

UFFICIO ITALIANO BREVETTI E MARCHI

DOMANDA NUMERO	101994900405798
Data Deposito	29/11/1994
Data Pubblicazione	29/05/1996

Priorità	159.275	
Nazione Priorità	US	
Data Deposito Priorità		
Sezione Classe Sottoclasse Gruppo Sottogruppo		

P

60

Titolo

В

SISTEMA DI CONTROLLO AUTOMATICO PER IL COORDINAMENTO DI SOLLEVAMENTO ED INCLINAZIONE E SUO PROCEDIMENTO D'USO.

DESCRIZIONE dell'invenzione industriale dal titolo:

"Sistema di controllo automatico per il coordinamento
di sollevamento ed inclinazione e suo procedimento di
uso"

di: Caterpillar Inc., nazionalità statunitense, 100 NE Adams Street, Peoria, Illinois 61629-6490 (Stati Uniti d'America)

Inventori designati: James C., BARTON; Kevin J., LUESCHOW; Kenneth L., STRATTON.

Depositata il: 29 NOVEMBRE 1994

TO 94A000972

* * *

DESCRIZIONE

CAMPO TECNICO DELL'INVENZIONE

La presente invenzione si riferisce in generale a veicoli fuoristrada che hanno un attrezzo in grado di muovere terra o oggetti. Più in particolare l'invenzione si riferisce ad un meccanismo e ad un procedimento per coordinare automaticamente funzioni di sollevamento e di inclinazione dell'attrezzo del veicolo in modo che l'altezza dell'attrezzo rimanga costante anche se l'operatore ha variato l'angolo di inclinazione dell'attrezzo.

SFONDO DELL'INVENZIONE

Veicoli fuoristrada come caricatori su ruote, bulldozer, e caricatori di autocarri, ad esempio,

hanno una benna o altro attrezzo per muovere terra o altri oggetti. La descrizione seguente degli svantaggi ed inconvenienti di veicoli noti è fornita nella presente con riferimento ad un bulldozer. Tuttavia questi svantaggi valgono per altri veicoli simili aventi un attrezzo.

Un operatore di bulldozer ha tipicamente che variano l'orientamento della lama comandi del controllo di inclinazione bulldozer: un un controllo di sollevamento. Il controllo di inclinazione regola l'angolo della lama rispetto terreno. Il controllo di sollevamento regola l'altezza della lama, in cui l'altezza della lama è una misura della distanza tra lo spigolo di taglio ed il terreno. Questi due comandi non sono del tutto indipendenti. Ad esempio la diminuzione dell'angolo della lama aumenta generalmente l'altezza dello spigolo di taglio. Così, lo spigolo di taglio appoggia inizialmente sul terreno, la diminuzione dell'angolo della lama solleva lo spigolo di taglio dal terreno. Si può notare che il sollevamento dello spigolo di taglio dal terreno durante alcune operazioni potrebbe compromettere la produttività.

L'operatore del bulldozer può compensare manualmente la variazione dell'altezza della lama

utilizzando i comandi di sollevamento, ma è richiesta abilità e diligenza poichè le correzioni manuali richiedono regolazioni fini che sono noiose e difficili da eseguire svolgendo le altre funzioni dell'operatore associate con lo sgombro o livellamento.

La presente invenzione è diretta al superamento di uno o più di questi svantaggi.

SOMMARIO DELL'INVENZIONE

un aspetto di una forma di attuazione Ιn preferita della presente invenzione, è descritto dispositivo di controllo utilizzato su un bulldozer. sistema di controllo comprende un attuatore Il sollevamento ed un attuatore di inclinazione, mezzo di comando per generare un segnale di comando di inclinazione corrispondente ad นทล posizione desiderata della lama. Un sensore di velocità motore produce un segnale di velocità del motore che è ricevuto da mezzi di controllo. I mezzi di controllo sono adattati in modo da ricevere anche il segnale di comando di inclinazione, e calcolano una variazione dell'altezza della lama in risposta al segnale comando di inclinazione, calcolano una variazione posizione di sollevamento della lama per compensare la variazione di altezza della lama, e generano un segnale di controllo per l'attuatore di sollevamento.

Secondo ancora un altro aspetto di una forma di attuazione preferita, è descritto un procedimento controllare una lama di bulldozer avente un meccanismo inclinazione ed un meccanismo di sollevamento, in cui il procedimento comprende le seguenti selezione di una posizione desiderata di angolo della lama; calcolo di una variazione dello spostamento dello spigolo di taglio tra lo spostamento dello spigolo di taglio in una posizione desiderata di angolo della lama ed una posizione precedente di angolo della lama; generazione di un segnale comando per un meccanismo di sollevamento, in cui il segnale di comando corrisponde alla variazione spostamento dello spigolo di taglio; e movimento meccanismo di sollevamento in una misura uguale alla variazione di spostamento dello spigolo di taglio.

I precedenti ed altri aspetti della presente invenzione risulteranno evidenti dalla lettura della descrizione dettagliata dell'invenzione in unione con i disegni annessi e le rivendicazioni.

DESCRIZIONE DEI DISEGNI

La figura 1 rappresenta una vista laterale di un bulldozer provvisto del controllo automatico di coordinamento di sollevamento e di inclinazione secondo la presente domanda.

La figura 2 rappresenta una vista laterale della lama di bulldozer.

La figura 3 rappresenta uno schema a blocchi del circuito di controllo automatico di sollevamento e di inclinazione.

La figura 4 rappresenta un diagramma di flusso che mostra generalmente il controllo software della presente invenzione.

