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METHODS, SYSTEMS, AND DATA STRUCTURES FOR
PERFORMING SEARCHES ON THREE DIMENSIONAL OBJECTS

Priority

The present application claims priority to U.S. Provisional Application
No.: 60/442,373 filed on January 25, 2003, entitled: “Architecture and
Description for a 3D Shape Search System,” the disclosure of which is hereby
incorporated by reference.

Technical Field

Embodiments of the present invention relate generally to search and
retrieval, and more particularly to search and retrieval based on three
dimensional objects.

Background Information

Search engines for text and images have been well developed over the
past decade. This invention deals with searching for three dimensional (3D)
models from a repository of Computer Computer-Aided Design (CAD) models.

CAD and Computer-Aided Manufacturing (CAM) software has grown
from stand-alone environments towards network based collaborative
environments. Advances in 3D graphics hardware have contributed greatly to the
increasing use of 3D CAD models. Increased use of 3D geometry will lead to
internal design repositories which contain product related information such as
CAD models and context-specific documents such as specifications,
manufacturing plans, etc. Typically, design repositories are analogous to
distributed databases, spread over various departments/people in a company.

Often designers are constrained by requirements of cost and time, making
design reuse an attractive option. Design reuse necessitates searching for past
designs of parts and assemblies. Furthermore, as designers change within
companies a lot of “knowledge” is lost with past designers. Most of this “lost
corporate knowledge” can be recovered back by searching for past designs.
Clearly, reuse of past designs and knowledge from large design repositories is a
key factor in compressing product development time and can deliver significant
strategic advantage to a company.

Thus, there is a need to develop techniques that address the following

problems:



WO 2004/068300 PCT/US2004/001962

o Design Reuse: Designs which can be reused by searching for past
designs in a company. The cluster map interface or 3D quick shape creation
interface which can be used to select or sketch the part most similar to the
one being designed.

5 ¢ Cost estimation: Design histories of the retrieved parts can be
made available thereby enabling the cost estimation process. A designer can
look for the most similar part thereby reducing errors and saving time in cost
estimation.

¢ Assist in quotation process: Often, when a request for quotation is

10 received, time is spent in searching for past designs. Thus, there is a need to
reduce the time needed in responding to a Request For Quote (RFQ).

¢ Part Classification System: Most companies employ people to

specifically classify parts in their database. This not only takes time but is
also dependent on human accuracy. Thus, there is a need to streamline this
15 process and classify parts based on desired metrics.

o Reduce part duplication: There is a need, such that before

designing a part, designers can search for parts available in the database to
check if a similar part has already been designed.
» Search engine for 3D shapes: Currently available 3D shape search
20 engines do not produce good results. Thus, there is a need to improve
conventional 3d shape search engines.

Currently available database search techniques use keywords or natural
language based strategies. However in the case of 3D CAD databases since the
context is disconnected from the CAD model, it is difficult to search for CAD

25  models using keywords. Approaches such as a keyword search using the model
* filenames are also inefficient because most companies have a naming scheme

that changes with time. Further, most designers tend to remember shapes better

than the product contexts, making keyword based searches unattractive to users.

Moreover, there is a need to improve searching of 3D protein structures

30  for applications such as drug discovery and docking.
Summary of the Invention
Embodiments of the invention provide techniques for 3D search
and retrieval. More specifically, and in some embodiments, 3D shapes (objects)

are represented as graphical data structures and housed in one or more
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searchable data stores. Each 3D shape or parts of a particular 3D shape can be
retrieved from the data store with feature vectors. The feature vectors include
topology information and local geometric information associated with entities in
the 3D shape or parts of the 3D shape.

In some embodiments, a 3D shape or a part of a 3D shape can be used as
a search request to the one or more searchable data stores. The 3D shape or part
embodied as a search request can be interactive constructed from scratch,
selected by browsing a data store of 3D shapes or parts, or pasted or selected
from an existing 3D shape or part.

In still more embodiments, an answer set returned from a 3D search
request can be organized into one or more related clusters, each cluster includes
one or more 3D shape or parts associated with a particular portion of the answer
set. The returned results and clusters can be interactively rated for relevance or
non relevance and resubmitted as a modified search request. The interactions
and number of resubmitted and modified search requests can continue until a
searcher is satisfied with the results. Moreoﬂzer, the relevancy information can
be associated with the searcher and used to intel]igéntly alter any subsequent
search requests issued from the searcher.

Brief Description of the Figures

FIG. 1 is a diagram depicting a 3D shape search system.

FIG. 2 is a diagram depicting CAD and B-Rep Graph. |

FIG. 3 is a diagram depicting interactions of a Module in View
Architecture (MVA).

FIG. 4 is a diagram depicting features of a MVA.

FIG. 5 is a diagram depicting a feature interface data structdre.

FIG. 6 is a diagram depicting an example sketched plane tool.

FIG. 7 is a diagram depicting an example cutting plane tool.

FIG. 8 is a diagram depicting an example extrusion tool.

FIG. 9 is a diagram depicting portions of a data structure that is erased.

FIG. 10 is a diagram depicting example views of skeleton creation and
modification.

FIG. 11 is a diagram depicting graphical views of example query and

search interfaces.
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FIG. 12 is a diagram depicting an example of discretization in 2D
discrete space.

FIG. 13 is a diagram depicting types of voxel adjacencies in 3D discrete
space.

FIG. 14 is a diagram depicting example pseudo code for a voxelization
algorithm.

FIG. 15 is a diagram depicting a 3D model showing face objects.

FIG. 16 is a diagram depicting face and facet data structures for a cube.

FIG. 17 is a diagram depicting face identifications stored in a voxel for a
3D model.

FIG. 18 is a diagram depicting an example shape and its skeleton.

FIG. 19 is a diagram depicting skeletonization,

FIG. 20 is a diagram depicting categorization of sample shapes.

FIG. 21 is a diagram depicting an example Euclidean structure with
unwanted appendages marked.

FIG. 22 is a diagram depicting an example 3D voxel model

FIG. 23 is a diagram depicting example tubular parts.

FIG. 24 is a diagram depicting example internal cavities.

FIG. 25 is a diagram graphically depicting a technique for filing internal
cavities and example pseudo code for the same.

FIG. 26 is a diagram depicting classification of voxels based on
visibility.

FIG. 27 is a diagram depicting an example solid angle.

FIG. 28 is a diagram depicting an example 3 X 3 X 3 mask and its
associated directions for an example shape.

FIG. 29 is a diagram graphically depicting an example Bresenham
algorithm in 2D spaces.

FIG. 30 is a diagram depicting another view of the example Bresenham
algorithm of FIG. 29. _

FIG. 31 is a diagram depicting an example wireframe technique.

FIG. 32 is a diagram depicting the preservation of topology in an
example wireframe model.

FIG. 33 is a diagram depicting a simplified wireframe model.



WO 2004/068300 PCT/US2004/001962

10

20

25

30

FIG. 34 is a diagram depicting various Levels Of Detail (LOD) for a
simplified wireframe model.

FIG. 35 is a diagram depicting more views of various LOD for a
simplified wireframe model.

FIG. 36 is a diagram depicting models that are visually similar but still
distinct.

FIG. 37 is a diagram depicting an example skeleton graph.

FIG. 38 is a diagram of example skeletal edges for local volume
distributions.

FIG. 39 is a diagram of an example CAD module with skeletal entities.

FIG. 40 is a diagram of example pseudo code for a marching algorithm.

FIG. 41 is a diagram depicting edge segmentation.

FIG. 42 is a diagram depicting the classification of loops.

FIG. 43 is a diagram graphically depicting volume based reconstruction.

FIG. 44A is a diagram graphically depicting a view of the processing
results associated with a marching algorithm.

FIG. 44B is a diagram graphically depicting another view of the
processing results associated with a marching algorithm.

FIG. 44C is a diagram graphically depicting another view of the
processing results associated with a marching algorithm.

FIG. 45 is a diagram depicting an example skeleton model.

FIG. 46 is a diagram depicting a cleaned-up skeleton model.

FIG. 47 is a diagram of a flowchart for the data flow associated with a
marching algorithm.

FIG. 48 is a diagram depicting an association graph technique.

FIG. 49 is a diagram depicting a tree-based multidimensional index.

FIG. 50 is a diagram depicting nodes in a tree-based multidimensional
index.

FIG. 51A is an example diagram of a tree-based multidimensional index
data structure.

FIG. 51B is another example diagram of a tree-based multidimensional
index data structure. |

FIG. 52 is a diagram depicting feature vectors.

FIG. 53 is a diagram depicting models as points in feature space.

5-
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FIG. 54 is a diagram depicting a visual interface for a part cluster map.
FIG. 55 is a diagram depicting a Self Organizing Map (SOM) data
structure.
FIG. 56 is a diagram depicting a cluster map interface.
5 FIG. 57 is a diagram depicting a cluster map with automatic clusters for
browsing.
FIG. 58 is a diagram depicting a cluster map after performing a similarity
query.
FIG. 59 is a diagram of a flowchart depicting a method for relevance
10 feedback.
FIG. 60 is a diagram of a technique for customization based on relevance
feedback. |
FIG. 61 isa diagram of a matching technique between data store vectors
and query vectors.
15 FIG. 62 is a diagram depicting an example method for a multi-step search
process.
FIG. 63 is a diagram of example search results produced from a mul';i- ;

step search process.
DETAILED DESCRIPTION

20 In various embodiments of the invention the term “user” is presented. A
user is a searcher and a searcher can be any entity that is represented in a
computer accessible medium, such as an agent, a service, an application, a
physical user, and others. Moreover, although various embodiments describe the
use of a database, it is to be understood that the data base can be any data store

25 or collections of data stores, such as electronic filed, directories, relational
databases, object oriented databases, data warehouses, and the like. Finally, a
3D object is an electronic representation of a 3D shape or portions of a 3D
shape, in some cases some 3D objects can be viewed as 3D models.

FIG. 1 is a diagram of a 3D shape search system 100. The system 100

30  provides a platform for users to search for similar models from large repositories
of 3D models. Complicated 3D models are reduced to a simpler representation
called a skeleton. Important distinguishing features from the 3D model and the
skeleton are extracted and stored as a feature vector in a database. Finally the

database is searched and the results are shown as a clustered output. During the

6 -
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process of converting a complicated 3D model to a simpler skeletal form
(““skeletonization” from hereon), searching the skeletal representation and

clustering the output, a lot of intermediate steps occur as shown in FIG. 1.

5 The search system 100 is adapted to include:
° Insensitivity to minor changes in shapes
J Combination of geometry and topology
. Multi-level and multi category representation of shapes
. Accuracy and computational efficiency
10 U Quick, user-customized query construction

Dynamic Query Creation and Modification

The 3D search system 100 provides users with an intelligent interface. A
3D skeleton modeling interface is implemented such that it is capable of not only
letting the user sketch the skeleton of the model and submit it as a query, but also

15  enabling the user to dynamically modify the skeleton of the retrieved models to
further improve his chances of finding the intended part. The system 100 is the
first of its kind to allow creation and 3D manipulation of a 3D skeleton. The
changes made on the topology of the skeleton of the model will make the system
100 redo the search while changes only to the geometry of the skeleton will only

20 make it reorder the retrieval. Through this interaction, the query is expected to
be more close to the user’s intention and the system 100 can improve its

performance more efficiently.

Local Query

Conventionally, the only type of query that a user could make was to ask
25  for similar CAD models, by specifying an input CAD model, but this will not
best satisfy the user’s requirements. For example, the user may want to assign
more importance (or emphasis) to a specific feature or his/her main focus for
search might be a local feature in the CAD model rather than the whole model
itself. Such flexibility is not possible with the past works and their interfaces.
30  Each search is different and the user interface should be flexible enough to

handle the different requirements. Further, better query processing is needed to
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accommodate the various requests. The system 100 is designed to better meet

user requirements and to improve query processing needed to achieve the same.

Flexibility / generality of the search criteria

Past techniques have focused generally on comparing two shapes, But
there are a host of issues specific to an application domain. One main issue is
the interpretation of the similarity of CAD models. For example, with respect to
the manufacturing domain, the various machining features in a CAD model
assume greater importance. Computing any shape descriptor number, as in the
probabilistic shape distribution methods may not be customizable to the specific

domains and hence cannot take serve the user’s needs properly.

Similarity measure

Finally the user may want to quantify the shape similarity between the
input and the results. This is possible to an extent in the shape function methods.
But the definition for similarity itself is user dependent. Hence the interface
should attempt to learn the user’s perception of similarity of shapes. This is not

possible with the existing research techniques.

Shape: A combination of Geometry and Topology

The shape of any 3D model is a combination of topology and the
geometry of its constituent entities. While geometry is the quantitative measure
of an entity’s shape, size and location, topology is relational information
between geometric entities of the model. Hence, any realistic shape
representation should reflect these two ideas vsufﬁciently. Separate
representations of these characteristics will allow us to have a hierarchical search
strategy for similar shapes.

The approaches in prior art represents shape as either one of these
quantities or as a ‘composite measure’ which has no distinction between the
geometry and topology. For example, shape descriptors such as moment
invariants and shape distributions are ‘composite measures’ of the shape without
any distinction between model geometry and topology. No particular approach
can be described as generic unless it allows search based on the intent of the

user. Representing 3D models by relational structures such as graphs/trees
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achieves a lot in maintaining the distinction between geometry and topology.
However, graph representation alone may not be able to solve the problem of
capturing the intent of the user. Further research is therefore needed to make use

of the geometric information efficiently during the search/indexing process.

Graph Data Structure instead of Tree Data Structure

Herein novel methods, systems, and data structures are described that
explain why conventional techniques are not applicable for certain
environments, such as mechanical engineering and hence distinguish this
invention from past approaches.

Conventional skeleton/shock graph based 3D shape matching systems
were developed for multimedia retrieval where the models are general 3D
objects such as Aircraft (full, approximate 3D model), Cars, Fruits, etc., but are
not domain-specific. Some conventional approaches have been tested on models
without holes in their topology, because solid shapes having a set of surfaces
forming a closed hole cannot be captured by conventional tree structures.
However, such closed loop entities are encountered often and are significant in
the mechanical engineering domain, which call for Graph structures for their
representation. Furthermore, other conventional approaches are not amenable
for comparing local geometry or for partial matching. The system 100 and other
novell techniques presented herein convert skeletons into a Graph data structure

and captures the loops in solid shape.

Multi-step Search Strategy

Prior technqiues only allows a single query and allows no refinement of
that single query. In addition, that search is based on a predefined fixed set of
feature vectors which may not guarantee the retrieval of relevant shapes. System
100 allows a user to filter search results successively using a mutli-step search
interface. Although this approach may not guarantee the retrieval of relevant
shapes, it increases the chances of retrieving relevant shapes and thus offers
substanitail improvement over conventional approaches. A large number of
features including moment invariants, volume, aspect ratio, and eigenvalues are

provided to the user to assist in posing multi-step queries.
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Computational Efficiency

Computational Efficiency controls the ability of the system to handle
huge volumes. Some of conventional methods concerning B-Rep graphs are
inefficient as B-Rep graphs are huge in size for simple 3D models. Exact graph

5  matching algorithms are NP-hard. So comparing a given CAD model to the
millions of parts in the database using the B-Rep graph methods seems
impossible even with supercomputers.

FIG. 2 is a diagram 200 of a CAD and B-Rep Graph. Diagram 200
shows a simple part and its corresponding B-Rep graph. Most conventional

10  approaches developed for 3D model comparison fail to use domain knowledge.
Although shock/skeletal graph based approaches are a step forward in this
direction, the information present in the models is not properly explored to
reduce the complexity of the graph/tree matching problems. This invention uses
domain-specific knowledge including the type of entity (loops/edges) and local

15 geométry and volume information for reducing the complexity of search, and in

developing a domain-specific search system.

