

[54] RECORD PLAYERS

[75] Inventor: **Philip Henry Evans**, Wollaston, Stourbridge, England

[73] Assignee: **Glenburn Engineering Limited**, Hamilton, Bermuda

[22] Filed: **Dec. 4, 1972**

[21] Appl. No.: **311,636**

[30] Foreign Application Priority Data

Dec. 4, 1971 Great Britain 56409/71

[52] U.S. Cl. **274/10 R**

[51] Int. Cl. **G11b 17/16**

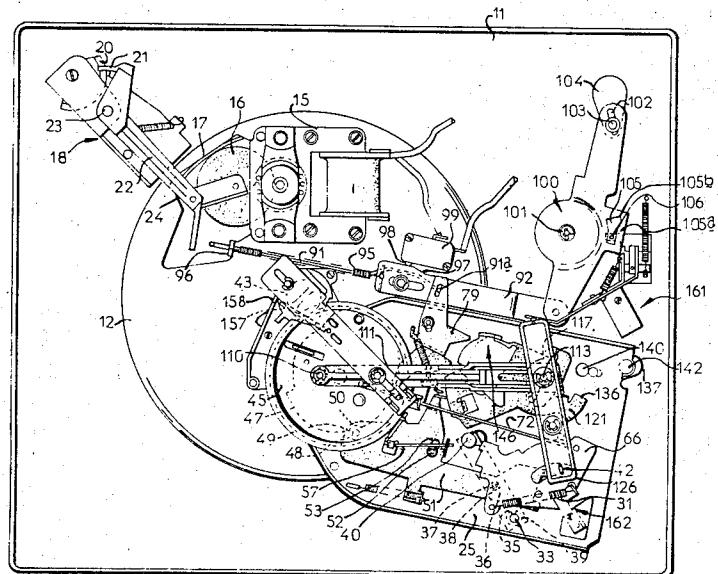
[58] Field of Search **274/10 R**

[56] References Cited

UNITED STATES PATENTS

3,197,212 7/1965 DeWeese 274/10 R
3,394,938 7/1968 Reed et al. 274/10 R

Primary Examiner—Louis R. Prince


Assistant Examiner—Steven L. Stephan

Attorney, Agent, or Firm—Holman & Stern

[57] ABSTRACT

An automatic record player for playing disc records of different sizes including an automatic mechanism for raising and lowering the pick-up arm and pivoting the pick-up arm inwardly and outwardly of the turntable which mechanism includes a drive gear and means for rotating the drive gear during a record changing cycle, a drive lever connected between the drive gear and a vertical spindle upon which the pick-up arm is carried to pivot pick-up arm inwardly and outwardly of the turntable, a drive link, separate from the drive lever and pivotally connected to an eccentric on the drive gear and slidably mounted adjacent its other end on the deck plate of the record player and adapted to raise and lower the pick-up arm and to move a selector latch into and out of position for engagement with a selector plate provided on the vertical spindle to determine the position of arrest of inward movement of the pick-up arm by the drive lever.

