
(12) STANDARD PATENT (11) Application No. AU 2009308304 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Methods and apparatus to perform audio watermarking and watermark detection and
extraction

(51) International Patent Classification(s)
G11B 20/10 (2006.01) H04H 60/37 (2008.01)
H04H 20/31 (2008.01) H04H 60/58 (2008.01)

(21) Application No: 2009308304 (22) Date of Filing: 2009.10.22

(87) WIPONo: WO10/048458

(30) Priority Data

(31) Number
12/464,811
61/108,380
61/174,708

(32) Date
2009.05.12
2008.10.24
2009.05.01

(33) Country
US
US
US

(43) Publication Date: 2010.04.29
(44) Accepted Journal Date: 2014.04.17

(71) Applicant(s)
The Nielsen Company (US), LLC,

(72) Inventor(s)
Srinivasan, Venugopal;Topchy, Alexander Pavlovich

(74) Agent / Attorney
Spruson & Ferguson, L 35 St Martins Tower 31 Market St, Sydney, NSW, 2000

(56) Related Art
US 2001/0044899 A1 (Levy) 22 November 2001
US 6968564 B1 (Srinivasan) 22 November 2005
US 2003/0021441 A1 (Levy et al.) 30 January 2003
US 2006/0212710 A1 (Baum et al.) 21 September 2006

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 April 2010 (29.04.2010)

(10) International Publication Number

PCT WO 2010/048458 A3

(51) International Patent Classification:
H04H 60/37 (2008.01) H04H 60/58 (2008.01)
G11B 20/10 (2006.01) H04H20/31 (2008.01)

(21) International Application Number:
PCT/US2009/061749

(22) International Filing Date:
22 October 2009 (22.10.2009)

(25) Filing Uanguage: English

(26) Publication Uanguage: English

(30) Priority Data:
61/108,380
61/174,708
12/464,811

24 October 2008 (24.10.2008)
1 May 2009 (01.05.2009)

12 May 2009 (12.05.2009)

US
US
US

(71) Applicant: THE NIEUSEN COMPANY (US), UUC,
[US/US]; A Delaware Limited Liability Company, 150
North Martingale Road, Schaumburg, IL 60713 (US).

(72) Inventors: SRINIVASAN, Venugopal; 2845 Jarvis Cir-
____ cle, Palm Harbor, FL 34683 (US). TOPCHY, Alexander

Pavlovich; 7106 Waxwing Drive, New Port Richey, FL
= 34653 (US).

(74) Agent: ZIMMERMAN, Michael, W.; 150 S. Wacker
Drive, Suite 2100, Chicago, IL 60606 (US).

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
TZ, UA, UG, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available)·. ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

— (81) Designated States (unless otherwise indicated, for every
kind of national protection available)·. AE, AG, AL, AM,

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(88) Date of publication of the international search report:
8 July 2010

(54) Title: METHODS AND APPARATUS TO PERFORM AUDIO WATERMARKING AND WATERMARK DETECTION
== AND EXTRACTION

100^

FIG. 1

W
O

 20
10

/0
48

45
8 A

3

(57) Abstract: Methods and apparatus to audio watermarking and watermark detection and extracted are described herein. Ac­
cording to an example method, an identifier is encoded in media content when a different identifier has been previously encoded.
According to another example method, messages decoded from media content are validated to provide improved decoding accura­
cy. In another example method, decoded symbols are stored in memory and synchronization symbols are located to detect a mes­
sage encoded in media content.

WO 2010/048458 PCT/US2009/061749

METHODS AND APPARATUS TO PERFORM AUDIO WATERMARKING

AND WATERMARK DETECTION AND EXTRACTION

RETATED APPFICATIONS

[0001] This application claims the benefit of U.S. Provisional Application Serial No.

61/174,708 filed May 1, 2009, entitled “METHODS AND APPARATUS TO PERFORM

AUDIO WATERMARKING AND WATERMARK DETECTION AND EXTRACTION” and

U.S. Provisional Application Serial No. 61/108,380, filed October 24, 2008, entitled

“STACKING METHOD FOR ADVANCED WATERMARK DETECTION.” The disclosures of

which are incorporated by reference in their entirety.

TECHNICAT FIELD

[0002] The present disclosure relates generally to media monitoring and, more

particularly, to methods and apparatus to perform audio watermarking and watermark detection

and extraction.

BACKGROUND

[0003] Identifying media information and, more specifically, audio streams (e.g., audio

information) is useful for assessing audience exposure to television, radio, or any other media.

For example, in television audience metering applications, a code may be inserted into the audio

or video of media, wherein the code is later detected at monitoring sites when the media is

presented (e.g., played at monitored households). The information payload of the

code/watermark embedded into original signal can consist of unique source identification, time

of broadcast information, transactional information or additional content metadata.

[0004] Monitoring sites typically include locations such as, for example, households

where the media consumption of audience members or audience member exposure to the media

is monitored. For example, at a monitoring site, codes from the audio and/or video are captured

and may be associated with audio or video streams of media associated with a selected channel,

radio station, media source, etc. The collected codes may then be sent to a central data collection

1

WO 2010/048458 PCT/US2009/061749

facility for analysis. However, the collection of data pertinent to media exposure or consumption

need not be limited to in-home exposure or consumption.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG 1 is a schematic depiction of a broadcast audience measurement system

employing a program identifying code added to the audio portion of a composite television

signal.

[0006] FIG 2 is a block diagram of an example encoder of FIG 1.

[0007] FIG 3 is a flow diagram illustrating an example encoding process that may be

carried out by the example decoder of FIG 2.

[0008] FIG 4 is a flow diagram illustrating an example process that may be carried to

generate a frequency index table used in conjunction with the code frequency selector of FIG 2.

[0009] FIG 5 is a chart illustrating critical band indices and how they correspond to

short and long block sample indices.

[0010] FIG. 6 illustrates one example of selecting frequency components that will

represent a particular information symbol.

[0011] FIGS. 7-9 are charts illustrating different example code frequency

configurations that may be generated by the process of FIG. 4 and used in conjunction with the

code frequency selector of FIG. 2.

[0012] FIG. 10 illustrates the frequency relationship between the audio encoding

indices.

[0013] FIG. 11 is a block diagram of the example decoder of FIG. 1.

[0014] FIG. 12 is a flow diagram illustrating an example decoding process that may be

carried out by the example encoder of FIG. 11.

[0015] FIG. 13 is a flow diagram of an example process that may be carried out to

stack audio in the decoder of FIG. 11.

2

WO 2010/048458 PCT/US2009/061749

[0016] FIG. 14 is a flow diagram of an example process that may be carried out to

determine a symbol encoded in an audio signal in the decoder of FIG. 11.

[0017] FIG. 15 is a flow diagram of an example process that may be carried out to

process a buffer to identify messages in the decoder of FIG. 11.

[0018] FIG. 16 illustrates an example set of circular buffers that may store message

symbols.

[0019] FIG. 17 illustrates an example set of pre-existing code flag circular buffers that

may store message symbols.

[0020] FIG. 18 is a flow diagram of an example process that may be carried out to

validate identified messages in the decoder of FIG. 11.

[0021] FIG. 19 illustrates an example filter stack that may store identified messages in

the decoder of FIG. 11.

[0022] FIG. 20 is a schematic illustration of an example processor platform that may be

used and/or programmed to perform any or all of the processes or implement any or all of the

example systems, example apparatus and/or example methods described herein.

DETAILED DESCRIPTION

[0023] The following description makes reference to audio encoding and decoding that

is also commonly known as audio watermarking and watermark detection, respectively. It

should be noted that in this context, audio may be any type of signal having a frequency falling

within the normal human audibility spectrum. For example, audio may be speech, music, an

audio portion of an audio and/or video program or work (e.g., a television program, a movie, an

Internet video, a radio program, a commercial spot, etc.), a media program, noise, or any other

sound.

[0024] In general, as described in detail below, the encoding of the audio inserts one or

more codes or information (e.g., watermarks) into the audio and, ideally, leaves the code

inaudible to hearers of the audio. However, there may be certain situations in which the code

3

WO 2010/048458 PCT/US2009/061749

may be audible to certain listeners. The codes that are embedded in audio may be of any suitable

length and any suitable technique for assigning the codes to information may be selected.

[0025] As described below, the codes or information to be inserted into the audio may

be converted into symbols that will be represented by code frequency signals to be embedded in

the audio to represent the information. The code frequency signals include one or more code

frequencies, wherein different code frequencies or sets of code frequencies are assigned to

represent different symbols of information. Techniques for generating one or more tables

mapping symbols to representative code frequencies such that symbols are distinguishable from

one another at the decoder are also described. Any suitable encoding or error correcting

technique may be used to convert codes into symbols.

[0026] By controlling the amplitude at which these code frequency signals are input

into the native audio, the presence of the code frequency signals can be imperceptible to human

hearing. Accordingly, in one example, masking operations based on the energy content of the

native audio at different frequencies and/or the tonality or noise-like nature of the native audio

are used to provide information upon which the amplitude of the code frequency signals is based.

[0027] Additionally, it is possible that an audio signal has passed through a distribution

chain, where, for example, the content has passed from a content originator to a network

distributor (e.g., NBC national) and further passed to a local content distributor (e.g., NBC in

Chicago). As the audio signal passes through the distribution chain, one of the distributors may

encode a watermark into the audio signal in accordance with the techniques described herein,

thereby including in the audio signal an indication of that distributors identity or the time of

distribution. The encoding described herein is very robust and, therefore, codes inserted into the

audio signal are not easily removed. Accordingly, any subsequent distributors of the audio

content may use techniques described herein to encode the previously encoded audio signal in a

manner such that the code of the subsequent distributor will be detectable and any crediting due

that subsequent distributor will be acknowledged.

[0028] Additionally, due to the repetition or partial repetition of codes within a signal,

code detection can be improved by stacking messages and transforming the encoded audio signal

into a signal having an accentuated code. As the audio signal is sampled at a monitored location,

4

WO 2010/048458 PCT/US2009/061749

substantially equal sized blocks of audio samples are summed and averaged. This stacking

process takes advantage of the temporal properties of the audio signal to cause the code signal to

be accentuated within the audio signal. Accordingly, the stacking process, when used, can

provide increased robustness to noise or other interference. For example, the stacking process

may be useful when the decoding operation uses a microphone that might pick up ambient noise

in addition to the audio signal output by a speaker.

[0029] A further technique to add robustness to the decoding operations described

herein provides for validation of messages identified by a decoding operation. After messages

are identified in an encoded audio signal, the messages are added to a stack. Subsequent

repetitions of messages are then compared to identify matches. When a message can be matched

to another message identified at the proper repetition interval, the messages are identified as

validated. When a message can be partially matched to another message that has already been

validated, the message is marked as partially validated and subsequent messages are used to

identify parts of the message that may have been corrupted. According to this example

validation technique, messages are only output from the decoder if they can be validated. Such a

technique prevents errors in messages caused by interference and/or detection errors.

[0030] The following examples pertain generally to encoding an audio signal with

information, such as a code, and obtaining that information from the audio via a decoding

process. The following example encoding and decoding processes may be used in several

different technical applications to convey information from one place to another.

[0031] The example encoding and decoding processes described herein may be used to

perform broadcast identification. In such an example, before a work is broadcast, that work is

encoded to include a code indicative of the source of the work, the broadcast time of the work,

the distribution channel of the work, or any other information deemed relevant to the operator of

the system. When the work is presented (e.g., played through a television, a radio, a computing

device, or any other suitable device), persons in the area of the presentation are exposed not only

to the work, but, unbeknownst to them, are also exposed to the code embedded in the work.