Disk 1/0 efficiency

Conventional efficiency in terms of disk I/O is far from satisfactory.
When the number of CAD models becomes very large, the disk /O time will be
20  alarge part in the query time. For example, supposing that a database has one
million models, and 15 milliseconds for a disk IO time, and each CAD model
occupies one disk page (in some research, the disk files resulting from the
matches take, on an average, 1 MB of disk space), it takes 4 hours for a supplely
scan over the recodes in the database. Therefore, it is important to index the data
25  to speed up the search. However, the index structure of current database
systems, such as B+ tree which has made great success, is not eligible for these
multi-dimensional data. Therefore, new indexing techniques to filter
unnecessary disk I/O is of great importance. This problem, however, has not
gained enough emphasis. One of the reasons for this is that most of the current
30 3D shape searches are still focusing on searching among very small number of

CAD models, because of the inefficiency of their approaches.

-10 -



WO 2004/068300 PCT/US2004/001962

System Processing

The process of searching for a 3D model can be described by the

following sequence of operations:
1. USER INTERFACE SIDE:

5 1.1. Query Sketch Interface

e Sketch the required shape in 3D OR

Sketch the skeleton (stick figure) of the required 3D shape
OR

Choose a model from the model cluster OR

10 ¢ Choose a 3D solid model from the local hard drive OR

Submit or sketch orthographic views for a 3D model

1.2. Feature vector Interface

e Choose required combination of Feature vectors for search

and clustering
15 2. SERVER OR SERVICE PROCESSING:

2.1. Voxelization

e Convert the 3D model into a neutral discrete voxel
representation

e Extract and store 3D model and voxel feature vectors

20 2.2, Skeletonization

Depending on the detected topology of the voxel model, perform one of
the three skeletonization operations (details are presented later):
2.2.1. Prismatic Skeletonization
2.2.2. Tubular Skeletonization
25 o Simplified Wireframe

o Extract and store skeleton feature vectors

=11 -
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2.3. Graph creation

e Detect entities from the skeleton depending on skeleton
type (loops, edges or surfaces)

» Extract and store graph feature vectors

2.4. Conversion of 2D drawings into 3D models

* Noise removal

o Dimension and title block extraction and removal

e 2D Thinning or 2D Skeletonization

e Edge and entity recognition

e Obtain continuous closed segment loops in orthographic
views

¢ Identify interior disjoint loops

o Skeletonization of non-disjoint loops using MAT

¢ Conversion of skeleton into 3D skeleton

e Convert 3D model into skeleton using any of the abdve

skeletonization methods
3. DATABASE, SEARCH AND CLUSTERING:

3.1. Graphs Comparison

o Either by graph/sub-graph isomorphism, association graph

techniques or probabilistic graph matching techniques.

3.2. Create multidimensional index structure

° Use R-tree, R+ tree, KD-tree, X-tree or any other space

partitioning techniques to index the database.

3.3. Feature vector comparison

o Based on user preferences as in 1.2 above. If not use a

default combination of feature vectors

3.4, Cluster models in database

. Use self organizing map (SOM) or any other hierarchical

clustering techniques

PCT/US2004/001962
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3.5. Present results to user through cluster map display

o Pick a representative model from each cluster and display
the part image through a user-friendly interface

. Allow picking of models for browsing

3.6. Relevance Feedback

. The user picks parts that are relevant and non-relevant

. The results are sent back to the database through the
server

o Cluster map is updated with user relevance feedback
results

. Results are displayed back to the user

3.7. Learning Agents

. Learning algorithms, such as neural networks, “learn’ user

relevance feedback preferences and stores them in a user profile

3.8. Multi Step search

. Allow user to use different feature vectors and skeletal
graphs for refining search results in a sequential or step-by-step manner.
Similarity comparison is same as those described in 3.1 and 3.3 above.
The architecture of the system 100 can be best described by at a high

level in FIG. 1. The sections below, describe embodiments of the invention in

greater detail.

1. USER INTERFACE SIDE

Referrring again to FIG. 1, the user interface essentially consists of three
interfaces, namely, Query-by-Sketch (QBS), Query-by-Example (QBE), and
Feature vector interface. The QBS interface implements two different versions
(i) 3D solid model sketching interface and (ii) 3D skeleton sketching interface.
The QBE interface consists of a (i) Cluster Map Interface, (ii) Local Hard Drive

and a (iii) 2D Drawing Interface.

-13 -
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1.1. Query Interface

The following subsections describe the various methods and modules
that are used to construct a query in our system (QBS and QBE) either directly
as a 3D solid model, as a 3D skeleton model or from the 2D views of a 3D

model.

1.1.1. 3D Solid Model Sketching

Description of the module:

This module provides a web-based and platform independent system to
create approximate geometric shapes as quickly as possible. It uses a hybrid
approach to shape creation, for instance, the use of feature based and sketch
based solid modeling. T he sketch interface interprets mouse strokes and
converts these discrete strokes into primitive entities like, line, point, arc using a
vectorization algorithm. The converted sketch can be then used to form solid
geometry. User can also use the predefined shape features such as block,
cylinder, hole, as primitive building blocks. The faces of these features can then
be used as a canvass for further sketching.

The system 100 operates as follows:

o User starts new session after logging into the shape search
website.

J He uploads or opens already existing CAD file.

) Alternate ways to start modeling is by dragging and

dropping pre-created solid shape features like block, cylinder or by
sketching approximate sketch profile by dragging the mouse or pen.

o If a sketch is created, it is sent to server for extrusion.
This can be achieved either by using separate buttons or through mouse
or pen stroke indicating extrusion.

. Server receives the command and accordingly converts
the sketch into an extruded solid and sends back the faceted object to the
client.

. Newly created solid is viewed in the client window.

J User selects a face of the solid and starts sketching on it.

. The dragged predefined shape features can be edited to

obtain the approximate shapes. This editing involves changing the

14 -
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dimensions or positions of the features, copying and pasting the features,
deleting or suppressing the features etc.

. Due to approximate geometric shapes there might be over
hanging or protruded portions of the solids which are not needed.

5 The user will then use a 3D eraser to remove unwanted part.

. Most of the computationally intensive functionalities, e.g.
solid modeling, feature creation and modification, are transferred to the
server in order to reduce the size of the clients.

Module Architecture:
10 FIG. 3 is a diagram 300 of interactions occurring with a Module-in-View
Architecture (MVA). The proposed interface is based on ToolCAD architecture.
It consists of Model-View-Controller (MVC) architecture. This forms the core
of the module.

. Model — Application object. The Geometry object in this

15 case. It contains the details of the geometry being created. Geometry in
this case consists of created solid shapes.

. View — The screen representation of the Model. Magician
library used to display the faceted geometry objects with their
corresponding relative transformations.

20 . Controller — The way the user interface reacts to the user
input. The Magician library used to capture the user input like picking,
dragging, etc.

FIG. 4 is a diagram 400 of features in MVA 300. In this case diagram
400 holds a list of features and sketches created. Features are predefined objects
25  which hold the data like, list of faces, edges with it. Sketches when extruded
convert to features. These are same as predefined features only in this case these
hold pointer to the underlying sketch. Diagram 400 consists of the faceted data
that is shown to the user. A user can interact with this data and change it.
FIG. 5 is a diagram of a feature interface object 500. This may represent

30 one more steps into a hierarchy where model can withheld multiple products.

Each product will have separate Geometry object which in turn wiil hold the
features created or predefined. Geometry will as well hold the faceted

representation of the solid model formed after Boolean operations are performed
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on the features. This faceted structure 500 is used by a View object in order to
display it to the user.

Feature Module: Features are predefined 3D shapes which can be
directly used for creating solid model. Many times users want to have same

5 shapes again and again in the model. The most common examples can be
rectangular solid blocks, cylinders, holes, slots etc. To improve the speed of
geometry creation such shapes are kept ready to deploy into the workspace.
These shapes have default size when first put in the workspace. However each
face of the feature will have handles for manipulating the size and position of the

10 feature. When a feature is selected, these handles are displayed and user can
drag these handles and change the size of the feature interactively. The features
are created using ACIS solid modeler which recites on the server and then
faceted to form a list of faces. Edges of these faces are extracted and are stored
with each feature. All features are represented by just list of edges. So when a

15  user selects a feature, it is shown in wire-frame mode. However actual 3D
model of the feature is stored on server side which is then used to perform
Boolean operations with all previously created shapes to get the final shape
model. Each sketched and extruded shape is also a user created feature and can
be saved separately for later use. Thus the interface is quite much customizable.

20  These user created features will hold a pointer to basic underlying sketch from
which these are created. (

Sketch Module: After the user defines a sketching plane, the sketching
begins by automatically rotating the sketch plane to make it parallel to the
screen. The user then sketches an outline or a profile. The profile is then

25  interpreted into vectors by a vectorization algorithm, such as, and by way ‘of
example only, the vectorization algorithm described by Dov Dori and Liu
Wenyin. These vectors form the profile of the wire that can be extruded to form
a solid.

Tools for shape creation: For simplifying the process, some tools are

30  optionally provided. These tools can be:

Sketch Plane: User chooses any face of the solid shape to create sketch
plane in either of the following ways. An example sketch plane tool 600 is
shown in FIG. 6. This tool can perform the following processing:

1. Offset to the face of solid already created.

-16 -
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2. Choosing three points to pass a plane through it
3. Choosing any edge of existing solid to create plane
through it.
4, Rotating a sketch plane around any edge of solid.
5 Cutting Plane; Cutting plane is similar to sketching plane; however it is

used interactively by the user for creating a cut into the solid. The plane can be

any sketched profile. An example cuiting plane tool 700 is shown in FIG. 7.

FIG. 7 shows the working of the cutting plane tool 700. This tool 700 uses

functionality of face dragging and then uses ACIS to finally create a cut into a
10 solid.

Extrusion through Digital Pen or Mouse strokes: This function is

important for creating extrusion from 2D shape profile. It is more than intuitive
that once the sketch loop is finished, a user will use same device that is the
mouse or digital pen to extrude the profile. So after user finishes the loop, user
15 prompts for extrusion through next mouse stroke or drag and interactively
specifies the depth till which he/she wants to extrude the profile. This is more
similar to using cutting plane. Example of an extrusion tool 800 is shown in

FIG. 8.
3D Eraser: This function is used to remove hanging parts of the solid
20 features. For this, a voxelized model of the solid shape is used. As shown in the
example 3D eraser tool 900 of FIG. 9, a user will choose the voxels to be
removed by selecting them and then when he is finished, Boolean subtraction of
selected voxels with the solid model is performed and the result is displayed to
the user. User may or may not see the underlying voxel model. This tool 900 is

25  used to remove any inconsistencies in the model.

1.1.2. 3D Skeleton Creation and Modification Interface

A 3D skeleton modeling interface is implemented such that it is capable

of not only letting the user sketch the skeleton of the model and submit it as a
query, but also enabling the user to dynamiclally modify the skeleton of the

30 retrieved models. The changes made on the topology of the model will make the
system redo the search while changes only on the geometry will make it reorder

the retrieval results. Through this interaction, the query is expected to be more
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close to the user’s intention and the system can improve its performance more
efficiently.

This interface is initiated by the fact that the user may lack suitable
examples for the query. The system enables the user to construct the 3D skeleton
by assemble the primitive shapes first and then manipulate the shapes in 3D
space (see FIG. 10 a diagram 1000 of a view of 3D shape manipulation). The
resulted “skeleton” includes the essential topology and geometry information
just like the skeleton file obtained from the skeletonization. Currently the
primitive shapes include edge such as straight line and curve, and loop such as
circle and rectangle. The 3D manipulation annotations include rotation, panning,
scale and zooming which are designed for both the individual shépe primitive
and the global assembly. The interface also allows the user to delete a selected
shape, clear current configuration, import a skeleton graph file to visualize it,

and submit the constructed skeleton as a query for searching similar shapes.

1.1.3. Cluster Map Interface

See section 3.5 described herein and below.

1.1.4. Local hard drive interface

An option is given to the user to select a CAD file that has already been
generated. The file can be anywhere where the user has permissions to access
the file. The file can be in any CAD format supported by our invention. A
standard pop up window is provided to the user to select the CAD file.

1.1.5. 2D Drawing interface

Users are provided options to send in their scanned drawings to the

server.

1.2. Feature vector Interface

The current invention includes techniques for customization of the
feature vectors in partial or full by the user to describe his search intention
accurately as shown in diagram 1100 of FIG. 11. The search query is executed
in multiple levels/stages to get better results. This interface allows the user to

assign the different feature vector(s) to these various tiers in the search process.
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This helps the user to describe his search intent more accurately. The user can
further reassign the weights for these feature vector(s) as applicable to improve
his search. By engaging the various options in the interface can instruct the
system to do an exact or partial search. A partial search query involves sub graph
isomorphism and this is dealt in the skeletal graph level. The user can also put
into use the neural network to get efficient query results. The user can set his
search preferences and can also store it with his profiles. A user can have
multiple profiles defined for various search situations as per his frequent
requirements. This interface also allows the user to manage these profiles and
also to provide relevance feedback to the system.

2. SERVER OR SERVICE SIDE

2.1, Voxelization

Voxelization is the process of converting 3D geometric objects from their
continuous geometric representation into a set of voxels that best approximates
the continuous object in a 3D discrete space. The 3D discrete space is a set of
integral grid points in 3D Euclidean space defined by their Cartesian coordinates
(x,y,z). A voxel is the unit cubic volume centered at the integral grid point. T
he voxel value is mapped into {0,1}: the voxels assigned "1" are called the
"black" voxels representing opaque objects, and those assigned "0" are the
"white" voxels representing the transparent background. FIG. 12 shows a
diagram 1200 of an example for discretization in 2D space.

Two voxels are “26-adjacent” if they share a vertex, an edge, or a face
(see FIG. 12). Every voxel has 26 such adjacent voxels — eight share a vertex
(corner) with the center voxel, twelve share an edge, and six share a face. Face-
sharing voxels are defined as “6-adjacent”, and edge-sharing and face-sharing
voxels are defined as “18-adjacent”. Conventional approaches for voxelization
use a polygonal model, a parametric curve or an implicit surface as input. Scan
filling or recursive subdivision algorithms are used for voxelization. Prior to
voxelization, the model is normalized with respect to translation and scaling.
The scale factor is stored in the database for future computations.

In one embodiment, an ACIS solid modeling kernel for voxelization of a
3D model is used. The input to the ACIS kernel is a B-Rep model. FIG. 13 isa

diagram 1300 depicting example pseudo code for a voxelization algorithm. In
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one embodiment, a bounding box for the 3D model is constructed and a voxel
size chosen depending on the minimum bounding box dimension or use a user
specified voxel size. The discrete bounding box dimensions are then calculated.
All faces and edges in the 3D model are assigned faceIDs and edgelDs

5  respectively and stacks are created for each face and each edge. The face and
edge stacks can be independent or dependent of each other depending on various
program conditions, memory etc. The 3D model is looped through in increments
of the voxel size and the intersection of every voxel with the model is checked.
A ‘1" is appended to the text file at the position containing a voxel and a ‘0" are

10  every position not containing a voxel. For all positions containing a voxel, get
all the faces and edges intersecting with the model and store the faceIDs and
edgelDs of the corresponding faces and edges in the voxel under consideration.
For the faces and edges intersecting with the voxel, store the voxel under
consideration in the face and edge stacks. Thus we now have references for a

15  voxel from a face/edge and vice-versa. This can be used as input to the
simplified wireframe algorithms described elsewhere in this document. It is
important to note that voxelization for a polygonal model can also be performed.
The process for voxelization of a polygonal model is presented in the next
section.

