wo 2019/006300 A1 | I0K 000 O AR O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property 3

Organization
=

International Bureau

(43) International Publication Date

(10) International Publication Number

WO 2019/006300 A1

03 January 2019 (03.01.2019) WIPOI|PCT

(51) International Patent Classification:
HO4N 19/107 (2014.01) HO04N 19/503 (2014.01)

HO04N 19/117 (2014.01) HO04N 19/159 (2014.01) an
HO4N 19/174 (2014.01) HO04N 19/136 (2014.01)
HO04N 19/176 (2014.01) HO04N 19/82 (2014.01)
HO04N 19/463 (2014.01) (72)
(21) International Application Number:
PCT/US2018/040287
(22) International Filing Date:
29 June 2018 (29.06.2018)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
62/526,577 29 June 2017 (29.06.2017) Uus (74)
62/561,561 21 September 2017 (21.09.2017) US
62/629,313 12 February 2018 (12.02.2018) US
62/680,710 05 June 2018 (05.06.2018) US

62/686,738 19 June 2018 (19.06.2018) Us

Applicant: DOLBY LABORATORIES LICENSING
CORPORATION [US/US]; 1275 Market Street, San Fran-
cisco, California 94103 (US).

Inventors: LU, Taoran; ¢/o DOLBY LABORATORIES,
INC., 1275 Market Street, San Francisco, California 94103
(US). PU, Fangjun; c/o Dolby Laboratories, Inc., 1275
Market Street, San Francisco, California 94103 (US). YIN,
Peng; c/o DOLBY LABORATORIES, INC., 1275 Market
Street, San Francisco, California 94103 (US). CHEN, Tao;
c/o Dolby Laboratories, Inc., 1275 Market Street, San Fran-
cisco, California 94103 (US). HUSAK, Walter J.; ¢/o Dol-
by Laboratories, Inc., 1275 Market Street, San Francisco,
California 94103 (US).

Agent: KONSTANTINIDES, Konstantinos; ¢/o Dolby
Laboratories, Inc., 1275 Market Street, San Francisco, Cal-
ifornia 94103 (US).

(54) Title: INTEGRATED IMAGE RESHAPING AND VIDEO CODING

2000_E /\& Reshaper | e e e e e e 3 et et o e ot st 2 2 2t 2 e e s e e e
. i i

Estimation i
i { i
i {intra slice} : 5 4 *
i Input s P, Picture TN
[L S — ¥ 2l
L Video H reshaping N T&G CABAC !
i I
i |
; i
g Intra/ ;M Intra |
o Inter § i Prediction i
Slice Switchi %%5-1 i 270-1 i
- | 4 |
Inverse | Locp Ty E Q'8 o i
Reshaping : filtering L7 T i
S N— : Bitstream
i]
HE opeRets | 1 s B S S
i i t !
i §
Reconstrugted i i :
Video : 3, i
{inter slice) § ! " i
; g Forward Residue i T&a .
y Reshaping : :
i 4 !
§ i
{reference = k § :
pictiiras) : intra/inter : :
] prediction r :
H i
¥ | A ;
- i
Loop inv. Residue Q& ||
filtering Reshaping T
FIG. 2G

(57) Abstract: Given a sequence of images in a first codeword representation, methods, processes, and systems are presented for

integrating reshaping into a next generation video codec for encoding

and decoding the images, wherein reshaping allows part of

the images to be coded in a second codeword representation which allows more efficient compression than using the first codeword
representation. A variety of architectures are discussed, including: an out-of-loop reshaping architecture, an in-loop-for intra pictures
only reshaping architecture, an in-loop architecture for prediction residuals, and a hybrid in-loop reshaping architecture. Syntax methods
for signaling reshaping parameters, and image-encoding methods optimized with respect to reshaping are also presented.

[Continued on next page]

WO 2019/006300 A1 {1100V N0 Y A rr

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH, CL,CN, CO,CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

— as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

30

35

WO 2019/006300 PCT/US2018/040287

INTEGRATED IMAGE RESHAPING AND VIDEO CODING

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Patent Application Ser.
No. 62/686,738, filed on June 19, 2018; Ser. No. 62/680,710, filed on June 5, 2018; Ser. No.
62/629,313, filed on February 12, 2018; Ser. No. 62/561,561, filed on September 21, 2017;
and Ser. No. 62/526,577, filed on June 29, 2017, each of which is incorporated herein by
reference in its entirety.

