

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
31 January 2013 (31.01.2013)

(10) International Publication Number
WO 2013/016554 A2

- (51) International Patent Classification: **H02J 7/00** (2006.01) **B60W 20/00** (2006.01)
B60L 11/18 (2006.01) **B60W 10/26** (2006.01)
- (71) Applicant (for all designated States except US): **GO-GORO, INC.**; 2F., No. 276, Jianguo Road, Xindian Dist., New Taipei City, 231 (TW).
- (21) International Application Number: **PCT/US2012/048366**
- (72) Inventors; and
(75) Inventors/Applicants (for US only): **TAYLOR, Matthew, Whiting** [US/US]; 15135 Uplands Way Southeast, North Bend, Washington 98045 (US). **WU, Yi-Tsung**; 10F., No. 52, Ln. 447, Sec. 1, Wenhua 3rd Road, Linkou District, New Taipei City, 244 (TW). **LUKE, Hok-Sum, Horace** [US/US]; 3763 77th Place Southeast, Mercer Island, Washington 98040 (US). **HUNG, Huang-Cheng**; 7F., No. 33, Zuang 1st Street, Taoyuan County, Taoyuan City, 330 (TW).
- (22) International Filing Date: **26 July 2012 (26.07.2012)**
- (74) Agents: **BAUNACH, Jeremiah, J.** et al.; Seed Intellectual Property Law Group PLLC, Suite 5400, 701 Fifth Avenue, Seattle, Washington 98104-7064 (US).
- (25) Filing Language: **English**
- (76) Publication Language: **English**
- (30) Priority Data:
- | | | |
|------------|--------------------------------|----|
| 61/511,900 | 26 July 2011 (26.07.2011) | US |
| 61/511,887 | 26 July 2011 (26.07.2011) | US |
| 61/511,880 | 26 July 2011 (26.07.2011) | US |
| 61/534,772 | 14 September 2011 (14.09.2011) | US |
| 61/534,753 | 14 September 2011 (14.09.2011) | US |
| 61/534,761 | 14 September 2011 (14.09.2011) | US |
| 61/557,170 | 8 November 2011 (08.11.2011) | US |
| 61/581,566 | 29 December 2011 (29.12.2011) | US |
| 61/601,404 | 21 February 2012 (21.02.2012) | US |
| 61/601,949 | 22 February 2012 (22.02.2012) | US |
| 61/601,953 | 22 February 2012 (22.02.2012) | US |
| 61/647,936 | 16 May 2012 (16.05.2012) | US |
| 61/647,941 | 16 May 2012 (16.05.2012) | US |
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,

[Continued on next page]

(54) Title: APPARATUS, METHOD AND ARTICLE FOR PHYSICAL SECURITY OF POWER STORAGE DEVICES IN VEHICLES

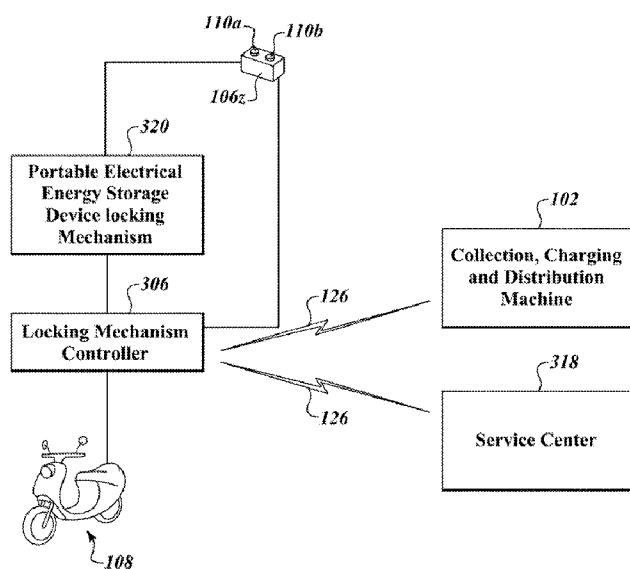


FIG. 3

(57) **Abstract:** A network of collection, charging and distribution machines collect, charge and distribute portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). To avoid theft and tampering of the portable electrical energy storage devices, by default, each portable electrical energy storage device is locked in and operably connected to the vehicle to which it provides power unless the vehicle comes within the vicinity of a collection, charging and distribution machine or other authorized external device such as that in a service center. Once within the vicinity of a collection, charging and distribution machine or other authorized external device a locking mechanism in the vehicle or within the portable electrical energy storage device unlocks and allows the portable electrical energy storage device to be exchanged or serviced.

TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report (Rule 48.2(g))

APPARATUS, METHOD AND ARTICLE FOR PHYSICAL SECURITY OF
POWER STORAGE DEVICES IN VEHICLES

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. 119(e) of the filing
5 date of U.S. provisional patent application Serial No. 61/511,900 entitled
“APPARATUS, METHOD AND ARTICLE FOR COLLECTION, CHARGING AND
DISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES” and filed
July 26, 2011 (Attorney Docket No. 170178.401P1), U.S. provisional patent application
Serial No. 61/647,936 entitled "APPARATUS, METHOD AND ARTICLE FOR
10 COLLECTION, CHARGING AND DISTRIBUTING POWER STORAGE DEVICES,
SUCH AS BATTERIES" and filed May 16, 2012 (Attorney Docket No.
170178.401P2), U.S. provisional patent application Serial No. 61/534,753 entitled
“APPARATUS, METHOD AND ARTICLE FOR REDISTRIBUTING POWER
STORAGE DEVICES, SUCH AS BATTERIES, BETWEEN COLLECTION,
15 CHARGING AND DISTRIBUTION MACHINES” and filed September 14, 2011
(Atty. Docket No. 170178.402P1), U.S. provisional patent application Serial No.
61/534,761 entitled “APPARATUS, METHOD AND ARTICLE FOR
AUTHENTICATION, SECURITY AND CONTROL OF POWER STORAGE
DEVICES SUCH AS BATTERIES” and filed September 14, 2011 (Attorney Docket
20 No. 170178.403P1), U.S. provisional patent application Serial No. 61/534,772 entitled
“APPARATUS, METHOD AND ARTICLE FOR AUTHENTICATION, SECURITY
AND CONTROL OF POWER STORAGE DEVICES, SUCH AS BATTERIES,
BASED ON USER PROFILES” and filed September 14, 2011 (Attorney Docket No.
170178.404P1), U.S. provisional patent application Serial No. 61/511,887 entitled
25 “THERMAL MANAGEMENT OF COMPONENTS IN ELECTRIC MOTOR DRIVE
VEHICLES” and filed July 26, 2011 (Atty. Docket No. 170178.406P1), U.S.
provisional patent application Serial No. 61/647,941 entitled “THERMAL
MANAGEMENT OF COMPONENTS IN ELECTRIC MOTOR DRIVE VEHICLES”
and filed May 16, 2012 (Atty. Docket No. 170178.406P2), U.S. provisional patent
30 application Serial No. 61/511,880 entitled “DYNAMICALLY LIMITING VEHICLE

- OPERATION FOR BEST EFFORT ECONOMY” and filed July 26, 2011 (Atty. Docket No. 170178.407P1), U.S. provisional patent application Serial No. 61/557,170 entitled “APPARATUS, METHOD, AND ARTICLE FOR PHYSICAL SECURITY OF POWER STORAGE DEVICES IN VEHICLES” and filed November 8, 2011 (Atty. Docket No. 170178.408P1), U.S. provisional patent application Serial No. 61/581,566 entitled “APPARATUS, METHOD AND ARTICLE FOR A POWER STORAGE DEVICE COMPARTMENT” and filed December 29, 2011 (Atty. Docket No. 170178.412P1), U.S. provisional patent application Serial No. 61/601,404 entitled “APPARATUS, METHOD AND ARTICLE FOR PROVIDING VEHICLE DIAGNOSTIC DATA” and filed February 21, 2012 (Atty. Docket No. 170178.417P1), U.S. provisional patent application Serial No. 61/601,949 entitled “APPARATUS, METHOD AND ARTICLE FOR PROVIDING LOCATIONS OF POWER STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBUTION MACHINES” and filed February 22, 2012 (Atty. Docket No. 170178.418P1), and U.S. provisional patent application Serial No. 61/601,953 entitled “APPARATUS, METHOD AND ARTICLE FOR PROVIDING INFORMATION REGARDING AVAILABILITY OF POWER STORAGE DEVICES AT A POWER STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBUTION MACHINE” and filed February 22, 2012 (Atty. Docket No. 170178.419P1).
- 20 BACKGROUND

Technical Field

The present disclosure generally relates to the physical security of power storage devices, and particularly to the physical security of power storage devices in vehicles.

25 Description of the Related Art

There are a wide variety of uses or applications for portable electrical power storage devices.

One such application is in the field of transportation. Hybrid and all-electric vehicles are becoming increasingly common. Such vehicles may achieve a number of advantages over traditional internal combustion engine vehicles. For example, hybrid or electrical vehicles may achieve higher fuel economy and may have

5 little or even zero tail pipe pollution. In particular, all-electric vehicles may not only have zero tail pipe pollution, but may be associated with lower overall pollution. For example, electrical power may be generated from renewable sources (e.g., solar, hydro). Also for example, electrical power may be generated at generation plants that produce no air pollution (e.g., nuclear plants). Also for example, electrical power may be

10 generated at generation plants that burn relatively “clean burning” fuels (e.g., natural gas), which have higher efficiency than internal combustion engines, and/or which employ pollution control or removal systems (e.g., industrial air scrubbers) which are too large, costly or expensive for use with individual vehicles.

Personal transportation vehicles such as combustion engine powered

15 scooters and/or motorbikes are ubiquitous in many places, for example in the many large cities of Asia. Such scooters and/or motorbikes tend to be relatively inexpensive, particular as compared to automobiles, cars or trucks. Cities with high numbers of combustion engine scooters and/or motorbikes also tend to be very densely populated and suffer from high levels of air pollution. When new, many combustion engine

20 scooters and/or motorbikes are equipped with a relatively low polluting source of personal transportation. For instance, such scooters and/or motorbikes may have higher mileage ratings than larger vehicles. Some scooters and/or motorbikes may even be equipped with basic pollution control equipment (e.g., catalytic converter).

Unfortunately, factory specified levels of emission are quickly exceeded as the scooters

25 and/or motorbikes are used and either not maintained and/or as the scooters and/or motorbikes are modified, for example by intentional or unintentional removal of catalytic converters. Often owners or operators of scooters and/or motorbikes lack the financial resources or the motivation to maintain their vehicles.

It is known that air pollution has a negative effect on human health,

30 being associated with causing or exacerbating various diseases (e.g., various reports tie air pollution to emphysema, asthma, pneumonia, cystic fibrosis as well as various

cardiovascular diseases). Such diseases take large numbers of lives and severely reduce the quality of life of countless others.

BRIEF SUMMARY

A portable electrical energy storage device security system for a portable electrical energy storage device may be summarized as including at least one controller; and at least one communications module coupled to the at least one controller, wherein the at least one controller is configured to: receive information regarding authentication of an external device via the communications module; and in response to receiving the information regarding authentication, unlock a portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to a vehicle.

The at least one controller may be configured to make a determination regarding unlocking the portable electrical energy storage device locking mechanism based on the received information regarding authentication. The least one controller may be further configured to: generate a challenge key to send to the external device; send the challenge key to the external device; receive a response from the external device to the sending of the challenge key, the response including a response code as part of the information regarding authentication; generate an output from a secret algorithm using a secret key and the response code as input, the secret algorithm and the secret key configured to be known only to the portable electrical energy storage device security system and one or more authorized external devices; and comparing the output from the secret algorithm to the response code, and wherein the at least one controller is configured to make the determination regarding unlocking the portable electrical energy storage device locking mechanism based at least on the comparison. The configured portable electrical energy storage device security system may be coupled to the vehicle or may be integrated as part of the portable electrical energy storage device. The external device may be a portable electrical energy storage device collection and charging machine. The external device may be a device located at a vehicle service center. The at least one communications module may be configured to receive the information regarding authentication of the external device via a wireless signal and

communicate the information to the at least one controller to unlock the portable electrical energy storage device locking mechanism in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle. The portable electrical energy storage device security system may further

5 include the portable electrical energy storage device locking mechanism coupled to the at least one controller; and a switch coupled to the portable electrical energy storage device locking mechanism and the at least one controller, the switch configured to be activated by a control signal generated by the at least one controller of the configured portable electrical energy storage device security system, wherein the controller is

10 configured to: send the signal in a manner to unlock the portable electrical energy storage device locking mechanism in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, if the external device is authenticated based on the information regarding authentication; and send the signal in a manner to lock the portable electrical energy storage device locking

15 mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device can no longer be received via the communications module. The at least one controller may be configured to receive the information regarding authentication via a wireless signal

20 transmitted from the from the external device. In some embodiments, the wireless signal transmitted from the external device is not detectable outside a specified maximum range from the portable electrical energy storage device security system communications module. The wireless signal may include a rolling code for the authentication of the external device by the at least one controller. The portable

25 electrical energy storage device security system may further include a power interface coupled to the at least one controller and configured to be coupled to the portable electrical energy storage device and the electrical energy storage device locking mechanism to provide power to the electrical energy storage device locking mechanism. The power interface may be configured to be coupled to an auxiliary power source

30 other than the portable electrical energy storage device to provide power to the electrical energy storage device locking mechanism should the portable electrical

energy storage device be not able to provide enough power to operate the electrical energy storage device locking mechanism.

A method of operating a portable electrical energy storage device security system may be summarized as including receiving, by the portable electrical

- 5 energy storage device security system, information regarding authentication of an external device; and making a determination, by the portable electrical energy storage device security system, regarding unlocking a portable electrical energy storage device locking mechanism to allow a portable electrical energy storage device to be removed from being operably connected to a vehicle, based on the information regarding
- 10 authentication.