20 A 3D model consists of a list of Face objects. A Face object represents a
face of the resulting three-dimensional solid. A Face consists of an ordered list
of the vertices of the face and a list of Facet abjects as shown in the example 3D
model 1400 presented in FIG. 14. The Facet list contains the list of triangles
generated by triangulating the face of the solid. This structure is better than

25  storing only a list of facet triangles as it can show the correct wire frame view of
the solid model, This structure also maintains the information of all the triangles
belonging to a face that makes it possible to pick a face at the client-side. FIG.
15 shows an example of this data structure for a cube 1500. The cube 1500
consists of 6 Face object. Face objects consist of points and Facet objects, e.g.,

30 Face 2 consists of 4 points (A, B, C, and D) and 2 Facet objects. One of the
Facet objects, as shown in FIG. 13, stores the three points: A, B, and C, normal
to the Facet, and the Face number to which the Facet belongs. Since one knows

the mapping between Facet and Face, one can perform voxelization of a
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polygonal model and store Face IDs into each voxel as described in the sample
pseudo code 1300 of FIG. 13 above.

Significant differences between the presented example voxelization
algorithm and previous approaches are listed below:

Parallelization: Since voxelization is a simple domain decomposition
problem, it is amenable to parallel computing. Each slave processor can be
assigned a domain range and the master processor can assemble the results
together.

Voxel size: A size range for voxelization of 3D engineering models is
developed. It is seen that ideal voxel sizes for most engineering shapes falls in
the range of 1/32-1/64 times the minimum bounding box dimension. The
condition for a voxel size being “ideal” is that the major features in a part are
captured in the voxel model; i.e. very small features may be lost during
voxelization because the feature size is smaller than the voxel size.

Adaptive voxelization: Adaptive voxelization for a 3D model is
performed. Adaptive voxelization is the iterative process of voxelizing a 3D
model, evaluating the voxel model for exactness with the 3D model and finally
re-voxelizing with a voxel size lesser than the earlier voxel size until an
acceptable voxel model has been attained.

Storing face/edge information in voxel: The 3D model stores
Face/Edge information in every surface voxel. An example of Face IDs being
stored in voxels is shown in diagram 1600 of FIG. 16. Prior to voxelization,
Face and Edge IDs are assigned to every face and edge in the 3D model. As
voxelization is performed face/edge intersections for every voxel are checked
and face/edge IDs are stored in intersecting voxels. The process of edge ID
storage is similar to the process of storing face IDs shown in FIG. 16. The
Face/Edge ID information is used in the simplified wireframe as described in
greater detail later in this invention.

Voxelization using a solid modeling kernel: With various embodiments
of this invention, voxelization is preformed using the ACIS solid modeling
kernel as opposed to performing voxelization using any of the available
algorithms available. This is important because none of the conventionally

available algorithms are capable of storing face and edge IDs in voxel models.
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There are a variety of other uses of the present voxelization algorithm,
such as:

Distance Volume Generation: A distance volume is represented within
a volume dataset. A particular value stored in a particular voxel represents the
shortest distance to a surface of the 3D model that it represents. A distance
volume representation is an important dataset for many graphics applications,
most notably in the manufacturing visualization domain. A distance volume is a
natural consequence of using ACIS for voxelization, since one can calculate
distances from the surface of the model and store it in the voxel data structure.
Some applications of using distance volumes are CSG surface evaluations, offset
surface generations, determination of regions of maximum or minimum

thickness in net-shape manufacturing, and 3-D model morphing.
2.2. Skeletonization

2.2.1. Definition of skeletonization

In various embodiments of the invention, a skeletal representation
(hereinafter “skeleton”) is defined as: “the minimum representation of the major
shape of a part in 3D”. In other words, a skeleton is a simplified representation
that neglects the “minor” features in a shape such as small radii and holes while
still retaining the “major” features and preserving “major” topology relationships

in the part. Skeletonization is any process that generates such a skeleton.

A skeleton is:
a. Centered from the boundary
b. Preserves connectivity
c. Free from boundary noise
d. Rotationally invariant
e. Computationally simple

2.2.2. Mathematical model of a skeleton and

skeletonization

Formal Definition of a Skeleton

A skeleton is a tuple § = (G,T) where:
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G={g,.8,,.+&,}is the finite set of geometric entities composing a

skeleton, and
Tis a nxn adjacency matrix that defines the topological connectivity
between elements of G .
5 For a skeleton to exist, G is defined as the set;
G=EuvLuSUH where:

E= {e,,ez,...,ep} is the set of edges,

L= {11,12,...,Zq} is the set of loops,

S ={5,,5,,...,5, } is the set of surfaces, and
10 H ={h,h,,...,h}is the set of holes

However, the sets £, L, S and H need not all be non-zero for an instance

of§.
Matrix T is defined as:
T= [:t,.j ]m where:
5 - N if g, isadjacenttog;
Y0 if not
and N is a nonzero number describing the connectivity between entities
g and g;.
For a skeleton to exist, both G and T must be non-zero.
Formal Definition of a Geometric Feature
20 A geometric feature y in a shape W is defined as a set of geometric

entitics ¢ (i =1..n) that reduce to just one geometric entity in a skeleton S . In

some cases, it may be possible that the entire shape is a single geometric feature.
In example shape 1700 shown in FIG. 17, there are two geometric
features present in shape ‘¥ even though the number of geometric entities in
25  Wis more than two. The skeleton §' has two geometric entities — a loop and an
edge.

Formal Definition of a Shape

A shape is a tuple ¥ =(y,7) where: ¥ ={7,,7,,....,7,,} is the set of

geometric features composing a shape, and
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T is a mxm adjacency matrix that defines the topological connectivity

between elements of ¥ .

Matrix 7= [Tw ]mxm where:
1if y, isadjacenttoy,
T, =
Y 0if not
5 For a shape to exist, both ¥ and r must be non-zero.

Formal Definition of Skeletonization

Skeletonization is defined as a mapping O: ¥, —— S, -0 where:
S,is the skeleton produced by subjecting a shape W, to the

skeletonization operatorO and, U is a noise factor removed during
10 skeletonization.
It is easy to see that in the present context skeletonization is a many-to-

one mapping as shown in FIG. 18, an example skeletonization mapping.

2.2.3. Categorization of shapes

Engineering shapes can be categorized into the following categories:

15 i.  Solid: Solid-like shapes usually have high material usage
compared to their size. They usually have non-constant wall
thickness and have few features. Solid shapes are typically
manufactured by machining or forging. Very few solid parts are
manufactured by net-shape processes such as molding or casting,

20 1. Shell: Shell-like shapes usually have minimal material
usage compared to their size. They usually have constant wall
thickness and are simple shapes. Solid shapes are usually
manufactured by sheet metal or net shape processes such as molding
or casting. Tubular shapes also come under the category of shell-like

25 shapes.

ii1. Hybrid: Hybrid shapes, as the name suggests are a
combination of the above two shapes. Some parts of the shape have
solid-like features and some parts have shell-like features. They are
usually manufactured by molding or casting.

30 Examples of each type of shape are shown in FIG. 19.
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2.2.4, Skeletonization methods

It is observed that skeletonization methods for the above three categories
of shapes are different from each other. FIG. 19 also shows the skeletonization
methods for different categories of shapes. For example, a prismatic

5  skeletonization method for solid shapes, a tubular skeletonization method for the
special category of tubular shapes (which are shell-like) and a simplified
wireframe method for the remaining shapes (which may be shell-like or hybrid).
Any combination of prismatic, tubular and simplified wireframe skeletons could

also be formed as a skeleton with appropriate user interactions.

10 2.2.4.1. Prismatic Skeletonization

The concept of a skeleton is as a unique descriptor of shape. Thus, for
some embodiments of this invention, a skeleton thereby describes a class of
shapes that may have similar engineering characteristics. Various present
embodiments search for similar skeletons, which will lead to similar shapes. A

15  related area in image processing employs a skeletonization process for
simplification of complex pixel (2D) or voxel (3D) discrete geometry into a wire
(1D) representation. Three approaches for generating skeletons from 3D
geometry are:

i. Distance transformation: Distance transforms which have been widely

20  used for skeletonization. They are fast and easy to compute. However,
skeletons from distance transforms require significant noise filtering and
sometimes have topological instability. i.e. they do not preserve topology.

i, Euclidean skeletons: Euclidean skeletons are also called medial axis

transforms. They are computationally complicated and generate unwanted

25  appendages during skeletonization. Because of these reasons, Euclidean
skeletons will not be preferably used with various embodiments this invention.
However, an additional pruning process can be developed for them to be used
with the teachings of this invention. An example of a Euclidean skeleton is
shown in FIG. 20.

30 iii. Thinning algorithms: Thinning algorithms are widely used in the

medical imaging domain. Thinning is a process that reduces a voxel model to a
skeletal representation that is a voxel thick. Voxels are removed after checking

conditions for preserving topology. Six directions are typically defined for

25
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checking topological connectivity: UP, DOWN, EAST, WEST, NORTH and
SOUTH. Two types of thinning algorithms conventionally exist — Serial and
Parallel.

Serial algorithms, as the name suggests, perform thinning by removing
voxels from any one of the six directions independently. Parallel algorithms
remove voxels from all six directions concurrently. In practice any of these
algorithms can be used for thinning. In this invention, any parallel thinning
algorithm that reduces a 3D voxel model to a medial axis rather than a medial
surface can be used. Examples of a 3D voxel model, its medial surface and its
medial axis are shown in FIG. 21. Thinning is the one used method of
skeletonization in this invention, since it best balances the requirements of
topological connectivity, stability under small changes, and computational
efficiency. Furthermore, a combination of distance transforms and thinning can

be used for obtaining a prismatic skeleton.

2.2.4.2. Tubular Skeletonization

Tubular model is defined as a 3D geometry model which includes one or
more tube structure. Because a thinning algorithm is based on prismatic parts,
thinning a 3D tubular part can sometimes cause an unexpected result. Thinning
algorithms do not work well when a part is composed of multiple tubes as in the

examples of tubular parts of FIG. 22. In this case, a pre-processing step called

* Filling Internal Cavity Volume (FICV) is applied to the part voxels to convert

tubular part voxels to prismatic part voxels.

FIG. 23 shows the volume that should be filled to convert tubular part
voxels to prismatic part voxels. The shaded volume in FIG. 23 is called tubular
cavity volume. The basic concept of FICV is filling the tubular cavity volume.
To fill the tubular cavity volume, it is required to identify which portion of the
cavity volume is to be filled among all cavity volumes in the boundary volume
of the model. The cavity volume can be obtained through the voxel model.
After voxelization, each voxel has a “1” value if the voxel is located in the
model and has a “0” value if the voxel is located outside of the model. Image2
in FIG. 24 shows the voxelization result and image4 in FIG. 24 shows the

inverse voxelization result which represents cavity volume. However, the cavity
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volume does not always mean tubular cavity volume because the cavity volume
also includes some redundant volume in the boundary volume. On the basis of
the voxel location, the cavity volume can be classified as internal cavity volume
and external cavity volume. Internal cavity volume is a portion of cavity volume
which is surrounded by a part. In a tubular structure, this internal cavity volume
can represent the tube cavity volume. In contrast with internal cavity volume,
external cavity volume is a portion of cavity volume which is located outside of
the model boundary. The core contribution of the FICV process is how to
identify tube volume, which is called internal cavity volume among cavity
vélume. |

One of the main properties of an internal cavity is its visibility. In most
cases, the internal cavity volume is hidden or blocked by the model so it is less
visible than the external volume. To measure how much visible a volume is, the
degree of visibility is defined. The degree of visibility identifies how much a
volume is visible. If the volume is completely visible in all directions, its degree
of visibility is 1. If the volume is completely blocked by other object so that it is
not visible in any direction, its degree of visibility is 0. In a case of the “A”
cavity voxel (shown in FIG. 25), which is located on the entrance of tube
volume, the voxel is half visible and half invisible and its visibility is 0.5. The
basic strategy of FICV process is identifying the internal cavity volume using its
visibility. First, FICV voxelizes cavity volume and measures a degree of
visibility of each cavity voxel and determines a cavity voxel as internal cavity if
its degree of visibility is low.

To represent a degree of visibility in mathematical form, the concept of
solid angle is used with embodiments of this invention. A solid angle is defined
as the angle subtended at the center of a sphere by an area on its surface
numerically equal to the square of the radius. FIG. 26 shows the concept of solid
angle. Other than FIG. 26, the diagram might suggest, the shape of the area does
not matter at all. Any shape on the surface of the sphere that holds the same area
will define a solid angle of the same size. Also, the diagram 2600 only shows the
elements that define a solid angle, not the solid angle itself. The solid angle is
the quantitative aspect of the conical slice of space, which has the center of the
sphere as its peak, the area on the surface of the sphere as one of its spherical

cross sections, and extends to infinity. The maximum solid angle is about 12.57,
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corresponding to the full area of the unit sphere, which is 4. Standard unit of a
solid angle is the Steradian (sr). (Mathematically, the solid angle is unitless, but
for practical reasons, the Steradian is assigned.) If all the visible directions are

projected into the unit sphere, a degree of visibility can be defined as below:

Degres of visbility = visible area in the u.mt sphere
5 - surface area of unit sphere

Directional visibility is defined as whether a voxel is visible or not in
certain direction. If it is possible to know all directional visibilities of a voxel,
then the degree of visibility can be calculated. Since the number of directions
from a voxel is infinite, the calculation cost to compute all directional visibilities

10  of avoxel is very high. To save the cost of computation a discrete directional
visibility is calculated. The idea of discrete directional visibility is defining
equally distributed finite number of visible directions in a voxel and mapping the
total number of visible direction to a visible area. If N equally distributed
directions are defined and M visible directions exist, the degree of visibility can

15  be shown to be M/N. To gather equally distributed directions, this invention
uses a N x N x N size cube called a mask. FIG. 27 shows a 3 x 3 x 3 mask. In
FIG. 27, each boundary voxel represents the possible visible directions from a
voxel. For example, a directional mask voxel “A” represents the direction (-1,-1,
‘1) in Cartesian coordinate. If the voxel can be seen in the direction “A”, then a

20  mask voxel “A: is marked as visible. Otherwise, it is marked as invisible. In
this case, each mask voxel is assumed to occupy 4m/26(total unit sphere surface
area/a number of all possible directions) Steradian in the unit sphere. After
acquiring all 26 directional visibilities, a degree of visibility can be calculated

from below equation defines as:

visible area in the unit sphere _ a number of visible mask voxels

Degree of visibility = surface area of unit sphere " atotal number of mask voxels
The idea can be extended to the N x N x N mask. For example, a 5x5x35
mask has 5°-3%=98 directional mask voxels on the boundary of the mask and a
30  NxNxN mask has N*-(N-2)’=6N>-12N+8 directional mask voxels.
A directional visibility of direction (a,b,c) can be calculated using ray

tracing method. A ray(a,b,c) is shot from the center voxel. If it go through any
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model voxel, then a voxel is not visible in (a,b,c) direction. In the other words, if
aray goes through all cavity voxels and finally hits a boundary, then a voxel is
visible in the direction (a,b,c). To determine a directional visibility of (a,b,c)
direction on the NxNxN mask, it is required to know the all position of voxels
which are passed through by the ray(a,b,c) from the center of the mask. A 3D
Bresenham algorithm is one of most popular algorithm to solve this problem.
With embodiments of this invention, it is demonstrated how to apply a
2D Bresenham algorithm for passing through voxels and extending it to 3D
space. FIG. 28 shows how the Bresenham algorithm works in the two
dimensional space. Assume that u,=vy line in 2D plane in and the pen has been

stepped from the origin to the position labeled “P”. There can be two possible
next steps: A diagonal step to point A and a horizontal step to point B. If AE <=

BE, then the point A is closer to the exact line than the point B and otherwise,

the point B is closer than the point A. Then, the algorithm selects the next step

as the closer point and repeat to find next step. The algorithm can be extended to
vy _z

. . X
3D domain. Assume that a line — ===
u v ow

in 3D plane and [u[>max(|v],|w]).
Then, it is possible to apply Bresenham algorithm to P:(x,y) and Q:(x,z) domain
and the result is a set of points as (x1,y1), (X2.¥2), (X3,¥3). .. and (x1,21), (X2,22),
(x3,23).... Then merge P domain and Q domain together by x. As a result a set of
points (X1, v1, 21), (X2, Y2, Z2), (X3, ¥3, 23)... can be obtained.