DESCRIZIONE DETTAGLIATA DELL'INVENZIONE

La presente invenzione può essere utilizzata in unione con qualsiasi veicolo fuoristrada avente un attrezzo che movimenta terra o altri oggetti. Ad esempio l'invenzione potrebbe essere utilizzata in unione con un caricatore su ruote, un caricatore su autocarro, un bulldozer o altri veicoli simili aventi un attrezzo. Anche se la descrizione dettagliata seguente di una forma di attuazione preferita descrive l'invenzione con riferimento ad un bulldozer, si riconoscerà che la descrizione si applica anche all'uso dell'invenzione su altri veicoli simili. La presente invenzione non è limitata all'uso su un bulldozer. Al contrario la presente invenzione come definita dalle rivendicazioni comprende altri veicoli

fuoristrada simili aventi un attrezzo.

Con riferimento alla figura 1, è rappresentata una vista laterale di un bulldozer comprendente la presente invenzione. La lama 10 del bulldozer è controllata attraverso il movimento ed il posizionamento dei cilindri di sollevamento 15 e dei cilindri di inclinazione 20. Anche se non è illustrato nella figura 1, il bulldozer comprende preferibilmente due cilindri di sollevamento 15 e due cilindri di inclinazione 20, uno su ogni lato della lama 10 del bulldozer.

L'angolo 25 della lama è una misura dell'angolo tra un piano formato sostanzialmente dalla porzione inferiore 30 della lama 20 del bulldozer ed un piano formato sostanzialmente dal terreno 35. L'operatore può regolare la posizione dei cilindri di inclinazione 20 variando l'angolo 25 della lama. Analogamente l'operatore può regolare la posizione dei cilindri di sollevamento 15 che possono essere fatti muovere per regolare l'altezza 27 dello spigolo di taglio, misurata come distanza tra lo spigolo di taglio 26 e il terreno 35.

Tipicamente un bulldozer è azionato in sequenza in tre modi differenti. Questi modi comprendono un modo di carico, un modo di spargimento ed un modo

di trasporto. Durante il modo di carico l'operatore taglia o raschia il terreno con lo spigolo di taglio per allentare il terreno. Durante il modo di trasporto il terreno allentato è spinto o trasportato in una seconda posizione, e durante il modo di spargimento il terreno è scaricato o sparso nella seconda posizione. Ognuno di questi tre modi di funzionamento ha un angolo ottimale differente 15 della lama.

La figura 2 illustra la relazione generale tra gli angoli ottimali tipici della lama per il modo di trasporto 40, il modo di carico 45 ed il modo di spargimento 50. L'angolo ottimale 25 della lama per il modo di trasporto 40 è il più piccolo, mentre l'angolo ottimale per il modo di spargimento 50 è il più grande. L'angolo ottimale dalla lama per il modo di carico 45 è intermedio tra questi due angoli.

Tipicamente l'operatore del bulldozer passerà in sequenza attraverso ognuno di questi modi in modo relativamente rapido. Così l'operatore eseguirà il caricamento per un breve periodo di tempo fino a quando una quantità sufficiente di terreno non è stata raschiata dall'area di lavoro. Quindi l'operatore trasporterà il terreno in una seconda area spargendo il terreno. L'operatore ritornerà quindi all'area di caricamento ripetendo tutta la sequenza.

Per operare in modo più efficiente, l'operatore deve l'angolo della lama portandolo all'angolo variare ottimale della lama per ogni modo di funzionamento specifico. Tuttavia, come precedentemente indicato, la variazione dell'angolo della lama modifica anche l'altezza della lama e può fare in modo che lo spigolo taglio si stacchi dal terreno. L'operatore tentare simultaneamente di manovrare i 1. percib controllo di sollevamento per mantenere costante l'alterza 27 dello spigolo di taglio. Tuttavia, poichè richieste che l'operatore deve soddisfare sono notevoli passando in sequenza attraverso i modi, l'operatore non può generalmente mantenere la lama una altezza costante. Tuttavia ciò può notevolmente danneggiare 1aproduttività. Ad esempio, l'operatore diminuisce l'angolo della lama nel movimento dal modo di carico al modo di trasporto, taglio si solleva dal spigolo di terreno. Se l'operatore non regola i cilindri di sollevamento carico può cadere dalla lama i l 10 senza trasportato alla seconda posizione.

La figura 3 mostra uno schema a blocchi dei componenti del sistema di controllo automatico di coordinamento di sollevamento e di inclinazione secondo una forma di attuazione preferita. L'operatore

controlla la lama utilizzando la leva di controllo 60. Sulla sommità della leva vi è un interruttore 65 a tre posizioni azionabile col pollice che permette dei l'operatore selezioni uno tre modi di funzionamento: carico, trasporto o spargimento. aumentare l'angolo 25 della lama l'operatore sposta destra la leva 60. Per diminuire l'angolo 25 verso della lama l'operatore sposta verso sinistra la leva 60. Quando non si esercita nessuna forza sulla 60, essa rimane in una posizione intermedia tra arresti di sinistra e di destra.

previsti sensori nella base 61 della per produrre segnali sinistro e destro 63, 64 che sono funzione della posizione della leva 60. I segnali sinistro e destro 63, 64 sono applicati al controllo elettronico 68. Il controllo elettronico 68 calcola segnali di comando di solenoide 66, 67 per fare modo che la valvola pilota proporzionale 70 trasmetta flusso di fluido idraulico dall'alimentazione pilota 71 alla valvola di azionamento di inclinazione 75. La valvola pilota proporzionale 70 controlla così posizione della valvola di azionamento inclinazione 75 che controlla la quantità e 1 a direzione di fluido ad alta pressione che scorre verso i cilindri di inclinazione 20. In guesto modo,

manovrando la leva di controllo 60, l'operatore pub controllare il flusso di fluido verso i cilindri di inclinazione 20, e pub regolare l'angolo 25 della lama.

