C1ertain embodiments of the present invention provide a mount. The mount includes a post and a push nut. The post includes a longitudinal axis. The push nut is connected to the post. The push nut includes an opening for receiving the post along the longitudinal axis and at least one locking wedge rotatably connected to the push nut and extending into the opening. The at least one locking wedge allows the push nut to slide along the longitudinal axis of the post in a first direction and prevents the push nut from sliding along the longitudinal axis of the post in a second direction opposite the first direction.
MOUNT HAVING A PUSH NUT AND A POST

CROSS-REFERENCE TO RELATED APPLICATION


FIELD OF THE INVENTION

[0002] The present invention relates to a mount. More particularly, the present invention relates to a mount having a push nut and a post.

BACKGROUND OF THE INVENTION

[0003] It is desirable to route one or more elongate objects, such as cables or hoses, along a support member, such as a frame rail for a truck. The elongate objects are formed into a bundle using a fastener, such as a cable tie or a hose clamp. The fastener is secured to a mount, which in turn, is secured to the support member. For example, one or more cables are formed into a bundle using a cable tie, and the cable tie is secured to a cable tie mount, which in turn, is secured to the frame rail. Existing mounts include, for example, plastic-dipped metal "L" brackets fastened to the frame rail with Huck bolts. While providing a point of attachment, as well as support for the cable tie, and therefore, the bundle of cables, existing cable tie mounts are both difficult and time consuming to install. Additionally, existing cable tie mounts are limited to a specific application.

[0004] Therefore, there is a need for a mount that is easy to install. Additionally, there is a need for a mount that is versatile, and thus, easily adapted to a variety of applications.

SUMMARY OF THE INVENTION

[0005] Certain embodiments of the present invention provide a mount. The mount includes a post and a push nut. The post includes a longitudinal axis. The push nut is connected to the post. The push nut includes an opening for receiving the post along the longitudinal axis and at least one locking wedge rotatably connected to the push nut and extending into the opening. The at least one locking wedge allows the push nut to slide along the longitudinal axis of the post in a first direction and prevents the push nut from sliding along the longitudinal axis of the post in a second direction opposite the first direction.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 is a perspective view of a post according to an embodiment of the present invention.
[0007] FIG. 2 is a top view of the post of FIG. 1.
[0008] FIG. 3 is a bottom view of the post of FIG. 1.
[0009] FIG. 4 is a front view of the post of FIG. 1.
[0010] FIG. 5 is a side view of the post of FIG. 1.
[0011] FIG. 6 is a perspective view of a push nut according to an embodiment of the present invention.
[0012] FIG. 7 is a top view of the push nut of FIG. 6.
[0013] FIG. 8 is a bottom view of the push nut of FIG. 6.
[0014] FIG. 9 is a front view of the push nut of FIG. 6.
[0015] FIG. 10 is a perspective view of a mount according to an embodiment of the present invention.
[0016] FIG. 11 is an exploded view of the mount of FIG. 10.
[0017] FIG. 12 is a side view of the mount of FIG. 10.
[0018] FIG. 13 is a cross-sectional view taken along line 13-13 of FIG. 12.
[0019] FIG. 14 is an exploded view of FIG. 13.
[0020] FIGS. 15-18 illustrate a removal tool at various stages of removing a push nut from a post according to an embodiment of the present invention.
[0021] FIG. 19 is a perspective view of a post and a detachable rung component according to an alternative embodiment of the present invention.
[0022] FIG. 20 is an exploded view of the post and the detachable rung component of FIG. 19.
[0023] FIG. 21 is a top view of the post and the detachable rung component of FIG. 19.
[0024] FIG. 22 is a cross-sectional view taken along line 22-22 of FIG. 21.
[0025] FIG. 23 is an exploded view of FIG. 22.
[0026] FIG. 24 is a perspective view of a push nut and a detachable rung component according to an alternative embodiment of the present invention.
[0027] FIG. 25 is an exploded view of the push nut and the detachable rung component of FIG. 24.
[0028] FIG. 26 is a top view of the push nut and the detachable rung component of FIG. 24.
[0029] FIG. 27 is a cross-sectional view taken along line 27-27 of FIG. 26.
[0030] FIG. 28 is an exploded view of FIG. 27.
[0031] FIG. 29 is a perspective view of a push nut according to an alternative embodiment of the present invention.
[0032] FIG. 30 is a top view of the push mount of FIG. 29.
[0033] FIG. 31 is a perspective view of a push nut according to an alternative embodiment of the present invention.
[0034] FIG. 32 is a top view of the push mount of FIG. 31.
[0035] FIG. 33 is a top perspective view of a skit according to an alternative embodiment of the present invention.
[0036] FIG. 34 is a bottom perspective view of the skit of FIG. 33.
[0037] FIG. 35 is a cross-sectional view of the skit of FIG. 33.
[0038] FIG. 36 is a top perspective view of the skit of FIG. 33 connected to the push nut of FIG. 6.
[0039] FIG. 37 is a cross-sectional view of a push nut according to an alternative embodiment of the present invention.
[0040] FIG. 38 is an exploded view of a mount according to an alternative embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0041] FIGS. 1-32 illustrate a mount 100 according to one or more embodiments of the present invention. The mount 100 includes a post 200 and a push nut 300, both of which are described in more detail below.
[0042] Referring to FIGS. 1-5, the post 200 includes a head 210. As best seen in FIG. 1, the head 210 includes a rung 215.
[0043] Additionally, the post 200 includes a shaft 220. The shaft 220 includes one or more sets of teeth 225. Preferably, the shaft 220 is shaped like a cross or a plus-sign, as best seen in FIG. 3, but it is likewise contemplated that the shaft 220 may be any shape, such as a circle, a square, a triangle, a star, or an "L".
[0044] As best seen in FIG. 4 and FIG. 5, the post 200 includes a longitudinal axis A.
[0045] Referring to FIGS. 6-9, the push nut 300 includes a body 310. Preferably, the body 310 is circular or cylindrical in
shape, as best seen in FIG. 6, but it is likewise contemplated that the body 310 may be any shape, such as a square, a rectangle, or a hexagon. As best seen in FIG. 9, the body 310 includes a top portion 311 and a bottom portion 312.

