发明名称
混装城市生活垃圾资源化处理工艺

摘要
本发明公开了混装城市生活垃圾资源化处理工艺，其主要分为以下步骤：(a) 经过压缩城市生活垃圾拧压成为松散状态，分散置于传送带上；(b) 破袋；(c) 磁选；(d) 传送至水分选池中进行比重分选；(e) 于水分选池内分别收集 d 步骤中的三类物质；(f) 将步骤 e 中收集的无机物进行破碎，级配、添加水泥等辅料制成建材制品；(g) 将步骤 e 中收集的轻质物质，进行人工分选回用；(h) 将步骤 e 中收集的可溶有机物溶剂进行固液分离；(i) 分离的水进入水处理池处理后回分选池循环使用；(j) 分离的固体进行粉碎、入发酵池，发酵后得到沼气、沼渣、沼液分别利用；(k) 建材制品用水使用。本发明处理工艺方案，将生活垃圾完全转变为与建筑、化工、能源、农业生产行业的相关产品，没有二次环境污染排放，可以连续、自动、规模化处理城市生活垃圾。
1. 混装城市生活垃圾资源化处理工艺，其特征在于，主要分为以下步骤；
 a. 将压缩成块的城市生活垃圾进行拆块成为松散状态，并连续分散置于传送带上；
 b. 采用专用售破袋机破袋；
 c. 采用专用售磁选机磁选；
 d. 将磁选后的城市生活垃圾传送至水分选池中进行比重分选，分出比重小于水的浮于
 水面的轻质物质，比重接近水的溶于或悬浮于水中的可腐有机物溶体，比重大于水沉于水
 底的无机物；
 e. 于水分选池内分别收集 d 步骤中的三类物质；
 f. 将步骤 e 中收集的无机物输送到建材生产车间，经分拣出电池、非磁性金属、大块玻
 璃等非建材类物质后，对建材原料进行无害化处理，然后经过破碎、级配、添加水泥等辅料
 制成建材制品，例如标准砖、地砖砖、路侧石、混凝土及混凝土制品等；
 g. 将步骤 e 中收集的轻质物质，主要是塑料袋、纸、木、皮革类等，进行人工分选分类回
 用，例如塑料制成再生塑料颗粒，纸、木、皮革积累到一定数量后送相应纸厂再利用；
 h. 将步骤 e 中收集的可腐有机物溶体送至连续固液分离机中进行固液分离；
 i. 将 h 步骤分离的水送入水处理池处理后回分选池循环使用；
 j. 将 h 步骤分离的固体进行粉碎、入发酵池，按保持一定温度、压力和发酵菌种控制下
 快速发酵，发酵后得到沼气、沼渣、沼液分别利用；
 ①、沼气经过纯化、加压储存为发电燃料或化工原料；②、沼渣无害化后，进行肥效平
 衡，造粒，烘干，制成有机复合肥；③、沼液导入水处理池处理后回分选池循环利用，部分用
 作步骤 f 建材制品用水使用。

