01/80003 A2

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

25 October 2001 (25.10.2001)

(10) International Publication Number

WO 01/80003 A2

(51) International Patent Classification’: GOG6F 9/50

(21) International Application Number: PCT/US01/12513

(22) International Filing Date: 16 April 2001 (16.04.2001)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

60/197,490 17 April 2000 (17.04.2000) US

(71) Applicant: CIRCADENCE CORPORATION [US/US];
Suite 101, 4888 Pearl East Circle, Boulder, CO 80301 (US).

(72) Inventor: VANGE, Mark; 2800 1 Adelaide Street East,
Toronto, Ontario M5C 2V9 (CA).

(74) Agents: BURTON, Carol, W. et al.; Hogan & Hartson
LLP, Suite 1500, 1200 17th Street, Denver, CO 80202 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ,DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR SHIFTING FUNCTIONALITY BETWEEN MULTIPLE WEB SERVERS

(57) Abstract: A system for providing network functionality from a plurality of network-connected servers to at least one network-
connected client computer. A management component is coupled to each of the servers. A shifting component coupled to or within
the management component operates to shift data and program components between the network-connected servers so as to configure
a selected server to implement a specified set of functionality. A redirection component responsive to a client request for the specified
set of functionality redirects the requesting client to the selected server(s).

WO 01/80003 PCT/US01/12513

10

15

20

25

30

SYSTEM AND METHOD FOR SHIFTING FUNCTIONALITY
BETWEEN MULTIPLE WEB SERVERS

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates, in general, to network information access
and, more particularly, to software, systems and methods for shifting functionality

between multiple web servers in a coordinated multi-server web site.

Relevant Background

Increasingly, business data processing systems, entertainment
systems, and personal communications systems are implemented by
computers across networks that are interconnected by internetworks (e.g., the
Internet). The Internet is rapidly emerging as the preferred system for
distributing and exchanging data. Data exchanges support applications
including electronic commerce, broadcast and multicast messaging,

videoconferencing, gaming, and the like.

The Internet is a collection of disparate computers and networks
coupled together by a web of interconnections using standardized
communications protocols. The Internet is characterized by its vast reach as
a result of its wide and increasing availability and easy access protocols.
Unfortunately, the ubiquitous nature of the Internet results in variable
bandwidth and quality of service between points. The latency and reliability of
data transport is largely determined by the total amount of traffic on the
Internet and so varies wildly seasonally and throughout the day. Other factors
that affect quality of service include equipment outtages and line degradation
that force packets to be rerouted, damaged and/or dropped. Also, routing
software and hardware limitations within the Internet infrastructure may create
bandwidth bottlenecks even when the mechanisms are operating within

specifications.

WO 01/80003 PCT/US01/12513

10

15

20

25

30

Often, a given entity will provide multiple services using multiple
servers. For example, a typical suite of Internet services might include a web
server, a mail server, a file transfer server, a chat server and the like. These
servers may execute on a single machine or on multiple machines.
Characteristically, the services are provided on a well-defined machine at a
known network address so that users can readily find the machine that is
needed to perform a particular function. As a result, the functionality is bound
to particular servers. More recently, efforts have been made to replicate
services on geographically or topologically distributed servers to improve
capacity and performance. However, these solutions maintain the static
binding between functionality and particular hardware/software platforms that

implement the functionality.

Unfortunately, the ubiquitous nature of the Internet results in variable
bandwidth and quality of service between points. The latency and reliability of
data transport is largely determined by the total amount of traffic on the
Internet and so varies wildly seasonally and throughout the day. Other factors
that affect quality of service include equipment outages and line degradation
that force packets to be rerouted, damaged and/or dropped. Also, routing
software and hardware limitations within the Internet infrastructure may create
bandwidth bottlenecks even when the mechanisms are operating within
specifications.

As a result of this static allocation of functionality, the functionality
provided by the network-connected servers behaves unpredictably, and may
give less than optimal performance. Even where functionality is replicated
across multiple servers, service remains sub-optimal. Moreover, load
balancing across multiple servers providing replicated functionality is
problematic and often leads to inefficient use of some resources while other

resources are overburdened.

A particular need exists in environments that involve multiple users
accessing a network resource such as a web server. Web servers are

typically implemented with rich functionality and are often extensible in that

2

10

15

20

25

30

WO 01/80003 PCT/US01/12513

the functionality provided can be increased modularly to provide general-
purpose and special-purpose functions. Examples include information
services, broadcast, multicast and video conference services, as well as most
electronic commerce (e-commerce) applications. [n these applications it is
important to that functionality provided by network-connected resources be

provided in a dependable, timely and efficient manner.

In e-commerce applications, it is important to provide a satisfying buyer
experience that leads to a purchase transaction. To provide this high level of
servicé', a web site operator must ensure that data is exchanged with the
customer in the most usable and efficient fashion. An e-commerce
transaction may involve several services including search services, file
retrieval services, shopping cart services and payment services. These
varied services are typically delivered from a single network node, however
the node may be less than optimal for a particular customer. Even if multiple
server nodes were available, current technology does not provide a way to
select a particular network node. Moreover, there is no mechanism for
selectively shifting particular functionality among available serving nodes to

improve performance on a function-by-function basis.

Until now, however, the e-commerce site owner has had little or no
control over the transport mechanisms through the Internet that affect the
latency and quality of service. This is akin to a retailer being forced to deal
with a customer by shouting across the street, never certain how often what
was said must be repeated, and knowing that during rush hour
communication would be nearly impossible. While efforts are continually
being made to increase the capacity and quality of service afforded by the
Internet, it is contemplated that congestion will always impact the ability to
predictably and reliably offer a specified level of service. Moreover, the
change in the demand for bandwidth increases at a greater rate than does
the change in bandwidth supply, ensuring that congestion will continue to be

an issue into the foreseeable future. A need exists for a system to exchange

WO 01/80003 PCT/US01/12513

10

15

20

25

data over the Internet that provides a high quality of service even during

periods of congestion.

Many electronic commerce transactions are abandoned by the user
because system performance degradations frustrate the purchaser before the
transaction is consummated. While a transaction that is abandoned while a
customer is merely browsing through a catalog may be tolerable,
abandonment when the customer is just a few clicks away from a purchase is
highly undesirable. However, existing Internet transport mechanisms and
systems do not allow the e-commerce site owner any ability to distinguish
between the "just browsing" and the "about to buy" customers. In fact, the
vagaries of the Internet may lead to the casual browser receiving a higher
quality of service while the about-to-buy customer becomes frustrated and

abandons the transaction.

Partial solutions have been implemented by systems that cache
Internet content at multiple distributed locations. In theory, when content can
be served from a cache location, it can be delivered with lower latency than if
it were served from a single originating web server. However, the content
must be copied from its origin to the multiple caches resulting in a
tremendous volume of data that must be duplicated and transported.
Moreover, it is difficult to keep all of the cache copies coherent with the origin.
Furthermore, a cache handles only static content and does not distribute
functionality to locations from which it can be more efficiently delivered.
Hence, caching is only a partial solution to the many web sites that use

dynamically generated web pages.

SUMMARY OF THE INVENTION

Briefly stated, the present invention involves a system for providing
functionality and services from a plurality of network-connected resources where
the mechanisms, such as computer code modules, implementing the functionality

are dynamically assigned to one or more of the various network connected

WO 01/80003 PCT/US01/12513

10

15

20

25

resources. Users are dynamically and preferably transparently directed to the

network resource in which requested functionality currently resides.