può notare, conoscendo la relazione si geometrica dei componenti del bulldozer e la posizione cilindri di inclinazione 20 e dei cilindri dei sollevamento 15, il controllo elettronico 68 può calcolare l'angolo 25 della lama. Vi sono diversi dispositivi noti sensori di posizione lineare che misurano una posizione assoluta e possono essere utilizzati in unione con i cilindri. Ad esempio sensori RF (radiofreguenza) o sensori LVDT (trasformatore differenziale variabile lineare) entrambi sensori di posizione ben noti. Tuttavia questi dispositivi sono costosi ed aumentano notevolmente il costo del controllo. Invece, in una attuazione preferita forma di della presente invenzione, una posizione relativa è calcolata in funzione della quantità di fluido idraulico che entra in un cilindro, che è funzione della portata di fluido idraulico e del tempo per cui il fluido entra nel cilindro. In una forma di attuazione preferita, il controllo elettronico calcola la posizione cilindri di inclinazione secondo l'equazione 1:

Equazione 1

posizione_cilindro_inclinazione =
posizione_iniziale + K portata dt

in cui

K = 1/(area in sezione trasversale del cilindro;

t = tempo di attivazione del cilindro idraulico.

Poichè l'equazione 1 calcola una posizione relativa, come indicato nell'equazione, è necessario stabilire dapprima una posizione iniziale nota.

Il controllo elettronico 68 calcola la posizione dei cilindri di inclinazione 20 "azzerando" inizialmente i cilindri di inclinazione. Ossia il controllo elettronico 68 fa in modo che i cilindri di inclinazione 20 si muovano in una posizione nota, quindi memorizza il valore corrispondente a questa posizione nota nella memoria 69. La procedura di azzeramento è preferibilmente eseguita dal controllo elettronico 68 che genera segnali di azionamento di solenoide 66,67 che fanno in modo che la valvola di azionamento di inclinazione 75 provochi il ritiro dei cilindri di inclinazione 20. I segnali di azionamento

67 sono applicati per un intervallo di tempo assicurare che i cilindri sufficiente per di inclinazione 20 si ritirino contro uπ meccanico (non illustrato nella figure). Il controllo elettronico 68 memorizza un valore di posizione nella memoria 69 corrispondente al ritiro completo dei cilindri di inclinazione 20 contro i loro arresti. Quindi, come indicato nell'equazione 1, la posizione dei cilindri di inclinazione 20 può essere determinata calcolando un movimento relativo del cilindro rispetto questa posizione nota. Il controllo elettronico calcola una nuova posizione relativa alla posizione nota misurando la portata del fluido idraulico l'intervallo di tempo per cui il fluido può entrare o uscire dal cilindro a quella portata.

La portata del fluido può essere calcolata disponendo un flussometro 8 sui condotti verso i cilindri di inclinazione 20. Tuttavia nella presente invenzione il flussometro è stato eliminato, e la portata è invece approssimata in funzione della velocità del motore. Gli esperimenti hanno mostrato che la portata può essere approssimata con precisione in funzione della velocità del motore purchè vi sia un'unica richiesta per il sistema idraulico. Così, in una forma di attuazione preferita, il controllo

elettronico 68 della presente invenzione calcola la portata dal segnale di velocità del motore 76 del sensore di velocità del motore 77. Il controllo elettronico può determinare con precisione il "tempo di attivazione" del cilindro di inclinazione dalla durata dei segnali di azionamento di solenoide 66, 67 diretti verso la valvola pilota proporzionale. Dal "tempo di attivazione" e dal segnale di velocità del motore 76, l'unità elettronica di controllo può quindi calcolare la posizione dei cilindri di inclinazione

Poichè la posizione dei cilindri di inclinazione è calcolata integrando una portata, nel tempo si può sviluppare un forte errore di integrazione. Così è necessario "azzerare" periodicamente i cilindri di inclinazione riportandoli in una posizione nota ed impostando un valore memorizzato nel controllo elettronico a questo valore noto. Come precedentemente indicato, in una forma di attuazione preferita i cilindri di inclinazione 20 sono azzerati ritirandoli completamente contro arresti meccanici ed impostando il valore di posizione di inclinazione nella memoria 69 a zero.

In una forma di attuazione preferita, il controllo elettronico 68 calcola anche una posizione

relativa dei cilindri di sollevamento 15 in un modo simile come descritto con riferimento ai cilindri di inclinazione. Conoscendo la posizione sia dei cilindri di sollevamento 15 sia dei cilindri di inclinazione 20, il controllo elettronico può calcolare l'altezza 27 dello spigolo di taglio. Quindi, quando l'operatore comanda una variazione dell'angolo 25 della lama, il controllo elettronico 28 può calcolare la regolazione necessaria dei cilindri di sollevamento 15 per mantenere l'altezza 27 dello spigolo di taglio uguale a quella prima della variazione dell'angolo della lama.

La figura 4 mostra un diagramma di flusso della realizzazione software della strategia di controllo del controllo automatico di coordinamento di sollevamento e di inclinazione secondo la presente domanda. Il diagramma di flusso mostra un insieme completo ed esauriente di istruzioni per creare il software necessario per l'uso con qualsiasi microprocessore adatto. La scrittura delle istruzioni software dal diagramma di flusso sarà una fase meccanica per un tecnico del ramo della scrittura di tale software.