FIG. 29 shows how the directional visibility can be gained using
Bresenham algorithm in the 7 x 5§ mask in 2D. There is a voxel A(0,0) and
direction mask voxel B(3,-2). To check Voxel “A”’s visibility of direction (3,-
2), a process “FICV” checks all the voxels in the ray A-B whether the ray A-B is
blocked by filled or model voxel or not. After applying the Bresenham
algorithm, all the voxel “c” and “d” {c(1,-1), d(2,-1), B(3,-2)} which are located
between voxel “A” and directional mask voxel “B” can be calculated. Each
voxel is checked whether the voxel is filled or not and the direction AB(3,-2) is
considered as invisible direction if voxel “c”, “d” or “B” is a model voxel. If
not, the test is extended to next pattern by adding stepping vector (3, -2) to the
all voxels. ¢(1,-1) ->¢’(4,-3), d(2,-1)->d’(5,-3), B(3,-2)->B’(6,-4). Then, check
again whether ¢’, d” and B’ voxels are a model voxel or not. The test is extended

until the range of the voxel is out of boundary. For saving a cost of calculation,
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3D Bresenham algorithm variables are stored in each direction mask so that it
can avoid a redundancy of calculation for every cavity voxels.
Once all the directional visibility information is calculated, it is possible
to determine the voxel is internal cavity or external cavity by a degree of
5 visibility which is a number of all visible directions in NxNxN mask divided by
a total number of all possible directions in NxNxN mask. According to
statistical analysis, it is feasible to determine the voxel as internal cavity if a
degree of visibility is less than 0.30.
The result of identifying internal cavity volume can have many
10  applications. One of the applications is detecting core and split core candidates
in casting area. In this invention, each internal cavity volume represents a core
candidate depending on a parting direction. After parting direction is
configured, this invention can also be applied to finding a number of cores and
figure out a shape complexity of cores,
15

2.2.4.3. Simplified Wireframe

The simplified wireframe skeleton starts with a voxelized model that has
references to faces and edges of the 3D model. The objective of the simplified
wireframe is to retain all ‘major’ features/portions of a 3D model, while

20 preserving the ‘major’ topology of the 3D model. Furthermore, a level-of-detail
simplification can be performed. A voxel wireframe model is constructed by
retaining all voxels that have two or more facelDs stored in the voxel as shown
in FIG. 31.

The first step in obtaining a simplified wireframe is to preprocess the

25  data and identify face loops. All face stacks ére considered and they are sorted
in order of descending number of voxels in them. Pick the stacks in order of
descending number of voxels. For each stack, start at a voxel and check
adjacencies with the neighboring voxels and form a linked list type of data
structure with ‘previous’ and ‘next’ pointers. The loop ends when the first voxel

30  isarrived to again. If all the voxels in a stack have not been traversed then the
face has internal loops. Start with all the voxels that have not been traversed and
repeat the previous step of forming a linked list type data structure. In this way

one is able to identify all loops (connected or disconnected) in a face. The
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remaining task is to identify which loops are internal or external. Different
methods can be used, but using an approach to check the number of voxels for
each loop in a face is beneficial and optimal. The one with higher number of
voxels is the ‘External’ loop and all others are contained inside it, i.e. ‘Internal’
5  loop. Thus all loops in a face stack are acquired with the distinction of each loop
being internal or external. It is now easy to see that the loops identified fall
along the edges of the 3D model.
The next step is to traverse the loops in the voxel wireframe as shown in
FIG. 30. Since we have all voxels and loops belonging to all edges in the 3D
10  model, we can traverse the model along edges. Pick the longest edge in the
model i.e. the one having most number of voxels. Construct an NxNxN mask,
N=2n+1 (i=0, 1, 2..., n) depending on the 3D model dimensions and other
heuristics. Any voxel that falls within the mask while traversing the edges of the
3D model is marked as ‘D’ (for Deleted). After having completed traversing a
15  loop, check if deletion of voxels will change topology drastically. Topology
changes are identified by direction vectors changing direction rapidly, as
illustrated in FIG. 32. Connect the voxels that when deleted will change
topology drastically to the voxels that deleted them while traversing. While
deleting voxels, the faceIDs and edgelDs of deleted voxels are passed on to the
20  voxels that deleted them. This process is repeated until all loops are exhausted.
This gives the first level-of-detail (LOD) simplification as shown in FIG. 33.
For future LOD simplifications, the number of voxels in each retained
loop is counted and the relation between loops is identified. i.e. are the loops
intersecting, or do they share a common edge. This can be identified from the
25  edgelDs and facelDs stored in the voxels. An example of LOD simplifications
possible for a model is shown in FIG. 34.
If CAD system manufacturers store the model feature history in the CAD
model and are able to roll back the CAD model, they are able to have a LOD

reduction like ours. One can use such an LOD reduction as a skeleton.

30 2.2.5. Levels of Detail

Different details in engineering parts can be captured by the skeletal
graphs at different levels for resolution for the same part. In various

embodiments, a 3D model is represented at different levels of resolution by a
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hierarchical set of skeletal graphs. The various hierarchical skeletal graphs are
generated by varying the voxel resolution for the 3D model as described in. The

mumber of voxels for a 3D model is determined based on the smallest dimension

of its bounding box. The voxel size is calculated as %" where s is the smallest
bounding box dimension and 7 is the level of resolution desired. FIG. 35 shows
example pseudo code used for producing some skeletons generated by varying
the value of n.

Hierarchical structures are well supported by studies in human cognition.
One such study suggests that that the perceptual approach to shape organization
is dynamic. A partial order is apparent that relies on a hypothetical evolution or
morphogenesis that is an integral part of the shape description. In the
conventional approach, shapes that are visually not all that different ultimately
end up in entirely different ball parks. In general, human comprehension of an
object’s shape follows the principle of “from remote to closer”, “from outer to

inner”, “from total to detail,”

The hierarchical skeletal graph structure is an example of a dynamic
approach to shape description. The advantage of using a dynamic approach is
that similar shapes can be detected at different resolutions. For example,
consider the shapes in FIG. 36. These shapes although visually similar, have
very different shape descriptors through conventional approaches. The skeletons
for these shapes at the same voxel resolution will also be different. However,
they will yield similar skeletons at individually different voxel resolutions.

Thus, one can detect them as similar at some level of detail.

2.3. Graph creation

The skeleton obtained by the above method is processed to identify the
high level entities — edges, loops, nodes. Edges are the set of voxels that form a
basic geometric entity. Loops are a formed by a single or group of edges
constituting a closed path, Nodes are the voxels that mark the ends/intersection
of the edges/loops. An example of skeletal graph terminology is shown in FIG.
37. Example skeleton edges with volume distribution are shown in FIG. 38.

Moreover, an example CAD model with example skeletons is shown in FIG. 39.



WO 2004/068300 PCT/US2004/001962

With various embodiments of this invention, a skeleton marching
algorithm to identify these entities from the skeleton is depicted as example
pseudo code 4000 of FIG. 40. This marching algorithm 4000 shown in FIG. 40
uses a set of masks to identify the types of neighboring voxels for each voxel in

5  the skeleton. The algorithm 4000 selects a starting voxel for marching. An
ordinary voxel has 2 neighbors. The number of neighbors for each voxel is
calculated as they are visited. When a voxel has more than 2 neighbors, it is a
potential node candidate. Also when a voxel has only one neighbor in its 26
voxel neighborhood it is a terminal node. Further processing is done at the

10 region near these voxels to identify the correct nodes. The set of voxels visited
between two nodes form an edge. This set of voxels forming an edge are then
assigned an entity id and stored in the entity stack. A curve fitting subroutine is
used to approximate the geometry of the edges. This can be used for exact
matching in the search process.

15 When the marching algorithm 4000 revisits any node, it means that a
loop has been traversed. The entity stack is then processed to identify the edge
or set of edges which form the loop. The algorithm 4000 maintains a node stack
and processes the branches at each node one by one. Once all the voxels are
visited and the related edge/loop processing is done, the algorithm 4000 is

20 complete. In the case of multiple loops in the same skeleton, some of the loops
share one or many edges with other loops. The loops which do not share any
edge or node with the other loops are called simple loops. The marching
algorithm 4000 identifies all the simple loops. To get all the non-simple loops in
the skeleton, some post processing needs to be done. The skeletal graph is

25  analyzed based on the depth first technique to identify the multiple loops sharing
an edge or a node.

Edge segmentation deals with converting the edges identified between
junction vertices to simple geometric entities that can be easily compared. This
involves checking whether a set of voxels belong to a straight line or planar

30  curves without torsion. If the voxels do not form a planar curve, the curve is
projected onto two perpendicular planes and the torsion values are used to
segment the curve into planar curves. Each of the voxels in a set is treated as a
discreet point in 3-space. A line is initially constructed between two newly

found end points of the set of voxels. The distances between such straight lines
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and the farthest voxels in the set are used to determine new vertices and to form
new simpler entities. This in turn causes new nodes and edges to be created in
the skeletal graph. This process outputs simple entities that can be easily
compared in 2D using curvatures at the low-level graph-matcher. FIG. 41 shows

5  the subsequent steps in detecting new vertices and converting the curve to a set
of simple segments (two planar curves C; and C;, and a straight edge E3). The
diagram on the right of FIG. 41 shows the consequent changes in the graph
structure due to creation of new entities.

Finally, an edge-loop list of the skeletal graph is constructed with
10  pointers to the skeletal nodes. This graph is stored in the database for future

search. Thus the geometry of the 3D model is captured in the individual entities

of the skeleton (FIGS. 38 and 39) and the topology in the skeletal graph.

2.4, Feature vectors extraction

The skeletal graph is further processed to identify the graphs related
15  feature vector components which can be used in the search. Some of the main
components are the number of edges, loops, nodes efc. The skeletal graph is
further processed to identify the degree of topological connections between the
entities at the nodes. The different types of topological connections are
represented by suitable Laplacian coefficients in the entity adjacency matrix
20  calculated from the skeletal graph. More attributes are derived from the skeletal

graph for use in the graph comparisons as described below.

2.5, Conversion of 2D drawings into 3D skeletons

The primary challenges of manufacturing companies are to design better

products, in shorter time frames and at lower cost. Recently there has been a

25  remarkable shift from 2D CAD design techniques to techniques that take the
advantage of 3D solid modeling. With lower costs and universal accessibility to
computer-aided tools, nearly all manufacturing firms have some kind of CAD
systems installed. A 1998 survey by Mechanical Engineering magazine
indicates that 96% of mechanical engineering professionals currently use a CAD

30  system. But Despite the advent of affordable and easy to use 3D modeling
technology, a majority of manufacturing firms still base their design processes

on 2D CAD techniques and drawing data. A 1998 survey by the computer aided
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Engineering magazine revealed that more than 60 percent of CAD engineering
work is done in 2D. Thus, there is a need for a search mechanism, which will
allow designers to search for similar 3D models and 2D drawings for a given 2D
drawing. Such a search system will enable companies to reuse their legacy data
to the optimum. Most of the relevant work in the field focuses on the
content/context based search mechanisms for retrieving similar parts and images.
Geometry based search mechanisms have also been proposed to retrieve
similar/matching 2D images & 2D drawings from a database. One such system
has been proposed where images (drawings) are represented using attributed
graphs based on extracted line-patterns or histograms of attributes computed
from the graphs. Retrieval is either performed using histogram comparison or
graph matching. Although, the method adopted by this approach includes the
shape information, the fact that the three orthographic views are related to each
other is not utilized to the fullest extent. These techniques compare different
views to determine if two drawings match or not. Embodiments of this
invention use an approach to convert the 2D drawing to a 3D model and search
for similar models in 3D. The 3D representation obtained can be used to search
for matching 3D models, thus allowing the search for 2D drawings and 3D
models from a database of CAD drawings/models. This permits reuse of legacy
data. A 3D shape search application has already been presented, which can use
these reconstructed 3D models to search for similar models. The 3D model is
first converted to a 3D skeleton and then it can be used for searching. Therefore,
the technique is to come up with a 3D skeleton, which can be used by the 3D
shape search engine.

Construction of solid models from engineering drawings continues to be
a problem of interest. The work in this area dates back to nearly three decades.
In these three decades many different approaches have been adopted to solve the
problem, with fair amount of success. But the fact that the problem still remains
a topic of interest is an indication of the complexity of the problem. The major
driving factors in this field are design reuse, automatic verification of the
consistency of complicated drawings and wide applicability. These generated
solid models find applications in FEA, CFD, or simulation to analyze, optimize
or evaluate the design and in manufacturing for rapid prototyping and NC path

planning, There are two broad approaches for converting drawings to solid
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models. The existing methods of reconstruction of solid models from 2D

drawings can be broadly categorized into two types:

> Wire-Frame oriented approach or bottom-up
approach.
5 > Volume oriented approach or to-down approach.

The bottom-up approach assembles candidate vertices, edges and faces,
in that order to construct the solid model. The top-down approach creates
elementary solids by recognizing patterns in 2D projections and assembles them

to get the solution.

10 Thus, embodiments of this invention convert a 2D drawing to a 3D

skeleton.

Methodologies:
Conversion of a 2D drawing to a 3D skeleton can be achieved in many
different ways. Some of the methods are listed as below:

15 a) Wire-Frame based Approach: Legacy data mostly exist as

scanned drawings. Hence, it is most likely that input to can be a scanned
drawing. The discussion hereafter will assume that the input is a scanned
drawing. The wire-frame based approach will follow the following
processing:
20 . Pre-processing: This step converts the scanned 2D
drawing into a vectorial format. The vectorized output contains data
pertaining to the three orthographic views.

. Vectorized drawing to 3D wire-frame: The three

orthographic views are combined together to get a 3D wire-frame model.

25 . 3D wire-frame to 3D model: The 3D wire-frame model is

then converted into volume based 3D model.

° 3D Model to 3D skeleton: The 3D model is then

normalized and skeletonized to obtain a 3D skeleton. The processing
after obtaining the 3D skeleton has been described in section 1.2,

30 b) Volume-Based Approach: The volume based approach will

follow the following processing:
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. Pre-processing: This step converts the scanned 2D
drawing into a vectorial format. The vectorized output contains data
pertaining to the three orthographic views.

. Vectorized views to 3D model: The three orthographic

5 views model is then converted into volume based 3D model.
. 3D Model to 3D skeleton: The 3D model is then

normalized and skeletonized to obtain a 3D skeleton, The processing

after obtaining the 3D skeleton has been described in section 1.2.