A system for providing network resources from a plurality of network-
connected resources to at least one network-connected client computer. A
management component is coupled to each of the resources. A shifting
component within the management component operates to shift data and
program components between the network-connected resources so as to
configure a selected resource to implement a specified set of functionality
and/or provide a specified set of resources. A redirection component
responsive to a client request for the specified set of functionality redirects the
requesting client to a server offering the specified functionality.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a general distributed computing environment in which

the present invention is implemented,

FIG. 2a-FIG. 2d show in block-diagram form entity relationships in a

system in accordance with the present invention;

FIG. 3 illustrates in block-diagram form significant components of a

particular implementation of a system in accordance with the present invention;

FIG. 4 shows a domain name system used in an implementation of the

present invention;
FIG. 5 shows front-end components of FIG. 2 in greater detail;
FIG. 6 shows back-end components of FIG. 2 in greater detail; and
FIG. 7 shows a conceptual block diagram of the system of FIG. 2 in an

alternative context.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In establishing a network architecture for providing services, there is a
continuous compromise made in selecting where, topologically, to locate the

hardware and software that provides the services. In almost all networks,

5

10

15

20

25

30

WO 01/80003 PCT/US01/12513

quality of service amongst the nodes using the services will differ. This
compromise is more apparent in Internet-based systems because the
differential between users is greater, is unpredictable, and varies significantly
over time. Often, the architect has incomplete knowledge of where the nodes
that will access the services exist. The present invention addresses this
compromise by providing a generic software/hardware infrastructure in which
the functionality is provided by any or all of a large number of nodes.
Functionality is dynamically shifted amongst the available nodes to provide

improved service to all participants.

The present invention generally involves systems, methods and
software for delivering functionality from network-connected resources (e.g.,
servers) to network-connected appliances (e.g., clients). It is recognized that
the roles of client and server are flexibly defined in an operating network as
some entities play both roles at any given time and may in fact play both roles
at the same time. These terms are used for convenience herein for ease of
explanation, however, unless expressly indicated otherwise the terminology is
not to be considered a limitation on the broader teachings of the present
invention as set forth in the claims. Further, the examples are directed at
web-based systems using the Internet, however, more generally, the present
invention relates to any type of functionality or resources provided over a
network and need not be implemented as a web-based system. Hence,
unless specified otherwise, a "web server" is synonymous with a "server” or
other entity that delivers functionality in response to requests. Likewise, a
"browser" is synonymous with a client or other entity that requests and uses a

particular set of functionality.

The particular examples herein often refer to a system in which a
particular set of functionality is embodied in a specific web site controlled by
an entity such as a business or service provider. This model fits conventional
Internet services deployment in which functionality is statically bound to one
or more specific network nodes. In one respect, the present invention can be

viewed as an augmentation of this conventional model that enables

6

10

15

20

25

30

WO 01/80003 PCT/US01/12513

functionality to be distributed from its statically assigned location to a variety
of dynamically assigned nodes that implement the web site's functionality. In
a second aspect, the present invention contemplates that the entity-controlled
web site may exist only virtually (e.g., none of the web site functionality is
statically bound to a particular node) and that all of the site functionality is

embodied in the nodes to which the functionality is distributed.

The present invention is illustrated and described in terms of a
distributed computing environment such as an enterprise computing system
using public communication channels such as the Internet. However, an
important feature of the present invention is that it is readily scaled upwardly
and downwardly to meet the needs of a particular application. Accordingly,
unless specified to the contrary, the present invention is applicable to
significantly larger, more complex network environments, including wireless
network environments, as well as small network environments such as

conventional LAN systems.

The present invention is particularly useful in applications where there
is an large amount of data communicated between web servers and web
clients (i.e., browser software) or where timeliness (e.g., low latency transport)
is important. For example, real-time stock quotes, multi-player games, multi-
tiered service to ASP (application service provider) software distribution
models benefit from the improvements provided by the present invention.
Although the present invention will be described in terms of particular
applications, these examples are provided to enhance understanding and are

not a limitation of the essential teachings of the present invention.

The current experience of using an overloaded, topologically distant or
unavailable web site that is one of frustration and constant and unexplained
errors. In terms of conventional phone-order shopping, this is akin to a
customer phoning a favorite mail order company only to receive a constant
busy signal or non-stop ringing or to be connected to an operator only to be
disconnected prior to the completion of the order placement. Under the

present invention, web site operators have a mechanism to communicate with

7

10

15

20

25

30

WO 01/80003 PCT/US01/12513

their customers even if they cannot handle their web query immediately. One
aspect of the present invention is an ability to serve alternative content and/or
functionality in response to a request for particular content and/or
functionality. For example, the invention contemplates a system that presents
the user with a pre-defined set of web pages which can apologize for delays,
instruct the user on what to do in case of an emergency, advertise additional
options or new product offerings, and/or provide other functionality such as

call-center type features including queue management.

The present invention uses a web site delivery system in which a
plurality of front-end web servers and back-end web servers cooperate to
deliver content and services of the web site. A front-end web server is an
application program that is enabled to generate web pages (e.g., HTML
pages) in response to HTTP requests received from a client software
application such as a web browser. A back-end or "originating" web server is
a software application that receives requests from the front-end web server
and is logically close to one or more network resources (e.g., data storage,
database servers, and the like). The term "logically close" as used herein
refers to quality of service between two points and may reflect physical
proximity, topological proximity or other factors that affect quality of service

and speed of service between two points.

A web site is conventionally implemented by including all the
functionality implemented by the web site in a web server or web servers that
are logically close to the network resources to be served by that web site. In
contrast, the present invention implements web site functionality and behavior
within one or more front-end web server(s) that communicate over the public
network or WAN to obtain the network resources or possess the network
resources locally. Preferably, the front-end web server includes an enhanced
communication channel for communicating with the back-end web server.
This shift in functionality from the back-end to the front-end provides
improved performance in many applications. CPU intensive processing can

be performed by the front-end server thereby relieving the back-end web

8

10

15

20

25

30

WO 01/80003 PCT/US01/12513

server to handle requests. Also, because multiple front-ends may access the
same back-end servers, the CPU intensive functionality is distributed over a
larger number of machines as needed to provide improved performance and

access to a larger number of clients.

For purposes of this document, a web server is a computer running
server software coupled to the World Wide Web (i.e., "the web") that delivers
or serves web pages. The web server has a unique IP address and accepts
connections in order to service requests by sending back responses. A web
server differs from a proxy server or a gateway server in that a web server
has resident a set of resources (i.e., software programs, data storage
capacity, and/or hardware) that enable it to execute programs to provide an
extensible range of functionality such as generating web pages, accessing
remote network resources, analyzing contents of packets, reformatting
request/response traffic and the like using the resident resources. In contrast,
a proxy simply forwards request/response traffic on behalf of a client to
resources that reside elsewhere, or obtains resources from a local cache if
implemented. A web server in accordance with the present invention may
reference external resources of the same or different type as the services
requested by a user, and reformat and augment what is provided by the
external resources in its response to the user. Commercially available web
server software includes Microsoft Internet Information Server (IIS), Netscape
Netsite, Apache, among others. Alternatively, a web site may be

implemented with custom or semi-custom software that supports HTTP traffic.

FIG. 1 shows an exemplary computing environment 100 in which the
present invention may be implemented. Environment 100 includes a plurality
of local networks such as Ethernet network 102, FDDI network 103 and
Token ring network 104. Essentially, a number of computing devices and
groups of devices are interconnected through a network 101. For example,
local networks 102, 103 and 104 are each coupled to network 101 through
routers 109. LANs 102, 103 and 104 may be implemented using any

available topology and may implement one or more server technologies

9

10

15

20

25

30

WO 01/80003 PCT/US01/12513

including, for example UNIX, Novell, or Windows NT networks, or peer-to-
peer type network. Each network will include distributed storage implemented
in each device and typically includes some mass storage device coupled to or
managed by a server computer. Network 101 comprises, for example, a
public network such as the Internet or another network mechanism such as a

fibre channel fabric or conventional WAN technologies.

Local networks 102, 103 and 104 include one or more network
appliances 107. One or more network appliances 107 may be configured as
an application and/or file server. Each local network 102, 103 and 104 may
include a number of shared devices (not shown) such as printers, file servers,
mass storage and the like. Similarly, devices 111 may be shared through
network 101 to provide application and file services, directory services,
printing, storage, and the like. Routers 109 provide a physical connection
between the various devices through network 101. Routers 109 may
implement desired access and security protocols to manage access through
network 101.