L'operatore avvia dapprima il motore del bulldozer ed inserisce la caratteristica di

coordinamento automatico di sollevamento e inclinazione premendo l'interruttore di inclinazione automatica 80 indicato nello schema a blocchi della figura 3. Il controllo elettronico 68 non inizialmente un valore di posizione memorizzato nella memoria 69 per la posizione dei cilindri inclinazione 20. E' perciò necessario "azzerare" lama spostandola in una posizione nota. Come precedentemente descritto, il dispositivo di controllo esegue questa operazione ritirando dapprima completamente i cilindri di inclinazione 20 per un intervallo di tempo sufficiente per assicurare che i cilindri di inclinazione siano ritirati contro gli arresti meccanici memorizzando un valore nella memoria 69 che corrisponde alla posizione di ritiro completo.

Successivamente, quando l'operatore inserisce la caratteristica di coordinamento automatico di sollevamento e di inclinazione premendo l'interruttore di inclinazione automatica 80, il sistema di controllo procede attraverso la strategia di controllo illustrata nella figura 4 regolando automaticamente l'altezza della lama. Ognuna delle variabili illustrate nella figura 4 è elencata e descritta nella Tabella 1 seguente.

Tabella 1 Variabili di controllo

Definizione dei termini utilizzati nel diagramma di flusso.

Angolo_inclinazione: L'angolo tra un piano formato

sostanzialmente dal fondo

della lama e un piano formato

dal terreno.

Posizione_inclinazione: Indicazione misurata o calco-

lata dell'estensione media

dei cilindri di inclinazione.

Estensione_

Sollevamento_

nominale: Estensione media dei cilindri

di sollevamento quando i ci-

lindri di inclinazione sono

completamente ritirati.

Pasizione_

Sollevamento: Differenza tra la estensione

sollevamento nominale e

l'estensione media dei

cilindri di sollevamento.

Altezza_Inclinazione: Distanza tra il centro del

perno di articolazione che

fissa la lama di bulldozer

al cilindro di inclinazione

ed il centro del perno che fissa la lama di bulldozer al braccio di inclinazione.

Angolo_Inclinazione_

nominale:

Angolo di inclinazione quando entrambi i cilindri di inclinazione sono completamente ritirati.

Altezza_Spigolo_Taglio: Distanza tra lo spigolo di
taglio ed il terreno lungo
una linea perpendicolare
ad un piano tangente alla

Spostamento_Spigolo_

desiderato:

Comando di posizione di spostamento dello spigolo di
taglio, ossia posizione in
cui deve muoversi lo spigolo
di taglio.

pendenza del terreno.

Con riferimento alla figura 4, è rappresentato un diagramma di flusso del controllo software realizzato nel controllo elettronico 68 secondo una forma di attuazione preferita. All'inserimento della caratteristica di coordinamento automatico di

sollevamento e di inclinazione mediante pressione dell'interruttore di inclinazione automatica 80, il controllo elettronico 68 inizia il controllo software blocco 100. Il controllo passa quindi al blocco 405 in cui il controllo elettronico determina se i cilindri di inclinazione sono stati azzerati (inclinazione_azzerata) e la posizione_inclinazione al momento memorizzata nella memoria 69 del controllo elettronico 48 è maggiore di zero. E' necessario assicurare che la posizione memorizzata sia maggiore di zero poichè, come precedentemente indicato, errori di integrazione nel calcolo di posizione dell'equazione 1 possono fare in modo che le posizioni relative calcolate dei cilindri di inclinazione abbiano un valore negativo. Se i cilindri inclinazione 20 non sono stati azzerati allora l'indicatore inclinazione azzerata non sarà impostato e il controllo passa al blocco 115. Analogamente se errori hanno fatto in modo che il valore memorizzato di posizione_inclinazione sia negativo, allora il controllo passa al blocco 115. Nel blocco 115, ultima-posizione-inclinazione è impostata alla posizione_inclinazione corrente, la posizione_sollevamento desiderata è impostata posizione_sollevamento corrente, e lo spostamento

dello spigolo di taglio è azzerato. Se l'indicatore inclinazione_azzerata è impostato e la posizione_inclinazione è maggiore di zero, il controllo passa dal blocco 105 al blocco 110.

blocco 110, il controllo elettronico 68 Ne1 25. calcola l'angolo inclinazione corrente indicato, l'angolo inclinazione 25 è funzione dell'angolo inclinazione nominale (l'angolo inclinazione quando i cilindri di inclinazione 20 sono completamente ritirati), della posizione inclinazione corrente 31, e della altezza inclinazione L'equazione specifica indicata nel blocco 110 funzione della relazione geometrica specifica tra funzione di inclinazione, le funzioni di sollevamento ed altri componenti di un BULLDOZER CATERPILLAR MODELLO N. D10N. L'equazione indicata nel blocco può essere facilmente modificata da un tecnico del ramo per adattarla alla relazione geometrica specifica tra le funzioni di inclinazione e di sollevamento di un bulldozer specifico. Il controllo passa quindi blocco 120 in cui il controllo elettronico 48 calcola lo spostamento spigolo taglio corrente 31, che funzione della lunghezza_spigolo_taglio 55, dell'angolo inclinazione corrente 25

dell'angolo_inclinazione_nominale.

