
MAT LADE MORA TUTTI UNITI MULAI MITHAL US 20180239725A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0239725 A1

Kumar et al . (43) Pub . Date : Aug . 23 , 2018

(54) PERSISTENT REMOTE DIRECT MEMORY
ACCESS

(71) Applicant : Intel Corporation , Santa Clara , CA
(US)

G06F 3 / 06 (2006 . 01)
G06F 13 / 40 (2006 . 01)

(52) U . S . CI .
CPC G06F 13 / 28 (2013 . 01) ; G06F 12 / 0891

(2013 . 01) ; G06F 3 / 0619 (2013 . 01) ; G06F
3 / 061 (2013 . 01) ; G06F 2212 / 60 (2013 . 01) ;

G06F 3 / 067 (2013 . 01) ; G06F 13 / 4022
(2013 . 01) ; GO6F 13 / 4068 (2013 . 01) ; G06F

370656 (2013 . 01)

(72) Inventors : Karthik Kumar , Chandler , AZ (US) ;
Suleyman Sair , Phoenix , AZ (US) ;
Francesc Guim Bernat , Barcelona
(ES) ; Thomas Willhalm , Sandhausen
(DE) ; Daniel Rivas Barragan , Cologne
(DE) (57) ABSTRACT

(73) Assignee : Intel Corporation , Santa Clara , CA
(US)

(21) Appl . No . : 15 / 435 , 886
(22) Filed : Feb . 17 , 2017

In an example , there is disclosed a computing apparatus ,
including : a host fabric interface (HFI) for communicatively
coupling to a fabric controller of a fabric ; an asynchronous
data refresh (ADR) having an auxiliary power and an ADR
buffer ; and a memory controller including logic to : directly
access a persistent fast memory of a remote computing
device via the fabric ; detect a primary power failure event ;
and flush data from the ADR buffer to the fabric controller .

(51)
Publication Classification

Int . Cl .
G06F 13 / 28 (2006 . 01)
G06F 12 / 0891 (2006 . 01)

100
CSP
102 DATA CENTER

142 1 ENTERPRISE
CLIENT
130

ENTERPRISE
NETWORK

170
104

MGMT
CONSOLE

140

USER
EQUIPMENT

110
EXTERNAL
NETWORK

172 0
SECURITY
ADMIN
150 END USER

120 ATTACKER
180

SECURITY
SERVICES
PROVIDER

190

100

CSP 102

DATA CENTER 142

ENTERPRISE CLIENT 130

Patent Application Publication

II .

ENTERPRISE NETWORK 170
104

MGMT CONSOLE 140 W

USER EQUIPMENT 110

EXTERNAL NETWORK 172

Aug . 23 , 2018 Sheet 1 of 13

SECURITY ADMIN

END USER 120

150

ATTACKER 180

SECURITY SERVICES PROVIDER 190

Sve

Fig . 1a

US 2018 / 0239725 A1

DATA CENTER 142

SWITCHING FABRIC 174 - 3
* * * : * ^

Patent Application Publication

SWITCHING FABRIC 174 - 1

SWITCHING FABRIC 174 - 2

WORKLOAD CLUSTER 118 - 1

? ? ?

T

WORKLOAD CLUSTER 118 - 2
W

wvvwv

146

WW

Aug . 23 , 2018 Sheet 2 of 13

100000

SOCCORRETOTREX

LIIIIIIIKE

100000

SVI

- - - - - - - - -

- -

- - - - -

- -

MIDI

US 2018 / 0239725 A1

Fig . 1b

CLIENT DEVICE 200

NETWORK INTERFACE 260

MEMORY BUS 270 - 3
OPERATING SYSTEM 222

Patent Application Publication

o

PROCESSOR 210

RDMA ENGINE 224

MEMORY 220

SYSTEM BUS 270 - 1

Aug . 23 , 2018 Sheet 3 of 13

V / O DRIVER
246

PERIPHERAL INTERFACE 240 3316
AUDIO DRIVER 244

STORAGE 250

DISPLAY ADAPTER 242
Fig . 2

US 2018 / 0239725 A1

SERVER DEVICE 300 k

Patent Application Publication

STORAGE 350

MEMORY BUS 370 - 3
OPERATING SYSTEM 322

We

HFI 360 WOOD
D

PROCESSOR 310

IDE

H

MEMORY SERVER ENGINE 324

MEMORY 320

SYSTEM BUS

Aug . 23 , 2018 Sheet 4 of 13

370 - 1

Fig . 3

US 2018 / 0239725 A1

410

SDN CONTROLLER

SDN APPLICATIONS commune har noen

SOFTWARE - DEFINED NETWORK 400

Patent Application Publication

430 - 3

430 - 1

430 - 2

Pz _ 2

ND3

430 - 2

430 - 5

p2

w

ND1

ND2

430 - 4

ND5

9

intention

P3

P3

P4

P1

ND4

in this thesis is the best in this is the intention think intention to the

HOST A 440 - 1

HOST B 440 - 2

HOST D 440 - 3

Aug . 23 , 2018 Sheet 5 of 13

P2

P4
h

fino Temporada

10 . 0 . 0 . 10 fa : 16 : 3e : 01 : 61 : e8

10 . 0 . 0 . 20 fa : 16 : 3e : 01 : 63 : 53

10 . 0 . 0 . 30 fa : 16 : 3e : 01 : 54 : a3

FIREWALL 470 Fig . 4a

US 2018 / 0239725 A1

410

416

422

NFVI 404

VNF 1 FIREWALL

VNF 4 ROUTER

VNF 7 NAT

@ @ @

Patent Application Publication

412

418

424

NFV ORCHESTRATOR 402
VNF 2 INTRUSION DET .

VNF 5 SESSION BORDER CONT .

VNF 8 CALL SECURITY ASSOC .

414

Aug . 23 , 2018 Sheet 6 of 13

420

426

VNF 3 LOAD BALANCER

VNF 6 DPI @ @ @

VNF9 LOAD BALANCER 2

US 2018 / 0239725 A1

Fig . 4b

PLATFORM 502A
VIRTUAL MACHINE 6328

DATA ANALYTICS ENGINE 504

I want VIRTUAL MACHINE 532A

VIRTUAL NETWORK FUNCTION

be to

in

SERVICE FUNCTION CHAIN 536

the

rain

NIC / SWITCH DRIVER 546

Patent Application Publication

534

GUEST SYSTEM 622

DATACENTER MANAGEMENT PLATFORM 506

1 / O DEVICE DRIVER

VIRTUAL SWITCH 538

RESOURCE ALLOC LOGIC 544

524 HYPERVISOR 520

Bu siza

PLATFORM LOGIC 510

CPU 5128

CPU 512C

CPU SLATORI 101 CPU S12E

cousizo

NETWORK 608

CPU 512A

CPU 512D

MEMORY 614

Aug . 23 , 2018 Sheet 7 of 13

CHIPSET 516A

CHIPSET 516B

. . . .

.

.

MANAGEABILITY ENG 526A

532A

MANAGEABILITY ENG 526B

532B

PLATFORM 502B

COMM INTERFACE 528A

COMM INTERFACE 528B

SWITCH 530A

SWITCH 530B

PLATFORM 502C

COMMUNICATION INTERFACE 518

Fig . 5

US 2018 / 0239725 A1

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

630A

wareness a

FRONT END

ILS 672

www

670

w

690 V UNCORE

: :

:

:

:

: :

: : : . . .

:

:

:

:

:

comment and

w

wa

wa

mata wana w

when

time

he same

that

where there

arhitecture

Patent Application Publication

We

w

comment on

??????????????? ???????????????????? ????

w

internet interest in the interest in the interest in the interacting

ALLOCATE 682

w

e

ML $ 676

wie

n concrete

en

RS 684

www

????????????????????? ?? .

LLS 695

www ww w e

$ 17

686A

686N

DOS
674

Aug . 23 , 2018 Sheet 8 of 13

en we are

ROB 688

in

11

11

11
11
11

I

Il
11
11
11
Il
II

II

ED - RAM $ 699

PCU

NVM 650

640

630B

OTHER CORES

US 2018 / 0239725 A1

Fig . 6

630C
6300

CORES 2021

202 SYSTEM 1 710 - 1

CORES 702 - 1

SYSTEM 2 710 - 2

CORES 702 - 2

CACHE 706 - 1

CACHE 706 - 2

Patent Application Publication

MEMORY CONTROLLER 720 - 1
HFI

L CONOCER

MEMORY CONTROLLER 720 - 2
HFI 770 - 2

770 - 1

LOCAL MEMORY 722 - 1
ADR 772 - 1

LOCAL MEMORY 722 - 2
ADR 772 - 2

SWITCH 774

RDMA

come

from

Aug . 23 , 2018 Sheet 9 of 13

ADR 772 - 3 NVM DIMM 748

772

AUXP 780

ADR BUFFERS 782

Fig . 7

US 2018 / 0239725 A1

CORE 702 - 2

CACHE 706 - 1

ADR 772 - 1

SWITCH 774

ADR 772 - 2

MEMC 720 - 2

[? ? ???? REM PSTORE

Patent Application Publication

REM PSTORE

REM PSTORE

NVM STORE

ACK

ACK

REM PSTORE

|

|

?
MEM WRITE

ACK

Aug . 23 , 2018 Sheet 10 of 13

ACK

ACK

10

US 2018 / 0239725 A1

Fig . 8

Patent Application Publication Aug . 23 , 2018 Sheet 11 of 13 US 2018 / 0239725 A1

900 300
+ 2

904

START
PRIMARY
POWER

902

DETECT PRIMARY POWER FAILURE

906
FLUSH CACHE TO ADR BUFFER

910
908

FLUSH ADR BUFFER TO FABRIC ACK

912

ACK RECEIVED ?

999 YES 998
W FAIL FAIL SUCCESS

Fig . 9

Patent Application Publication Aug . 23 , 2018 Sheet 12 of 13 US 2018 / 0239725 A1

1000 000

1004

START
PRIMARY
POWER

1002

DETECT PRIMARY POWER FAILURE

1006

w RECEIVE RDMA DATA

1008

WRITE ROMA DATA TO NVM DIMM

1010
SEND ACK

1014
1012

FLUSH RDMA DATA TO NODE TWO ACK

1016

ACK RECEIVED ?

1098 are not going 1099

REMEDIAL W
ACTION SUCCESS

Fig . 10

Patent Application Publication Patent Application Publication Aug . 23 , 2018 Sheet 13 of 13 Aug . US 2018 / 0239725 A1

1100

1104

PRIMARY
POWER START

1102

? ???? DETECT PRIMARY POWER FAILURE

1104

RECEIVE RDMA DATA FROM FABRIC

1106
wwwwwwwwwwwwwwww .

WRITE TO PERSISTENT FAST MEMORY

1108

SEND ACK SEND ACK
1199

DONE

Fig . 11

US 2018 / 0239725 A1 Aug . 23 , 2018

PERSISTENT REMOTE DIRECT MEMORY
ACCESS

FIELD OF THE SPECIFICATION
[0001] This disclosure relates in general to the field of
cloud computing , and more particularly , though not exclu
sively to , a system and method for persistent remote direct
memory access

[0015] FIG . 8 is a signal flow diagram of a remote
persistent write according to one or more examples of the
present specification .
[00161 FIG . 9 is a flow chart of a method performed by a
first computing system according to one or more examples
of the present specification .
[0017] FIG . 10 is a flow chart of a method performed by
a switching fabric according to one or more examples of the
present specification .
[0018] . FIG . 11 is a flow chart of a method performed by
a second computing system according to one or more
examples of the present specification .

BACKGROUND
[0002] Contemporary computing practice has moved
away from hardware - specific computing and toward “ the
network is the device . ” A contemporary network may
include a datacenter hosting a large number of generic
hardware server devices , contained in a server rack for
example , and controlled by a hypervisor . Each hardware
device may run one or more instances of a virtual device ,
such as a workload server or virtual desktop .
[0003] In some cases , a virtualized network may also
include network function virtualization (NFV) , which pro
vides certain network functions as virtual appliances . These
functions may be referred to as virtual network functions
(VNFs) . In the past , the functions provided by these VNFs
may have been provided by bespoke hardware service
appliances .
[0004) Thus , in a contemporary “ cloud ” architecture , both
network endpoints and network infrastructure may be at
least partially provided in a virtualization layer .

BRIEF DESCRIPTION OF THE DRAWINGS
[0005] The present disclosure is best understood from the
following detailed description when read with the accom
panying figures . It is emphasized that , in accordance with
the standard practice in the industry , various features are not
necessarily drawn to scale , and are used for illustration
purposes only . Where a scale is shown , explicitly or implic
itly , it provides only one illustrative example . In other
embodiments , the dimensions of the various features may be
arbitrarily increased or reduced for clarity of discussion .
[0006] FIG . 1a is a block diagram of a network according
to one or more examples of the present specification .
[0007] FIG . 1b is a block diagram of selected components
of a datacenter in the network according to one or more
examples of the present specification .
[0008] FIG . 2 is a block diagram of selected components
of an end - user computing device according to one or more
examples of the present specification .
[0009] FIG . 3 is a high - level block diagram of a server
according to one or more examples of the present specifi
cation .
[0010] FIG . 4a is a block diagram of software - defined
networking (SDN) according to one or more examples of the
present specification .
[0011] FIG . 4b is a block diagram of network function
virtualization (NFV) according to one or more examples of
the present specification .
[0012] FIG . 5 is a block diagram of a platform architecture
according to one or more examples of the present specifi
cation .
[0013] FIG . 6 is a block diagram of a processor according
to one or more examples of the present specification .
[0014] FIG . 7 is a block diagram of a datacenter according
to one or more examples of the present specification .