¢) Direct conversion to 3D Skeleton without obtaining any
10 intermediate 3D model.:

o Pre-processing; This step converts the scanned 2D
drawing into a vectorial format. The vectorized output contains data
pertaining to the three orthographic views.

. The Vectorized orthographic views are directly converted

15 into a 3D skeleton: This process has been explained in section 2.3 above.

It is also important to note that immediately after the pre-processing is

completed, normalization is done, to eliminate any size related errors.

Terminologies used:

20 Terminology used is described below for purposes of readily
comprehending various embodiments presented herein.
1) Common Coordinate Axis: It is the coordinate axis that is
common between pair of views.
2) Fundamental Edge & View—Edge: A 2D edge °E'ina
25 view G is said to be fundamental-edge, if there does not exist any
vertex in view G, which lies IN edge °E Otherwise, it is called as
view-edge.
3) Loop:_A simple closed cycle of coplanar edges is defined
as a loop.
30 4) Tangency vertex: A vertex in a 2D view that separates a
pair of edges, which are first order continuous, is said to be tangency
vertex. Since the notion of tangency vertex is associated with a pair

of edges, it is used for vertices in a loop.

237 -



WO 2004/068300 PCT/US2004/001962

5) Silhouette vertex: A tangency vertex °'V in a 2D view G1
is said to be silhouette with respect to an adjacent view G2, if the
tangent to the edges at that vertex is perpendicular to the common
coordinate axis between G/ and G2. Silhouette vertex is therefore

5 defined for a pair of views.

6) Classification of loops: A loop °L; can be classified with

respect to the loop L, as follows:
J Loop S1, is said to have IN loop GLz, if all edges
YE belonging to °L, lie inside loop ° L,
10 . If some edges belonging to °L, lie inside and
others lie on the boundary of the region P, then L, is said to have
ON-IN loop °L,,
. GL1 is said to have a ON-OUT loop GLg, if some of
the edges belonging to °L, lies outside and others lie on the

15 boundary of the region P.

7) Dotted Loop & Solid Loop:_A loop in 2D view is said to
be a solid loop, if all of its edges are represented as solid line type in
the view. Otherwise, it is called as a dotted-loop.

8) Adjacent loop: If two loops in a view have one or more

20 common edges, then these loops are said to be adjacent loops.

9) Fundamental Loops and Non-Fundamental loop: A
Fundamental loop is an edge loop that does not have any ON-IN loop
in the view but it may have an IN loop. All other loops are called
non-fundamental loops. FIG. 42 presents example classifications of

25 loops. In FIG. 42 {1,2,3,9,8,7,5.6,1}, {8,9,10,7,8} and
{3,4,5,7,10,9,3} in view 1, are fundamental loops.

10) Disjoint Loop: A disjoint loop is that fundamental loop
which does not have any ON-OUT loops in the view but may have an
OUT loop.

30 11) Matching Vertices: A vertex ©'V in a view is said to be
matching with a vertex G2V in another view G2, if they have the same
coordinate value along the common coordinate axis. The matching
vertices can be denoted by ®'V<—>%?V. There may be more than

one matching vertices in a view matching a vertex in other view.
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12) Matching Loops: A loop Gy belonging to G1 is said to
have matching loop %L belonging to G2 (G1 != G2), if every vertex
923’ = 9L, matches with at least one vertex in ©'V < S'L. 92y is
obtained by removing all tangency vertices that are not silhouette
5 vertices for the pair of views. Note that it is not necessary that “*L
also have °'L as a matching loop. But ifit does, then the two loops
are known as onto-matching loops. They are denoted as 'L < —>
Gy
- 13) Onto formation: An onto-formation is a set of loops(/)
10 satisfying following properties:
a. Forij=1,..n(i!=j), “Li <—> 9Lj, where “Li,
GLj belong to set /.
b. |/l =n, where n is number of input 2D views.
14) Desirable Edge: It is an edge in the input orthographic

15 views that is not there in the 2D projections of the current solid.

Example embodiment of Method:
In the following sections, the processing for the above referenced
methodologies is described:

1. Preprocessing:

20
In order to solve the problem of 2D shape searching, one first needs to
transfer the document to electronic formats. The most widely used method is
scanning, which produces “raster images”. The scanned drawing is broken down
into a matrix of pixels. But the semantic information contained in the document
25  isnot transferred to electronic file, i.e. the meaning of the symbol is not
interpreted. Hence, some preprocessing steps known, as “Vectorization” is
needed, by means of which the information necessary to define geometrical
entities (such as straight lines, arcs, etc.) and symbols (such as letters) is
obtained from a raster image. Hence the information stored on an electronic file
30 can be interpreted and used for searching based on feature and reused based on
solid model/skeleton reconstruction.
.
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. Scanning type
Most engineering drawings can be scanned as 1-bit monochrome. It takes
less storage space and is faster in displaying and processing. For drawings with
dirty and smearing background, such as old blue prints, they can be scanned as
5  8-bit grayscale and enhanced using imaging software to remove background and
noise (Noise and other artifacts can be easily smoothed out using a pair of gray
level thresholds before automatic vectorization).
. Raster to vector conversion
After obtaining a scanned raster image, one needs to convert it into
10 vector format for further manipulation., A complete raster to vector conversion
process includes image acquisition, pre-processing, line tracing, text extraction,
shape recognition, topology creation and attribute assignment. Several raster to
vector conversion software packages are commercially available for various
types of applications. For engineering drawing conversion, in order to extract
15 vectors from a raster image, it needs to determine which parts of the image
constitute lines, and where those lines start and end. Typically there are two

processes involved:

L. Treatment of the image (remove background and noise).
2. Thinning of the raster image to single pixel width lines.

20 3. Vectorization (Extraction of the edge from the pixel lines).
4., Entity recognition (define straight lines, arcs, circles, line

loops, etc.)
The approach to reduce thick or blobby regions down to single pixel
width items, so that the image is transformed into /ines of pixels is called
25  thinning. There are many current available thinning and edge detection methods,
each utilizing different mathematical algorithms and producing different results.
All of these preprocessing steps involve image processing for
understanding the information contained in the images in order to extract the

relevant shape information.

30 2. Conversion of 3D orthographic views into 3D model using hottom-
up approach:

The wire-frame approach is also known as bottom-up approach. The

various processing involved in this method are as follows:
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. Generate 3D candidate vertices from 2D vertices in each
view,
. Generate 3D candidate edges from 3D candidate vertices
. Construct 3D candidate faces from 3D candidate edges on
5 the same surface
. Construct 3D objects from candidate faces.

Merits of this approach:

» More accurate
. Other metrics which are usually obtained from ACIS can
10 also be obtained

De-merits of the approach:

o Problems may arise as a result of inconsistency in the
input views
J It is computationally very expensive. Especially, the
15 conversion from a wireframe to solid is very computationally expensive,
as it involves search with possibility of backtracking and heuristics to
choose solution solid from a very large number of potential solids.

3. Conversion of 3D orthographic views into 3D model using top-

down approach:

20 The general processing, involved in this approach are described below:
1) Construct pseudo vertex skeletons.
2) Construct pseudo wireframes.
3) Construct virtual faces.
4) Introduce cutting edges.
25 5) Construct virtual blocks,
6) Make decisions.
FIG. 43 presents more details of this process. There may be other
methods as well. In another embodiment, a cell-based reconstruction is used.
Similarly, two-phase reconstruction has also been developed.

30 Merits of this approach:

. Always have a valid solid model consistent with the input

ViEWS.
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o Compared to wire-frame method, computationally
inexpensive.

. For shape searching, only an approximate 3D model is
sufficient.

De-merits of the approach:

o This approach is limited to only domain of objects they
can handle.
4. Direct conversion to 3D skeleton without obtaining intermediate
3D model:

As mentioned before, for 3D shape searching a valid 3D skeleton is

sufficient. Hence, a method is presented for converting a given set of 2D
orthographic views directly into a 3D skeleton. The 2D skeletons are obtained
for each of the three orthographic views; the orthographic views are then
combined to obtain the desired 3D skeleton. This method can be further
subdivided into two approaches depending upon the 2D skeletonization process.
The first approach uses image-processing methods to perform the
skeletonization, and the second approach uses geometry based methods to do it.
The following discussion assumes that geometry based approach for obtaining
the 2D skeleton, but the approach can be modified suitably to work with the first
approach as well.

Formation of doubly connected linked list and face structure:

The line segments forming the three orthographic views are then

expressed in a doubly connected linked list structure. Methods have been

proposed for building a doubly connected linked list structure. A doubly

connected linked list is an efficient representation of arrangement of line
segments,
The data structure for vertex is expressed as:
e X-coordinate of the vertex.
e Y-coordinate of the vertex.
o List of Incident Edges (ordered in counter-clockwise
direction of the slope).
The Data structure for the Half Edge is given as:
o Origin vertex.

e Twin Half-Edge (the one coming in)
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o Incident Face (every half edge belongs to exactly one
face)
o Next Half-Edge (the next connected half-edge belonging
to the face).
5 : o Previous Half-Edge (the previous connected half-edge
belonging to the face).
o Slope angle (between 0 to 360 degrees)
The data structure for a face is given as:
o Starting edge of the outer loop.
10 o List of starting edges of inner loops.

Hence, to travel the incident edges on a vertex in counterclockwise
direction, one can use the above data structures to full advantage. Given an edge
incident on the vertex, one takes the twin of that half edge and finds the next half
edge to that half edge. This will give us an incident half edge from the given

15  vertex. The obtained half edge is the next in counter-clockwise direction,
| because the half-edges forming the faces have been obtained by walking in
counter-clockwise direction through the edges. The same procedure can be
repeated, to find all the faces/loops in the arrangement. The data structure and
details of the algorithm are conventionally available. The arrangement of the set
20  of line segments can be constructed in O(n Log ») time.

Identification of matching vertices, edges and loops of the three

orthographic views

The identification of matching vertices, edges and loops has been
25  conventionally explained in detail and is readily available to one of ordinary skill
in the art. The method for finding matching loops and vertices has also been
described:

1. Matching Vertices and Loops: Matching of loops and vertices

implies grouping of the entities that correspond to the same entity in the 3D
30 solid. The tangency vertices other than silhouette vertices are not used while

matching a pair of two loops in different views. And vertices are matched

according to the value of common coordinate. If loops are matching each

other, then they are flagged as onto-matching.
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2. Onto formation: For finding an onto-formation, loops matching a
disjoint loop or a fundamental loop are considered. A loop in view can have
fundamental or non-fundamental matching loops in the adjacent views. First
of all, all fundamental loops matching the loop under consideration are
checked, if they are onto-matching. Any onto-matching loops obtained are
stored in a list. Next, it is checked if it is possible to obtain a non-
fundamental onto matching loop by merging of adjacent fundamental loops,
each of which matches the fundamental loop in the other view under
consideration. These are stored for further processing. The data structure
used for storing these entities is a graph.

In general, onto-formations are identified across the given set of views.
In FIG. 44, loops are represented as nodes and edge joining two nodés shows
that the two loops are onto-matching. This can be seen as a n-partite graph of
loops, where n is the number of loops. So finding onto-formation is equivalent
to finding a sub-graph of cardinality n. A breadth-first-search is used to find this
in n log(n), where n is the average number of loops under consideration. An
onto-matching set of loops is a set of loops in all the views, which are onto-
matching with each other.

Cleaning up the three orthographic views:

After the set of onto-matching loops have been obtained, those set of
onto-matching loops are eliminated, which describe small features. Care should
be taken that the set of onto-matching loops are only disjoint or fundamental
loops. Also, the resulting views should not be disconnected as a result of

removal of these loops.

2D Skeletonization.

In the next step, these loops or faces are skeletonized to simplify the
drawing while retaining the topology. Various methods have been proposed to
obtain the skeleton for polygonal figures. Most of these methods determine the
Medial Axis Transform (MAT). Most of these methods either make use of
Voronoi diagrams or Delaunay Triangulations. There have been other
approaches, which obtain the skeleton or MAT without using Voronoi or
Delaunay triangulation. Also, adaptive subdivision algorithms have been

proposed, which make use of Delaunay triangulations. A skeleton of a 2D
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region is defined as a set of its interior points that have not less than two nearest
neighbors, The skeleton of polygonal figures can be obtained in O(» log #)
worst case time, where n is the number of nodes of the polygonal figure
boundary. FIG. 45 shows the skeleton for a general 2D polygonal figure.

Cleaning up the skeleton:

It can be observed from FIG. 45 that some portions of the obtained 2D
skeleton are not required. The edges of the skeleton, which touch the
boundaries/vertices of the input views, are then eliminated. Hence, a simplified
skeleton is obtained (shown in FIG. 46).

Usine matching-loop and adjacent-loop relations connect these edges of

the skeleton in the three views to obtain a 3D skeleton.

Once the skeletons of various faces have been cleaned up, the next step is
to connect the skeletons in the three views to arrive at the 3D skeleton.
Referring now to FIG. 44; FIG. 44A shows an actual 3D model; and FIG. 44B
shows the 2D orthographic views for the given object. FIG. 44C shows the
cleaned up skeleton for each of the views. Using the matching loops obtained in
the first 2" step, the connectivity of various edges of the 2D skeletal edges is
determined. To maintain the connectivity all matching loops are connected, and
also it is made sure that each edge in the 3D skeleton appears just once. For
example, in the front view, the vertical line denotes the depth/height of the
figure, Also in the side view the 5 vertical lines, too, give the depth of the
figure. Hence in the final skeleton, only one vertical edge is retained to denote

the depth of the figure.

Edges of 3D skeleton are voxelized:

Once the 3D edges are obtained, they are then converted into voxelized
representation. Basically, voxelized representation is a discretized representation
of the edges in the 3D skeleton. This step is a simple processing step. For more
information on Voxelization and Normalization refer to subsection 2.1 above.

Store the connectivity of various loops and edges in a data-structure.

Finally, when the 3D skeleton is obtained, the various loops, edges, efc.
are stored in a skeletal graph data structure as described in subsection 2.2. This

is then provided as input to the graph comparison module.
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3. DATABASE, SEARCH AND CLUSTERING

3.1. Compare graphs

The search system searches for graphs in the database which are similar
to the skeletal graph of the query 3D model. The system evaluates a similarity
measure based on the degree of matching between the query graph and each of
the models in the database. The current invention represents the skeleton in the
form of an undirected graph, where a node of the graph represents an edge/entity
of the skeleton, while any arc joining two nodes of the graph represents the
connection between the corresponding skeletal entities. Hence, the skeleton is
essentially represented as an edge-graph. Each node in the graph preserves the
following geometric properties of the skeletal edge:

(1) Edge type (straight line, curve, surface loop or hole).

(2) Curvature information for surface loops (Convex/Concave/Plane).

(3) Parametric equation of the curve.

(4) Local Volume of the features that converge to the particular entity.

(5) Local Moments of the features that converge to the particular entity.

(6) Local Distances from the surface.

Hence, the topology of the skeleton is captured by the topology of the
graph, while the geometry is preserved in the nodes of the graph. FIG. 47

presents a flow chart of the graph matching module of the current system.