Network appliances 107 may also couple to network 101 through
public switched telephone network 108 using copper or wireless connection
technology. In a typical environment, an Internet service provider 106
supports a connection to network 101 as well as PSTN 108 connections to

network appliances 107.

Network appliances 107 may be implemented as any kind of network
appliance having sufficient computational function to execute software needed
to establish and use a connection to network 101. Network appliances 107
may comprise workstation and personal computer hardware executing
commercial operating systems such as Unix variants, Micrsosoft Windows,
Macintosh OS, and the like. At the same time, some appliances 107 comprise
portable or handheld devices using wireless connections through a wireless
access provider such as personal digital assistants and cell phones executing
operating system software such as PalmOS, WindowsCE, and the like.

Moreover, the present invention is readily extended to network devices such

10

10

15

20

25

30

WO 01/80003 PCT/US01/12513

as office equipment, vehicles, and personal communicators that make

occasional connection‘through network 101.

Each of the devices shown in FIG. 1 may include memory, mass
storage, and a degree of data processing capability sufficient to manage their
connection to network 101. The computer program devices in accordance
with the present invention are implemented in the memory of the various
devices shown in FIG. 1 and enabled by the data processing capability of the
devices shown in FIG. 1. In addition to local memory and storage associated
with each device, it is often desirable to provide one or more locations of
shared storage such as disk farm (not shown) that provides mass storage
capacity beyond what an individual device can efficiently use and manage.
Selected components of the present invention may be stored in or

implemented in shared mass storage.

FIG. 2a-FIG. 2d illustrate entity relationships involved in an interaction
in which functionality provided by an originating web site 210 is provided from
a variety of sources including front-ends 201. A single client 205 is shown in
FIG. 2a-FIG. 2d, however, a number of clients will be enabled to use the
system simultaneously. Each client 205 has a network connection that
supports a communication channel to one or more originating servers 210 in

which a particular web site is implemented.

In a typical client-server transaction shown in FIG. 2a, a client makes a
request for resources and/or functionality implemented on originating server
210. In a web-based implementation, this request takes the form of an HTTP
request datagram specifying a uniform resource locator (URL) that identifies
originating server 210. As in conventional networks, various routing actions
are taken within network 101 (described below) to direct the request datagram
to its intended destination. In a conventional environment, client 205 waits for

a response to the request datagram.

Management component 207 shown in FIG. 2c, in practice, embodies a
number of routing and control functions that may be implemented in a number

of servers as opposed to the single entity shown in FIG. 2b-FIG. 2c.
11

10

15

20

25

30

WO 01/80003 PCT/US01/12513

Mechanisms shown in Fig. 4 are used to redirect client 205 to one of a plurality
of front-end servers 201 shown in FIG. 2¢c. Another function of management
component 207 is to dynamically maintain and shift content and functionality
between originating server 210 and the various available front-end machines
201. In a particular implementation, management component 207 maintains an
out-of-band or in-band connection 202 with each front-end server 201 and each
originating server 210. Connection 202 enables the dynamic shifting of

functionality as needed to meet the needs of a particular application.

Unlike conventional networks, the present invention operates as shown
in FIG. 2b to route the request from client 205 to a particular front-end 201
that is able to respond to the request from client 205 as shown in FIG. 2d.
Non-selected front-ends 201, shown in phantom in FIG. 2d, are not involved
in responding to the request. Preferably, client 205 is unaware that content
and/or functionality is being provided by an entity other than originating server
210. In fact, it is contemplated that originating server 210 may not exist in a
physical sense at all. So long as the desired functionality is provided by the
available front-ends 201, originating server 210 may become unnecessary as

a physical entity.

Management component 207 may shift functionality after the request is
received, or proactively before the request is received based on predictive
logic. Front-end servers may cache or locally store content and program
code that are frequently used to control delays in porting functionality
between nodes. It is contemplated that management component may select
originating server 210 itself in some circumstances to provide content and
functionality that is most efficiently deployed at a particular time or in
particular circumstances by server 210. In this manner, functionality, content,

and behavior is dynamically shifted amongst available resources.

In a particular example, management component 207 measures and
maintains metrics associated with each front-end server 201 over channel 202.
These metrics include, for example, processor load, quality of service between

various points, memory resource load, and other measurements that impact the

12

10

15

20

25

30

WO 01/80003 PCT/US01/12513

ability of a front-end server to efficiently respond to requests. Management
component 207 uses these metrics in the selection of a particular front-end 201
to respond to a particular request. Preferably, management component 207
also maintains an inventory of the content and functionality available at each
front-end server 201 so that requests can be directed to a front-end that is

already configured to provide the desired functionality.

In the preferred web-based implementation, front-end servers 201 are
implemented by web server software that supports dynamic expansion of
functionality. Several commercial off-the-shelf web server packages offer
such extensible functionality through the use of plug-ins, servelets, agents
and other modular program components. In some cases, it is contemplated
that special purpose web server software will be used in front-ends 201 that
implement more streamlined and compact software than is possible with off-
the-shelf general purpose products. It is contemplated that any computer
upon which front-end 201 executes will support multiple instances of front-end
201. In other words, a network node upon which a front-end 201 resides may
actually have multiple front-ends 201 in existence at any given time. In this
specific example, client 205 comprises a network-enabled graphical user
interface such as a World Wide Web (web) browser. However, the present
invention is readily extended to client software other than conventional web
browser software. Any client application that can access a standard or
proprietary user level protocol or language for network access is a suitable

equivalent.

For convenience, the term "web site" is used interchangeably with
"web server" in the description herein although it should be understood that a
web site comprises a collection of content, programs and processes
implemented on one or more web servers. A web site is owned by the
content provider such as an e-commerce vendor whereas a web server refers
to set of programs running on one or more machines coupled to an Internet,
intranet, or other network node. The web site 210 may be hosted on the site

owner's own web server, or hosted on a web server owned by a third party. A

13

10

15

20

25

30

WO 01/80003 PCT/US01/12513

web hosting center is an entity that implements one or more web sites on one
or more web servers using shared hardware and software resources across
the multiple web sites. In a typical web infrastructure, there are many web
browsers, each of which has a TCP connection to the web server in which a
particular web site is implemented. The present invention adds two
components to the infrastructure: a front-end 201 and back-end 203. Front-
end 201 and back-end 203 are coupled by a managed data communication

link 202 that forms, in essence, a private network.

FIG. 3 shows a particular implementation of the functionality shifting
system of FIG. 2a-FIG. 2d. that uses not only front-end servers 201, but also
one or more back-end servers 203 to further improve functionality shifting
performance. In the particular implementation shown in FIG. 3, functionality
can be served from originating server 210, back-end server 203 and/or front-

end servers 201 as needed to meet the needs of a particular application.

In FIG. 3, a private network 200 implemented within the Internet
infrastructure. Private network 200 expedites and prioritizes communications
between a client 205 and a web site 210. In the specific examples herein
client 205 comprises a network-enabled graphical user interface such as a
web browser. However, the present invention is readily extended to client
software other than conventional web browser software. Any client
application that can access a standard or proprietary user level protocol for
network access is a suitable equivalent. Examples include client applications
for file transfer protocol (FTP) services, voice over Internet protocol (VoIP)
services, network news protocol (NNTP) services, multi-purpose Internet mail
extensions (MIME) services, post office protocol (POP) services, simple mail
transfer protocol (SMTP) services, as well as Telnet services. In addition to
network protocols, the client application may access a network application
such as a database management system (DBMS) in which case the client
application generates query language (e.g., structured query language or
"SQL") messages. In wireless appliances, a client application may

communicate via a wireless application protocol (WAP) or the like.