The receiving the information may include receiving the information regarding authentication via a wireless signal transmitted from a portable electrical energy storage device collection, charging and distribution machine, and wherein the wireless signal received from the collection, charging and distribution machine may not

- 15 be detectable outside a specified maximum range from a communications module of the portable electrical energy storage device security system. The method may further include sending a signal from a controller of the portable electrical energy storage device security system in a manner to unlock the portable electrical energy storage device locking mechanism in order to allow the portable electrical energy storage
- 20 device to be removed from being operably connected to the vehicle, if the external device is authenticated based on the information regarding authentication; and sending a signal from the controller of the portable electrical energy storage device security system in a manner to lock the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being
- 25 removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device can no longer continue to be received via a communications module of the portable electrical energy storage device. The portable electrical energy storage device security system may be integrated as part of the portable electrical energy storage device. The portable
- 30 electrical energy storage device security system may be coupled to the vehicle. The making the determination may include comparing a code from the received information

regarding authentication to one or more codes associated with the portable electrical energy storage device security system and may further include unlocking the portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle if

5 the code from the received information regarding authentication matches one of the one or more codes associated with the portable electrical energy storage device; and locking the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding

10 authentication of the external device can no longer be received via a communications module of the portable electrical energy storage device or if, after a defined period of time, a code from the received information can no longer be matched to at least one or one of one or more codes currently associated with the portable electrical energy storage device security system. The method may further include generating a challenge

15 key to send to the external device; sending the challenge key to the external device; receiving a response from the external device to the sending of the challenge key, the response including a response code as part of the information regarding authentication; generating an output from a secret algorithm using a secret key and the response code as input, the secret algorithm and the secret key configured to be known only to the

20 portable electrical energy storage device security system and one or more authorized external devices; and comparing the output from the secret algorithm to the response code, and wherein making the determination regarding unlocking the portable electrical energy storage device locking mechanism is based at least on the comparison.

A portable electrical energy storage device may be summarized as

25 including a battery cell; and a security system operably coupled to the cell, the security system configured to allow the portable electrical energy storage device to be removed from being operably connected to a vehicle, based on information received wirelessly regarding authentication of an external device.

The security system may include at least one controller; and at least one

30 communications module coupled to the at least one controller, wherein the at least one controller is configured to: receive information regarding authentication of an external

device via the communications module; and make a determination regarding unlocking a portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, based on the information regarding authentication. The security system may

5 further include the portable electrical energy storage device locking mechanism coupled to the at least one controller; and a power interface that is configured to be coupled to the at least one controller and to an auxiliary power source other than the portable electrical energy storage device to provide power to the electrical energy storage device locking mechanism should the portable electrical energy storage device be not able to

10 provide enough power to operate the electrical energy storage device locking mechanism.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn, are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.

20 Figure 1 is a schematic view of a collection, charging and distribution machine along with a number of electrical power storage devices according to one non-limiting illustrated embodiment, along with an electric scooter or motorbike, and an electrical service provided via an electrical grid.

Figure 2 is a block diagram of the collection, charging and distribution machine of Figure 1, according to one non-limiting illustrated embodiment.

Figure 3 is a block diagram of a portable electrical energy storage device physical security system for the portable electrical energy storage device of the scooter or motorbike of Figure 1 in wireless communication in one instance with the collection, charging and distribution machine of Figure 1 and in another instance with a scooter or 30 motorbike service center, according to one non-limiting illustrated embodiment.

Figure 4 is a schematic view of the locking mechanism controller of Figure 3, according to one non-limiting illustrated embodiment.

Figure 5 is a cross-sectional elevation view of the portable electrical energy storage device of Figure 1 and Figure 3 coupled to the portable electrical energy storage device physical security system of Figure 3 and locked in an operable position within the scooter of Figure 1 and Figure 3, according to one non-limiting illustrated embodiment.

Figure 6 is a cross-sectional elevation view of an alternative embodiment of the portable electrical energy storage device of Figure 1 and Figure 3 in which the portable electrical energy storage device physical security system of Figure 3 is integrated with and part of the portable electrical energy storage device of Figure 1 and Figure 3, according to one non-limiting illustrated alternative embodiment.

Figure 7 is a flow diagram showing a high level method of operating the locking mechanism controller of Figures 3-6, according to one non-limiting illustrated embodiment.

Figure 8 is a flow diagram showing a low level method of operating the locking mechanism controller of Figures 3-6, according to one non-limiting illustrated embodiment, including accepting the portable electrical energy storage device charge, useful in the method of Figure 7.

Figure 9 is a flow diagram showing a low level method of operating the locking mechanism controller of Figures 3-6, according to one non-limiting illustrated embodiment, including sending a signal to lock and unlock the portable electrical energy storage device locking mechanism, useful in the method of Figure 7 and Figure 8.

25 DETAILED DESCRIPTION

In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments. However, one skilled in the relevant art will recognize that embodiments may be practiced without one or more of these specific details, or with other methods, components, materials, etc.

30 In other instances, well-known structures associated with vending apparatus, batteries,

locking mechanisms, wireless technologies, supercapacitors or ultracapacitors, power converters including but not limited to transformers, rectifiers, DC/DC power converters, switch mode power converters, controllers, and communications systems and structures and networks have not been shown or described in detail to avoid 5 unnecessarily obscuring descriptions of the embodiments.

Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense that is as “including, but not limited to.”

10 Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same 15 embodiment.

The use of ordinals such as first, second and third does not necessarily imply a ranked sense of order, but rather may only distinguish between multiple instances of an act or structure.

Reference to portable electrical power storage device means any device 20 capable of storing electrical power and releasing stored electrical power including but not limited to batteries, supercapacitors or ultracapacitors. Reference to batteries means chemical storage cell or cells, for instance rechargeable or secondary battery cells including but not limited to nickel cadmium alloy or lithium ion battery cells.

The headings and Abstract of the Disclosure provided herein are for 25 convenience only and do not interpret the scope or meaning of the embodiments.

Figure 1 shows an environment 100 including a collection, charging and distribution machine 102, according to one illustrated embodiment.

The collection, charging and distribution machine 102 may take the form 30 of a vending machine or kiosk. The collection, charging and distribution machine 102 has a plurality of receivers, compartments or receptacles 104a, 104b-104n (only three called out in Figure 1, collectively 104) to removably receive portable electrical energy

storage devices (e.g., batteries, supercapacitors or ultracapacitors) 106a-106n (collectively 106) for collection, charging and distribution. As illustrated in Figure 1, some of the receivers 104 are empty, while other receivers 104 hold portable electrical energy storage devices 106. While Figure 1 shows a single portable electrical energy 5 storage device 106 per receiver 104, in some embodiments each receiver 104 may hold two or even more portable electrical energy storage devices 106. For example, each of the receivers 104 may be sufficiently deep to receive three portable electrical energy storage devices 106. Thus, for example, the collection, charging and distribution machine 102 illustrated in Figure 1 may have a capacity capable of simultaneously 10 holding 40, 80 or 120 portable electrical energy storage devices 106.

The portable electrical energy storage devices 106 may take a variety of forms, for example batteries (e.g., array of battery cells) or supercapacitors or ultracapacitors (e.g., array of ultracapacitor cells). For example, the portable electrical energy storage device 106z may take the form of rechargeable batteries (*i.e.*, secondary 15 cells or batteries). The portable electrical energy storage device 106z may, for instance, be sized to physically fit, and electrically power, personal transportation vehicles, such as all-electric scooters or motorbikes 108. As previously noted, combustion engine scooters and motorbikes are common in many large cities, for example in Asia, Europe and the Middle East. The ability to conveniently access charged batteries throughout a 20 city or region may facilitate the use of all-electric scooters and motorbikes 108 in place of combustion engine scooters and motorbikes, thereby alleviating air pollution, as well as reducing noise.

The portable electrical energy storage devices 106 (only visible for portable electrical energy storage device 106z) may include a number of electrical 25 terminals 110a, 110b (two illustrated, collectively 110), accessible from an exterior of the portable electrical energy storage device 106z. The electrical terminals 110 allow charge to be delivered from the portable electrical energy storage device 106z, as well as allow charge to be delivered to the portable electrical energy storage device 106z for charging or recharging the same. While illustrated in Figure 1 as posts, the electrical 30 terminals 110 may take any other form which is accessible from an exterior of the portable electrical energy storage device 106z, including electrical terminals positioned

within slots in a battery housing. As the portable electrical energy storage devices 106 may be lent, leased, and/or rented out to the public, it is desirable to control how and in what circumstances the portable electrical energy storage devices 106 may be removed from being operably connected to the vehicle for which they provide power. This

5 control of the physical security of the portable electrical energy storage devices 106 helps to prevent theft and/or misuse of the portable electrical energy storage devices 106. Systems and methods for physical security of the portable electrical energy storage devices 106, including a security system for controlling removal of the portable electrical energy storage devices 106 from a vehicle, are described in more detail below

10 with reference to Figures 3-9, and are useful in the overall system for collection, charging and distribution of the portable electrical energy storage devices 106 described herein.

The collection, charging and distribution machine 102 is positioned at some location 112 at which the collection, charging and distribution machine 102 is

15 conveniently and easily accessible by various end users. The location may take any of a large variety of forms, for example, a retail environment such as a convenience store, supermarket, gas or petrol station, or service or service center. Alternatively, the collection, charging and distribution machine 102 may stand alone at a location 112 not associated with an existing retail or other business, for example in public parks or other

20 public places. Thus, for example, collection, charging and distribution machines 102 may be located at each store of a chain of convenience stores throughout a city or region. Such may advantageously rely on the fact that convenience stores are often sited or distributed based on convenience to the target population or demographic. Such may advantageously rely on pre-existing leases on storefronts or other retail

25 locations to allow an extensive network of collection, charging and distribution machines 102 to be quickly developed in a city or region. Quickly achieving a large network that provides for physical security of the of portable electrical energy storage devices 106 while in the all-electric scooters or motorbikes 108 enhances the ability to depend on such a system and likely commercial success of such an effort.

30 The location 112 may include an electrical service 114 to receive electrical power from a generating station (not shown) for example via a grid 116. The

electrical service 114 may, for example, include one or more of an electrical service meter 114a, a circuit panel (e.g., circuit breaker panel or fuse box) 114b, wiring 114c, and electrical outlet 114d. Where the location 112 is an existing retail or convenience store, the electrical service 114 may be an existing electrical service, so may be

5 somewhat limited in rating (e.g., 120 volts, 240 volts, 220 volts, 230 volts, 15 amps).

Optionally, the collection, charging and distribution machine 102 may include or be coupled to a source of renewable electrical power. For example, where installed in an outside location the collection, charging and distribution machine 102 may include an array of photovoltaic (PV) cells 118 to produce electrical power from

10 solar insolation. Alternatively, the collection, charging and distribution machine 102 may be electrically coupled to a microturbine (e.g., wind turbine) or PV array positioned elsewhere at the location 112, for instance on a roof top or mounted at a top of a pole (not shown).

The collection, charging and distribution machine 102 may be

15 communicatively coupled to one or more remotely located computer systems, such as back end or back office systems (only one shown) 120. The back end or back office systems 120 may collect data from and/or control a plurality of collection, charging and distribution machines 102 distributed about an area, such as a city. In some embodiments, the back end or back office systems 120 may collect data from and/or

20 control a plurality of the portable electrical energy storage devices 106, such as by generating, tracking, sending and/or receiving one or more codes included in a wireless signal 126 sent by the collection, charging and distribution machine 102 to an all-electric scooter or motorbike 108 or other vehicle. The sending and/or receiving one or more codes enables access to the portable electrical energy storage devices 106 for

25 removal from a respective all-electric scooter or motorbike 108 while the all-electric scooter or motorbike 108 is in the vicinity of the collection, charging and distribution machine 102. The communications between the back end or back office systems 120 and the collection, charging and distribution machine 102 may occur over one or more communications channels including one or more networks 122, or non-networked

30 communications channels. Communications may be over one or more wired communications channels (e.g., twisted pair wiring, optical fiber), wireless

communications channels (*e.g.*, radio, microwave, satellite, 801.11 compliant). Networked communications channels may include one or more local area networks (LANs), wide area networks (WANs), extranets, intranets, or the Internet including the World Wide Web portion of the Internet.

5 The collection, charging and distribution machine 102 may include a user interface 124. The user interface may include a variety of input/output (I/O) devices to allow an end user to interact with the collection, charging and distribution machine 102. Various I/O devices are called out and described in reference to Figure 2, which follows.

10 Figure 2 shows the collection, charging and distribution machine 102 of Figure 1, according to one illustrated embodiment.

The collection, charging and distribution machine 102 includes a control subsystem 202, a charging subsystem 204, a communications subsystem 206, and a user interface subsystem 208.

15 The control subsystem 202 includes a controller 210, for example a microprocessor, microcontroller, programmable logic controller (PLC), programmable gate array (PGA), application specific integrated circuit (ASIC) or another controller capable of receiving signals from various sensors, performing logical operations, and sending signals to various components. Typically, the controller 210 may take the form 20 of a microprocessor (*e.g.*, INTEL, AMD, ATOM). The control subsystem 202 may also include one or more non-transitory processor- or computer-readable storage media, for example read only memory (ROM) 212, random access memory (RAM) 214, and data store 216 (*e.g.*, solid-state storage media such as flash memory or EEPROM, or spinning storage media such as hard disk). The non-transitory processor- or computer- 25 readable storage media 212, 214, 216 may be in addition to any non-transitory storage medium (*e.g.*, registers) which is part of the controller 210. The control subsystem 202 may include one or more buses 218 (only one illustrated) coupling various components together, for example one or more power buses, instruction buses, data buses, etc.

As illustrated, the ROM 212, or some other one of the non-transitory 30 processor- or computer-readable storage media 212, 214, 216, stores instructions and/or data or values for variables or parameters. The sets of data may take a variety of forms,

for example a lookup table, a set of records in a database, etc. The instructions and sets of data or values are executable by the controller 110. Execution of the instructions and sets of data or values causes the controller 110 to perform specific acts to cause the collection, charging and distribution machine 102 to collect, charge, and distribute

5 portable energy storage devices, and to send one or more signals that enable access to the portable electrical energy storage devices 106 for removal from the all-electric scooters or motorbikes 108 while the all-electric scooters or motorbikes 108 are in the vicinity of a collection, charging and distribution machine 102 . Specific operation of the collection, charging and distribution machine 102 is described herein and also

10 below with reference to Figure 3 and various flow diagrams (Figures 7-9) in the context of being an external device which is authenticated in order to allow the portable electrical energy storage device 106 to be removed from being operably connected to the all-electric scooter or motorbike 108.