EMBODIMENTS OF THE DISCLOSURE
[0019] The following disclosure provides many different
embodiments , or examples , for implementing different fea
tures of the present disclosure . Specific examples of com
ponents and arrangements are described below to simplify
the present disclosure . These are , of course , merely
examples and are not intended to be limiting . Further , the
present disclosure may repeat reference numerals and / or
letters in the various examples . This repetition is for the
purpose of simplicity and clarity and does not in itself dictate
a relationship between the various embodiments and / or
configurations discussed . Different embodiments may have
different advantages , and no particular advantage is neces
sarily required of any embodiment .
10020] Cloud computing and virtualization have led to a
situation where a “ computer ” is hardly recognizable as an
individual entity . In a classic architecture , a so - called “ Von
Neumann ” machine had a processor , a memory , input / output
(IO) facilities , and in later usage) a nonvolatile storage .
While these essential elements still exist , in contemporary
practice , “ the datacenter is the computer " in many cases . For
example , a processor may , in fact , be a service level agree
ment (SLA) guaranteeing access to one or more cores from
a resource pool for a certain minimum time . The storage may
be a virtual disk (VD) with a nominal size that can be
elastically resized , and may include an SLA for a certain
storage bandwidth and capacity . For a virtual desktop , IO
may be handled by a web browser running a virtualization
desktop application on a remote terminal such as a bare
bones “ Chromebook . ” And even memory need not be local
to the processor anymore . As datacenter fabric evolves and
becomes faster , it has become feasible to have dedicated
“ memory servers , " with pools of very fast and powerful
memory that can be allocated to certain processors .
[0021] Recently , Intel® corporation and others have intro
duced revolutionary memory technologies that further push
the boundaries of computing . For example , Intel® ' s “ 3D
Crosspoint ” (3DXP) provides memory that is , like tradi
tional dynamic random access memory (DRAM) , fast (on
the order of traditional DRAM) and bit - addressable , but that
is also persistent like nonvolatile storage technologies (e . g . ,
hard drives or solid state memory) . Stated differently , 3DXP
is a " persistent fast memory , " or in other words , memory that
is faster than traditional nonvolatile storage , and persistent
without the application of power .
[0022] This is a leap forward from decades of software
relying on a two - tier memory scheme , with fast memory and
slow persistent memory . But relying on persistent fast
memory for storage also introduces some new complexities .
For example , the system cannot simply wait for a “ store to
memory ” (STO) instruction to complete and assume that the

US 2018 / 0239725 A1 Aug . 23 , 2018

data are now persistent . Rather , the store could , in the
interim , be sitting somewhere between the volatile caches
and memory controller buffers , having not yet reached
persistency . As this condition is not visible to the application
that issued the STO instruction , the result may be an
inconsistent memory state in the case of a primary power
loss before a datum achieves persistency .
[0023] To address this concern , a system may be provided
with a secondary or auxiliary power facility (e . g . , a battery
or capacitor with sufficient energy reserve to complete a
store operation) and an asynchronous data refresh (ADR)
buffer . In the event of a primary power loss , the auxiliary
power is used to flush data out from cache to the ADR buffer ,
thus completing the persistent store .
[0024] However , with high - speed fabric , even memory
may not be local to the processor . Rather , remote direct
memory access (RDMA) may be used to access memory on
a second machine , which may have a faster or more capable
memory , such as persistent fast memory . In the case of
RDMA , data hosted on a second device is mapped as though
it were local memory , and can be addressed and used as
such . Now , in the case of a primary power loss , several
pieces come into play . A cached store operation must go
from the local cache , out to the switch providing the fabric ,
and then from the switch to the second device providing the
memory . The store is not successfully complete until the
data have been written to persistent memory on the second
device .
[0025] To this end , ADR buffers may be provided on each
of device one , the switch , and device two . Now , in the case
of a primary power failure , the following sequence of events
may occur :

[0026] a . Device one has data in cache , which is tar
geted to persistent fast memory . Using its auxiliary
power , device one flushes the data from cache to its
local ADR buffer .

[0027] b . Using auxiliary power , device one sends the
data via the host fabric interface (HFI) from the ADR
buffer to the switch . The switch responds with an
acknowledgement (ACK) , meaning that from the per
spective of device one , the write is successful .

[0028] c . On the switch , using auxiliary power , the data
are received into an ADR buffer . The ADR buffer may
itself be nonvolatile (e . g . , a dual in - line memory mod
ule (DIMM) or nonvolatile memory (NVM) DIMM) .
Thus , if auxiliary power fails before the transaction is
complete , the data are not lost .

100291 d . Once the switch has received the data into its
ADR buffer , the switch sends to device one an ACK .

[0030] e . The switch now flushes the data out to device
two , which has the target persistent fast memory . After
sending the data out to device two , the switch receives
an ACK from device two , and from the perspective of
the switch , the store is successful .

[0031] f . If the switch fails to receive an ACK from
device two (e . g . , auxiliary power fails before the trans
action is complete) , then the switch may retain the
memory and try the write - out again once power is
restored , or may take some other action such as noti
fying a system administrator .

[0032] g . On device two , the data are received into the
ADR buffer . The data are then flushed to persistent fast
memory , and device two sends an ACK to the switch .

The data are now persistently stored , and may be
recovered when primary power is restored .

[0033] In describing the present architecture , the follow
ing non - exhaustive and nonlimiting list of definitions may
be beneficial .
[0034] caching agents (CA) are the coherency agents
within a node that process memory requests from the cores
within the same node . In current architectures , cores use the
super queue (SQ) structure to store on - die interconnect
requests that are sent to the CA (e . g . , all the different loads
that the core sends to the CA) .
[0035] Home agents (HA) are the node clusters that are
responsible for processing memory requests from the cach
ing agents , and act as a “ home ” for part of the memory
address space (one die can have multiple homes having a
distributed address space mapping) . Depending on the
address space the requests are targeting , they may go to the
same node ' s local memory , they may go the Ultra Path
Interconnect (UPI) agent (formerly called QPI or KTI) to
route the request to the other processors within the same
coherent domain , or they may go through the HFI to
structures that are outside the coherent domain . All the
processors connected through UPI belong to the same coher
ent domain . One system can include one or more coherent
domains , with all the coherent domains connected through
fabric interconnect . For example , high performance com
puting (HPC) or datacenters include N clusters or servers
that can communicate with each other using the fabric .
Using the fabric (such as STL) , each coherent domain can
expose some address regions to the other coherent domains .
The HFI may provide access to traditional node architec
tures and may provide access to newer types of resources ,
such as pooled resources and accelerators .
[0036] A system and method for persistent remote direct
memory access will now be described with more particular
reference to the attached FIGURES . It should be noted that
throughout the FIGURES , certain reference numerals may
be repeated to indicate that a particular device or block is
wholly or substantially consistent across the FIGURES . This
is not , however , intended to imply any particular relationship
between the various embodiments disclosed . In certain
examples , a genus of elements may be referred to by a
particular reference numeral (" widget 10 ”) , while individual
species or examples of the genus may be referred to by a
hyphenated numeral (“ first specific widget 10 - 1 ” and “ sec
ond specific widget 10 - 2 ”) .
[0037] FIG . 1a is a network - level diagram of a network
100 of a cloud service provider (CSP) 102 according to one
or more examples of the present specification . In the
example of FIG . la , network 100 may be configured to
enable one or more enterprise clients 130 to provide services
or data to one or more end users 120 , who may operate user
equipment 110 to access information or services via external
network 172 . This example contemplates an embodiment in
which a cloud service provider 102 is itself an enterprise that
provides third - party “ network as a service ” (NaaS) to enter
prise client 130 . However , this example is nonlimiting .
Enterprise client 130 and CSP 102 could also be the same or
a related entity in appropriate embodiments .
[0038] Enterprise network 170 may be any suitable net
work or combination of one or more networks operating on
one or more suitable networking protocols , including , for
example , a fabric , a local area network , an intranet , a virtual
network , a wide area network , a wireless network , a cellular

US 2018 / 0239725 A1 Aug . 23 , 2018

network , or the Internet (optionally accessed via a proxy ,
virtual machine , or other similar security mechanism) by
way of nonlimiting example . Enterprise network 170 may
also include one or more servers , firewalls , routers , switches ,
security appliances , antivirus servers , or other useful net
work devices , which in an example may be virtualized
within datacenter 142 . In this illustration , enterprise network
170 is shown as a single network for simplicity , but in some
embodiments , enterprise network 170 may include a large
number of networks , such as one or more enterprise intranets
connected to the Internet , and may include datacenters in a
plurality of geographic locations . Enterprise network 170
may also provide access to an external network , such as the
Internet , via external network 172 . External network 172
may similarly be any suitable type of network .
[0039] A datacenter 142 may be provided , for example as
a virtual cluster running in a hypervisor on a plurality of
rackmounted blade servers , or as a cluster of physical
servers . Datacenter 142 may provide one or more server
functions , one or more VNFs , or one or more " microclouds "
to one or more tenants in one or more hypervisors . For
example , a virtualization environment such as vCenter may
provide the ability to define a plurality of “ tenants , " with
each tenant being functionally separate from each other
tenant , and each tenant operating as a single - purpose micro
cloud . Each microcloud may serve a distinctive function ,
and may include a plurality of virtual machines (VMs) of
many different flavors . In some embodiments , datacenter
142 may also provide multitenancy , in which a single
instance of a function may be provided to a plurality of
tenants , with data for each tenant being insulated from data
for each other tenant .
[0040] It should also be noted that some functionality of
user equipment 110 may also be provided via datacenter
142 . For example , one microcloud may provide a remote
desktop hypervisor such as a Citrix workspace , which
allows end users 120 to remotely log in to a remote enter
prise desktop and access enterprise applications , work
spaces , and data . In that case , UE 110 could be a " thin client ”
such as a Google Chromebook , running only a stripped
down operating system , and still provide user 120 useful
access to enterprise resources .
[0041] One or more computing devices configured as a
management console 140 may also operate on enterprise
network 170 . Management console 140 may be a special
case of user equipment , and may provide a user interface for
a security administrator 150 to define enterprise security and
network policies , which management console 140 may
enforce on enterprise network 170 and across client devices
110 and datacenter 142 . In an example , management console
140 may run a server - class operating system , such as Linux ,
Unix , or Windows Server . In another case , management
console 140 may be provided as a web interface , on a
desktop - class machine , or via a VM provisioned within
datacenter 142 .
[0042] Network 100 may communicate across enterprise
boundary 104 with external network 172 . Enterprise bound
ary 104 may represent a physical , logical , or other boundary .
External network 172 may include , for example , websites ,
servers , network protocols , and other network - based ser
vices . CSP 102 may also contract with a third - party security
services provider 190 , such as McAfee® or another security
services enterprise , to provide security services to network
100 .

[0043] It may be a goal of enterprise clients to securely
provide network services to end users 120 via datacenter
142 , as hosted by CSP 102 . To that end , CSP 102 may
provide certain contractual quality of service (QoS) guar
antees and / or service level agreements (SLAS) . QoS may be
a measure of resource performance , and may include factors
such as availability , jitter , bit rate , throughput , error rates ,
and latency , to name just a few . An SLA may be a contractual
agreement that may include QoS factors , as well as factors
such as “ mean time to recovery ” (MTTR) and mean time
between failure (MTBF) . In general , an SLA may be a
higher - level agreement that is more relevant to an overall
experience , whereas QoS may be used to measure the
performance of individual components . However , this
should not be understood as implying a strict division
between QoS metrics and SLA metrics .
J0044 Turning to FIG . 1b , to meet contractual QoS and
SLA requirements , CSP 102 may provision some number of
workload clusters 118 . In this example , two workload clus
ters , 118 - 1 and 118 - 2 are shown , each providing up to 16
rackmount servers 146 in a chassis 148 . These server racks
may be collocated in a single datacenter , or may be located
in different geographic datacenters . Depending on the con
tractual agreements , some servers 146 may be specifically
dedicated to certain enterprise clients or tenants , while
others may be shared .
10045) . Selection of a number of servers to provision in a
datacenter is a nontrivial exercise for CSP 102 . CSP 102 may
wish to ensure that there are enough servers to handle
network capacity , and to provide for anticipated device
failures over time . However , provisioning too many servers
146 can be costly both in terms of hardware cost , and in
terms of power consumption . Thus , ideally , CSP 102 pro
visions enough servers 146 to service all of its enterprise
clients 130 and meet contractual QoS and SLA benchmarks ,
but not have wasted capacity .
[0046] The various devices in datacenter 142 may be
connected to each other via a switching fabric 174 , which
may include one or more high speed routing and / or switch
ing devices . In some cases , switching fabric 174 may be
hierarchical , with , for example , switching fabric 174 - 1 han
dling workload cluster 118 - 1 , switching fabric 174 - 2 han
dling workload cluster 118 - 2 , and switching fabric 174 - 3 .
This simple hierarchy is shown to illustrate the principle of
hierarchical switching fabrics , but it should be noted that this
may be significantly simplified compared to real - life deploy
ments . In many cases , the hierarchy of switching fabric 174
may be multifaceted and much more involved . Common
network architectures include hub - and - spoke architectures
and leaf - spine architectures .
[0047] The fabric itself may be provided by any suitable
interconnect , such as Intel® OmniPathTM , TrueScaleTM ,
Ultra Path Interconnect (UPI) (formerly called QPI or KTI) ,
STL , Ethernet , PCI , or PCIe , to name just a few . Some of
these will be more suitable for certain types of deployments
than others , and selecting an appropriate fabric for the
instant application is an exercise of ordinary skill .
[0048] FIG . 2 is a block diagram of client device 200
according to one or more examples of the present specifi
cation . Client device 200 may be any suitable computing
device . In various embodiments , a " computing device ” may
be or comprise , by way of nonlimiting example , a computer ,
workstation , server , mainframe , virtual machine (whether
emulated or on a " bare - metal ” hypervisor) , embedded com