Thus, persons may be provided with decoders that operate on a microphone-based platform so

that the work may be obtained by the decoder using free-field detection and processed to extract

5

WO 2010/048458 PCT/US2009/061749

codes therefrom. The codes may then be logged and reported back to a central facility for further

processing. The microphone-based decoders may be dedicated, stand-alone devices, or may be

implemented using cellular telephones or any other types of devices having microphones and

software to perform the decoding and code logging operations. Alternatively, wire-based

systems may be used whenever the work and its attendant code may be picked up via a hard

wired connection.

[0032] The example encoding and decoding processes described herein may be used,

for example, in tracking and/or forensics related to audio and/or video works by, for example,

marking copyrighted audio and/or associated video content with a particular code. The example

encoding and decoding processes may be used to implement a transactional encoding system in

which a unique code is inserted into a work when that work is purchased by a consumer. Thus,

allowing a media distribution to identify a source of a work. The purchasing may include a

purchaser physically receiving a tangible media (e.g., a compact disk, etc.) on which the work is

included, or may include downloading of the work via a network, such as the Internet. In the

context of transactional encoding systems, each purchaser of the same work receives the work,

but the work received by each purchaser is encoded with a different code. That is, the code

inserted in the work may be personal to the purchaser, wherein each work purchased by that

purchaser includes that purchaser’s code. Alternatively, each work may be may be encoded with

a code that is serially assigned.

[0033] Furthermore, the example encoding and decoding techniques described herein

may be used to carry out control functionality by hiding codes in a steganographic manner,

wherein the hidden codes are used to control target devices programmed to respond to the codes.

For example, control data may be hidden in a speech signal, or any other audio signal. A decoder

in the area of the presented audio signal processes the received audio to obtain the hidden code.

After obtaining the code, the target device takes some predetermined action based on the code.

This may be useful, for example, in the case of changing advertisements within stores based on

audio being presented in the store, etc. For example, scrolling billboard advertisements within a

store may be synchronized to an audio commercial being presented in the store through the use

of codes embedded in the audio commercial.

6

WO 2010/048458 PCT/US2009/061749

[0034] An example encoding and decoding system 100 is shown in FIG. 1. The

example system 100 may be, for example, a television audience measurement system, which will

serve as a context for further description of the encoding and decoding processes described

herein. The example system 100 includes an encoder 102 that adds a code or information 103 to

an audio signal 104 to produce an encoded audio signal. The information 103 may be any

selected information. For example, in a media monitoring context, the information 103 may be

representative of an identity of a broadcast media program such as a television broadcast, a radio

broadcast, or the like. Additionally, the information 103 may include timing information

indicative of a time at which the information 103 was inserted into audio or a media broadcast

time. Alternatively, the code may include control information that is used to control the behavior

of one or more target devices.

[0035] The audio signal 104 may be any form of audio including, for example, voice,

music, noise, commercial advertisement audio, audio associated with a television program, live

performance, etc. In the example of FIG. 1, the encoder 102 passes the encoded audio signal to a

transmitter 106. The transmitter 106 transmits the encoded audio signal along with any video

signal 108 associated with the encoded audio signal. While, in some instances, the encoded

audio signal may have an associated video signal 108, the encoded audio signal need not have

any associated video.

[0036] In one example, the audio signal 104 is a digitized version of an analog audio

signal, wherein the analog audio signal has been sampled at 48 kilohertz (KHz). As described

below in detail, two seconds of audio, which correspond to 96,000 audio samples at the 48 KHz

sampling rate, may be used to carry one message, which may be a synchronization message and

49 bits of information. Using an encoding scheme of 7 bits per symbol, the message requires

transmission of eight symbols of information. Alternatively, in the context of overwriting

described below, one synchronization symbol is used and one information symbol conveying one

of 128 states follows the synchronization symbol. As described below in detail, according to one

example, one 7-bit symbol of information is embedded in a long block of audio samples, which

corresponds to 9216 samples. In one example, such a long block includes 36 overlapping short

blocks of 256 samples, wherein in a 50% overlapping block 256 of the samples are old and 256

samples are new.

7

WO 2010/048458 PCT/US2009/061749

[0037] Although the transmit side of the example system 100 shown in FIG. 1 shows a

single transmitter 106, the transmit side may be much more complex and may include multiple

levels in a distribution chain through which the audio signal 104 may be passed. For example,

the audio signal 104 may be generated at a national network level and passed to a local network

level for local distribution. Accordingly, although the encoder 102 is shown in the transmit

lineup prior to the transmitter 106, one or more encoders may be placed throughout the

distribution chain of the audio signal 104. Thus, the audio signal 104 may be encoded at

multiple levels and may include embedded codes associated with those multiple levels. Further

details regarding encoding and example encoders are provided below.

[0038] The transmitter 106 may include one or more of a radio frequency (RF)

transmitter that may distribute the encoded audio signal through free space propagation (e.g., via

terrestrial or satellite communication links) or a transmitter used to distribute the encoded audio

signal through cable, fiber, etc. In one example, the transmitter 106 may be used to broadcast the

encoded audio signal throughout a broad geographical area. In other cases, the transmitter 106

may distribute the encoded audio signal through a limited geographical area. The transmission

may include up-conversion of the encoded audio signal to radio frequencies to enable

propagation of the same. Alternatively, the transmission may include distributing the encoded

audio signal in the form of digital bits or packets of digital bits that may be transmitted over one

or more networks, such as the Internet, wide area networks, or local area networks. Thus, the

encoded audio signal may be carried by a carrier signal, by information packets or by any

suitable technique to distribute the audio signals.

[0039] When the encoded audio signal is received by a receiver 110, which, in the

media monitoring context, may be located at a statistically selected metering site 112, the audio

signal portion of the received program signal is processed to recover the code, even though the

presence of that code is imperceptible (or substantially imperceptible) to a listener when the

encoded audio signal is presented by speakers 114 of the receiver 110. To this end, a decoder

116 is connected either directly to an audio output 118 available at the receiver 110 or to a

microphone 120 placed in the vicinity of the speakers 114 through which the audio is

reproduced. The received audio signal can be either in a monaural or stereo format. Further

details regarding decoding and example decoders are provided below.

8

WO 2010/048458 PCT/US2009/061749

AUDIO ENCODING

[0040] As explained above, the encoder 102 inserts one or more inaudible (or

substantially inaudible) codes into the audio 104 to create encoded audio. One example encoder

102 is shown in FIG. 2. In one implementation, the example encoder 102 of FIG. 2 may be

implemented using, for example, a digital signal processor programmed with instructions to

implement an encoding lineup 202, the operation of which is affected by the operations of a prior

code detector 204 and a masking lineup 206, either or both of which can be implemented using a

digital signal processor programmed with instructions. Of course, any other implementation of

the example encoder 102 is possible. For example, the encoder 102 may be implemented using

one or more processors, programmable logic devices, or any suitable combination of hardware,

software, and firmware.

[0041] In general, during operation, the encoder 102 receives the audio 104 and the

prior code detector 204 determines if the audio 104 has been previously encoded with

information, which will make it difficult for the encoder 102 to encode additional information

into the previously encoded audio. For example, a prior encoding may have been performed at a

prior location in the audio distribution chain (e.g., at a national network level). The prior code

detector 204 informs the encoding lineup 202 as to whether the audio has been previously

encoded. The prior code detector 204 may be implemented by a decoder as described herein.

[0042] The encoding lineup 202 receives the information 103 and produces code

frequency signals based thereon and combines the code frequency signal with the audio 104.

The operation of the encoding lineup 202 is influenced by the output of the prior code detector

204. For example, if the audio 104 has been previously encoded and the prior code detector 204

informs the encoding lineup 202 of this fact, the encoding lineup 202 may select an alternate

message that is to be encoded in the audio 104 and may also alter the details by which the

alternate message is encoded (e.g., different temporal location within the message, different

frequencies used to represent symbols, etc.).

[0043] The encoding lineup 202 is also influenced by the masking lineup 206. In

general, the masking lineup 206 processes the audio 104 corresponding to the point in time at

which the encoding lineup 202 wants to encode information and determines the amplitude at

9

WO 2010/048458 PCT/US2009/061749

which the encoding should be performed. As described below, the masking lineup 206 may

output a signal to control code frequency signal amplitudes to keep the code frequency signal

below the threshold of human perception.

[0044] As shown in the example of FIG. 2, the encoding lineup includes a message

generator 210, a symbol selector 212, a code frequency selector 214, a synthesizer 216, an

inverse Fourier transform 218, and a combiner 220. The message generator 210 is responsive to

the information 103 and outputs messages having the format generally shown at reference

numeral 222. The information 103 provided to the message generator may be the current time, a

television or radio station identification, a program identification, etc. In one example, the

message generator 210 may output a message every two seconds. Of course, other messaging

intervals are possible.

[0045] In one example, the message format 222 representative of messages output

from the message generator 210 includes a synchronization symbol 224. The synchronization

symbol 224 is used by decoders, examples of which are described below, to obtain timing

information indicative of the start of a message. Thus, when a decoder receives the

synchronization symbol 224, that decoder expects to see additional information following the

synchronization symbol 224.

[0046] In the example message format 222 of FIG. 2, the synchronization symbol 224,

is followed by 42 bits of message information 226. This information may include a binary

representation of a station identifier and coarse timing information. In one example, the timing

information represented in the 42 bits of message information 226 changes every 64 seconds, or

32 message intervals. Thus, the 42 bits of message information 226 remain static for 64 seconds.

The seven bits of message information 228 may be high resolution time that increments every

two seconds.

[0047] The message format 222 also includes pre-existing code flag information 230.

However, the pre-existing code flag information 230 is only selectively used to convey

information. When the prior code detector 204 informs the message generator 210 that the audio

104 has not been previously encoded, the pre-existing code flag information 230 is not used.

Accordingly, the message output by the message generator only includes the synchronization

10

11

20
09

30
83

04

26
 Ju

l 2
01

3

symbol 224, the 42 bits of message information 226, and the seven bits of message

information 228; the pre-existing code flag information 230 is blank or filled by

unused symbol indications. In contrast, when the prior code detector 204 provides to

the message generator 210 an indication that the audio 104 into which the message

information is to be encoded has previously been encoded, the message generator 210

will not output the synchronization symbol 224, the 42 bits of message information

226, or the seven bits of message information 228. Rather, the message generator 210

will utilize only the pre-existing code flag information 230. In one example, the pre­

existing code flag information will include a pre-existing code flag synchronization

symbol to signal that pre-existing code flag information is present. The pre-existing

code flag synchronization symbol is different from the synchronization symbol 224

and, therefore, can be used to signal the start of pre-existing code flag information.

Upon receipt of the pre-existing code flag synchronization symbol, a decoder can

ignore any prior-received information that aligned in time with a synchronization

symbol 224, 42 bits of message information 226, or seven bits of message information

228. To convey information, such as a channel indication, a distribution identification,

or any other suitable information, a single pre-existing code flag information symbol

follows the pre-existing code flag synchronization symbol. This pre-existing code flag

information may be used to provide for proper crediting in an audience monitoring

system.

[0048] The output from the message generator 210 is passed to the symbol

selector 212, which selects representative symbols. When the synchronization symbol

224 is output, the symbol selector 212 may not need to perform any mapping because

the synchronization symbol 224 is already in symbol format. Alternatively, if bits of

information are output from the message generator 210, the symbol selector 212 may

use straight mapping, wherein, for example seven bits output from the message

generator 210 are mapped to a symbol having the decimal value of the seven bits. For

example, if a value of 1010101 is output from the message generator 210, the symbol

selector 212 may map those bits to the symbol 85. Of course other conversions

between bits and symbols may be used. In certain examples, redundancy or error

encoding may be used in the selection of symbols to represent bits. Additionally, any

other suitable number of bits than seven may be selected to be converted into symbols.