The controller 210 may use RAM 214 in a conventional fashion, for

15 volatile storage of instructions, data, etc. The controller 210 may use data store 216 to log or retain information, for example one or more codes that enable access to the portable electrical energy storage devices 106 for removal from the all-electric scooters or motorbikes 108 while the all-electric scooters or motorbikes 108 are in the vicinity of the collection, charging and distribution machine 102, and/or information related to

20 operation of the collection, charging and distribution machine 102 itself. The instructions are executable by the controller 210 to control operation of the collection, charging and distribution machine 102 in response to end user or operator input, and using data or values for the variables or parameters.

The control subsystem 202 receives signals from various sensors and/or

25 other components of the collection, charging and distribution machine 102 which include information that characterizes or is indicative of operation, status, or condition of such other components. Sensors are represented in Figure 2 by the letter S appearing in a circle along with appropriate subscript letters.

For example, one or more position sensors $S_{P1}-S_{PN}$ may detect the

30 presence or absence of a portable electrical power storage device 106 at each of the receivers 104. The position sensors $S_{P1}-S_{PN}$ may take a variety of forms. For example,

the position sensors S_{P1} - S_{PN} may take the form of mechanical switches that are closed, or alternatively opened, in response to contact with a portion of a respective portable electrical power storage device 106 when the portable electrical power storage device 106 is inserted into the receiver 104. Also for example, the position sensors S_{P1} - S_{PN}

5 may take the form of optical switches (*i.e.*, optical source and receiver) that are closed, or alternatively opened, in response to contact with a portion of a respective portable electrical power storage device 106 when the portable electrical power storage device 106 is inserted into the receiver 104. Also for example, the position sensors S_{P1} - S_{PN} may take the form of electrical sensors or switches that are closed, or alternatively

10 opened, in response to detecting a closed circuit condition created by contact with the terminals 110 of a respective portable electrical power storage device 106 when the portable electrical power storage device 106 is inserted into the receiver 104, or an open circuit condition that results from the lack of a respective portable electrical power storage device 106 in the receiver 104. These examples are intended to be non-limiting,

15 and it is noted that any other structures and devices for detecting the presence/absence or even the insertion of the portable electrical power storage devices 106 into receivers may be employed.

For example, one or more charge sensors S_{C1} - S_{CN} may detect charge of the portable electrical power storage devices 106 at each of the receivers 104. Charge

20 sensors S_{C1} - S_{CN} may detect the amount of charge stored by the portable electrical power storage devices 106. Charge sensors S_{C1} - S_{CN} may additionally detect an amount of charge and/or rate of charging being supplied to ones of the portable electrical power storage devices 106 at each of the receivers 104. Such may allow assessment of current (*i.e.*, temporal) charge condition or status of each portable electrical power storage

25 device 106, as well as allow feedback control over charging of same, including control over rate of charging. Charge sensors S_{C1} - S_{CN} may include any variety of current and/or voltage sensors.

For example, one or more charge sensors S_{T1} (only one shown) may detect or sense a temperature at the receivers 104 or in the ambient environment.

30 The control subsystem 202 provides signals to various actuators and/or other components responsive to control signals, which signals include information that

characterizes or is indicative of an operation the component is to perform or a state or condition into which the components should enter. Control signals, actuators or other components responsive to control signals are represented in Figure 2 by the letter C appearing in a circle along with appropriate subscript letters.

5 For example, one or more engine control signals C_{A1} - C_{AN} may affect the operation of one or more actuators 220 (only one illustrated). For instance, a control signal C_{A1} may cause movement of an actuator 220 between a first and a second position or change a magnetic field produced by the actuator 220. The actuator 220 may take any of a variety of forms, including but not limited to a solenoid, an electric
10 motor such as a stepper motor, or an electromagnet. The actuator 220 may be coupled to operate a latch, lock or other retainer mechanism 222. The latch, lock or other retainer mechanism 222 may selectively secure or retain one or more portable electrical power storage devices 106 (Figure 1) in the receiver 104 (Figure 1). For instance, the latch, lock or other retainer mechanism 222 may physically couple to a complimentary structure that is part of a housing of the portable electrical power storage devices 106
15 (Figure 1). Alternatively, the latch, lock or other retainer mechanism 222 may magnetically couple to a complimentary structure that is part of a housing of the portable electrical power storage devices 106 (Figure 1). Also for instance, the latch, lock or other retainer mechanism 222 may open a receiver 104 (Figure 1), or may allow
20 a receiver 104 to be opened, to receive a partially or fully discharged portable electrical power storage device 106 for charging. For example, the actuator may open and/or close a door to the receiver 104 (Figure 1), to selectively provide access to a portable electrical power storage device 106 (Figure 1) received therein. Also for example, the actuator may open and/or close a latch or lock, allowing an end user to open and/or
25 close a door to the receiver 104 (Figure 1), to selectively provide access to a portable electrical power storage device 106 (Figure 1) received therein.

The control subsystem 202 may include one or more ports 224a to provide control signals to one or more ports 224b of the charging subsystem 204. The ports 224a, 224b may provide bi-directional communications. The control subsystem
30 202 may include one or more ports 226a to provide control signals to one or more ports

226b of the user interface subsystem 208. The ports 226a, 226b may provide bi-directional communications.

The charging subsystem 204 includes various electrical and electronic components to charge portable electrical power storage devices 106 when positioned or 5 received in the receivers 104. For example, the charging subsystem 204 may include one or more power buses or power bus bars, relays, contactors or other switches (e.g., insulated gate bipolar transistors or IGBTs, metal oxide semiconductor transistors or MOSFETs), rectifier bridge(s), current sensors, ground fault circuitry, etc. The electrical power is supplied via contacts that can take any of a variety of forms, for 10 instance terminals, leads, posts, etc. The contacts allow electrical coupling of various components. Some possible implementations are illustrated in Figure 2. Such is not intended to be exhaustive. Additional components may be employed while other components may be omitted.

The illustrated charging subsystem 204 includes a first power converter 15 230 that receives electrical power from the electrical service 114 (Figure 1) via a line or cord 232. The power will typically be in the form of single two- or three-phase AC electrical power. As such, the first power converter 230 may need to convert and otherwise condition the electrical power received via the electrical services 114 (Figure 1), for example for rectifying an AC waveform to DC, transforming voltage, current, 20 and phase, as well as reducing transients and noise. Thus, the first power converter 230 may include a transformer 234, rectifier 236, DC/DC power converter 238, and filter(s) 240.

The transformer 234 may take the form of any variety of commercially available transformers with suitable ratings for handling the power received via the 25 electrical service 114 (Figure 1). Some embodiments may employ multiple transformers. The transformer 234 may advantageously provide galvanic isolation between the components of the collection, charging and distribution machine 102 and the grid 116 (Figure 1). The rectifier 236 may take any of variety of forms, for example a full bridge diode rectifier or a switch mode rectifier. The rectifier 236 may be 30 operated to transform AC electrical power to DC electrical power. The DC/DC power converter 238 may take any of a large variety of forms. For example, DC/DC power

converter 238 may take the form a switch mode DC/DC power converter, for instance employing IGBTs or MOSFETs in a half or full bridge configuration, and may include one or more inductors. The DC/DC power converter 238 may have any number of topologies including a boost converter, buck converter, synchronous buck converter, 5 buck-boost converter or fly-back converter. The filter(s) 240 may include one or more capacitors, resistors, Zener diodes or other elements to suppress voltage spikes, or to remove or reduce transients and/or noise.

The illustrated charging subsystem 204 may also receive electrical power from a renewable power source, for example the PV array 118 (Figure 1). Such 10 may be converted or conditioned by the first power converter 230, for example being supplied directly to the DC/DC power converter 238, bypassing the transformer 236 and/or rectifier 236. Alternatively, the illustrated charging subsystem 204 may include a dedicated power converter to convert or otherwise condition such electrical power.

The illustrated charging subsystem 204 may optionally include second 15 power converter 242 that receives electrical power from one or more portable electrical power storage devices 106 (Figure 1) via one or more lines 244, for charging other ones of the portable electrical power storage devices 106. As such, the second power converter 242 may need to convert and/or otherwise condition the electrical power received from portable electrical power storage devices 106, for example optionally 20 transforming voltage or current, as well as reducing transients and noise. Thus, the second power converter 242 may optionally include a DC/DC power converter 246 and/or filter(s) 248. Various types of DC/DC power converters and filters are discussed above.

The illustrated charging subsystem 204 includes a plurality of switches 25 250 responsive to the control signals delivered via ports 224a, 224b from the control subsystem 202. The switches may be operable to selectively couple a first number or set of portable electrical power storage devices 106 to be charged from electrical power supplied by both the electrical service via the first power converter 230 and from electrical power supplied by a second number or set of portable electrical power storage 30 devices 106. The first number or set of portable electrical power storage devices 106 may include a single portable electrical power storage device 106, two, or even more

portable electrical power storage devices 106. The second number or set of portable electrical power storage devices 106 may include a single portable electrical power storage device 106, two, or even more portable electrical power storage devices 106.

The portable electrical power storage devices 106 are represented in Figure 2 as loads

5 L_1, L_2-L_N .

The communications subsystem 206 may additionally include one or more communications modules or components which facilitate communications with the various components of a back end or back office system 120 (Figure 1), various components of the all-electric scooter or motorbike 108, and/or various components of 10 the portable electrical power storage devices 106. The communications subsystem 206 may, for example, include one or more modems 252 and/or one or more Ethernet cards or other types of communications cards or components 254. A port 256a of the control subsystem 202 may communicatively couple the control subsystem 202 with a port 256b of the communications subsystem 206. The communications subsystem 206 may 15 provide wired and/or wireless communications. For example, the communications subsystem 206 may provide components enabling short range (e.g., via Bluetooth, near field communication (NFC), radio frequency identification (RFID) components and protocols) or longer range wireless communications (e.g., over a wireless LAN, satellite, or cellular network) with various other devices external to the collection, 20 charging and distribution machine 102, including various components of the all-electric scooter or motorbike 108, and/or various components of the portable electrical power storage devices 106. The communications subsystem 206 may include one or more ports, wireless receivers, wireless transmitters or wireless transceivers to provide wireless signal paths to the various remote components or systems. The 25 communications subsystem 206 may include one or more bridges or routers suitable to handle network traffic including switched packet type communications protocols (TCP/IP), Ethernet or other networking protocols.

The user interface subsystem 208 includes one or more user input/output (I/O) components. For example, user interface subsystem 208 may include a touch 30 screen display 208a operable to present information to an end user, and a graphical user interface (GUI) to receive indications of user selections. The user interface subsystem

208 may include a keyboard or keypad 208b, and/or a cursor controller (e.g., mouse, trackball, trackpad) (not illustrated) to allow an end user to enter information and/or select user selectable icons in a GUI. The user interface subsystem 208 may include a speaker 208c to provide aural messages to an end user and/or a microphone 208d to 5 receive spoken user input such as spoken commands.

The user interface subsystem 208 may include a card reader 208e to read information from card type media 209. The card reader 208e may take a variety of forms. For instance, the card reader 208e may take the form of, or include, a magnetic stripe reader for reading information encoded in a magnetic stripe carried by a card 209. 10 For instance, the card reader 208e may take the form of, or include, a machine-readable symbol (e.g., barcode, matrix code) card reader for reading information encoded in a machine-readable symbol carried by a card 209. For instance, the card reader 208e may take the form of, or include, a smart card reader for reading information encoded in a non-transitory medium carried by a card 209. Such may, for instance, include media 15 employing radio frequency identification (RFID) transponders or electronic payment chips (e.g., near field communications (NFC) chips). Thus, the card reader 208e may be able to read information from a variety of card media 209, for instance credit cards, debit cards, gift cards, prepaid cards, as well as identification media such as drivers licenses. The card reader 208e may also be able to read information encoded in a non- 20 transitory medium carried by the portable electrical energy storage devices 106, and may also include RFID transponders, transceivers, NFC chips and/or other communications devices to communicate information to various components of the all-electric scooter or motorbike 108, and/or various components of the portable electrical power storage devices 106 (e.g., for authentication of the collection, charging and 25 distribution machine 102 to the portable electrical energy storage devices 106 and/or the all-electric scooter or motorbike 108, or for authentication of the portable electrical energy storage devices 106 to the collection, charging and distribution machine 102).

The user interface subsystem 208 may include a bill acceptor 208f and a validator and/or coin acceptor 208g to accept and validate cash payments. Such may be 30 highly useful in servicing populations lacking access to credit. Bill acceptor and validator 208f and/or coin acceptor 208g may take any variety of forms, for example

those that are currently commercially available and used in various vending machines and kiosks.

Figure 3 shows a portable electrical energy storage device physical security system for the portable electrical energy storage device 106z of the scooter or 5 motorbike 108 in wireless communication in one instance with the collection, charging and distribution machine 102 and in another instance with a device at a scooter or motorbike service center 318, according to one non-limiting illustrated embodiment.

Shown is a portable electrical energy storage device locking mechanism 320 operably coupled to a locking mechanism controller 306. In some embodiments, 10 the portable electrical energy storage device locking mechanism 320 and the locking mechanism controller 306 are part of the scooter or motorbike 108. In other embodiments, the portable electrical energy storage device locking mechanism 320 and the locking mechanism controller 306 are integrated with or part of the portable electrical energy storage device 106z.

15 Also shown is the collection, charging and distribution machine 102 in wireless communication with the locking mechanism controller 306. For example, the communications subsystem 206 (shown in Figure 2) of the collection, charging and distribution machine 102 may provide components enabling short range (e.g., via Bluetooth, near field communication (NFC), radio frequency identification (RFID)

20 components and protocols) or longer range wireless communications (e.g., over a wireless LAN, satellite, or cellular network) with various other devices external to the collection, charging and distribution machine 102, including the locking mechanism controller 306. The communications subsystem 206 of the collection, charging and distribution machine 102 may include one or more ports, wireless receivers, wireless transmitters or wireless transceivers to provide wireless signal paths to the locking 25 mechanism controller 306. The communications subsystem 206 of the collection, charging and distribution machine 102 may also or instead include one or more bridges or routers suitable to handle network traffic including switched packet type communications protocols (TCP/IP), Ethernet or other networking protocols.