a

se

US 2018 / 0239725 A1 Aug . 23 , 2018

puter , embedded controller , embedded sensor , personal digi -
tal assistant , laptop computer , cellular telephone , IP tele
phone , smart phone , tablet computer , convertible tablet
computer , computing appliance , network appliance ,
receiver , wearable computer , handheld calculator , or any
other electronic , microelectronic , or microelectromechani
cal device for processing and communicating data . Any
computing device may be designated as a host on the
network . Each computing device may refer to itself as a
" local host , " while any computing device external to it may
be designated as a " remote host . ” In particular , user equip
ment 110 may be a client device 200 , and in one particular
example , client device 200 is a virtual machine configured
for RDMA as described herein .
[0049] Client device 200 includes a processor 210 con
nected to a memory 220 , having stored therein executable
instructions for providing an operating system 222 and at
least software portions of remote direct memory access
(RDMA) engine 224 . Other components of client device 200
include a storage 250 , network interface 260 , and peripheral
interface 240 . This architecture is provided by way of
example only , and is intended to be nonexclusive and
nonlimiting . Furthermore , the various parts disclosed are
intended to be logical divisions only , and need not neces
sarily represent physically separate hardware and / or soft
ware components . Certain computing devices provide main
memory 220 and storage 250 , for example , in a single
physical memory device , and in other cases , memory 220
and / or storage 250 are functionally distributed across many
physical devices , such as in the case of a datacenter storage
pool or memory server . In the case of virtual machines or
hypervisors , all or part of a function may be provided in the
form of software or firmware running over a virtualization
layer to provide the disclosed logical function . In other
examples , a device such as a network interface 260 may
provide only the minimum hardware interfaces necessary to
perform its logical operation , and may rely on a software
driver to provide additional necessary logic . Thus , each
logical block disclosed herein is broadly intended to include
one or more logic elements configured and operable for
providing the disclosed logical operation of that block .
[0050] As used throughout this specification , “ logic ele
ments ” may include hardware (including , for example , a
programmable software , application - specific integrated cir
cuit (ASIC) , or field - programmable gate array (FPGA)) ,
external hardware (digital , analog , or mixed - signal) , soft
ware , reciprocating software , services , drivers , interfaces ,
components , modules , algorithms , sensors , components ,
firmware , microcode , programmable logic , or objects that
can coordinate to achieve a logical operation . Furthermore ,
some logic elements are provided by a tangible , nontransi
tory computer - readable medium having stored thereon
executable instructions for instructing a processor to per
form a certain task . Such a nontransitory medium could
include , for example , a hard disk , solid state memory or disk ,
read - only memory (ROM) , persistent fast memory (PFM)
(e . g . , Intel® 3D Crosspoint) , external storage , redundant
array of independent disks (RAID) , redundant array of
independent nodes (RAIN) , network - attached storage
(NAS) , optical storage , tape drive , backup system , cloud
storage , or any combination of the foregoing by way of
nonlimiting example . Such a medium could also include
instructions programmed into an FPGA , or encoded in
hardware on an ASIC or processor .

[0051] In an example , processor 210 is communicatively
coupled to memory 220 via memory bus 270 - 3 , which may
be , for example , a direct memory access (DMA) bus , by way
of example . However , other memory architectures are pos
sible , including ones in which memory 220 communicates
with processor 210 via system bus 270 - 1 or some other bus .
In datacenter environments , memory bus 270 - 3 may be , or
may include , the fabric .
[0052] Processor 210 may be communicatively coupled to
other devices via a system bus 270 - 1 . As used throughout
this specification , a " bus ” includes any wired or wireless
interconnection line , network , connection , fabric , bundle ,
single bus , multiple buses , crossbar network , single - stage
network , multistage network , or other conduction medium
operable to carry data , signals , or power between parts of a
computing device , or between computing devices . It should
be noted that these uses are disclosed by way of nonlimiting
example only , and that some embodiments may omit one or
more of the foregoing buses , while others may employ
additional or different buses .
[0053] In various examples , a “ processor ” may include
any combination of logic elements operable to execute
instructions , whether loaded from memory , or implemented
directly in hardware , including , by way of nonlimiting
example , a microprocessor , digital signal processor (DSP) ,
field - programmable gate array (FPGA) , graphics processing
unit (GPU) , programmable logic array (PLA) , application
specific integrated circuit (ASIC) , or virtual machine pro
cessor . In certain architectures , a multicore processor may be
provided , in which case processor 210 may be treated as
only one core of a multicore processor , or may be treated as
the entire multicore processor , as appropriate . In some
embodiments , one or more coprocessors may also be pro
vided for specialized or support functions .
[0054] Processor 210 may be connected to memory 220 in
a DMA configuration via bus 270 - 3 . To simplify this dis
closure , memory 220 is disclosed as a single logical block ,
but in a physical embodiment may include one or more
blocks of any suitable volatile or nonvolatile memory tech
nology or technologies , including , for example , double data
rate random access memory (DDR RAM) , static random
access memory (SRAM) , dynamic random access memory
(DRAM) , persistent fast memory (PFM) (such as Intel® 3D
Crosspoint (3DXP)) , cache , L1 or L2 memory , on - chip
memory , registers , flash , ROM , optical media , virtual
memory regions , magnetic or tape memory , or similar .
Memory 220 may be provided locally , or may be provided
elsewhere , such as in the case of a datacenter with a 3DXP
memory server . In certain embodiments , memory 220 may
comprise a relatively low - latency volatile main memory ,
while storage 250 may comprise a relatively higher - latency
nonvolatile memory . However , memory 220 and storage 250
need not be physically separate devices , and in some
examples may represent simply a logical separation of
function . These lines can be particularly blurred in cases
where the only long - term memory is a battery - backed RAM ,
or where the main memory is provided as PFM . It should
also be noted that although DMA is disclosed by way of
nonlimiting example , DMA is not the only protocol consis
tent with this specification , and that other memory architec
tures are available .
[0055] Operating system 222 may be provided , though it
is not necessary in all embodiments . For example , some
embedded systems operate on “ bare metal " for purposes of

US 2018 / 0239725 A1 Aug . 23 , 2018

speed , efficiency , and resource preservation . However , in
contemporary systems , it is common for even minimalist
embedded systems to include some kind of operating sys
tem . Where it is provided , operating system 222 may include
any appropriate operating system , such as Microsoft Win
dows , Linux , Android , Mac OSX , Apple iOS , Unix , or
similar . Some of the foregoing may be more often used on
one type of device than another . For example , desktop
computers or engineering workstations may be more likely
to use one of Microsoft Windows , Linux , Unix , or Mac
OSX . Laptop computers , which are usually a portable off
the - shelf device with fewer customization options , may be
more likely to run Microsoft Windows or Mac OSX . Mobile
devices may be more likely to run Android or iOS . Embed
ded devices often use an embedded Linux or a dedicated
embedded OS such as VxWorks . However , these examples
are not intended to be limiting .
[0056] Storage 250 may be any species of memory 220 , or
may be a separate nonvolatile memory device . Storage 250
may include one or more nontransitory computer - readable
mediums , including , by way of nonlimiting example , a hard
drive , solid - state drive , external storage , redundant array of
independent disks (RAID) , redundant array of independent
nodes (RAIN) , network - attached storage , optical storage ,
tape drive , backup system , cloud storage , or any combina
tion of the foregoing . Storage 250 may be , or may include
therein , a database or databases or data stored in other
configurations , and may include a stored copy of operational
software such as operating system 222 and software portions
of RDMA engine 224 . In some examples , storage 250 may
be a nontransitory computer - readable storage medium that
includes hardware instructions or logic encoded as processor
instructions or on an ASIC . Many other configurations are
also possible , and are intended to be encompassed within the
broad scope of this specification .
[0057] Network interface 260 may be provided to com
municatively couple client device 200 to a wired or wireless
network . A “ network , " as used throughout this specification ,
may include any communicative platform or medium oper
able to exchange data or information within or between
computing devices , including , by way of nonlimiting
example , Ethernet , WiFi , a fabric , an ad - hoc local network ,
an Internet architecture providing computing devices with
the ability to electronically interact , a plain old telephone
system (POTS) , which computing devices could use to
perform transactions in which they may be assisted by
human operators or in which they may manually key data
into a telephone or other suitable electronic equipment , any
packet data network (PDN) offering a communications
interface or exchange between any two nodes in a system , or
any local area network (LAN) , metropolitan area network
(MAN) , wide area network (WAN) , wireless local area
network (WLAN) , virtual private network (VPN) , intranet ,
or any other appropriate architecture or system that facili
tates communications in a network or telephonic environ
ment . Note that in certain embodiments , network interface
260 may be , or may include , a host fabric interface (HFI) .
[0058] RDMA engine 224 , in one example , is operable to
carry out computer - implemented methods as described in
this specification . RDMA engine 224 may include one or
more tangible nontransitory computer - readable mediums
having stored thereon executable instructions operable to
instruct a processor to provide an RDMA engine 224 .
RDMA engine 224 may also include a processor , with

corresponding memory instructions that instruct the proces
sor to carry out the desired method . As used throughout this
specification , an " engine " includes any combination of one
or more logic elements , of similar or dissimilar species ,
operable for and configured to perform one or more methods
or functions of the engine . In some cases , RDMA engine 224
may include a special integrated circuit designed to carry out
a method or a part thereof , and may also include software
instructions operable to instruct a processor to perform the
method . In some cases , RDMA engine 224 may run as a
“ daemon " process . A “ daemon ” may include any program or
series of executable instructions , whether implemented in
hardware , software , firmware , or any combination thereof
that runs as a background process , a terminate - and - stay
resident program , a service , system extension , control panel ,
bootup procedure , BIOS subroutine , or any similar program
that operates without direct user interaction . In certain
embodiments , daemon processes may run with elevated
privileges in a " driver space " associated with ring 0 , 1 , or 2
in a protection ring architecture . It should be noted that
RDMA engine 224 may also include other hardware and
software , including configuration files , registry entries , and
interactive or user - mode software by way of nonlimiting
example .
[0059] In one example , RDMA engine 224 includes
executable instructions stored on a nontransitory medium
operable to perform a method according to this specification .
At an appropriate time , such as upon booting client device
200 or upon a command from operating system 222 or a user
120 , processor 210 may retrieve a copy of the instructions
from storage 250 and load it into memory 220 . Processor
210 may then iteratively execute the instructions of RDMA
engine 224 to provide the desired method .
[0060] Peripheral interface 240 may be configured to
interface with any auxiliary device that connects to client
device 200 but that is not necessarily a part of the core
architecture of client device 200 . A peripheral may be
operable to provide extended functionality to client device
200 , and may or may not be wholly dependent on client
device 200 . In some cases , a peripheral may be a computing
device in its own right . Peripherals may include input and
output devices such as displays , terminals , printers , key
boards , mice , modems , data ports (e . g . , serial , parallel , USB ,
Firewire , or similar) , network controllers , optical media ,
external storage , sensors , transducers , actuators , controllers ,
data acquisition buses , cameras , microphones , speakers , or
external storage by way of nonlimiting example .
[0061] In one example , peripherals include display adapter
242 , audio driver 244 , and input / output (10) driver 246 .
Display adapter 242 may be configured to provide a human
readable visual output , such as a command - line interface
(CLI) or graphical desktop such as Microsoft Windows ,
Apple OSX desktop , or a Unix / Linux X Window System
based desktop . Display adapter 242 may provide output in
any suitable format , such as a coaxial output , composite
video , component video , VGA , or digital outputs such as
DVI or HDMI , by way of nonlimiting example . In some
examples , display adapter 242 may include a hardware
graphics card , which may have its own memory and its own
graphics processing unit (GPU) . Audio driver 244 may
provide an interface for audible sounds , and may include in
some examples a hardware sound card . Sound output may be
provided in analog (such as a 3 . 5 mm stereo jack) , compo
nent (“ RCA ”) stereo , or in a digital audio format such as

