(54) 发明名称
清洁部件、充电装置、处理盒及图像形成装置

(57) 摘要
本发明涉及清洁部件、充电装置、处理盒及图像形成装置，提供了一种具有改进的清洁能力的用于图像形成装置的清洁部件。清洁部件由例如包括轴 (100A) 和弹性层 (100B) 的辊状部件组成。弹性层 (100B) 以螺旋形状设置在轴 (100A) 的表面上。弹性层满足以下表达式 A1 和 A2：表达式 A1: 1 < Tb/Ta < 1.75；表达式 A2: 0.5 < Ta < 4.0，其中，在表达式 A1 和 A2 中，Ta 表示所述弹性层的沿螺旋 p 宽度方向的中部的厚度，以毫米为单位，而 Tb 表示所述弹性层的沿螺旋宽度方向的两端部的厚度，以毫米为单位。
1. 一种用于图像形成装置的清洁部件，所述清洁部件包括：
芯体；以及
弹性层，其以螺旋形状设置在所述芯体的外周面上。所述弹性层满足以下表达式 A1 和表达式 A2：
表达式 A1: \(\frac{T_b}{T_a} < 1.75 \)
表达式 A2: \(2.5 < T_a < 4.0 \)，并且
在表达式 A1 和表达式 A2 中，\(T_a \) 表示所述弹性层的沿螺旋宽度方向的中央部的厚度，以毫米为单位，而 \(T_b \) 表示所述弹性层的沿所述螺旋宽度方向的两端部的厚度，以毫米为单位。

2. 根据权利要求 1 所述的清洁部件，其中，所述弹性层满足以下表达式 B1 和表达式 B2：
表达式 B1: \(1.02 < \frac{T_b}{T_a} < 1.5 \)
表达式 B2: \(1.0 < T_a < 3.0 \)，并且
在表达式 B1 和表达式 B2 中，\(T_a \) 和 \(T_b \) 各独立地表示与所述表达式 A1 和所述表达式 A2 中相同的定义。

3. 根据权利要求 1 所述的清洁部件，其中，所述弹性层的螺旋角度 \(\theta \) 在从 10° 到 65° 的范围，所述弹性层的螺旋宽度在从 3mm 到 25mm 的范围。

4. 根据权利要求 1 所述的清洁部件，其中，所述弹性层的沿所述芯体的轴向的中央部处的螺距小于沿所述芯体的所述轴向的两端部处的螺距。

5. 根据权利要求 4 所述的清洁部件，其中，所述弹性层是从沿所述芯体的轴向的一端到另一端缠绕在所述芯体的所述外周面上的条状部件，所述条状弹性层包括：
直线状的中央部；
第一端部，其从沿所述芯体的长度方向一端向宽度方向的一侧曲折或弯曲连接；以及
第二端部，其从沿所述芯体的长度方向另一端向宽度方向的另一侧曲折或弯曲。

6. 根据权利要求 4 所述的清洁部件，其中，所述螺距在从 3mm 到 25mm 的范围。

7. 根据权利要求 4 所述的清洁部件，其中，所述弹性层的覆盖率在从 20% 到 70% 的范围，所述弹性层的覆盖率由 100R1/(R1+R2) 的关系定义，其中，\(R_1 \) 表示所述弹性层的螺旋宽度，而 \(R_2 \) 表示所述弹性层的螺距。

8. 根据权利要求 1 所述的清洁部件，其中，所述弹性层包括通过利用除硅油之外的稳定剂的醚型泡沫聚氨酯。

9. 一种充电装置，该充电装置包括：
充电组件，其对要充电的部件进行充电；以及
权利要求 1 至 8 中任一项所述的用于图像形成装置的清洁部件，其设置成接触所述充电部件的表面并清洁所述充电部件的表面。

10. 根据权利要求 9 所述的充电装置，其中，所述部件是感光体。

11. 一种处理盒，该处理盒至少包括权利要求 9 所述的充电装置并且可拆卸地附接到图像形成装置。

12. 一种图像形成装置，该图像形成装置包括：
图像承载体；
充电单元，其对所述图像承载体的表面进行充电并且包括权利要求 9 所述的充电装置；
潜影形成单元，其在所述图像承载体的充电后的表面上形成潜像；
显影单元，其通过使用色调剂，将所述图像承载体上形成的所述潜像显影形成色调剂图像；以及
转印单元，其将所述色调剂图像转印到转印介质上。
13. 一种用于图像形成装置的单元，该用于图像形成装置的单元包括：
要清洁的部件；以及
权利要求 1 到 8 中任一项所述的用于图像形成装置的清洁部件，其设置成接触所述要清洁的部件的表面并清洁所述要清洁的部件的表面。
14. 一种处理盒，该处理盒至少包括权利要求 13 所述的用于图像形成装置的单元并且可拆卸地附接到图像形成装置。
15. 一种图像形成装置，该图像形成装置包括权利要求 13 所述的用于图像形成装置的单元。
清洁部件、充电装置、处理盒及图像形成装置

技术领域
[0001] 本发明涉及用于图像形成装置的清洁部件、充电装置、用于图像形成装置的单元、处理盒以及图像形成装置。

背景技术
[0002] 在应用电子照相系统的图像形成装置中，首先通过充电装置对由感光体等形成的图像载体的表面进行充电，以形成电荷，并且由通过调制图像信号获得的激光束等形成静电潜像。此后，利用带电的色调剂对静电潜像进行显影，以形成可视的色调剂图像。直接或者通过中间转印部件将色调剂图像静电转印到诸如记录片材的转印介质上，并定影到该转印介质上，由此获得图像。
[0003] 日本专利申请特开平 No. 2-272594 号公报公开了一种作为充电棍的清洁部件的泡沫棍的安装方法。
[0004] 日本专利申请特开平 7-129055 号公报公开了一种使充电棍和清洁棍之间具有减速差的方法。
[0005] 日本专利申请特开平 7-219313 号公报和日本专利申请特开 2001-209238 号公报公开了一种利用具有螺旋状的清洁棍等沿充电棍的纵向向污物施加力的方法。
[0006] 日本专利申请特开 2007-199264 号公报公开了一种清洁棍，其中，轴中央部的外径和轴端部外径彼此不同。

发明内容
[0007] 根据本发明的一个方面，一种用于图像形成装置的清洁部件包括：芯体；以及弹性层，其以螺旋状设置在所述芯体的外周面上，所述弹性层满足以下表达式 A1 和 A2：
[0008] 表达式 A1: 1 < Tb/Ta < 1.75
[0009] 表达式 A2: 0.5 < Ta < 4.0,
[0010] 其中，在表达式 A1 和 A2 中，Ta 表示所述弹性层的沿螺旋宽度方向的中央部的厚度，以毫米为单位，而 Tb 表示所述弹性层的沿螺旋宽度方向的两端部的厚度，以毫米为单位。
[0011] 本发明的目标是提供一种与不满足下述表达式 (A1) 和 (A2) 的情况相比具有极好的清洁能力的用于图像形成装置的清洁部件。
[0012] 根据本发明的所述方面的示例性实施方式包括但不限于以下第〈1〉项到第〈14〉项。
[0013] 〈1〉一种用于图像形成装置的清洁部件，其包括：芯体；以及弹性层，其以螺旋形状设置在所述芯体的外周面上，所述弹性层满足以下表达式 (A1) 和 (A2)：
[0014] 表达式 (A1): 1 < Tb/Ta < 1.75
[0015] 表达式 (A2): 0.5 < Ta < 4.0,
[0016] 在表达式 (A1) 和 (A2) 中，Ta 表示所述弹性层的沿螺旋宽度方向的中央部的厚度，
以毫米为单位，而 Tb 表示所述弹性层的沿螺旋宽度方向的两端部的厚度，以毫米为单位。

[0017] <2> 根据第 <1> 项所述的清洁部件，其中，所述弹性层满足以下表达式 (B1) 和 (B2)：

[0018] 表达式 (B1)：1.02 < Tb/Ta < 1.5

[0019] 表达式 (B2)：1.0 < Ta < 3.0，以及

[0020] 在表达式 (B1) 和 (B2) 中，Ta 和 Tb 各自独立地表示与表达式 (A1) 和 (A2) 中相同的定义。

[0021] <3> 根据第 <1> 项或第 <2> 项所述的清洁部件，其中，所述弹性层的螺旋角度 θ 在从 10° 到 65° 的范围，并且所述弹性层的螺旋宽度在从 3mm 到 25mm 的范围。

[0022] <4> 根据第 <1> 项到第 <3> 项中任一项所述的清洁部件，其中，所述弹性层的沿所述芯体的轴向的所述中央部处的螺距小于沿所述芯体的轴向的两端部处的螺距。