14

10

15

20

25

30

WO 01/80003 PCT/US01/12513

Front-end mechanism 201 serves as an access point for client-side
communications. Front-end 201 implements a gateway that, from the
perspective of client 205, appears to be the web site 210. Front-end 201
comprises, for example, a computer that sits "close" to clients 205. By "close",
it is meant that the average latency associated with a connection between a
client 205 and a front-end 201 is less than the average latency associated with
a connection between a client 205 and a web site 210. Desirably, the
connection between front-end computers and clients 205 have low latency and
high bandwidth. For example, the fastest available connection may be
implemented in point of presence (POP) of an Internet service provider (ISP)
106 used by a particular client 205. However, the placement of the front-ends
201 can limit the number of browsers that can use them. Because of this, in
some applications, it may be more practical to place one front-end computer in
such a way that several POPs can connect to it. Greater distance between
front-end 201 and clients 205 may be desirable in some applications as this
distance will allow for selection amongst a greater number front-ends 201 and
thereby provide significantly different routes to a particular back-end 203. This
may offer benefits when particular routes and/or front-ends become

congested or otherwise unavailable.

Enhanced communication channel 212 is implemented by cooperative
actions of the front-end 201 and back-end 203. Back-end 203 processes and
directs data communication to and from originating server 210. In a particular
example, transport mechanism 212 communicates data packets using a
proprietary protocol over the Internet. Hence, the present invention does not
require heavy infrastructure investments and automatically benefits from
improvements implemented in the general-purpose network 101. Unlike the
general purpose Internet, front-end 201 and back-end 203 may be assigned
to serve accesses to one or more particular originating servers 210 at any

given time.

It is contemplated that any nhumber of front-end and back-end

mechanisms may be implemented cooperatively to support the desired level

15

WO 01/80003 PCT/US01/12513

10

15

20

25

30

of service required by the web site owner. The present invention implements
a many-to-many mapping of front-ends to back-ends. Because the front-end
to back-end mappings can by dynamically changed, a fixed hardware
infrastructure can be logically reconfigured to map more or fewer front-ends to

more or fewer back-ends and web sites or servers as needed.

Front-end 201 together with back-end 203 function to reduce traffic
across the transport morphing protocol TMP™ link 212 and to improve
response time for selected browsers. Traffic across the TMP link 212 is
reduced by compressing data and serving browser requests from cache for
fast retrieval. Also, the blending of request datagrams results in significantly
fewer request:acknowledge pairs across the TMP link 212 as compared to the
number required to reliably send the packets individually between front-end
201 and back-end 203. This action reduces the overhead associated with
transporting a given amount of data, although conventional
request:acknowledge traffic is still performed on the links coupling the front-
end 201 to client 205 and back-end 203 to a web server. Moreover, resend
traffic is significantly reduced further reducing the traffic. Response time is
further improved for select privileged users and for specially marked

resources by determining the priority for each HTTP transmission.

In one embodiment, front-end 201 and back-end 203 are closely
coupled to the Internet backbone. This means they have high bandwidth
connections, can expect fewer hops, and have more predictable packet
transit time than could be expected from a general-purpose connection.
Although it is preferable to have low latency connections between front-ends
201 and back-ends 203, a particular strength of the present invention is its
ability to deal with latency by enabling efficient transport and traffic
prioritization. Hence, in other embodiments front-end 201 and/or back-end
203 may be located farther from the Internet backbone and closer to clients
205 and/or web servers 210. Such an implementation reduces the number of

hops required to reach a front-end 201 while increasing the number of hops

16

WO 01/80003 PCT/US01/12513

10

15

20

25

30

within the TMP link 212 thereby yielding control over more of the transport

path to the management mechanisms of the present invention.

Clients 205 no longer conduct all data transactions directly with the
web server 210. Instead, clients 205 conduct some and preferably a majority
of transactions with front-ends 201, which simulate the functions of web
server 210. Client data is then sent, using TMP link 212, to the back-end 203
and then to the web server 210. Running multiple clients 205 over one large

connection provides several advantages:

¢ Since all client data is mixed, each client can be assigned a priority.
Higher priority clients, or clients requesting higher priority data, can
be given preferential access to network resources so they receive
access to the channel sooner while ensuring low-priority clients

receive sufficient service to meet their needs.

e The large connection between a front-end 201 and back-end 203
can be permanently maintained, shortening the many TCP/IP
connection sequences normally required for many clients

connecting and disconnecting.

Using a proprietary protocol allows the use of more effective techniques to
improve data throughput and permits better use of existing bandwidth during

periods when the network is congested.

A particular advantage of the architectures shown in FIG. 2a-FIG. 2d
and FIG. 3 is that it is readily scaled. Any number of client machines 205 may
be supported. In a similar manner, a web site owner may choose to implement
a site using multiple web servers 210 that are co-located or distributed
throughout network 101. To avoid congestion, additional front-ends 201 may
be implemented or assigned to particular web sites. Each front-end 201 is
dynamically re-configurable by updating address parameters to serve particular
web sites. Client traffic is dynamically directed to available front-ends 201 to
provide load balancing. Hence, when quality of service drops because of a

large number of client accesses, an additional front-end 201 can be assigned to

17

10

15

20

25

30

WO 01/80003 PCT/US01/12513

the web site and subsequent client requests directed to the newly assigned
front-end 201 to distribute traffic across a broader base.

In the particular examples, this is implemented by a front-end manager
component 217 that communicates with multiple front-ends 201 to provide
administrative and configuration information to front-ends 201. Each front-
end 201 includes data structures for storing the configuration information,
including information identifying the back-ends 203 of web servers 210 to
which they are currently assigned. Other administrative and configuration
information stored in front-end 201 may include information for prioritizing
specific data from and to particular clients, quality of service information, and
the like.

Similarly, additional back-ends 203 can be assigned to a web site to
handle increased traffic. Back-end manager component 219 couples to one
or more back-ends 203 to provide centralized administration and
configuration service. Back-ends 203 include data structures to hold current
configuration state, quality of service information and the like. Inthe
particular examples, front-end manager 217 and back-end manager 219
serve multiple web sites 210 and so are able to manipulate the number of
front-ends and back-ends assigned to each web site 210 by updating this
configuration information. When the congestion for the site subsides, the
front-ends 201 and back-ends 203 can be reassigned to other, busier web
sites. These and similar modifications are equivalent to the specific examples

illustrated herein.

In the case of web-based environments, front-end 201 is implemented
using custom or off-the-shelf web server software. Front-end 201 is readily
extended to support other, non-web-based protocols, however, and may
support multiple protocols for varieties of client traffic. Front-end 201
processes the data traffic it receives, regardless of the protocol of that traffic,
to a form suitable for transport by TMP 212 to a back-end 203. Hence, most
of the functionality implemented by front-end 201 is independent of the
protocol or format of the data received from a client 205. Hence, although the

18

10

15

20

25

30

WO 01/80003 PCT/US01/12513

discussion of the exemplary embodiments herein relates primarily to front-end
201 implemented as a web server, it should be noted that, unless specified to
the contrary, web-based traffic management and protocols are merely

examples and not a limitation of the present invention.

As shown in FIG. 2, in accordance with the present invention a web
site is implemented using an originating web server 210 operating
cooperatively with the web server of front-end 201. More generally, any
network service (e.g., FTP, VolP, NNTP, MIME, SMTP, Telnet, DBMS) can
be implemented using a combination of an originating server working
cooperatively with a front-end 201 configured to provide a suitable interface
(e.g., FTP, VoIP, NNTP, MIME, SMTP, Telnet, DBMS, WAP) for the desired
service. In contrast to a simple front-end cache or proxy software,
implementing a server in front-end 201 enables portions of the web site (or
other network service) to actually be implemented in and served from both
locations. The actual web pages or service being delivered comprises a
composite of the portions generated at each server. Significantly, however,
the web server in front-end 201 is close to the browser in a client 205
whereas the originating web server is close to all resources available at the
web hosting center at which web site 210 is implemented. In essence the
web site 210 is implemented by a tiered set of web servers comprising a

front-end server 201 standing in front of an originating web server.

This difference enables the web site functionality to be implemented
and distributed so as to take advantage of the unique position each web
server has with respect to the client 205. By way of a particular example,
assume an environment in which the front-end web server 201 is located in
the ISP's location for a particular set of clients 205. In such an environment,
clients 205 can access the front-end web server 205 without actually
traversing the network 101. Hence, network delays and variability are

substantially eliminated.