US 2018 / 0239725 A1 Aug . 23 , 2018

S / PDIF , AES3 , AES47 , HDMI , USB , Bluetooth or Wi - Fi
audio , by way of nonlimiting example . Note that in embodi
ments where client device 200 is a virtual machine , periph
erals may be provided remotely by a device used to access
the virtual machine .
[0062] FIG . 3 is a block diagram of a server - class device
300 according to one or more examples of the present
specification . Server 300 may be any suitable computing
device , as described in connection with FIG . 2 . In general ,
the definitions and examples of FIG . 2 may be considered as
equally applicable to FIG . 3 , unless specifically stated
otherwise . Server 300 is described herein separately to
illustrate that in certain embodiments , logical operations
may be divided along a client - server model , wherein client
device 200 provides certain localized tasks , while server 300
provides certain other centralized tasks .
[0063] Note that server 300 of FIG . 3 illustrates in par
ticular the classic “ Von Neumann Architecture ” aspects of
server 300 , with a focus on functional blocks . Other FIG
URES herein (e . g . , FIGS . 4a , 4b , and 5 below) may illustrate
other aspects of a client or server device , with more focus on
virtualization aspects . These illustrated embodiments are not
intended to be mutually exclusive or to infer a necessary
distinction . Rather , the various views and diagrams are
intended to illustrate different perspectives and aspects of
these devices .
[0064] In a particular example , server device 300 may be
a memory server as illustrated herein .
100651 Server 300 includes a processor 310 connected to
a memory 320 , having stored therein executable instructions
for providing an operating system 322 and at least software
portions of a memory server engine 324 . Other components
of server 300 include a storage 350 , and host fabric interface
360 . As described in FIG . 2 , each logical block may be
provided by one or more similar or dissimilar logic ele
ments .
[0066] In an example , processor 310 is communicatively
coupled to memory 320 via memory bus 370 - 3 , which may
be for example a direct memory access (DMA) bus . Pro
cessor 310 may be communicatively coupled to other
devices via a system bus 370 - 1 .
[0067] Processor 310 may be connected to memory 320 in
a DMA configuration via DMA bus 370 - 3 , or via any other
suitable memory configuration . As discussed in FIG . 2 ,
memory 320 may include one or more logic elements of any
suitable type . Memory 320 may include a persistent fast
memory , such as 3DXP or similar .
[0068] Storage 350 may be any species of memory 320 , or
may be a separate device , as described in connection with
storage 250 of FIG . 2 . Storage 350 may be , or may include
therein , a database or databases or data stored in other
configurations , and may include a stored copy of operational
software such as operating system 322 and software portions
of memory server engine 324 .
[0069] Host fabric interface 360 may be provided to
communicatively couple server 300 to a wired or wireless
network , including a host fabric . A host fabric may include
a switched interface for communicatively coupling nodes in
a cloud or cloud - like environment . HFI 360 is used by way
of example here , though any other suitable network interface
(as discussed in connection with network interface 260) may
be used .
10070] Memory server engine 324 is an engine as
described in FIG . 2 and , in one example , includes one or

more logic elements operable to carry out computer - imple
mented methods as described in this specification . Software
portions of memory server engine 324 may run as a daemon
process .
[0071] Memory server engine 324 may include one or
more nontransitory computer - readable mediums having
stored thereon executable instructions operable to instruct a
processor to provide memory server engine 324 . At an
appropriate time , such as upon booting server 300 or upon
a command from operating system 322 or a user 120 or
security administrator 150 , processor 310 may retrieve a
copy of memory server engine 324 (or software portions
thereof) from storage 350 and load it into memory 320 .
Processor 310 may then iteratively execute the instructions
of memory server engine 324 to provide the desired method .
[0072] FIG . 4a is a block diagram of a software - defined
network 400 . In software defined networking (SDN) , a data
plane is separated from a control plane to realize certain
advantages . SDN is only one flavor of virtualization , shown
here to illustrate one option for a network setup .
[0073] Network function virtualization , illustrated in FIG .
4b , is a second nonlimiting flavor of network virtualization ,
often treated as an add - on or improvement to SDN , but
sometimes treated as a separate entity . NFV was originally
envisioned as a method for providing reduced capital expen
diture (Capex) and operating expenses (Opex) for telecom
munication services , which relied heavily on fast , single
purpose service appliances . One important feature of NFV is
replacing proprietary , special - purpose hardware appliances
with virtual appliances running on commercial off - the - shelf
(COTS) hardware within a virtualized environment . In addi
tion to Capex and Opex savings , NFV provides a more agile
and adaptable network . As network loads change , virtual
network functions (VNFs) can be provisioned (“ spun up ”) or
removed (“ spun down ”) to meet network demands . For
example , in times of high load , more load balancer VNFs
may be spun up to distribute traffic to more workload servers
(which may themselves be virtual machines) . In times where
more suspicious traffic is experienced , additional firewalls or
deep packet inspection (DPI) appliances may be needed .
[0074] Because NFV started out as a telecommunications
feature , many NFV instances are focused on telecommuni
cations . However , NFV is not limited to telecommunication
services . In a broad sense , NFV includes one or more VNFs
running within a network function virtualization infrastruc
ture (NFVI) . Often , the VNFs are in - line service functions
that are separate from workload servers or other nodes (in
many cases , workload - type functions were long since vir
tualized) . These VNFs can be chained together into a service
chain , which may be defined by a virtual subnetwork , and
which may include a serial string of network services that
provide behind - the - scenes work , such as security , logging ,
billing , and similar . In one example , an incoming packet
passes through a chain of services in a service chain , with
one or more of the services being provided by a VNF ,
whereas historically each of those functions may have been
provided by bespoke hardware in a physical service appli
ance . Because NFVs can be spun up and spun down to meet
demand , the allocation of hardware and other resources can
be made more efficient . Processing resources can be allo
cated to meet the greatest demand , whereas with physical
service appliances , any unused capacity on an appliance is

US 2018 / 0239725 A1 Aug . 23 , 2018

[0082] For example , the following flow tables may be
defined for ND1 430 - 1 - ND4 430 - 4 .

TABLE 1
ND1 Flow Rule

Ingress
I / F

Source
MAC

Source
IP Dest . IP Action Destination Mac

fa : 16 : 3e : 01 : 54 : a3 P1 ANY ANY 10 . 0 . 0 . 30 P2

TABLE 2
ND2 Flow Rule

Ingress
I / F

Source
MAC Destination Mac

Source
IP Dest . IP Action

P2 ANY fa : 16 : 3e : 01 : 54 : 23 ANY 10 . 0 . 0 . 30 P4

TABLE 3

ND3 Flow Rule

Ingress
I / F

Source
MAC Destination Mac

Source
IP Dest . IP Action

P1 ANY fa : 16 : 3e : 01 : 54 : 23 ANY 10 . 0 . 0 . 30 P3

TABLE 4

simply wasted , and increasing capacity to meet demand
required plugging in a physical (expensive) bespoke service
appliance .
[0075] The illustrations of this in FIGS . 4a and 4b may be
considered more functional , while in comparison the illus
tration of FIG . 1 may be more of a high - level logical layout
of the network . It should be understood , however , that SDN
400 (FIG . 4a) , NFVI 404 (FIG . 4b) , and enterprise network
100 may be the same network , or may be separate networks .
100761 In FIG . 4a , SDN 400 may include an SDN con
troller 410 , a plurality of network devices 430 , and a
plurality of host devices 440 . Some or all of SDN controller
410 , network devices 430 , and host devices 440 may be
embodied within workload cluster 142 of FIG . 1 , or may
otherwise form a part of enterprise network 170 .
[0077] SDN 400 is controlled by an SDN controller 410 .
SDN controller 410 is communicatively coupled to a plu
rality of network devices 430 . Specifically , ND1 430 - 1 , ND2
430 - 2 , and ND5 430 - 5 are directly communicatively
coupled to SDN controller 410 . Network devices and ND3
430 - 3 and ND4 430 - 4 are not directly coupled to SDN
controller 410 , but rather coupled via the intermediate
devices , such as ND2 430 - 2 , and ND5 430 - 5 .
[0078] Some network devices 430 also communicatively
couple directly to host devices 440 . Specifically , network
device ND1 directly couples to host A 440 - 1 , which has IP
address 10 . 0 . 0 . 10 , and MAC address FA : 16 : 3 : 01 : 61 : 8 . Net
work device ND2 430 - 2 directly couples to host B 440 - 2 ,
which has IP address 10 . 0 . 0 . 20 , and MAC address FA : 16 :
3 : 01 : 63 : B3 . Network device ND5 430 - 5 directly couples to
host D 440 - 3 , which has IP address 10 . 0 . 0 . 30 , and MAC
address FA : 16 : 3 : 01 : 54 : 83 .
[0079] Network devices 430 may be configured to perform
a variety of network functions , such as , by way of nonlim
iting example , load balancing , firewall , deep packet inspec
tion (DPI) , DNS , antivirus , or any other suitable network
function . The particular arrangement of interconnections
between network devices 430 and from network devices 430
to host devices 440 may be determined by the particular
network configuration and needs . Thus , the specific configu
ration of FIG . 4a should be understood to be an illustrative
example only .
[0080] Each network device 430 may have a plurality of
ingress and or egress interfaces , such as physical Ethernet or
fabric ports . In an example , each interface may have a label
or new name , such as P1 , P2 , P3 , P4 , P5 , and so on . Thus ,
certain aspects of the network layout can be determined by
inspecting which devices are connected on which interface .
For example , network device ND1 430 - 1 has an ingress
interface for receiving instructions and communicating with
SDN controller 410 . ND1 430 - 1 also has an interface P1
communicatively coupled to host A 440 - 1 . ND1 430 - 1 has
interface P2 that is communicatively coupled to ND2 430 - 2 .
In the case of ND2 430 - 2 , it also couples to ND1 430 - 1 on
its own interface P2 , and couples to host B 440 - 2 via
interface P1 . ND2 430 - 2 communicatively couples to inter
mediate devices ND3430 - 3 and ND4 430 - 4 via interfaces
P3 and P4 respectively . Additional interface definitions are
visible throughout the figure .
[0081] A flow table may be defined for traffic as it flows
from one interface to another . This flow table is used so that
a network device , such as ND2 430 - 2 can determine , after
receiving a packet , where to send it next .

ND4 Flow Rule
Ingress
I / F

Source
MAC

Source
IP Destination Mac Dest . IP Action

P3 ANY fa : 16 : 3e : 01 : 54 : 23 ANY 10 . 0 . 0 . 30 P1

[0083] FIG . 4b is a block diagram of a network function
virtualization (NFV) architecture according to one or more
examples of the present specification . Like SDN , NFV is a
subset of network virtualization . Thus , the network as illus
trated in FIG . 4b may be defined instead of or in addition to
the network of FIG . 4a . In other words , certain portions of
the network may rely on SDN , while other portions (or the
same portions) may rely on NFV .
[0084] In the example of FIG . 4b , an NFV orchestrator
402 manages a number of the VNFs running on in an NFVI
404 . NFV requires nontrivial resource management , such as
allocating a very large pool of compute resources among
appropriate numbers of instances of each VNF , managing
connections between VNFs , determining how many
instances of each VNF to allocate , and managing memory ,
storage , and network connections . This may require com
plex software management , thus the need for NFV orches
trator 402 .
10085] Note that NFV orchestrator 402 itself is usually
virtualized (rather than a special - purpose hardware appli
ance) . NFV orchestrator 402 may be integrated within an
existing SDN system , wherein an operations support system
(OSS) manages the SDN . This may interact with cloud
resource management systems (e . g . , OpenStack) to provide
NFV orchestration . There are many commercially - available ,
off - the - shelf , proprietary , and open source solutions for NFV

US 2018 / 0239725 A1 Aug . 23 , 2018

orchestration and management (sometimes referred to as
NFV MANO) . In addition to NFV orchestrator 402 , NFV
MANO may also include functions such as virtualized
infrastructure management (VIM) and a VNF manager .
[0086] An NFVI 404 may include the hardware , software ,
and other infrastructure to enable VNFs to run . This may
include , for example , a rack or several racks of blade or slot
servers (including , e . g . , processors , memory , and storage) ,
one or more datacenters , other hardware resources distrib
uted across one or more geographic locations , hardware
switches , network interfaces . An NFVI 404 may also include
the software architecture that enables hypervisors to run and
be managed by NFV orchestrator 402 . NFVI 402 may
include NFVI points of presence (NFVI - POPs) , where VNFs
are deployed by the operator .
[0087] Running on NFVI 404 are a number of virtual
machines , each of which in this example is a VNF providing
a virtual service appliance . These include , as nonlimiting
and illustrative examples , VNF 1 410 , which is a firewall ,
VNF 2 412 , which is an intrusion detection system , VNF 3
414 , which is a load balancer , VNF 4 416 , which is a router ,
VNF 5 418 , which is a session border controller , VNF 6 420 ,
which is a deep packet inspection (DPI) service , VNF 7 422 ,
which is a network address translation (NAT) module , VNF
8 424 , which provides call security association , and VNF 9
426 , which is a second load balancer spun up to meet
increased demand .
[0088] Firewall 410 is a security appliance that monitors
and controls the traffic (both incoming and outgoing) , based
on matching traffic to a list of “ firewall rules . ” Firewall 410
may be a barrier between a relatively trusted (e . g . , internal)
network , and a relatively untrusted network (e . g . , the Inter
net) . Once traffic has passed inspection by firewall 410 , it
may be forwarded to other parts of the network .
10089] Intrusion detection 412 monitors the network for
malicious activity or policy violations . Incidents may be
reported to security administrator 150 , or collected and
analyzed by a security information and event management
(SIEM) system . In some cases , intrusion detection 412 may
also include antivirus or antimalware scanners .
[0090] Load balancers 414 and 426 may farm traffic out to
a group of substantially identical workload servers to dis
tribute the work in a fair fashion . In one example , a load
balancer provisions a number of traffic “ buckets , " and
assigns each bucket to a workload server . Incoming traffic is
assigned to a bucket based on a factor , such as a hash of the
source IP address . Because the hashes are assumed to be
fairly evenly distributed , each workload server receives a
reasonable amount of traffic .
10091] Router 416 forwards packets between networks or
subnetworks . For example , router 416 may include one or
more ingress interfaces , and a plurality of egress interfaces ,
with each egress interface being associated with a resource ,
subnetwork , virtual private network , or other division . When
traffic comes in on an ingress interface , router 416 deter
mines what destination it should go to , and routes the packet
to the appropriate egress interface .
10092] Session border controller 418 controls voice over
IP (VOIP) signaling , as well as the media streams to set up ,
conduct , and terminate calls . In this context , " session ” refers
to a communication event (e . g . , a " call ") . “ Border ” refers to
a demarcation between two different parts of a network
(similar to a firewall) .