[0023] <5> 根据第 <4> 项所述的清洁部件，其中，所述弹性层是从沿所述芯体的轴向的一端到另一端缠绕在所述芯体的外周面上的条状部件，该条状弹性层包括：直线状的中央部；第一端部，其从所述中央部的长度方向一端向宽度方向的一侧折曲或弯曲连接；以及第二端部，其从所述中央部的长度方向另一端向所述宽度方向的另一端折曲或弯曲。

[0024] <6> 根据第 <4> 项或第 <5> 项所述的清洁部件，其中，所述螺距在从 3mm 到 25mm 的范围。

[0025] <7> 根据第 <4> 项到第 <6> 项中任一项所述的清洁部件，其中，所述弹性层的覆盖率在从 20％到 70％的范围；所述弹性层的覆盖率由 100R1/(R1+R2) 的关系定义，其中，R1 表示所述弹性层的螺旋宽度，而 R2 表示所述弹性层的螺距。

[0026] <8> 根据第 <1> 项到第 <7> 项中任一项所述的清洁部件，其中，所述弹性层包括通过利用除硅油之外的稳泡剂的醚型泡沫聚氨酯。

[0027] <9> 一种充电装置，该充电装置包括：充电部件，其对要充电的部件进行充电，以及根据第 <1> 项到第 <8> 项中任一项所述的用于图像形成装置的清洁部件，其设置成接触所述充电部件的表面并清洁所述充电部件的表面进行清洁。

[0028] <10> 根据第 <9> 项的充电装置，其中，所述部件是感光体。

[0029] <11> 一种处理盒，该处理盒至少包括根据第 <9> 项所述的充电装置并且可拆卸地附接到图像形成装置。

[0030] <12> 一种图像形成装置，该图像形成装置包括：图像载体；充电单元，其对所述图像载体的表面进行充电并且包括根据第 <9> 项所述的充电装置；潜影形成单元，其在所述图像载体的充电后的表面上形成潜影；显影单元，其通过使用色调剂，将所述图像载体上形成的潜影显影成色调剂图像；以及转印单元，其将所述色调剂图像转印到转印介质上。

[0031] <13> 一种用于图像形成装置的单元，该用于图像形成装置的单元包括：要清洁的部件，以及根据第 <1> 项到第 <8> 项中任一项所述的用于图像形成装置的清洁部件，其设置成接触所述要清洁的部件的表面并清洁所述要清洁的部件的表面。

[0032] <14> 一种处理盒，该处理盒至少包括根据第 <13> 项所述的用于图像形成装置的单元并且可拆卸地附接到图像形成装置。

[0033] <15> 一种图像形成装置，该图像形成装置包括根据第 <13> 项所述的用于图像形
成装置的单元。
[0034] 根据本发明的示例性实施方式，可以提供与不满足上述表达式 (A1) 和 (A2) 的情况相比具有极好的清洁能力的用于图像形成装置的清洁部件。
[0035] 根据本发明的另一示例性实施方式，可以提供与不满足上述表达式 (B1) 和 (B2) 的情况相比具有极好的清洁能力的用于图像形成装置的清洁部件。
[0036] 根据本发明的另一示例性实施方式，可以提供与弹性层的螺旋角度和螺旋宽度不在上述范围的情况相比具有极好的清洁能力的用于图像形成装置的清洁部件。
[0037] 根据本发明的另一示例性实施方式，可以提供与弹性层的螺距恒定的情况相比轴中央部对清洁对象的接触压大于轴端部的接触压的用于图像形成装置的清洁部件。
[0038] 根据本发明的另一示例性实施方式，可以以低成本提供与形成弹性层的条状部件不包括中央部、第一端部和第二端部的情况相比轴中央部对清洁对象的接触压大于轴端部的接触压的用于图像形成装置的清洁部件。
[0039] 根据本发明的另一示例性实施方式，可以提供与将利用硅油作为融体剂泡沫的醚型聚氨酯用于弹性层的组成材料的情况相比抑制了由于储存造成的图像缺陷的用于图像形成装置的清洁部件。
[0040] 根据本发明的另一示例性实施方式，可以提供充电装置、处理盒和图像形成装置，其中，与使用不满足表达式 (A1) 和 (A2) 的清洁部件的情况相比，抑制了由于充电部件的表面污染物造成的充电能力的劣化。
[0041] 根据本发明的另一示例性实施方式，可以提供用于图像形成装置的单元、处理盒和图像形成装置，其中，与使用不满足表达式 (A1) 和 (A2) 的清洁部件的情况相比，抑制了由于清洁对象的表面污染物造成的性能的劣化。

附图说明
[0042] 将基于以下附图详细描述本发明的示例性实施方式，其中：
[0043] 图 1 是示意性例示了根据本发明的示例性实施方式的用于图像形成装置的清洁部件的立体图；
[0044] 图 2 是示意性例示了根据本发明的示例性实施方式的用于图像形成装置的清洁部件的侧视图；
[0045] 图 3 是例示了根据本发明的示例性实施方式的用于图像形成装置的清洁部件中弹性材料的厚度的放大截面图；
[0046] 图 4 是例示了根据本发明的示例性实施方式的用于图像形成装置的清洁部件中另一弹性材料的厚度的放大截面图；
[0047] 图 5A、图 5B 和图 5C 是例示了根据本发明的示例性实施方式的用于图像形成装置的清洁部件的制造方法的流程的流程图；
[0048] 图 6 是示意性例示了根据本发明的另一示例性实施方式的用于图像形成装置的清洁部件的立体图；
[0049] 图 7 是例示了根据本发明的另一示例性实施方式的用于图像形成装置的清洁部件的制造方法的流程的示意性平面图；
[0050] 图 8 是示出了根据示意性实施方式的电子照相图像形成装置的示意性结构图；
具体实施方式

下面，来描述本发明的示例性实施方式。在附图中，利用同样的附图编号和标记来指示具有同样功能和操作的部件，并且可能不再重复其描述。

清洁部件

图 1 是示意性例示了根据本发明的示例性实施方式的用于图像形成装置的清洁部件的立体图。图 2 是示意性例示了根据本发明的示例性实施方式的用于图像形成装置的清洁部件的侧视图。图 3 是例示了根据本发明的示例性实施方式的用于图像形成装置的清洁部件中弹性材料的厚度的放大截面图。图 4 是例示了根据本发明的示例性实施方式的用于图像形成装置的清洁部件中另一弹性材料的厚度的放大截面图。

图 3 和图 4 是沿图 1 的线 A-A 提取的截面图，即，沿着垂直于弹性材料（层）的螺旋方向的方向所提取的截面图。

如图 1 到 3 所示，根据本示例性实施方式的用于图像形成装置的清洁部件 100（此后，简称为“清洁部件”）是湿性部件，该湿性部件包括作为芯体的轴 100A 和作为弹性材料的弹性层 100B。弹性层 100B 以螺旋形状绸缪在轴 100A 的表面上。具体地说，弹性层 100B 利用轴 100A 的轴线作为螺旋轴线以具有间隔的螺旋形状从轴 100A 的一端绸缪到另一端。

当用 Ta（mm）表示弹性层（材料）100B 的沿螺旋宽度方向的中央部的厚度，而用 Tb（mm）表示弹性层 100B 的沿螺旋宽度方向的两端部的厚度时，弹性层 100B 满足下述表达式 (A1) 和 (A2)（见图 3）。

表达式 (A1)：1 < Tb/Ta < 1.75
表达式 (A2)：0.5 < Ta < 4.0

根据本示例性实施方式的清洁部件 100 可以凭借上述结构而清洁能力优良。其优势的确切原因不知道，但可以认为理由如下。

首先，当弹性层 100B 的沿螺旋宽度方向的中央部的厚度 Ta（此后，称为“中央厚度 Ta”）和弹性层 100B 的沿螺旋宽度方向的端部的厚度 Tb（此后，称为“端部厚度 Tb”）满足表达式 (A1) 时，弹性层 100B 的沿螺旋宽度方向的端部比沿螺旋宽度方向的中央部更向清洁部件 100B 的外侧凸出。当满足表达式 (A1) 并且满足表达式 (A2) 时，可以认为弹性层 100B 的沿螺旋宽度方向的端部的突出部具有适当的排斥力。

清洁部件 100 利用旋转，通过使以螺旋形状设置的弹性层 100B 与清洁对象的表面（清洁对象表面）反复接触和分离来执行清洁操作。从清洁对象的表面（清洁对象表面）的角度看，弹性层 100B 的沿螺旋宽度方向的两端部的角（边缘）被沿清洁部件 100 的轴向（螺旋轴方向）推进，由此，执行清洁操作。

当弹性层 100B 的沿螺旋宽度方向的两端部的突出部具有适当的排斥力并且弹性层 100B 与清洁对象的表面（清洁对象表面）分离时，可以认为由于突出部的排斥力，摩擦接触力作用于清洁对象的表面（清洁对象表面）上。