14 Claims, 11 Drawing Figures

PATENTED NOV 12 1974

3,847,401

SHEET 1 OF 9

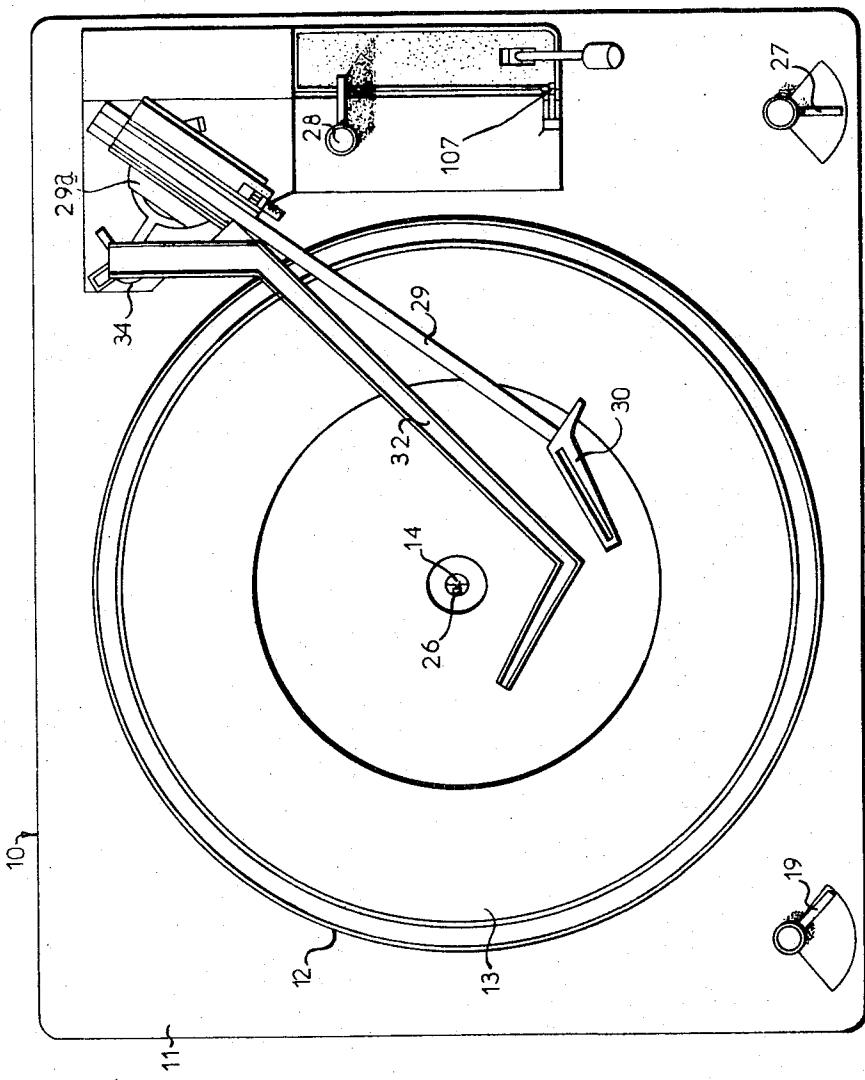


Fig. 1

PATENTED NOV 12 1974

3,847,401

SHEET 2 OF 9

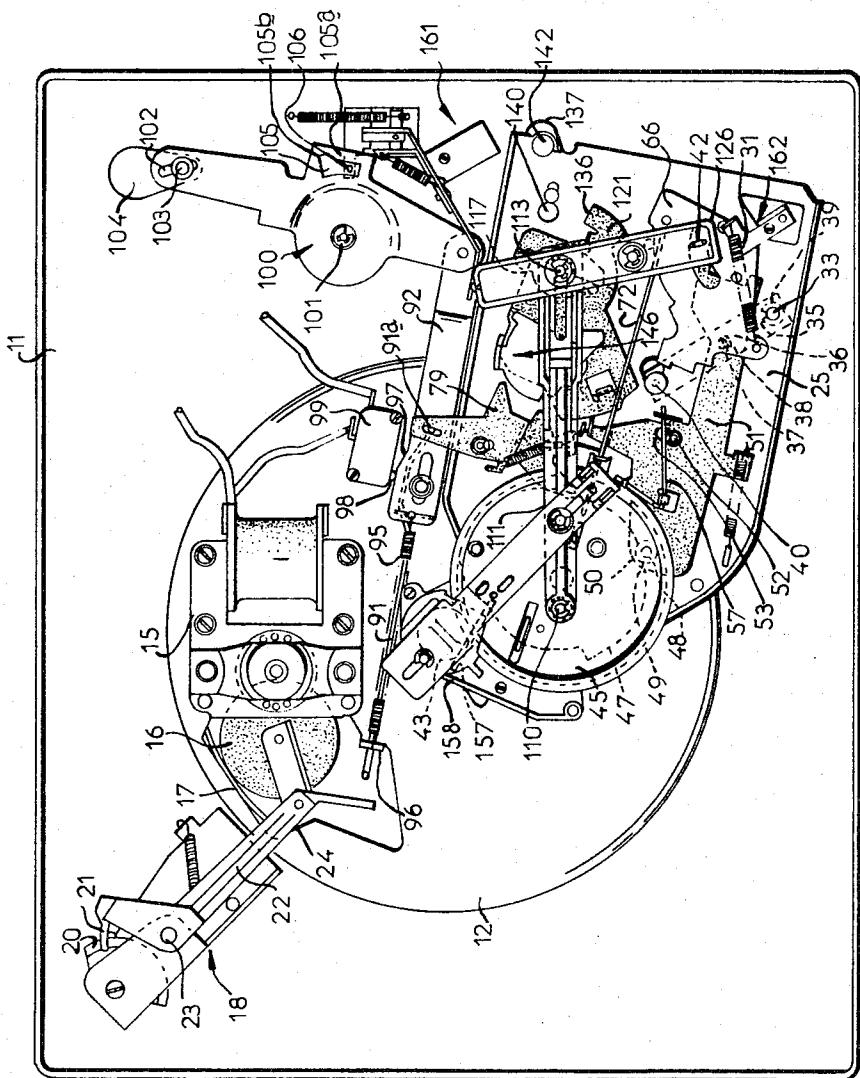
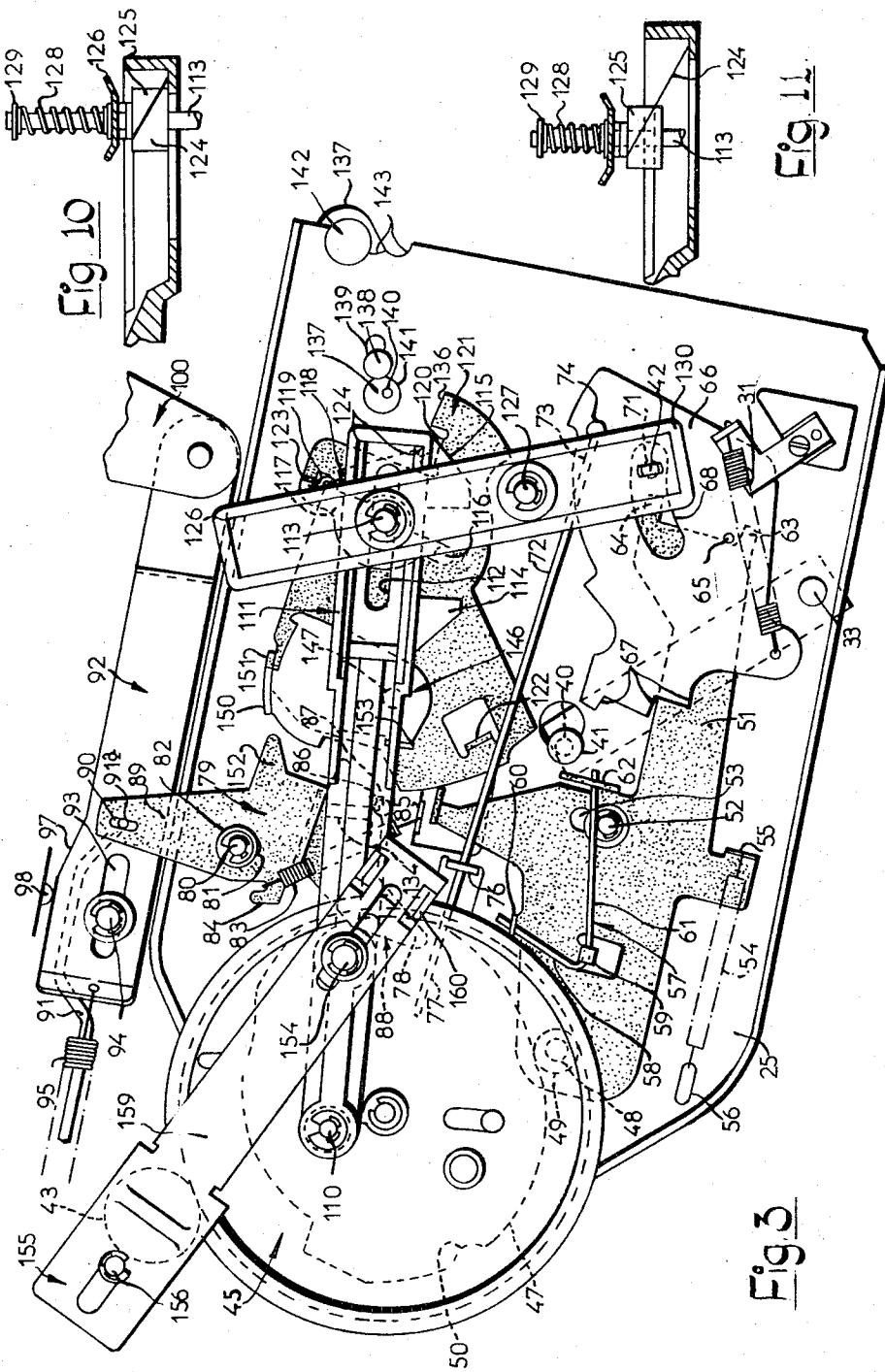
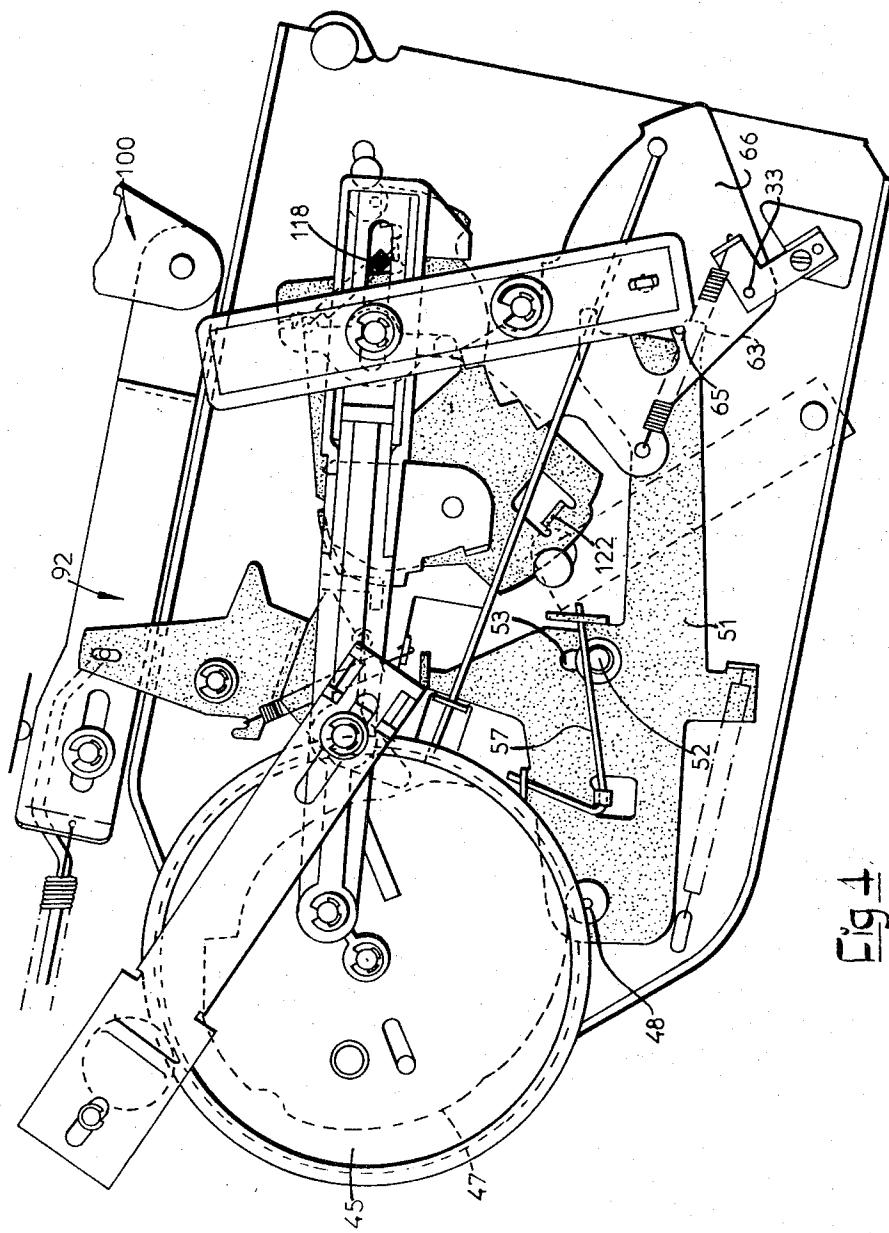