Da uno dei blocchi 115 o 120, il controllo passa blocco 125, in cui il controllo elettronico determina deve 50 azzerare la posizione_sollevamento desiderata, in affermativo imposta l'indicatore dі azzeramento posizione sollevamento desiderata. Come 125, indicato nel blocco l'indicatore di azzeramento_posizione_sollevamento_desiderata azzerato quando l'operatore ha eseguito una correzione dell'angolo_inclinazione o la posizione inclinazione non è variata o l'operatore ha selezionato il modo carico sull'interruttore azionabile con il pollice 65. La posizione_sollevamento_desiderata è la posizione a cui i cilindri di sollevamento 15 devono trovarsi mantenere un certo spostamento_spigolo_taglio 27 data una variazione dell'angolo inclinazione 25.

l'operatore sta eseguendo una correzione manuale dei cilindri di sollevamento per variare l'angolo_inclinazione 25 della lama, o non vi è stata nessuna variazione dell'angolo_inclinazione (misurata da una variazione della posizione inclinazione corrente in funzione della ultima_posizione_inclinazione), o il bulldozer

funziona nel modo di carico. allora posizione_sollevamento_desiderata deve reimpostata ad una nuova posizione sollevamento_desiderata. Così il elettronico 86 attiva l'indicatore reimpostazione_posizione_sollevamento_desiderata. questo caso il controllo passa dal blocco 130 al 140. Nel blocco posizione_sollevamento_desiderata 1 a posizione_sollevamento_iniziale entrambe sono impostate alla posizione_sollevamento corrente e spostamento spigolo desiderato È impostato spostamento_spigolo_taglio. Poichè la posizione_sollevamento_desiderata è stata impostata alla posizione sollevamento corrente, i l elettronico 68 non genera un segnale di azionamento di solenoide 66, 67 per azionare i cilindri di sollevamento 15.

Se, d'altra parte, la reimpostazione_posizione_sollevamento_desiderata non è stata attivata, allora è richiesta una regolazione automatica mediante i cilindri di sollevamento 15 per mantenere lo spostamento_spigolo_taglio ad una altezza costante ed il controllo passa dal blocco 130 al blocco 135. Nel blocco 135, il controllo elettronico

68 calcola una nuova posizione_sollevamento_desiderata in funzione della posizione_sollevamento_iniziale, dello spostamento_spigolo_taglio 27, e dello spostamento_spigolo_desiderato come indicato dall'equazione nel blocco 135.

Con riferimento alla figura 4b, nel blocco decisionale 445 il controllo elettronico 68 rileva i segnali anteriore e posteriore 63, 64 determinando se l'operatore sta eseguendo una regolazione dei cilindri di sollevamento 15 della lama 10. Se l'operatore sta eseguendo una regolazione allora nel blocco 150 il controllo elettronico 68 imposta l'indicatore mantenimento_sollevamento. Il controllo passa quindi al blocco 155 in cui il controllo elettronico 68 impedisce una regolazione automatica dei cilindri sollevamento 15 se non dopo che l'operatore l'esecuzione della correzione sollevamento mantenendo l'uscita di valvola da questa funzione uguale a zero. Così non si genera un comando di sollevamento automatico da parte del controllo elettronico 68.

Se l'operatore non sta eseguendo una correzione dei cilindri di sollevamento 15, allora il controllo passa al blocco 160. Se la posizione sollevamento rientra entro sei millimetri dalla

posizione sollevamento desiderata, allora il controllo passa al blocco 155 in cui il controllo elettronico 68 imposta i segnali di azionamento di solencide 66, 67 per la valvola pilota proporzionale 70 a zero, arrestando così un ulteriore movimento dei cilindri di sollevamento 15. Benchè nella presente forma attuazione dell'invenzione la tolleranza sia fissata a sei millimetri, si può notare che un'altra tolleranza essere facilmente potrebbe realizzata allontanarsi dallo spirito della presente invenzione. Nel blocco 160, se la posizione sollevamento si scosta d.i più sei millimetri posizione_sollevamento_desiderata, allora il controllo passa al blocco 165 in cui il controllo elettronico 68 calcola i segnali di azionamento di solenoide 66, necessari per fare in modo che i cilindri sollevamento 15 si muovano nella posizione_sollevamento desiderata, ed applica segnali di azionamento di solenoide calcolati 66, 67 alla valvola pilota proporzionale 70 che fa in modo che i cilindri di sollevamento si muovano entro sei millimetri dalla posizione_sollevamento_desiderata. blocco 175, il sistema di controllo correlazione automatica di sollevamento e inclinazione ritorna quindi al blocco 100 per iniziare

un'altra sequenza di controllo.

APPLICABILITA' INDUSTRIALE

notare che, utilizzando la Si pub presente invenzione su un bulldozer, l'operatore può mantenere una altezza costante della lama senza dover regolare manualmente i cilindri di sollevamento. l'operatore esegue in sequenza vari modi di funzionamento differenti, ognuno avente un angolo ottimale differente, l'operatore deve regolare in modo ripetitivo i cilindri di sollevamento per mantenere altezza costante della lama. La presente invenzione aumenta la produttività e rende faticoso il lavoro dell'operatore mantenendo automaticamente un'altezza costante della lama in tutta la sequenza di modi di funzionamento, a meno che l'operatore regoli manualmente l'altezza di sollevamento.