2. 根据权利要求 1 所述的混装城市生活垃圾资源化处理工艺，其特征在于：在步骤 d
 中的水选过程中需搅拌和粉碎以便可腐有机物尽量溶于或悬浮于水中。

3. 根据权利要求 1 所述的混装城市生活垃圾资源化处理工艺，其特征在于：对于混装
 城市生活垃圾中的玻璃、非磁金属、电池进行人工辅助分选。
说明书

混装城市生活垃圾资源化处理工艺

技术领域

本发明涉及垃圾处理领域，特别涉及混装城市生活垃圾资源化及自动化连续处理工艺。

背景技术

目前，城市生活垃圾量大成分复杂，处理难度大，除了将其中的少量可以回收利用的物料加以回收利用外，其它大部分都采用填埋法和焚烧法。填埋法需要专门的场所，投资大，采用人工防渗技术措施造价昂贵，而填埋在地下的垃圾容易产生不可控的复杂生化反应，反应物将对地下水体和环境造成持续二次污染，而且填埋在地下的垃圾自然分解需要的周期长，一般需要几十年才能完成分解。焚烧法是一种高温热处理技术，即以一定量的过剩空气与被处理的有机废物在焚烧炉内进行氧化燃烧反应，废物中的有害物质在800—1200℃的高温下氧化，热解而被破坏，对垃圾中包含的丰富的生物能的利用不合理。原因是：第一，焚烧时，垃圾中30—40%的水分蒸发和约40%无机物部分吸热，能源被浪费；第二，垃圾中可以燃烧的部分主要是占垃圾比重约40—60%的有机物，但其中燃烧热值很低的可腐部分，占约35—45%，其它仅占6—8%左右是高热值的塑料橡胶等石油制品，因此混装生活垃圾整体热值低。一般认为：焚烧炉的垃圾自燃燃的界限热值是4180KJ/kg，即垃圾中的可燃物质含量应在76%以上，通常只有医疗垃圾可以满足自燃条件，而生活垃圾中的可燃物质不足30%，必须外加燃料补充。可以认为，焚烧方法的缺点在无害化和减量化，而非资源的利用。焚烧能源，大部分浪费在了不必要的水分蒸发和无机物的加热上。虽然无害化和减量化了垃圾，但却损失了大量生物能源，所以所得产品仅有电力，剩下约20%的灰渣必须在处理重金属后方可利用。排放烟气虽然达标，但还存在对大气环境累积污染的长期污染效应。此外，还有投资大、运行维护费用高，财政负担重等缺点。

因此，研究生活垃圾的资源化利用方法才是解决垃圾问题的根本途径。只要对生活垃圾进行了有效的分选，即可实现对垃圾的二次资源化利用。中国专利申请号为200910250706.2提供了一种经水分选后处理垃圾的方法，该方法将入分选池的垃圾通过自然沉降分为三层物质，分别收集后部分利用，部分填埋。目的是减少填埋场的垃圾量和降低填埋垃圾成分的复杂程度，但缺点是：分选用的大量水是排入污水处理厂处理，这些水富含厨余垃圾成分，不但没有利用厨余垃圾的资源，而且会加重污水处理厂处理和传输的负担；资源化利用不彻底，大部分垃圾还需填埋；分选和利用不能实现自动化；分选与收集和传输过程中的臭气会对大气构成污染。

中国常州市生活垃圾资源化利用工程提供了一种处理技术：先将垃圾整体投入发酵池发酵分解，得到沼气和有机肥，然后再将发酵后的垃圾进行分选综合利用，这种方法可以有效实现垃圾资源化利用，但缺点是：先将垃圾不分选整体进入发酵池必然使发酵池过于庞大，负荷过重，操作难度大；大量不参与发酵的物质如砖瓦砂石、塑料、玻璃、甚至是有害的电池、重金属等物质进入发酵池参与发酵过程，会严重影响发酵效率和有机肥的质量，其发酵过程可以等同于垃圾填埋场内的发酵分解过程；发酵过程产生的大量水没有利用，
排放必然会引起水体污染；发酵过程需要时间，当垃圾量较大时即难以实现垃圾的不间断连续处理。