Additionally, the push nut 300 includes an opening 320. The opening 320 is centrally located on the body 310. Preferably, the shape of the push nut 300, or more particularly, the opening 320, matches the shape of the post 200, or more particularly, the shaft 220. For example, as best seen in FIG. 7, the opening 320 is shaped like a cross or a plus sign, but it is likewise contemplated that the opening 320 may be any shape, such as a circle, a square, a triangle, a star, or an “I.”

Additionally, the push nut 300 includes one or more locking wedges 330. The locking wedges 330 are rotatably connected to the body 310 and extend into the opening 320. Each of the locking wedges 330 includes a set of teeth 331 and a release arm 332.

Additionally, the push nut 300 includes a skirt 340. As best seen in FIG. 6, the skirt 340 is frusto-conical in shape and resembles a quiot. The skirt 340 wraps around the bottom portion 312 of the body 310, sloping downwardly and outwardly therefrom. As best seen in FIG. 14, the skirt 340 is integrally formed with the body 310. However, as shown in FIGS. 33-35, the skirt 340 may be a separate component connected to the body 310. Alternatively, as shown in FIG. 36, the skirt 340 may be connected to or integrally formed with the head 210 of the post 200.

Additionally, as best seen in FIG. 14, the thickness of the skirt 340 tapers from a maximum thickness T_max at the bottom portion 312 of the body 310 to a minimum thickness T_min at the distal end of the skirt 340. Alternatively, as shown in FIG. 37, the skirt 340 may include a groove 341 near the bottom portion 312 of the body 310, which forms a living hinge 342.

Referring to FIGS. 10-14, the mount 100 is secured to a support member 10, such as a frame rail for a truck. For example, as best seen in FIG. 11, the support member 10 includes an opening 15 for receiving the mount 100. The shaft 220 of the post 200 is positioned through the opening 15, with the head 210 of the post 200 contacting a first side 11 of the support member 10. The push nut 300 is pushed onto the post 200, with the shaft 220 extending through the opening 320. The skirt 340 contacts a second side 12 of the support member 10. The support member 10 is positioned between the push nut 300 and the post 200.

The push nut 300 is secured to the post 200. In a first direction along the longitudinal axis A of the post 200, as indicated by a first arrow A1 in FIGS. 15-17, the push nut 300 slidesly engages the post 200. For example, when the push nut 300 is pushed onto the post 200, the teeth 225 cause the locking wedges 330 to rotate away from the post 200, which in turn, allows the push nut 300 to slide along the longitudinal axis A of the post 200. However, in a second direction opposite the first direction, as indicated by a second arrow A2 in FIG. 18, the push nut 300 lockingly engages the post 200. For example, when the push nut 300, or more particularly, the skirt 340, contacts the support member 10, the teeth 225 on the post 200 engage the teeth 331 on the locking wedge 330, locking the push nut 300 onto the post 200.