Fig. 2

PATENTED NOV 12 1974

3,847,401


SHEET 3 OF 9

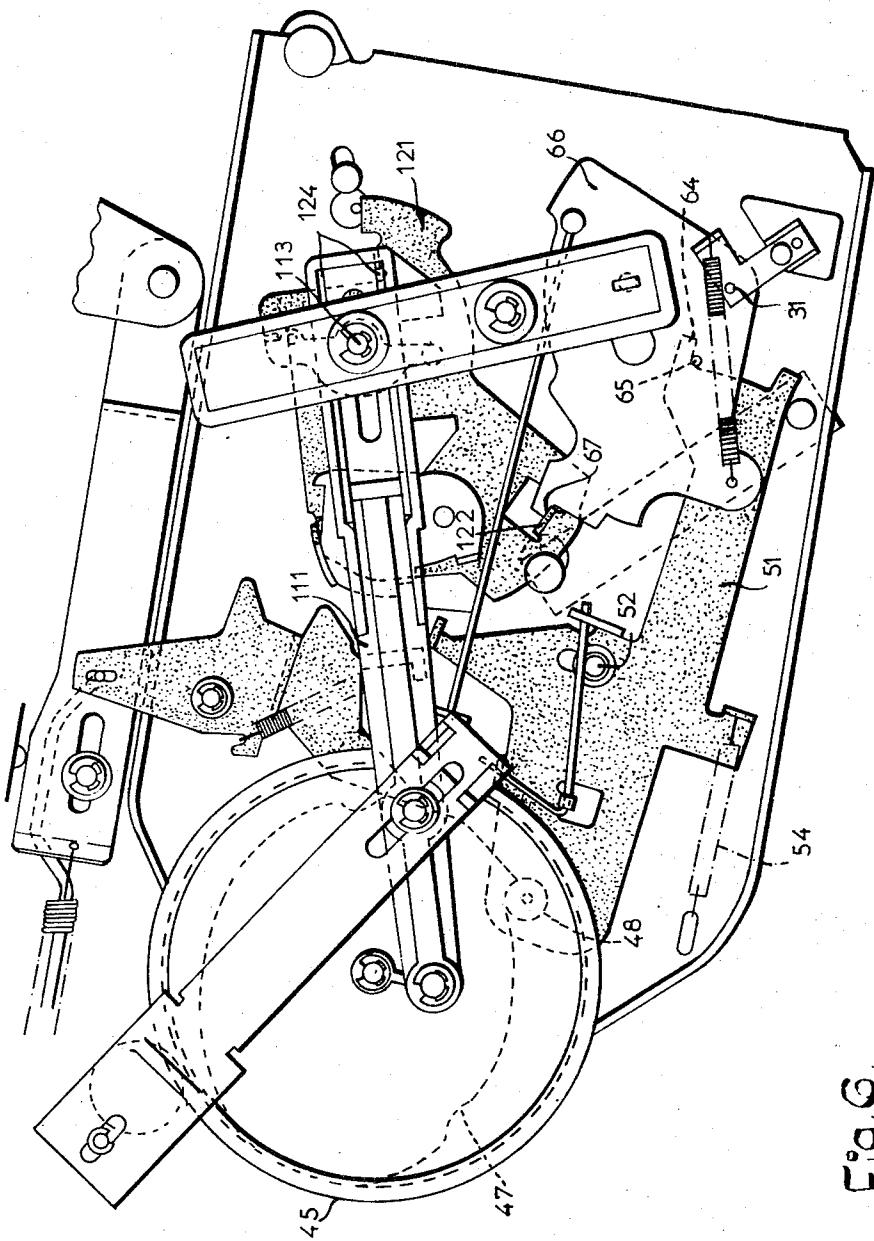
PATENTED NOV 12 1974

3,847,401


SHEET 4 OF 9

PATENTED NOV 12 1974

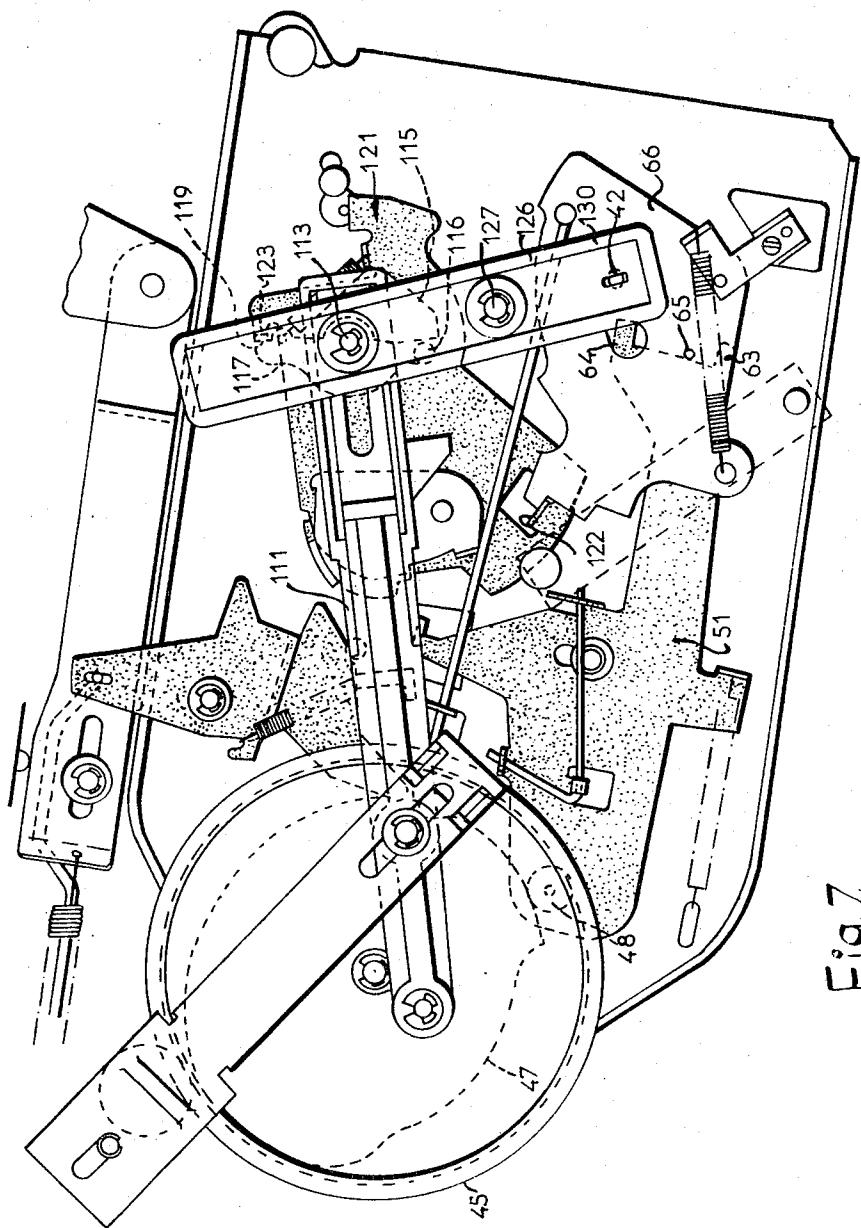
3,847,401


SHEET 5 OF 9

PATENTED NOV 12 1974

SHEET 6 OF 9

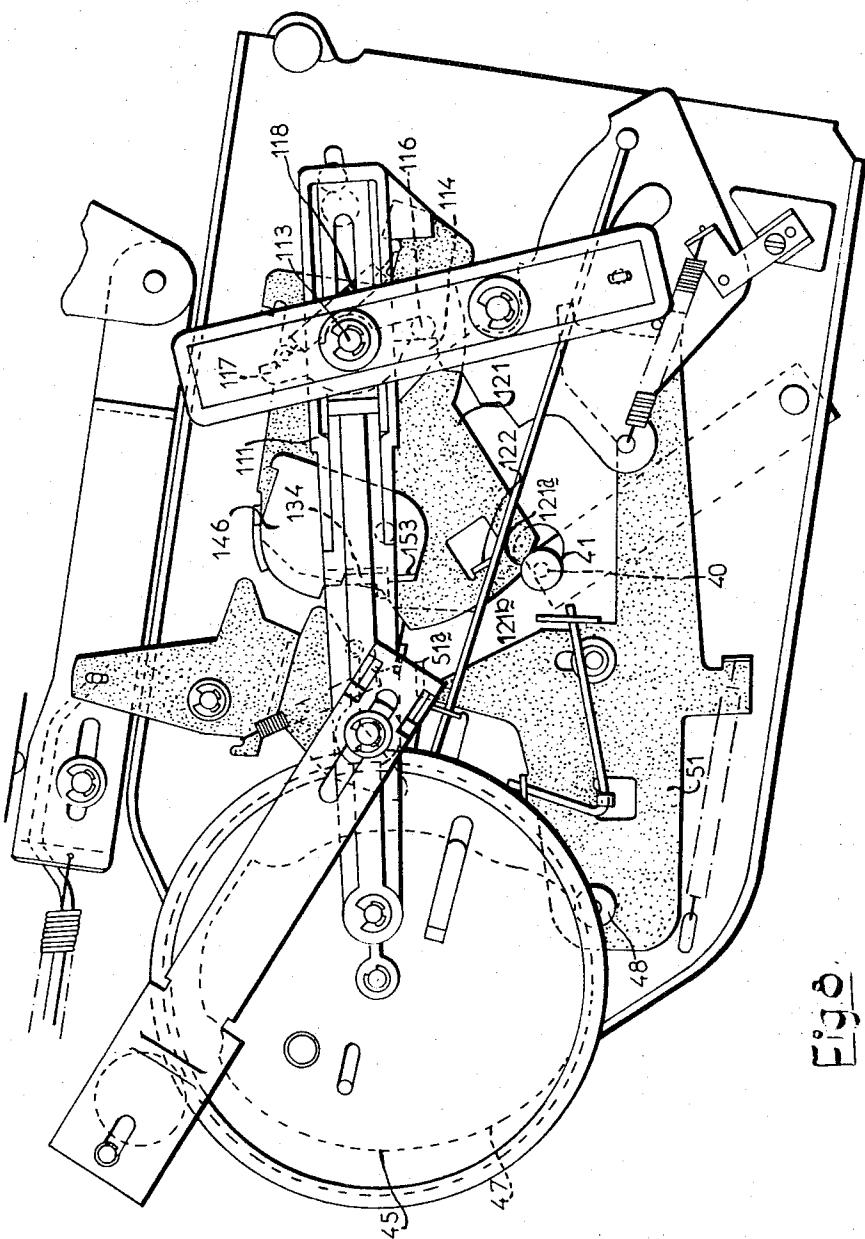
3,847,401



୭୩

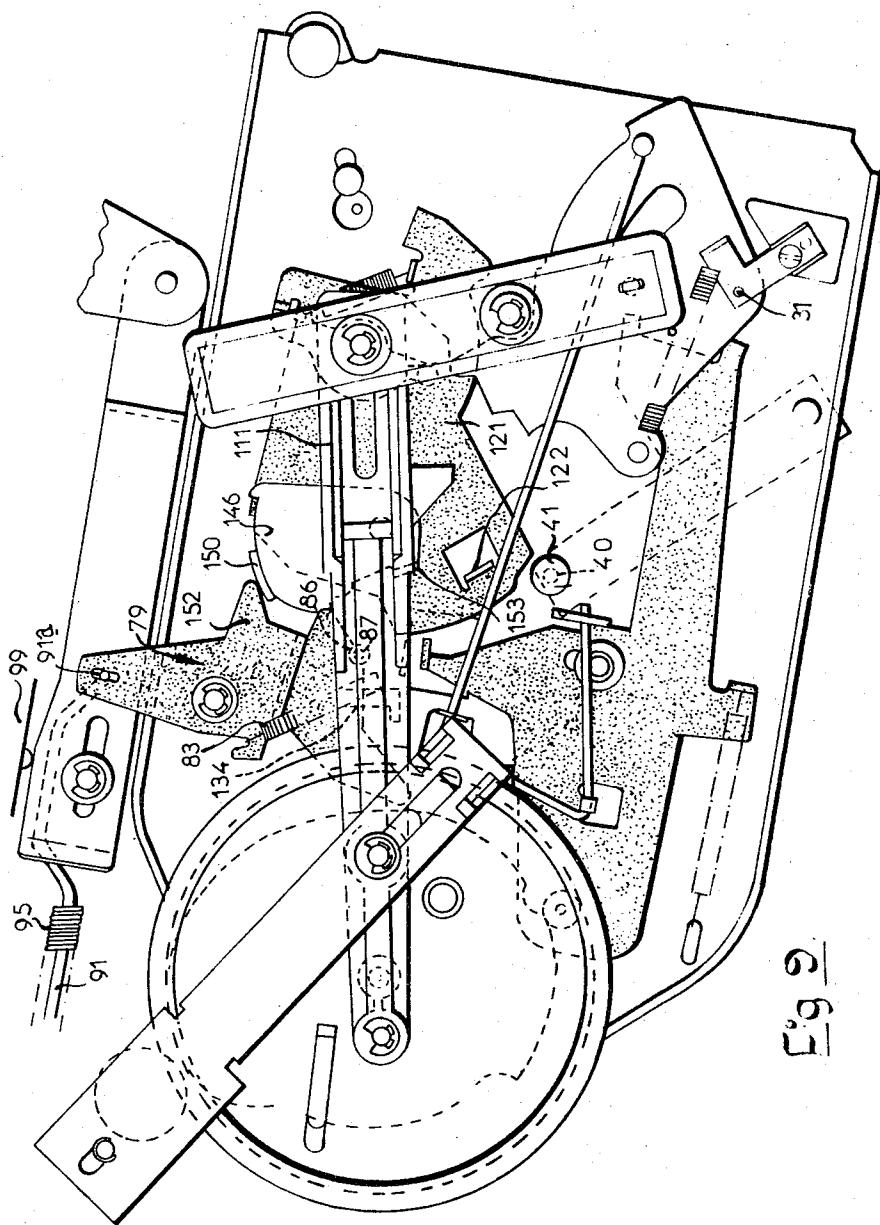
PATENTED NOV 12 1974

3,847,401


SHEET 7 OF 9

PATENTED NOV 12 1974

3,847,401


SHEET 8 OF 9

PATENTED NOV 12 1974

3,847,401

SHEET 9 OF 9

RECORD PLAYERS

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to an automatic record player for playing disc records of different sizes of the type comprising a deck plate, a turntable rotatably mounted on plate and driven, in use, by an electric motor, a centre spindle extending upwardly from the centre of the turntable and from which records are fed singly in succession from the bottom of the stack on to the turntable, a pick-up arm, pivotally mounted for movement about a horizontal axis on the upper end of a vertical spindle, the vertical spindle being pivotally mounted for movement about a vertical axis relative to the deck plate, a selector plate provided on the vertical spindle for rotation therewith, the selector plate having a plurality of abutment edges angularly spaced apart around the axis of the vertical spindle and at different radial distances therefrom, a selector latch movable from a first position in which free movement of the selector plate is permitted into a second position for engagement with a desired one of the abutment edges to limit pivotal movement of the selector plate, the position of the selector latch being adjustable so that it is in a position to engage the appropriate one of the abutment edges corresponding to the size of record to be played and to thus halt the inward movement of the pick-up arm in the correct position for the size of record to be played, a drive gear rotatably mounted on the deck plate, and means for rotating the drive gear during a record changing cycle.

In such a known apparatus, there is automatic mechanism, driven from the drive gear, which, after playing each record, causes a cycle of operations to take place, which includes pivoting the pick-up arm about said horizontal axis to raise the pick-up arm to disengage the pick-up from the record player, then pivoting the vertical spindle to swing the pick-up arm outwardly to a position clear of the path of downward movement of the record, then releasing the lowermost record from the stack to drop into the turntable then pivoting the vertical spindle about said vertical axis to swing the pick-up arm inwardly to position the pick-up over the edge of the record to be played and then pivoting the pick-up arm to engage the pick-up with the record.