TECHNOLOGY

[0002] The present invention relates generally to images and video coding. More
particularly, an embodiment of the present invention relates to integrated image reshaping
and video coding.

BACKGROUND

[0003] In 2013, the MPEG group in the International Standardization Organization
(ISO), jointly with the International Telecommunications Union (ITU), released the first draft
of the HEVC (also known as H.265) video coding standard. More recently, the same group
has released a call for evidence to support the development of a next generation coding
standard that provides improved coding performance over existing video coding
technologies.

[0004] As used herein, the term ‘bit depth’ denotes the number of pixels used to
represent one of the color components of an image. Traditionally, images were coded at 8-
bits, per color component, per pixel (e.g., 24 bits per pixel); however, modern architectures
may now support higher bit depths, such as 10 bits, 12 bits or more.

[0005] In a traditional image pipeline, captured images are quantized using a non-linear
opto-electronic function (OETF), which converts linear scene light into a non-linear video
signal (e.g., gamma-coded RGB or YCbCr). Then, on the receiver, before being displayed on
the display, the signal is processed by an electro-optical transfer function (EOTF) which
translates video signal values to output screen color values. Such non-linear functions
include the traditional “gamma” curve, documented in [TU-R Rec. BT.709 and BT. 2020,
and the “PQ” (perceptual quantization) curve, described in SMPTE ST 2084 and Rec. ITU-R
BT. 2100.

[0006] As used herein, the term “forward reshaping” denotes a process of sample-to-
sample or codeword-to-codeword mapping of a digital image from its original bit depth and

original codewords distribution or representation (e.g., gamma or PQ, and the like) to an

o1-

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

image of the same or different bit depth and a different codewords distribution or
representation. Reshaping allows for improved compressibility or improved image quality at
a fixed bit rate. For example, without limitation, reshaping may be applied to 10-bit or 12-bit
PQ-coded HDR video to improve coding efficiency in a 10-bit video coding architecture. In
a receiver, after decompressing the reshaped signal, the receiver may apply an “inverse
reshaping function™ to restore the signal to its original codeword distribution. As appreciated
by the inventors here, as development begins for the next generation of a video coding
standard, improved techniques for the integrated reshaping and coding of images are desired.
Methods of this invention can be applicable to a variety of video content, including, but not
limited, to content in standard dynamic range (SDR) and/or high-dynamic range (HDR).
[0007] The approaches described in this section are approaches that could be pursued,
but not necessarily approaches that have been previously conceived or pursued. Therefore,
unless otherwise indicated, it should not be assumed that any of the approaches described in
this section qualify as prior art merely by virtue of their inclusion in this section. Similarly,
issues identified with respect to one or more approaches should not assume to have been
recognized in any prior art on the basis of this section, unless otherwise indicated.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] An embodiment of the present invention is illustrated by way of example, and
not in way by limitation, in the figures of the accompanying drawings and in which like
reference numerals refer to similar elements and in which:

[0009] FIG. 1A depicts an example process for a video delivery pipeline;

[00010] FIG. 1B depicts an example process for data compression using signal
reshaping according to prior art;

[00011] FIG. 2A depicts an example architecture for an encoder using normative out-
of-loop reshaping according to an embodiment of this invention;

[00012] FIG. 2B depicts an example architecture for a decoder using normative out-of-
loop reshaping according to an embodiment of this invention;

[00013] FIG. 2C depicts an example architecture for an encoder using normative Intra-
only in-loop reshaping according to an embodiment of this invention;

[00014] FIG. 2D depicts an example architecture for a decoder using normative Intra-
only in-loop reshaping according to an embodiment of this invention;

[00015] FIG. 2E depicts an example architecture for an encoder using in-loop

reshaping for prediction residuals according to an embodiment of this invention;

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

[00016] FIG. 2F depicts an example architecture for a decoder using in-loop reshaping
for prediction residuals according to an embodiment of this invention;

[00017] FIG. 2G depicts an example architecture for an encoder using hybrid in-loop
reshaping according to an embodiment of this invention;

[00018] FIG. 2H depicts an example architecture for a decoder using hybrid in-loop
reshaping according to an embodiment of this invention;

[00019] FIG. 3A depicts an example process for encoding video using an out-of-loop
reshaping architecture according to an embodiment of this invention;