High-Level Graph Matching

The first two properties (1 and 2) cited above are used for a high-level
graph matching step (see FIG. 47) after which a small subset of the database
having similar models is retrieved. These models have overall geometric and
topological similarity with the query model. I n a follow-up step the retrieved
models are further ranked (low-level graph matcher), based on the similarity of
the individual geometric properties (3), (4) and (5) as described above. Hence,
the high-level matcher filters the search space to find relevant parts. This filter
uses graph properties including the highest degree of nodes, number of surface
loops, number of straight and curved edges, and the number of holes in the

skeleton to filter out graphs that are not close to the query model (or query

graph).
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The smaller set of models retrieved by the high-level graph matcher is
then passed onto the low-level graph matcher. The low-level graph matcher
which finds a similarity degree between the query model and these models,
based on a graph matching algorithm as described below. However, the user

5  may also choose to perform matching only at a higher level of abstraction using
topology and high-level geometric properties. To enable this matching, the
adjacency matrix of the graph is designed to represent these geometric
properties. A non-zero entry in the matrix represents a connection between two
geometric entities (topology). The value of the entry uniquely represents the

10 type of connection (edge-loop, loop-loop, surface-surface, edge-edge, and so
on). This adjacency matrix can be used for any graph matching method
including the decision-theoretic sub-graph isomorphism algorithm as well as

association graph techniques.

Low-Level Graph Matching

15 Various algorithms have been proposed in the past for comparing graphs
and evaluating a similarity measure as‘dcscribed in the prior art section. These
algorithms can be broadly classified into exact and inexact graph matching
algorithms. While the former class of algorithms detects an exact match (i.e.
without noise) between two graphs or sub-graphs of two graphs, the latter set of

20  algorithms provides a fuzzy measure of similarity between two graphs in the
form of a distance measure even in the presence of noise. Since the requirement
of our system is to find parts that are similar (not exactly same), our system uses

inexact algorithms for the purpose of graph comparison.

25 Traditional graph isomorphism for graph comparison leads to NP-
complete problem, i.e. it is not possible to find a solution using a computer
except for small graphs. The field of inexact graph matching (also called error-
tolerant graph matching) has been studied for many years leading to many
different frameworks of solutions, The association graph technique has been

30  applied successfully to compare graphs in various applications including
similarity of scene graphs. In the current system, the graph matching problem is
converted into a maximum weigflted—clique problem by forming the association

graph for the query and model graphs. In the current invention probabilistic
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weights are included in the association graph nodes. These weights are
evaluated based on the local geometric feature similarity of the entities including
(1) curvatures, (2) local volumes, and (3) local moments. This allows for
fuzziness in the similarity measure between models so that the relevant models

5  arenot rejected.

Association Graph Technique

Although, the association graph method is well-known in the field of
graph matching for computer vision and pattern recognition, the method is
describe here (in the context of our problem) for the sake of completeness along

10 with the modifications to make it suitable for our problem. The nodes of an
association graph (or assignment graph) represent the vertex pairs (vg, vm) of
the graphs to be compared (say, Gq = (Vq, Eq) and Gv = (Vwm, Em)). A vertex
pair (vq, Vi), such that vq €Vq, vm € Vi is called an assignment if the nodes vq
and vy have the same node property descriptions, and two assignments (V. YM)

15  and (vq’, vm’) are compatible if (in addition) all relations between vq and v’
also hold for vy and viy’. The set of assignments defines the set of nodes V, of
the assignment graph G,. Two nodes, V, and V., are connected by an arc in the
assignment graph, G, (see FIG. 48) if these two nodes are compatible. Hence,
the search for maximum matching sub-graph of two graphs Gq and Gu is a

20  search for the maximum clique (totally connected sub-graph) of the association
graph G,. Instead, if the assignments also represent a measure of similarity
between vq and vy, represented as weights, then the graph matching problem is
converted into a maximal weighted-clique problem. Hence, the largest maximal

weighted-clique in the association graph will represent the best match between

[}
N

the two graphs Gg and G

Local Similarity Metrics

This section is devoted to describe a shape matching algorithm in detail which
is based on an association graph technique. Although the words ¢ ‘node’ and ‘vertex’ as
well as ‘edge’ and ‘arc’ are interchangeably used in graph theory, for the sake of clarity

30  a skeletal graph is described as using nodes and edges, while an association graph is
made up of vertices and arcs. Vertices of an association graph represent the
correspondences between nodes of the two original graphs. T his process of determining

correspondences between nodes is called association. In addition the arcs connecting
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two vertices of the association graph represent the compatibility between the

corresponding nodes.

A graph A is represented as set of vertices A;, a set of edges Aij, and set of
vertex attributes, v(A;) and edge attributes.

A skeletal graph structure, in various embodiments presented herein,
distinguishes between edges and loops; associations are allowed only between entities
of the same type, and thereby associates loops of one graph only with loops of the other
skeletons and so on. Similarity between associated nodes (say Al and B2) is
determined based on the length similarity as well as degree similarity, Weights are

assigned to these two metrics.

Hence, the similarity between node Al of graph A and B2 of graph B is
represented as the weight of the nodes and is given by Equation (1).

)+Wd[1" |d‘41‘d32| J

VertexSimilarity( 4, B,) =W,(1- |lAl -1,
' - max(d ,,,d5,)

Here, /; is the length of entity E; while d; is the degree of entity E,. W, is

the weight given to the length similarity, while W, is the weight given to similarity

between the skeletal entities based on their degree (number of other entities connected
to the entity under consideration). A higher weight on the degree of nodes will retrieve
models more similar in topology while a higher weight on the length similarity will
result in models with higher geometric similarity. Correspondingly, the user can also
change these weights depending on the search criteria. Additional metrics comparing
other local properties including (i) Volume Distribution, (ii) Distance Transform, (iii)

Local Principal Moments, and (iv) Local Curvature. These terms are added to equation

(1)

Similarly, the arc of an association graph represents whether the corresponding
entities are connected and if so the relative similarity between the entities. For example,
the arc connecting the nodes (A1-B2) and (A2-B3) will describe whether Al is
connected to A2 and whether B2 is connected to B3. In addition, it may also contain
other heuristics that better describe the connections between the corresponding entities,
such as the angle between connected entities. In one implementation the measure given
by Equation (2) I used to determine the weight on the arc.

Iy s

EdgeSimilarity(AlAz,3233) =W,|1-
7

1A2 B3
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Here, 65 is the angle between entities £, and E,.

W, is the weight given to the ratio of lengths while 7, is the weight given to
angles. It is noted that a number of constraints have to be taken care of, in order to
obtain valid graph matching. For instance, a given skeletal entity of model A cannot be

5  matched to more than one entity of model B, and vice versa. These constraints are
shown in FIG. 48 as ovals. Arcs of the association graph are formed with these

constraints in consideration.

Subsequently, the graph matching problem between model A and model B is

now posed as a maximum clique problem. Due to the presence of weights in the

10 association graph in the application, the problem is formulated as a maximum-weighted
clique problem. The clique with the largest weight, therefore, represents the best
similarity between the two graphs. Similarity is therefore the sum of the node weights

and the arc weights for a given clique. Hence, the problem of finding the ‘best
similarity matching’ between two models is essentially a combinatorial optimization

15  problem where the objective function is the similarity measure.

A heuristic based Genetic Algorithm is used to exploit the maximal weighted
clique of the association graph described above; however, any combinatorial
optimization algorithm can be employed for the obtaining the maximal weighted clique.
Although approximate algorithms do no guarantee globally optimal solutions for large

20  graphs, they avoid exhaustive search which becomes intractable for large graph sizes.
Hence, approximate algorithms are advantageous in various embodiments for

optimization while using the approach.

Computational complexity

The main advantage of using the association graph technique is that it is a

25  simple graph-theoretic structure which is amenable to pure graph—theoretic
algorithms such as maximum clique finding. However, construction of the
association graph is purely domain dependent. Therefore, the effectiveness of
this approach depends on the construction of this graph and subsequent
utilization of the graph-theoretic algorithms. It is noted that the maximum clique

30  detection problem is NP-complete. However, the presence of rich geometric
information in our skeleton graph will enable us to reduce the average-case
complexity of the maximum clique finding problem (MC problem) considerably
by eliminating many unnecessary comparisons. The algorithm is designed to

utilize heuristics including @) lexicographic ordering of nodes b) size of the
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previous cliques and ¢) number of high-level geometric entities (Surface
Loops/Holes/Edges) to prune the search space. For example, one can eliminate
comparisons of loops with straight edges and curves, or curves with straight
edges. Loops in the skeletons essentially represent major holes in the original
3D model. Hence, some of these features implicitly represent the manufacturing
features in the original 3D models. This is an illustration of how the use of
domain knowledge for graph matching can considerably reduce the average-case
complexity. The modifications to the association graph technique permits one to
achieve searches on 3D models in a reasonable time. This technique is better
illustrated in the following discussion.

Suppose a query graph consists of Q nodes out of which Q; nodes
represent straight edges, while Q; nodes represent loops. Similarly, let M/, and
M be the number of nodes representing straight edges and loops, respectively, in
the model graph (with a total of M nodes). Let us also assume that M, M> and
M are individually greater than Q;, Q2 and Q. Hence, we find that the number of

comparisons required for sub-graph isomorphism as:

AN
(M, -0 (M,-0))!

Number of Comparisons(w/ attr) =

However, if the node attributes (Surface/Loop/Edge) are not used then

the number of comparisons is given by following expression:

M

Number of Comparisons(w/o attr.) = ————
f Comp ( ) ar 0!

It may be observed that a large number of unnecessary (naive)
comparisons are eliminated using the geometric information present in the graph
structure thereby reducing the computational complexity of matching.

Moreover, the number of nodes which need to be formed in the association
graph without this information would be M x Q. However, with the approach we
reduce this number to (M; x Q;) + (M: x Q). The aforementioned
simplifications reduce the size of our association graphs in the average case,

although the worst-case complexity is exponential in the number of nodes in the
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input graphs. The worst-case occurs when a skeleton is made of the same type

of entities (i.e. all loops, all straight edges, etc.). The graph matching algorithms
described above can also be extended for shell-like and hybrid parts. Geometric
features including 1) convexity 2) radius of curvature of the surface loops can be

5  further used to reduce the search space for these parts.

Geometric Feature Matching

Geometric feature attributes of the skeletal entities are compared in order
to provide more accurate measures of similarity/distance between the models
retrieved from high level matching. As mentioned above, dissimilar entity types

10 will not be compared for graph similarity metric.

Prismatic Shapes

Bezier curves are used to obtain a parametric equation of the prismatic
skeletal entities. This provides an affine invariant measure of the curve shape.
An algorithm based on the curvature for curve similarity comparison is used and

15  similar curves have similar curvature profiles. To compare two curves the

curves are divided into a defined number of entities and the curvature profile for
the curve is the sequence of these curvatures from one end of the curve to the
other. A fuzzy measure of similarity is derived from the distance between these
two curvature profiles. Equations for the Bezier curve and the curvature at any

20 given point on the curve are provided below.,

. Fifth-order Bezier curve fitting
H n o
25 p(t)=Z[i](l—t)”"’t‘p,'OStsl
0 /s
n=>5

p; —Control Points

35 [n) (1-1)""'¢ —Bernstein Polynomials
1

. Curvature from equatidn
40
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Other embodiments of local shape feature matching compares the
volumes and surface areas of the local features that converge to a particular
skeletal entity in the final skeleton. Similarly, local moment invariants and edge

lengths for the individual features are also incorporated into the similarity

metric.

Shell-like and Hybrid Shapes

Shell-like and hybrid shapes produce different kinds of skeletal entities
and hence require a different treatment for comparison. Global geometric
features for these entities such as convexity and surface curvature will are used
for similarity metrics after fitting parametric Bezier surfaces to the set of voxels
forming the surfaces. Finer comparisons, similar to those described for prismatic
skeletons can be used for surface entities of shell-like skeletons or wireframe
skeleton entities. Surfaces are discretized into a standard number of divisions
and the curvature profile as well as individual surface areas may be compared for

these surfaces.

Local Emphasis and Relevance Feedback
The weights for the local geometric features such as ,, W, , 7, and W,

(Equation 1 and 2) can be used to learn user preferences through relevance
feedback thereby reducing the semantic gap between the system and the user.
The weights can be learned through standard weight reconfiguration mechanisms
described in section 3.6. In addition, the user can also emphasize on a local
feature in the 3D solid model or the 3D skeleton model; weights can be
attributed to specific skeletal entities thereby allowing the similarity metric to
give higher weight to the particular local feature while matching.

Comparison of different Levels of Detail

The different levels of detail in the Prismatic and Shell-like skeletons are
used in the following manner. Each level of detail for a database model is

compared with the query skeleton and the level of detail that yields the highest
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similarity value is considered as the similarity between the query 3D model and
the particular model from the database. For clustering of 3D models based on
skeletal graphs all the four levels of details for two models are compared with
each other to yield the best similarity between the two models. These similarity
values are used to cluster the database of models into groups of similar models.
Alternatively, the user can specify particular levels of detail of all the models to

be used for clustering in which case that particular LOD is used for clustering.

Parallelization

The graph matching step is parallelizable since this process takes the
query graph and the graphs from the database and compares each of them
individually. For the high-level graph matching step, the automatic clusters may
be used to reduce the number of comparisons. Hence, each of the prototype
models for each cluster is compared with the query graph. Subsequently, the
cluster whose prototype is closest to the query graph is used for further search.
The hierarchical cluster can thus be used to reduce the search space. When the
search has reached to a reasonable state where the number of models in the next
cluster is reasonable (to enable real-time search), the low-level graph matching

can be parallelized, thereby optimizing the search time.

Distinction over conventional systems:

. Separation of Geometry and Topology.

. Hierarchical graph matching.

o Inclusion of high-level geometric features in adjacency
matrix.

o Parallelization of graph matching in conjunction with

automatic clusters.

3.2. Multidimensional index

With the proliferation of 3D models existing in companies, there is an
urgent requirement for indexing the database to enable efficient retrieval.
Unfortunately, it is presently mission impossible for the widely used index
structures, such as B+ tree and hash table, to sufficiently improve efficiency in

searching 3D models, although they have been widely used in commercial
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database system. Engineers who work in 3D model similarity focus on 3D shape
matching of a few models more than shape searching of a database. Their
approaches are hard to scale to database.

Thus, embodiments presented herein have developed an index structure

5  that can index the database by the similarity of the models. This structure
simultaneously uses the information of each element of feature vectors to
evaluate the shape similarity. An innovative and novel method computes the
overall similarity by combining the similarities supplied by the indexes of
different features. The combining method coordinates the progression of the

10  search in each index.

The index structure is implemented as a tree-based multidimensional
index. Multidimensionality is important for the 3D model database, because the
overall similarity is defined by the combination of these feature elements,
Moreover, using feature element as filter is inappropriate in the context of

15  searching 3D models.

The structure of index structure is illustrated in FIGS. 49 and 50. The
leaf nodes contain the representations of 3D models and the internal nodes help
find a short path to the leaf nodes. Feature vectors that represent 3D models are
grouped into leaf data nodes by their similarity. Each data node is represented as

20  acontaining box that stores the overall information of the models. Internal
nodes are built to index leaf nodes. The abstract information of each node
determines if similar models are possibly located in this data node. Thus, nodes
are pruned and whole sub trees rooted at these nodes during a search phase.

FIG. 51A is a preliminary index structure of 39 models. FIG. 51B shows

25  the content in two leaf data nodes. It shows that the present index sufficiently
groups the models by their similarity. Furthermore, algorithms are developed
that efficiently use multiple multidimensional indexes to compute the similarity.
The 3D models are represented as multiple features. Each feature has a
corresponding multidimensional index. The overall similarity is computed with

30  the similarity retrieved from each index. The efficiency of the multidimensional
index is determined by the ability to prune the search tree. The pruning ability is
in turn depends on the search criterion, which is the radius from the query point.

The algorithm coordinates the search in each index and endeavors to minimize
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the radius for the search in each index. These algorithms have greatly improved
the pruning ability and the efficiency of the multidimensional indexes.