因此，根据本示例性实施方式的清洁部件 100 可以由于上述结构而清洁能力优良。
优选的是，弹簧层（材料）100B 满足表达式 (B1) 和 (B2)。更优选的是，弹簧材料满足表达式 (C1) 和 (C2)。

优选的表达式

表达式 (B1)：1.02 < Tb/Ta < 1.5
表达式 (B2)：1.0 < Ta < 3.0
更优选的表达式

表达式 (C1)：1.03 < Tb/Ta < 1.35
表达式 (C2)：1.5 < Ta < 2.5

例如，按照下述来测量弹性层（材料）100B 的中央厚度 Ta 和端部厚度 Tb。

利用激光测量工具（LSM 6200, 商品名，其为 MITUTOYO 公司制造的激光扫描测微计）以 1mm/s 的行进速度，在清洁部件的周向固定的同时沿清洁部件的纵向（轴向）扫描清洁部件，由此测量弹簧材料的厚度（弹性层厚度）的分布（profile）。此后，移动周向上的位置，并执行同样的测量（沿周向上间隔 120° 的三个位置）。基于该测得的分布来计算弹簧层 100B 的中央厚度 Ta 和端部厚度 Tb。

使弹簧层 100B 满足表达式的方法的示例包括：(1) 通过切削形成弹簧材料时利用数控 (NC; Numerical Control) 车床的 NC 控制方法，(2) 通过焊接形成弹簧层 100B 时利用焊接尺寸控制的方法，和 (3) 将条状弹簧材料（此后，也可以简称为“条”）缠绕在轴上形成弹簧层 100B 时控制条的厚度、条的绕制张力和条的绕制张力的方法。

使弹簧层 100B 满足表达式的方法的另一示例是通过上述方法形成弹簧材料然后在沿螺旋宽度方向的两端部处将另一条缠绕在轴上的弹簧材料上形成弹性层 100B 的突出到条外的突出部的方法。

即，弹簧层 100B 可以由如图 3 所示的单个部件形成，也可以如图 4 所示由基础弹簧层（材料）100B, 和从基础弹簧层 100B, 的沿螺旋宽度方向的两端部突出的突出弹簧层（材料）100B, 的两个部件形成。

这里，弹簧层 100B 设置成螺旋形状，并且优选的是，螺旋角度 θ 在从 10° 到 65° 的范围（更优选地在从 20° 到 50° 的范围），而螺旋宽度 R1 在从 3mm 到 25mm 的范围（更优选地在从 3mm 到 10mm 的范围）。螺距 R2 优选地在从 3mm 到 25mm 的范围（更优选地在从 15mm 到 22mm 的范围）。

具体地说，当将带缠绕在轴上形成弹簧层 100B 时，可以很容易地满足表达式，即，可以通过将螺旋角度和螺旋宽度控制在上述范围内适当地提高清洁能力。

弹性层 100B 的覆盖率 [(100×[弹性层 100B 的螺旋宽度 R1]/[弹性层 100B 的螺旋宽度 R1+ 弹性层 100B 的螺距 R2(R1+R2)]，] 优选地在从 20% 到 70% 的范围，更优选地在从 25% 到 55% 的范围。

当覆盖率大于上述范围时，弹性层 100B 与清洁对象接触的时间增加，从而附着到清洁部件的表面上的附着物（污物）趋于向再次污染清洁对象。当覆盖率小于上述范围时，弹性层 100B 的厚度没有很好地稳定，从而清洁能力降低。

这里，螺旋角度 θ 是指弹性层 100B 的纵向 P（螺旋方向）与清洁部件的轴向 Q（轴的轴线方向）彼此交叉的角度（锐角）。

螺旋宽度 R1 指的是弹性层 100B 的沿垂直于纵向 P（螺旋方向）的方向上的长度。
螺旋宽度 R2 指的是沿垂直于弹性层 100B 的纵向 P（螺旋方向）的方向上相邻弹性层 100B 之间的距离。

弹性层（材料）100B 指的是由即使在每平方厘米施加了 1.02gf 的外力而变形时也能够恢复到原形的材料形成的一层（材料）。

将详细描述构成元件。

首先来描述轴。

轴 100A 的材料的示例包括金属（例如，易切钢或不锈钢）或树脂（例如，聚缩醛树脂（POM；polyacetal resin））。材料或表面处理方法可以优选地按照需要选择。

具体地说，当轴 100A 由金属形成时，优选执行镀敷处理。当轴由诸如不具有导电性的树脂形成时，可以对它进行诸如镀敷处理的一般处理，以便变成导电的，或者可以不加任何改变地使用。

弹性层 100B 的材料的示例包括诸如聚氯酯、聚乙烯、聚酰胺或聚丙烯的泡沫树脂和通过共混诸如聚橡胶、氟橡胶、聚氯酯橡胶、三元乙丙橡胶（EPDM）、丁腈橡胶（NBR）、氯丁橡胶（CR）、氟化聚异戊二烯橡胶、异戊二烯橡胶、丙烯腈－丁二烯橡胶、丁苯橡胶、氢化聚丁二烯橡胶或丁基橡胶的橡胶材料中的一种或两种以上获得的材料。可以按照需要向这些材料中添加诸如发泡剂、稳定剂、催化剂、固化剂、增塑剂或硫化促进剂之类的辅助剂。

其中，具有气泡的材料（所谓的泡沫）是优选的，并且从不应当由于摩擦而损坏清洁对象的表面并且经过长时间也不应当导致切割或破裂的角度看，抗拉的泡沫聚氯酯是更优选的。

聚氨酯的示例包括多元醇（例如，聚酯多元醇、聚醚聚酯或聚丙烯多元醇）和异氰酸酯（例如，2,4－甲苯二异氰酸酯，2,6－甲苯二异氰酸酯、4,4′－二苯基甲烷二异氰酸酯（4,4′–diphenylmethane diisocyanate）、联甲苯胺二异氰酸酯或 1,6–六亚甲基二异氰酸酯）的反应产物，并且可以包括增链剂（例如，1,4－丁二醇或三羟甲基丙烷）。通常利用诸如水或偶氮化合物（例如，偶氮二硫酰胺或偶氮二异丁腈）的发泡剂对聚氨酯进行发泡。可以按照需要向泡沫聚氨酯添加诸如发泡剂、稳定剂或催化剂等助剂。

在这些泡沫聚氨酯中，可以适当使用醚型泡沫聚氨酯。这是因为醚型泡沫聚氨酯趋向于容易湿热劣化。硅油主要用作醚型泡沫聚氨酯中的稳定剂，但是由于在储存期间（特别是在高温和高湿下长期储存期间）硅油向清涂料（例如，丙烯酸）等的转移可能产生图像缺陷。因此，通过利用除硅油外的稳定剂，可以抑制由弹性层 100B 引起的图像缺陷。

硅油外的稳定剂的具体示例包括不含 Si 原子的有机表面活性剂（例如十二烷基苯磺酸盐或十二烷基硫酸钠的阴离子表面活性剂）。可以不使用日本专利申请特开 2005–301000 号公报中描述的硅稳定剂的方法。

弹性层 100B 可以具有单层结构或者双层结构。具体地说，弹性层 100B 可以具有仅包括一个泡沫层的结构或者可以具有包括固体层和泡沫层的双层结构。

下面来描述根据本示例性实施方式的清洁部件 100 的制造方法。

图 5A、图 5B 和图 5C 是例示了根据本发明的示例性实施方式的用于图像形成装置的清洁部件的制造方法的流程的流程图。

根据本示例性实施方式的清洁部件 100 的制造方法的示例包括以下方法：

9
[0099] （1）一种通过制备形式为长方柱的弹性层材料（例如，泡沫聚氨酯），通过利用钻等在该弹性层材料中形成将插入轴 100A 的孔，并将外周面涂敷有粘合剂的轴 100A 插入所述弹性层材料的孔中，对该弹性层部件执行切削操作以形成弹性层（材料），来获得所述清洁部件的方法。

[0100] （2）一种通过利用模型制备形成圆柱形状的弹性层材料（例如，泡沫聚氨酯），通过利用钻等在该弹性层材料中形成将插入轴 100A 的孔，并将外周面涂敷有粘合剂的轴 100A 插入弹性层材料的孔中，来获得清洁部件的方法。

[0101] （3）一种通过制备片状弹性层材料（例如，泡沫聚氨酯片），向其粘贴双面胶带，冲压生成物以获得带，并将所述带缠绕在轴 100A 上以形成弹性层 100B，来获得清洁部件的方法。

[0102] 其中，通过将带缠绕在轴上以形成弹性层 100B 来获得清洁部件的方法简单并且是优选的。

[0103] 将更详细地描述这个方法。首先，如图 5A 所示，制备经过切片处理以具有目标厚度的片状弹性层材料（例如，泡沫聚氨酯片）。将双面胶带（未示出）粘着到该片状弹性层材料的一个表面上，并且利用冲模对该材料进行冲压以获得具有目标宽度和长度的条 100C（粘着有双面胶带的带）。另一方面，还制造轴 100A。