[00020] FIG. 3B depicts an example process for decoding video using an out-of-loop
reshaping architecture according to an embodiment of this invention;

[00021] FIG. 3C depicts an example process for encoding video using an in-loop intra-
only reshaping architecture according to an embodiment of this invention;

[00022] FIG. 3D depicts an example process for decoding video using an in-loop intra-
only reshaping architecture according to an embodiment of this invention;

[00023] FIG. 3E depicts an example process for encoding video using an in-loop
reshaping architecture for prediction residuals according to an embodiment of this invention;
[00024] FIG. 3F depicts an example process for decoding video using an in-loop
reshaping architecture for prediction residuals according to an embodiment of this invention;
[00025] FIG. 4A depicts an example process for encoding video using any one, or a
combination of three reshaping-based architectures according to an embodiment of this
invention;

[00026] FIG. 4B depicts an example process for decoding video using any one, or a
combination, of three reshaping-based architectures according to an embodiment of this
invention;

[00027] FIG. 5A and FIG. 5B depict a reshaping function reconstruction process in a
video decoder according to an embodiment of this invention;

[00028] FIG. 6A and FIG. 6B depict examples of how chroma QP offset values change
according to the luma quantization parameter (QP) for PQ- and HLG-coded signals according
to an embodiment of this invention; and

[00029] FIG. 7 depicts an example of a pivot-based representation of a reshaping
function according to an embodiment of this invention.

DESCRIPTION OF EXAMPLE EMBODIMENTS

[00030] Normative out-of-loop and in-loop integrated signal reshaping and coding

techniques for compressing images are described herein. In the following description, for the

-3

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

purposes of explanation, numerous specific details are set forth in order to provide a thorough
understanding of the present invention. It will be apparent, however, that the present
invention may be practiced without these specific details. In other instances, well-known
structures and devices are not described in exhaustive detail, in order to avoid unnecessarily
occluding, obscuring, or obfuscating the present invention.

OVERVIEW
[00031] Example embodiments described herein relate to integrated signal reshaping
and coding for video. In an encoder, a processor receives an input image in a first codeword
representation represented by an input bit depth N and an input codeword mapping (e.g.,
gamma, PQ, and the like). The processor selects an encoder architecture (with a reshaper
being an integral part of the encoder) from two or more candidate encoder architectures for
compressing the input image using a second codeword representation allowing for a more
efficient compression than the first codeword representation, wherein the two or more
candidate encoder architectures comprise an out-of-loop reshaping architecture, an in-loop-
for intra pictures only reshaping architecture, or an in-loop architecture for prediction
residuals, and the processor compresses the input image according to the selected encoder
architecture.
[00032] In another embodiment, a decoder for generating output images in the first
codeword representation receives a coded bitstream with at least part of the coded images
being compressed in the second codeword representation. It also receives associated
reshaping information. The processor receives signaling indicating the decoder architecture
from two or more candidate decoder architectures for decompressing the input coded
bitstream, wherein the two or more candidate decoder architectures comprise an out-of-loop
reshaping architecture, an in-loop-for intra pictures only reshaping architecture, or an in-loop
architecture for prediction residuals, and it decompresses the coded image to generate an
output image according to the received reshaping architecture.
[00033] In another embodiment, in an encoder for compressing images according to an
in-loop architecture for prediction residuals, the processor accesses an input image in a first
codeword representation and generates a forward reshaping function mapping pixels of the
input image from the first codeword representation to the second codeword representation. It
generates an inverse reshaping function based on the forward reshaping function mapping
pixels from the second codeword representation to pixels in the first codeword representation.