7672474vl

12

20
09

30
83

04

26
 Ju

l 2
01

3

The number of bits used to select the symbol may be determined based on the

maximum symbol space available in the communication system. For example, if the

communication system can only transmit one of four symbols at a time, then only two

bits from the message generator 210 would be converted into symbols at a time.

[0049] The symbols from the symbol selector 212 are passed to the code

frequency selector 214 that selects code frequencies that are used to represent the

symbol. The symbol selector 212 may include one or more look up tables (FUTs) 232

that may be used to map the symbols into code frequencies that represent the symbols.

That is, a symbol is represented by a plurality of code frequencies that the encoder 102

emphasizes in the audio to form encoded audio that is transmitted. Upon receipt of the

encoded audio, a decoder detects the presence of the emphasized code frequencies and

decodes the pattern of emphasized code frequencies into the transmitted symbol.

Thus, the same FUT selected at the encoder 210 for selecting the code frequencies

needs to be used in the decoder. One example FUT is described in conjunction with

FIGS. 3-5. Additionally, example techniques for generating FUTs are provided in

conjunction with FIGS. 7-9.

[0050] The code frequency selector 214 may select any number of different

FUTs depending of various criteria. For example, a particular LUT or set of LUTs

may be used by the code frequency selector 214 in response to the prior receipt of a

particular synchronization symbol. Additionally, if the prior code detector 204

indicates that a message was previously encoded into the audio 104, the code

frequency selector 214 may select a lookup table that is unique to pre-existing code

situations to avoid confusion between frequencies used to previously encode the audio

104 and the frequencies used to include the pre-existing code flag information.

[0051] An indication of the code frequencies that are selected to represent a

particular symbol is provided to the synthesizer 216. The synthesizer 216 may store,

for each short block constituting a long block, three complex Fourier coefficients

representative of each of the possible code frequencies that the code frequency selector

214 will indicate. These coefficients represent the transform of a windowed sinusoidal

7672474v1

13

20
09

30
83

04

26
 Ju

l 2
01

3

code frequency signal whose phase angle corresponds to the starting phase angle of

code sinusoid in that short block.

[0052] While the foregoing describes an example code synthesizer 216 that

generates sine waves or data representing sine waves, other example implementations

of code synthesizers are possible. For example, rather than generating sine waves,

another example code synthesizer 216 may output Fourier coefficients in the frequency

domain that are used to adjust amplitudes of certain frequencies of audio provided to

the combiner 220. In this manner, the spectrum of the audio may be adjusted to

include the requisite sine waves.

[0053] The three complex amplitude-adjusted Fourier coefficients

corresponding to the symbol to be transmitted are provided from the synthesizer 216

to the inverse Fourier transform 218, which converts the coefficients into time-domain

signals having the prescribed frequencies and amplitudes to allow their insertion into

the audio to convey the desired symbols are coupled to the combiner 220. The

combiner 220 also receives the audio. In particular, the combiner 220 inserts the

signals from the inverse Fourier transform 218 into one long block of audio samples.

As described above, for a given sampling rate of 48KHz, a long block is 9216 audio

samples. In the provided example, the synchronization symbol and 49 bits of

information require a total of eight long blocks. Because each long block is 9216

audio samples, only 73,728 samples of audio 104 are needed to encode a given

message. However, because messages begin every two seconds, which is every

96,000 audio samples, there will be many samples at the end of the 96,000 audio

samples that are not encoded. The combining can be done in the digital domain, or in

the analog domain.

[0054] However, in the case of a pre-existing code flag, the pre-existing code

flag is inserted into the audio 104 after the last symbol representing the previously

inserted seven bits of message information. Accordingly, insertion of the pre-existing

code flag information begins at sample 73,729 and runs for two long blocks, or 18,432

samples. Accordingly, when pre-existing code flag information is used, fewer of the

96,000 audio samples 104 will be unencoded.

7672474v1

13a

20
09

30
83

04

26
 Ju

l 2
01

3

[0055] The masking lineup 206 includes an overlapping short block maker that

makes short blocks of 512 audio samples, wherein 256 of the samples are old and 256

samples are new. That is, the overlapping short block maker 240 makes blocks of 512

samples, wherein 256 samples are shifted into or out of the buffer at one time. For

example, when a first set of 256 samples enters the buffer, the oldest 256 samples are

shifted out of the buffer. On a subsequent iteration, the first set of 256 samples are

shifted to a latter position of the buffer and 256 samples are shifted into the buffer.

Each time a new short block is made by shifting in 256 new samples and removing the

256 oldest samples, the new short block is provided to a masking evaluator

7672474vl

WO 2010/048458 PCT/US2009/061749

242. The 512 sample block output from the overlapping short block maker 240 is multiplied by

a suitable window function such that an “overlap-and-add” operation will restore the audio

samples to their correct value at the output. A synthesized code signal to be added to an audio

signal is also similarly windowed to prevent abrupt transitions at block edges when there is a

change in code amplitude from one 512-sample block to the next overlapped 512-sample block.

These transitions if present create audible artifacts.

[0056] The masking evaluator 242 receives samples of the overlapping short block

(e.g., 512 samples) and determines an ability of the same to hide code frequencies to human

hearing. That is, the masking evaluator determines if code frequencies can be hidden within the

audio represented by the short block by evaluating each critical band of the audio as a whole to

determine its energy and determining the noise-like or tonal-like attributes of each critical band

and determining the sum total ability of the critical bands to mask the code frequencies.

According to the illustrated example, the bandwidth of the critical bands increases with

frequency. If the masking evaluator 242 determines that code frequencies can be hidden in the

audio 104, the masking evaluator 204 indicates the amplitude levels at which the code

frequencies can be inserted within the audio 104, while still remaining hidden and provides the

amplitude information to the synthesizer 216.

[0057] In one example, the masking evaluator 242 conducts the masking evaluation by

determining a maximum change in energy Eb or a masking energy level that can occur at any

critical frequency band without making the change perceptible to a listener. The masking

evaluation carried out by the masking evaluator 242 may be carried out as outlined in the

Moving Pictures Experts Group - Advanced Audio Encoding (MPEG-AAC) audio compression

standard ISO/IEC 13818-7:1997, for example. The acoustic energy in each critical band

influences the masking energy of its neighbors and algorithms for computing the masking effect

are described in the standards document such as ISO/IEC 13818-7:1997. These analyses may be

used to determine for each short block the masking contribution due to tonality (e.g., how much

the audio being evaluated is like a tone) as well as noise like (i.e., how much the audio being

evaluated is like noise) features. Further analysis can evaluate temporal masking that extends

masking ability of the audio over short time, typically, for 50-100 milliseconds (ms). The

resulting analysis by the masking evaluator 242 provides a determination, on a per critical band

14

15

20
09

30
83

04

26
 Ju

l 2
01

3

basis, the amplitude of a code frequency that can be added to the audio 104 without

producing any noticeable audio degradation (e.g., without being audible).

[0058] Because a 256 sample block will appear in both the beginning of one

short block and the end of the next short block and, thus, will be evaluated two times

by the masking evaluator 242, the masking evaluator makes two masking evaluations

including the 256 sample block. The amplitude indication provided to the synthesizer

216 is a composite of those two evaluations including that 256 sample block and the

amplitude indication is timed such that the amplitude of the code inserted into the 256

samples is timed with those samples arriving at the combiner 220.

[0059] Referring now to FIGS. 3-5, an example LUT 232 is shown that

includes one column representing symbols 302 and seven columns 304, 306, 308, 310,

312, 314, 316 representing numbered code frequency indices. The LUT 232 includes

128 rows, which are used to represent data symbols. Because the LUT 232 includes

128 different data symbols, data may be sent at a rate of seven bits per symbol. The

frequency indices in the table may range from 180-656 and are based on a long block

size of 9216 samples and a sampling rate of 48 KHz. Accordingly, the frequencies

corresponding to these indices range between 937.5 Hz and 3126.6 Hz, which falls

into the humanly audible range. Of course, other sampling rates and frequency indices

may be selected. A description of a process to generate a LUT, such as the table 232 is

provided in conjunction with FIGS. 7-9.

[0060] In one example operation of the code frequency selector 214, a symbol

of 25 (e.g., a binary value of 0011001) is received from the symbol selector 212.

The code frequency selector 214 accesses the LUT 232 and reads row 25 of the

symbol column 302. From this row, the code frequency selector reads that code

frequency indices 217, 288, 325, 403, 512, 548, and 655 are to be emphasized in the

audio 104 to communicate the symbol 25 to the decoder. The code frequency selector

214 then provides an indication of these indices to the synthesizer 216, which

synthesizes the code signals by outputting Fourier coefficients corresponding to these

indices.

7672474v1

16

20
09

30
83

04

26
 Ju

l 2
01

3

[0061] The combiner 220 receives both the output of the code synthesizer 216

and the audio 104 and combines them to form encoded audio. The combiner 220 may

combine the output of the code synthesizer 216 and the audio 104 in an analog or

digital form. If the combiner 220 performs a digital combination, the output of the

code synthesizer 216 may be combined with the output of a sampler rather than the

audio that is input to the sampler. For example, the audio block in digital form may be

combined with the sine waves in digital form. Alternatively, the combination may be

carried out in the frequency domain, wherein frequency coefficients of the audio are

adjusted in accordance with frequency coefficients representing the sine waves. As a

further alternative, the sine waves and the audio may be combined in analog form.

The encoded audio may be output from the combiner 220 in analog or digital form. If

the output of the combiner 220 is digital, it may be subsequently converted to analog

form before being coupled to the transmitter 106.

[0062] An example encoding process 600 is shown in FIG. 6. The example

process 600 may be carried out by the example encoder 102 of FIG. 2, or by any other

suitable encoder. The example process 600 begins when audio samples to be encoded

are received (block 602). The process 600 then determines if the received samples

have been previously encoded (block 604). This determination may be carried out, for

example, by the prior code detector 204 of FIG. 2, or by any suitable decoder

configured to examine the audio to be encoded for evidence of a prior encoding.

[0063] If the received samples have not been previously encoded (block 604),

the process 600 generates a communication message (block 606), such as a

communication message having the format shown in FIG. 2 at reference numeral 222.

In one particular example, when the audio has not been previously encoded, the

communication message may include a synchronization portion and one or more

portions including data bits. The communication message generation may be carried

out, for example, by the message generator 210 of FIG. 2.

[0064] The communication message is then mapped into symbols (block 608).

For example, the synchronization information need not be mapped into a symbol if the

synchronization information is already a symbol. In another example, if a portion of

7672474v1

the communication message is a series of bits, such bits or groups of bits may be

represented by one

16a

20
09

30
83

04

26
 Ju

l 2
01

3

7672474vl

WO 2010/048458 PCT/US2009/061749

symbol. As described above in conjunction with the symbol selector 212, which is one manner

in which the mapping (block 608) may be carried out, one or more tables or encoding schemes

may be used to convert bits into symbols. For example, some techniques may include the use of

error correction coding, or the like, to increase message robustness through the use of coding

gain. In one particular example implementation having a symbol space sized to accommodate

128 data symbols, seven bits may be converted into one symbol. Of course, other numbers of

bits may be processed depending on many factors including available symbol space, error

correction encoding, etc.

[0065] After the communication symbols have been selected (block 608), the process

600 selects a FUT that will be used to determine the code frequencies that will be used to

represent each symbol (block 610). In one example, the selected FUT may be the example FUT

232 of FIGS. 3-5, or may be any other suitable FUT. Additionally, the FUT may be any FUT

generated as described in conjunction with FIGS. 7-9. The selection of the FUT may be based

on a number of factors including the synchronization symbol that is selected during the

generation of the communication message (block 606).

[0066] After the symbols have been generated (block 608) and the FUT is selected

(block 610), the symbols are mapped into code frequencies using the selected FUT (block 612).