[0104] 然后，如图 5B 所示，将该带设置成粘着有双面胶带的面朝向上侧，在该状态下剥开双面胶带的防粘纸的一端，并将轴 100A 的一个端部置于剥开了防粘纸的双面胶带上。

[0105] 如图 5C 所示，一边将防粘纸从双面胶带上剥开，一边以预定速度旋转轴 100A，由此以螺旋形状将条 100C 缠绕在轴 100A 的外周面上。最后，获得了具有以螺旋形状设置在轴 100A 的外周面上的弹性层 100B 的清洁部件 100。

[0106] 这样，在将用作弹性层 100B 的条 100C 缠绕在轴 100A 上时，条 100C 可以相对于轴 100A 的轴向被定位，使得条 100C 的纵向变成目标角度（螺旋角度）。例如，轴 100A 的外径可以在从 φ3mm 到 φ6mm 的范围内。

[0107] 将条 100C 缠绕到轴 100A 上所施加的张力可以具有这样的大小，使得在轴 100A 和带 100C 及双面胶带之间不形成间隙，并且优选的是不施加过大的张力。当张力过大时，抗张永久伸长增加，并且弹性层 100B 的清洁所需要的弹力趋于减小。具体地说，优选施加张力，以使原始带 100C 的长度伸长从 0% 到 5%。

[0108] 另一方面，当将带 100C 缠绕在轴 100A 上时，带 100C 趋于伸长。该伸长沿带 100C 的厚度方向变化，并且最外部伸长最多，由此弹力降低。因此，在带 100C 缠绕在轴 100A 上之后最外部的伸长优选地是原始带 100C 的最外部的 5%。

[0109] 通过带 100C 缠绕在轴 100A 上的曲率半径和带 100C 的厚度，来控制该伸长。通过轴 100A 的外径和带 100C 的缠绕角度，控制带 100C 缠绕在轴 100A 上的曲率半径。

[0110] 带 100C 缠绕在轴 100A 上的曲率半径优选地在从 ((轴的外径 /2) +0.2mm) 到 ((轴的外径 /2) +8.5mm) 的范围，更优选地在从 ((轴的外径 /2) +0.5mm) 到 ((轴的外径 /2) +7.0mm) 的范围。

[0111] 带 100C 的厚度优选地在从 1.5mm 到 4mm 的范围（更优选地在从 1.5mm 到 3.0mm 的范围）。可以调节带 100C 的宽度，使得弹性层 100B 的覆盖在上述范围内。由缠绕在轴 100A 上的区域的轴向长度、缠绕角度和缠绕张力确定带 100C 的长度。
根据示例性实施方式的清洁部件 100 不限于上述结构。例如，如图 6 所示，优选的是弹性层 100B 的轴向中央处的螺距 R2 小于在轴 100A 的轴向两端处的螺距 R2（此后，该类型称为图 6 所示类型）。

根据该结构，弹性层 100B 在轴 100A 的轴向中部处的轴向中部处更密集，而在轴 100A 的轴向两端处的轴向中部处更稀疏。

因此，当清洁部件 100 与清洁对象开始接触时，在清洁部件 100 的轴向中部处的接触压由于弹性层 100B 的比在轴的轴端部处更密集的部分而增大。

结果，例如，当清洁对象被设置为利用施加到其上的压力而接触像形成装置的另一部件时，抑制了清洁对象和另一部件之间的沿轴向的接触压的不均匀性。

当清洁对象（具体地说是，充电部或变色部）被设置为利用施加到其上的压力而接触像形成装置的另一部件时，沿轴向上的中央点处的接触压趋向于减小，从而可以看到的是，为了抑制该问题，可以将轴向中央部的外径设置成比轴向端部的外径大。然而，当轴向中部的外径设置得过大时，轴向端部的接触压趋向于过分减小。

因此，通过将清洁部件 100 的轴向中央部对清洁对象的接触压设置成比轴向端部对清洁对象的接触压大，由于该接触压，清洁对象的轴向中央部 5 对另一部件的接触压比轴向端部对另一部件的接触压大，并且可以抑制清洁对象和另一部分之间的沿轴向上的接触压的不均匀性。

具体地说，例如，当清洁对象是充电部件（充电部）时，充电部件和图像载体体之间的接触压可以容易地沿轴向均匀分布并保持，由此抑制了沿轴向上的充电不均匀性。例如，当清洁对象是转印部件（转印部）时，充电部件和图像载体体或中间转印部件之间的接触压可以容易地沿轴向均匀分布并保持，能够抑制沿轴向上的转印不均匀性。

在图 6 所示类型的清洁部件 100 中，清洁部件 100 的轴向中央部与轴向端部之间的螺距 R2 的差相对于轴向端部的螺距 R2 优选地在 10%到 100%的范围，更优选地在 20%到 70%的范围。当该差在上述范围内时，可以提高轴向中央部对清洁对象的接触压而不过分降低清洁部件 100 的轴向端部对清洁对象的接触压。

清洁部件 100 的轴向中央部指的是长度是清洁部件 100 的轴向长度的至少从 40%到 60%的中央部。

当意欲容易并且低成本地制备图 6 所示类型的清洁部件 100 时，例如，如图 7 所示，利用包括直线状的中央部 100C-1, 第一端部 100C-2 和第二端部 100C-3 的条 100C 作为条 100C 的方法，可以在将条 100C（形成为条状的弹性材料）缠绕在轴 100A 上以形成弹性层 100B 时适当使用。第一端部 100C-2 从中央部 100C-1 的纵向与宽度方向一侧折曲或弯曲，而第二端部 100C-3 向中央部 100C-1 的纵向另一端的宽度方向另一侧折曲或弯曲。

对于条 100C，在将条 100C 缠绕在轴 100A 上时设置条 100C 和轴 100A 的状态下，条 100C 的第一端部 100C-2 是从中央部 100C-1 的纵向与宽度方向折曲或弯曲的端部，第一端部 100C-2 偏离轴 100A 并且是开始缠绕的端部。条 100C 的第二端部 100C-3 是从中央部 100C-1 的纵向另一端沿宽度方向折曲或弯曲的端部，第二端部 100C-3 离轴 100A 更近并且是缠绕结束的端部。

即，在带 100C 中，与开始缠绕的第一端部 100C-2 和结束缠绕的第二端部 100C-3 相比，中央部 100C-1 以相对于轴 100A 的轴向更大的角度缠绕（其中，第一端部 100C-2 和
第二端部 100C-3 的系向角度彼此相等。

【0124】换句话说，当用 θ c 表示条 100C 的中央部 100C-1 的系向和轴 100A 的轴向形成的角（锐角），用 θ e1 表示条 100C 的第一端部 100C-2 的系向和轴 100A 的轴向形成的角（锐角），并且用 θ e2 表示条 100C 的第二端部 100C-3 的系向和轴 100A 的轴向形成的角（锐角）时，条 100C 可以优选地配置成满足表达式 θ c > θ e1，表达式 θ c > θ e2 以及表达式 θ e1 = θ e2。

【0125】因此，当将具有该结构的条 100C 缘绕在轴 100A 上时，弹性层 100B 在轴 100A 的轴向的中央部处的螺旋角度 θ 大于弹性层 100B 在轴 100A 的两端部处的螺旋角度 θ，并且在该状态下形成弹性层 100B。结果，在所获得的清朧部件 100 中，弹性层 100B 在轴 100A 的轴向中央部处的螺距 R2 小于在轴 100A 的轴向两端部处的螺距 R2。

【0126】如图 7 所示，带 100C 可以配置成使得中央部 100C-1 的宽度大于第一端部 100C-2 和第二端部 100C-3 的宽度。具体地说，条 100C 可以配置成满足表达式 Re > Re1，表达式 Re > Re2 和表达式 Re1 = Re2，其中，Re 表示中央部 100C-1 的宽度，Re1 表示第一端部 100C-2 的宽度，而 Re2 表示第二端部 100C-3 的宽度。

【0127】因此，当将具有该结构的条 100C 缘绕在轴 100A 上时，弹性层 100B 在轴 100A 的轴向的中央部处的螺旋宽度 R1 大于弹性层 100B 在轴 100A 的两端部处的螺旋宽度 R1，并且在该状态下形成弹性层 100B。结果，在所获得的清朧部件 100 中，弹性层 100B 在轴 100A 的轴向的中央部处的螺距 R2 小于在轴 100A 的轴向的两端部处的螺距 R2。