30 The portable electrical energy storage device 106z may be lent, leased, and/or rented out to the public. Since the portable electrical energy storage device 106z

is typically a relatively expensive component, it is desirable to control how and in what circumstances the portable electrical energy storage device 106z may be removed from being operably connected or attached to the scooter or motorbike 108 for which it provides power. This control of the physical security of the portable electrical energy

5 storage device 106z helps to prevent theft and/or misuse of the portable electrical energy storage device 106z. For example, the portable electrical energy storage device 106z may be operably connected to and physically locked or otherwise physically secured in the scooter or motorbike 108 until the locking mechanism controller 306 detects a wireless signal including authentication information from an external device

10 such as the collection, charging and distribution machine 102 or a device at a service center 306 with one or more wireless communications subsystems such as that described above of the collection, charging and distribution machine 102. Other such external devices (not shown) with one or more wireless communications subsystems such as that described above of the collection, charging and distribution machine 102

15 may include, but are not limited to: card keys, access cards, credit cards, access control key fobs, mobile computing devices, cellular telephones, personal digital assistants (PDAs), smart phones, battery chargers, other access control devices, etc.

The collection, charging and distribution machine 102 may periodically, constantly or aperiodically emit a wireless signal 126 for a locking mechanism controller 306 listening for such a signal to receive and authenticate the collection, charging and distribution machine 102 in order to trigger the portable electrical energy storage device locking mechanism 320 to unlock, enabling the portable electrical energy storage device 106z to be removed from the scooter or motorbike 108. Also or instead, the locking mechanism controller 306 may periodically or constantly emit a

20 wireless signal 126 to which a collection, charging and distribution machine 102 listening for such a signal will respond with a wireless signal for the locking mechanism controller 306 to receive and authenticate the collection, charging and distribution machine 102 in order to trigger the portable electrical energy storage device locking mechanism 320 to unlock, enabling the portable electrical energy storage device 106z

25

30 to be removed from the scooter or motorbike 108.

In some embodiments, the wireless signal received from the collection, charging and distribution machine 102 may include a code that may be authenticated by the locking mechanism controller 306 in order to ensure the signal is being received from an authorized device. For example, the code may be time-sensitive code such as a 5 “hopping” code or a “rolling” code to provide such security. In the case of a 40-bit rolling code, forty bits provide 240 (about 1 trillion) possible codes. However, codes of other bit lengths may be used instead. The collection, charging and distribution machine 102 memory (e.g., ROM 212) may hold the current 40-bit code. The collection, charging and distribution machine 102 then sends that 40-bit code to the 10 locking mechanism controller 306 for the locking mechanism controller 306 to unlock the portable electrical energy storage device locking mechanism 320. The locking mechanism controller 306 also holds the current 40-bit code. If the locking mechanism controller 306 receives the 40-bit code it expects, then it unlocks the portable electrical energy storage device locking mechanism 320. If the locking mechanism controller 15 306 does not receive the 40-bit code it expects, the locking mechanism controller 306 does nothing. In some embodiments, the locking mechanism controller 306 will lock the portable electrical energy storage device locking mechanism 320 if the portable electrical energy storage device locking mechanism 320 is in an unlocked state and the locking mechanism controller 306 does not receive the 40-bit code it expects, or is not 20 able to receive any signal over a determined period of time.

Both the collection, charging and distribution machine 102 and the locking mechanism controller 306 use the same pseudo-random number generator (e.g., implemented by the respective processors of the collection, charging and distribution machine 102 and the locking mechanism controller 306) to generate the 40-bit code. 25 The collection, charging and distribution machine 102 may have different pseudo-random number generators to match the pseudo-random number generator of each locking mechanism controller 306 of each scooter or motorbike 108 or of each of the portable electrical energy storage devices 106. When the locking mechanism controller 306 receives a valid code from the collection, charging and distribution machine 102, it 30 uses the same pseudo-random number generator to generate the next code relative to the valid code received and communicates wirelessly with the collection, charging and

distribution machine 102 to instruct it to also generate the next code using the same pseudo-random number generator, which the collection, charging and distribution machine 102 stores for the next use. In this way, the collection, charging and distribution machine 102 and the locking mechanism controller 306 are synchronized.

- 5 The locking mechanism controller 306 only unlocks the portable electrical energy storage device locking mechanism 320 if it receives the code it expects.

Also, the current 40-bit code or other time-sensitive rolling code may be generated and communicated to one or more other collection, charging and distribution machines within a network of collection, charging and distribution machines (e.g., via

- 10 the network 122 shown in Figure 1) so that any collection, charging and distribution machine 102 may communicate the correct current code to the locking mechanism controller 306 when the scooter or motorbike having the locking mechanism controller 306 or the portable electrical energy storage device 106z having the locking mechanism controller 306 comes within wireless signal range of the other collection, charging and
15 distribution machines. In some embodiments, the locking mechanism controller 306 may accept any of the next 256 possible valid codes in the pseudo-random number sequence. This way, if the locking mechanism controller 306 and the collection, charging and distribution machine 102 for some reason become unsynchronized by 256 rolling codes or less, the locking mechanism controller 306 would still accept the
20 transmission from the collection, charging and distribution machine 102, unlock the portable electrical energy storage device locking mechanism 320 and generate the next code relative to the valid code received.

- In other embodiments, the hopping, rolling or time-sensitive code may be a universal code communicated by the back end or back office system 120 to the
25 collection, charging and distribution machine 102 and communicated wirelessly to the locking mechanism controller 306. For example, this may occur over a WAN, LAN and/or when the locking mechanism controller 306 comes within wireless communications range of the collection, charging and distribution machine 102 such as when the scooter or motorbike 108 visits the collection, charging and distribution
30 machine 102.

In some embodiments, the locking mechanism controller 306 and the collection, charging and distribution machine store a common secret key or code and use a common secret algorithm for authentication of the collection, charging and distribution machine. The common secret algorithm, for example, can be a hash

5 function or other algorithm which takes the secret key and at least one other key or code as input and generates different output based on the secret key and different input. The common secret algorithm may be executed by respective processors of the locking mechanism controller 306 and the collection, charging and distribution machine using stored instructions on respective computer readable media of the locking mechanism

10 controller 306 and the collection, charging and distribution machine or on respective configured hardware or firmware components of the of locking mechanism controller 306 and collection, charging and distribution machine. The common secret algorithm and common secret key or code may be initially encoded, programmed or installed in the locking mechanism controller 306 and collection, charging and distribution machine

15 in a secure fashion such that they are irretrievable or otherwise protected from being discovered. The common secret algorithm and common secret key or code are not communicated between the locking mechanism controller 306 and collection, charging and distribution machine during the authentication process.

In response to receiving an authentication beacon or request from the

20 collection, charging and distribution machine via the wireless signal 126 (which may have been sent in response to a wireless signal or beacon received from the locking mechanism controller 306), the locking mechanism controller 306 generates a challenge key and sends this challenge key to the collection, charging and distribution machine. In response to receiving the challenge key, the collection, charging and distribution

25 machine uses the secret algorithm and the common secret key to generate a response value and sends this response value to the locking mechanism controller 306. The locking mechanism controller 306 then verifies the response value by using the generated challenge key and secret key as input to the secret algorithm to generate an output value from the secret algorithm. The locking mechanism controller 306 then

30 compares this output value from the secret algorithm to the response value received from the collection, charging and distribution machine. If the output from the secret

algorithm generated by the locking mechanism controller 306 and the response value received from the collection, charging and distribution machine match, then the collection, charging and distribution machine is authenticated and the locking mechanism controller 306 may then take actions accordingly, such as sending a control signal to the locking mechanism 320 to unlock. If the output from the secret algorithm generated by the locking mechanism controller 306 and the response value received from the collection, charging and distribution machine do not match, then the collection, charging and distribution machine is not authenticated and the locking mechanism controller 306 may then take no action, or take other actions accordingly, such as sending a control signal to the locking mechanism 320 to lock if not already locked. In some embodiments any authentication process involving using any combination of a public key and or public algorithm may be used.

Once the locking mechanism controller 306 can no longer receive the wireless signal 126 from the collection, charging and distribution machine 102 (e.g., after the scooter or motorbike has already exchanged the portable electrical energy storage device 106z at the collection, charging and distribution machine 102 and is no longer within range of the collection, charging and distribution machine 102 wireless signal 126), the locking mechanism controller 306 will send a signal to cause the portable electrical energy storage device locking mechanism 320 to lock to prevent the portable electrical energy storage device 106z from being able to be removed from being operably connected to the scooter or motorbike 108. Also, as described above, if the signal received from the collection, charging and distribution machine 102 or other device contains an invalid code, if not already locked, the locking mechanism controller 306 will send a signal to cause the portable electrical energy storage device locking mechanism 320 to lock to prevent the portable electrical energy storage device 106z from being able to be removed from being operably connected to the scooter or motorbike. In some instances, where the locking mechanism controller 306 is not part of the portable electrical energy storage device 106z, the locking mechanism controller 306 must detect the presence of the portable electrical energy storage device 106z in the scooter or motorbike 108 before sending a signal to cause the portable electrical energy storage device locking mechanism 320 to lock.

In some embodiments, the wireless portion of the authentication is strongly phased. Nearby, the system challenges some or all portable electrical energy storage device collection, charging and distribution machines that would wirelessly tell the vehicle to disengage the portable electrical energy storage device in order to swap 5 the portable electrical energy storage device. Also, the portable electrical energy storage device collection, charging and distribution machine/service center may be mobile. For example, a service vehicle may come to a broken down/out of charge vehicle on the side of the road and the portable electrical energy storage device can only release when the authenticated service vehicle is nearby. "Nearby", may be any range 10 of distance selected by the system within range of short range wireless signal. A very short close distance may also be used, for example, as in some embodiments, the system may use technology such as near field communications (NFC) or other near field or very short range technologies.

Figure 4 is a schematic view of the locking mechanism controller of 15 Figure 3, according to one non-limiting illustrated embodiment.

The locking mechanism controller 306 includes a controller 410, a communications subsystem 406, and a power interface 420.

The controller 410, for example, is a microprocessor, microcontroller, programmable logic controller (PLC), programmable gate array (PGA), application 20 specific integrated circuit (ASIC) or another controller capable of receiving signals from various sensors, performing logical operations, and sending signals to various components. Typically, the controller 410 may take the form of a microprocessor (*e.g.*, INTEL, AMD, ATOM). The locking mechanism controller 306 may also include one or more non-transitory processor- or computer-readable storage media, for example 25 read only memory (ROM) 412, random access memory (RAM) 414, and other storage 416 (*e.g.*, solid-state storage media such as flash memory or EEPROM, or spinning storage media such as hard disk). The non-transitory processor- or computer-readable storage media 412, 414, 416 may be in addition to any non-transitory storage medium (*e.g.*, registers) which is part of the controller 410. The locking mechanism controller 30 306 may include one or more buses 418 (only one illustrated) coupling various

components together, for example one or more power buses, instruction buses, data buses, etc.

As illustrated, the ROM 412, or some other one of the non-transitory processor- or computer-readable storage media 412, 414, 416, stores instructions and/or

- 5 data or values for variables or parameters. The sets of data may take a variety of forms, for example a lookup table, a set of records in a database, etc. The instructions and sets of data or values are executable by the controller 410. Execution of the instructions and sets of data or values causes the controller 410 to perform specific acts to compare a code received from an external device and cause the locking mechanism controller 306
- 10 to generate control signals to lock or unlock the portable electrical energy storage device locking mechanism 320 based on the comparison. Also, such acts may include, for example, operations implementing a pseudo-random number to generate a rolling code as described above. Specific operation of the locking mechanism controller 306 is described herein and also below with reference to various flow diagrams (Figures 7-9).

- 15 The controller 410 may use RAM 414 in a conventional fashion, for volatile storage of instructions, data, etc. The controller 410 may use data store 416 to log or retain information, for example, information regarding user profile information, vehicle profile information, security codes, credentials, security certificates, passwords, vehicle information, etc. The instructions are executable by the controller 410 to
- 20 control operation of the locking mechanism controller 306 in response to input from remote systems such as those of external devices including but not limited to: charging devices, vehicles, user identification devices (cards, electronic keys, etc.) vehicles, collection, charging and distribution machines, collection, charging and distribution machine service systems, service centers, user mobile devices, user vehicles, and end
- 25 user or operator input.

The controller 410 may also receive signals from various sensors and/or components of an external device via the communications subsystem 406 of the locking mechanism controller 306. This information may include information that characterizes or is indicative of the authenticity, authorization level, operation, status, or condition of

30 such components and/or external devices.

The communications subsystem 406 may include one or more communications modules or components which facilitate communications with the various components of the collection, charging and distribution machine 102 of Figure 1 (e.g., such as to receive a security code) and/or of other external devices and also, 5 such that data may be exchanged between the locking mechanism controller 306 and the external devices for authentication purposes. The communications subsystem 406 may provide wired and/or wireless communications. The communications subsystem 406 may include one or more ports, wireless receivers, wireless transmitters or wireless transceivers to provide wireless signal paths to the various remote components or 10 systems. The communications subsystem 406 may, for example, include components enabling short range (e.g., via Bluetooth, near field communication (NFC), radio frequency identification (RFID) components and protocols) or longer range wireless communications (e.g., over a wireless LAN, satellite, or cellular network) and may include one or more modems or one or more Ethernet or other types of communications 15 cards or components for doing so. The remote communications subsystem 406 may include one or more bridges or routers suitable to handle network traffic including switched packet type communications protocols (TCP/IP), Ethernet or other networking protocols.

In some embodiments, some or all of the components of the locking 20 mechanism controller 306 may be located outside of the portable electrical energy storage device 106z as a separate device that actuates one or more actuators 502 (shown in Figure 6 and Figure 7) of the portable electrical energy storage device 106z (e.g., by a wireless control signal) sent via the communications subsystem 406.