[0093] DPI appliance 420 provides deep packet inspec
tion , including examining not only the header , but also the
content of a packet to search for potentially unwanted
content (PUC) , such as protocol non - compliance , malware ,
viruses , spam , or intrusions .
[0094] NAT module 422 provides network address trans
lation services to remap one IP address space into another
(e . g . , mapping addresses within a private subnetwork onto
the larger Internet) .
[0095] Call security association 424 creates a security
association for a call or other session (see session border
controller 418 above) . Maintaining this security association
may be critical , as the call may be dropped if the security
association is broken .
[0096] The illustration of FIG . 4 shows that a number of
VNFs have been provisioned and exist within NFVI 404 .
This figure does not necessarily illustrate any relationship
between the VNFs and the larger network .
[0097] FIG . 5 illustrates a block diagram of components of
a computing platform 500 according to one or more
examples of the present specification . In the embodiment
depicted , computer platform 500 includes a plurality of
platforms 502 and system management platform 506
coupled together through network 508 . In other embodi
ments , a computer system may include any suitable number
of i . e . , one or more) platforms . In some embodiments (e . g . ,
when a computer system only includes a single platform) , all
or a portion of the system management platform 506 may be
included on a platform 502 . A platform 502 may include
platform logic 510 with one or more central processing units
(CPUs) 512 , memories 514 (which may include any number
of different modules) , chipsets 516 , communication inter
faces 518 , and any other suitable hardware and / or software
to execute a hypervisor 520 or other operating system
capable of executing workloads associated with applications
running on platform 502 . In some embodiments , a platform
502 may function as a host platform for one or more guest
systems 522 that invoke these applications . Platform 500
may represent any suitable computing environment , such as
a high - performance computing environment , a datacenter , a
communications service provider infrastructure (e . g . , one or
more portions of an evolved packet core) , an in - memory
computing environment , a computing system of a vehicle
(e . g . , an automobile or airplane) , an Internet of Things
environment , an industrial control system , other computing
environment , or combination thereof .
[0098] In various embodiments of the present disclosure ,
accumulated stress and / or rates of stress accumulated to a
plurality of hardware resources (e . g . , cores and uncores) are
monitored and entities (e . g . , system management platform
506 , hypervisor 520 , or other operating system) of computer
platform 500 may assign hardware resources of platform
logic 510 to perform workloads in accordance with the stress
information . For example , system management platform
506 , hypervisor 520 or other operating system , or CPUs 512
may determine one or more cores to schedule a workload
onto based on the stress information . In some embodiments ,
self - diagnostic capabilities may be combined with the stress
monitoring to more accurately determine the health of the
hardware resources . Such embodiments may allow optimi
zation in deployments including network function virtual
ization (NFV) , software defined networking (SDN) , or mis
sion critical applications . For example , the stress
information may be consulted during the initial placement

US 2018 / 0239725 A1 Aug . 23 , 2018

virtual network functions (VNFs) , or for migration from one
platform to another in order to improve reliability and
capacity utilization .
[009] Each platform 502 may include platform logic 510 .
Platform logic 510 comprises , among other logic , enabling
the functionality of platform 502 , one or more CPUs 512 ,
memory 514 , one or more chipsets 516 , and communication
interface 518 . Although three platforms are illustrated , com
puter platform 500 may include any suitable number of
platforms . In various embodiments , a platform 502 may
reside on a circuit board that is installed in a chassis , rack ,
or other suitable structure that comprises multiple platforms
coupled together through network 508 (which may com
prise , e . g . , a rack or backplane switch) .
[0100] CPUs 512 may each comprise any suitable number
of processor cores and supporting logic (e . g . , uncores) . The
cores may be coupled to each other , to memory 514 , to at
least one chipset 516 , and / or to communication interface
518 , through one or more controllers residing on CPU 612
and / or chipset 516 . In particular embodiments , a CPU 612 is
embodied within a socket that is permanently or removably
coupled to platform 502 . CPU 612 is described in further
detail below in connection with FIG . 2 . Although four CPUs
are shown , a platform 502 may include any suitable number
of CPUs .
[0101] Memory 514 may comprise any form of volatile or
nonvolatile memory , including , without limitation , magnetic
media (e . g . , one or more tape drives) , optical media , random
access memory (RAM) , read - only memory (ROM) , flash
memory , removable media , or any other suitable local or
remote memory component or components . Memory 514
may be used for short , medium , and / or long term storage by
platform 502 . Memory 514 may store any suitable data or
information utilized by platform logic 510 , including soft
ware embedded in a computer readable medium , and / or
encoded logic incorporated in hardware or otherwise stored
(e . g . , firmware) . Memory 514 may store data that is used by
cores of CPUs 512 . In some embodiments , memory 514 may
also comprise storage for instructions that may be executed
by the cores of CPUs 512 or other processing elements (e . g . ,
logic resident on chipsets 516) to provide functionality
associated with the manageability engine 526 or other
components of platform logic 510 . Additionally or alterna
tively , chipsets 516 may each comprise memory that may
have any of the characteristics described herein with respect
to memory 514 . Memory 514 may also store the results
and / or intermediate results of the various calculations and
determinations performed by CPUs 512 or processing ele
ments on chipsets 516 . In various embodiments , memory
514 may comprise one or more modules of system memory
coupled to the CPUs through memory controllers (which
may be external to or integrated with CPUs 512) . In various
embodiments , one or more particular modules of memory
514 may be dedicated to a particular CPU 612 or other
processing device or may be shared across multiple CPUs
512 or other processing devices .
0102] In various embodiments , memory 514 may store
stress information (such as accumulated stress values asso
ciated with hardware resources of platform logic 510 in
nonvolatile memory , such that when power is lost , the
accumulated stress values are maintained) . In particular
embodiments , a hardware resource may comprise nonvola

tile memory (e . g . , on the same die as the particular hardware
resource) for storing the hardware resource ' s accumulated
stress value .
[0103] A platform 502 may also include one or more
chipsets 516 comprising any suitable logic to support the
operation of the CPUs 512 . In various embodiments , chipset
516 may reside on the same die or package as a CPU 612 or
on one or more different dies or packages . Each chipset may
support any suitable number of CPUs 512 . A chipset 516
may also include one or more controllers to couple other
components of platform logic 510 (e . g . , communication
interface 518 or memory 514) to one or more CPUs .
Additionally or alternatively , the CPUs 512 may include
integrated controllers . For example , communication inter
face 518 could be coupled directly to CPUs 512 via inte
grated IO controllers resident on each CPU .
[0104] In the embodiment depicted , each chipset 516 also
includes a manageability engine 526 . Manageability engine
526 may include any suitable logic to support the operation
of chipset 516 . In a particular embodiment , manageability
engine 526 (which may also be referred to as an innovation
engine) is capable of collecting real - time telemetry data
from the chipset 516 , the CPU (S) 512 and / or memory 514
managed by the chipset 516 , other components of platform
logic 510 , and / or various connections between components
of platform logic 510 . In various embodiments , the telem
etry data collected includes the stress information described
herein .
[0105] In various examples , the manageability engine 526
operates as an out - of - band asynchronous compute agent
which is capable of interfacing with the various elements of
platform logic 510 to collect telemetry data with no or
minimal disruption to running processes on CPUs 512 . For
example , manageability engine 526 may comprise a dedi
cated processing element (e . g . , a processor , controller , or
other logic) on chipset 516 which provides the functionality
of manageability engine 526 (e . g . , by executing software
instructions) , thus conserving processing cycles of CPUs
512 for operations associated with the workloads performed
by the platform logic 510 . Moreover , the dedicated logic for
the manageability engine 526 may operate asynchronously
with respect to the CPUs 512 and may gather at least some
of the telemetry data without increasing the load on the
CPUs .
[0106] The manageability engine 526 may process telem
etry data it collects (specific examples of the processing of
stress information will be provided herein) . In various
embodiments , manageability engine 526 reports the data it
collects and / or the results of its processing to other elements
in the computer system , such as one or more hypervisors 520
or other operating systems and / or system management soft
ware (which may run on any suitable logic such as system
management platform 506) . In some embodiments , the
telemetry data is updated and reported periodically to one or
more of these entities . In particular embodiments , a critical
event such as a core that has accumulated an excessive
amount of stress may be reported prior to the normal interval
for reporting telemetry data (e . g . , a notification may be sent
immediately upon detection) .
[0107] In various embodiments , a manageability engine
526 may include programmable code configurable to set
which CPU (S) 512 a particular chipset 516 will manage
and / or which telemetry data will be collected .

US 2018 / 0239725 A1 Aug . 23 , 2018
10

[0108] Chipsets 516 also each include a communication
interface 528 . Communication interface 528 may be used for
the communication of signaling and / or data between chipset
516 and one or more IO devices , one or more networks 508 ,
and / or one or more devices coupled to network 508 (e . g . ,
system management platform 506) . For example , commu
nication interface 528 may be used to send and receive
network traffic such as data packets . In a particular embodi
ment , communication interface 528 comprises one or more
physical network interface controllers (NICs) , also known as
network interface cards or network adapters . A NIC may
include electronic circuitry to communicate using any suit
able physical layer and data link layer standard such as
Ethernet (e . g . , as defined by a IEEE 802 . 3 standard) , Fibre
Channel , InfiniBand , Wi - Fi , or other suitable standard . A
NIC may include one or more physical ports that may couple
to a cable (e . g . , an Ethernet cable) . A NIC may enable
communication between any suitable element of chipset 516
(e . g . , manageability engine 526 or switch 530) and another
device coupled to network 508 . In some embodiments ,
network 508 may comprise a switch with bridging and / or
routing functions that is external to the platform 502 and
operable to couple various NICs distributed throughout the
computer platform 500 (e . g . , on different platforms) to each
other . In various embodiments , a NIC may be integrated
with the chipset (i . e . , may be on the same integrated circuit
or circuit board as the rest of the chipset logic) or may be on
a different integrated circuit or circuit board that is electro
mechanically coupled to the chipset .
[0109] In particular embodiments , communication inter
face 528 may allow communication of data (e . g . , between
the manageability engine 526 and the system management
platform 506) associated with management and monitoring
functions performed by manageability engine 526 . In vari
ous embodiments , manageability engine 526 may utilize
elements (e . g . , one or more NICs) of communication inter
face 528 to report the telemetry data (e . g . , to system man
agement platform 506) in order to reserve usage of NICs of
communication interface 518 for operations associated with
workloads performed by platform logic 510 . In some
embodiments , communication interface 528 may also allow
IO devices integrated with or external to the platform (e . g . ,
disk drives , other NICs , etc .) to communicate with the CPU
cores .
[0110) Switch 530 may couple to various ports (e . g . ,
provided by NICs) of communication interface 528 and may
switch data between these ports and various components of
chipset 516 (e . g . , one or more peripheral component inter
connect express (PCIe) lanes coupled to CPUs 512) . Switch
530 may be a physical or virtual (i . e . , software) switch .
[0111] Platform logic 510 may include an additional com
munication interface 518 . Similar to communication inter
face 528 , communication interface 518 may be used for the
communication of signaling and / or data between platform
logic 510 and one or more networks 508 and one or more
devices coupled to the network 508 . For example , commu
nication interface 518 may be used to send and receive
network traffic such as data packets . In a particular embodi
ment , communication interface 518 comprises one or more
physical NICs . These NICs may enable communication
between any suitable element of platform logic 510 (e . g . ,
CPUs 512 or memory 514) and another device coupled to
network 508 (e . g . , elements of other platforms or remote
computing devices coupled to network 508 through one or

more networks) . In particular embodiments , communication
interface 518 may allow devices external to the platform
(e . g . , disk drives , other NICs , etc .) to communicate with the
CPU cores . In various embodiments , NICs of communica
tion interface 518 may be coupled to the CPUs through IO
controllers (which may be external to or integrated with
CPUs 512) .
[0112] Platform logic 510 may receive and perform any
suitable types of workloads . A workload may include any
request to utilize one or more resources of platform logic
510 , such as one or more cores or associated logic . For
example , a workload may comprise a request to instantiate
a software component , such as an 10 device driver 524 or
guest system 522 ; a request to process a network packet
received from a virtual machine 532 or device external to
platform 502 (such as a network node coupled to network
508) ; a request to execute a process or thread associated with
a guest system 522 , an application running on platform 502 ,
a hypervisor 520 or other operating system running on
platform 502 ; or other suitable processing request .
[0113] In various embodiments , platform 502 may execute
any number of guest systems 522 . A guest system may
comprise a single virtual machine (e . g . , virtual machine
532a or 532b) or multiple virtual machines operating
together (e . g . , a virtual network function (VNF) 534 or a
service function chain (SFC) 536) . As depicted , various
embodiments may include a variety of types of guest sys
tems 522 present on the same platform 502 .
[0114] A virtual machine 532 may emulate a computer
system with its own dedicated hardware . A virtual machine
532 may run a guest operating system on top of the hyper
visor 520 . The components of platform logic 510 (e . g . ,
CPUs 512 , memory 514 , chipset 516 , and communication
interface 518) may be virtualized such that it appears to the
guest operating system that the virtual machine 532 has its
own dedicated components .
[0115] A virtual machine 532 may include a virtualized
NIC (VNIC) , which is used by the virtual machine as its
network interface . A VNIC may be assigned a media access
control (MAC) address or other identifier , thus allowing
multiple virtual machines 532 to be individually addressable
in a network .
10116] . In some embodiments , a virtual machine 532b may
be paravirtualized . For example , the virtual machine 5325
may include augmented drivers (e . g . , drivers that provide
higher performance or have higher bandwidth interfaces to
underlying resources or capabilities provided by the hyper
visor 520) . For example , an augmented driver may have a
faster interface to underlying virtual switch 538 for higher
network performance as compared to default drivers .
[0117] VNF 534 may comprise a software implementation
of a functional building block with defined interfaces and
behavior that can be deployed in a virtualized infrastructure .
In particular embodiments , a VNF 534 may include one or
more virtual machines 532 that collectively provide specific
functionalities (e . g . , wide area network (WAN) optimiza
tion , virtual private network (VPN) termination , firewall
operations , load balancing operations , security functions ,
etc .) . A VNF 534 running on platform logic 510 may provide
the same functionality as traditional network components
implemented through dedicated hardware . For example , a
VNF 534 may include components to perform any suitable
NFV workloads , such as virtualized evolved packet core