【0128】图像形成装置及其它

【0129】下面参照附图来描述根据本示例性实施方式的图像形成装置的结构。

【0130】图 10 是示例了根据本示例性实施方式的图像形成装置的示意性结构图。

【0131】根据本示例性实施方式的图像形成装置 10 是工作型彩色图像形成装置，例如，如图 10 所示。在根据本示例性实施方式的图像形成装置 10 中，感光体（图像承载体）12、充电部件 14、显影装置等设置为用于黄（18Y）、品红（18M）、青（18C）和黑（18K）各颜色的处理盒（见图 9）。处理盒可以安装（附接）在图像形成装置 10，以及从图像形成装置 10 拆（卸）下来。

【0132】例如，表面涂层有由有机感光材料等形成的感光体层的直径 25mm 的导电圆柱体用作感光体 12，并且通过未未出的马达以 150mm/sec（毫米/秒）的处理速度旋转驱动。

【0133】感光体 12 的表面通过设置在感光体 12 的表面上的充电部件 14 进行充电并且利用从在充电部件 14 的感光体 12 的旋转方向的下游侧的曝光装置 16 发出的激光束 LB 对感光体 12 进行图像曝光，由此在感光体 12 上形成基于图像信息的静电潜像。

【0134】通过用于黄（Y）色的显影装置 19Y、用于品红（M）色的显影装置 19M、用于青（C）色的显影装置 19C 和用于黑（K）色的显影装置 19K，对感光体 12 上形成的静电潜像进行显影，以形成相应颜色的色调图像。

【0135】例如，当形成彩色图像时，对具有黄色（Y）、品红色（M）、青色（C）和黑色（K）的感光体 12 的表面分别执行充电、曝光和显影处理，从而在感光体 12 的表面上分别根据颜色形成对应于黄色（Y）、品红色（M）、青色（C）和黑色（K）的色调图像。

【0136】感光体 12 上依次形成的黄色（Y）、品红色（M）、青色（C）和黑色（K）的色调图像，在感光体 12 和转印装置 22 隔着片材传送带 20 彼此靠近的位置处被转印到通过片材传送
带 20 被传送到感光体 12 的外周的记录片材 24 上，片材传送带 20 提供有来自支撑辊 40 和 42 的张力并且从片材传送带 20 内周面支撑该片材传送带 20。

[0137] 从感光体 12 转印了色调剂图像的记录片材 24 被传送到定影装置 64 并且被定影装置 64 加热和加压，由此将色调剂图像定影到记录片材 24 上。此后，在单面打印中，其上定影有色调剂图像的记录片材 24 被排出辊 66 排出到设置在图像形成装置 10 的上部的排出单元 68 中。

[0138] 通过拾取辊 30 从片材容器 28 中取出记录片材 24，并通过馈送辊 32 和 34 传送到片材传送带 20。

[0139] 另一方面，在双面打印中，通过定影装置 64 将色调剂图像定影到其第一面（正面）上的记录片材 24 不通过排出辊 66 排出到排出单元 68 中。相反，在排出辊 66 夹住记录片材 24 的后缘部的状态下，排出辊 66 反向，并且记录片材 24 的传送路径切换到双面片材传送路径 70 上，在记录片材 24 的正反面反转的状态下，记录片材被设置在双面片材传送路径 70 中的传送辊 72 传送到片材传送带 20，并且色调剂图像从感光体 12 转印到记录片材 24 的第二表面（背面）上。然后，通过定影装置 64，对记录片材 24 的第二面（背面）上的色调剂图像进行定影，并且记录片材 24（转印介质）被排出到排出单元 68。

[0140] 在对色调剂图像进行转印的处理结束之后，在感光体 12 的每转中，通过清洁刮板 80 从感光体 12 的表面移除剩余色调剂或纸粉，清洁刮板 80 设置在感光体 12 的表面上在与转印装置 22 接近的位置的沿感光体 12 的旋转方向的下游处。

[0141] 这里，如图 10 所示，充电部件 14 例如是供电轴 14A 形成有弹性层 14B 并且轴 14A 被可旋转地支撑的棍。用于充电部件 14 的清洁部件 100 在感光体 12 的相对侧与充电部件 14 接触，以构成充电装置（单元）。根据本示例性实施方式的清洁部件 100 用作该清洁部件 100。

[0142] 这里，描述了通过清洁部件 100 与充电部件 14 定常接触而跟随充电部件 14 旋转而旋转的清洁部件的使用方法，但是可以通过定常接触（normal contact）来驱动清洁部件 100，或者可以通过仅在对充电部件 14 进行清洁时与充电部件 14 接触来驱动清洁部件 100。可以仅在对充电部件进行清洁时，清洁部件 100 接触充电部件 14，并且可以通过独立的驱动，相对于充电部件 14 具有周期差。然而，由于可以通过清洁部件 100 很容易收集充电部件 14 上的污物并且再次附着到充电辊上，因此使清洁部件 100 与充电部件 14 定常接触，以产生周期差的方法不是优选的。

[0143] 利用轴 14A 的两端的负荷 F，充电部件 14 向下挤压感光体 12 上，充电部件 14 沿着弹性层 14B 的周面弹性形变，以形成咬合部。利用轴 100A 的两端的负荷 F’，清洁部件 100 向下挤压充电部件 14，并且弹性层 100B 沿着充电部件 14 的周面弹性形变，以形成咬合部。因此，抑制了充电部件 14 的弯曲，以在充电部件 14 和感光体 12 之间形成咬合部。

[0144] 通过示出的马达沿箭头 X 的方向旋转驱动感光体 12，并且充电部件 14 沿箭头 Y 的方向随着感光体 12 的旋转而旋转。清洁部件 100 沿箭头 Z 的方向随着充电部件 14 的旋转而旋转。

[0145] 充电部件的结构

[0146] 下面来描述充电部件，但是本示例性实施方式不限于以下结构。不再描述附图标题号和标记。
具体限定充电部件的结构，并且其示例包括具有轴和弹性层（材料）或者代替弹性层的树脂层的结构。弹性层可以具有单层结构或者包括具有各种功能的多个不同层的多层结构。弹性层可以进行表面处理。

轴的材料的示例包括易切钢或不锈钢，并且可以根据诸如滑动部件的用途优选的选择材料和表面处理方法。优选的是对轴进行镀覆。可以通过诸如镀覆处理的一般处理来处理不具有导电性的材料，以具有导电性，或者可以不进行任何处理即使用。

弹性层（材料）可以由导电弹性层（材料）形成。例如，导电弹性层包括诸如具有触电的橡胶和诸如炭黑的导电剂或用于调节导电弹性层的电阻的离子导电剂的弹性材料，并且按照需要可以向该导电弹性层添加通常可以添加到橡胶中的材料，例如，软化剂、增塑剂、固化（curing）剂、硫化剂、硫化促进剂、抗氧化剂、或者硅石或碳酸钙的填料。导电轴的周面涂敷有包含通常可以添加到橡胶中的材料的混合物。分散有导电体材料中的诸如炭黑或离子导电剂的导电材料（利用电子或离子之一作为电荷载体）的添加剂用作调节电阻的导电剂。弹性材料可以是泡沫。

形成导电弹性层的弹性材料是例如通过将导电剂分散在橡胶材料中形成的。橡胶材料的示例包括硅橡胶、乙丙橡胶、环氧氯丙烷-环氧氯丙烷共聚橡胶、环氧氯丙烷-环氧乙烷-烷丙基缩水甘油醚共聚橡胶、丙烯腈-丁二烯共聚橡胶和其共混橡胶。橡胶材料可以是发泡的或非发泡的。

作为导电剂，使用电子导电剂和离子导电剂。电子导电剂的示例包括例如以下细粉末，炭黑，例如，科琴黑（Ketjen black）或乙炔黑；裂解炭黑；石墨；各种类型的导电金属或合金；例如，铅、铜、镍或不锈钢；各种类型的导电金属氧化物，例如，氧化锡、氧化锌、氧化镁、氧化铝、氧化锡-氧化锌、氧化铝-氧化锌、氧化镁-氧化锌；以及具有导电表面的绝缘材料。离子导电剂的示例包括例如，四乙基铵或十二烷基三甲基铵等铵阳离子的高氯酸盐或氯酸盐；碱金属或碱土金属（例如锂或镁等）的高氯酸盐或氯酸盐。

导电剂可以单独使用或者其中至少两种组合使用。

具体限制导电剂的添加量。然而，在电子导电剂的情况下，导电剂的添加量优选地相对于 100 重量份的橡胶材料从 1 重量份到 60 重量份的范围。另一方面，在离子导电剂的情况下，离子导电剂的添加量优选地相对于 100 重量份的橡胶材料的重量在从 0.1 重量份到 5.0 重量份的范围。

可以在充电部件的表面上形成表面层。树脂和橡胶中的任何一种可以用来作该表面层的材料，并且不具体限定该材料。该材料的示例包括聚偏二氟乙烯氟化物、四氟乙烯共聚物、聚酯、聚酰胺和共聚尼龙。