In one example in which the FUT 232 of FIG. 3-5 is selected, a symbol of, for example, 35

would be mapped to the frequency indices 218, 245, 360, 438, 476, 541, and 651. The data

space in the FUT is between symbol 0 and symbol 127 and symbol 128, which uses a unique set

of code frequencies that do not match any other code frequencies in the table, is used to indicate

a synchronization symbol. The FUT selection (block 610) and the mapping (block 612) may be

carried out by, for example, the code frequency selector 214 of FIG. 2. After the code

frequencies are selected, an indication of the same is provided to, for example, the synthesizer

216 of FIG. 2.

[0067] Code signals including the code frequencies are then synthesized (block 614) at

amplitudes according to a masking evaluation, which is described in conjunction with blocks 240

and 242 or FIG. 2, and is described in conjunction with the process 600 below. In one example,

the synthesis of the code frequency signals may be carried out by providing appropriately scaled

17

WO 2010/048458 PCT/US2009/061749

Fourier coefficients to an inverse Fourier process. In one particular example, three Fourier

coefficients may be output to represent each code frequency in the code frequency signals.

Accordingly, the code frequencies may be synthesized by the inverse Fourier process in a manner

in which the synthesized frequencies are windowed to prevent spill over into other portions of

the signal into which the code frequency signals are being embedded. One example

configuration that may be used to carry out the synthesis of block 614 is shown at blocks 216 and

218 of FIG. 2. Of course other implementations and configurations are possible.

[0068] After the code signals including the code frequencies have been synthesized,

they are combined with the audio samples (block 616). As described in conjunction with FIG. 2,

the combination of the code signals and the audio is such that one symbol is inserted into each

long block of audio samples. Accordingly, to communicate one synchronization symbol and 49

data bits, information is encoded into eight long blocks of audio information: one long block for

the synchronization symbol and one long block for each seven bits of data (assuming seven

bits/symbol encoding). The messages are inserted into the audio at two second intervals. Thus,

the eight long blocks of audio immediately following the start of a message may be encoded with

audio and the remaining long blocks that make up the balance of the two second of audio may be

unencoded.

[0069] The insertion of the code signal into the audio may be carried out by adding

samples of the code signal to samples of the host audio signal, wherein such addition is done in

the analog domain or in the digital domain. Alternatively, with proper frequency alignment and

registration, frequency components of the audio signal may be adjusted in the frequency domain

and the adjusted spectrum converted back into the time domain.

[0070] The foregoing described the operation of the process 600 when the process

determined that the received audio samples have not been previously encoded (block 604).

However, in situations in which a portion of media has been through a distribution chain and

encoded as it was processed, the received samples of audio processed at block 604 already

include codes. For example, a local television station using a courtesy news clip from CNN in a

local news broadcast might not get viewing credit based on the prior encoding of the CNN clip.

As such, additional information is added to the local news broadcast in the form of pre-existing

18

WO 2010/048458 PCT/US2009/061749

code flag information. If the received samples of audio have been previously encoded (block

604), the process generates pre-existing code flag information (block 618). The pre-existing

code flag information may include the generation of an pre-existing code flag synchronization

symbol and, for example, the generation of seven bits of data, which will be represented by a

single data symbol. The data symbol may represent a station identification, a time, or any other

suitable information. For example, a media monitoring site (MMS) may be programmed to

detect the pre-existing code flag information to credit the station identified therein.

[0071] After the pre-existing code flag information has been generated (block 618), the

process 600 selects the pre-existing code flag LUT that will be used to identify code frequencies

representative of the pre-existing code flag information (block 620). In one example, the pre­

existing code flag LUT may be different than other LUTs used in non-pre-existing code

conditions. In one particular example, the pre-existing code flag synchronization symbol may be

represented by the code frequencies 220, 292, 364, 436, 508, 580, and 652.

[0072] After the pre-existing code flag information is generated (block 618) and the

pre-existing code flag LUT is selected (block 620), the pre-existing code flag symbols are

mapped to code frequencies (block 612), and the remainder of the processing follows as

previously described.

[0073] Sometime before the code signal is synthesized (block 614), the process 600

conducts a masking evaluation to determine the amplitude at which the code signal should be

generated so that it still remains inaudible or substantially inaudible to human hearers.

Accordingly, the process 600 generates overlapping short blocks of audio samples, each

containing 512 audio samples (block 622). As described above, the overlapping short blocks

include 50% old samples and 50% newly received samples. This operation may be carried out

by, for example, the overlapping short block maker 240 of FIG. 2.

[0074] After the overlapping short blocks are generated (block 622), masking

evaluations are performed on the short blocks (block 624). For example, this may be carried out

as described in conjunction with block 242 of FIG 2. The results of the masking evaluation are

used by the process 600 at block 614 to determine the amplitude of the code signal to be

synthesized. The overlapping short block methodology may yield two masking evaluation for a

19

WO 2010/048458 PCT/US2009/061749

particular 256 samples of audio (one when the 256 samples are the “new samples,” and one

when the 256 samples are the “old samples”), the result provided to block 614 of the process 600

may be a composite of these masking evaluations. Of course, the timing of the process 600 is

such that the masking evaluations for a particular block of audio are used to determine code

amplitudes for that block of audio.

LOOKUP TABLE GENERATION

[0075] A system 700 for populating one or more LUTs with code frequencies

corresponding to symbols may be implemented using hardware, software, combinations of

hardware and software, firmware, or the like. The system 700 of FIG. 7 may be used to generate

any number of LUTs, such as the LUT of FIGS. 3-5. The system 700 which operates as

described below in conjunction with FIG. 7 and FIG. 8, results in a code frequency index LUT,

wherein: (1) two symbols of the table are represented by no more than one common frequency

index, (2) not more than one of the frequency indices representing a symbol reside in one audio

critical band as defined by the MPEG-AA compression standard ISO/IEC 13818-7:1997, and (3)

code frequencies of neighboring critical bands are not used to represent a single symbol. Criteria

number 3 helps to ensure that audio quality is not compromised during the audio encoding

process.

[0076] A critical band pair definer 702 defines a number (P) of critical band pairs. For

example, referring to FIG. 9, a table 900 includes columns representing AAC critical band

indices 902, short block indices 904 in the range of the AAC indices, and long block indices 906

in the range of the AAC indices. In one example, the value of P may be seven and, thus, seven

critical band pairs are formed from the AAC indices (block 802). FIG. 10 shows the frequency

relationship between the AAC indices. According to one example, as shown at reference

numeral 1002 in FIG. 10 wherein frequencies of critical band pairs are shown as separated by

dotted lines, AAC indices may be selected into pairs as follows: five and six, seven and eight,

nine and ten, eleven and twelve, thirteen and fourteen, fifteen and sixteen, and seventeen and

seventeen. The AAC index of seventeen includes a wide range of frequencies and, therefore,

index 17 is shown twice, once for the low portion and once for the high portion.

20

WO 2010/048458 PCT/US2009/061749

[0077] A frequency definer 704 defines a number of frequencies (N) that are selected

for use in each critical band pair. In one example, the value of N is sixteen, meaning that there

are sixteen data positions in the combination of the critical bands that form each critical band

pair. Reference numeral 1004 in FIG. 10 identifies the seventeen frequency positions are shown.

The circled position four is reserved for synchronization information and, therefore, is not used

for data.

[0078] A number generator 706 defines a number of frequency positions in the critical

band pairs defined by the critical band pair definer 702. In one example the number generator

706 generates allNP, P-digit numbers. For example, if N is 16 and P is 7, the process generates

the numbers 0 through 268435456, but may do so in base 16 - hexadecimal, which would result

in the values 0 through 10000000.

[0079] A redundancy reducer 708 then eliminates all number from the generated list of

numbers sharing more than one common digit between them in the same position. This ensures

compliance with criteria (1) above because, as described below, the digits will be representative

of the frequencies selected to represent symbols. An excess reducer 710 may then further reduce

the remaining numbers from the generated list of numbers to the number of needed symbols. For

example, if the symbol space is 129 symbols, the remaining numbers are reduced to a count of

129. The reduction may be carried out at random, or by selecting remaining numbers with the

greatest Euclidean distance, or my any other suitable data reduction technique. In another

example, the reduction may be carried out in a pseudorandom manner.

[0080] After the foregoing reductions, the count of the list of numbers is equal to the

number of symbols in the symbol space. Accordingly, a code frequency definer 712 defines the

remaining numbers in base P format to represent frequency indices representative of symbols in

the critical band pairs. For example, referring to FIG. 10, the hexadecimal number F1E4B0F is

in base 16, which matches P. The first digit of the hexadecimal number maps to a frequency

component in the first critical band pair, the second digit to the second critical band pair, and so

on. Each digit represents the frequency index that will be used to represent the symbol

corresponding to the hexadecimal number F1E4B0F.

21

WO 2010/048458 PCT/US2009/061749

[0081] Using the first hexadecimal number as an example of mapping to a particular

frequency index, the decimal value of Fh is 15. Because position four of each critical band pair

is reserved for non-data information, the value of any hexadecimal digit greater than four is

incremented by the value of one decimal. Thus, the 15 becomes a 16. The 16 is thus designated

(as shown with the asterisk in FIG. 10) as being the code frequency component in the first critical

band pair to represent the symbol corresponding to the hexadecimal number F1E4B0F. Though

not shown in FIG. 10, the index 1 position (e.g., the second position from the far left in the

critical band 7 would be used to represent the hexadecimal number F1E4B0F.

[0082] A FUT filler 714 receives the symbol indications and corresponding code

frequency component indications from the code frequency definer 712 and fills this information

into a FUT.

[0083] An example code frequency index table generation process 800 is shown in

FIG. 8. The process 800 may be implemented using the system of FIG. 7, or any other suitable

configuration. The process 800 of FIG. 8 may be used to generate any number of FUTs, such as

the FUT of FIGS. 3-5. While one example process 800 is shown, other processes may be used.

The result of the process 800 is a code frequency index FUT, wherein: (1) two symbols of the

table are represented by no more than one common frequency index, (2) not more than one of the

frequency indices representing a symbol reside in one audio critical band as defined by the

MPEG-AA compression standard ISO/IEC 13818-7:1997, and (3) code frequencies of

neighboring critical bands are not used to represent a single symbol. Criteria number 3 helps to

ensure that audio quality is not compromised during the audio encoding process.

[0084] The process 800 begins by defining a number (P) of critical band pairs. For

example, referring to FIG. 9, a table 900 includes columns representing AAC critical band

indices 902, short block indices 904 in the range of the AAC indices, and long block indices 906

in the range of the AAC indices. In one example, the value of P may be seven and, thus, seven

critical band pairs are formed from the AAC indices (block 802). FIG. 10 shows the frequency

relationship between the AAC indices. According to one example, as shown at reference

numeral 1002 in FIG. 10 wherein frequencies of critical band pairs are shown as separated by

dotted lines, AAC indices may be selected into pairs as follows: five and six, seven and eight,

22

WO 2010/048458 PCT/US2009/061749

nine and ten, eleven and twelve, thirteen and fourteen, fifteen and sixteen, and seventeen and

seventeen. The AAC index of seventeen includes a wide range of frequencies and, therefore,

index 17 is shown twice, once for the low portion and once for the high portion.

[0085] After the band pairs have been defined (block 802), a number of frequencies

(N) is selected for use in each critical band pair (block 804). In one example, the value of N is

sixteen, meaning that there are sixteen data positions in the combination of the critical bands that

form each critical band pair. As shown in FIG. 10 as reference numeral 1004, the seventeen

frequency positions are shown. The circled position four is reserved for synchronization

information and, therefore, is not used for data.