US 2018 / 0239725 A1 Aug . 23 , 2018

(VEPC) components , mobility management entities , 3rd
Generation Partnership Project (3GPP) control and data
plane components , etc .
[0118] SFC 536 is group of VNFs 534 organized as a chain
to perform a series of operations , such as network packet
processing operations . Service function chaining may pro
vide the ability to define an ordered list of network services
(e . g . firewalls , load balancers) that are stitched together in
the network to create a service chain .
[0119] A hypervisor 520 (also known as a virtual machine
monitor) may comprise logic to create and run guest systems
522 . The hypervisor 520 may present guest operating sys
tems run by virtual machines with a virtual operating
platform (i . e . , it appears to the virtual machines that they are
running on separate physical nodes when they are actually
consolidated onto a single hardware platform) and manage
the execution of the guest operating systems by platform
logic 510 . Services of hypervisor 520 may be provided by
virtualizing in software or through hardware assisted
resources that require minimal software intervention , or
both . Multiple instances of a variety of guest operating
systems may be managed by the hypervisor 520 . Each
platform 502 may have a separate instantiation of a hyper
visor 520 .
[0120] Hypervisor 520 may be a native or bare - metal
hypervisor that runs directly on platform logic 510 to control
the platform logic and manage the guest operating systems .
Alternatively , hypervisor 520 may be a hosted hypervisor
that runs on a host operating system and abstracts the guest
operating systems from the host operating system . Various
embodiments may include one or more non - virtualized
platforms 502 , in which case any suitable characteristics or
functions of hypervisor 520 described herein may apply to
an operating system of the non - virtualized platform .
10121] Hypervisor 520 may include a virtual switch 538
that may provide virtual switching and / or routing functions
to virtual machines of guest systems 522 . The virtual switch
538 may comprise a logical switching fabric that couples the
VNICs of the virtual machines 532 to each other , thus
creating a virtual network through which virtual machines
may communicate with each other . Virtual switch 538 may
also be coupled to one or more networks (e . g . , network 508)
via physical NICs of communication interface 518 so as to
allow communication between virtual machines 532 and one
or more network nodes external to platform 502 (e . g . , a
virtual machine running on a different platform 502 or a
node that is coupled to platform 502 through the Internet or
other network) . Virtual switch 538 may comprise a software
element that is executed using components of platform logic
510 . In various embodiments , hypervisor 520 may be in
communication with any suitable entity (e . g . , a SDN con
troller) which may cause hypervisor 520 to reconfigure the
parameters of virtual switch 538 in response to changing
conditions in platform 502 (e . g . , the addition or deletion of
virtual machines 532 or identification of optimizations that
may be made to enhance performance of the platform) .
10122] Hypervisor 520 may also include resource alloca
tion logic 544 which may include logic for determining
allocation of platform resources based on the telemetry data
(which may include stress information) . Resource allocation
logic 544 may also include logic for communicating with
various components of platform logic 510 entities of plat
form 502 to implement such optimization , such as compo
nents of platform logic 502 . For example , resource alloca

tion logic 544 may direct which hardware resources of
platform logic 510 will be used to perform workloads based
on stress information .
(0123] Any suitable logic may make one or more of these
optimization decisions . For example , system management
platform 506 ; resource allocation logic 544 of hypervisor
520 or other operating system ; or other logic of platform 502
or computer platform 500 may be capable of making such
decisions (either alone or in combination with other ele
ments of the platform 502) . In a particular embodiment ,
system management platform 506 may communicate (using
in - band or out - of - band communication) with the hypervisor
520 to specify the optimizations that should be used in order
to meet policies stored at the system management platform .
[0124] In various embodiments , the system management
platform 506 may receive telemetry data from and manage
workload placement across multiple platforms 502 . The
system management platform 506 may communicate with
hypervisors 520 (e . g . , in an out - of - band manner) or other
operating systems of the various platforms 502 to implement
workload placements directed by the system management
platform .
[0125] The elements of platform logic 510 may be coupled
together in any suitable manner . For example , a bus may
couple any of the components together . A bus may include
any known interconnect , such as a multidrop bus , a mesh
interconnect , a ring interconnect , a point - to - point intercon
nect , a serial interconnect , a parallel bus , a coherent (e . g .
cache coherent) bus , a layered protocol architecture , a
differential bus , or a Gunning transceiver logic (GTL) bus .
[0126] Elements of the computer platform 500 may be
coupled together in any suitable manner , such as through one
or more networks 508 . A network 508 may be any suitable
network or combination of one or more networks operating
using one or more suitable networking protocols . A network
may represent a series of nodes , points , and interconnected
communication paths for receiving and transmitting packets
of information that propagate through a communication
system . For example , a network may include one or more
firewalls , routers , switches , security appliances , antivirus
servers , or other useful network devices . A network offers
communicative interfaces between sources and / or hosts , and
may comprise any local area network (LAN) , wireless local
area network (WLAN) , metropolitan area network (MAN) ,
intranet , extranet , Internet , wide area network (WAN) , vir
tual private network (VPN) , cellular network , or any other
appropriate architecture or system that facilitates communi
cations in a network environment . A network can comprise
any number of hardware or software elements coupled to
(and in communication with each other through a commu
nications medium . In various embodiments , guest systems
522 may communicate with nodes that are external to the
computer platform 500 through network 508 .
[0127] FIG . 6 illustrates a block diagram of a central
processing unit (CPU) 612 in accordance with certain
embodiments . Although CPU 612 depicts a particular con
figuration , the cores and other components of CPU 612 may
be arranged in any suitable manner . CPU 612 may comprise
any processor or processing device , such as a microproces
sor , an embedded processor , a digital signal processor
(DSP) , a network processor , an application processor , a
coprocessor , a system on a chip (SOC) , or other device to
execute code . CPU 612 , in the depicted embodiment ,
includes four processing elements (cores 630 in the depicted

US 2018 / 0239725 A1 Aug . 23 , 2018

the first ISA . For example , decoders may , in one embodi
ment , include logic designed or adapted to recognize spe
cific instructions , such as transactional instructions . As a
result of the recognition by the decoders , the architecture of
core 630 takes specific , predefined actions to perform tasks
associated with the appropriate instruction . It is important to
note that any of the tasks , blocks , operations , and methods
described herein may be performed in response to single or
multiple instructions ; some of which may be new or old
instructions . Decoders of cores 630 , in one embodiment ,
recognize the same ISA (or a subset thereof) . Alternatively ,
in a heterogeneous core environment , a decoder of one or
more cores (e . g . , core 630B) may recognize a second ISA
(either a subset of the first ISA or a distinct ISA) .
[0133] In the embodiment depicted , out - of - order engine
680 includes an allocate unit 682 to receive decoded instruc
tions , which may be in the form of one or more micro
instructions or uops , from front end unit 670 , and allocate
them to appropriate resources such as registers and so forth .
Next , the instructions are provided to a reservation station
684 , which reserves resources and schedules them for execu
tion on one of a plurality of execution units 686A - 686N .
Various types of execution units may be present , including ,
for example , arithmetic logic units (ALUS) , load and store
units , vector processing units (VPUs) , floating point execu
tion units , among others . Results from these different execu
tion units are provided to a reorder buffer (ROB) 688 , which
take unordered results and return them to correct program
order .

embodiment) , which may include asymmetric processing
elements or symmetric processing elements . However , CPU
612 may include any number of processing elements that
may be symmetric or asymmetric .
[0128] In one embodiment , a processing element refers to
hardware or logic to support a software thread . Examples of
hardware processing elements include : a thread unit , a
thread slot , a thread , a process unit , a context , a context unit ,
a logical processor , a hardware thread , a core , and / or any
other element which is capable of holding a state for a
processor , such as an execution state or architectural state . In
other words , a processing element , in one embodiment ,
refers to any hardware capable of being independently
associated with code , such as a software thread , operating
system , application , or other code . A physical processor (or
processor socket) typically refers to an integrated circuit ,
which potentially includes any number of other processing
elements , such as cores or hardware threads .
[0129] A core may refer to logic located on an integrated
circuit capable of maintaining an independent architectural
state , wherein each independently maintained architectural
state is associated with at least some dedicated execution
resources . A hardware thread may refer to any logic located
on an integrated circuit capable of maintaining an indepen
dent architectural state , wherein the independently main
tained architectural states share access to execution
resources . As can be seen , when certain resources are shared
and others are dedicated to an architectural state , the line
between the nomenclature of a hardware thread and core
overlaps . Yet often , a core and a hardware thread are viewed
by an operating system as individual logical processors ,
where the operating system is able to individually schedule
operations on each logical processor .
[0130] Physical CPU 612 may include any suitable num
ber of cores . In various embodiments , cores may include one
or more out - of - order processor cores or one or more in - order
processor cores . However , cores may be individually
selected from any type of core , such as a native core , a
software managed core , a core adapted to execute a native
instruction set architecture (ISA) , a core adapted to execute
a translated ISA , a co - designed core , or other known core .
In a heterogeneous core environment (i . e . asymmetric
cores) , some form of translation , such as binary translation ,
may be utilized to schedule or execute code on one or both
cores .
10131] In the embodiment depicted , core 630A includes an
out - of - order processor that has a front end unit 670 used to
fetch incoming instructions , perform various processing
(e . g . caching , decoding , branch predicting , etc .) and passing
instructions / operations along to an out - of - order (000)
engine 680 . 000 engine 680 performs further processing on
decoded instructions .
[0132] A front end 670 may include a decode module
coupled to fetch logic to decode fetched elements . Fetch
logic , in one embodiment , includes individual sequencers
associated with thread slots of cores 630 . Usually a core 630
is associated with a first ISA , which defines / specifies
instructions executable on core 630 . Often machine code
instructions that are part of the first ISA include a portion of
the instruction (referred to as an opcode) , which references /
specifies an instruction or operation to be performed . The
decode module may include circuitry that recognizes these
instructions from their opcodes and passes the decoded
instructions on in the pipeline for processing as defined by

[0134] In the embodiment depicted , both front end unit
670 and out - of - order engine 680 are coupled to different
levels of a memory hierarchy . Specifically shown is an
instruction level cache 672 , that in turn couples to a mid
level cache 676 , that in turn couples to a last level cache 695 .
In one embodiment , last level cache 695 is implemented in
an on - chip (sometimes referred to as uncore) unit 690 .
Uncore 690 may communicate with system memory 699 ,
which , in the illustrated embodiment , is implemented via
embedded dynamic random access memory (eDRAM) . The
various execution units 686 within out - of - order engine 680
are in communication with a first level cache 674 that also
is in communication with mid - level cache 676 . Additional
cores 630B - 630D may couple to last level cache 695 as well .
[0135] In various embodiments , uncore 690 (sometimes
referred to as a system agent) may include any suitable logic
that is not a part of core 630 . For example , uncore 690 may
include one or more of a last level cache , a cache controller ,
an on - die memory controller coupled to a system memory ,
a processor interconnect controller (e . g . , an Ultra Path
Interconnect or similar controller) , an on - die 10 controller ,
or other suitable on - die logic .
[0136] . In particular embodiments , uncore 690 may be in a
voltage domain and / or a frequency domain that is separate
from voltage domains and / or frequency domains of the
cores . That is , uncore 690 may be powered by a supply
voltage that is different from the supply voltages used to
power the cores and / or may operate at a frequency that is
different from the operating frequencies of the cores .
[0137] CPU 612 may also include a power control unit
(PCU) 640 . In various embodiments , PCU 640 may control
the supply voltages and the operating frequencies applied to
each of the cores (on a per - core basis) and to the uncore .

US 2018 / 0239725 A1 Aug . 23 , 2018
13

PCU 640 may also instruct a core or uncore to enter an idle
state (where no voltage and clock are supplied) when not
performing a workload .
[0138] In various embodiments , PCU 640 may detect one
or more stress characteristics of a hardware resource , such as
the cores and the uncore . A stress characteristic may com
prise an indication of an amount of stress that is being placed
on the hardware resource . As examples , a stress character
istic may be a voltage or frequency applied to the hardware
resource ; a power level , current level , or voltage level
sensed at the hardware resource ; a temperature sensed at the
hardware resource ; or other suitable measurement . In vari
ous embodiments , multiple measurements (e . g . , at different
locations) of a particular stress characteristic may be per
formed when sensing the stress characteristic at a particular
instance of time . In various embodiments , PCU 640 may
detect stress characteristics at any suitable interval .
[0139] In various embodiments , PCU 640 may comprise a
microcontroller that executes embedded firmware to per
form various operations associated with stress monitoring
described herein . In one embodiment , PCU 640 performs
some or all of the PCU functions described herein using
hardware without executing software instructions . For
example , PCU 640 may include fixed and / or programmable
logic to perform the functions of the PCU .
[0140] In various embodiments , PCU 640 is a component
that is discrete from the cores 630 . In particular embodi
ments , PCU 640 runs at a clock frequency that is different
from the clock frequencies used by cores 630 . In some
embodiments where PCU is a microcontroller , PCU 640
executes instructions according to an ISA that is different
from an ISA used by cores 630 .
[0141] In various embodiments , CPU 612 may also
include a nonvolatile memory 650 to store stress information
(such as stress characteristics , incremental stress values ,
accumulated stress values , stress accumulation rates , or
other stress information) associated with cores 630 or uncore
690 , such that when power is lost , the stress information is
maintained .
[0142] FIG . 7 is a block diagram of a datacenter config
ured for remote direct memory access (RDMA) and asyn
chronous data refresh (ADR) according to one or more
examples of the present specification .
[0143] In this example , system 1 710 - 1 is connected to
system 2 710 - 2 in an RDMA configuration via switch 774 .
The two systems may be peer systems in the datacenter , or
system 2 may be , for example , a memory server providing
remote access to memory such as 3DXP memory as
described above . In this example , system 1 710 - 1 is access
ing remote memory on system 2 710 - 2 , though the system
could just as easily work in reverse . In this particular
example , system 2 provides a local memory 722 - 2 , which
may be a persistent fast memory . System 1 may also have a
local memory 722 - 1 , which may be a volatile memory , or
which may be a persistent memory .
[0144] In the course of RDMA operation , system 1 710 - 1
issues store directives to its own local persistent memory
722 - 1 . Two distinct volatile regions where the store could be
situated before reaching memory are the cache hierarchy
(shown as cache 706 - 1) and internal buffers of memory
controller 720 - 1 . For purposes of this specification , cache
706 - 1 and internal buffers of memory controller 720 - 1 may
both be considered “ volatile cache , ” meaning that they are