In order to ensure to similar models are grouped together, a SOM is used
to preprocess the feature vectors and cluster similar models. The indexes are
built as bulk-loading of these clustered models. This greatly improves the
quality of multidimensional index, because it ensures the data nodes in the index
group models by similarity. If a sufficient number of models are inserted in the
database and corrupt the quality of index, a SOM is used again and reconstructed

the index.

3.3. Feature vector comparison

Current search systems usually use single type features that are not
sufficiently capture the intrinsic characteristics of 3D models. Even a few
techniques use combinational feature vectors; the internal relationships between
these features have not been fully understood. A linear combination is simple
but commonly used to compute the overall similarity based on that of each
feature, irrespective of their relationships.

Correspondingly, in embodiments of this invention, more and intrinsic
feature vectors are extracted to capture the important characteristics of 3D
models. Better understanding the relationships of feature vectors enabled one to
develop more advanced methods to compute the overall similarity based on
those defined on individual features.

The present invention uses a system that is a feature-based 3D model
search system. It uses low-level features instead of high-level keywords to
represent the complex geometry. The original 3D models were processed which
generated different models with different level of details. From these models,
the statistical, spatial, and temporal information are extracted as features that
representing 3D models. FIG. 52 is the feature vectors that are currently used in
embodiments of the present system. These feature vectors are the numeric
finger-prints of the original 3D models. The comparison and searching of 3D
models are applied on these finger-prints, because the searching the original

models is intractable.
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Considering feature elements as coordinates, a 3D model is further
represented as a point in the multidimensional feature space which is illustrated
in FIG. 53 using a two dimensional space as an example.

Considering a model as a data point in the feature space, different

5 distance defined on the coordinates is used to measure the similarity of the
models. For example, the Euclidean distance L2, Maximum metric Log and
Manhattan metric L1 are used. The equations to compute these distances are
listed as follows,

Based on these similarity definitions, the similarity measure for each

10 feature is computed. Not like feature-based image search, some of the features
in the system are not totally independent. Therefore, when the overall similarity
based on feature similarities is computed, more complex combination methods
besides linear combination are used. These methods include quadratic, cubic
and even a complex function represented by neural network. Furthermore, graph

15 matching is used with together with feature based similarity search. The feature
representation is described here and graph representation is introduced in graph
matching section.

Instead of using a one-step searching method, which uses all the feature
vectors simultaneously to search the database, the search is simulated as a

20 decision tree. Based on cognitive psychology research, some selective features
are included, such as aspect ratio and symmetric information. In other
embodiments, some other more advanced features can be used. Furthermore,
features that have been previously used can be used subsequently.

The advantages of this retrieval system are: (1) it is an objective

25 approach, since all the features are intrinsic values that are computed by the
system objectively. The representation of the models in the databases is
determined by the feature-extraction algorithms. The representations of CAD
models in the system are unbiased by any user. Thus, the system has a neutral
version of features for all users. (2) It is easy to automate, since all of the

30  information is objective. Algorithms can be developed which are computed
from the CAD models, without any involvement from the users. (3) It is more
accurate to quantify the degree of the similarity than the keyword-based retrieval
system. Since each feature is in a term represented by a scale number (usually 0

— 1), the similarity can be easily characterized by some mathematical operation,
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As long as the system has extracted enough information from he CAD models,
the system will successfully retrieve the similar models.

The main disadvantages lie in the difficulty in defining the feature
vectors that are suitable for filtering all dissimilar models while retaining all the
similar ones. However, a multi-step search strategy (described in section 3.8)
adopted with embodiments of this invention allow the user to experiment with

different feature vectors to achieve the desired set of models.

3.4, Clustering Techniques

Embodiments of the present invention allow the user to easily browse
through different models in the database to find parts similar to his/her
requirements. A portion of the visual query interface is dedicated to facilitate
this functionality. The interface can be visualized to be working in two different
scenarios (see FIG. 54). In the first case the user may only have formed a mental
idea of the 3D model and accordingly wants to browse through the parts
available in the database and pick the relevant parts. In order to make this search
efficient, a hierarchical part cluster map of all the models in the database is
provided which is updated dynamically with the addition of new models to the
database. Each part cluster in a higher level cluster will point to a number of
clusters in the next level and so forth. In the other scenario, the user may input
a query model from the sketching interface, and all the parts that are found
similar to the query are retrieved. Each of the retrieved models shows a link to
the cluster that it belongs, thereby allowing further browsing. The corresponding
link can be followed to browse the cluster to which the model belongs.

Clustering algorithms are extensively used in the field of knowledge
discovery and data-mining, the most important of which are hierarchical
clustering, k-clustering and Self-Organizing Maps (SOMs). Of these different
algorithms, the SOMs are the easiest to implement and also allow for easy
visualization and interpretation of the clusters. A SOM is a neural network
algorithm that is based on unsupervised learning. It consists of a layer of
computational units, often called neurons that adapt themselves to a population
of input patterns. Upon presenting an input pattern the neuron that is closest to
this pattern is determined (called the winning neuron) and then updated to

include the new pattern, while some of the neighboring nodes are updated to
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move closer to the winning neuron. The SOM has properties of both vector
quantization and vector projection algorithms, thereby allowing projection of
data in higher dimensions to lower (typically two-dimensions) which is
amenable for visualization. This feature is advantageous with embodiments of
this invention because it assists in developing a useful visual interface for the
user to browse through the models. A SOM also allows dynamic updating of the
cluster map with addition of new parts to the database.

Traditionally SOMs have been used only with feature vectors. Only
recently, have there been attempts to use the SOMs with more powerful data
structures such as graphs and trees for use with pattern recognition tasks. These
attempts have used a graph distance metric based on graph edit distance which is
used update the neurons in the SOM. Conversely, the embodiments of the
presenting invention uses a combination of (a) feature vectors obtained from the
3D model and (b) graph distance measure distances obtained from graph
comparison. Hence, the neuron is designed to contain all the feature vectors as
well as a representative graph of the 3D skeleton (see FIG. 55). The SOM is
updated to show the new cluster map (1) with different similarity definitions
configured by the user (2) with addition of new models to the system. This
interface is useful in quickly evaluating the (1) similarity metrics proposed in
this invention and (2) metrics proposed in prior techniques for comparing 3D
models. The distance metric between two neurons can be any of the standard
vector distances such as Euclidean, Manhattan distance, efc.

Distinction from Prior Techniques:

1. Inclusion of graph properties in SOM neuron data structure.
2. Use of SOM for clustering 3D models based on skeletal graph.

3. User interaction in forming similarity definition for clustering.

3.5. Cluster map interface

The cluster map interface is the main visual output interface for the
search system. The interface works in two scenarios 1) Automatic 2) Interactive.
FIG. 56 illustrates the two different paths for the two situations. In the automatic
mode, the database models are classified into various clusters automatically,
based on the default similarity metrics defined in the system. The cluster map

(FIG. 57) presents representative 3D models to the user on a part cluster window
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allowing the user to pan, zoom and rotate the model with buttons and mouse
motion. The field to the right of each picture shows a bar graph of the number of
models present in the particular cluster. Further browsing in a cluster is allowed
by clicking the “Similar Models” button. In the interactive mode the user 1)

5  communicates his similarity measure by reconfiguring the feature vectors and 2)
also browses the hierarchical database to search for the model he has in mind.
The part cluster map is updated accordingly and presented to the user through
the cluster map interface.

The cluster map interface is also used to represent the similar models
10  retrieved after submitting a search query (FIG. 58). Each of the models,

retrieved from similarity query, provides a link to the cluster it belongs to,
through the “Similar Models” button. The degree of similarity of each retrieved
model is also presented to the user as a percentage measure. Each model is also
provided with a slid bar to give relevance feedback to the system for neural

15  network learning.

3.6. Relevance Feedback

The retrieval system only measures the similarity in terms of the low
level feature vectors. However, a user’s similarity is based on his perception.
Since the 3D models are complex objects it is challenging to extract features that

20  accurately represent the 3D models. There is a “semantic gap” between the
similarity definition of low level feature vectors and the high level 3D models.

Conventional 3D shape search systems search models are based on
predefined similarity measures and one-shot mechanism. The semantic gap of
similarity between users and system seriously corrupts the performance of these

25  conventional systems.

However, relevance feedback is an important way to improve the
communication between users and the system. It is a bridge between the two
semantic planes on which the system and users similarity definitions lie,
respectively. The relevance feedback greatly reduces the burden for the users to

30  accurately construct a query and to choose the features for similarity measure.
In addition, it enables the search system to learn from the communication and

reconfigure the system based on the communications.
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An example procedure consists of the following steps: (a) when the
system retrieves some models based on the query example, it orders them by
similarity measure of feature vectors and presents them to the user. (b) Users
classify them into relevant and irrelevant groups and inform the system. (c) The

5 system, in turn, configures itself to respect the user’s preference and redo the
search. (d) This process iterates for sometime until either the user is satisfied or
the system thinks that it cannot make it better.

FIG. 59 illustrates the procedure of relevance feedback. Different
methods to use the information in user’s relevance feedback can also be

10 implemented and are intended to fall within the generous scope of the present
invention. The methods are based on computational geometry and simulating
social behavior, such as particle swarms.

The presented methods enable communication of users and the system,
thus bridging the semantic gap of similarity. In addition, algorithms are

15 developed that reconstruct a query vector and reconfigure the system based on
the relevance feedback.

Search results are presented on the interface so that a user can tell the
system what the relevant and irrelevant models are from his/her point of view.

Algorithms are developed that reconfigure the search system, based on

20  the information of relevance feedback. This is important for any successful
search system, because different users may have different perception about the
similarity of 3D models. Initially, the system is configured to reflect the
similarity of most users, for example, it can find models that 90% users think
similar. When a user is using the system for searching, his/her relevance

25  feedback is used to fine reconfigure the system. From feedback, the system can
use feature vectors that the user are more interested in and reconfigure the
system to reflect user’s preference. Also, the system can reconstruct the query

vector based on the initial query vector and the relevance feedback.

3.7. Learning Agents

30 Although relevance feedback is an effective way to bridge semantic gap,
it is time consuming. Even for the same model, if user submits as query model

again, the time-consuming relevance feedback has to be done again.
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Thus, techniques for embodiments of this invention implement artificial
intelligence — neural networks — to learn from user’s relevance feedback. This
technique enables the customization of the system to different users and input
query models without changing the content of database and index structures. It
is a layer above the index for learning and customization. FIG. 600 illustrates
one such method.

Neural networks are deployed to learn and identify the patterns in a
user’s relevance feedback. The key point is to implement network systems that
can be trained fast, such as a neural network. A multi-layer feed-forward neural
network system was used for some embodiment of this invention. Algorithms
from social behavior - particle system, and back-propagation can be used to
initially train the neural network.

A learning agent is used to quickly reconstruct the query vector that
better represents a particular user’s intention. Because of the semantic gap, it is
difficult for a user to submit a query with low level feature elements. Query by
example may only let a user give a rough idea about his/her intention.
Therefore, the query vector is refined to better interpret a user’s intention.
Relevance feedback that a user has done is used as a training example, if the user
activates the learning agent. The goal is to directly reconstruct a query vector
based on a user’s searching history and currently submitted query. The key
points include detecting the maturity of neural network, and avoiding over-
fitting.

A learning agent can also be used to reconfigure the search system, i.e.,
reconfigure the weights of the feature elements. If a stable pattern is identified,
then the system can be reconfigured to reflect a user’s view about the relative
importance of features. The goal here is also to save the time for relevance
feedback. The advantages of introducing learning agent are: a) to separate the
query reconstruction and weight reconfiguration during the relevance feedback,
b) to customize the system for different users and/or different queries submitted
by the same user.

‘What makes the neural network an important contribution is that it can
customize the system to both users and the query input. The following is an

example that shows why the weight setting may depend on input in some cases.
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Suppose the feature vector consists of two elements. One is F1 and the
other is F2. FIG. 61 shows feature vectors in the database on the left side of the
table. The user’s query vectors are on the right side of the table. The arrows
show the matching between the user’s query inputs and those in the database.
This matching can be discovered by the user’s relevance feedback.

Based on the first three relevance feedback, it is reasonable to

W = W'](O) and T’VZ(I) =3x W/Z(O)

reconfigure the weights as " . However, based on

, W _©
the second three relevance feedbacks, the system is reconfigured to w, m

O () .
W7 =10xW2" 1 other words, the reconfigurations depend on the scope

and
where F1 lies in. If one weight is simply assigned, the accuracy of the system
can be far from satisfactory for some of the models, although it may work for

some others.

3.8 Multi-step Search process

A true search system should allow a user to find a model which he/she is
looking for, instead of presenting a set of models based on a predefined
similarity metric. Towards this end the embodiments of this invention
incorporate a multi-step search strategy to allow the user to search for a part
using different matching criteria. For example, a user can search the database
using skeletal graphs in the first step of the search, which will retrieve
topologically similar models. Subsequently, a different metric, say the total
volume, can be used to filter out the retrieved models. This allows the user to
use Boolean operations for the search criteria, thereby retrieving a relevant part
quickly.

The multi-step approach is the first of its kind proposed for a 3D shape
search system in general and for the engineering domain in particular.

Embodiments of the present invention’s system allow incorporating
similarity invariants as well as Skeletal graphs for the multi-step search. One
instance of such a multi-step search process is presented in FIG. 62:

a. Various feature vectors (viz. Moments invariants, Eigenvalues of
skeletal graphs, Geometric parameters) are used to reduce search space

(Database with N models) to small number, My, where My <N.
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b. Skeletal Graph-Invariants (' <Degree of Nodes>, <Number of L,
E and C>, <Number of L-L, L-E, E-E connections>, etc.) used to further
reduce search space, to say My, where M; < M),
¢. Inexact Graph Matching is performed to further reduce the search
space and for ordering the search results on this smaller set of models, M; <
M;,
d. User interacts with system in the following steps to reduce search
space (if necessary)
1. Specify Invariants-based criteria for reducing search
space.
11 Use Boolean operations on search criteria.
1il. Specify Similarity Threshold criteria for final results.

FIG. 63 depicts a particular search result from multi-step refinement
where the initial query was posed using the skeletal graph-based similarity and
the results were refined using moment invariants to retrieve the relevant models.

Although specific embodiments have been illustrated and described
herein, those of ordinary skill in the art will appreciate that any arrangement
calculated to achieve the same purpose can be substituted for the specific
embodiments shown. This disclosure is intended to cover all adaptations or
variations of various embodiments of the invention. It is to be understood that
the above description has been made in an illustrative fashion only.
Combinations of the above embodiments, and other embodiments not
specifically described herein will be apparent to one of ordinary skill in the art
upon reviewing the above description. The scope of various embodiments of the
invention inciudes any other applications in which the above structures and
methods are used. Therefore, the scope of various embodiments of the invention
should be determined with reference to the appended claims, along with the full
range of equivalents to which such claims are entitled.

It is emphasized that the Abstract is provided to comply with 37 C.F.R.
§1.72(b), which requires an Abstract that will allow the reader to quickly
ascertain the nature and gist of the technical disclosure. It is submitted with the
understanding that it will not be used to interpret or limit the scope or meaning

of the claims.
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In the foregoing Detailed Description, various features are grouped
together in single embodiments for the purpose of description. This method of
disclosure is not to be interpreted as reflecting an intention that the claimed
embodiments of the invention require more features than are expressly recited in
each claim. Rather, as the following claims reflect, inventive subject matter lies
in less than all features of a single disclosed embodiment. The following claims
are hereby incorporated into the Detailed Description, with each claim standing

on its own as a separate preferred embodiment.
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WHAT IS CLAIMED 1S:

1. A method for searching, comprising:

receiving a three dimensional object;

searching one or more data stores with the three dimensional object as a first
search query;

presenting results from the search, wherein the results include an answer set;

receiving modifications or relevance information for one or more items in the
answer set; and

re-searching the one or more data stores with the modified or relevance

information associated with the one or more items as a second search query.