发明内容
[0005] 针对上述现有技术的不足之处，本发明旨在提供一种能完全对城市生活垃圾进行回收处理利用的混装城市生活垃圾资源化处理工艺，有效地解决了上述现有技术存在的各种问题。
[0006] 为了实现上述目的，本发明采用的技术方案是：混装城市生活垃圾资源化处理工艺，其特征在于，主要分为以下步骤：
[0007] a. 将压缩成垛的城市生活垃圾进行拆垛成为松散状态，并连续分散置于传送带上；
[0008] b. 采用专用市售破袋机破袋；
[0009] c. 采用专用市售磁选机磁选；
[0010] d. 将磁选后的城市生活垃圾传送至水分选池中进行比重分选，分出比重小于水的浮于水面的轻质物质，比重接近水的溶于或悬浮于水中的可腐有机物溶体，比重大于水沉于水底的无机物；
[0011] e. 于水分选池内分别收集 d 步骤中的三类物质；
[0012] f. 将步骤 e 中收集的无机物输送至建材生产车间，经分拣出电池、非磁性金属、大块玻璃等非建材类物质后，对建材原料进行无害化处理，然后经过破碎、级配、添加水泥等辅料制成建材制品，例如标准砖、地板砖、路侧石、混凝土及混凝土制品等；
[0013] g. 将步骤 e 中收集的轻质物质，主要是塑料袋、纸、木、皮革类等，进行人工分选分类回收，例如塑料制成再生塑料颗粒，纸、木、皮革积累到一定数量后送相应纸厂再利用；
[0014] h. 将步骤 e 中收集的可腐有机物溶体送至连续固液分离机中进行固液分离；
[0015] i. 将 h 步骤分离的水送入水处理池处理后回分选池循环使用；
[0016] j. 将 h 步骤分离的固体进行粉碎，入发酵池，在保持一定温度、压力和发酵菌种控制下快速发酵，发酵后得到沼气、沼渣、沼液分别利用；
[0017] ①、沼液经过纯化、加压储存为发电燃料或化工原料；②、沼渣无害化后，进行肥效平衡，造粒，烘干，制成有机复合肥；③、沼液导入水处理池处理后回分选池循环利用，部分用作步骤 f 建材制品用水使用；图 1 中实线为垃圾物质的工艺走向，虚线为体统中水的循环和使用工艺走向。
[0018] 作为优选：在步骤 a 中的水选过程中需搅拌和粉碎以便可腐有机物尽量溶于或悬浮于水中。
[0019] 作为优选：对于混装城市生活垃圾中的玻璃、非磁金属、电池进行人工辅助分选。
[0020] 发明效果
[0021] 与现有技术相比，该发明有以下技术效果：
[0022] 1、经分选后，生活垃圾中的各类物质相对单纯化，可以将单一物质的主要处理技术如建筑垃圾制建材、可腐厨余垃圾发酵制沼气和有机肥、塑料回用再生技术等，链接于分选后，形成完整的产业链，工厂化的将垃圾作为原料生产与建筑、化工、能源、农业生产行业的相关产品。垃圾真正成为资源，回到原来的生态位置上，不再需要填埋和焚烧。
[0023] 2. 该技术也可以用于已填埋满的旧垃圾场的垃圾处理，置换出宝贵的土地。
[0024] 3. 分选后的水和发酵后的水均回到水处理池，处理后循环使用。系统内垃圾带进
的增氧水，可以被以建筑垃圾为原料的建材生产所使用的水平衡，不向外界排放或送专业
污水处理厂处理，因此没有环境的二次污染。附图中虚线表示了系统中水的循环和使用的
路线。
[0025] 4. 该发明垃圾处理量大、种类多，大、中、小城市均可应用。既可间歇运行，也可以
连续运行。既可以处理一般混装生活垃圾，也可以分别处理宾馆饭店的厨余垃圾和城市建
筑垃圾。
[0026] 5. 该发明易于实现自动化生产将垃圾转变成为产品，融入社会经济建设循环，集
社会、环境、经济效益于一体。可自身运行产生经济效益，大幅降低政府垃圾处理的支出费
用成本。

附图说明
[0027] 图 1 为本发明实施例的流程图。

具体实施方式
[0028] 下面结合附图及具体实施例对本发明作进一步的详细说明。
[0029] 实施例：
[0030] 参见图 1，混装城市生活垃圾资源化处理工艺主要分为以下步骤；
[0031] a. 将压缩成块的城市生活垃圾进行拆块成为松散状态，并连续分散置于传送带
上；
[0032] b. 采用专用市售破碎机破碎；
[0033] c. 采用专用市售磁选机磁选；
[0034] d. 将磁选后的城市生活垃圾传送至水分选池中进行比重分选，分出比重小于水的
浮于水面的轻质物质，比重接近水的溶于或悬浮于水中的可腐有机物溶体，比重大于水沉
于水底的无机物；
[0035] e. 于水分选池内分别收集 d 步骤中的三类物质；
[0036] f. 将步骤 e 中收集的无机物输送至建材生产车间，经分拣出电池、非磁性金属、大
块玻璃等非建材类物质后，对建材原料进行无害化处理，然后经过破碎、粉碎、添加水泥等
辅料制成建材制品，例如标准砖、标准板、花岗石、防浪石、各种城建和水利工程用混凝土及
混凝土制品等；
[0037] g. 将步骤 e 中收集的轻质物质，主要是塑料袋、纸、木、皮革等，进行人工分类分
类回收，例如塑料制成再生塑料颗粒，纸、木、皮革积累到一定数量后送相应纸厂再利用；
[0038] h. 将步骤 e 中收集的可腐有机物溶体送至连续固液分离机中进行固液分离；
[0039] i. 将 h 步骤分离的水送入水处理池处理后分选池循环使用；
[0040] j. 将 h 步骤分离的固体进行粉碎、入发酵池，在保持一定温度、压力和发酵菌种及
机械搅拌控制下快速发酵，发酵后得到沼气、沼渣、沼液分别利用；
[0041] ①. 沼液经过纯化、加压储存为发电燃料或化工原料；②. 沼渣无害化后，进行肥效
平衡，造粒，烘干，制成有机复合肥；③. 沼液导入水处理池处理后分选池循环利用，部分
用作步骤f的建材制品用水使用;图1中实施为垃圾物质的工艺走向,虚线为体统中水的循环和使用工艺走向。