[0086] After the number of critical band pairs and the number of frequency positions

in the pairs is defined, the process 800 generates allNP, P-digit numbers with no more than one

hexadecimal digit in common (block 806). For example, if N is 16 and P is 7, the process

generates the numbers 0 through 268435456, but may do so in base 16 - hexadecimal, which

would results in 0 through FFFFFFF, but does not include the numbers that share more than one

common hexadecimal digit. This ensures compliance with criteria (1) above because, as

described below, the digits will be representative of the frequencies selected to represent

symbols.

[0087] According to an example process for determining a set of numbers that comply

with criteria (1) above (and any other desired criteria), the numbers in the range from 0 to NP-1

are tested. First, the value corresponding to zero is stored as the first member of the result set R.

Then, the numbers from 1 to NP -1 are selected for analysis to determine if they meet criteria (1)

when compared to the members of R. Each number that meets criteria (1) when compared

against all the current entries in R is added to the result set. In particular, according to the

example process, in order to test a number K, each hexadecimal digit of interest in K is

compared to the corresponding hexadecimal digit of interest in an entry M from the current result

set. In the 7 comparisons not more than one hexadecimal digit of K should equal the

corresponding hexadecimal digit of M. If, after comparing K against all numbers currently in the

result set, no member of the latter has more than one common hexadecimal digit, then K is added

23

WO 2010/048458 PCT/US2009/061749

to the result set R. The algorithm iterates through the set of possible numbers until all values

meeting criteria (1) have been identified.

[0088] While the foregoing describes an example process for determining a set of

numbers that meets criteria (1), any process or algorithm may be used and this disclosure is not

limited to the process described above. For example, a process may use heuristics, rules, etc. to

eliminate numbers from the set of numbers before iterating throughout the set. For example, all

of the numbers where the relevant bits start with two 0’s, two 1 ’s, two 2’s, etc. and end with two

0’s, two 1 ’s, two 2’s, etc. could immediately be removed because they will definitely have a

hamming distance less than 6. Additionally or alternatively, an example process may not iterate

through the entire set of possible numbers. For example, a process could iterate until enough

numbers are found (e.g., 128 numbers when 128 symbols are desired). In another

implementation, the process may randomly select a first value for inclusion in the set of possible

values and then may search iteratively or randomly through the remaining set of numbers until a

value that meets the desired criteria (e.g., criteria (1)) is found.

[0089] The process 800 then selects the desired numbers from the generated values

(block 810). For example, if the symbol space is 129 symbols, the remaining numbers are

reduced to a count of 129. The reduction may be carried out at random, or by selecting

remaining numbers with the greatest Euclidean distance, or my any other suitable data reduction

technique.

[0090] After the foregoing reductions, the count of the list of numbers is equal to the

number of symbols in the symbol space. Accordingly, the remaining numbers in base P format

are defined to represent frequency indices representative of symbols in the critical band pairs

(block 812). For example, referring to FIG. 10, the hexadecimal number F1E4B0F is in base 16,

which matches P. The first digit of the hexadecimal number maps to a frequency component in

the first critical band pair, the second digit to the second critical band pair, and so on. Each digit

represents the frequency index that will be used to represent the symbol corresponding to the

hexadecimal number F1E4B0F.

[0091] Using the first hexadecimal number as an example of mapping to a particular

frequency index, the decimal value of Fh is 15. Because position four of each critical band pair

24

WO 2010/048458 PCT/US2009/061749

is reserved for non-data information, the value of any hexadecimal digit greater than four is

incremented by the value of one decimal. Thus, the 15 becomes a 16. The 16 is thus designated

(as shown with the asterisk in FIG. 10) as being the code frequency component in the first critical

band pair to represent the symbol corresponding to the hexadecimal number F1E4B0F. Though

not shown in FIG. 10, the index 1 position (e.g., the second position from the far left in the

critical band 7 would be used to represent the hexadecimal number F1E4B0F.

[0092] After assigning the representative code frequencies (block 812), the numbers

are filled into a LUT (block 814).

[0093] Of course, the systems and processes described in conjunction with FIGS. 8-10

are only examples that may be used to generate LUTs having desired properties in conjunction

the encoding and decoding systems described herein. Other configurations and processes may be

used.

AUDIO DECODING

[0094] In general, the decoder 116 detects a code signal that was inserted into received

audio to form encoded audio at the encoder 102. That is, the decoder 116 looks for a pattern of

emphasis in code frequencies it processes. Once the decoder 116 has determined which of the

code frequencies have been emphasized, the decoder 116 determines, based on the emphasized

code frequencies, the symbol present within the encoded audio. The decoder 116 may record the

symbols, or may decode those symbols into the codes that were provided to the encoder 102 for

insertion into the audio.

[0095] In one implementation, the example decoder 116 of FIG. 11 may be

implemented using, for example, a digital signal processor programmed with instructions to

implement components of the decoder 116. Of course, any other implementation of the example

decoder 116 is possible. For example, the decoder 116 may be implemented using one or more

processors, programmable logic devices, or any suitable combination of hardware, software, and

firmware.

[0096] As shown in FIG. 11, an example decoder 116 includes a sampler 1102, which

may be implemented using an analog to digital converter (A/D) or any other suitable technology,

to which encoded audio is provided in analog format. As shown in FIG. 1, the encoded audio

25

WO 2010/048458 PCT/US2009/061749

may be provided by a wired or wireless connection to the receiver 110. The sampler 1102

samples the encoded audio at, for example, a sampling frequency of 8 KHz. Of course, other

sampling frequencies may be advantageously selected in order to increase resolution or reduce

the computational load at the time of decoding. At a sampling frequency of 8 KHz, the Nyquist

frequency is 4 KHz and, therefore, all of the embedded code signal is preserved because its

spectral frequencies are lower than the Nyquist frequency. The 9216-sample FFT long block

length at 48 KHz sampling rate is reduced to 1536 samples at 8 KHz sampling rate. However

even at this modified DFT block size, the code frequency indices are identical to the original

encoding frequencies and range from 180 to 656.

[0097] The samples from the sampler 1102 are provided to a stacker 1104. In general,

the stacker 1104 accentuates the code signal in the audio signal information by taking advantage

of the fact that messages are repeated or substantially repeated (e.g., only the least significant bits

are changed) for a period of time. For example, 42 bits (226 of FIG. 2) of the 49 bits (226 and

224) of the previously described example message of FIG. 2 remain constant for 64 seconds (32

2-second message intervals) when the 42 bits of data 226 in the message include a station

identifier and a coarse time stamp which increments once every 64 seconds. The variable data in

the last 7 bit group 232 represents time increments in seconds and, thus, varies from message to

message. The example stacker 1104 aggregates multiple blocks of audio signal information to

accentuate the code signal in the audio signal information. In an example implementation, the

stacker 1104 comprises a buffer to store multiple samples of audio information. For example, if

a complete message is embedded in two seconds of audio, the buffer may be twelve seconds long

to store six messages. The example stacker 1104 additionally comprises an adder to sum the

audio signal information associated with the six messages and a divider to divide the sum by the

number of repeated messages selected (e.g., six).

[0098] By way of example, a watermarked signal y (t) can be represented by the sum of

the host signal x(t) and watermark w(t):

y(t)=x(t)+w(t)

[0099] In the time domain, watermarks may repeat after a known period T:

w(t) = w(t-T)

26

WO 2010/048458 PCT/US2009/061749

[00100] According to an example stacking method, the input signal y(t) is replaced by

a stacked signal S(t):

= y(t) +y(t-T)+ ... +y(t-(n-l)T)
n

[00101] In the stacked signal S(t), the contribution of the host signal decreases because

the values of samples x(t) , x(t-T), .., x(t-nT) are independent if the period T is sufficiently large.

At the same time, the contribution of the watermarks being made of, for example, in-phase

sinusoids, is enhanced.

S(Z) = W) + W-D + ... + .t(t-("-l)Q +
n

[0100] Assuming x(t) , x(t-T), .., x(t-nT) are independent random variables drawn from

the same distribution X with zero mean E[X]=0 we obtain:

[0101]

[0102]

[0103]

limE
n—>co

and

Var

x(/) + x(t -T) +... + x(t -(η-1)71)

x(/) + x(t -T) +... + x(t -(n-1)71)

0,

Var(X)

[0104] Accordingly, the underlying host signal contributions x(t),..., x(t-nT) will

effectively be canceling each other while the watermark is unchanged allowing the watermark to

be more easily detected.

[0105] In the illustrated example, the power of the resulting signal decreases linearly

with the number of stacked signals n. Therefore, averaging over independent portions of the host

signal can reduce the effects of interference. The watermark is not affected because it will

always be added in-phase.

[0106] An example process for implementing the stacker 1104 is described in

conjunction with FIG. 12.

[0107] The decoder 116 may additionally include a stacker controller 1106 to control

the operation of the stacker 1104. The example stacker controller 1106 receives a signal

27

WO 2010/048458 PCT/US2009/061749

indicating whether the stacker 1104 should be enabled or disabled. For example, the stacker

controller 1106 may receive the received audio signal and may determine if the signal includes

significant noise that will distort the signal and, in response to the determination, cause the

stacker to be enabled. In another implementation, the stacker controller 1106 may receive a

signal from a switch that can be manually controlled to enable or disable the stacker 1104 based

on the placement of the decoder 116. For example, when the decoder 116 is wired to the receiver

110 or the microphone 120 is placed in close proximity to the speaker 114, the stacker controller

1106 may disable the stacker 1104 because stacking will not be needed and will cause corruption

of rapidly changing data in each message (e.g., the least significant bits of a timestamp).

Alternatively, when the decoder 116 is located at a distance from the speaker 114 or in another

environment where significant interference may be expected, the stacker 1104 may be enabled by

the stacker controller 1106. Of course, any type of desired control may be applied by the stacker

controller 1106.

[0108] The output of the stacker 1104 is provided to a time to frequency domain

converter 1108. The time to frequency domain converter 1108 may be implemented using a

discrete Fourier transformation (DFT), or any other suitable technique to convert time-based

information into frequency-based information. In one example, the time to frequency domain

converter 1108 may be implemented using a sliding long block fast Fourier transform (FFT) in

which a spectrum of the code frequencies of interest is calculated each time eight new samples

are provided to the example time to time to frequency domain converter 1108. In one example,

the time to frequency domain converter 1108 uses 1,536 samples of the encoded audio and

determines a spectrum therefrom using 192 slides of eight samples each. The resolution of the

spectrum produced by the time to frequency domain converter 1108 increases as the number of

samples used to generate the spectrum is increased. Thus, the number of samples processed by

the time to frequency domain converter 1108 should match the resolution used to select the

indices in the tables of FIGS. 3-5.

[0109] The spectrum produced by the time to frequency domain converter 1108 passes

to a critical band normalizer 1110, which normalizes the spectrum in each of the critical bands.

In other words, the frequency with the greatest amplitude in each critical band is set to one and

all other frequencies within each of the critical bands are normalized accordingly. For example,

28

WO 2010/048458 PCT/US2009/061749

if critical band one includes frequencies having amplitudes of 112, 56, 56, 56, 56, 56, and 56, the

critical band normalizer would adjust the frequencies to be 1, 0.5, 0.5, 0.5, 0.5, 0.5, and 0.5. Of

course, any desired maximum value may be used in place of one for the normalization. The

critical band normalizer 1110 outputs the normalized score for each of the frequencies of the

interest.

[0110] The spectrum of scores produced by the critical band normalizer 1110 is passed

to the symbol scorer 1112, which calculates a total score for each of the possible symbols in the

active symbol table. In an example implementation, the symbol scorer 1112 iterates through

each symbol in the symbol table and sums the normalized score from the critical band normalizer

1110 for each of the frequencies of interest for the particular symbol to generate a score for the

particular symbol. The symbol scorer 1112 outputs a score for each of the symbols to the max

score selector 1114, which selects the symbol with the greatest score and outputs the symbol and

the score.