SUMMARY OF THE INVENTION

An object of the present invention is to provide a new and improved record player of the type specified.

According to the present invention we provide an automatic record player of the type specified, including, a drive link, one end of the drive link being pivotally connected to the drive gear about an axis spaced from, and parallel to, the axis of rotation of the drive gear, the other end of the drive link being mounted on the deck plate for sliding movement relative thereto and for pivotal movement about an axis spaced from, and parallel to, the axis of rotation of the drive gear, the drive link being operative to raise and lower the pick-up arm on movement of the drive link resulting from rotation of the drive gear, selector latch drive means being provided on the drive link to move the selector latch between said first and second positions.

BRIEF DESCRIPTION OF THE DRAWING

The invention will now be described in more detail by way of example with reference to the accompanying drawings wherein,

FIG. 1 is a plan view of a record player embodying the invention, showing the record player at the end of playing a record,

FIG. 2 is an underneath plan view of the record player of FIG. 1, showing the record player in the same position as in FIG. 1,

FIG. 3 is an underneath plan view, to an enlarged scale, of part of the record player of FIG. 1 and showing the record player at the end of a first stage of a record changing cycle of operations,

FIG. 4 is a view similar to that of FIG. 3 showing the record player at the end of a second stage of the record changing cycle,

FIG. 5 is a view similar to that of FIG. 3, showing the record player at the end of a third stage of the record changing cycle,

FIG. 6 is a view similar to that of FIG. 3, showing the record player at the end of a fourth stage of the record changing cycle,

FIG. 7 is a view similar to that of FIG. 3, showing the record player at the end of a fifth stage of the record changing cycle,

FIG. 8 is a view similar to that of FIG. 3, showing the record player just after the end of the third stage of the cycle, but during a switch-off cycle of operations,

FIG. 9 is a view similar to that of FIG. 3, showing the record player during a sixth stage of the cycle but during a switch off cycle of operations,

FIG. 10 is a fragmentary cross-section view showing part of the record player during the first part of the cycle, and,

FIG. 11 is a fragmentary cross-section view showing part of the record player at a later stage during the first part of the cycle.