regions where data may be temporarily stored , and data
stored there are lost when power is removed .
[0145] In normal operation , if the store is in cache 706 , it
can be flushed out by use of an instruction such as
CLFLUSHOPT , along with a memory fence instruction such
as SFENCE . Thus , issuing these two instructions can guar
antee that the store is no longer in cache 706 .
[0146] But after the store is flushed out from cache 706 , it
may still be situated in the memory controller buffers , which
are also volatile . Thus , in the event of a power loss , it may
be necessary to use ADR 772 to ensure that data are stored
to persistent fast memory . As illustrated in the detail view of
ADR 772 , an auxiliary power 780 (such as a capacitor or
small battery) is provided in conjunction with ADR buffers
782 . Auxiliary power 780 is selected to have sufficient stored
energy that in the case of a primary power failure or removal
(e . g . , catastrophic power loss , or a user - initiated or sched
uled shutdown , suspend , or restart) , there is sufficient power
to flush data in the volatile caches to persistence . With this
feature , application software can freely assume that all stores
are persistent once executed .
10147] But in the case of RDMA , the issue is more
complicated . It is not sufficient for the local device to have
the requisite power to manage its own storage . There may
need to be a chain of powered devices to ensure that the data
achieve persistence remotely . In the illustrated RDMA path
(shown with a dashed line) , an application on system 1
710 - 1 can issue “ puts ” or “ stores ” to system 2 710 - 2 . When
an application on system 1 710 - 1 issues a persistent store to
system 2 710 - 2 , the application can issue the CLFLUSH
OPT and SFENCE to ensure the store is no longer in the
CPU caches of system 1 710 - 1 . Similarly , an ADR 770 - 2 on
system 2 can handle a store residing in a volatile cache of
system 2 710 - 2 . But when power is removed , the store could
still be situated in the HFI 770 - 1 of system 1 710 - 1 , within
the fabric itself (e . g . , on switch 774) , or within HFI 770 - 2 of
system 2 710 - 2 .
[0148] To ensure persistence , a mechanism provides soft
ware controls and visibility into persisting data while writing
to persistent memory on a remote node . This may be
considered “ ADR over RDMA . ” This mechanism includes
the addition of capacitive power to cover the HFI (which
may be integrated with the processor in some contemporary
systems) , addition of a persistent buffer in the switch , and
new data flows .
10149] In one example , there may be dedicated ADR
channels within the fabric . These dedicated channels may be
dedicated software channels or ports , or they may be dedi
cated hard - wired channels . These channels may be dedi
cated specifically to conveying remote memory stores with
a guaranteed bandwidth .
[0150] Each HFI 770 includes an ADR 772 , including an
ADR buffer 782 sized according to the bandwidth of the
dedicated ADR channels , so as to guarantee that remote
persistent memory requests from node 1 710 - 1 to switch 774
arrive at switch ADR 772 - 3 in case of power failure . Once
a store request arrives at switch 774 , it is stored first in ADR
772 - 3 , and then may be moved to an intermediate nonvola
tile location , such as an NVM DIMM 748 . From this point ,
the data may be sent to node 2 710 - 2 using regular channels
and existing flows (including ADR 772 - 2 in node 2) .
(0151] In certain embodiments , HA can be used to detect
that a remote memory request targets a persistent fast

US 2018 / 0239725 A1 Aug . 23 , 2018
14

memory . Once the remote persistent write is saved to ADR
772 , an acknowledgement (ACK) may be sent back to the
core and the application .
[0152] Further in certain embodiments , system 710 switch
774 may have one or more dedicated fabric channels , or a
fixed guaranteed bandwidth , for remote writes . ADR 772
may be sized to ensure that ADR buffer 782 can be flushed
to switch 774 in case of power failure .
[0153] Note that while ADR 772 ensures that RDMA
requests can be flushed out in the case of a local power
failure , a datacenter - wide power failure may cause the loss
of “ in - flight ” data (e . g . , still residing on the switch) . Thus ,
the use of NVM DIMM 748 in conjunction with ADR 772 - 3
is provided to mitigate such losses . In one example , data are
stored in NVM DIMM 748 for a few seconds while a larger
auxiliary power source , such as a generator or uninterrupt
ible power supply (UPC) takes over . Once operational
power is restored , the data can then be sent from NVM
DIMM 748 to system 2 710 - 2 in a seamless manner .
[0154] Once data are delivered to system 2 710 - 2 , ADR
77202 can help to ensure that the data are stored persistently
there , even in the case of a power loss .
[0155] FIG . 8 is a signal flow diagram of an RDMA
persistent store operation according to one or more examples
of the present specification . This flow may be useful both in
normal operation , and in the case of a power loss . In this
example , core 702 - 1 of system 1 710 - 1 is executing a
program and is using RDMA to access a remote persistent
fast memory of system 2 710 - 2 . Switch 774 provides a fabric
between the two systems .
[0156] At operation 1 , core 702 - 1 issues a remote persis
tent store instruction , which is directed to cache 706 - 1 .
Cache 706 - 1 may be a volatile cache , and thus may need to
further propagate the data before persistence is achieved .
Thus , at operation 2 , cache 706 - 1 writes the data out to ADR
772 - 1 of system 1 710 - 1 .
[0157] Once the data are written to ADR 772 - 1 , at opera
tion 3 , ADR 772 - 1 issues the remote persistent store instruc
tion to switch 774 . At operation 4 , switch 774 stores the data
in NVM DIMM 748 . Now from the perspective of system 1
710 - 1 , the remote persistent store is successful . In other
words , the data have been handed off to switch 774 , and
have achieved persistence within switch 774 , so that ADR
772 - 1 has fulfilled its purpose .
[0158] When switch 774 has stored the data in NVM
DIMM 748 , it may issue an ACK to ADR 772 - 1 (operation
5) , indicating that the data have achieved persistence . ADR
772 - 1 may then propagate the ACK to cache 706 - 1 (opera
tion 6) , and finally to core 702 - 1 (operation 7) . Thus , from
the perspective of system 1 710 - 1 , the remote persistent
store is successful .
[0159] In some embodiments , if core 702 - 1 fails to receive
the appropriate ACKs , an exception may be thrown or some
other remedial action may be taken .
[0160] Returning to switch 774 , switch 774 must either
retain the data in its own nonvolatile memory , or propagate
the data out to system 2 710 - 2 and be satisfied that system
to 710 - 2 has successfully stored the data . Thus , at operation
8 , switch 774 propagates the remote persistent store out to
system 2 710 - 2 .
[0161] System 2 710 - 2 receives the remote persistent store
into ADR 772 - 2 . At operation 9 , ADR 772 - 2 issues a
memory write to memory controller 720 - 2 . Once ADR 772

issues the memory write , memory controller 720 - 2 stores the
data in persistent fast memory 722 - 2 .
[0162] At operation 10 , memory controller 720 - 2 sends an
ACK to ADR 772 - 2 . ADR 772 - 2 is now satisfied that the
data have been successfully written to remote persistent
memory , and at operation 11 , ADR 772 - 2 issues an ACK to
switch 774
[0163] Once switch 774 has received the ACK from ADR
772 - 2 , switch 774 is satisfied that the data have been
persistently written , and normal operation may resume .
[0164] But if , for example , the power of ADR 772 - 2 fails
before the persistent write is complete , then ADR 772 - 2 will
not be able to send the ACK to switch 774 . If switch 774
does not receive the ACK , then switch 774 maintains the
data in its own persistent memory , such as NVM DIMM
748 . When power is restored , switch 774 may take remedial
action . For example , switch 774 may again try to write the
data out to system 2 710 - 2 , or in some cases , may provide
a notification to a system administrator to alert the admin
istrator of the failed system write . The system administrator
may then take additional action .
[0165] FIG . 9 is a flowchart of a method 900 performed by
system 1 710 - 1 performing ADR over RDMA according to
one or more examples of the present specification .
[0166] In block 902 , primary power 904 fails or is
removed , such as a reboot event , suspend , power outage , or
from a catastrophic power failure . System 1 710 - 1 detects
the primary power failure .
[0167] In block 906 , system 1 710 - 1 flushes its volatile
cache to ADR 772 - 1 , which includes an ADR buffer 782 and
auxiliary power 780 .
[0168] In block 908 , ADR 772 - 1 flushes the ADR buffer
out to fabric 774 via HFI 770 - 1 . System 1 710 - 1 then waits
for an ACK from fabric 774 .
[0169] In decision block 912 , system 710 - 1 determines
whether it has received an appropriate ACK 910 from fabric
774 . If no ACK is received , then in block 999 , the remote
persistent memory write fails , and an exception may be
raised or some remedial action may be taken .
[0170] On the other hand , if an ACK is received , then in
block 998 , from the perspective of system 1 710 - 1 , the
remote persistent memory write is successful .
[0171] FIG . 10 is a flowchart of a method 1000 performed
by switch 774 according to one or more examples of the
present specification .
[0172] In block 1002 , primary power 1004 fails as
described above , and switch 774 detects the power failure ,
indicating that persistent data need to be preserved .
[0173] In block 1006 , switch 774 receives RDMA data
from system 1 710 - 1 . These data are initially received into
ADR 772 - 3 of switch 774 .
101741 In block 1008 , switch 774 writes the RDMA data
to NVM DIMM 748 . This ensures that even if auxiliary
power fails before the remote persistent write is complete ,
the data in NVM DIMM 748 will not be lost .
101751 . In block 1010 , switch 774 sends an ACK to system
1 710 - 1 , indicating to system 1 710 - 1 that the write is
successful (from the perspective of system 1 710 - 1) .
10176] . In block 1012 , switch 774 flushes the RDMA data
to node 2 710 - 2 . Switch 774 then waits for an ACK from
system to 710 - 2 .

US 2018 / 0239725 A1 Aug . 23 , 2018
15

[0177] In decision block 1016 , if ACK 1014 is not
received , then in block 1099 , the remote persistent store to
system 2 710 - 2 has failed , and some remedial action may be
taken as described above .
[0178] On the other hand , if ACK 1014 is received , then
in block 1098 , the store to system 2 710 - 2 is successful .
[0179] FIG . 11 is a flowchart of a method 1100 performed
by system 2 710 - 2 according to one or more examples of the
present specification .
[0180] In block 1102 , system 2 710 - 2 detects a power
failure of primary power 1104 .
[0181] In block 1104 , using auxiliary power within ADR
772 - 2 , system 2 710 - 2 receives RDMA data from fabric 774 .
[0182] In 1106 , system 2 710 - 2 writes the data to its
persistent fast memory 722 - 2 .
[0183] In block 1108 , once the data have been successfully
written to persistent fast memory , system 2 710 - 2 sends an
ACK to switch 774 .
[0184] In block 1199 , the method is done .
[0185] The foregoing outlines features of several embodi
ments so that those skilled in the art may better understand
various aspects of the present disclosure . Those skilled in the
art should appreciate that they may readily use the present
disclosure as a basis for designing or modifying other
processes and structures for carrying out the same purposes
and / or achieving the same advantages of the embodiments
introduced herein . Those skilled in the art should also realize
that such equivalent constructions do not depart from the
spirit and scope of the present disclosure , and that they may
make various changes , substitutions , and alterations herein
without departing from the spirit and scope of the present
disclosure .
[0186] All or part of any hardware element disclosed
herein may readily be provided in a system - on - a - chip (SOC) ,
including central processing unit (CPU) package . An SoC
represents an integrated circuit (IC) that integrates compo
nents of a computer or other electronic system into a single
chip . Thus , for example , client devices or server devices
may be provided , in whole or in part , in an SoC . The SoC
may contain digital , analog , mixed - signal , and radio fre
quency functions , all of which may be provided on a single
chip substrate . Other embodiments may include a multichip
module (MCM) , with a plurality of chips located within a
single electronic package and configured to interact closely
with each other through the electronic package . In various
other embodiments , the computing functionalities disclosed
herein may be implemented in one or more silicon cores in
application - specific integrated circuits (ASICs) , field - pro
grammable gate arrays (FPGAs) , and other semiconductor
chips .
[0187] Note also that in certain embodiments , some of the
components may be omitted or consolidated . In a general
sense , the arrangements depicted in the figures may be more
logical in their representations , whereas a physical architec
ture may include various permutations , combinations , and
or hybrids of these elements . It is imperative to note that
countless possible design configurations can be used to
achieve the operational objectives outlined herein . Accord
ingly , the associated infrastructure has a myriad of substitute
arrangements , design choices , device possibilities , hardware
configurations , software implementations , and equipment
options .
10188] . In a general sense , any suitably - configured proces -
sor can execute any type of instructions associated with the

data to achieve the operations detailed herein . Any processor
disclosed herein could transform an element or an article
(for example , data) from one state or thing to another state
or thing . In another example , some activities outlined herein
may be implemented with fixed logic or programmable logic
(for example , software and / or computer instructions
executed by a processor) and the elements identified herein
could be some type of a programmable processor , program
mable digital logic (for example , a field - programmable gate
array (FPGA) , an erasable programmable read only memory
(EPROM) , an electrically erasable programmable read only
memory (EEPROM)) , an ASIC that includes digital logic ,
software , code , electronic instructions , flash memory , opti
cal disks , CD - ROMs , DVD ROMs , magnetic or optical
cards , other types of machine - readable mediums suitable for
storing electronic instructions , or any suitable combination
thereof .
10189] In operation , a storage may store information in
any suitable type of tangible , nontransitory storage medium
(for example , random access memory (RAM) , read only
memory (ROM) , field programmable gate array (FPGA) ,
erasable programmable read only memory (EPROM) , elec
trically erasable programmable ROM (EEPROM) , etc .) ,
software , hardware (for example , processor instructions or
microcode) , or in any other suitable component , device ,
element , or object where appropriate and based on particular
needs . Furthermore , the information being tracked , sent ,
received , or stored in a processor could be provided in any
database , register , table , cache , queue , control list , or storage
structure , based on particular needs and implementations , all
of which could be referenced in any suitable timeframe . Any
of the memory or storage elements disclosed herein should
be construed as being encompassed within the broad terms
' memory ' and ' storage , ' as appropriate . A nontransitory
storage medium herein is expressly intended to include any
nontransitory special - purpose or programmable hardware
configured to provide the disclosed operations , or to cause a
processor to perform the disclosed operations .
[0190) Computer program logic implementing all or part
of the functionality described herein is embodied in various
forms , including , but in no way limited to , a source code
form , a computer executable form , machine instructions or
microcode , programmable hardware , and various interme
diate forms (for example , forms generated by an assembler ,
compiler , linker , or locator) . In an example , source code
includes a series of computer program instructions imple
mented in various programming languages , such as an
object code , an assembly language , or a high - level language
such as OpenCL , FORTRAN , C , C + + , JAVA , or HTML for
use with various operating systems or operating environ
ments , or in hardware description languages such as Spice ,
Verilog , and VHDL . The source code may define and use
various data structures and communication messages . The
source code may be in a computer executable form (e . g . , via
an interpreter) , or the source code may be converted (e . g . ,
via a translator , assembler , or compiler) into a computer
executable form , or converted to an intermediate form such
as byte code . Where appropriate , any of the foregoing may
be used to build or describe appropriate discrete or inte
grated circuits , whether sequential , combinatorial , state
machines , or otherwise .
[0191] In one example , any number of electrical circuits of
the FIGURES may be implemented on a board of an
associated electronic device . The board can be a general