Then, for an input pixel region in the input image: it

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

computes at least one predicted region based in pixel data in a reference frame buffer
or previously coded spatial neighbors;
generates a reshaped residual region based on the input pixel region, the predicted
region, and the forward reshaping function;
generates a coded (transformed and quantized) residual region based on the reshaped
residual region;
generates a decoded (inverse quantized and transformed) residual region based on the
coded residual region;
generates a reconstructed pixel region based on the decoded residual region, the
predicted region, the forward reshaping function, and the inverse reshaping function; and
generates a reference pixel region to be stored on the reference frame buffer based on
the reconstructed pixel region.
[00034] In another embodiment, in a decoder for generating output images in the first
codeword representation according to an in-loop architecture for prediction residuals, the
processor receives a coded bitstream partially coded in the second codeword representation.
It also receives associated reshaping information. The processor generates based on the
reshaping information a forward reshaping function which maps pixels from the first
codeword representation to the second codeword representation and an inverse reshaping
function, wherein the inverse reshaping function maps pixels from the second codeword
representation to the first codeword representation. For a region of the coded image, the
processor:
generates a decoded reshaped residual region based on the coded image;
generates a predicted region based on pixels in a reference pixel buffer or
previously decoded spatial neighbors;
generates a reconstructed pixel region based on the decoded reshaped residual
region, the predicted region, the forward reshaping function, and the inverse reshaping
function;
generates an output pixel region based on the reconstructed pixel region; and,
stores the output pixel region in the reference pixel buffer.
EXAMPLE VIDEO DELIVERY PROCESSING PIPELINE
[00035] FIG. 1A depicts an example process of a conventional video delivery pipeline
(100) showing various stages from video capture to video content display. A sequence of
video frames (102) is captured or generated using image generation block (105). Video

frames (102) may be digitally captured (e.g. by a digital camera) or generated by a computer

_5.

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

(e.g. using computer animation) to provide video data (107). Alternatively, video frames
(102) may be captured on film by a film camera. The film is converted to a digital format to
provide video data (107). In a production phase (110), video data (107) is edited to provide a
video production stream (112).

[00036] The video data of production stream (112) is then provided to a processor at block
(115) for post-production editing. Block (115) post-production editing may include adjusting
or modifying colors or brightness in particular areas of an image to enhance the image quality
or achieve a particular appearance for the image in accordance with the video creator's
creative intent. This is sometimes called “color timing” or “color grading.” Other editing (e.g.
scene selection and sequencing, image cropping, addition of computer-generated visual
special effects, etc.) may be performed at block (115) to yield a final version (117) of the
production for distribution. During post-production editing (115), video images are viewed
on a reference display (125).

[00037] Following post-production (115), video data of final production (117) may be
delivered to encoding block (120) for delivering downstream to decoding and playback
devices such as television sets, set-top boxes, movie theaters, and the like. In some
embodiments, coding block (120) may include audio and video encoders, such as those
defined by ATSC, DVB, DVD, Blu-Ray, and other delivery formats, to generate coded bit
stream (122). In a receiver, the coded bit stream (122) is decoded by decoding unit (130) to
generate a decoded signal (132) representing an identical or close approximation of signal
(117). The receiver may be attached to a target display (140) which may have completely
different characteristics than the reference display (125). In that case, a display management
block (135) may be used to map the dynamic range of decoded signal (132) to the
characteristics of the target display (140) by generating display-mapped signal (137).

Signal Reshaping

[00038] FIG. 1B depicts an example process for signal reshaping according to prior art
Ref. [1]. Given input frames (117), a forward reshaping block (150) analyzes the input and
the coding constrains and generates codeword mapping functions which map input frames
(117) to re-quantized output frames (152). For example, input (117) may be encoded
according to certain electro-optical transfer function (EOTF) (e.g., gamma). In some
embodiments, information about the reshaping process may be communicated to downstream
devices (such as decoders) using metadata. As used herein, the term “metadata” relates to
any auxiliary information that is transmitted as part of the coded bitstream and assists a

decoder to render a decoded image. Such metadata may include, but are not limited to, color

-6-

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

space or gamut information, reference display parameters, and auxiliary signal parameters, as
those described herein.

[00039] Following coding (120) and decoding (130), decoded frames (132) may be
processed by a backward (or inverse) reshaping function (160), which converts the re-
quantized frames (132) back to the original EOTF domain (e.g., gamma), for further
downstream processing, such as the display management process (135) discussed earlier. In
some embodiments, the backward reshaping function (160) may be integrated with a de-
quantizer in decoder (130), e.g., as part of the de-quantizer in an AVC or HEVC video
decoder.

[00040] As used herein, the term “reshaper” may denote a forward or an inverse reshaping
function to be used when coding and/or decoding digital images. Examples of reshaping
functions are discussed in Ref. [1] and [2]. For the purposes of this invention, it is assumed
that a person skilled in the art can derive suitable forward and inverse reshaping functions
according to the characteristics of the input video signal and the available bit-depth of the
encoding and decoding architectures.