In order for a client 205 to obtain service from a front-end 201, it must

first be directed to a front-end 201 that can provide the desired service. FIG.

19

10

15

20

25

30

WO 01/80003 PCT/US01/12513

4 illustrates a domain name server (DNS) redirection mechanism that
illustrates an example of how a client 205 is connected to a particular front-
end 201. Preferably, client 205 does not need to be aware of the location of
front-end 201, and initiates all transactions as if it were contacting the
originating server 210. The public DNS system is defined in a variety of
Internet Engineering Task Force (IETF) documents such as RFC0883, RFC
1034 and RFC 1035 which are incorporated by reference herein. In a typical
environment, a client 205 executes a browser 301, TCP/IP stack 303, and a
resolver 305. For reasons of performance and packaging, browser 301,
TCP/IP stack 303 and resolver 305 are often grouped together as routines

within a single software product.

Browser 301 functions as a graphical user interface to implement user -
input/output (I/O) through monitor 311 and associated keyboard, mouse, or
other user input device (not shown). Browser 301 is usually used as an
interface for web-based applications, but may also be used as an interface for
other applications such as email and network news, as well as special-
purpose applications such as database access, telephony, and the like.
Alternatively, a special-purpose user interface may be substituted for the

more general-purpose browser 301 to handle a particular application.

TCP/IP stack 303 communicates with browser 301 to convert data
between formats suitable for browser 301 and IP format suitable for Internet
traffic. TCP/IP stack also implements a TCP protocol that manages
transmission of packets between client 205 and an Internet service provider
(ISP) or equivalent access point. IP protocol requires that each data packet
include, among other things, an IP address identifying a destination node. In
current implementations the |P address comprises a 32-bit value that
identifies a particular Internet node. Non-IP networks have similar node
addressing mechanisms. To provide a more user-friendly addressing system,
the Internet implements a system of domain name servers that map alpha-
numeric domain names to specific IP addresses. This system enables a

name space that is more consistent reference between nodes on the Internet

20

10

15

20

25

30

WO 01/80003 PCT/US01/12513

and avoids the need for users to know network identifiers, addresses, routes

and similar information in order to make a connection.

The domain nanﬂ1e service is implemented as a distributed database
managed by domain name servers (DNSs) 307 such as DNS_A, DNS_B and
DNS_C shown in FIG. 3. Each DNS relies on <domain name:|P> address
mapping data stored in master files scattered through the hosts that use the
domain system. These master files are updated by local system
administrators. Master files typically comprise text files that are read by a
local name server, and hence become available through the name servers

307 to users of the domain system.

The user programs (e.g., clients 205) access name servers through'
standard programs such as resolver 305. Resolver 305 includes an address
of a DNS 307 that serves as a primary name server. When presented with a
reference to a domain name (e.qg., http://www.circadence.com), resolver 305
sends a request to the primary DNS (e.g., DNS_A in FIG. 3). The primary
DNS 307 returns either the IP address mapped to that domain name, a
reference to another DNS 307 which has the mapping information (e.g.,
DNS_B in FIG. 3), or a partial IP address together with a reference to another
DNS that has more IP address information. Any number of DNS-to-DNS

references may be required to completely determine the IP address mapping.

In this manner, the resolver 305 becomes aware of the IP address
mapping which is supplied to TCP/IP component 303. Client 205 may cache
the IP address mapping for future use. TCP/IP component 303 uses the
mapping to supply the correct IP address in packets directed to a particular

domain name so that reference to the DNS system need only occur once. '

In accordance with the present invention, at least one DNS server 307 is
owned and controlled by system components of the present invention. When a
user accesses a network resource (e.g., a web site), browser 301 contacts the
public DNS system to resolve the requested domain name into its related IP
address in a conventional manner. In a first embodiment, the public DNS

performs a conventional DNS resolution directing the browser to an originating
21

10

15

20

25

30

WO 01/80003 PCT/US01/12513

server 210 and server 210 performs a redirection of the browser fo the system
owned DNS server (i.e., DNC_C in FIG. 3). In a second embodiment,
domain:address mappings within the DNS system are modified such that
resolution of the of the originating server's domain automatically return the
address of the system-owned DNS server (DNS_C). Once a browser is
redirected to the system-owned DNS server, it begins a process of further

redirecting the browser 301 to the best available front-end 201.

Unlike a conventional DNS server, however, the system-owned
DNS_C in FIG. 3 receives domain:address mapping information from a
redirector component 309. Redirector 309 is in communication with front-end
manager 217 and back-end manager 219 to obtain information on current
front-end and back-end assignments to a particular server 210. A
conventional DNS is intended to be updated infréquently by reference to its
associated master file. In contrast, the master file associated with DNS_C is
dynamically updated by redirector 309 to reflect current assignment of front-
end 201 and back-end 203. In operation, a reference to web server 210 (e.g.,
http://www.circadence.com) may result in an |P address returned from
DNS_C that points to any selected front-end 201 that is currently assigned to
web site 210. Likewise, web site 210 may identify a currently assigned back-

end 203 by direct or indirect reference to DNS_C.

Front-end 201 typically receives information directly from front-end
manager 217 about the address of currently assigned back-ends 203.
Similarly, back-end 203 is aware of the address of a front-end 201 associated
with each data packet. Hence, reference to the domain system is not

required to map a front-end 201 to its appropriate back-end 203.

FIG. 5 illustrates principle functional components of an exemplary
front-end 201 in greater detail. Primary functions of the front-end 201 include
translating transport control protocol (TCP) packets from client 205 into TMP
packets used in the system in accordance with the present invention.

PTM

Transport morphing protocol™ and TMP™ are trademarks or registered

trademarks of Circadence Corporation in the United States and other

22

10

15

20

25

30

WO 01/80003 PCT/US01/12513

countries. It is contemplated that the various functions described in reference
to the specific examples may be implemented using a variety of data
structures and programs operating at any location in a distributed network.
For example, a front-end 201 may be operated on a network appliance 107 or
server within a particular network 102, 103, or 104 shown in FIG. 1. The
present invention is readily adapted to any application where multiple clients
are coupling to a centralized resource. Moreover, other transport protocols

may be used, including public and proprietary transport protocols.

TCP component 401 includes devices for implementing physical
connection layer and Internet protocol (IP) layer functionality. Current IP
standards are described in IETF documents RFC0791, RFC0950, RFC0919,
RFC0922, RFC792, RFC1112 that are incorporated by reference herein. For
ease of description and understanding, these mechanisms are not described
in great detail herein. Where protocols other than TCP/IP are used to couple
to a client 205, TCP component 401 is replaced or augmented with an

appropriate network protocol process.

TCP component 401 communicates TCP packets with one or more
clients 205. Received packets are coupled to parser 402 where the Internet
protocol (or equivalent) information is extracted. TCP is described in IETF
RFCO0793 which is incorporated herein by reference. Each TCP packet
includes header information that indicates addressing and control variables,
and a payload portion that holds the user-level data being transported by the
TCP packet. The user-level data in the payload portion typically comprises a

user-level network protocol datagram.

Parser 402 analyzes the payload portion of the TCP packet. In the
examples herein, HTTP is employed as the user-level protocol because of its
widespread use and the advantage that currently available browser software
is able to readily use the HTTP protocol. In this case, parser 402 comprises
an HTTP parser. More generally, parser 402 can be implemented as any
parser-type logic implemented in hardware or software for interpreting the

contents of the payload portion. Parser 402 may implement file transfer

23

10

15

20

25

30

WO 01/80003 PCT/US01/12513

protocol (FTP), mail protocols such as simple mail transport protocol (SMTP),
structured query language (SQL) and the like. Any user-level protocol,
including proprietary protocols, may be implemented within the present

invention using appropriate modification of parser 402.