共聚尼龙包含 610 尼龙、11 尼龙和 12 尼龙中的至少一种，作为聚合单元，以及 6 尼龙、66 尼龙等，作为包含在该共聚物中的另一种聚合单元。

共聚合物中包含的包括 610 尼龙、11 尼龙和 12 尼龙的聚合单体的总含量优选为重量上的 10% 以上。

聚合材料可以单独使用或两种或更多种组合使用。聚合材料的平均分子量优选地在从 1,000 到 100,000 的范围，更多优选地在从 10,000 到 50,000 的范围。

表面层中可以含有导电材料，以调节电阻值。导电材料的粒径优选为 3 μm 以下。

作为用于调节导电弹性层的电阻值的导电剂，可以使用混合到基体材料中的炭黑
或导电金属氧化物粒子或者分散在基体材料中的利用电子或离子之一作为电荷载体的导电材料（例如，离子导电剂）。

【0160】炭黑的具体示例包括“SPECIAL BLACK 350”、“SPECIAL BLACK100”、“SPECIAL BLACK 250”、“SPECIAL BLACK 5”、“SPECIAL BLACK4”、“SPECIAL BLACK 4A”、“SPECIAL BLACK 550”、“SPECIAL BLACK6”、“COLOR BLACK FW200”、“COLOR BLACK FW2”和“COLOR BLACK FW2V”（商品名，全部由Degussa公司制造），以及“MONARCH1000”、“MONARCH 1300”、“MONARCH 1400”、“MOGUL-L”和“REGAL400R”（商品名，全部由Cabot公司制造）。炭黑的pH值优选为4.0以下。

【0161】作为用于调节电阻值的导电粒子的导电金属氧化物粒子是氧化锡、掺有锑的氧化锡、氧化锌、氧化锡和氧化铟锡（ITO）等的导电粒子。不具体限定导电剂，只要它是利用电子作为电荷载体的导电剂。粒子可以单独使用或两种或更多组合使用。不限定粒径，但是优选的是氧化锡、掺有锑的氧化锡和氧化锡和氧化铟锡，更优选的是氧化锡和掺有锑的氧化锡。

【0162】碳氟基或硅基树脂适合用于表面层。具体地说，表面层由氟改性丙烯酸聚合物形成。可以向表面层添加粒子。可以添加氧化铝或硅石的绝缘粒子，或者可以在充电部件的表面上形成凹部，以在与感光体摩擦接触时减轻负荷，由此提高充电部件和感光体二者的耐磨性。

【0163】上述充电部件的外径优选地在从8mm到16mm的范围。使用商用游标卡尺或激光外径测量装置来测量外径。

【0164】上述充电部件的显微硬度优选地在从45°到60°的范围。为了降低该硬度，想出了利用增大增塑剂的添加量的方法或者使用诸如硅橡胶的低硬度材料。

【0165】通过MD-1 HARDNESS METER（硬度计）（商品名，由KOBUNSHI KEIKI有限公司制造）测得的值用作充电部件的显微硬度。

【0166】在根据本示例性实施方式的图像形成装置中，描述了包括感光体（图像承载体）、充电装置（充电部件和清洁部件的单元）、显影装置和清洁刮板（清洁装置）的处理盒，但本发明不限于此结构。还可以使用这样的处理盒，其包括充电装置（充电部件和清洁部件的单元），并且还包括按照需要从感光体（图像承载体）、曝光装置、转印装置、显影装置和清洁刮板（清洁装置）中选择的一种装置。这些装置或部件可以不制成盒，而可以直接设置在图像形成装置中。

【0167】在根据本示例性实施方式的图像形成装置中，由充电部件和清洁部件的单元构成充电装置，即，充电部件用作清洁对象，但本发明不限于此结构。感光体（图像承载体）、转印装置（转印部件：转印辊）和中间转印部件（中间转印带）可以用作清洁对象。清洁对象和设置成接触清洁对象的清洁部件的单元可以直接设置在图像形成装置中，或者可以制成象处理盒一样的盒，并且可以设置在图像形成装置中。

【0168】根据本示例性实施方式的图像形成装置可以是已知的图像形成装置，例如，与中间转印方法等相对应的图像形成装置，而不限于前述结构。

【0169】示例

【0170】此后，参照示例来具体描述本发明，但本发明不限于这些示例。

【0171】【示例1】
【示例 1-1】

【清洁辊的制备】

将厚度为 0.2mm 的双面胶带附着到厚度为 2mm 的泡沫氨基甲酸乙酯片 (EPM-70, 商品名, 由 INOAC 公司制造), 并且将所得物切割成宽度为 6mm 且长度为 757mm 的条。将该条在施加张力以使片总长增加约 0% 到 5% 的同时以 63° 的径向角度缠绕在阶梯式金属轴 (该轴使用了外径为 Φ6mm, 总长度为 337mm, 支承部外径为 Φ4mm 并且长度为 6mm 的轴, 并且其中泡沫氨基甲酸乙酯的有效长度为 320mm) 上, 以形成以螺旋形态设置的弹性层, 由此制备清洁辊。

【充电辊的制备】

弹性层的形成

利用开启辊对下述混和物进行揉捏, 并将其涂敷到由 SUS416 形成的直径为 6mm 的导电支撑体表面上, 成厚度为 3mm 的圆柱状, 将所得物放入内径为 18.0mm 的圆柱状模型中, 在 170℃下硫化 30 分钟, 从模型中取出, 然后抛光, 由此获得圆柱状导电弹性层 A。

橡胶材料 : 100 重量份

环氧氯丙烷-环氧乙烷-烯丙基缩水甘油醚共聚橡胶 (epichlorohydrin-ethylene oxide-arylglycidylether copolymer rubber), GECHRON 3106 商品名, 由 ZEON 公司制造)

导电剂 (炭黑 ASAHI THERMAL, 商品名, 由 ASAHI CARBON 有限公司制造): 25 重量份

导电剂 (KETJEN BLACK EC, 商品名, 由 LION 公司制造): 8 份重量

离子导电剂 (高氯酸铵): 1 重量份

硫化剂 (硫磺) 200 MESH, 由 TSURUMI 化学工业有限公司制造):

1 重量份

硫化促进剂 (NOCCELER DM, 商品名, 由 OUCHI SHINKO 化学工业有限公司制造): 2.0 重量份

硫化促进剂 (NOCCELER TT, 商品名, 由 OUCHI SHINKO 化学工业有限公司制造): 0.5 重量份

表面层的形成

利用甲醇对通过用琢磨机使下述混和物分散所获得的分散液 A 进行稀释, 将所得物浸涂到导电弹性层 A 的表面上并且在 140℃下加热干燥 15 分钟, 以形成厚度为 4μm 的表面层, 由此获得导电辊。该导电辊用作充电辊。

聚合物: 100 重量份

（AMILAN CM8000, 商品名, 由 TORAY 公司制造, 共聚尼龙）。

导电剂: 30 重量份

（SN-100P, 商品名, 由 ISHIHARA SANGYO 有限公司制造, 含有锌的氧化锡）。

溶剂 (甲醇): 500 重量份

溶剂 (丁醇): 240 重量份

【示例 1-2】

清洁辊的制备
[0197] 将厚度为 0.2mm 的双面胶带附着到厚度为 2mm 的泡沫氨基甲酸乙酯片 (EPM-70; 商品名，由 INOC 公司制造)，并且将所得物切割成宽度为 6mm 且长度为 705mm 的条。将该条在施加张力以使片总长增加约 0%到 5%的同时以 61° 的缠绕角度缠绕在阶梯式金属轴（该轴使用了外径为 Φ6mm，总长度为 337mm，支承部外径为 Φ4mm 并且长度为 6mm 的轴。泡沫氨基甲酸乙酯的有效长度为 320mm）上，以形成以螺旋形状设置的弹性层，由此制备清洁辊。

[0198] （充电辊的制备）

[0199] 使用与示例 1-1 中所使用的产品相同的产品。

[0200] 【示例 1-3】

[0201] 清洁辊的制备

[0202] 将厚度为 0.2mm 的双面胶带附着到厚度为 2mm 的泡沫氨基甲酸乙酯片 (EPM-70; 商品名，由 INOC 公司制造)，并且将所得物切割成宽度为 10mm 且长度为 360mm 的条。将该条在施加张力以使片总长增加约 0%到 5%的同时以 58° 的缠绕角度缠绕在阶梯式金属轴（该轴使用了外径为 Φ6mm，总长度为 604mm，支承部外径为 Φ4mm 并且长度为 6mm 的轴，并且其中泡沫氨基甲酸乙酯的有效长度为 320mm）上，以形成以螺旋形状设置的弹性层，由此制备清洁辊。