If a sufficient amount of force is applied to the push nut 300, the skirt 340 deflects, allowing the push nut 300 to slide further along the longitudinal axis of the post 200. Additionally, the skirt 340 is resilient, and therefore, biases the push nut 300 in the second direction, improving the locking engagement between the push nut 300 and the post 200, which limits displacement of the mount 100. The skirt 340 may also be referred to as a resilient member.

As shown in FIG. 10, one or more cables 20 are formed into a bundle 30 using a cable tie 40. The cable tie 40, and therefore, the bundle 30 of cables 20, are secured to the mount 100. For example, the cable tie 40 is wrapped around the bundle 30 of cables 20 and inserted through the rung 215 of the mount 100. For clarity, the cable tie 40 and the bundle 30 of cables 20 are not shown in FIGS. 11-14.

Referring to FIGS. 15-18, the push nut 300 is releasable. That is, the push nut 300 may be removed from the post 200. For example, as best seen in FIG. 17, a removal tool 400 engages the release arms 332, causing the locking wedges 330 to rotate away from the post 200.

Although not shown in FIGS. 15-18, the push nut 300 and/or the removal tool 400 may include one or more retention members, such as a projection or a recess, for retaining the push nut 300 on the removal tool 400 when the push nut 300 is removed from the post 200.

As shown in FIGS. 1-18, the rung 215 is integrally formed with the head 210 of the post 200. Alternatively, as shown in FIGS. 19-23, the rung 215 may be removably connected to the head 210 of the post 200. For example, as best seen in FIG. 20, the head 210 of the post 200 includes a male connector 510 for engaging a female connector 520, including a slot 525, on a detachable rung component 500. Additionally, the male connector 510 includes a pair of ribs 515 for securing the male connector 510 in the slot 525 of the female connector 520. Another example of a detachable rung component 800 is shown in FIG. 38.

Additionally, as shown in FIGS. 1-18, the post 200 includes the rung 215. Alternatively, as shown in FIGS. 24-28, the push nut 300 may include the rung 215. For example, as best seen in FIG. 25, the push nut 300 includes a female connector 610, including a groove 615, for engaging a male connector 620, including a rib 625, on a detachable rung component 600. Therefore, the rung 215 is removably connected to the push nut 300, but it is likewise contemplated that the rung 215 is integrally formed with the push nut 300.

As shown in FIGS. 1-18, the skirt 340 of the push nut 300 is solid. Alternatively, as shown in FIGS. 29-32, the skirt 340 includes one or more openings 700, such as cutouts or holes. The openings 700 decrease the amount of force required to deflect the skirt 340, making the push nut 300 easier to install onto the post 200, while still providing a sufficient amount of resiliency to secure the push nut 300 to the post 200.

While the particular preferred embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the teaching of the invention. The matter set forth in the foregoing description and accompanying drawings is offered by way of illustration only and not as limitation. The illustrated embodiments are examples only and should not be taken as limiting the scope of the present invention. The claims should not be read as limited to the described order or elements unless stated to that effect. Therefore, all embodiments that come within the scope and spirit of the following claims and equivalents thereto are claimed as the invention.
1. A mount comprising:
   a post having a longitudinal axis; and
   a push nut connected to the post, the push nut having an
   opening for receiving the post along the longitudinal
   axis and at least one locking wedge rotatably connected
to the push nut and extending into the opening, the at
   least one locking wedge allowing the push nut to slide
   along the longitudinal axis of the post in a first direction
   and preventing the push nut from sliding along the lon-
gitudinal axis of the post in a second direction opposite
   the first direction.
2. The mount of claim 1, wherein the push nut includes a
   plurality of locking wedges.
3. The mount of claim 1, wherein the at least one locking
   wedge includes a set of teeth for engaging a corresponding set
   of teeth on the post.
4. The mount of claim 1, wherein the at least one locking
   wedge includes a release arm for rotating the at least one
   locking wedge away from the post to allow the push nut to be
   removed from the post.
5. The mount of claim 4, wherein at least one of the push
   nut and a removal tool includes a retention member for retaining
   the push nut on the removal tool when the push nut is
   removed from the post.
6. The mount of claim 1, wherein the push nut includes a
   resilient member.
7. The mount of claim 6, wherein the resilient member is
   frustoconical.
8. The mount of claim 6, wherein the resilient member
   includes at least one opening.
9. The mount of claim 6, wherein the resilient member
   biases the push nut in the second direction when the resilient
   member is in contact with a support member.
10. The mount of claim 6, wherein the resilient member
    tapers in thickness from a maximum thickness at the push nut
    to a minimum thickness at a distal end of the resilient mem-
    ber.
11. The mount of claim 1, wherein the shape of the opening
    in the push nut matches the shape of the post.
12. The mount of claim 1, wherein the post includes a rung
    for receiving a cable tie.

* * * * *