The power interface 420 is controllable by the controller 410 and is 25 configured to receive power from the portable electrical energy storage device 106z via connection 314a to provide power to the locking mechanism controller 306 and also to the portable electrical energy storage device locking mechanism 320 (via connection 314b). Also, the power interface 420 is controllable by the controller 410 and is configured to receive power from an auxiliary source other than the portable electrical 30 energy storage device 106z via connection 314c to provide power to the portable electrical energy storage device locking mechanism 320 and/or the locking mechanism

controller 306 should the portable electrical energy storage device 106z be not able to provide enough power to operate the portable electrical energy storage device locking mechanism 320 and/or the locking mechanism controller 306. The power interface 420 includes various components operable for performing the above functions such as

5 electrical transformers, converters, rectifiers, etc.

Figure 5 shows a cross-sectional elevation view of the portable electrical energy storage device 106z of Figure 1 and Figure 3 coupled to the portable electrical energy storage device physical security system of Figure 3 and locked in an operable position within the scooter 108 of Figure 1 and Figure 3, according to one non-limiting

10 illustrated embodiment.

Shown is a portable electrical energy storage device holder 510, a part of a vehicle 508, a portable electrical energy storage device housing 302, electrical terminals 110a, 110b, a battery cell 304, a locking mechanism controller 306, a portable electrical energy storage device locking mechanism 320 and an auxiliary power source 15 516. The battery cell 304 may be any rechargeable type of electrochemical cell that converts stored chemical energy into electrical energy. Also, the battery cell 304 may comprise any type of rechargeable ultracapacitor array or fuel cell array. As described above, the electrical terminals 110a, 110b are accessible from an exterior of the portable electrical energy storage device 106z. The electrical terminals 110 allow charge to be 20 delivered from the portable electrical energy storage device 106z, as well as allow charge to be delivered to the portable electrical energy storage device 106z for charging or recharging the same through conductive terminal connections 312a and 312b to the battery cell 304. While illustrated in Figure 3 as posts, the electrical terminals 110a and 110b may take any other form which is accessible from an exterior of the portable 25 electrical energy storage device 106z, including electrical terminals positioned within slots in the battery housing 302.

The portable electrical energy storage device locking mechanism 320 is located outside the portable electrical energy storage device housing 302 and fixedly attached to a vehicle part 508 (e.g., a vehicle frame or chassis) that is attached to a 30 holder 510 in which the portable electrical energy storage device 106z is placed. The holder 510 has a top opening 512 through which the portable electrical energy storage

device 106z may be placed into the holder 510 and removed from the holder 510. Once the portable electrical energy storage device 106z is placed in the holder 510, the holder 510 surrounds the portable electrical energy storage device 106z except at the top opening 512. The portable electrical energy storage device locking mechanism 320 has

5 a slidable bolt 506 which partially covers the opening 512 (as shown in Figure 5) in a locked state to block passage of the portable electrical energy storage device 106z through the opening 512 and thus prevent the portable electrical energy storage device 106z from being able to be removed from the holder 510. The slidable bolt 506 is slidable on a bolt track or through bolt housing 504 fixedly attached to the vehicle part

10 508. When the portable electrical energy storage device locking mechanism 320 is in an unlocked state, the slidable bolt 506 is retracted (not shown) into the bolt housing 504 to not cover the opening 512 and thus allow passage of the portable electrical energy storage device 106z through the opening 512 of the holder 510 for the portable electrical energy storage device 106z to be removed.

15 The portable electrical energy storage device locking mechanism 320 is coupled to the locking mechanism controller 306 via a control line 308 and power line 314b. For example, one or more engine control signals received from the locking mechanism controller 306 via control line 308 may affect the operation of one or more actuators 502 (only one illustrated) to cause the slidable bolt 506 to move. For instance,

20 a control signal may cause movement of an actuator 502 between a first and a second position or change a magnetic field produced by the actuator 502. The actuator 502 may take any of a variety of forms, including but not limited to a solenoid, an electric motor such as a stepper motor, or an electromagnet. The actuator 502 may alternatively be coupled to operate a different latch, lock or other type of retainer mechanism for the

25 portable electrical energy storage device 106z.

The locking mechanism controller 306 is configured to receive power from the portable electrical energy storage device 106z via connection 314a to provide power to the locking mechanism controller 306 and also to the portable electrical energy storage device locking mechanism 320 (via connection 314b). Also, the locking

30 mechanism controller 306 is optionally configured to receive power from an auxiliary source 516 other than the portable electrical energy storage device 106z via connection

314c to provide power to the portable electrical energy storage device locking mechanism 320 and/or the locking mechanism controller 306 should the portable electrical energy storage device 106z be not able to provide enough power to operate the portable electrical energy storage device locking mechanism 320 and/or the locking mechanism controller 306.

The housing 302 may provide a protection to prevent or deter tampering, and may be formed of suitably strong and resilient materials (e.g., ABS plastic). Such may not only prevent or deter tampering, but may leave a visible indication of any tampering attempts. For example, the housing 302 may include a strong outer layer of a 10 first color (e.g., black) within an inner layer of a second color (e.g., fluorescent orange) therebeneath. Such will render attempts to cut through the housing 302 visibly apparent.

It is also noted that the housing 302 may serve as a frangible substrate, or a frangible substrate may be secured to an inner portion of the housing 302, for 15 instance, via suitable adhesives. Thus, tampering with the housing may break or damage a circuit connection, rendering the portable electrical energy storage device 106z inoperable.

Figure 6 shows a cross-sectional elevation view of an alternative embodiment the portable electrical energy storage device 106z of Figure 1 and Figure 3 20 in which the portable electrical energy storage device physical security system of Figure 3 is integrated with and part of the portable electrical energy storage device 106z of Figure 1 and Figure 3, according to one non-limiting illustrated alternative embodiment.

Shown is a portable electrical energy storage device holder 510, a portable electrical energy storage device housing 302, electrical terminals 110a, 110b, a 25 battery cell 304, a locking mechanism controller 306, a portable electrical energy storage device locking mechanism 320 and an access panel 518 to plug in an auxiliary power source. The battery cell 304 is any rechargeable type of electrochemical cell that converts stored chemical energy into electrical energy. As described above, the electrical terminals 110a, 110b are accessible from an exterior of the portable electrical 30 energy storage device 106z.

The portable electrical energy storage device locking mechanism 320 is located inside the portable electrical energy storage device housing 302 and fixedly attached to the interior of the portable electrical energy storage device housing 302. The holder 510 has a top opening 512 through which the portable electrical energy storage device 106z may be placed into the holder 510 and removed from the holder 510. Once the portable electrical energy storage device 106z is placed in the holder 510, the holder 510 surrounds the portable electrical energy storage device 106z except at the top opening 512. The portable electrical energy storage device locking mechanism 320 has a slidable bolt 506 which is configured to slide on a bolt track or through bolt housing 504 fixedly attached to an interior wall of the portable electrical energy storage device housing 502. The slidable bolt 506 is configured to slide through an opening 520 in the side of the housing 302 and into an opening 520 in the side wall of the holder 510 aligned with the opening in the side of the housing 302 to block passage of the portable electrical energy storage device 106z through the top opening 512 of the holder 510, and thus prevent the portable electrical energy storage device 106z from being able to be removed from the holder 510 (as shown in Figure 6). When the portable electrical energy storage device locking mechanism 320 is in an unlocked state, the slidable bolt 506 is retracted (not shown) back into the bolt housing 504 inside the portable electrical energy storage device 106z, and thus allows passage of the portable electrical energy storage device 106z through the top opening 512 of the holder 510 for the portable electrical energy storage device 106z to be removed.

The portable electrical energy storage device locking mechanism 320 is coupled to the locking mechanism controller 306 via a control line 308 and power line 314b. For example, one or more engine control signals received from the locking mechanism controller 306 via control line 308 may affect the operation of one or more actuators 502 (only one illustrated) to cause the slidable bolt 506 to move. For instance, a control signal may cause movement of an actuator 502 between a first and a second position or change a magnetic field produced by the actuator 502. The actuator 502 may take any of a variety of forms, including but not limited to a solenoid, an electric motor such as a stepper motor, or an electromagnet. The actuator 502 may alternatively

be coupled to operate a different latch, lock or other type of retainer mechanism for the portable electrical energy storage device 106z.

The locking mechanism controller 306 is configured to receive power from the portable electrical energy storage device 106z via connection 314a to provide

- 5 power to the locking mechanism controller 306 and also to the portable electrical energy storage device locking mechanism 320 (via power line 314b). Also, the locking mechanism controller 306 is configured to receive power from an auxiliary source other than the portable electrical energy storage device 106z via line 314c. The auxiliary source may be connected to line 314b through an access panel 518 in the housing 302 to
- 10 provide power to the portable electrical energy storage device locking mechanism 320 and/or the locking mechanism controller 306 should the portable electrical energy storage device 106z be not able to provide enough power to operate the portable electrical energy storage device locking mechanism 320 and/or the locking mechanism controller 306.

- 15 The housing 302 may provide protection to prevent or deter tampering, and may be formed of suitably strong and resilient materials (e.g., ABS plastic). Such may not only prevent or deter tampering, but may leave a visible indication of any tampering attempts. For example, the housing 302 may include a strong outer layer of a first color (e.g., black) within an inner layer of a second color (e.g., fluorescent orange)
- 20 therebeneath. Such will render attempts to cut through the housing 302 visibly apparent.

- 25 It is also noted that the housing 302 may serve as a frangible substrate, or a frangible substrate may be secured to an inner portion of the housing 302, for instance, via suitable adhesives. Thus, tampering with the housing may break or damage a circuit connection, rendering the portable electrical energy storage device 106z inoperable.

Figure 7 shows a high level method 700 of operating the locking mechanism controller of Figures 3-6, according to one non-limiting illustrated embodiment.

At 702, the portable electric storage device security system receives information regarding authentication of an external device such as the collection, charging and distribution machine 102.

- At 704, the portable electrical energy storage device security system 5 makes a determination regarding unlocking the portable electrical energy storage device locking mechanism 320 to allow the portable electrical energy storage device 106z to be removed from being operably connected to a vehicle, based on the information regarding authentication.

Figure 8 shows a low level method 800 of operating the locking 10 mechanism controller of Figures 3-6, according to one non-limiting illustrated embodiment, including accepting the portable electrical energy storage device charge, useful in the method of Figure 7.

At 802, the portable electric storage device security system receives the information regarding authentication via a wireless signal transmitted from the 15 collection, charging and distribution machine 102. The wireless signal received from the collection, charging and distribution machine 102 is not detectable outside a specified maximum range from a communications module of the portable electrical energy storage device security system.

Figure 9 shows a low level method 900 of operating the portable 20 electrical energy storage device security system controller 306 of Figures 3 and 4, according to one non-limiting illustrated embodiment, including determining how much energy to release, based on a vehicle performance profile of the vehicle, useful in the method of Figure 8.

At 902, the portable electric storage device security system receives 25 information regarding authentication of an external device such as the collection, charging and distribution machine 102.

At 904 the portable electric storage device security system determines whether the information received is authentic.

At 906, if the information received was determined to be authentic (e.g., 30 by matching a code received), then the portable electrical energy storage device security system sends a signal from locking mechanism controller 306 in a manner to unlock the

portable electrical energy storage device locking mechanism 320 in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle.

At 908, the portable electric storage device security system determines 5 whether the information is able to continue to be received. For example, the information may not be able to continue to be received once the locking mechanism controller 306 can no longer receive the wireless signal from the collection, charging and distribution machine 102 (e.g., after the scooter or motorbike has already exchanged the portable electrical energy storage device 106z at the collection, charging 10 and distribution machine 102 and is no longer within range of the collection, charging and distribution machine 102 wireless signal 126).

At 909, if the information received was determined not to be authentic or the information is not able to continue to be received by the portable electric storage device security system, and if the portable electrical energy storage device locking 15 mechanism 320 is not already locked, the portable electrical energy storage device security system sends a signal from the locking mechanism controller 306 in a manner to lock the portable electrical energy storage device locking mechanism 320 in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle. If the information is able to continue to be received 20 by the portable electric storage device security system, the method 900 repeats by proceeding again to 902 to perform the authentication of the information. The method may repeat at periodic intervals or continuously.

The various methods described herein may include additional acts, omit 25 some acts, and/or may perform the acts in a different order than set out in the various flow diagrams.

The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, it will be understood by those skilled in the art that each 30 function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software,

firmware, or virtually any combination thereof. In one embodiment, the present subject matter may be implemented via one or more microcontrollers. However, those skilled in the art will recognize that the embodiments disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits (e.g., Application Specific Integrated Circuits or ASICs), as one or more computer programs executed by one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs executed by one or more controllers (e.g., microcontrollers) as one or more programs executed by one or more processors (e.g., microprocessors), as firmware, or as virtually any combination thereof, and that

5 designing the circuitry and/or writing the code for the software and/or firmware would be well within the skill of one of ordinary skill in the art in light of the teachings of this disclosure.

10

When logic is implemented as software and stored in memory, logic or information can be stored on any non-transitory computer-readable medium for use by or in connection with any processor-related system or method. In the context of this disclosure, a memory is a nontransitory computer- or processor-readable storage medium that is an electronic, magnetic, optical, or other physical device or means that non-transitorily contains or stores a computer and/or processor program. Logic and/or the information can be embodied in any computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions associated with logic and/or information.

15

20

In the context of this specification, a “computer-readable medium” can be any physical element that can store the program associated with logic and/or information for use by or in connection with the instruction execution system, apparatus, and/or device. The computer-readable medium can be, for example, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device. More specific examples (a non-exhaustive list) of the computer readable medium would include the following: a portable computer diskette (magnetic, compact flash card, secure digital, or the like), a random

25

30

access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM, EEPROM, or Flash memory), a portable compact disc read-only memory (CDROM), and digital tape.