RIVENDICAZIONI

 Dispositivo di controllo utilizzato su un veicolo fuoristrada, comprendente:

un attrezzo;

un attuatore di sollevamento associato con l'attrezzo;

un attuatore di inclinazione associato con l'attrezzo;

un mezzo di comando per generare un segnale di comando di inclinazione corrispondente ad una posizione desiderata di angolo di inclinazione dell'attrezzo;

un sensore di velocità del motore avente un segnale di velocità del motore; e

mezzi di controllo per ricevere il segnale del sensore di velocità del motore ed il segnale di comando di inclinazione, calcolare una variazione dell'altezza dell'attrezzo in risposta al segnale di comando di inclinazione, calcolare un segnale di comando di azionamento di sollevamento per compensare la variazione di altezza dell'attrezzo, ed applicare il segnale di comando di azionamento di sollevamento all'attuatore di sollevamento.

2. - Dispositivo di controllo secondo la rivendicazione 1, in cui l'attuatore di sollevamento e l'attuatore di inclinazione comprendono un cilindro di sollevamento idraulico ed un cilindro di inclinazione idraulico, rispettivamente.

3. - Dispositivo di controllo utilizzabile con un veicolo fuoristrada, comprendente:

un attrezzo;

un attuatore di sollevamento associato con l'attrezzo;

un attuatore di inclinazione associato con l'attrezzo;

un mezzo di regolazione per regolare manualmente l'angolo di inclinazione dell'attrezzo;

un sensore di posizione collegato al mezzo di regolazione manuale suddetto, in cui il sensore di posizione suddetto genera un segnale di regolazione manuale;

un mezzo sensore di posizione di inclinazione associato con l'attuatore di inclinazione per rilevare la posizione dell'attuatore di inclinazione e generare un segnale di posizione di inclinazione corrispondente alla posizione suddetta;

un mezzo sensore di posizione di sollevamento associato con l'attuatore di sollevamento per rilevare la posizione dell'attuatore di sollevamento e generare un segnale di posizione di sollevamento corrispondente

alla posizione suddetta; e

mezzi di controllo per ricevere il segnale di posizione di inclinazione, ricevere il segnale di posizione di sollevamento, ricevere il segnale di regolazione manuale, calcolare una variazione di altezza dell'attrezzo in risposta ad un segnale di comando di controllo, e generare automaticamente un segnale di comando dell'attuatore di sollevamento.

- 4. Dispositivo di controllo secondo la rivendicazione 3, in cui l'attuatore di sollevamento e l'attuatore di inclinazione comprendono rispettivamente un cilindro idraulico di sollevamento ed un cilindro idraulico di inclinazione.
- 5. Dispositivo di controllo secondo la rivendicazione 3, in cui il mezzo sensore di posizione di inclinazione comprende:

un sensore di velocità del motore avente un segnale di velocità del motore;

un mezzo temporizzațore per determinare l'intervallo di tempo per cui l'attuatore di inclinazione suddetto è attivato, in cui il mezzo temporizzatore suddetto è destinato a generare un segnale attivato dal tempo di inclinazione; e

in cui il mezzo di elaborazione suddetto riceve il segnale suddetto di velocità del motore, il segnale

suddetto attivato dal tempo di inclinazione, il segnale suddetto di apertura della valvola, e calcola un segnale di posizione di inclinazione.

- 6. Dispositivo di controllo secondo la rivendicazione 3, in cui il mezzo sensore di posizione di inclinazione comprende un sensore RF.
- 7. Dispositivo di controllo secondo la rivendicazione 3, in cui il mezzo sensore di posizione di inclinazione comprende un sensore LVDT.
- 8. Dispositivo di controllo secondo la rivendicazione 3, in cui il mezzo sensore di posizione di sollevamento comprende un sensore RF.
- 9. Dispositivo di controllo secondo la rivendicazione 3, in cui il mezzo sensore di posizione di sollevamento comprende un sensore LVDT.
- 10. Su un veicolo fuoristrada, dispositivo di controllo comprendente:

un attrezzo:

un cilindro di inclinazione collegato all'attrezzo;

un cilindro di sollevamento collegato all'attrezzo:

un primo sensore di posizione associato con il cilindro di inclinazione;

un secondo sensore di posizione associato con il

cilindro di sollevamento;

una leva di regolazione manuale;

un terzo sensore di posizione associato con la leva di regolazione manuale;

un controllo elettronico destinato a ricevere un segnale dal primo, dal secondo e dal terzo sensore di posizione, e generare rispettivamente un segnale di comando di sollevamento;

ună alimentazione sotto pressione di fluido idraulico;

una valvola di azionamento del cilindro di inclinazione collegata idraulicamente all'alimentazione sotto pressione e al cilindro di inclinazione;

una valvola di azionamento del cilindro di sollevamento collegata idraulicamente all'alimentazione sotto pressione e al cilindro di sollevamento, in cui la valvola di azionamento del cilindro di sollevamento controlla il flusso di fluido idraulico dall'alimentazione sotto pressione al cilindro di sollevamento in risposta al segnale di comando di sollevamento.

11. - Dispositivo di controllo secondo la rivendicazione 10, in cui il primo sensore di posizione comprende un sensore di velocità del motore

- e mezzi temporizzatori per determinare il tempo di attivazione del cilindro di inclinazione.
- 12. Dispositivo di controllo secondo la rivendicazione 10, in cui il secondo sensore di posizione comprende un sensore di velocità del motore e mezzi temporizzatori per determinare il tempo di attivazione del cilindro di inclinazione.
- 13. Dispositivo di controllo secondo la rivendicazione 10, comprendente:

mezzi di memoria per memorizzare un segnale del primo sensore di posizione corrispondente all'angolo approssimato di inclinazione dell'attrezzo;

in cui il segnale memorizzato del primo sensore di posizione suddetto è aggiornato ad una variazione del segnale suddetto del primo sensore di posizione;

in cui il controllo elettronico suddetto calcola una variazione dell'altezza dell'attrezzo corrispondente alla variazione del segnale del primo sensore di posizione e produce in risposta un segnale di comando di sollevamento in funzione della variazione di altezza suddetta.