To improve performance, front-end 201 optionally includes a caching
mechanism 403. Cache 403 may be implemented as a passive cache that
stores frequently and/or recently accessed web pages or as an active cache
that stores network resources that are anticipated to be accessed. In non-
web applications, cache 403 may be used to store any form of data
representing database contents, files, program code, and other information.
Upon receipt of a TCP packet, HTTP parser 402 determines if the packet is
making a request for data within cache 403. If the request can be satisfied
from cache 403, the data is supplied directly without reference to web server
210 (i.e., a cache hit). Cache 403 implements any of a range of management
functions for maintaining fresh content. For example, cache 403 may
invalidate portions of the cached content after an expiration period specified
with the cached data or by web sever 210. Also, cache 403 may proactively
update the cache contents even before a request is received for particularly
important or frequently used data from web server 210. Cache 403 evicts
information using any desired algorithm such as least recently used, least
frequently used, first in/first out, or random eviction. When the requested
data is not within cache 403, a request is processed to web server 210, and

the returned data may be stored in cache 403.

Several types of packets will cause parser 402 to forward a request
towards web server 210. For example, a request for data that is not within
cache 403 (or if optional cache 403 is not implemented) may require a
reference to web server 210. Some packets will comprise data that need be
supplied to web server 210 (e.g., customer credit information, form data and

the like). In these instances, HTTP parser 402 couples to data blender 404.

Optionally, front-end 201 implements security processes, compression

processes, encryption processes and the like to condition the received data

24

10

15

20

25

30

WO 01/80003 PCT/US01/12513

for improved transport performance and/or provide additional functionality.
These processes may be implemented within any of the functional
components (e.g., data blender 404) or implemented as separate functional
components within front-end 201. Also, parser 402 may implement a
prioritization program to identify packets that should be given higher priority
service. A prioritization program requires only that parser 402 include a data
structure associating particular clients 205 or particular TCP packet types or
contents with a prioritization value. Based on the prioritization value, parser
402 may selectively implement such features as caching, encryption, security,
compression and the like to improve performance and/or additional
functionality. The prioritization value is provided by the owners of web site
210, for example, and may be dynamically altered, statically set, or updated

from time to time to meet the needs of a particular application.

Blender 404 slices and/or coalesces the data portions of the received
packets into a more desirable "TMP units" that are sized for transport through
the TMP mechanism 212. The data bortion of TCP packets may range in
size depending on client 205 and any intervening links coupling client 205 to
TCP component 401. Moreover, where compression is applied, the
compressed data will vary in size depending on the compressibility of the
data. Data blender 404 receives information from front-end manager 217 that
enables selection of a preferable TMP packet size. Alternatively, a fixed TMP
packet size can be set that yields desirable performance across TMP
mechanism 212. Data blender 404 also marks the TMP units so that they

can be re-assembled at the receiving end.

Data blender 404 may also serve as a buffer for storing packets from
all appliances 177 that are associated with front-end 201. In accordance with
the present invention, data blender 404 may associate a prioritization value

with each packet.

In an exemplary implementation, a "TMP connection" comprises a
plurality of "TCP connection buffers”, logically arranged in multiple "rings".
Each TCP socket maintained between the front-end 201 and a client 205

25

10

15

20

25

WO 01/80003 PCT/US01/12513

corresponds to a TCP connection buffer. When a TCP connection buffer is
created, it is assigned a priority. For purposes of the present invention, any
algorithm or criteria may be used to assign a priority. Each priority ring is
associated with a number of TCP connection buffers sockets having similar
priority. In a specific example, five priority levels are defined corresponding to
five priority rings. Each priority ring is characterized by the number of
connection buffers it holds (nSockets), the number of connection buffers it
holds that have data waiting to be sent (nReady) and the total number of
bytes of data in all the connection buffers that it holds (nBytes).

When composing TMP data packets, the blender goes into a loop

comprising the steps:

1) Determine the number of bytes available to be sent from each ring

(nBytes), and the number of TCP connections that are ready to send (nReady)

2) Determine how many bytes should be sent from each ring (nSend).
This is based on a weight parameter for each priority. The weight can be
thought of as the number of bytes that should be sent at each priority this
time through the loop.

3) The nSend value computed in the previous step reflects the
weighted proportion that each ring will have in a blended TMP packet, but the
values of nSend do not reflect how many bytes need to be selected to
actually empty most or all of the data waiting to be sent a single round. To do
this, the nSend value is normalized to the ring having the most connections
waiting. This involves a calculation of a factor: S = nBytes/(Weight*nReady)
for the ring with the greatest nReady. Then, for each ring, calculate nSend X
S to get the normalized value (nSendNorm) for each priority ring.

4) Send sub-packets from the different rings. This is done by taking a
sub-packet from the highest priority ring and adding it to a TMP packet, then
adding a sub-packet from each of the top two queues, then the top three, and

SO On.

26

10

15

20

25

30

WO 01/80003 PCT/US01/12513

5) Within each ring, sub-packets are selected round robin. When a
sub-packet is selected from a TCP connection buffer the ring is rotated so the
next sub-packet the ring adds will come from a different TCP connection
buffer. Each sub-packet can be up to 512 bytes in a particular example. If
the connection buffer has less than 512 bytes waiting, the data available is
added to the TMP packet.

6) When a full TMP packet (roughly 1.5 kB in a particular example)is
built, it is sent. This will usually have three or more sub-packets, depending
on their size. The TMP packet will also be sent when there is no more data

ready.

TMP mechanism 405 implements the TMP protocol in accordance with
the present invention. TMP is a TCP-like protocol adapted to improve
performance for multiple channels operating over a single connection. Front-
end TMP mechanism 405 and a corresponding back-end TMP mechanism
505 shown in FIG. 6 are computer processes that implement the end points
of TMP link 212. The TMP mechanism in accordance with the present
invention creates and maintains a stable connection between two processes

for high-speed, reliable, adaptable communication.

TMP is not merely a substitute for the standard TCP environment.
TMP is designed to perform particularly well in heteroéeneous network
environments such as the Internet. TMP connections are made less often
than TCP connections. Once a TMP connection is made, it remains up
unless there is some kind of direct intervention by an administrator or there is
some form of connection breaking network error. This reduces overhead
associated with setting up, maintaining and tearing down connections

normally associated with TCP.

Another feature of TMP is its ability to channel numerous TCP
connections through a single TMP pipe 212. The environment in which TMP
resides allows multiple TCP connections to occur at one end of the system.
These TCP connections are then mapped into a single TMP connection. The

TMP connection is then broken down at the other end of the TMP pipe 212 in
27

WO 01/80003 PCT/US01/12513

10

15

20

25

30

order to traffic the TCP connections to their appropriate destinations. TMP
includes mechanisms to ensure that each TMP connection gets enough of
the available bandwidth to accommodate the multiple TCP connections that it

is carrying.

Another advantage of TMP as compared to traditional protocols is the
amount of information about the quality of the connection that a TMP
connection conveys from one end to the other of a TMP pipe 212. As often
happens in a network environment, each end has a great deal of information
about the characteristics of the connection in one direction, but not the other.
By knowing about the connection as a whole, TMP can better take advantage

of the available bandwidth.

In contrast with conventional TCP mechanisms, the behavior
implemented by TMP mechanism 405 is constantly changing. Because TMP
obtains bandwidth to host a variable number of TCP connections and
because TMP is responsive information about the variable status of the
network, the behavior of TMP is preferably continuously variable. One of the
primary functions of TMP is being able to act as a conduit for multiple TCP
connections. As such, a single TMP connection cannot behave in the same
manner as a single TCP connection. For example, imagine that a TMP
connection is carrying 100 TCP connections. At this time, it loses one packet
(from any one of the TCP connections) and quickly cuts its window size in half
(as specified for TCP). This is a performance reduction on 100 connections

instead of just on the one that lost the packet.