US 2018 / 0239725 A1 Aug . 23 , 2018
16

circuit board that can hold various components of the
internal electronic system of the electronic device and
further , provide connectors for other peripherals . More spe
cifically , the board can provide the electrical connections by
which the other components of the system can communicate
electrically . Any suitable processor and memory can be
suitably coupled to the board based on particular configu
ration needs , processing demands , and computing designs .
Other components such as external storage , additional sen
sors , controllers for audio / video display , and peripheral
devices may be attached to the board as plug - in cards , via
cables , or integrated into the board itself . In another
example , the electrical circuits of the FIGURES may be
implemented as stand - alone modules (e . g . , a device with
associated components and circuitry configured to perform
a specific application or function) or implemented as plug - in
modules into application specific hardware of electronic
devices .
[0192] Note that with the numerous examples provided
herein , interaction may be described in terms of two , three ,
four , or more electrical components . However , this has been
done for purposes of clarity and example only . It should be
appreciated that the system can be consolidated or recon
figured in any suitable manner . Along similar design alter
natives , any of the illustrated components , modules , and
elements of the FIGURES may be combined in various
possible configurations , all of which are within the broad
scope of this specification . In certain cases , it may be easier
to describe one or more of the functionalities of a given set
of flows by only referencing a limited number of electrical
elements . It should be appreciated that the electrical circuits
of the FIGURES and its teachings are readily scalable and
can accommodate a large number of components , as well as
more complicated / sophisticated arrangements and configu
rations . Accordingly , the examples provided should not limit
the scope or inhibit the broad teachings of the electrical
circuits as potentially applied to a myriad of other architec
tures .
0193] Numerous other changes , substitutions , variations ,
alterations , and modifications may be ascertained to one
skilled in the art and it is intended that the present disclosure
encompass all such changes , substitutions , variations , altera
tions , and modifications as falling within the scope of the
appended claims . In order to assist the United States Patent
and Trademark Office (USPTO) and , additionally , any read
ers of any patent issued on this application in interpreting the
claims appended hereto , Applicant wishes to note that the
Applicant : (a) does not intend any of the appended claims to
invoke paragraph six (6) of 35 U . S . C . section 112 (pre - AIA)
or paragraph (f) of the same section (post - AIA) , as it exists
on the date of the filing hereof unless the words “ means for "
or " steps for ” are specifically used in the particular claims ;
and (b) does not intend , by any statement in the specifica
tion , to limit this disclosure in any way that is not otherwise
expressly reflected in the appended claims .

of a remote computing device via the fabric ; detect a primary
power failure event ; and flush data from the ADR buffer to
the fabric controller .
(0195] There is also disclosed an example , further com
prising a cache , and wherein the memory controller is
further to flush data from the cache to the ADR buffer .
[0196] There is also disclosed an example , wherein the
memory controller logic is further to receive an acknowl
edgement (ACK) from the fabric controller .
[0197) There is also disclosed an example , wherein the
memory controller logic is further to designate the data as
successfully written .
[0198] There is also disclosed an example , further com
prising a local persistent fast memory .
[0199] There is also disclosed an example , wherein the
memory controller logic is further to : after detecting a
primary power failure event , receive data from the fabric
controller into the ADR buffer ; and flush the ADR buffer to
the persistent fast memory .
[0200] There is also disclosed an example , wherein the
memory controller logic is further to send an acknowledge
ment to the fabric controller .
[0201] There is also disclosed an example , further com
prising a dedicated ADR channel on the HFI .
[0202] There is also disclosed an example , wherein the
dedicated ADR channel is a hardware channel .
[0203] There is also disclosed an example , wherein the
dedicated ADR channel is a software channel .
[0204] There is also disclosed an example a persistent fast
memory server , comprising : a host fabric interface (HFI) for
communicatively coupling to a fabric controller of a fabric ;
a persistent fast memory ; an asynchronous data refresh
(ADR) comprising an auxiliary power and an ADR buffer ;
and a memory controller comprising logic to : provide
remote direct memory access (RDMA) to a remote host via
the fabric ; detect a primary power failure event ; receive data
from the fabric controller into the ADR buffer ; and flush the
ADR buffer to the persistent fast memory
102051 . There is also disclosed an example , wherein the
memory controller logic is further to send an acknowledge
ment to the fabric controller .
[0206] There is also disclosed an example , further com
prising a dedicated ADR channel on the HFI .
102071 There is also disclosed an example , wherein the
dedicated ADR channel is a hardware channel .
[0208] There is also disclosed an example , wherein the
dedicated ADR channel is a software channel .
[0209] There is also disclosed an example , wherein the
memory controller logic is further to : directly access a
persistent fast memory of a remote computing device via the
fabric ; and after detecting the remote power failure event ,
flush data from the ADR buffer to the fabric controller .
10210 . There is also disclosed an example , further com
prising a cache , and wherein the memory controller is
further to flush data from the cache to the ADR buffer .
[0211] There is also disclosed an example , wherein the
memory controller logic is further to receive an acknowl
edgement (ACK) from the fabric controller .
[0212] There is also disclosed an example , wherein the
memory controller logic is further to designate the data as
successfully written .
[0213] There is also disclosed an example of a method of
providing storage to a remote persistent fast memory , com
prising : communicatively coupling to a fabric controller of

EXAMPLE IMPLEMENTATIONS
[0194] There is disclosed in one example , a computing
apparatus , comprising : a host fabric interface (HFI) for
communicatively coupling to a fabric controller of a fabric ;
an asynchronous data refresh (ADR) comprising an auxil
iary power and an ADR buffer ; and a memory controller
comprising logic to : directly access a persistent fast memory

US 2018 / 0239725 A1 Aug . 23 , 2018
17

m

a fabric ; directly accessing a persistent fast memory of a
remote computing device via the fabric , comprising writing
data to a local asynchronous data refresh (ADR) buffer ;
detect a primary power failure event ; accessing an auxiliary
power ; and flushing data from the ADR buffer to the fabric
controller .
02141 There is also disclosed an example , further com

prising flushing data from a cache to the ADR buffer .
10215] . There is also disclosed an example , further com
prising receiving an acknowledgement (ACK) from the
fabric controller .
[0216] There is also disclosed an example , further com
prising designating the data as successfully written .
[0217] There is also disclosed an example , further com
prising accessing a local persistent fast memory .
0218] . There is also disclosed an example , further com
prising : after detecting a primary power failure event ,
receiving data from the fabric controller into the ADR
buffer ; and flushing the ADR buffer to the persistent fast
memory .
[0219] There is also disclosed an example , further com
prising sending an acknowledgement to the fabric controller .
[0220] There is also disclosed an example , further com
prising accessing a dedicated ADR channel on the fabric .
[0221] There is also disclosed an example , wherein the
dedicated ADR channel is a hardware channel .
[0222] There is also disclosed an example , wherein the
dedicated ADR channel is a software channel .
[0223] There is also disclosed an example of a network
switch , comprising : a switching fabric to provided remote
direct memory access (RDMA) from a first system to a
second system , wherein the second system includes a per
sistent fast memory ; an asynchronous data refresh (ADR)
comprising an ADR buffer and an auxiliary power ; and logic
to : detect a primary power failure ; receive RDMA data from
the first system ; and flush the RDMA data to the second
system .
[0224] There is also disclosed an example , further com
prising a local persistent memory , wherein receiving the
RDMA data from the first system comprises receiving the
RDMA data into the local persistent memory .
[0225] There is also disclosed an example , wherein the
logic is further to send an acknowledgement to the first
system .
[0226] There is also disclosed an example , wherein the
logic is further to receive an acknowledgement from the
second system .
[0227] There is also disclosed an example , wherein the
logic is further to designate the RDMA data as successfully
written .
[0228] There is also disclosed an example , wherein the
logic is further to determine that no acknowledgement was
received from the second system , and to take a remedial
action .

a memory controller comprising logic to :
directly access a persistent fast memory of a remote

computing device via the fabric ;
detect a primary power failure event ; and
flush data from the ADR buffer to the fabric controller .

2 . The computing apparatus of claim 1 , further compris
ing a cache , and wherein the memory controller is further to
flush data from the cache to the ADR buffer .

3 . The computing apparatus of claim 1 , wherein the
memory controller logic is further to receive an acknowl
edgement (ACK) from the fabric controller .

4 . The computing apparatus of claim 3 , wherein the
memory controller logic is further to designate the data as
successfully written .

5 . The computing apparatus of claim 1 , further compris
ing a local persistent fast memory .

6 . The computing apparatus of claim 5 , wherein the
memory controller logic is further to :

after detecting a primary power failure event , receive data
from the fabric controller into the ADR buffer ; and

flush the ADR buffer to the persistent fast memory .
7 . The computing apparatus of claim 6 , wherein the

memory controller logic is further to send an acknowledge
ment to the fabric controller .

8 . The computing apparatus of claim 1 , further compris
ing a dedicated ADR channel on the HFI .

9 . The computing apparatus of claim 8 , wherein the
dedicated ADR channel is a hardware channel .

10 . The computing apparatus of claim 8 , wherein the
dedicated ADR channel is a software channel .

11 . A persistent fast memory server , comprising :
a host fabric interface (HFI) for communicatively cou

pling to a fabric controller of a fabric ;
a persistent fast memory ;
an asynchronous data refresh (ADR) comprising an aux

iliary power and an ADR buffer ; and
a memory controller comprising logic to :

provide remote direct memory access (RDMA) to a
remote host via the fabric ;

detect a primary power failure event ;
receive data from the fabric controller into the ADR

buffer ; and
flush the ADR buffer to the persistent fast memory

12 . The computing apparatus of claim 11 , wherein the
memory controller logic is further to send an acknowledge
ment to the fabric controller .

13 . The computing apparatus of claim 11 , further com
prising a dedicated ADR channel on the HFI .

14 . The computing apparatus of claim 13 , wherein the
dedicated ADR channel is a hardware channel .

15 . The computing apparatus of claim 13 , wherein the
dedicated ADR channel is a software channel .

16 . The computing apparatus of claim 11 , wherein the
memory controller logic is further to :

directly access a persistent fast memory of a remote
computing device via the fabric ; and

after detecting the remote power failure event , flush data
from the ADR buffer to the fabric controller .

17 . The computing apparatus of claim 16 , further com
prising a cache , and wherein the memory controller is
further to flush data from the cache to the ADR buffer .

18 . The computing apparatus of claim 16 , wherein the
memory controller logic is further to receive an acknowl
edgement (ACK) from the fabric controller .

What is claimed is :
1 . A computing apparatus , comprising :
a host fabric interface (HFI) for communicatively cou

pling to a fabric controller of a fabric ;
an asynchronous data refresh (ADR) comprising an aux

iliary power and an ADR buffer ; and

US 2018 / 0239725 A1 Aug . 23 , 2018
18

19 . The computing apparatus of claim 18 , wherein the
memory controller logic is further to designate the data as
successfully written .

20 . A network switch , comprising :
a switching fabric to provided remote direct memory

access (RDMA) from a first system to a second system ,
wherein the second system includes a persistent fast
memory ;

an asynchronous data refresh (ADR) comprising an ADR
buffer and an auxiliary power ; and

logic to :
detect a primary power failure ;
receive RDMA data from the first system ; and
flush the RDMA data to the second system .

21 . The network switch of claim 20 , further comprising a
local persistent memory , wherein receiving the RDMA data
from the first system comprises receiving the RDMA data
into the local persistent memory .

22 . The network switch of claim 21 , wherein the logic is
further to send an acknowledgement to the first system .

23 . The network switch of claim 21 , wherein the logic is
further to receive an acknowledgement from the second
system .

24 . The network switch of claim 23 , wherein the logic is
further to designate the RDMA data as successfully written .

25 . The network switch of claim 23 , wherein the logic is
further to determine that no acknowledgement was received
from the second system , and to take a remedial action .

* * * *