The various embodiments described above can be combined to provide further embodiments. To the extent that they are not inconsistent with the specific teachings and definitions herein, all of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, including but not limited to: U.S. provisional patent application Serial No. 61/511,900 entitled "APPARATUS, METHOD AND ARTICLE FOR COLLECTION, CHARGING AND DISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES" and filed July 26, 2011 (Attorney Docket No. 170178.401P1), U.S. provisional patent application Serial No. 61/647,936 entitled "APPARATUS, METHOD AND ARTICLE FOR COLLECTION, CHARGING AND DISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES" and filed May 16, 2012 (Attorney Docket No. 170178.401P2), U.S. provisional patent application Serial No. 61/534,753 entitled "APPARATUS, METHOD AND ARTICLE FOR REDISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES, BETWEEN COLLECTION, CHARGING AND DISTRIBUTION MACHINES" and filed September 14, 2011 (Atty. Docket No. 170178.402P1), U.S. provisional patent application Serial No. 61/534,761 entitled "APPARATUS, METHOD AND ARTICLE FOR AUTHENTICATION, SECURITY AND CONTROL OF POWER STORAGE DEVICES SUCH AS BATTERIES" and filed September 14, 2011 (Attorney Docket No. 170178.403P1), U.S. provisional patent application Serial No. 61/534,772 entitled "APPARATUS, METHOD AND ARTICLE FOR AUTHENTICATION, SECURITY AND CONTROL OF POWER STORAGE DEVICES, SUCH AS BATTERIES, BASED ON USER PROFILES" and filed September 14, 2011 (Attorney Docket No. 170178.404P1), U.S. provisional patent application Serial No. 61/511,887 entitled "THERMAL MANAGEMENT OF COMPONENTS IN ELECTRIC MOTOR DRIVE VEHICLES" and filed July 26, 2011 (Atty. Docket No. 170178.406P1), U.S. provisional patent application Serial No. 61/647,941 entitled "THERMAL

MANAGEMENT OF COMPONENTS IN ELECTRIC MOTOR DRIVE VEHICLES" and filed May 16, 2012 (Atty. Docket No. 170178.406P2), U.S. provisional patent application Serial No. 61/511,880 entitled "DYNAMICALLY LIMITING VEHICLE OPERATION FOR BEST EFFORT ECONOMY" and filed July 26, 2011 (Atty.

- 5 Docket No. 170178.407P1), U.S. provisional patent application Serial No. 61/557,170 entitled "APPARATUS, METHOD, AND ARTICLE FOR PHYSICAL SECURITY OF POWER STORAGE DEVICES IN VEHICLES" and filed November 08, 2011 (Atty. Docket No. 170178.408P1), U.S. provisional patent application Serial No. 61/581,566 entitled APPARATUS, METHOD AND ARTICLE FOR A POWER
- 10 STORAGE DEVICE COMPARTMENT" and filed December 29, 2011 (Atty. Docket No. 170178.412P1), U.S. provisional patent application Serial No. 61/601,404 entitled "APPARATUS, METHOD AND ARTICLE FOR PROVIDING VEHICLE DIAGNOSTIC DATA" and filed February 21, 2012 (Atty. Docket No. 170178.417P1), U.S. provisional patent application Serial No. 61/601,949 entitled "APPARATUS,
- 15 METHOD AND ARTICLE FOR PROVIDING LOCATIONS OF POWER STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBUTION MACHINES" and filed February 22, 2012 (Atty. Docket No. 170178.418P1), and U.S. provisional patent application Serial No. 61/601,953 entitled "APPARATUS, METHOD AND ARTICLE FOR PROVIDING INFORMATION REGARDING AVAILABILITY OF POWER
- 20 STORAGE DEVICES AT A POWER STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBUTION MACHINE" and filed February 22, 2012 (Atty. Docket No. 170178.419P1), U.S. Application Serial No. _____ filed on July 26, 2012, naming Hok-Sum Horace Luke, Matthew Whiting Taylor and Huang-Cheng Hung as inventors and entitled "APPARATUS, METHOD AND ARTICLE FOR
- 25 COLLECTION, CHARGING AND DISTRIBUTING POWER STORAGE DEVICES, SUCH AS BATTERIES" (Atty. Docket No. 170178.401), U.S. Application Serial No. _____ filed on July 26, 2012, naming Hok-Sum Horace Luke and Matthew Whiting Taylor as inventors and entitled "APPARATUS, METHOD AND ARTICLE FOR AUTHENTICATION, SECURITY AND CONTROL OF POWER STORAGE
- 30 DEVICES SUCH AS BATTERIES" (Atty. Docket No. 170178.403) U.S. Application Serial No. _____ filed on July 26, 2012 naming Hok-Sum Horace Luke and

Matthew Whiting Taylor as inventors and entitled “DYNAMICALLY LIMITING VEHICLE OPERATION FOR BEST EFFORT ECONOMY” (Atty. Docket No. 170178.407), U.S. Application Serial No. _____ filed on July 26, 2012, naming Ching Chen, Hok-Sum Horace Luke, Matthew Whiting Taylor, Yi-Tsung Wu as inventors and entitled “APPARATUS, METHOD AND ARTICLE FOR PROVIDING VEHICLE DIAGNOSTIC DATA” (Atty. Docket No. 170178.417), U.S. Application Serial No. _____ filed on July 26, 2012, naming Yi-Tsung Wu, Matthew Whiting Taylor, Hok-Sum Horace Luke and Jung-Hsiu Chen as inventors and entitled “APPARATUS, METHOD AND ARTICLE FOR PROVIDING INFORMATION 5 REGARDING AVAILABILITY OF POWER STORAGE DEVICES AT A POWER STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBUTION MACHINE” (Atty. Docket No. 170178.419), and U.S. Application Serial No. _____ filed on July 26, 2012, naming Hok-Sum Horace Luke, Yi-Tsung Wu, Jung-Hsiu Chen, Yulin Wu, Chien Ming Huang, TsungTing Chan, Shen-Chi Chen and Feng Kai Yang as 10 inventors and entitled “APPARATUS, METHOD AND ARTICLE FOR RESERVING POWER STORAGE DEVICES AT RESERVING POWER STORAGE DEVICE COLLECTION, CHARGING AND DISTRIBUTION MACHINES” (Atty. Docket No. 170178.423) are incorporated herein by reference, in their entirety. Aspects of the 15 embodiments can be modified, if necessary, to employ systems, circuits and concepts of the various patents, applications and publications to provide yet further embodiments. 20

While generally discussed in the environment and context of collection, charging and distribution of portable electrical energy storage devices for use with personal transportation vehicle such as all-electric scooters and/or motorbikes, the teachings herein can be applied in a wide variety of other environments, including other 25 vehicular as well as non-vehicular environments.

The above description of illustrated embodiments, including what is described in the Abstract of the Disclosure, is not intended to be exhaustive or to limit the embodiments to the precise forms disclosed. Although specific embodiments and examples are described herein for illustrative purposes, various equivalent 30 modifications can be made without departing from the spirit and scope of the disclosure, as will be recognized by those skilled in the relevant art.

These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible 5 embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.

CLAIMS

I claim:

1. A portable electrical energy storage device security system for a portable electrical energy storage device, comprising:

at least one controller; and

at least one communications module coupled to the at least one controller, wherein the at least one controller is configured to:

receive information regarding authentication of an external device via the communications module; and

in response to receiving the information regarding authentication, unlock a portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to a vehicle.

2. The portable electrical energy storage device security system of claim 1 wherein the at least one controller is configured to make a determination regarding unlocking the portable electrical energy storage device locking mechanism based on the received information regarding authentication.

3. The portable electrical energy storage device security system of claim 2 wherein the least one controller, is further configured to:

generate a challenge key to send to the external device;

send the challenge key to the external device;

receive a response from the external device to the sending of the challenge key, the response including a response code as part of the information regarding authentication;

generate an output from a secret algorithm using a secret key and the response code as input, the secret algorithm and the secret key configured to be known

only to the portable electrical energy storage device security system and one or more authorized external devices; and

comparing the output from the secret algorithm to the response code, and wherein the at least one controller is configured to make the determination regarding unlocking the portable electrical energy storage device locking mechanism based at least on the comparison.

4. The portable electrical energy storage device security system of claim 1 wherein the configured portable electrical energy storage device security system is coupled to the vehicle or is integrated as part of the portable electrical energy storage device.

5. The portable electrical energy storage device security system of claim 1 wherein the external device is a portable electrical energy storage device collection and charging machine.

6. The portable electrical energy storage device security system of claim 1 wherein the external device is a device located at a vehicle service center.

7. The portable electrical energy storage device security system of claim 1, wherein the at least one communications module is configured to receive the information regarding authentication of the external device via a wireless signal and communicate the information to the at least one controller to unlock the portable electrical energy storage device locking mechanism in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle.

8. The portable electrical energy storage device security system of claim 1, further comprising:

the portable electrical energy storage device locking mechanism coupled to the at least one controller; and

a switch coupled to the portable electrical energy storage device locking mechanism and the at least one controller, the switch configured to be activated by a control signal generated by the at least one controller of the configured portable electrical energy storage device security system, wherein the controller is configured to:

send the signal in a manner to unlock the portable electrical energy storage device locking mechanism in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, if the external device is authenticated based on the information regarding authentication; and

send the signal in a manner to lock the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device can no longer be received via the communications module.

9. The portable electrical energy storage device security system of claim 1 wherein the at least one controller is configured to receive the information regarding authentication via a wireless signal transmitted from the external device, and wherein the wireless signal transmitted from the external device is not detectable outside a specified maximum range from the portable electrical energy storage device security system communications module.

10. The portable electrical energy storage device security system of claim 9 wherein the wireless signal includes a rolling code for the authentication of the external device by the at least one controller.

11. The portable electrical energy storage device security system of claim 1 further comprising a power interface coupled to the at least one controller and configured to be coupled to the portable electrical energy storage device and the electrical energy storage device locking mechanism to provide power to the electrical energy storage device locking mechanism.

12. The portable electrical energy storage device security system of claim 11 wherein the power interface is configured to be coupled to an auxiliary power source other than the portable electrical energy storage device to provide power to the electrical energy storage device locking mechanism should the portable electrical energy storage device be not able to provide enough power to operate the electrical energy storage device locking mechanism.

13. A method of operating a portable electrical energy storage device security system, the method comprising:

receiving, by the portable electrical energy storage device security system, information regarding authentication of an external device; and

making a determination, by the portable electrical energy storage device security system, regarding unlocking a portable electrical energy storage device locking mechanism to allow a portable electrical energy storage device to be removed from being operably connected to a vehicle, based on the information regarding authentication.

14. The method of claim 13 wherein the receiving the information includes receiving the information regarding authentication via a wireless signal transmitted from a portable electrical energy storage device collection, charging and distribution machine, and wherein the wireless signal received from the collection, charging and distribution machine is not detectable outside a specified maximum range from a communications module of the portable electrical energy storage device security system.

15. The method of claim 13 further comprising:

sending a signal from a controller of the portable electrical energy storage device security system in a manner to unlock the portable electrical energy storage device locking mechanism in order to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, if the external device is authenticated based on the information regarding authentication; and

sending a signal from the controller of the portable electrical energy storage device security system in a manner to lock the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device can no longer continue to be received via a communications module of the portable electrical energy storage device.

16. The method of claim 13 wherein the portable electrical energy storage device security system is integrated as part of the portable electrical energy storage device.

17. The method of claim 13 wherein the portable electrical energy storage device security system is coupled to the vehicle.

18. The method of claim 13 wherein the making the determination includes comparing a code from the received information regarding authentication to one or more codes associated with the portable electrical energy storage device security system and further comprising:

unlocking the portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle if the code from the received information regarding authentication matches one of the one or more codes associated with the portable electrical energy storage device; and

locking the portable electrical energy storage device locking mechanism in order to prevent the portable electrical energy storage device from being removed from being operably connected to the vehicle, if, after a defined period of time, the information regarding authentication of the external device can no longer be received via a communications module of the portable electrical energy storage device or if, after a defined period of time, a code from the received information can no longer be

matched to at least one or one of one or more codes currently associated with the portable electrical energy storage device security system.

19. The method of claim 13 further comprising:
generating a challenge key to send to the external device;
sending the challenge key to the external device;
receiving a response from the external device to the sending of the challenge key, the response including a response code as part of the information regarding authentication;

generating an output from a secret algorithm using a secret key and the response code as input, the secret algorithm and the secret key configured to be known only to the portable electrical energy storage device security system and one or more authorized external devices; and

comparing the output from the secret algorithm to the response code, and wherein making the determination regarding unlocking the portable electrical energy storage device locking mechanism is based at least on the comparison.

20. A portable electrical energy storage device, comprising:
a battery cell; and
a security system operably coupled to the cell, the security system configured to allow the portable electrical energy storage device to be removed from being operably connected to a vehicle, based on information received wirelessly regarding authentication of an external device.

21. The portable electrical energy storage device of claim 20 wherein the security system comprises:
at least one controller; and
at least one communications module coupled to the at least one controller, wherein the at least one controller is configured to:

receive information regarding authentication of an external device via the communications module; and

make a determination regarding unlocking a portable electrical energy storage device locking mechanism to allow the portable electrical energy storage device to be removed from being operably connected to the vehicle, based on the information regarding authentication.

22. The portable electrical energy storage device of claim 21 wherein the security system further comprises:

the portable electrical energy storage device locking mechanism coupled to the at least one controller; and

a power interface that is configured to be coupled to the at least one controller and to an auxiliary power source other than the portable electrical energy storage device to provide power to the electrical energy storage device locking mechanism should the portable electrical energy storage device be not able to provide enough power to operate the electrical energy storage device locking mechanism.