Each TCP connection that is passed through the TMP connection must
get a fair share of the bandwidth, and should not be easily squeezed out. To
allow this to happen, every TMP becomes more aggressive in claiming
bandwidth as it accelerates. Like TCP, the bandwidth available to a particular
TMP connection is measured by its window size (i.e., the number of
outstanding TCP packets that have not yet been acknowledged). Bandwidth
is increased by increasing the window size, and relinquished by reducing the

window size. Up to protocol specified limits, each time a packet is

28

WO 01/80003 PCT/US01/12513

10

15

20

25

30

successfully delivered and acknowledged, the window size is increased until
the window size reaches a protocol specified maximum. When a packet is
dropped (e.g., no acknowledge received or a resend packet response is
received), the bandwidth is decreased by backing off the window size. TMP
also ensures that it becomes more and more resistant to backing off (as
compared to TCP) with each new TCP connection that it hosts. A TMP
should not go down to a window size of less than the number of TCP

connections that it is hosting.

In a particular implementation, every time a TCP connection is added
to (or removed from) what is being passed through the TMP connection, the
TMP connection behavior is altered. It is this adaptation that ensures
successful connections using TMP. Through the use of the adaptive
algorithms discussed above, TMP is able to adapt the amount of bandwidth
that it uses. When a new TCP connection is added to the TMP connection,
the TMP connection becomes more aggressive. When a TCP connection is
removed from the TMP connection, the TMP connection becomes less

aggressive.

TMP pipe 212 provides improved performance in its environment as
compared to conventional TCP channels, but it is recognized that TMP pipe
212 resides on the open, shared Internet in the preferred implementations.
Hence, TMP must live together with many protocols and share the pipe
efficiently in order to allow the other transport mechanisms fair access to the
shared communication bandwidth. Since TMP takes only the amount of
bandwidth that is appropriate for the number of TCP connections that it is
hosting (and since it monitors the connection and controls the number of
packets that it puts on the line), TMP will exist cooperatively with TCP traffic.
Furthermore, since TMP does a better job at connection monitoring than TCP
and TMP is better suited to throughput and bandwidth management than TCP.

Also shown in FIG. 5 are data filter component 406 and HTTP
reassemble component 407 that process incoming (with respect to client 205)
data. TMP mechanism 405 receives TMP packets from TMP pipe 212 and

29

WO 01/80003 PCT/US01/12513

10

15

20

25

30

extracts the TMP data units. Using the appended sequencing information,
the extracted data units are reassembled into HTTP data packet information
by HTTP reassembler 407. Data filter component 406 may also implement
data decompression where appropriate, decryption, and handle caching when

the returning data is of a cacheable type.

FIG. 6 illustrates principle functional components of an exemplary
back-end 203 in greater detail. Primary functions of the back-end 203 include
translating transmission control protocol (TCP) packets from web server 210
into TMP packets as well as translating TMP packets received from a front-
end 201 into the one or more corresponding TCP packets to be send to
server 210. Further, back-end 203 is able to implement similar or
complementary functionality to that of front-end 203. [n this manner, back-
end 203 can operate as a web server to retrieve content and generate web
pages, analyze and reformat web pages and components within web pages,
and similar server functionality that would conventionally be implemented in a
server 210. In general, any functionality and behavior described herein that
can be implemented on server 210 and/or front-end server 201 can also be

implemented on back-end server 203.

TMP unit 505 receives TMP packets from TMP pipe 212 and passes
them to HTTP reassemble unit 507 where they are reassembled into the
corresponding TCP packets. Data filter 506 may implement other
functionality such as decompression, decryption, and the like to meet the
needs of a particular application. The reassembled data is forwarded to TCP

component 501 for communication with web server 210.

TCP data generated by the web server process are transmitted to TCP
component 501 and forwarded to HTTP parse mechanism 502. Parser 502
operates in a manner analogous to parser 402 shown in FIG. 5 to extract the
data portion from the received TCP packets, perform optional compression,
encryption and the like, and forward those packets to data blender 504. Data
blender 504 operates in a manner akin to data blender 404 shown in FIG. 5 to

buffer and prioritize packets in a manner that is efficient for TMP transfer.

30

WO 01/80003 PCT/US01/12513

10

15

20

25

30

Priority information is received by, for example, back-end manager 219 based
upon criteria established by the web site owner. TMP data is streamed into
TMP unit 505 for communication on TMP pipe 212.

FIG. 7 illustrates a conceptual block diagram of an exemplary
implementation of the system shown in FIG. 2 in an alternative context. In the
example of FIG. 6, front-end 201 is implemented as a front-end web server
601 operating at an ISP 602. ISP 602 supports modem, digital subscriber line
(DSL), ISDN, leased line, or other communication ports for communicating
with one or more clients 605. ISP 602 serves as a bridge to couple client
connections to IP connections with network 101. ISP 602 may be considered
to be outside of network 101 in that quality of service between client 605 and
ISP 602 is not dependent on congestion or equipment failure or other factors

affecting quality of service within network 101.

In operation, client 605 generates an HTTP request specifying web site
610 in the URL. In the manner described hereinbefore, the client request is
redirected to front-end 601. Once the redirection is completed, front-end 601
serves web pages embedded in HTTP response packets using both content
and functionality obtained from web site 610 as well as content and
functionality present on front-end 601 or obtained from database 603. In this
manner, front-end web server 601 can dynamically controls the source of the
delivered content. The web page(s) served to client 605 comprise a

composite of multiple sources from multiple independent web servers.

Significantly, the content served from content database 603 may differ
from the content and functionality that would have otherwise been served by
web site 610. For example, if web site 610 returns an HTTP 404 "page not
found" error page, front-end web site 601 may supply a more informative or
instructive web page derived from content database 603. Alternatively, front-
end web site 601 may detect periods of low quality of service or slow
response and provide substitute content from content database 603 or
elsewhere. In a particular example, web site 610 publishes a load index that

can be read by front-end 601 and used to generate a wait page intended to

31

WO 01/80003 PCT/US01/12513

10

15

20

25

30

occupy a user of client 605 until content can be obtained directly from web
site 610.

In another embodiment, the desired format of content is specified by
client 605, information maintained about the desired or required format for
client 605 by the system and/or the system can determine the required format
for client 605 and its connection to front-end 601 indirectly. In response,
front-end web server 601 formats and converts content and data to be
provided to client 605 based on custom requests forwarded to web server 610
and/or on a common data set provided by website 610 for purposes of

responding to one or more clients 605.

In a particular example, the owner of web site 610 establishes rules for
how front-end web server 601 handles various conditions. These rules are
stored in front-end web server 601. Hence, the owner of web site 610 is not
losing control over how web site 610 is presented, but instead is gaining
control over how presentation occurs during periods where network 101 is
unavailable or provides unacceptable quality of service. By placing a web
server in front of the origin web server 610, overall user experience as well as

efficacy of the web site 610 for the site owner are improved.

It should be understood that the essence of systems in accordance
with the present invention, i.e., dynamically shifting functionality amongst a
network of servers can be expressed in a variety of implementations. For
example, a network-connected server may obtain program code, data, and
other resources to provide a desired set of functionality either in response to a
client request, or independently of the client request in a manner that
proactively or anticipatorily. Proactive operation allows a network-connected
server to maintain a set of functionality such that services can be provided
without reference to a central authority when a client request is actually
received. In such cases, processes within the front-end 201, for example, will
make requests to another network-connected server (e.g., another front-end
201) or to an originating server 210 to obtain the program code, data, and

resources, and then independently respond to client requests using the

32

WO 01/80003 PCT/US01/12513

10

15

20

obtained program code, data and resources. The connections between front-
ends 201 and origin servers 210 can benefit from features of the enhanced
channel 202.

Any number of front-ends 201 may be involved in providing a particular
service or set of functionality. It is contemplated that a client 205 may
connect to a particular front-end 201 and that particular front-end 201 may
establish connections with one or more other front-ends 201 to access

functionality, data and resources available in those other front-ends.