[0203] （充电辊的制备）

[0204] 使用与示例 1-1 中所使用的产品相同的产品。

[0205] 【示例 1-4】

[0206] （清洁辊的制备）

[0207] 将厚度为 0.2mm 的双面胶带附着到厚度为 2mm 的泡沫氨基甲酸乙酯片 (EPM-70; 商品名，由 INOC 公司制造)，并且将所得物切割成宽度为 6mm 且长度为 418mm 的条。将该条在施加张力以使片总长增加约 0%到 5%的同时以 40° 的缠绕角度缠绕在阶梯式金属轴（该轴使用了外径为 Φ6mm，总长度为 337mm，支承部外径为 Φ4mm 并且长度为 6mm 的轴，并且其中泡沫氨基甲酸乙酯的有效长度为 320mm）上，以形成以螺旋形状设置的弹性层，由此制备清洁辊。

[0208] 充电辊的制备

[0209] 使用与示例 1-1 中使用的产品相同的产品。

[0210] 【示例 1-5】

[0211] 清洁辊的制备

[0212] 将厚度为 0.2mm 的双面胶带附着到厚度为 2mm 的泡沫氨基甲酸乙酯片 (EPM-70; 商品名，由 INOC 公司制造)，并且将所得物切割成宽度为 10mm 且长度为 353mm 的条。将该条以 25° 的缠绕角度缠绕在阶梯式金属轴（该轴使用了外径为 Φ6mm，总长度为 337mm，支承部外径为 Φ4mm 并且长度为 6mm 的轴，并且其中泡沫氨基甲酸乙酯的有效长度为 320mm）上，同时施加张力以使片总长增加约 0%到 5%，以形成以螺旋形状设置的弹性层，由此制备清洁辊。

[0213] 充电辊的制备

[0214] 使用与示例 1-1 中使用的产品相同的产品。

[0215] 【示例 1-6】
[0216] 清洁辊的制备
[0217] 将厚度为 0.2mm 的双面胶带附着到厚度为 2mm 的泡沫氨基甲酸乙酯（EPM-70，商品名，由 INOAC 公司制造）片，并且将所得物切割成宽度为 6mm 且长度为 353mm 的条。将该条在施加张力以使片总长增加约 0% 到 5% 的同时以 25° 的缠绕角度缠绕在阶梯式金属轴（该轴使用了外径为 Φ 6mm，总长度为 337mm，支承轴外径为 Φ 4mm 并且长度为 6mm 的轴，并且其中泡沫氨基甲酸乙酯的有效长度为 320mm），将厚度为 2.65mm 且宽度为 2mm 的附着有双面胶带的同样的泡沫氨基甲酸乙酯片的条在施加张力以使片总长增加约 0% 到 5% 的同时缠绕在缠绕条的两侧（宽度方向上的两个端部），以形成以螺旋形状设置的弹性层，由此制备清洁辊。
[0218] 充电辊的制备
[0219] 使用与示例 1-1 中所使用的产品相同的产品。
[0220]【示例 1-7】
[0221] 清洁辊的制备
[0222] 将厚度为 0.2mm 的双面胶带附着到厚度为 2mm 的泡沫氨基甲酸乙酯片（EPM-70，商品名，由 INOAC 公司制造），并且将所得物切割成宽度为 4mm 且长度为 353mm 的条。将该条在施加张力以使片总长增加约 0% 到 5% 的同时以 25° 的缠绕角度缠绕在阶梯式金属轴（该轴使用了外径为 Φ 6mm，总长度为 337mm，支承轴外径为 Φ 4mm 并且长度为 6mm 的轴，并且其中泡沫氨基甲酸乙酯的有效长度为 320mm），将厚度为 2.75mm 宽度为 2mm 附着有双面胶带的同样的泡沫氨基甲酸乙酯片的条在施加张力以使片总长增加约 0% 到 5% 的同时缠绕在缠绕条的两侧（宽度方向上的两个端部），以形成以螺旋形状设置的弹性层，由此制备清洁辊。
[0223] 充电辊的制备
[0224] 使用与示例 1-1 中所使用的产品相同的产品。
[0225]【示例 1-8】
[0226] 清洁辊的制备
[0227] 将厚度为 0.2mm 的双面胶带附着到厚度为 2mm 的泡沫氨基甲酸乙酯片（EPM-70，商品名，由 INOAC 公司制造），并且将所得物切割成宽度为 4mm 且长度为 353mm 的条。将该条在施加张力以使片总长增加约 0% 到 5% 的同时以 25° 的缠绕角度缠绕在阶梯式金属轴（该轴使用了外径为 Φ 6mm，总长度为 337mm，支承轴外径为 Φ 4mm 并且长度为 6mm 的轴，并且其中泡沫氨基甲酸乙酯的有效长度为 320mm），将厚度为 3.05mm 宽度为 2mm 附着有双面胶带的同样的泡沫氨基甲酸乙酯片的条在施加张力以使片总长增加约 0% 到 5% 的同时缠绕在缠绕条的两侧（宽度方向上的两个端部），以形成以螺旋形状设置的弹性层（材料），由此制备清洁辊。
[0228] 充电辊的制备
[0229] 使用与示例 1-1 中所使用的产品相同的产品。
[0230]【比较例 1-1】
[0231] 清洁辊的制备
[0232] 利用钻在泡沫氨基甲酸乙酯（EPM-70，商品名，由 INOAC 公司制造）块上形成 Φ 5mm 的孔，将外径为 6mm 涂敷有粘合剂的轴（该轴使用了外径为 Φ 6mm，总长度为 337mm，
支承部外径为 Φ4mm 并且长度为 6mm 的轴, 并且其中泡沫氨基甲酸乙酯的有效长度为 320mm) 插入该孔, 然后对所得物进行抛光, 由此制备外径为 10mm 的泡沫铝。切削该铝以形成螺旋宽度为 10mm 并且螺旋角度为 25° 的以螺旋形状设置的弹性层 (材料), 由此制备清洁铝。

【0233】 充电铝的制备
【0234】 使用与示例 1-1 中使用的产品相同的产品。
【0235】 【比较例 1-2】
【0236】 清洁铝的制备
【0237】 将厚度为 0.2mm 的双面胶带附着到厚度为 2mm 的泡沫氨基甲酸乙酯片 (EPM-70，商品名, 由 1NOAC 公司制造), 并且将所得物切割成宽度为 6mm 且长度为 360mm 的条。将该条在施加张力以使片总长增加至 0%到 5%的同时以 25°的缠绕角度缠绕在阶梯式金属轴 (该轴使用了外径为 Φ6mm, 厚度 337mm, 支承部外径为 Φ4mm 并且长度为 6mm 的轴, 并且其中泡沫氨基甲酸乙酯的长度为 320mm), 将厚度为 3.3mm 厚宽度为 2mm 的同样的泡沫氨基甲酸乙酯条在施加张力以使片总长增加至 0%到 5%的同时缠绕在缠绕条 (弹性层) 的两侧 (宽度方向上的两个端部), 以形成以螺旋形状设置的弹性层 (材料), 由此制备清洁铝。
【0238】 充电铝的制备
【0239】 使用与示例 1-1 中使用的产品相同的产品。
【0240】 评估
【0241】 对这些示例中制备的清洁铝的弹性层 (材料) 的特性进行检查并如表 1 中列表所示。
【0242】 将这些示例中制备的清洁铝和充电铝安装在彩色复印机 DOCUCENTRE-III C3300(商品名, 由富士施乐株式会社 (富士施乐株式会社) 制造) 上。
【0243】 执行了 300,000 张 A4 片材的打印测试。在图像质量评估中, 在执行 100,000 张、200,000 张和 300,000 张的打印测试之后, 基于以下标准确定由于充电铝的清洁不均匀导致的中间色调图像的浓度不均匀性 (清洁能力) 和由于清洁铝所导致的色斑的存在。评估结果在表 1 中示出。
【0244】 清洁能力评估标准
【0245】 A: 未发生图像浓度不均匀。
【0246】 B: 发生了轻微的图像浓度不均匀。
【0247】 C: 发生了图像浓度不均匀。
【0248】 色斑评估标准
【0249】 A: 图像中未发生色斑。
【0250】 C: 图像中发生了色斑。
从结果可以看出，示例 1-1 到 1-8 中制备的清洁辑在清洁能力上优于比较例1-1和1-2中制备的清洁辑。在示例1-1到1-8中制备的清洁辑中，没有由于抛光的清洁辑中
产生的抛光层而产生色斑。在这方面，这些示例也比在比较例 1-1 中制备的清洁辊更为优良。