Referring to the Figures, a record player is indicated generally at 10 and comprises a deck plate 11 having a circular well 12 formed therein within which a turntable 13 is rotatably mounted about a vertical axis 14 and driven by means of an electric motor 15 in conventional manner by means of a jockey pulley 16 interposed between the rim 17 of the turntable and a stepped spindle not shown, of the motor 15.

Record speed change means 18 are provided to permit the speed of rotation of the turntable to be adjusted to any one of the usual three desired speeds, namely 78 r.p.m., 45 r.p.m. and 33 1/3 r.p.m. The record speed change mechanism 18 comprises a hand engageable member 19 connected to a rotary cam member 20 which engage one end 21 of a two-armed lever 22 pivotally and slidably mounted on the deck plate 11, as indicated at 23. The other end 24 of the lever 22 carries the jockey pulley 16.

As the hand engageable member 19 is rotated the cam member 20 causes the two-armed lever 22 to be moved vertically up and down so that the jockey pulley 16 can be engaged with a desired one of the steps on the stepped motor spindle. In addition, as the two-armed lever 22 is moved between the steps on the spindle both in an upward and in a downward direction the lever 22 is rotated to lift the jockey pulley 16 out of engagement with the spindle.

A sub-plate 25 is mounted beneath the deck plate 11 and a centre spindle 26 of conventional form is provided in the centre of the turntable 13 to support a stack of records thereon in conventional manner. The centre spindle 26 has the usual rocking lever and ledge to enable a single record to be dropped from the bottom of the stack of records onto the turntable 13 or onto the top of a record already on the turntable.

The deck plate 11 is provided with a manually operable "on/off" lever 27 and a manually operable record size selector lever 28. A pick-up arm 29 carrying a pick-up head 30 is pivotally mounted on the upper end of a vertical spindle 31 for up and down movement about a horizontal axis and the vertical spindle 31 is mounted on the deck plate 11 for movement about a vertical axis to allow swinging movement of the pick-up arm 29 inwardly and outwardly of the turntable 13. In addition, a record control arm 32 is pivotally and slidably mounted on the deck plate 11 in conventional manner by means of a spindle 33, the lower end of which is engaged in an aperture in the subplate 25, and the upper end of which is journaled in a bearing provided on a boss 34 upstanding from the deck plate. The spindle 33 carries a radial projection 35 on the part of the spindle 33 which extends between the deck plate 11 and the sub-plate 25. Engaged around the spindle 33 between the projection 35 and the upper end of the boss 34 is a coil compression spring which urges the spindle 33, and hence the record control arm 32, downwardly to supplement the effect of gravity thereon.

The radial projection 35 of the spindle 33 is arranged to engage a lever 36 mounted, adjacent its mid-point, on the upper side of the sub-plate 11 by means of a headed tag 37 pushed out of the sub-plate, and there being a coil compression spring 38 engaged between the sub-plate and the underside of the lever. A further coil compression spring 39 is engaged between the sub-plate and the end of the lever 36 engaged by the projection 35. The opposite end of the lever 36 to that engaged by the projection 35 is engaged with one end of a trip latch pin 40 which extends through the sub-plate 25 and the opposite end of which has an enlarged head 41 disposed on the underside of the sub-plate 11. When the control arm 32, and hence the projection 35, moves downwardly the lever 36 is caused to pivot about its mounting on the sub-plate so that said opposite end thereof moves upwardly to permit the strip latch to move upwardly. The coil compression spring 38 permits movement of the lever 36 away from the head of the tag 37 when pivotal movement of the lever 36 is completed, but downward movement of the spindle 33 continues.

A pick-up arm raising spindle 42 is mounted in an aperture in the sub-plate 25 and in a boss, not shown, on the deck plate for sliding up and down movement in a vertical direction. The upper end of the spindle 42 engages a portion 29a of the pick-up arm 29 so that the pick-up arm is pivoted up and down about its horizontal axis in accordance with up and down movement of the spindle 42.

Referring now particularly to FIGS. 2 and 3, the turntable 13 has a pinion 43 formed integrally therewith, and surrounding the centre spindle 26, and adapted to engage with gear teeth, not shown, provided on a drive gear 45 rotatably mounted on the sub-plate 25. The drive gear 45 has a number of teeth omitted and is provided with a pawl mechanism of conventional form so

that when a record changing cycle of operations is desired the pawl is moved into position for engagement by a dog, not shown, provided on the turntable beneath the pinion 43 to initiate rotation of the drive gear 45 and engage the teeth thereon with the pinion 43. When the drive gear has been rotated through a single revolution the gap in the teeth is again aligned with the pinion and the pawl mechanism has been moved out of position for engagement with the dog and hence the drive gear is rotated through only a single revolution.

The drive gear 45, which is made as a die casting, has formed integrally therewith a radially outwardly facing cam surface 47 and a drive pillar 48 which may be provided with a roller 49 is engaged with the cam surface 47. The cam surface 47 is provided with a recess 50 to act in co-operation with the roller 49 to locate the drive gear in its "at rest" position, shown in FIG. 2, in which the gap in the teeth is aligned with the pinion 43.

The drive pillar 48 is carried on a drive lever 51 which is mounted on the underside of the sub-plate 25 by means of a downwardly extending pivot post 52 fixed to the sub-plate 25 and which is engaged with a transversely extending slot 53 formed in the drive lever 51. A coil compression spring 54 is engaged between 20 a down-turned lug 55 on the lever 51 and an aperture 56 is provided in the sub-plate 25, in addition, an overload spring 57 in the form of a two-armed wire is engaged with the lever 51, one arm 58 thereof extending between downwardly extending lugs 59 and 60 on the 25 level 51. The other arm 61 extends from the lug 59 to engage the pivot post 52 whilst the free end of the arm 61 is engaged in a horizontal slot in a lug 62 on the lever 51 to prevent movement of the spring 57 in a direction normal to the plane of the lever 51 whilst permitting movement of the arm 61 in a plane parallel thereto.

The coil compression spring 54 is provided to rotate the drive lever 51 about the pivot post 52 to provide a drive to the record player pick-up arm in a direction inwardly of the record, as hereinafter to be described, whilst the spring 57 provides an overload arrangement if the pick-up arm is moved forcibly outwardly.

The end of the lever 51 remote from the pillar 48 is bifurcated to provide a fork having two limbs 63 and 64 between which is engaged a selector plate drive peg 65 depending downwardly from a selector plate 66.

The selector plate 66 is fixed to the pick-up arm vertical spindle 31 and is of generally conventional form, having three abutment surfaces 67 which are spaced 50 angularly about the axis of pivot of the vertical spindle 31 and are spaced at different radial distances therefrom. A part annular slot 68 is formed in the selector plate 66 to accommodate the pick-up arm raising spindle 42 and a coil compression spring, not shown, is engaged around the spindle 42 above a circlip, not shown, to act on the selector plate 66 through a washer 71 when the spindle 42 is raised as described hereinafter.

60 A wire 72 is pivotally connected at one end 73 to a downwardly extending pin 74 of the selector plate 66 whilst the other end of the wire 72 extends through an aperture formed in a lug 76 in the sub-plate 25 so that the wire 72 is guided for sliding movement in its longitudinal direction. The end 77 of the wire 72 is positioned adjacent to the periphery of the drive gear 45 for engagement with the pawl mechanism thereof, as will 65 hereinafter be described.

Also positioned adjacent the periphery of the drive gear 45 to operate on the pawl mechanism thereof is an end portion 78 of one arm 88 of a two-armed cut-off lever 79 pivoted adjacent its mid-point on a pin 80 extending downwardly from the sub-plate 25 and engaged in a slot 81 formed in the lever 79 and retained in position thereon by means of a circlip 82. A coil tension spring 83 extends between a lug 84 on the cut-off lever 79 and a lug 85 provided on the sub-plate 25.

An indent part 86 is formed in one edge of the lever 79 for engagement with a pin 87 depending downwardly from the sub-plate 25 and the spring 83 urges the lever 79 in the direction to engage the edge thereof containing the indent part 86 with the pin 87. The other arm 89 of the lever 79 is provided with a slot 90 in which is engaged an end part 91a, of a link 91, depending downwardly through a switch slide 92, which itself has a longitudinal extending slot 93 in which is engaged a pin 94 depending downwardly from the deck plate. A coil tension spring 95 extends between the slide 92 and a lug 96 depending downwardly from the deck plate. A cam surface 97 is provided on the switch slide 92 to engage the operating member 98 of an electric "on/off" switch 99.