[0042] 在本实施例中,在步骤d中的水选过程中需搅拌和粉碎以便可腐有机物尽量溶于或悬浮于水中;且对于混装城市生活垃圾中的玻璃、非磁金属、电池进行人工辅助分选。

[0043] 本发明的原理：

[0044] 垃圾资源化利用的核心是混装垃圾的有效分选、分选物的增值利用及对环境无二次污染。根据这些主要原则,垃圾资源化技术前期研究重点突破了混装垃圾的分选技术难关,获得成功,并基于分选技术的突出,链接现有的无机和有机垃圾垃圾处理成熟技术,发展出成套完整的垃圾完全资源化新工艺。以该工艺为基础,可将垃圾的资源化处理设计成自动或半自动生产线运行,工厂化的连续自动处理生活垃圾。通过严格分选,将混装生活垃圾分选为无机类物质（砂石、砖瓦、水泥制品等）、厨余有机可腐类物质、金属、塑料（橡胶、纸、布、皮革）、电池、玻璃几大类,然后有针对性进行资源化处理。

[0045] 对无机类物质,先进行粉碎至建材产品要求的适当尺寸,并加入适量生化剂搅拌,快速降解无机质中残存的少量有机物和消除可能的重金属危害。然后按建材原料要求进行级配,再加入无机粘合剂（如水泥等）混匀后,在模具或制砖机上制成混凝土建材或建筑用砖等制品。

[0046] 对有机可腐类物质,利用厌氧发酵原理,在密闭条件下选取合适生物菌群接种发酵,通过设计合理的有机负荷、污泥龄、控制适宜的发酵温度、PH值、生物菌种群、机械搅拌、基质C/N比等因素,使有机质在密闭发酵池内连续快速发酵。经过发酵后将有机质垃圾水解、吸收消化并同时释放出生物能特征的沼气。沼气中CH₄约占60%、CO₂约占30%,其余为H₂O、H₂S、NH₃等,因此经过一定纯化工艺后,沼气可可变成接近天然气热值的良好能源或电力及化工原料。其它物质如沼液和沼渣,由于有机物中的N、P、K仅作为基质被微生物代谢利用而并不损失,因而可以加以制备后作为良好的天然有机肥。对分选的金属、玻璃、部分纸类,废电池直接送相应企业回收利用,对塑料类可进行人工再分选后制成再生塑料颗粒回收利用。

[0047] 处理系统中水循环以水处理池为中心,系统中经过固液分离后的水和发酵过程产生的沼液水全部进入水处理池经过絮凝沉淀后再使用,其中经絮凝沉淀水可以直接送至分选池作选用水,用作建材生产的水需再经过解毒过滤后使用。系统中的水量主要是由垃圾带入,经压缩成块的垃圾含水量约为30-40%,但建材制品的用水量在25-35%,可以经过适当加大建材制品的产量来平衡掉系统的水量,使系统处理不再向外界排放水。同时水处理池中沉淀的污泥,定期被送入沼气池内发酵分解,因此没有环境的二次污染。

[0048] 处理工艺中,垃圾的拆垛、破袋、磁选、分选、厨余物质的固液分离步骤全部封闭运行,并在垃圾的进入口和分选物质的出口处安装臭气过滤装置,限制臭气的排放,因此可将臭气对周围大气环境的影响减到最小。

[0049] 本发明设计合理,将生活垃圾通过专有的分拣技术,结合生物、化工、建材、机电一体化技术,转变为与建筑、化工、能源、农业生产行业的相关产品。与传统的垃圾处理工艺相比,垃圾成为了真正的资源,成为可持续发展的循环经济链上的一个环节,且对环境不再构成污染;由该工艺制成的成品营销利润,完全能够维持自身运行费用,可以不再需国家拨款扶持。
[0050] 以上所述仅为本发明较佳实施例的详细说明与图式，并非用来限制本发明，凡依本发明的创作精神所作的类似变化的实施例或近似结构，皆应包含于本发明之中。