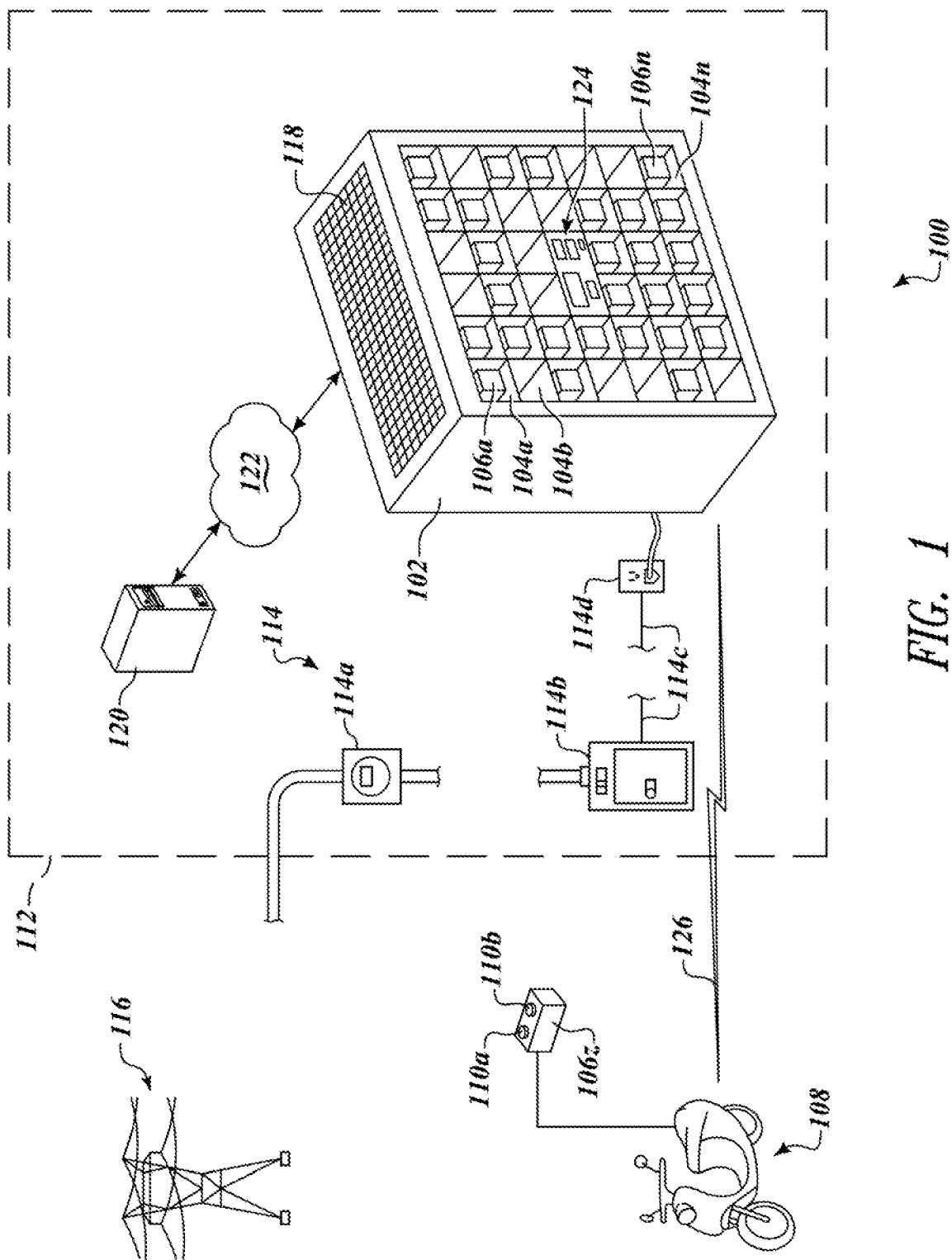


FIG. 1

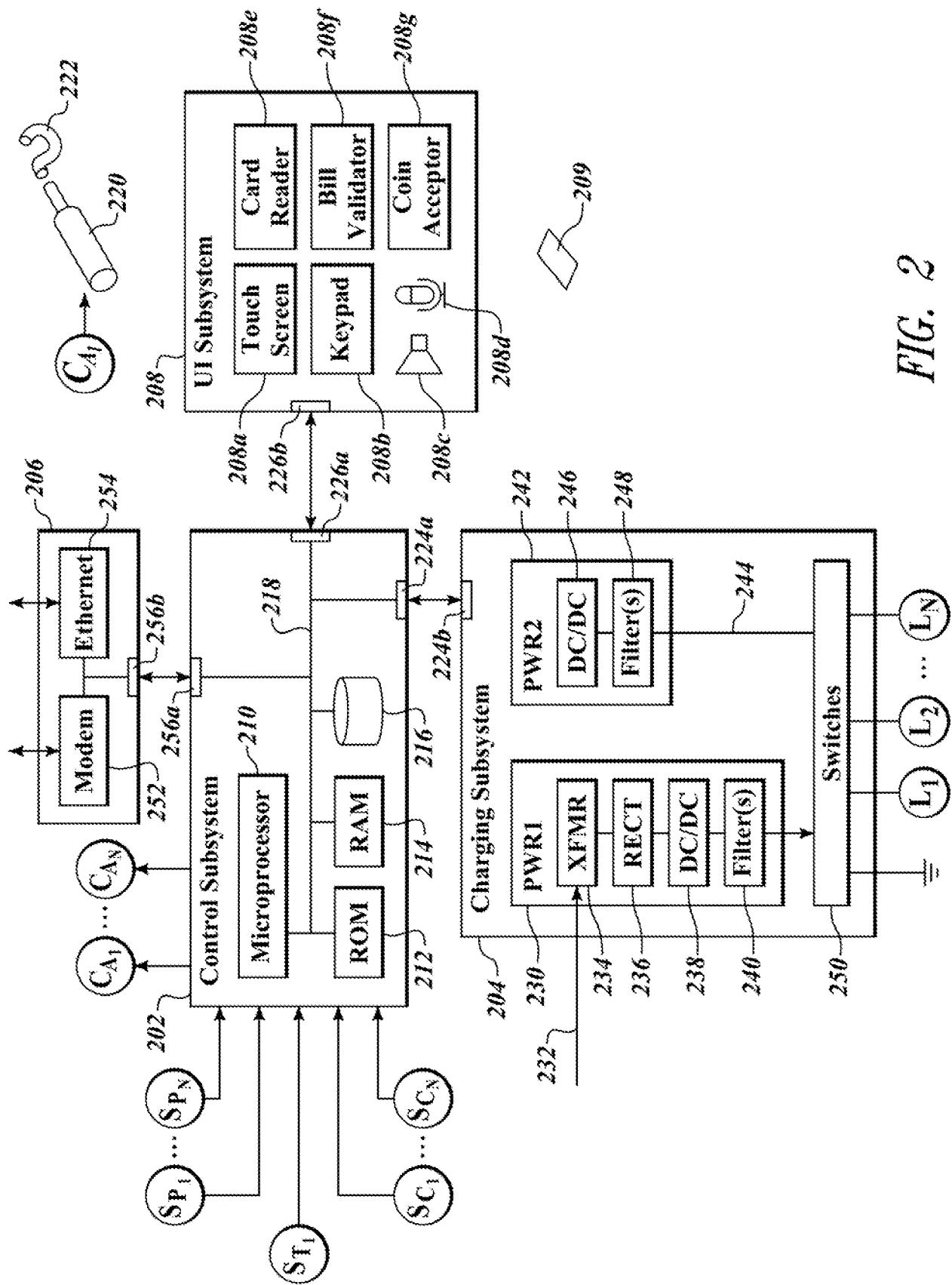
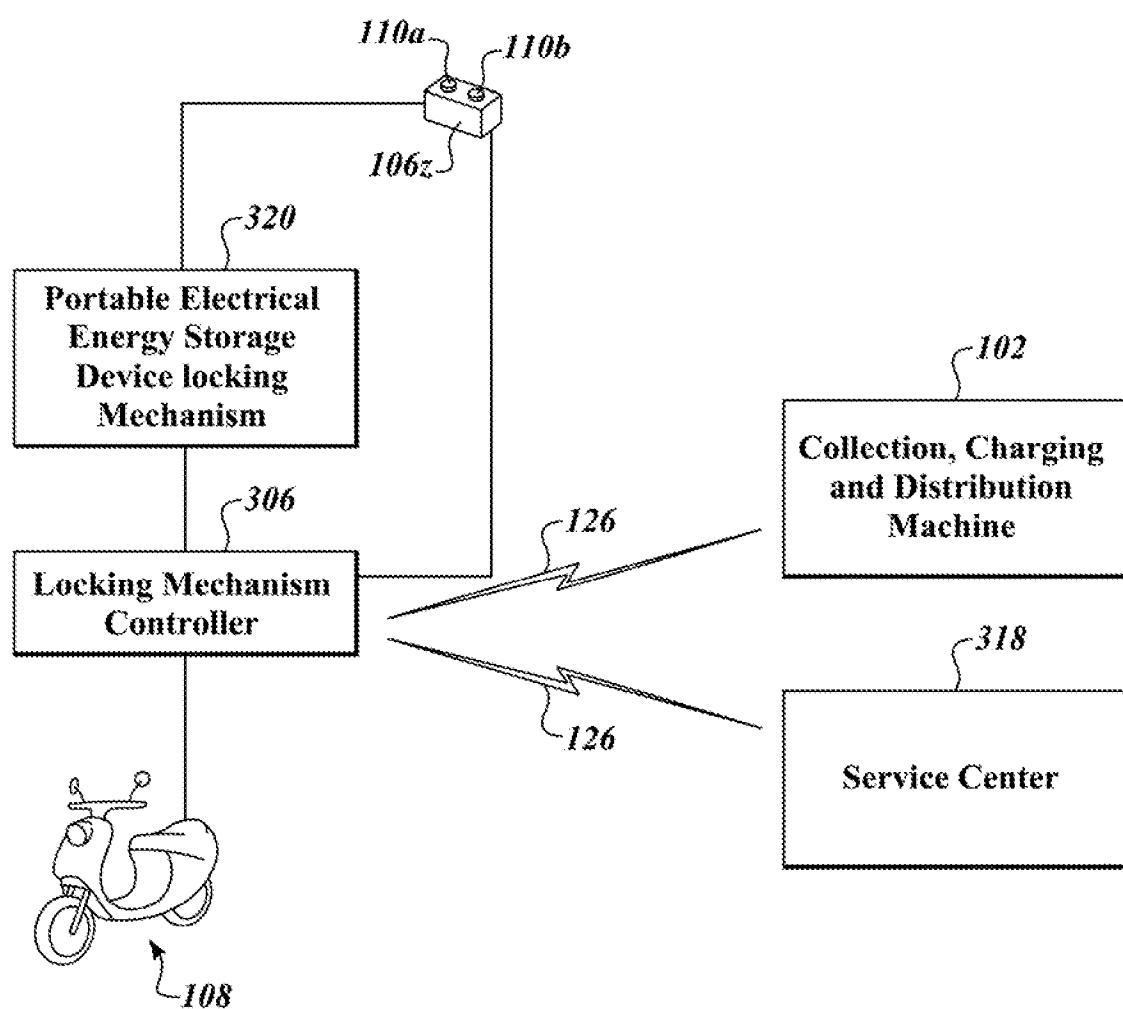