[0111] The identified symbol and score from the max score selector 1114 are passed to

the comparator 1116, which compares the score to a threshold. When the score exceeds the

threshold, the comparator 1116 outputs the received symbol. When the score does not exceed the

threshold, the comparator 1116 outputs an error indication. For example, the comparator 1116

may output a symbol indicating an error (e.g., a symbol not included in the active symbol table)

when the score does not exceed the threshold. Accordingly, when a message has been corrupted

such that a great enough score (i.e., a score that does not exceed the threshold) is not calculated

for a symbol, an error indication is provided. In an example implementation, error indications

may be provided to the stacker controller 1106 to cause the stacker 1104 to be enabled when a

threshold number of errors are identified (e.g., number of errors over a period of time, number of

consecutive errors, etc.).

[0112] The identified symbol or error from the comparator 1116 is passed to the

circular buffers 1118 and the pre-existing code flag circular buffers 1120. An example

implementation of the standard buffers 1118 is described in conjunction with FIG. 15. The

example circular buffers 1118 comprise one circular buffer for each slide of the time domain to

frequency domain converter 1108 (e.g., 192 buffers). Each circular buffer of the circular buffers

29

WO 2010/048458 PCT/US2009/061749

1118 includes one storage location for the synchronize symbol and each of the symbol blocks in

a message (e.g., eight block messages would be stored in eight location circular buffers) so that

an entire message can be stored in each circular buffer. Accordingly, as the audio samples are

processed by the time domain to frequency domain converter 1108, the identified symbols are

stored in the same location of each circular buffer until that location in each circular buffer has

been filled. Then, symbols are stored in the next location in each circular buffer. In addition to

storing symbols, the circular buffers 1118 may additionally include a location in each circular

buffer to store a sample index indicating the sample in the audio signal that was received that

resulted in the identified symbol.

[0113] The example pre-existing code flag circular buffers 1120 are implemented in

the same manner as the circular buffers 1118, except the pre-existing code flag circular buffers

1120 include one location for the pre-existing code flag synchronize symbol and one location for

each symbols in the pre-existing code flag message (e.g., an pre-existing code flag synchronize

that includes one message symbol would be stored in two location circular buffers). The pre­

existing code flag circular buffers 1120 are populated at the same time and in the same manner as

the circular buffers 1118.

[0114] The example message identifier 1122 analyzes the circular buffers 1118 and the

pre-existing code flag circular buffers 1120 for a synchronize symbol. For example, the message

identifier 1122 searches for a synchronize symbol in the circular buffers 1118 and an pre-existing

code flag synchronize symbol in the pre-existing code flag circular buffers 1120. When a

synchronize symbol is identified, the symbols following the synchronize symbol (e.g., seven

symbols after a synchronize symbol in the circular buffers 1118 or one symbol after an pre­

existing code flag synchronize symbol in the pre-existing code flag circular buffers 1120) are

output by the message identifier 1122. In addition, the sample index identifying the last audio

signal sample processed is output.

[0115] The message symbols and the sample index output by the message identifier

1122 are passed to the validator 1124, which validates each message. The validator 1124

includes a filter stack that stores several consecutively received messages. Because messages are

repeated (e.g., every 2 seconds or 16,000 samples at 8 KHz), each message is compared with

30

WO 2010/048458 PCT/US2009/061749

other messages in the filter stack that are separated by approximately the number of audio

samples in a single message to determine if a match exists. If a match or substantial match

exists, both messages are validated. If a message cannot be identified, it is determined that the

message is an error and is not emitted from the validator 1124. In cases where messages might

be affected by noise interference, messages might be considered a match when a subset of

symbols in a message match the same subset in another already validated message. For example,

if four of seven symbols in a message match the same four symbols in another message that has

already been validated, the message can be identified as partially validated. Then, a sequence of

the repeated messages can be observed to identify the non-matching symbols in the partially

validated message.

[0116] The validated messages from the validator 1124 are passed to the symbol to bit

converter 1126, which translates each symbol to the corresponding data bits of the message using

the active symbol table.

[0117] An example decoding process 1200 is shown in FIG. 12. The example process

1200 may be carried out by the example decoder 116 shown in FIG. 11, or by any other suitable

decoder. The example process 1200 begins by sampling audio (block 1202). The audio may be

obtained via an audio sensor, a hardwired connection, via an audio file, or through any other

suitable technique. As explained above the sampling may be carried out at 8,000 Hz, or any

other suitable frequency.

[0118] As each sample is obtained, the sample is aggregated by a stacker such as the

example stacker 1104 of FIG. 11 (block 1204). An example process for performing the stacking

is described in conjunction with FIG. 13.

[0119] The new stacked audio samples from the stacker process 1204 are inserted into

a buffer and the oldest audio samples are removed (block 1206). As each sample is obtained, a

sliding time to frequency conversion is performed on a collection of samples including numerous

older samples and the newly added sample obtained at blocks 1202 and 1204 (block 1208). In

one example, a sliding FFT may be used to process streaming input samples including 9215 old

samples and the one newly added sample. In one example, the FFT using 9216 samples results

in a spectrum having a resolution of 5.2 Hz.

31

WO 2010/048458 PCT/US2009/061749

[0120] After the spectrum is obtained through the time to frequency conversion (block

1208), the transmitted symbol is determined (block 1210). An example process for determining

the transmitted symbol is described in conjunction with FIG. 14.

[0121] After the transmitted message is identified (block 1210), buffer post processing

is performed to identify a synchronize symbol and corresponding message symbols (block 1212),

An example process for performing post-processing is described in conjunction with FIG. 15.

[0122] After post processing is performed to identify a transmitted message (block

1212), message validation is performed to verify the validity of the message (block 1214). An

example process for performing the message validation is described in conjunction with FIG. 18.

[0123] After a message has been validated (block 1214), the message is converted

from symbols to bits using the active symbol table (block 1216). Control then returns to block

1106 to process the next set of samples.

[0124] FIG. 13 illustrates an example process for stacking audio signal samples to

accentuate an encoded code signal to implement the stack audio process 1204 of FIG. 12. The

example process may be carried out by the stacker 1104 and the stacker controller 1106 of FIG.

11. The example process begins by determining if the stacker control is enabled (block 1302).

When the stacker control is not enabled, no stacking is to occur and the process of FIG. 13 ends

and control returns to block 1206 of FIG. 12 to process the audio signal samples unstacked.

[0125] When the stacker control is enabled, newly received audio signal samples are

pushed into a buffer and the oldest samples are pushed out (block 1304). The buffer stores a

plurality of samples. For example, when a particular message is repeatedly encoded in an audio

signal every two seconds and the encoded audio is sampled at 8KHz, each message will repeat

every 16,000 samples so that buffer will store some multiple of 16,000 samples (e.g., the buffer

may store six messages with a 96,000 sample buffer). Then, the stacker 1108 selects

substantially equal blocks of samples in the buffer (block 1306). The substantially equal blocks

of samples are then summed (block 1308). For example, sample one is added to samples 16,001,

32,001, 48,001, 64,001, and 80,001, sample two is added to samples 16,002, 32,002, 48,002,

64,002, 80,002, sample 16,000 is added to samples 32,000, 48,000, 64,000, 80,000, and 96,000.

32

WO 2010/048458 PCT/US2009/061749

[0126] After the audio signal samples in the buffer are added, the resulting sequence is

divided by the number of blocks selected (e.g., six blocks) to calculate an average sequence of

samples (e.g., 16,000 averaged samples) (block 1310). The resulting average sequence of

samples is output by the stacker (block 1312). The process of FIG. 13 then ends and control

returns to block 1206 of FIG. 12.

[0127] FIG. 14 illustrates an example process for implementing the symbol

determination process 1210 after the received audio signal has been converted to the frequency

domain. The example process of FIG. 14 maybe performed by the decoder 116 of FIGS. 1 and

11. The example process of FIG. 14 begins by normalizing the code frequencies in each of the

critical bands (block 1402). For example, the code frequencies may be normalized so that the

frequency with the greatest amplitude is set to one and all other frequencies in that critical band

are adjusted accordingly. In the example decoder 116 of FIG. 11, the normalization is performed

by the critical band normalizer 1110.

[0128] After the frequencies of interest have been normalized (block 1402). The

example symbol scorer 1112 selects the appropriate symbol table based on the previously

determined synchronization table (block 1404). For example, a system may include two symbol

tables: one table for a normal synchronization and one table for an pre-existing code flag

synchronization. Alternatively, the system may include a single symbol table or may include

multiple synchronization tables that may be identified by synchronization symbols (e.g., cross­

table synchronization symbols). The symbol scorer 1112 then computes a symbol score for each

symbol in the selected symbol table (block 1406). For example, the symbol scorer 1112 may

iterate across each symbol in the symbol table and add the normalized scores for each of the

frequencies of interest for the symbol to compute a symbol score.

[0129] After each symbol is scored (block 1406), the example max score selector 1114

selects the symbol with the greatest score (block 1408). The example comparator 1116 then

determines if the score for the selected symbol exceeds a maximum score threshold (block

1410). When the score does not exceed the maximum score threshold, an error indication is

stored in the circular buffers (e.g., the circular buffers 1118 and the pre-existing code flag

33

WO 2010/048458 PCT/US2009/061749

circular buffers 1120) (block 1412). The process of FIG. 14 then completes and control returns

to block 1212 of FIG. 12.

[0130] When the score exceeds the maximum score threshold (block 1410), the

identified symbol is stored in the circular buffers (e.g., the circular buffers 1118 and the pre­

existing code flag circular buffers 1120) (block 1414). The process of FIG. 14 then completes

and control returns to block 1212 of FIG. 12.

[0131] FIG. 15 illustrates an example process for implementing the buffer post

processing 1212 of FIG. 12. The example process of FIG. 15 begins when the message identifier

1122 of FIG. 11 searches the circular buffers 1118 and the circular buffers 1120 for a

synchronization indication (block 1502).

[0132] For example, FIG. 16 illustrates an example implementation of circular buffers

1118 and FIG. 17 illustrates an example implementation of pre-existing code flag circular buffers

1120. In the illustrated example of FIG. 16, the last location in the circular buffers to have been

filled is location three as noted by the arrow. Accordingly, the sample index indicates the

location in the audio signal samples that resulted in the symbols stored in location three.

Because the line corresponding to sliding index 37 is a circular buffer, the consecutively

identified symbols are 128, 57, 22, 111, 37, 23, 47, and 0. Because 128 in the illustrated example

is a synchronize symbol, the message can be identified as the symbols following the synchronize

symbol. The message identifier 1122 would wait until 7 symbols have been located following

the identification of the synchronization symbol at sliding index 37.

[0133] The pre-existing code flag circular buffers 1120 of FIG. 17 include two

locations for each circular buffer because the pre-existing code flag message of the illustrated

example comprises one pre-existing code flag synchronize symbol (e.g., symbol 254) followed

by a single message symbol. According to the illustrated example of FIG. 2, the pre-existing

code flag data block 230 is embedded in two long blocks immediately following the 7 bit

timestamp long block 228. Accordingly, because there are two long blocks for the pre-existing

code flag data and each long block of the illustrated example is 1,536 samples at a sampling rate

of 8 KHz, the pre-existing code flag data symbol will be identified in the pre-existing code flag

circular buffers 3072 samples after the original message. In the illustrated example FIG. 17,

34

WO 2010/048458 PCT/US2009/061749

sliding index 37 corresponds to sample index 38744, which is 3072 samples later than sliding

index 37 of FIG. 16 (sample index 35672). Accordingly, the pre-existing code flag data symbol

68 can be determined to correspond to the message in sliding index 37 of FIG. 16, indicating that

the message in sliding index 37 of FIG. 16 identifies an original encoded message (e.g., identifies

an original broadcaster of audio) and the sliding index 37 identifies an pre-existing code flag

message (e.g., identifies a re-broadcaster of audio).