The other end of the slide 92 is pivotally connected to a switch-off lever 100 which is pivotally mounted on the deck plate adjacent its mid-point by a pivot pin 101. The opposite end of the switch-off lever 100 has an inclined slot 102 formed therein in which is engaged a pin 103 fixed to an "on/off" reject plate 104 pivotally mounted on the deck plate and having the hereinbefore mentioned "on/off" lever 27 mounted thereon on the top side of the deck plate 11.

The switch-off lever 100 has a cam track 105 provided thereon with which is engaged the lower end 106 of a pick-up arm rest clamp lever 107.

The drive gear 45 carries a pin 110 which pivotally connects one end of a drive link 111 thereto. At its other end the drive link 111 is provided with a longitudinally extending slot 112 within which a selector control pivot post 113 is received.

The link 11 is made as a moulding in a suitable synthetic plastics material and has formed integrally therewith a pair of lugs 114 and 115 spaced apart in the longitudinal direction of the link. The lugs 114 and 115 are provided to alternately engage with a pin 116 moulded integrally with a selector latch drive moulding 117 also made of synthetic plastics material and rotatably mounted on the post 113. A coil tension spring 118 is connected between a part 119 of the selector drive latch moulding and a lug 120 formed integrally on a selector latch 121 which is also mounted for pivotal movement about the post 113, and which is provided with a lug 122 for engagement with one of the abutment surfaces 67 of the selector plate 66, as hereinafter to be described in more detail. The selector latch 121 has an abutment 123 for engagement with the part 119 of the selector latch drive moulding 117.

The underside of the portion of the drive link 111 adjacent the selector control pivot post 113 is provided with a pair of longitudinally extending ramp surfaces 124 which are inclined upwards to diminish in height towards the free end of the drive link 111. The ramp surfaces 124 have engaged therebetween a shouldered bush 125 on the post 113 whereby the shoulder of the bush 125 lies under the ramp surfaces 124. The shouldered portion lies above a transfer lever 126 which is

pivoted adjacent its midpoint on a post 127 depending downwardly from the sub-plate 25, there being a coil compression spring 128 engaged around the post 127 beneath the lever 126 and retained thereon by means of a circlip 129. The end 130 of the lever 126 remote from the post 117 is adapted to engage a shoulder on the control arm lever raising spindle 42.

Referring now to the selector latch 121, the position which this latch occupies so that the lug 122 thereof is positioned for engagement with a desired one of the abutment surfaces 67 is determined by means of the record size selector lever 28 which is connected to a shaft which carries a size selector control lever beneath the deck plate 11. The size selector control lever has a slot 15 in which is engaged a pin carried on a selector control plate 137 slidably and pivotally mounted above the sub-plate 25 by engagement of a headed pin 138 in a slot 139. A pin 140 is carried by the selector control plate 137 and projects through an aperture 141 in the sub-plate 25 for engagement with a part 136 of the selector latch 121. The selector control plate 137 has a roller-like element 142 which can be engaged in one of three notches 143 formed on the end of the sub-plate 25. A coil tension spring is connected between the plate 137 and the sub-plate 25 to urge the roller-like element 142 into engagement with a desired one of the notches 143.

Thus, by movement of the knob 28 the angular position of the control lever 134, and hence of the plate 30 137, may be adjusted whereby the pin 140 carried on the control plate 137 is moved towards and away from the part 136 of the selector latch 121.

The selector latch 121 carries a cut-out latch 146 mounted for pivotal movement on the selector latch 121 about a pin 147. A coil compression spring, not shown, is engaged between a circlip, not shown, on the pin 147 and the latch 146 to provide a frictional restraint to pivot the latch 146. The cut-out latch 146 has a downwardly extending abutment portion 150 for engagement with a stop lug 151 of the selector latch to limit rotation of the cut-out latch in a clockwise direction in FIG. 2 and hence to locate the cut-out latch 146 in a first position relative to the selector latch 121 during a normal record playing cycle. The downwardly extending abutment portion 150 can also engage with a part 152 provided on the cutoff lever 79 when the cut-out latch 146 is in a second position relative to the selector latch 121 during a "switch-off" cycle of operations.

50 The cut-off latch 146 has a further downwardly extending lug 153 for engagement with an upwardly extending abutment 134 moulded integrally with the drive link 111, as hereinafter to be described in more detail.

55 The drive link 111 carries a record feed lever drive peg 154 on its undersurface and a record feed lever 155 is slidably and pivotally mounted on the base plate adjacent the underside of the centre spindle, as indicated at 156, to operate the rocking lever of the spindle in conventional manner. A light coil tension spring 157 is provided between the lever 155 and the deck plate at 158 in order to give a light upward pressure to the feed lever to ensure that it remains in engagement with the lower end of the rocking lever of the spindle.

60 The feed lever is of two-part construction, comprising a main part 159 and a slider part 160 mounted for sliding movement relative to the main part 159 and en-

gaged with the pin 152. A relatively heavy coil tension spring is provided between the parts 159 and 160 so that initially the two parts move together but when the maximum extent of movement of the main part 159 has been reached, continued movement of the feed lever drive peg 154 is permitted due to extension of the relatively heavy coil tension spring.

The operation of the record player will now be described during a normal record changing cycle after the playing of at least one record and before the playing of the last of a stack of records.

The cycle will be described starting from a position in which a record is nearing the end of playing. The parts of the record player being in the position shown in FIGS. 1 and 2. When the record has been played the pick-up of the pick-up head 30 engages in the usual run out track on the record, causing a rapid inward movement of the pick-up arm 29, thus moving the wire 72 longitudinally inwardly to operate the conventional pawl mechanism on the drive gear 45 to engage the teeth thereof with the pinion 43 on the turntable, thus starting the gear 45 to rotate in a clockwise direction in FIG. 2.

In order to facilitate description of the record player reference will be made to various stages of rotation of the drive gear which will be described by the extent of angular rotation of the drive gear 45. It should be appreciated, however, that the specified degrees of rotation are merely approximate to facilitate understanding of the operation of the record player and they are not the precise degrees of rotation at which, in practice, the various stages begin and terminate.

During the first 75° of rotation of the drive gear 45 from the position shown in FIG. 2 to that shown in FIG. 3 the pick-up arm 29 is raised. This is achieved in the following manner.

As the drive gear 45 rotates the drive link 111 is moved to the left in FIG. 2. It will be appreciated that because the link 111 is slidably and pivotally mounted on the selector control pivot post 113 and is pivotally connected to the drive gear 45 the link moves in the manner of a crank shaft.

The component of movement of the link 111 to the left causes the ramp 124 formed on the underside thereof to engage the shoulder on the hereinbefore described boss 125, thereby causing the end of the transfer lever 138 engaged with the post 113 to move downwardly so that the end thereof engaged with the pick-up arm raising spindle 42 is moved upwardly so that the pick-up head 30 is lifted out of engagement with the record.

The coil compression spring engaged between the end of the transfer lever 130 and the selector plate 66 is compressed when the pick-up arm 29 is raised, thus exerting a frictional force on the selector plate 66 to restrain any tendency for pivotal movement thereof, and hence of the pick-up arm 29, about the vertical spindle 31.

Because the transfer lever 130 is mounted on the post 127 with a coil compression spring interposed between the lever 130 and a circlip on the end of the post, if the pick-up arm 29 is accidentally moved downwardly no damage to the mechanism occurs as the downward movement would cause pivoting of the lever 113 about the post 127 with the coil compression spring on the post 127 being compressed to permit this to occur.

Between 75 and 140° of rotation of the drive gear 45 from the position shown in FIG. 3 to that shown in FIG. 4 the pick-up arm 29 is swung outwardly of the record. This is achieved in the following manner.

5 The cam surface 47 on the drive gear which is in engagement with the drive pillar 48 on the selector plate drive lever 51 urges the pillar 48 in a direction outwardly of the drive gear 45, thus pivoting the lever 51 about the pivot post 52. The limb 63 of the fork engages the selector plate drive peg 65 on the selector plate 66 and pivots the selector plate in a clockwise direction from the position shown in FIG. 3 to that shown in FIG. 4, thus swinging the pick-up arm 29 outwardly of the record.

15 Because the pivot post 52 is provided in the slot in the drive lever 51 if the pick-up arm 29 is manually moved inwardly, thus tending to move the lever 51 in the direction to move the pillar 48 against the cam surface 47, then such movement is permitted as a result of 10 sliding movement of the lever 51 relative to the post 52 against the bias of the spring 57.

20 From 140° to 180° of movement of the drive gear 45 from the position shown in FIG. 4 to that shown in FIG. 5 the selector latch 121 is moved into engagement with the selector plate 66 in order to determine the extent of inward movement of the pick-up arm 29 and, during the latter part of this stage, the lowermost record of the stack is dropped into the turntable 13.

