\
T & T & T & T & T \\
U & U & T & U & T \\
D & D & T & T & D;
\end{array}
g) the system optimizing short term memory maximizing long term storage by the linear encoding of the information into the semantic network;
h) the system integrating memory in a parallel context to optimize communication and memory between different knowledge sources, (processes).
[Claim 6] The system of claim 5 further comprising using the use of a phrase structure rewrite rule associated with a node within the semantic network for the testing and passing of the rewrite rule, the word size of the system imposing a chunking factor in the testing of conditionals in theoretic time \(O(C) \).

[Claim 7] The system of claim 5 further comprising a database of vector arrays, with each array associated with each semantic node, a database of the semantic network and a database of a grammar phrase structure implementations and a database of logical connectives.

[Claim 8] The system of claim 7 implementing a top/down, bottom/up parser capable of a plurality of syntactic parses of a grammar to provide syntactic pattern matching abilities for modeling complex buy and sell orders for a variety of financial types in order matching engines.

[Claim 9] The system of claim 7 implementing a risk management system for the dynamic modeling of Monte Carlo simulations, with the use of both historical and real-time data, in hedging risk for financial institutions when interacting between different market participants.

[Claim 10] The system of claim 7 implementing a risk management system for the dynamic modeling of Monte Carlo simulation models, with the use of both historical and real-time data, in hedging risk for insurance institutions when interacting between different market participants.

[Claim 11] The system of claim 10 further comprising real time inputs from financial markets to provide traders with accurate updates on the movements of financial assets in the market and allow efficient communication between market participants.

[Claim 12] The system of claim 11 further comprising a self-compiling computerized monitoring system for the design and implementation of complex case analogies for hybrid human-computer financial strategies.
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>T</td>
<td>U</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
<td>D</td>
</tr>
<tr>
<td>T</td>
<td>U</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

(Disjunction)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>^</td>
<td>F</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
<td>D</td>
</tr>
<tr>
<td>U</td>
<td>U</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

 Conjuction

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>T</td>
<td>D</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>D</td>
</tr>
<tr>
<td>U</td>
<td>U</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

Negation

Fig. 1
Fig. 2

- Instructions stored upon machine readable media
 - 100

- Processor
 - 200

- Memory
 - 300

- System clock
 - 700

- Top down / bottom up parser
 - 800

- Database
 - 410
 - 420
 - 430
 - 440
 - 450

- Runtime stack & heap
 - 600
Fig. 4

Diagram of the arrays (with size = N) associated with each Semantic Node
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2014/056152

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC(8)</th>
<th>CPC</th>
<th>According to International Patent Classification (IPC) or to both national classification and IPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>G06Q 40/00 (2014.01)</td>
<td>G06Q 40/06 (2014.09)</td>
<td></td>
</tr>
</tbody>
</table>

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>IPC(8)</th>
<th>CPC</th>
<th>Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched</th>
</tr>
</thead>
<tbody>
<tr>
<td>G06Q 40/00, G06F 17/30, G06G 7/48, G06F 9/45, G06F 17/28, G06N 5/02 (2014.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USPC - 703/11, 707/94, 717/137, 706/50, 704/9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5,398,199 A (LEFONS) 14 March 1995 (14.03.1995) entire document</td>
<td>1-12</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search
10 November 2014

Date of mailing of the international search report
31 Dec 2014

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201

Authorized officer
Blaine R. Copenheaver
PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)