[0134] Returning to FIG. 12, after a synchronize or pre-existing code flag synchronize

symbol is detected, messages in the circular buffers 1118 or the pre-existing code flag circular

buffers 1120 are condensed to eliminate redundancy in the messages. For example, as illustrated

in FIG. 16, due to the sliding time domain to frequency domain conversion and duration of

encoding for each message, messages are identified in audio data for a period of time (sliding

indexes 37-39 contain the same message). The identical messages in consecutive sliding indexes

can be condensed into a single message because they are representative of only one encoded

message. Alternatively, condensing may be eliminated and all messages may be output when

desired. The message identifier 1122 then stores the condensed messages in a filter stack

associated with the validator 1124 (block 1506). The process of FIG. 15 then ends and control

returns to block 1214 of FIG. 12.

[0135] FIG. 18 illustrates an example process to implement the message validation

process 1214 of FIG. 12. The example process of FIG. 12 may be performed by the validator

1124 of FIG. 11. The example process of FIG. 18 begins when the validator 1124 reads the top

message in the filter stack (block 1802).

[0136] For example, FIG. 19 illustrates an example implementation of a filter stack.

The example filter stack includes a message index, seven symbol locations for each message

index, a sample index identification, and a validation flag for each message index. Each message

is added at message index M7 and a message at location M0 is the top message that is read in

block 1802 of FIG. 18. Due to sampling rate variation and variation of the message boundary

within a message identification, it is expected that messages will be separated by samples

indexes of multiples of approximately 16,000 samples when messages are repeated every 16,000

samples.

35

WO 2010/048458 PCT/US2009/061749

[0137] Returning to FIG. 19, after the top message in the filter stack is selected (block

1802), the validator 1124 determines if the validation flag indicates that the message has been

previously validated (block 1804). For example, FIG. 19 indicates that message M0 has been

validated. When the message has been previously validated, the validator 1124 outputs the

message (block 1812) and control proceeds to block 1816.

[0138] When the message has not been previously validated (block 1804), the validator

1124 determines if there is another suitably matching message in the filter stack (block 1806). A

message may be suitably matching when it is identical to another message, when a threshold

number of message symbols match another message (e.g., four of the seven symbols), or when

any other error determination indicates that two messages are similar enough to speculate that

they are the same. According to the illustrated example, messages can only be partially validated

with another message that has already been validated. When a suitable match is not identified,

control proceeds to block 1814.

[0139] When a suitable match is identified, the validator 1124 determines if a time

duration (e.g., in samples) between identical messages is proper (block 1808). For example,

when messages are repeated every 16,000 samples, it is determined if the separation between two

suitably matching messages is approximately a multiple of 16,000 samples. When the time

duration is not proper, control proceeds to block 1814.

[0140] When the time duration is proper (block 1808), the validator 1124 validates

both messages by setting the validation flag for each of the messages (block 1810). When the

message has been validated completely (e.g., an exact match) the flag may indicate that the

message is fully validated (e.g., the message validated in FIG. 19). When the message has only

been partially validated (e.g., only four of seven symbols matched), the message is marked as

partially validated (e.g., the message partially validated in FIG. 19). The validator 1124 then

outputs the top message (block 1812) and control proceeds to block 1816.

[0141] When it is determined that there is not a suitable match for the top message

(block 1806) or that the time duration between a suitable match(es) is not proper (block 1808),

the top message is not validated (block 1814). Messages that are not validated are not output

from the validator 1124.

36

WO 2010/048458 PCT/US2009/061749

[0142] After determining not to validate a message (blocks 1806, 1808, and 1814) or

outputting the top message (block 1812), the validator 1816 pops the filter stack to remove the

top message from the filter stack. Control then returns to block 1802 to process the next message

at the top of the filter stack.

[0143] While example manners of implementing any or all of the example encoder 102

and the example decoder 116 have been illustrated and described above one or more of the data

structures, elements, processes and/or devices illustrated in the drawings and described above

may be combined, divided, re-arranged, omitted, eliminated and/or implemented in any other

way. Further, the example encoder 102 and example decoder 116 may be implemented by

hardware, software, firmware and/or any combination of hardware, software and/or firmware.

Thus, for example, the example encoder 102 and the example decoder 116 could be implemented

by one or more circuit(s), programmable processor(s), application specific integrated circuit(s)

(ASIC(s)), programmable logic device(s) (PLD(s)) and/or field programmable logic device(s)

(FPLD(s)), etc. For example, the decoder 116 may be implemented using software on a platform

device, such as a mobile telephone. If any of the appended claims is read to cover a purely

software implementation, at least one of the prior code detector 204, the example message

generator 210, the symbol selector 212, the code frequency selector 214, the synthesizer 216, the

inverse FFT 218, the mixer 220, the overlapping short block maker 240, the masking evaluator

242, the critical band pair definer 702, the frequency definer 704, the number generator 706, the

redundancy reducer 708, the excess reducer 710, the code frequency definer 712, the LUT filler

714, the sampler 1102, the stacker 1104, the stacker control 1106, the time domain to frequency

domain converter 1108, the critical band normalize 1110, the symbol scorer 1112, the max score

selector 1114, the comparator 1116, the circular buffers 1118, the pre-existing code flag circular

buffers 1120, the message identifier 1122, the validator 1124, and the symbol to bit converter

1126 are hereby expressly defined to include a tangible medium such as a memory, DVD, CD,

etc. Further still, the example encoder 102 and the example decoder 116 may include data

structures, elements, processes and/or devices instead of, or in addition to, those illustrated in the

drawings and described above, and/or may include more than one of any or all of the illustrated

data structures, elements, processes and/or devices.

37

WO 2010/048458 PCT/US2009/061749

[0144] FIG. 20 is a schematic diagram of an example processor platform 2000 that may

be used and/or programmed to implement any or all of the example encoder 102 and the decoder

116, and/or any other component described herein. For example, the processor platform 2000

can be implemented by one or more general purpose processors, processor cores,

microcontrollers, etc. Additionally, the processor platform 2000 be implemented as a part of a

device having other functionality. For example, the processor platform 2000 may be

implemented using processing power provided in a mobile telephone, or any other handheld

device.

[0145] The processor platform 2000 of the example of FIG 20 includes at least one

general purpose programmable processor 2005. The processor 2005 executes coded instructions

2010 and/or 2012 present in main memory of the processor 2005 (e.g., within a RAM 2015

and/or a ROM 2020). The processor 2005 may be any type of processing unit, such as a

processor core, a processor and/or a microcontroller. The processor 2005 may execute, among

other things, example machine accessible instructions implementing the processes described

herein. The processor 2005 is in communication with the main memory (including a ROM 2020

and/or the RAM 2015) via a bus 2025. The RAM 2015 may be implemented by DRAM,

SDRAM, and/or any other type of RAM device, and ROM may be implemented by flash

memory and/or any other desired type of memory device. Access to the memory 2015 and 2020

may be controlled by a memory controller (not shown).

[0146] The processor platform 2000 also includes an interface circuit 2030. The

interface circuit 2030 may be implemented by any type of interface standard, such as a USB

interface, a Bluetooth interface, an external memory interface, serial port, general purpose

input/output, etc. One or more input devices 2035 and one or more output devices 2040 are

connected to the interface circuit 2030.

[0147] Although certain example apparatus, methods, and articles of manufacture are

described herein, other implementations are possible. The scope of coverage of this patent is not

limited to the specific examples described herein. On the contrary, this patent covers all

apparatus, methods, and articles of manufacture falling within the scope of the invention.

38

29-04-11:12:09 : ΕΚΜ IP Austral ia :+61 3 9829 0998 # 14/ 1S

-38a-
20

09
30

83
04

29

 A
pr

 2
01

1 Where the terms “comprise”, “comprises”, “comprised” or “comprising” are used in
this specification, they are to be interpreted as specifying the presence of the stated
features, integers, steps or components referred to, but not to preclude the presence
or addition of one or more other features, integers, steps, components to be grouped

5 therewith.

PYHanley Flight & Zimmerman LLC\NieIsen\PCT 061749- Perform Audio Watermarking and Watermark Detection and ExtractiorfAmended pages 290420tt.doc

COMS ID No: ARCS-319078 Received by IP Australia: Time (H:m) 12:17 Date (Y-M-d) 2011-04-29

-39-

20
09

30
83

04

19
 M

ar
 2

01
4 CLAIMS:

1. A method to transform media to include an encoding, the method comprising:

detecting in received audio samples, a first encoding, comprising a first

synchronization symbol and a first identification code, the first encoding having been

encoded based on a first look-up table correlating symbols of the first encoding with

characteristics of the audio samples to be modified to encode the symbols of the first

encoding;

in response to the detection, generating a pre-existing code flag comprising a pre­

existing code flag synchronization symbol and a second identification code, the pre­

existing code flag generated based on a second look-up table correlating the pre-existing

code flag synchronization symbol and symbols of the second identification code with a

characteristic of the audio samples to be modified to encode the pre-existing code flag

synchronization symbol and the symbols of the second identification code, wherein the

pre-existing code flag synchronization symbol is encoded using a different characteristic of

the audio than the first synchronization symbol;

encoding the pre-existing code flag information in the audio samples to transform

the audio samples into encoded audio samples comprising the first encoding and the pre­

existing code flag; and

storing the encoded audio samples in a tangible memory.

2. A method as defined in claim 1, wherein the first identification code comprises the

first encoding at a first time and a second encoding at a second time and the second

identification code is encoded between the first encoding and the second encoding.

3. A method as defined in claim 2, wherein encoding the pre-existing code flag

comprises encoding the pre-existing code flag synchronization symbol between the first

encoding and the second encoding.

4. A method as defined in claim 1, wherein the second identification code is encoded

by:

identifying a set of frequencies corresponding to the second identification code;

and

emphasizing the frequencies in the set of frequencies.

8455833_1 P013241

-40-

20
09

30
83

04

19
 M

ar
 2

01
4

5. A method as defined in claim 4, wherein the emphasizing of the frequencies

comprises:

generating a code signal having a frequency from the set of frequencies

emphasized; and

adding the code signal to the audio samples.

6. A method as defined in claim 1, wherein the first identification code identifies a

first media distributor that broadcast media of the audio samples at a first time and the

second identification code identifies a second media distributor that broadcast the media at

a second time later than the first time.

7. An apparatus to transform media to include an encoding, the apparatus comprising:

a prior code detector to detect a first encoding in received audio samples, the first

encoding comprising a first synchronization symbol and a first identification code, the first

encoding having been encoded based on a first look-up table correlating symbols of the

first encoding with a characteristic of the audio samples to be modified to encode the

symbols of the first encoding;

a code frequency selector to identify a set of frequencies corresponding to a second

identification code;

a code signal synthesizer to, in response to the detection, generate a pre-existing

code flag comprising a pre-existing code flag synchronization symbol and the second

identification code, the pre-existing code flag generated by a code signal having a

frequency from the set of frequencies to be emphasized; and

a mixer to combine the pre-existing code flag and the audio samples to transform

the audio samples into encoded audio samples comprising the first encoding and the pre­

existing code flag, the mixer to store the encoded audio samples in a tangible memory.

8. An apparatus as defined in claim 7, wherein the first identification code comprises

first encoding at a first time and a second encoding at a second time and the second

identification code is encoded between the first encoding and the second encoding.

8455833_1 P013241

-41 -

20
09

30
83

04

19
 M

ar
 2

01
4 9. An apparatus as defined in claim 8, wherein encoding the pre-existing code flag

comprises encoding the pre-existing code flag synchronization symbol between the first

encoding and the second encoding.