【示例 2-1】

【示例 2-2】

【示例 2-3】

【示例 2-4】

【示例 2-1】

【示例 2-2】

【示例 2-1】

【示例 2-1】
Φ5mm的孔，将外径为6mm并且涂敷有粘合剂的轴插入该孔，然后对所得物进行切削，由此制备外径为10mm的泡沫棍。该棍用作清洁棍。

【0281】 充电棍的制备
【0282】 使用与示例1-1中使用的产品相同的产品。
【0283】 充电棍的制备
【0284】 清洁棍的制备
【0285】 利用钻在泡沫氨基甲酸乙酯（RSM-55，商品名，由INOAC公司制造）块上形成Φ5mm的孔，将外径为6mm并且涂敷有粘合剂的轴插入该孔，然后对所得物进行切削，由此制备外径为10mm的泡沫棍。该棍用作清洁棍。
【0286】 充电棍的制备
【0287】 使用与示例1-1中使用的产品相同的产品。
【0288】 充电棍的制备
【0289】 清洁棍的制备
【0290】 利用钻在泡沫氨基甲酸乙酯（SP80，商品名，由INOAC公司制造）块上形成Φ5mm的孔，将外径为6mm并且涂敷有粘合剂的轴插入该孔，然后对所得物进行切削，由此制备外径为10mm的泡沫棍。该棍用作清洁棍。
【0291】 充电棍的制备
【0292】 使用与示例1-1中使用的产品相同的产品。
【0293】 评估
【0294】 这些示例中制备的清洁棍的弹性层（材料）的组成如表2中列表所示。
【0295】 这些示例中制备的清洁棍和充电棍评估如下。结果在表2中示出。
【0296】 储存后的图像缺陷
【0297】 将这些示例中制备的清洁棍和充电棍安装在用于由富士ゼロックス社（富士施乐株式会社）制造的彩色复印机DOCUCENTRE-III C3300的处理盒上。在该处理盒置于温度30℃湿度75%的环境下10天，基于以下标准评估中间色色调图像质量中的浓度不均匀性。
【0298】 图像缺陷的评估标准
【0299】 A：未发生图像浓度不均匀。
【0300】 B：发生了图像浓度不均匀但是可接受的。
【0301】 C：发生了图像浓度不均匀性且是不可接受的。
【0302】 清洁能力和色斑
【0303】 将这些示例中制备的清洁棍和充电棍安装在彩色复印机DOCUCENTRE-III C3300（商品名，由富士ゼロックス社（富士施乐株式会社）制造）上。
【0304】 执行了300,000张A4片材的打印测试。在图像质量评估中，在执行了300,000张打印测试之后，基于以下标准确定由于充电棍的清洁不均匀导致的中间色色调图像的浓度不均匀性（清洁能力）和由于清洁棍磨损导致的色斑的存在。
【0305】 清洁能力评估标准
【0306】 A：未发生图像浓度不均匀。
【0307】 B：发生了轻微的图像浓度不均匀。
[0308] C: 发生了图像浓度不均匀。
[0309] 色斑评估标准
[0310] A: 未发生图像方面的色斑。
[0311] C: 发生了图像方面的色斑。
[0312] 湿热造成的劣化
[0313] 在这些示例中制造的清洁辊置于温度 70℃湿度 95% 的环境下 1 个月之后，将清洁
辊安装在处理盒上，并且打印中间色调图像，然后基于以下标准确定劣化程度。
[0314] 由湿热造成的劣化的评估标准
[0315] A: 未发生图像浓度不均匀。
[0316] B: 发生了轻微的图像浓度不均匀。
[0317] C: 发生了图像浓度不均匀。
从结果可以看出，示例2-1到2-4中制备的清洁剂在清洁能力上更优于比较例2-1到2-4中制备的清洁剂。
在示例 2-1 到 2-4 中制备的清洁辊中，没有由于抛光的清洁辊中产生的抛光屑而产生色斑。在这方面，这些示例也比在比较例 2-1 到 2-4 中制备的清洁辊更为优良。示例 2-1 中制备的清洁辊在储存之后的图像缺陷和由于湿热造成的劣化方面比较示例 2-2 到 2-4 中制备的清洁辊更优良。

【示例 3-1】

清洁辊的制备

将厚度为 0.2mm 的双面胶带附着到厚度为 2mm 的泡沫氨基甲酸乙酯 (EPM-70, 商品名，由 INOAC 公司制造）片，并且将所得物切割成图 7 所示形状的宽度为 6mm 长度为 757mm 的条。该条形状为 θ_c = 45°，θ_e1 = θ_e2 = 26°，Re = 6mm 并且 Re1-Re2 = 6mm（见图 7）。该条的中部的长度为 290mm，而第一端部和第二端部的长度分别为 53mm。

将该条在施加张力以使片总长增加约 0% 到 5% 的同时缠绕在阶梯式金属轴（该轴使用了外径为 Φ6mm，总长度为 337mm，支承部外径为 Φ4mm 并且长度为 6mm 的轴，并且其中泡沫氨基甲酸乙酯的有效长度为 320mm）上，以形成以螺旋形状设置的弹性层，由此制备清洁辊。

【示例 3-2】

清洁辊的制备

将厚度为 0.2mm 的双面胶带附着到厚度为 2mm 的泡沫氨基甲酸乙酯 (BF-150, 商品名，由 INOAC 公司制造）片，并且将所得物切割成宽度为 6mm 且长度为 757mm 的条（实线状条）。将该条施加张力以使展长增加约 0% 到 5% 的同时缠绕在阶梯式金属轴（该轴使用了外径为 Φ6mm，总长度为 337mm，支承部外径为 Φ4mm 并且长度为 6mm 的轴，并且其中泡沫氨基甲酸乙酯的有效长度为 320mm）上，其中在轴的轴向两端部处以 26° 的缠绕角度缠绕，而在轴的中央部以 45° 的缠绕角度缠绕，以形成以螺旋形状设置的弹性层，由此制备清洁辊。

【示例 3-3】

清洁辊的制备

使用与示例 1-1 中使用的产品相同的产品。

【示例 3-4】

清洁辊的制备

对这些示例中制备的清洁辊的弹性层的特性进行检查并如表 3 中列表所示。

将这些示例中制备的清洁辊和充电辊安装在彩色复印机 DOCUCENTRE-III C3300（商品名，由富士ゼロックス社（富士施乐株式会社）制造）上。

执行 300,000 张 A4 片材的打印测试。在图像质量评估中，在执行了 100,000 张、200,000 张和 300,000 张打印测试之后，基于以下标准确定由于充电辊的清洁不均匀导致的中间色调图像的浓度不均匀性（清洁能力）和由于清洁辊磨导致的色斑的存在。评估结果在表 4 中示出。

清洁能力评估标准

A : 未发生图像浓度不均匀。

B : 发生了轻微的图像浓度不均匀。
[0341] C:发生了图像浓度不均匀。
[0342] 色斑评估标准
[0343] A:未发生图像方面的色斑。
[0344] C:发生了图像方面的色斑。
[0345] 在温度 10℃和湿度 15% RH 的环境下，调节充电按键的放电电流，并测量不产生白斑的最小电流。结果在表 4 中示出。
[0346] 表 3 和表 4 示出了利用示例 1-1 中制备的清洁焊的评估结果。
<table>
<thead>
<tr>
<th>示例</th>
<th>3-1</th>
<th>3-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>增加宽度 (mm)</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>中心部分的宽度 (Th)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>附件的宽度 (Ta)</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>宽度 (mm)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>约定的宽度 (Ta)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>宽度 (mm)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>约定的宽度 (Ta)</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

[0348] 弹性层在轴的轴向两端部指的是弹性层从轴的轴向端部表面到轴向内到 50mm 的区域，而弹性层在轴的轴向中央部指的是介于弹性层在轴的轴向两端部之间的区域。
表 4

<table>
<thead>
<tr>
<th>清洁性能</th>
<th>打印 100,000 张之后</th>
<th>打印 200,000 张之后</th>
<th>打印 300,000 张之后</th>
<th>色斑</th>
<th>最小电流（mA）</th>
</tr>
</thead>
<tbody>
<tr>
<td>示例 1-1</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>2.40</td>
</tr>
<tr>
<td>示例 3-1</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>2.25</td>
</tr>
<tr>
<td>示例 3-2</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>2.28</td>
</tr>
</tbody>
</table>

从结果可以看出，示例 3-1 和 3-2 中的最小电流值低于示例 1-1 中的最小电流值。因此可以看出，抑制了电容在轴向上对感光体的接触压力（咬合压力）的不均匀性。

出于解释和说明的目的提供了本发明的示例性实施方式的前述描述。其目的不是穷举性的，也不是将本发明限制于所公开的精确形式。显然，许多修改和变型对于本领域的技术人员是明显的。为了最佳地解释本发明的原理及其实际应用选择并描述了这些示例性实施方式，由此使得本领域的其他技术人员能够针对各种实施方式并设想出适合具体应用的各种修改来理解本发明。旨在由所附权利要求书及其等同物来限定本发明的范围。
图 1
图2
图 5C
图6
图8
图 10