FIG. 2

FIG. 3

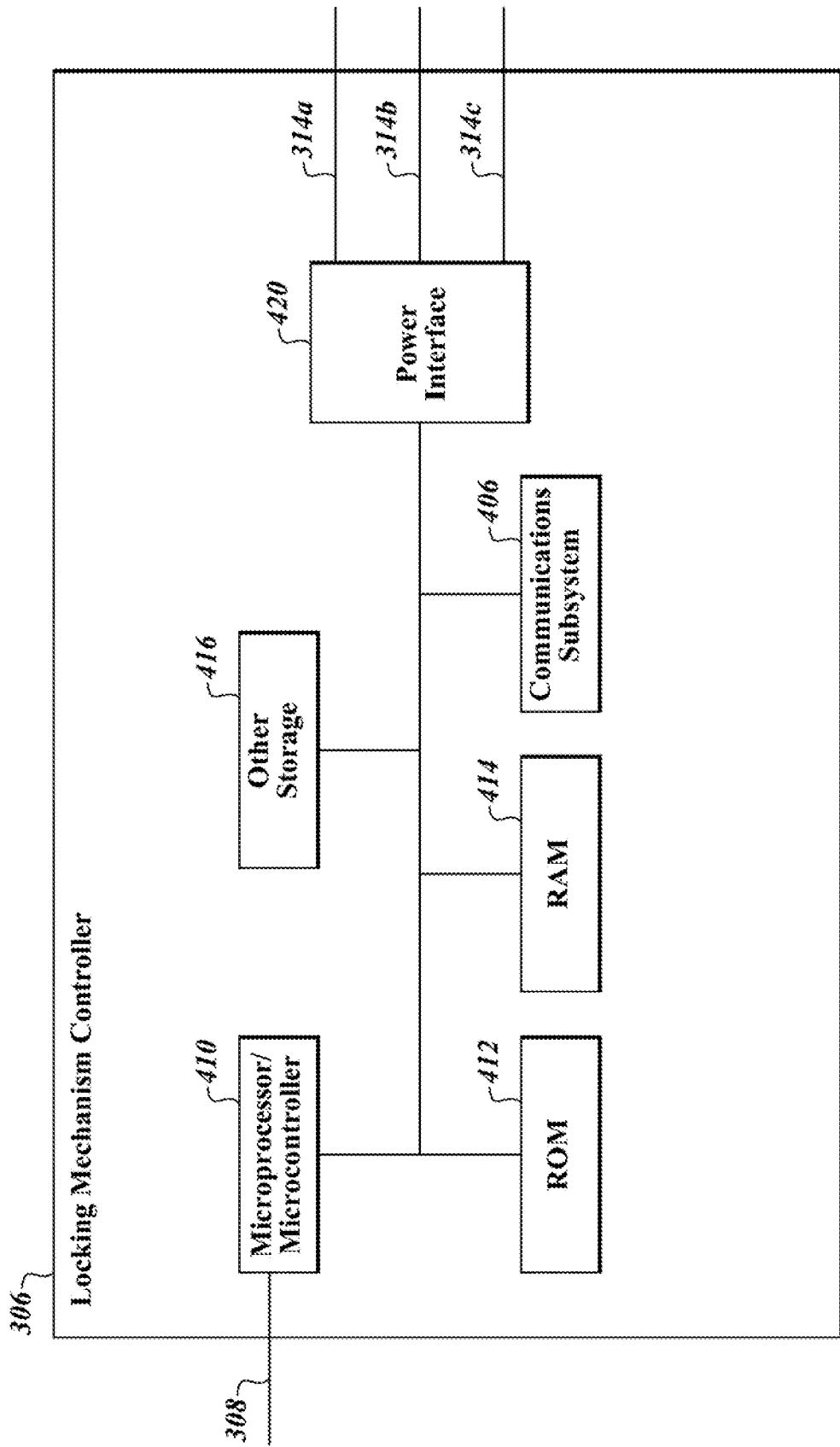


FIG. 4

5/8

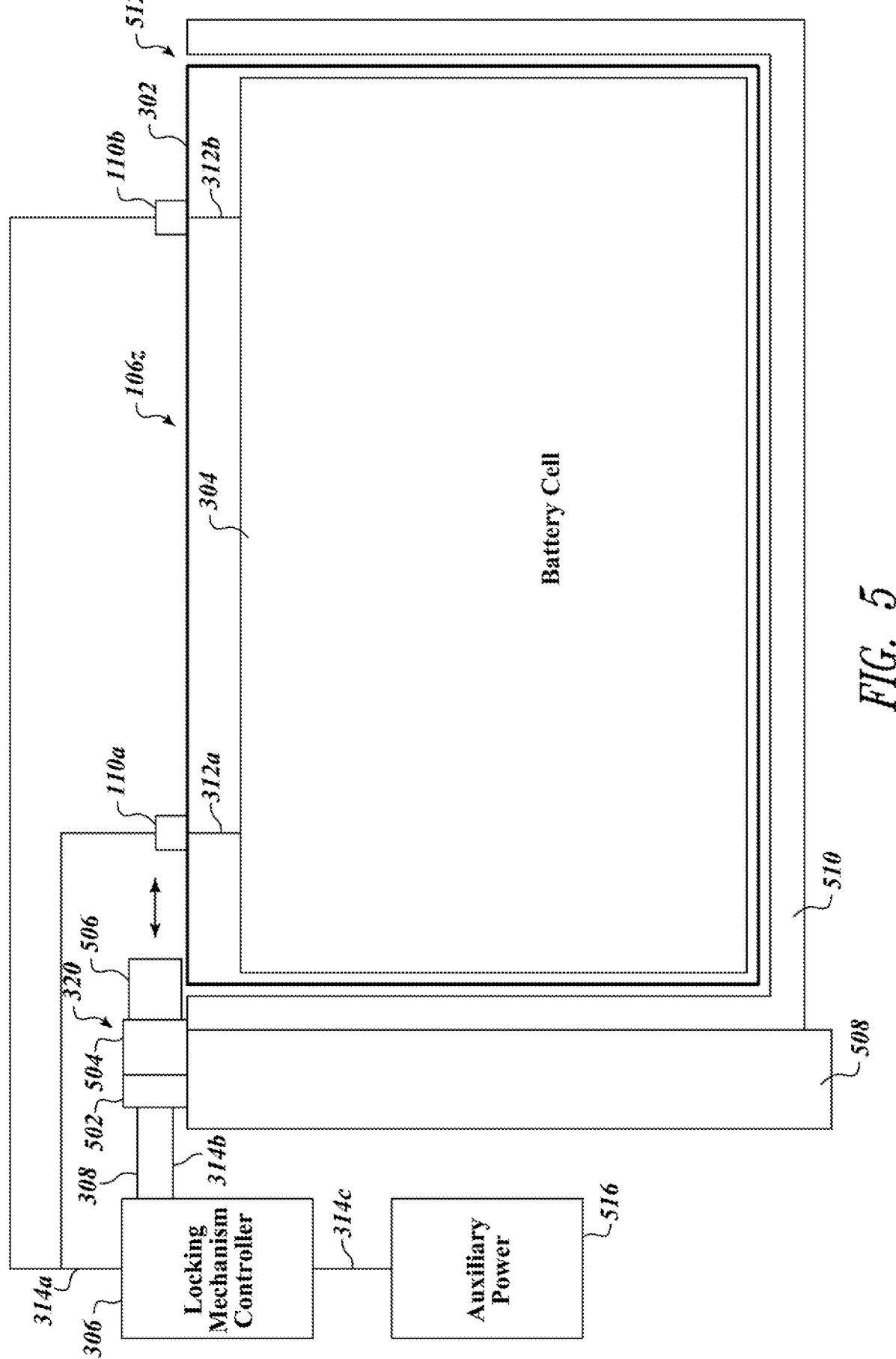


FIG. 5

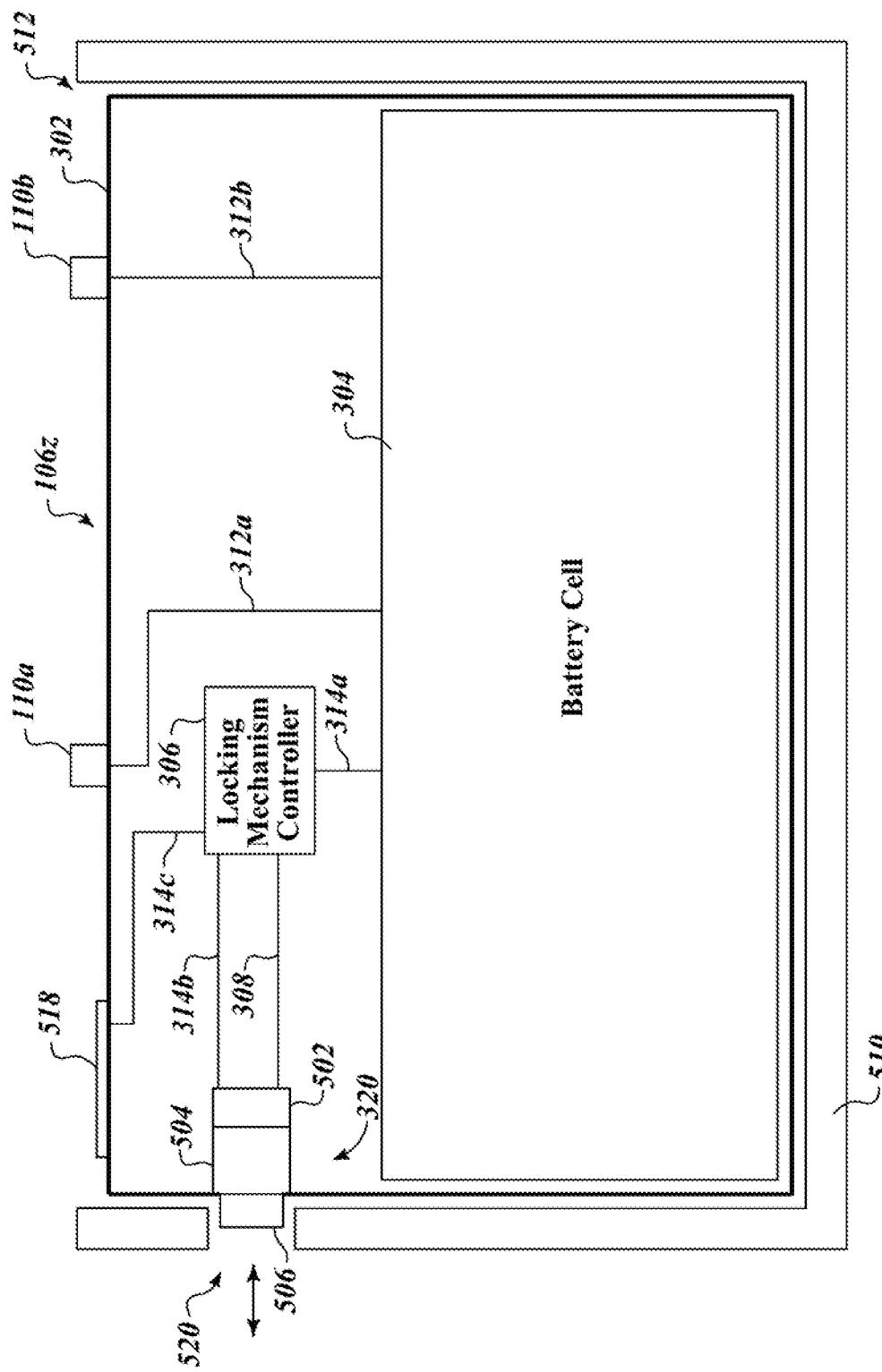


FIG. 6

7/8

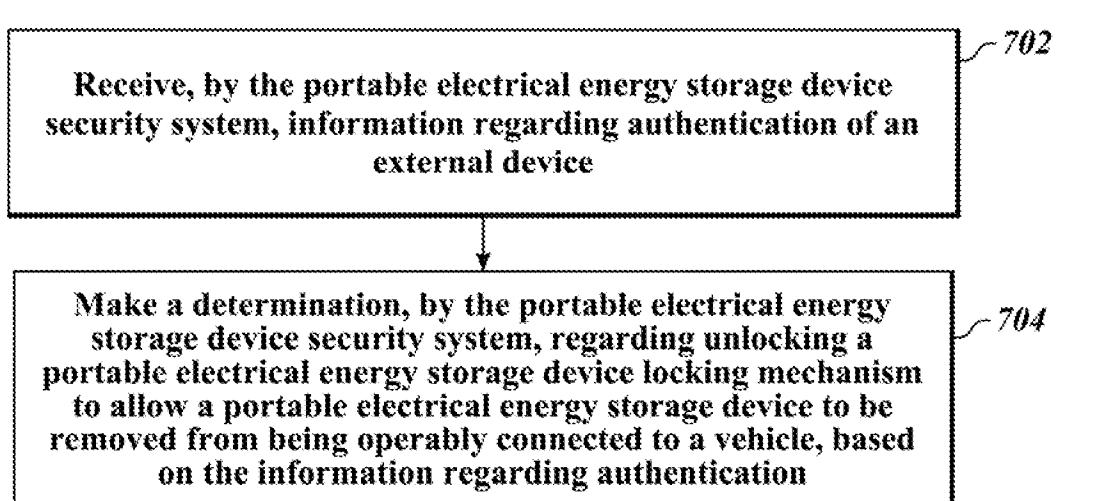


FIG. 7

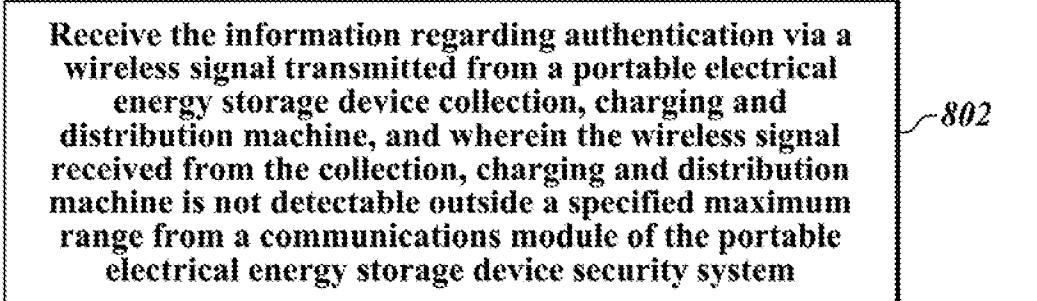


FIG. 8

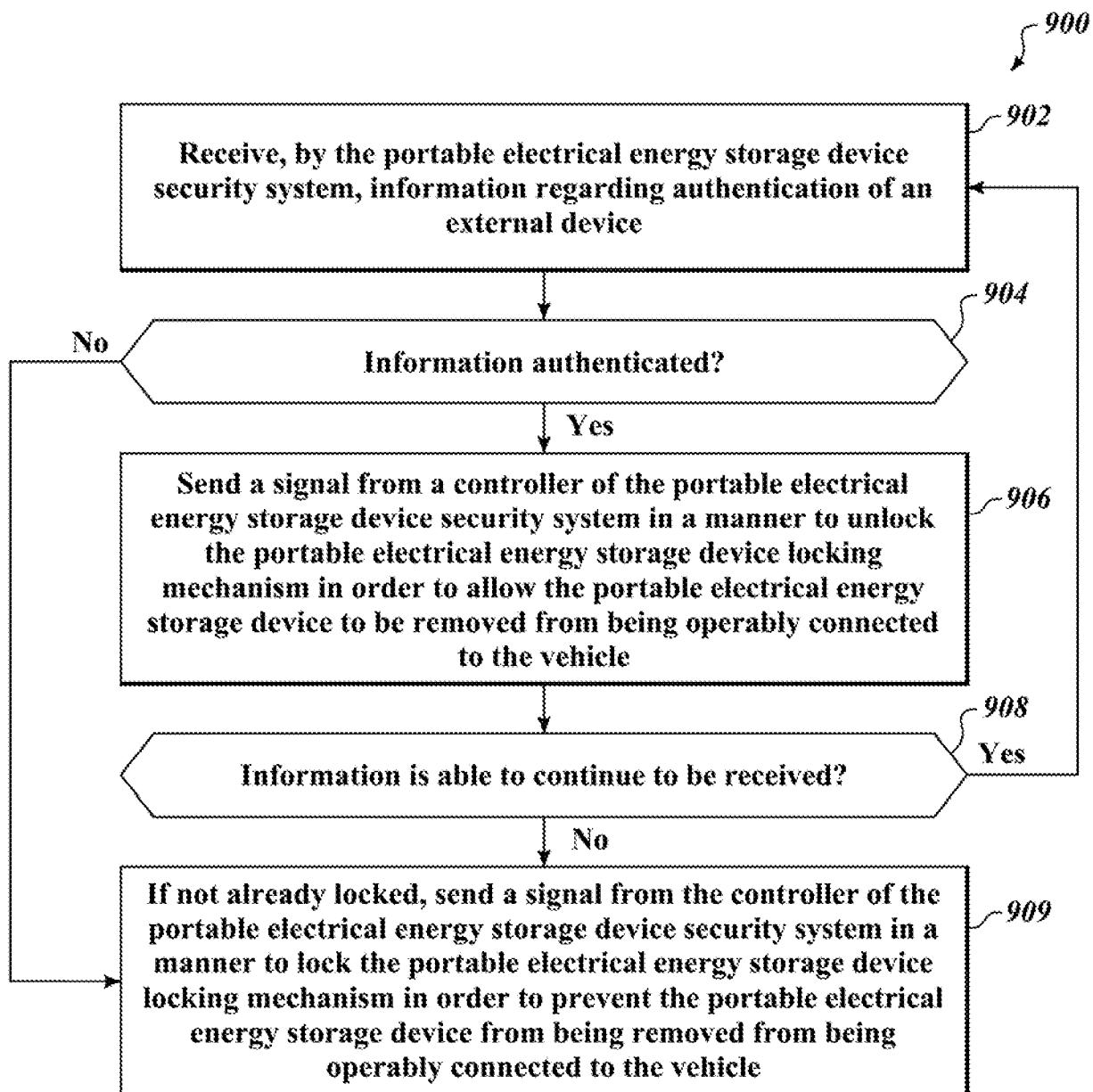


FIG. 9