14. - Procedimento per controllare un veicolo fuoristrada avente un meccanismo di inclinazione ed un meccanismo di sollevamento associati con un attrezzo, comprendente le seguenti fasi:

selezione di una prima posizione di angolo di inclinazione dell'attrezzo;

rilevazione della posizione del meccanismo di inclinazione nella prima posizione selezionata suddetta di angolo di inclinazione dell'attrezzo;

selezione di una seconda posizione di angolo di inclinazione dell'attrezzo;

rilevazione della posizione del meccanismo di inclinazione nella seconda posizione selezionata suddetta di angolo di inclinazione dell'attrezzo;

calcolo di una variazione di altezza dell'attrezzo corrispondente alla variazione della posizione rilevata di angolo di inclinazione dell'attrezzo tra la prima posizione suddetta di angolo di inclinazione dell'attrezzo e la seconda posizione suddetta di angolo di inclinazione dell'attrezzo;

generazione di una segnale di comando per il meccanismo di sollevamento; e

spostamento del meccanismo di sollevamento in misura corrispondente al segnale di comando.

15. - Procedimento secondo la rivendicazione 14, in cui il segnale di comando suddetto è funzione della variazione di altezza dell'attrezzo.

16. - Procedimento secondo la rivendicazione 14,

comprendente la fase consistente nel fare in modo che il meccanismo di inclinazione si ritiri completamente prima di selezionare una prima posizione di angolo di inclinazione dell'attrezzo.

17. - Procedimento secondo la rivendicazione 16, in cui le fasi suddette di rilevazione comprendono le seguenti fasi:

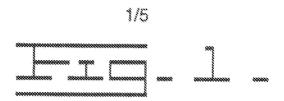
rilevazione di una velocità del motore;

calcolo della portata di fluido idraulico dalla velocità rilevata suddetta del motore;

misura dell'intervallo di tempo per cui un meccanismo di inclinazione è azionato;

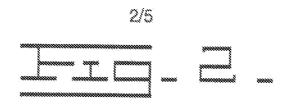
e calcolo della posizione del meccanismo di inclinazione dalla portata suddetta e dal tempo di azionamento suddetto.

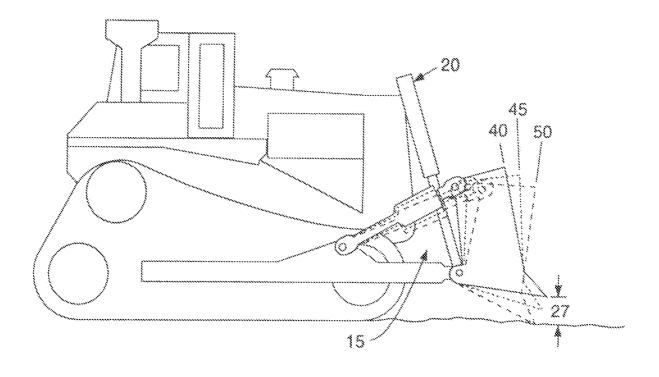
18. - Procedimento secondo la rivendicazione 14, comprendente le seguenti fasi:

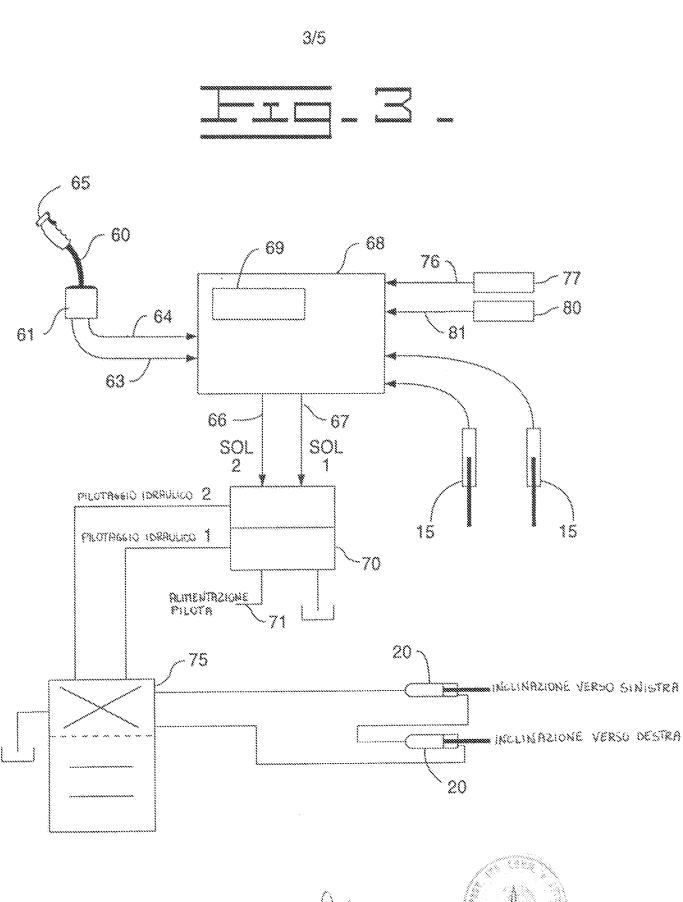

determinazione del fatto che il meccanismo di sollevamento suddetto si trovi oppure no entro una tolleranza predeterminata rispetto alla posizione di sollevamento corrispondente al segnale di comando;