25 The extent of inward movement of the pick-up arm 29 is determined by selection of the appropriate record size with the manual record size selector lever 28 which moves the selector control lever so that the element 142 is engaged in one of the recesses 143, thus determining the position of the pin 140 for engagement by 30 the abutment part 136 on the selector latch 121. As the pin is moved upwardly in FIG. 5 so the extent of pivotal movement of the selector latch 121 in the direction towards the selector plate 66 is reduced and so the positioning of the abutment 122 on the selector latch 121 for engagement with an abutment surface 67 on the selector plate is spaced further from the axis of rotation thereof, thus permitting progressively further inward movement of the pick-up arm 29.

35 Movement of the selector latch 121 into position for engagement with the selector plate 66 is achieved by means of engagement of the integral lug 114 on the drive link 11 with the downwardly extending peg 116 provided on the selector drive moulding 117 which rotates the selector drive moulding and thus rotates the selector latch 121 through the spring 118.

40 As explained hereinbefore, the extent of rotation of the selector latch 121 is determined as a result of engagement of the abutment part 141 of the latch with the pin 140. When inward movement of the selector latch 141 to the extent thus determined is achieved further movement of the drive link 111 is permitted to occur because of extension of the spring 118 as shown in FIG. 5.

45 55 60 As mentioned above, towards the end of this stage of movement the last record of the stack is dropped onto the turntable 13 or onto a record already on the turntable.

65 This is achieved as a result of the feed lever drive peg 154 on the drive link 111 moving the feed lever 155 to the left in FIG. 5 to cause the rocking lever of the centre spindle 12 to be operated to displace the lowermost record of the stack of records from the shoulder of the

centre spindle and allow it to fall onto the turntable 13 or onto the top of a record already on the turntable.

The movement of the main part 159 of the feed lever 155 to effect operation of the rocking lever is completed before movement of the drive peg 154 in the direction to move the lever to the left in FIG. 5 is completed and continued movement of the peg 154 is permitted due to the two part construction of the lever, permitting the slide part 160 to continue to move due to extension of the spring, as mentioned hereinbefore.

From 180° to 285° of rotation of the drive gear 45 from the position shown in FIG. 5 to that shown in FIG. 6 the pick-up arm 29 is moved inwardly into position for lowering onto the start of a record. This is achieved in the following way.

The drive pillar 48 which is maintained in engagement with the cam surface 47 by the spring 54 is permitted to move inwardly as a result of engagement with a portion of the cam surface 47 which is spaced closer to the axis pivot of the drive gear 45. Thus, the selector plate drive lever 51 is pivoted in a clockwise direction about the pivot post 52 under the influence of the spring 54 and thus the limb 64 of the fork engages the peg 65 on the selector plate 66 to pivot the selector plate 66 in an anticlockwise direction about its axis of rotation 31, thus pivoting the pick-up arm 29 inwardly of the record. This inward movement continues until the abutment 122 on the selector latch 121 engages the pre-determined abutment surface 67 depending upon the extent of movement of the latch 121 as described hereinbefore.

In addition, during this phase of rotary movement of the drive gear the drive link 111 starts to move to the right in FIG. 6 but thus far the ramps 124 on the underside thereof are not moved sufficiently to the right for the shouldered boss 125 on the selector control pivot post 113 to be in engagement therewith.

If the selector plate 66 is not to be moved to its innermost position then when the appropriate abutment 67 engages the abutment 122 of the latch plate 121 further pivotal movement of the selector plate 66, and hence of the drive lever 51, will be prevented and thus the pillar 48 will be held out of engagement with the cam surface 47.

From 285° to 305° of rotation of the drive gear 45 from the position shown in FIG. 6 to that shown in FIG. 7 the drive lever 51 is rapidly returned to its neutral position and the pick-up started to be set down onto a record.

The first of these movements is achieved in the first two or three degrees of movement of the drive gear 45 from the position shown in FIG. 6 by the pillar 48, being engaged by a portion of the cam surface 47 spaced further from the axis of rotation of the drive gear 45 and so the drive lever 51 is returned rapidly to its neutral position so that the limbs 63 and 64 of the fork are spaced from the pin 65 on the selector plate 66 to permit free tracking of the pick-up 29 during playing of the record.

The second of the above movements is achieved due to continued movement of the drive link 111 to the right to the position shown in FIG. 7, causing the ramps 124 on the underside thereof to permit the shouldered boss 125 provided on the post 113 to move upwardly, thereby causing the end of the transfer lever 126 in the region of the post 113 to move upwardly so that the end

130 thereof moves downwardly to allow the spindle 42 to move downwardly thereby lowering the pick-up head 30 on to the beginning of a record for playing.

From 305° to 360° of rotation of the drive gear 45 from the position shown in FIG. 7 to that shown in FIG. 2 set down of the pick-up arm 29 is completed as a result of continued movement of the drive link 111. In addition, the selector latch 121 is pivoted to move the abutment 122 thereon out of the path of movement of the abutments 67 on the selector plate 66 to permit free movement thereof during playing of a record.

This is achieved as a result of the drive link 111 continuing to move to the right from the position shown in FIG. 7, so that the integral lug 115 thereon engages the pin 116 on the selector latch drive moulding 117 and rotates it in a clockwise direction in FIG. 7, to engage the part 119 thereof with the lug 123 on the selector latch 121, thus rotating the selector latch 121 clockwise from the position shown in FIG. 7 rapidly back to its original position, shown in FIG. 2, thereby permitting free movement of the selector plate 66 during tracking of the pick-up arm during playing of a record.

As the drive gear 45 moves up to the 360° position the pawl mechanism is not operative, and so the drive gear 45 comes to rest in the region where the teeth are omitted therefrom, and the drive gear 45 is held in this position by the notch 50 in the cam surface 47 which is engaged by the roller 49 on the drive lever 51.

The record is then played and the pick-up arm 29 is thus moved gradually inwardly until it reaches the end of playing, whereupon it is again moved rapidly inwardly, causing the wire 72 to again actuate the pawl mechanism to start a further cycle of operations as described hereinbefore.

The manner in which the record player is switched on for the start of playing will now be described with particular reference to FIGS. 1 and 2.

It will be appreciated that when the record player is first switched on the pick-up arm will be in its outermost position.

The manually operable on/off lever 27 is actuated to pivot the on/off reject plate 104 in an anti-clockwise direction, in FIG. 2, about its axis, thus pivoting the switch lever 100 to cause the pick-up arm clamp to open, due to engagement of the lower end 106 of the clamp lever 107 thereof with the part 105a of the cam surface 105, and also to slide the switch slide 92 in the direction to operate the electric switch 99 to switch on the electric circuit to the record player.

Continued movement of the on/off lever 27 then causes further movement of the switch slide 92 to rotate the cut-off lever 79 about the pin 80 to engage the arm 88 thereof with the pawl mechanism on the drive gear 45 to start the drive gear rotating. The springs 95 and 83 tend to return the mechanism but the spring 83 also urges the cut-off lever 79 towards the pin 87 so that the return movement of the mechanism is arrested when the detent part 86 engages the pin 87 to afford a latching action for the whole mechanism. The cycle then proceeds as described hereinbefore except that the movements to raise and to pivot the pick-up arm 29 outwardly do not have any effect on the pick-up arm 29, as it is already raised and in an outward position, except that the arm 29 is raised slightly off its rest.

The end of playing of a stack of records will now be described.

The playing of the penultimate record proceeds as described hereinbefore and the cycle at the end of playing the penultimate record also proceeds as described hereinbefore until the drive gear 45 has moved to the 180° position shown in FIG. 5 whereat the last record has just been fed onto the turntable.

When this occurs, the control arm 32 falls downwardly so that the radial projection 35 on the vertical spindle 33 thereof engages with the lever 36 mounted on the upperside of the sub-plate 25 to cause the lever to move the trip latch pin 40 upwardly under the bias of the spring 39.

The selector latch member 121 is, at this phase of the cycle, in the position shown in FIG. 5 so the enlarged head 41 is moved up by the spring 39 until it overlaps and engages the edge of the latch member 121. It will be appreciated that in previous cycles the raised position of the control arm 32 has maintained the head 41 spaced below the selector latch 121, permitting free movement of the latch 121 above the head 41.

When the selector latch 121 is moved out of engagement with the selector plate 66, as described hereinbefore, the trip latch pin 40 moves further upwardly under the bias of the spring 39 until its head 141 engages the underside of the sub-plate 25. The remainder of this cycle of operations then continues as described hereinbefore.

When the last record has been played the pick-up arm again moves rapidly inwardly to cause the wire to operate the pawl mechanism to start a last record changing cycle.

This cycle continues in the normal manner up to the 140° position of the drive gear.