10. An apparatus as defined in claim 7, wherein the first encoded identification code

identifies a first media distributor that broadcast media of the audio samples at a first time

and the second encoded identification code identifies a second media distributor that

broadcast the media at a second time later than the first time.

11. A tangible computer readable storage medium comprising instructions that, when

executed, cause a machine to transform media to include an encoding by at least:

detecting a first encoding in received audio samples, the first encoding comprising

a first synchronization symbol and a first identification code, the first encoding having

been encoded based on a first look-up table correlating symbols of the first encoding with

a characteristic of the audio samples to be modified to encode the symbols of the first

encoding;

in response to the detection, generating a pre-existing code flag comprising a pre­

existing code flag synchronization symbol and a second identification code, the pre­

existing code flag generated based on a second look-up table correlating the pre-existing

code flag synchronization symbol and symbols of the second identification code with a

characteristic of the audio samples to be modified to encode the pre-existing code flag

synchronization symbol and the symbols of the second identification code, wherein the

pre-existing code flag synchronization symbol is encoded using a different characteristic of

the audio than the first synchronization symbol;

encoding the pre-existing code flag in the audio samples to transform the audio

samples into encoded audio samples comprising the first encoding and the pre-existing

code flag;

storing the encoded audio samples in a tangible memory.

12. A tangible computer readable medium as defined in claim 11, wherein the first

identification code comprises the first encoding at a first time and a second encoding at a

second time and-the second identification code is encoded between the first encoding and

the second encoding.

8455833_1 P013241

-42-

20
09

30
83

04

19
 M

ar
 2

01
4 13. A tangible computer readable medium as defined in claim 12, wherein encoding the

pre-existing code flag comprises encoding the pre-existing code flag synchronization

symbol between the first encoding and the second encoding.

14. A tangible computer readable medium as defined in claim 11, wherein the

instructions cause the machine to encode the second encoded identification code by:

identifying a set of frequencies corresponding to the second identification code;

and

emphasizing the frequencies in the set of frequencies.

15. A tangible computer readable medium as defined in claim 14, wherein the

instructions causing the machine to emphasize the frequencies comprises:

generating at least one code signal having at least one frequency from the set of

frequencies amplified; and

adding the at least one code signal to the audio samples.

16. A method to transform media to include an encoding, substantially as hereinbefore

described with reference to the accompanying drawings.

17. An apparatus to transform media to include an encoding, substantially as

hereinbefore described with reference to the accompanying drawings.

18. A tangible computer readable storage medium comprising instructions that, when

executed, cause a machine to transform media to include an encoding, substantially as

hereinbefore described with reference to the accompanying drawings.

The Nielsen Company (US), LLC
Patent Attorneys for the Applicant

Spruson & Ferguson

8455833_1 P013241

WO 2010/048458 PCT/US2009/061749
1/19

οο

11
2

D
AT

A
TO

 H
O

M
E

U
NI

T

Ο

ο

08
30

4
30

 A
ug

 2
01

3

2/19

CO
OO<N

CMO

WO 2010/048458 PCT/US2009/061749
3/19

302 304306 308 310 312 314 316

232 A

Symbols \ \ \ Frequenc^ Indices \ \ \

0 188 296 360 403 469 546 614
1 216 252 360 437 473 579 615
2 216 253 361 438 474 578 614
3 216 254 362 439 475 577 613
4 216 255 363 440 476 576 612
5 216 257 365 432 468 584 620
6 216 258 366 433 469 583 619
7 216 259 367 434 470 582 618
8 216 260 368 435 471 581 617
9 216 288 324 401 509 543 651
10 216 289 325 402 510 542 650
11 216 290 326 403 511 541 649
12 216 291 327 404 512 540 648
13 216 293 329 396 504 548 656
14 216 294 330 397 505 547 655
15 216 295 331 398 506 546 654
16 216 296 332 399 507 545 653
17 217 252 361 439 476 584 619
18 217 253 360 440 475 583 620
19 217 254 363 437 474 582 617
20 217 255 362 438 473 581 618
21 217 257 366 434 471 579 614
22 217 258 365 435 470 578 615
23 217 259 368 432 469 577 612
24 217 260 367 433 468 576 613
25 217 288 325 403 512 548 655
26 217 289 324 404 511 547 656
27 217 290 327 401 510 546 653
28 217 291 326 402 509 545 654
29 217 293 330 398 507 543 650
30 217 294 329 399 506 542 651
31 217 295 332 396 505 541 648
32 217 296 331 397 504 540 649
33 218 252 362 440 474 543 649
34 218 253 363 439 473 542 648
35 218 254 360 438 476 541 651
36 218 255 361 437 475 540 650
37 218 257 367 435 469 548 654
38 218 258 368 434 468 547 653
39 218 259 365 433 471 546 656
40 218 260 366 432 470 545 655
41 218 288 326 404 510 579 613
42 218 289 327 403 509 578 612

FIG. 3

WO 2010/048458 PCT/US2009/061749
4/19

Symbols Frequency Inc ices
43 218 290 324 402 512 577 615
44 218 291 325 401 511 576 614
45 218 293 331 399 505 584 618
46 218 294 332 398 504 583 617
47 218 295 329 397 507 582 620
48 218 296 330 396 506 581 619
49 219 252 363 438 475 548 653
50 219 253 362 437 476 547 654
51 219 254 361 440 473 546 655
52 219 255 360 439 474 545 656
53 219 257 368 433 470 543 648
54 219 258 367 432 471 542 649
55 219 259 366 435 468 541 650
56 219 260 365 434 469 540 651
57 219 288 327 402 511 584 617
58 219 289 326 401 512 583 618
59 219 290 325 404 509 582 619
60 219 291 324 403 510 581 620
61 219 293 332 397 506 579 612
62 219 294 331 396 507 578 613
63 219 295 330 399 504 577 614
64 219 296 329 398 505 576 615
65 221 252 365 401 504 582 613
66 221 253 366 402 505 581 612
67 221 254 367 403 506 584 615
68 221 255 368 404 507 583 614
69 221 257 360 396 509 577 618
70 221 258 361 397 510 576 617
71 221 259 362 398 511 579 620
72 221 260 363 399 512 578 619
73 221 288 329 437 468 546 649
74 221 289 330 438 469 545 648
75 221 290 331 439 470 548 651
76 221 291 332 440 471 547 650
77 221 293 324 432 473 541 654
78 221 294 325 433 474 540 653
79 221 295 326 434 475 543 656
80 221 296 327 435 476 542 655
81 222 252 366 403 507 577 617
82 222 253 365 404 506 576 618
83 222 254 368 401 505 579 619
84 222 255 367 402 504 578 620
85 222 257 361 398 512 582 612

FIG. 4

WO 2010/048458 PCT/US2009/061749
5/19

Symbols Frequency Inc ices
86 222 258 360 399 511 581 613
87 222 259 363 396 510 584 614
88 222 260 362 397 509 583 615
89 222 288 330 439 471 541 653
90 222 289 329 440 470 540 654
91 222 290 332 437 469 543 655
92 222 291 331 438 468 542 656
93 222 293 325 434 476 546 648
94 222 294 324 435 475 545 649
95 222 295 327 432 474 548 650
96 222 296 326 433 473 547 651
97 223 252 367 404 505 546 651
98 223 253 368 403 504 545 650
99 223 254 365 402 507 548 649
100 223 255 366 401 506 547 648
101 223 257 362 399 510 541 656
102 223 258 363 398 509 540 655
103 223 259 360 397 512 543 654
104 223 260 361 396 511 542 653
105 223 288 331 440 469 582 615
106 223 289 332 439 468 581 614
107 223 290 329 438 471 584 613
108 223 291 330 437 470 583 612
109 223 293 326 435 474 577 620
110 223 294 327 434 473 576 619
111 223 295 324 433 476 579 618
112 223 296 325 432 475 578 617
113 224 252 368 402 506 541 655
114 224 253 367 401 507 540 656
115 224 254 366 404 504 543 653
116 224 255 365 403 505 542 654
117 224 257 363 397 511 546 650
118 224 258 362 396 512 545 651
119 224 259 361 399 509 548 648
120 224 260 360 398 510 547 649
121 224 288 332 438 470 577 619
122 224 289 331 437 471 576 620
123 224 290 330 440 468 579 617
124 224 291 329 439 469 578 618
125 224 293 327 433 475 582 614
126 224 294 326 432 476 581 615
127 224 295 325 435 473 584 612

FIG. 5

WO 2010/048458 PCT/US2009/061749
6/19

FIG.6

WO 2010/048458 PCT/US2009/061749
7/19

FI
G

. 7

70
0

WO 2010/048458 PCT/US2009/061749
8/19

800 A

806

802

804

810

812

FIG. 8

814

WO 2010/048458 PCT/US2009/061749
9/19

ο
οο

WO 2010/048458 PCT/US2009/061749
10/19

FI
G

. 1
0

WO 2010/048458 PCT/US2009/061749
11/19

ο
Q=)<
XO'

WO 2010/048458 PCT/US2009/061749
12/19

FIG. 12

WO 2010/048458 PCT/US2009/061749
13/19

1204 A

1302

1304

1306

1308

1310

1312

FIG. 13

WO 2010/048458 PCT/US2009/061749
14/19

(^SYMBOL DETERMINATION)

1210 A

1402

1
NORMALIZE THE

CODE FREQUENCIES
WITHIN EACH

CRITICAL BAND

1404

1406

1408

FIG. 14

WO 2010/048458 PCT/US2009/061749
15/19

1212 A

FIG. 15

cn
ο(Μ
Οβ

Ο
cn

16/19

ζ

<οο
’ΓΙ­
Ο
cnοο
ο
cn
ο
ο
ο
(Μ

ζLU
IX(X
DΟ

SA
M

PL
E

IN
D

EX ο
ΟΊm

■

35
67

2
35

68
0

35
68

8

36
90

4

r-
00
CM - 00

CM

ο 12
8

CM
CM

CM
CM

CM
CM

00
CM

υη 12
8

>· C-wn C^
un

...
00
CM

υη
cn

iloo
|CM
i 12

8
12

8

. ·. ...
00
CM

Γ*Ί
00 j
CJi

I

11
o © 12

8

CM
CM
m

r^·
’rt ...

00
CM

,
....

12
8

m
CM

m
CM

cn
CM

•..
00
CM

ο
00
CM t-

cn cn cn
00
CM

SL
ID

IN
G

IN
D

EX
ό cn

γ-*
m

oom o>m
σΐ

<Ο

Ο
LL

12
8

39
97

6

LL.

οο

WO 2010/048458 PCT/US2009/061749
17/19

1214^ (MESSAGE VALIDATION)

1802 ^ READ TOP MESSAGE
IN THE FILTER STACK

1814

1816

1804 PREVIOUSLY
VALIDATED?

1806
IS THERE A
MATCHING

MESSAGE IN THE
FILTER STACK?

NO

NO

MESSAGE NOT
VALIDATED

POP THE FILTER
STACK

YES

YES

1808

IS THE TIME
DURATION

BETWEEN THE
MATCHING
MESSAGES
PROPER?

1810

NO

VALIDATE BOTH
MATCHING MESSAGES

1812

FIG. 18

WO 2010/048458 PCT/US2009/061749
18/19

V
A

LI
D

A
TI

O
N

FL
A

G
V

A
LI

D
A

TE
D

 |

PA
R

TI
A

LL
Y

V
A

LI
D

A
TE

D

SA
M

PL
E

IN
D

EX
35

68
0

|

67
67

0

D
6

o CC

D
5 c- 33

D
4

23 23

D
3

cc 37

D
2 in

 1
11

1

D
I Cl

C4
cc

D
O C-

OC 57

M
ES

SA
G

E
IN

D
EX

| M
O

|

M
7

Ο

LL

WO 2010/048458 PCT/US2009/061749
19/19

2000

FIG. 20