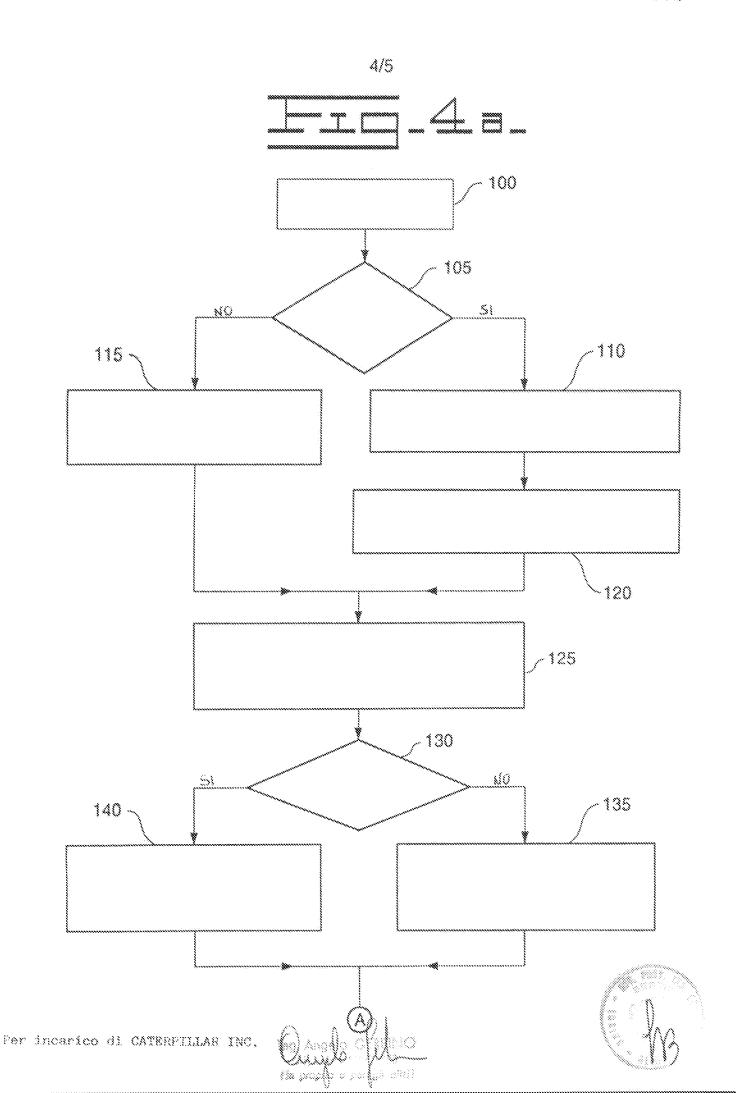
generazione di un secondo segnale di comando in risposta al fatto che la posizione suddetta del

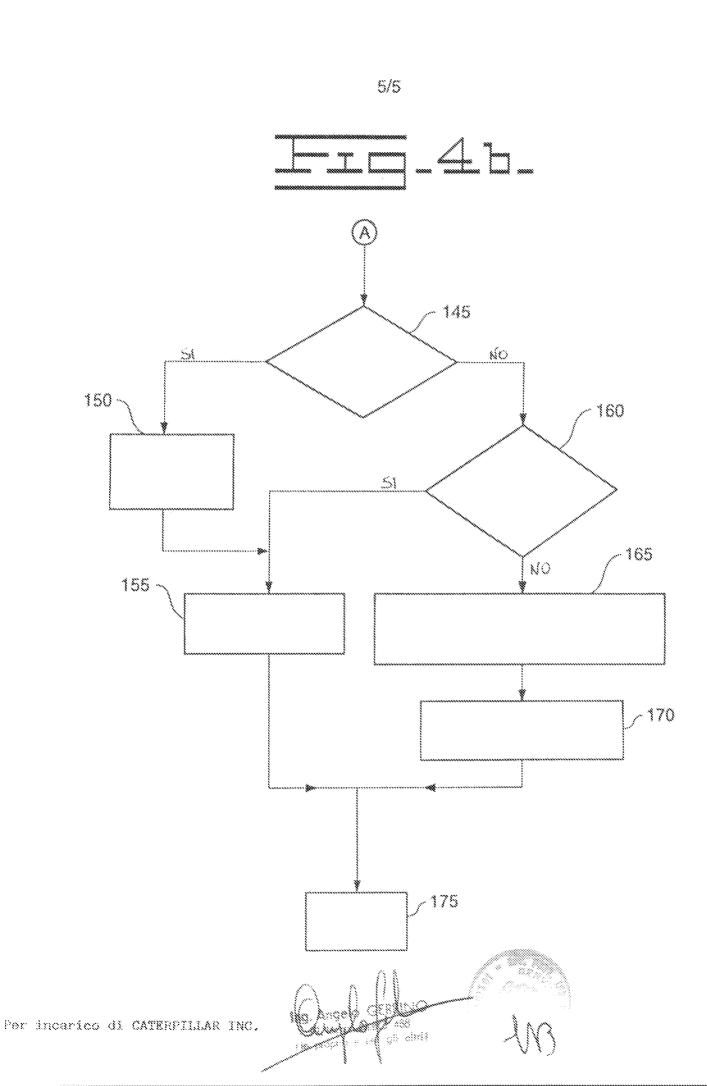
meccanismo di sollevamento sia maggiore della tolleranza predeterminata rispetto alla posizione di sollevamento suddetta corrispondente al segnale di comando.


PER INCARIOD


Ing. Angelo GERBINO N. Iscri Lepudo L






application

Per incarico di CATERFILLAR INC.