Continued rotation of the drive gear 45 from this stage to the stage shown in FIG. 8 causes the same operations to occur as in a normal cycle except that, as the selector latch 121 is swung anti-clockwise as a result of engagement between the abutment 114 on the drive link 111 and the pin 116 on the selector latch drive moulding 117 the inward movement of the selector latch is arrested by engagement between an edge portion 121a thereof and the head 41 of the trip latch pin 40, as shown in FIG. 8. The selector latch drive moulding 117 is permitted to continue to rotate after arrest of the latch 121 due to elongation of the spring 118.

During the last part of the 140° to 180° stage of movement of the drive gear 45 the centre spindle is again operated but because there is no record thereon this movement is redundant.

Just after the 180° stage the abutment 153 of the cut-out latch 146 is engaged by the upwardly extending abutment 134 of the drive link 111, as shown in FIG. 8, and the cut-out latch is thereby caused to rotate from the first position to the second position mentioned hereinbefore.

During the 180° to 285° phase of movement the selector plate drive lever 51 is tended to be pivoted in a clockwise direction about the pin 52 to move the pick-up arm 29 inwardly. However, movement of the drive lever 51 in this direction is prevented as a result of engagement between an extension part 51a thereof and a part 121b of the latch plate 121 (see FIG. 8) and no drive is communicated to the selector plate 66 and so the pick-up arm 29 is not moved inwardly.

From 285° to 360° the pick-up arm 29 is lowered as described hereinbefore, but because it has not been

moved inwardly over the record it is lowered onto the rest. At the same time, the selector latch 121 is pivoted to move the abutment 122 thereof out of the path of movement of the abutments 67 on the selector plate 66, as described hereinbefore, but because the cut-out lever 146 has been moved to the second position described hereinbefore the lug 150 thereof engages with the part 152 of the cut-out lever 79, as shown in FIG. 9, to move it against the bias of the spring 83 to disengage the detent 86 and pin 87 to permit the cut-out lever 79 to rotate under the bias of the springs 83 and 95 to operate the switch 99 to switch off the electric motor 15, to lift the jockey pulley 16 out of engagement with the turntable rim 17 and the stepped spindle 15 of the motor 15 by means of the link 91, and also to close the clamp of the rest due to engagement of the lower end 106 of the clamp lever 107 with the part 105b of the cam surface 105.

It should be appreciated that the pick-up arm 29 can be moved manually, at any time, over the whole of its range of movement without damage to the mechanism. If the pick-up arm 29 is moved whilst the drive lever 51 is operative to move the pick-up arm 29 inwardly or outwardly then movement of the pick-up arm manually outwardly will cause pivoting of the lever 51 about the post 52 against the bias of the spring 54 to lift the pillar 48 off the cam surface 47. Alternatively, if the pick-up arm 29 is pivoted inwardly then the lever 51 will slide laterally as a result of movement of the post 52 within the slot 53 against the bias of the spring 57.

At all other times the lever 51 will be in its neutral position and movement of the pick-up arm over its whole range of movement is permitted because of the spacing between the limbs 63 and 64:

By spacing the lower end of the pick-up arm vertical spindle 31 and the pick-up arm raising spindle 42 from the selector control pivot post 113 and providing the transfer lever 26 for raising and lowering the pick-up arm the lower end of the pick-up arm vertical spindle 17 is relative unobstructed thereby facilitating the provision of ancillary equipment such as, the viscous set-down device and the anti-skate device indicated generally at 161 and 162 respectively in FIG. 2.

The switch off mechanism described above prevents any damage to the mechanism of the on/off lever 27 obstructed during automatic switch off.

I claim:

1. An automatic record player for playing disc records of different sizes comprising a deck plate, a turntable rotatably mounted on the deck plate and driven, in use, by an electric motor, a centre spindle extending upwardly from the centre of the turntable and from which records are fed singly in succession from the bottom of the stack onto the turntable, a pick-up arm, pivotally mounted for movement about a horizontal axis on the upper end of a vertical spindle, the vertical spindle being pivotally mounted for movement about a vertical axis relative to the deck plate, a drive gear rotatably mounted on the deck plate, and means for rotating the drive gear during a record changing cycle, a drive lever, having a first end and a second end, movably mounted on the deck plate, said first end being drivingly connected to the drive gear and said second end being drivingly connected to the vertical spindle to pivot the pick-up arm outwardly and inwardly of the turntable as a result of movement of the drive lever caused by rotation of the drive gear, a selector plate

provided on the vertical spindle for rotation therewith, the selector plate having a plurality of abutments angularly spaced apart around the axis of the vertical spindle, a selector latch movable from a first position in which free movement of the selector plate is permitted into a second position for engagement with a desired one of the abutments to limit pivotal movement of the selector plate, the position of the selector latch being adjustable so that it is in a position to engage the appropriate one of the abutments corresponding to the size of record to be played and to thus halt the inward movement of the pick-up arm in the correct position for the size of record to be played, a drive link, separate from the drive lever, one end of the drive link being pivotally connected to the drive gear, about an axis spaced from, and parallel to, the axis of rotation of the drive gear, the other end of the drive link being mounted relative to the deck plate for sliding movement relative thereto and for pivotal movement about an axis, spaced from, and parallel to, the axis of rotation of the drive gear as a result of rotation of the drive gear, the drive link being operative to raise and lower the pick-up arm on movement of the drive link resulting from rotation of the drive gear, and selector latch drive means being provided on the drive link to move the selector latch between said first and second positions.

2. A record player as claimed in claim 1 wherein the drive means to move the selector latch into said second position comprises a lost motion device to permit continued movement of the drive link after the selector latch has been moved into said second position.

3. A record player as claimed in claim 2, wherein the lost motion device includes a spring means which communicates drive from the drive link to the selector latch to move the selector latch into said second position, and which is stressed to permit continued movement of the drive link when movement of the selector latch is arrested.

4. A record player as claimed in claim 1 wherein a cut-out latch is mounted on the selector latch for movement relative thereto, an abutment portion provided on the drive link means to position the selector latch in a third position so that during a last record changing cycle at the end of the playing the last record said cut-out latch is in position for engagement with the abutment portion so that movement of the drive link displaces the cut-out latch so that a portion thereof is moved into position for engagement with an element in a switch-off mechanism of the record player, to switch off the record player when the selector latch is moved to said first position.

5. A record player as claimed in claim 4, wherein said means to position the selector latch in a third position includes a trip element movable between a first position, occupied during a penultimate, or preceding, record changing cycle in which a penultimate record is fed to the turntable to permit the selector latch to move between said first and second position, and a second

position, occupied during the last record changing cycle, to position the selector latch in said third position.

6. A record player as claimed in claim 5, wherein said trip element is moved between said first and second positions during a penultimate record changing cycle in which a last record is fed to the turntable, by means operated by a record steady arm, the trip element being maintained in said first position when the record steady arm is maintained in a raised position due to engagement of a record on the centre spindle, and the trip element being permitted to move towards said second position when the record steady arm is moved to a lowered position when the last record is fed onto the turntable during said penultimate cycle.

7. A record player as claimed in claim 6, wherein when the trip element is permitted to move towards said second position the selector latch is in said second position and the trip element engages with a part of the selector latch so that movement of the trip element to said second position is not completed until the selector latch is moved to said first position during said penultimate record changing cycle.

8. A record player as claimed in claim 1 wherein the other end of the drive link is mounted for rectilinear sliding movement relative to the deck plate.

9. A record player as claimed in claim 1 wherein the other end of the drive link is pivotally and slidably mounted relative to the deck plate at a position spaced from the pick-up arm vertical spindle.

10. A record player as claimed in claim 1 characterised in that the drive link is provided with cam means whereby movement of the link relative to the deck plate in the longitudinal direction of the link causes movement of a cam follower as a result of engagement thereof with the cam means, said cam follower being connected to a pick-up arm raising spindle whereby the pick-up arm is raised and lowered.

11. A record player as claimed in claim 10, wherein the cam means causes movement of the cam follower in a direction normal to the plane of the base plate.

12. A record player as claimed in claim 10 wherein a transfer lever is pivotally mounted on the deck plate at a position intermediate the ends thereof, said cam follower acting on the transfer lever adjacent one end, and the other end of the transfer lever being connected to the said pick-up arm raising spindle.

13. A record player as claimed in claim 12 wherein the transfer lever is mounted relative to the deck plate so that the transfer lever may be moved in a direction downwardly relative to the deck plate against resilient biasing means in the event of an overload being applied to the pick-up arm raising spindle.

14. A record player as claimed in claim 13 wherein the transfer lever is mounted on a downwardly depending post there being a coil compression spring engaged around the post between the underside of the transfer lever and an abutment on the post.

* * * *