Although the invention has been described and illustrated with a
certain degree of particularity, it is understood that the present disclosure has
been made only by way of example, and that numerous changes in the
combination and arrangement of parts can be resorted to by those skilled in
the art without departing from the spirit and scope of the invention, as
hereinafter claimed. For example, while devices supporting HTTP data traffic
are used in the examples, the HTTP devices may be replaced or augmented
to support other public and proprietary protocols and languages including
FTP, NNTP, SMTP, SQL and the like. In such implementations the front-end
201 and/or back end 203 are modified to implement the desired protocol.
Moreover, front-end 201 and back-end 203 may support different protocols
and languages such that the front-end 201 supports, for example, HTTP
traffic with a client and the back-end supports a DBMS protocol such as SQL.
Such implementations not only provide the advantages of the present
invention, but also enable a client to access a rich set of network resources

with minimal client software.

33

WO 01/80003 PCT/US01/12513

10

15

20

25

CLAIMS
WE CLAIM:

1. A system for providing functionality over a network comprising:

a plurality of network-connected servers, each providing access to a
set of functions implemented by program components within the server;

at least one network-connected client computer;

a management component coupled to each of the network-connected
servers;

- a shifting component within the management component operable to
shift data and program components between the network-connected servers
so as to configure a selected server to implement a specified set of functions;
and

+ a redirection component responsive to a client request for the specified

set of functions to redirect the requesting client to the selected server.

2. The system of claim 1 wherein the selected network server
further comprises:

a data storage mechanism;

processes responsive to client requests to accesses data in the data
storage mechanism; and

processes operable to generate a response to the client requests using

the accessed data.

3. The system of claim 2 further comprising:
processes operating independently of client requests to update data

contained within the data storage mechanism.

4, The system of claim 2 wherein the data storage mechanism

comprises a cache.

5. The system of claim 1 wherein the program components

implement a database management system interface.

34

WO 01/80003 PCT/US01/12513

10

15

20

25

6. The system of claim 1 wherein at least one of the network-
connected servers is designated as a central authority for a particular set of
functions and the program components implement processes for

communicating with the central authority.

7. A system for providing functionality over a network comprising:

a plurality of network-connected servers, each providing access to a
set of functions implemented by program components within the server;

at least one network-connected client computer; and

a redirection component responsive to a client request for selecting a
particular one of the network-connected servers that implements a set of
functions suitable for responding to the client request and redirecting the

requesting client to the selected server.

8. The system of claim 7 wherein the plurality of network-
connected servers comprise:

a first network-connected server in communication with the client;

a second network-connected server in communication with the first
network-connected server, wherein the redirection component operates within
the first network-connected server to identify and communicate with the
second network-connected server to enable the first network-connected

server to respond to the client request.

9. The system of claim 8 wherein the first and second network-
connected servers communicate with each other over an enhanced

communication channel.

10. A system for implementing a web site comprising:

a first web server configured to provide a preselected set of content
and service applications in response to client requests;

a second web server configured to provide a preselected set of content

and service applications in response to requests from the first web server;

35

WO 01/80003 PCT/US01/12513

10

15

20

25

a communication channel established between the first and second
web servers, wherein the web site is implemented by delivering web pages
from at least one of the first and second web servers by distributed and
cooperative interaction using services and content provided by both first and

second web servers.

11. The system of claim 10 wherein the web site includes
functionality that is implemented by service applications running on both the

first and second web servers.

12. The system of claim 10 wherein the web site content is provided
by the first web server and the web site functionality is provided by service

applications running on the second web server.

13. The system of claim 10 wherein the web site content is provided
by the second web server and the web site functionality is provided by service

applications running on the first web server.

14. A system for rendering graphical information in a network
environment comprising:

a network;

providing a first network service for accessing raw data from a data
store;

providing a second network service configured to obtain the raw data
from the first network service over the network;

application software in the second network service for rendering a

graphic display of the raw data; and

a client interface in the second network service for communicating the
rendered graphic display from the second network service to a client
application.

15. A method for delivering customized content from one or more

network services to a client computer comprising the acts of:

36

10

15

20

25

WO 01/80003 PCT/US01/12513

providing a plurality of network servers each providing access to a set
of raw data;

requesting the content from the network servers;

causing the network server to incorporate the raw data into a “usuable
format”; and

delivering the “usuable format” from the network server to a client

computer.

16. A system for supplying rendered information in a network
environment comprising:

providing a first server for accessing raw data from a data store;

providing a second server configured to obtain the raw data from the
first network resource;

application software in the second server for transforming the raw data
into a rendered format; and

a client interface in the second server for communicating the rendered

format from the second server to a client application.

17. A system for delivering functionality from a network resource
comprising:

a client machine coupled to a network, the client machine having a
user interface and a preferred format for presenting data using the user
interface;

a gateway machine coupled to the network and having a client
interface for receiving requests from the client and supplying responses to the
client, the gateway machine having knowledge of the preferred format; and

formatting mechanisms within the gateway machine for receiving
content in a first format from the network resource and reformatting the

received content to a second format for communication to the client machine.

37

000000000

FIG. 1
102—¢
I —

PCT/US01/12513

WO 01/80003

27

107 4 pZ "9Id4
N 10¢
HIAYAS HIOVNVI NENE S /(\n
aN3-1NO¥A aNZ-LNOMH
ovwwi I o
P oyIANES
{ ONILYNIDINO IN3INO
m l T
...... G502
........... c0c
i NEINEL
AaNI-1NOYA
ENNEL)
AN3-LNO¥A /102
10¢
HIOVNYIN
e qz OId4
w L0l mON\A
NENNSE
ONILYNIDIHO ANTTO

9¢ 'OI4
10z Nmm FNM
HIAYTS HIOVYNVIN yaAMaES
012 aN3-LNOYd AaNI-LNOY4

HANYAS
ONILVYNIDIHO

HIALES
GN3-1NOY™d

>

L0¢

0le

>

d3INGTS
ONILYNIDIHO

¢0¢

101

1 ALN3ITO

YIANIS
ana-Lnowud N H0C

ec "9
mON\lﬁ

AN3MO

PCT/US01/12513

WO 01/80003

37

HIALIS
ONILLVYNIDIHO

P

D

ole

HINGES
ONILVYNIOIHO

S

olL¢

6l¢

“ <
/

HIDVNVYIN HIOVNYIN

AN3 MOvg aN3 LNOYd

€0¢

L]

aN3 MoV [«

aN3 MOove |

lw\NON

pi ALNOYL

aNd

andg
INOYA

[4%4

anN3
1NOY4

10¢

€ Old

AN3AMO

IN3MO

AN3NO

/602

ANAIMO

£

>

G0¢c

PCT/US01/12513

WO 01/80003

417

L0€

S

d0.1034d1d3d

O SNd

60¢

dANE3S
g3M

C
D
0Le

10¢€

vV SNd

v '9OId4
508
Y
N INTITO
HIAANTOS3A _‘m
di/doL yIsmous
[
\ \
coe” D)

G0¢

PCT/US01/12513

WO 01/80003

5I7

40N

N_‘N\

g "Old

| uow
LVe. /T anainNoud
aN3 LNO¥H
20y
\ - N\
d3aN3aTg vva <b d3Sdvd
' H !
11
> dA.L JHOVO — dO1
]] /
oy — cor — »J ﬂ \Jor
d31714 vivd I19NISSVYAA
__/ /
oz~ 90 L0

'I[]

0
o
AN

PCT/US01/12513

WO 01/80003

6/7

9 Old

aN3 Yovd
905
D
AN
NEIRIBR AN (el
onnoonob— %
Janno
1 PR
= [< TR N ant [
= 2
] WU s s
0Lz
NS > mm,_qm_rdmm_._m_
i
/\ 205 05 —
]
coz —
612 HONW
S aN3 Movd

N_‘N\

PCT/US01/12513

WO 01/80003

117

HIAHEIS dIM

/

)

d3AEES g3

019

Vi

)

€09

(

—

ap

| D

0L9

HIAYES 99M

i

)

019

H3ING3S
g3aMm
aN3 INOYH

L "9l

209

N

)

109

> AN3ITO
d3Iasmoudd

-

/509

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