2. The method of claim 1 further comprising, converting the three dimensional
object into a graph skeleton defining a graph data structure, wherein the graph data

structure is the first search query.

3. The method of claim 1 wherein receiving the three dimensional object further

includes interactively permitting the three dimensional object to be sketched.

4. The method of claim 1 wherein the receiving the three dimensional object
further includes presenting a list of three dimensional models and permitting the three
dimensional object to be formed from selective ones of the list of three dimensional

models.
5. The method of claim 1 wherein the presenting the results further include
grouping selective portions of the one or more items in the answer set into related

clusters.

6. The method of claim 1 further comprising, receiving one or more filters which

constrain the first or second search queries.

7. The method of claim 1 wherein the re-searching further includes identifying in

the relevance information for the one or more items information that identifies

-66 -
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selective ones of the items that are more relevant to the first search query than

selective other ones of the items.

8. A method of searching, comprising:
receiving a two dimensional object;
mapping the two dimensional object to a three dimensional representation;
searching one or more data stores with the three dimensional representation as
a first search query; and
presenting one or more items in an answer set that is responsive to the first

search query of the one or more data stores.

9. The method of claim 8 wherein the mapping further includes:
representing the two dimensional object as a two dimensional skeleton;
converting the two dimensional skeleton into a three dimensional skeleton;
and
representing the three dimensional skeleton as a three dimensional graph

structure, wherein the three dimensional graph structure is used as the first search

query.

10.  The method of claim 8 further comprising:
receiving relevance indications for a selective number of the one or more
| items in the answer set; and
searching the one or more data stores with the selective number of the one or

more items and the relevance indications as a second search query.

11.  The method of claim 10 retaining the relevance indications as preferences for
subsequent search queries received and processed, where the retained relevance

indications are used as filters to subsequent first queries.

12, The method of claim 8 further comprising organizing the answer set as a
plurality of related clusters, wherein each related cluster includes a selective number

of the one or more items.

13.  The method of claim § wherein the mapping further includes:
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converting the two dimensional object into a two dimensional skeleton;

generating candidate three dimensional vertices for each of two dimensions of
the two dimensional skeleton;

generating candidate three dimensional edges from the candidate three
dimensional vertices;

creating candidate three dimensional faces from the three dimensional edges
on a same surface;

creating one or more three dimensional objects from the candidate three
dimensional faces; and

associating the one or more three dimensional objects with the received two

dimensional object as the three dimensional skeleton.,

14, A method of presenting search results, comprising:

presenting three dimensional objects within one or more related clusters as an
answer set in response to a first search query;,

interactively receiving relevance information associated with selective ones of
the three dimensional objects or selective ones of the related clusters; and

interactively issuing one or more second search queries based on the received
relevance information to remove a number of the three dimensional objects from the

answer set and to reduce a number of the related clusters from the answer set.

15. The method of claim 14 wherein the presenting further includes presenting the
three dimensional objects within the one or more related clusters as answer set in
response to the first query where the first query is a three dimensional search request

derived from an initial two dimensional search request.

16.  The method of claim 14 wherein the receiving of the relevance information
further includes receiving selective feature vectors as a portion of the relevance
information, wherein the selective feature vectors define selective ones of the three

dimensional objects in more than one dimension.

17. The method of claim 16 wherein the receiving of the relevance information
further includes defining the selective feature vectors based on lower level constructs

associated with the selective ones of the three dimensional objects.
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18.  The method of claim 14 wherein the presenting further includes presenting the
answer set in response to the first search query where the first search query is
obtained by interactively traversing a hierarchy of available three dimensional models

and selecting one of the available three dimension modes as the first search query.

19. The method of claim 14 wherein the presenting further includes forming the

one or more related clusters using a Self Organizing Map (SOM) clustering technique.

20.  The method of claim 19 wherein the presenting further includes using a SOM
where feature vectors for each of the related clusters include a combination of a
cluster feature vector for the three dimensional objects included in each cluster and
graph distance measures obtained from comparisons of components associated with

each of the three dimensional models included in each cluster.

21. A method to form a three dimensional search request, comprising;

deriving a topology associated with a three dinmensional object;

deriving local geometries associated with components of the three dimensional
object; and

forming the topology and the local geometries into a search request.

22. The method of claim 21 wherein the deriving the topology further includes

obtaining relationships between geometric entities of the three dimensional object.

23. The method of claim 21 wherein the deriving the local geometries further
includes obtaining local geometric characteristics for each geometric entity included

within the three dimensional object.

24. A method of populating a searchable three dimensional data store, comprising:
reducing three dimensional models to three dimensional skeletons;
deriving for each three dimensional skeleton a topology and local geometries
associated with each geometric entity defined in that skeleton;
creating a feature vector for each three dimensional skeleton and its associated

topology and associated local geometries;

-69 -

PCT/US2004/001962



10

15

20

25

WO 2004/068300

creating associations between each of the three dimensional skeletons and
their associated feature vector; and

housing each association in a three dimensional data store.

25.  The method of claim 24 wherein the deriving further includes:

representing the topologies as relationships between each of the geometric
entities for the skeletons; and

representing the local geometries as local geometric characteristics for each of

the geometric entities for the skeletons.

26.  The method of claim 24 further comprising interfacing a high-level matcher
with the three dimensional data store, wherein the high-level matcher evaluates
topology information of the feature vectors in response to a search request issued to

the three-dimensional data store.

27.  The method of claim 26 further comprising interfacing a low-level matcher
with the three dimensional data store, wherein the low-level matcher evaluates local

geometry information of the feature vectors in response to the search request.

28.  The method of claim 27 further comprising interfacing the high-level matcher
with the low-level matcher to resolve candidate feature vectors which match the

search request.

29,  The method of claim 28 further comprising determining the candidate feature
vectors which are responsive to the search request based on a substantial match
between a search vector associated with the search request and the candidate feature

vectors.

30.  The method of claim 28 further comprising determining the candidate feature
vectors which are responsive to the search request based on a predefined threshold
percentage of a match between a search vector associated with the search request and

the candidate feature vectors.
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31.  The method of claim 24 wherein the deriving further includes obtaining the
local geometries as characteristics associated with geometric entities of the skeletons,
wherein the characteristics includes at least one or more of entity volumes, entity

volume distributions, and thickness distributions through distance.

32, A method for searching, comprising:
receiving a two or more dimensional object;
converting the two or more dimensional object into a three dimensional
skeleton;
receiving a selection for a part of the three dimensional skeleton;
converting the part into a feature vector; and

searching a data store for the feature vector.

33. The method of claim 32 further comprising presenting candidate parts returned

from the data store in response to the feature vector.

34,  The method of claim 33 further comprising presenting candidate three

dimensional models which have the candidate parts.

35. A method of searching, comprising:
receiving a two or more dimensional object;
reducing the two or more dimensional object to a three dimensional skeleton;
deriving from the two or more dimensional object text information;
forming a feature vector from topology and local geometries associated with
the three dimensional skeleton and from the text information; and |

submitting the feature vector as a search request to a data store.

36.  The method of claim 35 wherein the deriving further includes associating the
text information with at least one of a material identifier, a supplier identifier, a plant
identifier, a designer identifier, a color identifier, a pattern identifier, and a date of

creation identifier.

37.  The method of claim 35 further comprising presenting an answer set

associated with the search request that is clustered by related search results.
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38. A method of performing a search, comprising;
acquiring a relevance preference for a three dimensional search request;
modifying the three dimensional search request with the relevance preference;
and

5 submitting the three dimensional search request to one or more data stores.

39. The method of claim 38 further comprising;

presenting one or more clusters having one or more three dimensional models
from an answer set returned from the one or more data stores in response to the three
dimensional search request;

10 receiving additional relevance preferences for the answer set;

modifying the relevance preference with the additional relevance preferences;
and

associating the modified relevance preference with a searcher that is

associated with the search request.

15 40.  The method of claim 39 further comprising:
receiving a new three dimensional search request from the searcher;
modifying the new three dimensional search request with the modified
relevance preference associated with the searcher; and
submitting the new three dimensional search request to the one or more data

20  stores.

41. A search system, comprising:
a three dimensional query interface;
a skeleton converter that interacts with the query interface; and
a feature vector constructor that interacts with the skeleton converter;

25 wherein the query interface receives search requests for objects in two or more
dimensions and the objects are represented by the skeleton converter as three
dimensional graphical data structures, the feature vector constructor translates the
graphical data structures into feature vectors that are used as search requests to one or
more data store, and wherein the feature vectors include topology and local geometric

30 information derived from the three dimensional graphical data structures.
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42. The search system of claim 41 further comprising:

a high-level matcher that interfaces to the one or more data stores which
compares the topology information portions of the feature vectors against candidate
feature vectors indexed in the one or more data stores; and

a low-level matcher that interfaces to the one or more data stores which
compares the local geometric information portions of the feature vectors against the

candidate feature vectors indexed in the one or more data stores.

43. " The search system of claim 41 wherein the query interface presents answer

sets associated with results of the search requests as one or more related clusters.

44,  The search system of claim 43 wherein the query interface permits one or
more search results included within the one or more clusters to be assigned relevance

information.

45.  The search system of claim 44 wherein the assigned relevance information is
assigned automatically by the query interface or assigned via manual selections made

by a searcher interfacing with the query interface.

46.  The search system of claim 41 wherein the query interface receives the objects
based on interactions with a searcher that interactive creates the objects within the

query interface.

47.  The search system of claim 41 wherein the query interface receives the objects
based on interactive selections made by a searcher that traverses hierarchies of model

objects.

48.  The search system of claim 41 wherein the query interface receives the objects

directly from a searcher via a paste operation or a file import operation.

49.  The system of claim 41 wherein the query interface permits a searcher to
interactively select parts associated with the graphical data structures, and wherein the

feature vector constructor uses the parts to form the feature vectors.
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50. A search system, comprising:

a three dimensional data store;

an indexer; and

a comparer;

wherein the indexer associates feature vectors with three dimensional graph
data structures and the feature vectors include topology and local geometric
information for entities of each graph data structure, and wherein the feature vectors
and the graph data structures are associated with one another and housed in the data
store, the comparer receives search requests as search vectors and searches the data
store for candidate feature vectors that at least partially match the search vectors and

returns the associated graph data structures as answer sets for the search vectors.

51.  The search system of claim 50, wherein the comparer further includes:

a high-level matcher that matches topologies associated with the search
vectors with the topology information for the candidate feature housed within the data
store; and

a low-level matcher that matches local geometrics associated with the search
vectors with the local geometric information for the candidate feature vectors housed

within the data store.

52.  The search system of claim 50 wherein the comparer is configured to
determine the at least partial match based on a preconfigured percentage of
components of the search vectors that match candidate components of the candidate

feature vectors.

53.  The search system of claim 50 wherein the comparer is configured to
determine the at least partial match based on a percentage of components of the search
vectors that match candidate components of the candidate feature vectors, and
wherein the percentage is part of the search vectors or included separately with the

search vectors for consumption by the comparer.

54,  The search system of claim 50 wherein the search vectors define parts of a

three dimensional object.

74 -

PCT/US2004/001962



10

25

WO 2004/068300

55. The search system of claim 50 wherein the search vectors define complete

three dimensional objects.

56. A query interface system, comprising:

a three dimensional search constructing interface;,

a primitive data store of three dimensional primitives; and

a cluster interface;

wherein the search constructing interface is interacted with to assemble one or
more of the three dimensional primitives from the primitive data store and form a
three dimensional search query, and wherein the cluster interface organizes search

results associated with results of search query into groupings of similar results.

57.  The query interface of claim 56, wherein the cluster interface uses

preconfigured or searcher defined criteria to organize the groupings.

58.  The query interface of claim 56 further comprising a vector choice interface
that permits a searcher to dynamically modify the search query by placing relevance
information on one or more of the search results or placing the relevance information

on portions of a single search result and resubmit the modified search query.

59.  The query interface of claim 56 wherein the search constructing interface
permits one or more new three dimensional primitives to be defined by a searcher and

housed in the primitive data store.

60.  The query interface of claim 56 wherein the search constructing interface

permits a searcher to import or past a two or more dimensional object into the search
constructing interface and reduces the object into derived primitives that are matched
automatically to a selective number of the three dimensional primitives housed in the

primitive data store.

61. A search constructor system, comprising:
a three dimensional candidate constructor; and

a feature vector constructor;
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wherein the three dimensional candidate constructor receives two dimensional
objects and converts them as three dimensional objects represented by three
dimensional graph data structures, and wherein the feature vector constructor derives
topology and local geometric information from the three dimensional graph structures

to construct search vectors for a three dimensional search.

62.  The search constructor system of claim 61, wherein the three dimensional
candidate constructor generates three dimensional candidate vertices from vertices
included in the two dimensional objects, generates three dimensional candidate edges
from the three dimensional candidate vertices, constructs three dimensional candidate
faces from the three dimensional candidate edges, and constructs the three

dimensional objects from the three dimensional candidate faces.

63.  The search constructor system of claim 62, wherein the three dimensional
candidate constructor matches loops and the three dimensional candidate vertices to

form geometric entities.

64. A geometric graph data structure, implemented in a computer readable
medium, the graph data structure used to define three dimensional objects for
purposes of search and retrieval, the graph data structure comprising:

one or more geometric entities;

a topology matrix that defines topology connections between the one or more
geometric entities; and

one or more geometric shapes having geometric features associated with one
or more geometric entities and wherein each geometric feature can be reduced to a
single one of the geometric entities;

wherein the geometric graph data structure is generated from an object having
two or more dimensions and wherein a feature vector is derived for the geometric data
structure, wherein the feature vector that includes portions of the topology matrix and

the features.

65.  The graph data structure of claim 64, wherein each of the entities are defined

by a set of edges, a set of loops, a set of surfaces, and a set of holes.
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66. The graph data structure of claim 64, wherein each of the one or more shapes
further include a shape topology matrix that defines topological connectivity between

the geometric features of each shape.

67. A feature vector implemented in a computer readable medium, the feature
vector defining searchable attributes of a three dimensional object and used for
generating search requests or for populating a searchable data store with as search
keys associated with the three dimensional objects, the feature vector comprising:
topology information that defines the connectivity and relationships between
geometric entities associated with a three dimensional object; and
local geometrics associated with characteristics of each of the geometric

entities.

68. The feature vector of claim 67, wherein the feature vector is associated with a

single part of the three dimensional object.

69. The feature vector of claim 67, wherein the feature vector is associated with
one or more parts of the three dimensional object but not the complete three

dimensional object.

70.  The feature vector of claim 67, wherein the feature vector is used to perform a
search against a three dimensional data store having a plurality of instances of the
feature vector, wherein each of the instances represents a different three dimensional

object instance or a different part of the different three dimensional object instances.

71. The feature vector of claim 67, wherein the feature vector is used to determine
a partial match against one or more of the plurality of instances of the feature vector

housed in the three dimensional data store.

72. A method of searching, comprising:

selecting features associated with an object represented in more than two
dimensions;

selectively weighting the features; and

submitting the selectively weighted features as a search request.
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73.  The method of claim 72 wherein selecting the features further includes
selecting between graph data structure elements representing the object or selecting

portions of a feature vector describing the object.

74.  The method of claim 72 wherein selectively weighting further includes

weighting local or global features associated with the object.
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