[00041] InRef. [1], an in-loop block-based image reshaping method for high dynamic
range video coding was proposed. That design allows block-based reshaping inside the
coding loop, but at a cost of increased complexity. To be specific, the design requires
maintaining two sets of decoded-image buffers: one set for inverse-reshaped (or non-
reshaped) decoded pictures, which can be used for both prediction without reshaping and for
output to a display, and another set for forward-reshaped decoded pictures, which is used
only for prediction with reshaping. Though forward-reshaped decoded pictures can be
computed on the fly, the complexity cost is very high, especially for inter-prediction (motion
compensation with sub-pixel interpolation). In general, display-picture-buffer (DPB)
management is complicated and requires very careful attention, thus, as appreciated by the
inventors, simplified methods for coding video are desired.

[00042] Embodiments of reshaping-based codec architectures presented herein may be
divided as follows: an architecture with an external, out-of-loop reshaper, an architecture with
an in-loop intra only reshaper, and an architecture with an in-loop reshaper for prediction
residuals, also to be referred for short as ‘in-loop residual reshaper.” A video encoder or
decoder may support any one of these architectures or a combination of them. Each of these
architectures may also be applied on its own or in combination with any one of the others.
Each architecture may be applied for the luminance component, a chroma component, or a

combination of the luma and one or more chroma components.

-7 -

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

[00043] In addition to these three architectures, additional embodiments describe efficient
signaling methods for metadata related to reshaping, and several encoder-based optimization

tools to improve coding efficiency when reshaping is applied.

Normative Out-of-loop Reshaper

[00044] FIG. 2A and FIG. 2B depict architectures for a video encoder (200A_E) and a

corresponding video decoder (200A_D) with a “normative” out-of-loop reshaper. The term
“normative” denotes that unlike previous designs where reshaping was considered a pre-
processing step, thus outside the normative description of a coding standard, such as AVC,
HEVC, and the like, in this embodiment the forward and inverse reshaping are part of the
normative requirements. Unlike the architecture of FIG. 1B, where bitstream conformance
according to a standard is tested after decoding (130), in FIG. 2B, conformance is tested after
the reverse reshaping block (265) (e.g., at output 162 in FIG. 1B).

[00045] In the encoder (200A_E), two new blocks are added to a traditional block-based
encoder (e.g., HEVC): a block (205) to estimate the forward reshaping function, and the
forward picture reshaping block (210), which applies the forward reshaping to one or more of
the color components of the input video (117). In some embodiments, these two operations
may be performed as part of a single image reshaping block. Parameters (207) related to
determining the inverse reshaping function in the decoder may be passed to the lossless
encoder block of the video encoder (e.g., CABAC 220) so that they can be embedded into the
coded bitstream (122). All operations related to intra or inter-prediction (225), transform and
quantization (T &Q), inverse transform and quantization (Q! & T-!) and loop filtering, are
performed using reshaped pictures stored in DPB (215).

[00046] In the decoder (200A_D), two new normative blocks are added to a traditional
block-based decoder: a block (250) to reconstruct an inverse reshaping function based on the
encoded reshaping function parameters (207), and a block (265) to apply the inverse
reshaping function to the decoded data (262) to generate the decoded video signal (162). In
some embodiments, operations related to blocks 250 and 265 may be combined into a single
processing block.

[00047] FIG. 3A depicts an example process (300A_E) for encoding video using the out-
of-loop reshaping architecture (200A_E) according to an embodiment of this invention. If
there is no reshaping enabled (path 305), then encoding proceeds as known in prior-art
encoders (e.g., HEVC). If reshaping is enabled (path 310), then an encoder may have the

options to either apply a pre-determined (default) reshaping function (315), or adaptively

-8

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

determine a new reshaping function (325) based on a picture analysis (320) (e.g., as described
in references [1]-[3]). Following the forward reshaping (330), the rest of the encoding
follows the traditional coding pipeline (335). If adaptive reshaping (312) is employed,
metadata related to the inverse reshaping function are generated as part of the “Encode
Reshaper” step (327).

[00048] FIG. 3B depicts an example process (300A_D) for decoding video using the out-
of-loop reshaping architecture (200A_D) according to an embodiment of this invention. If
there is no reshaping enabled (path 355), then after decoding a picture (350), output frames
are generated (390) as in a traditional decoding pipeline. If reshaping is enabled (path 360),
then, in step (370), the decoder determines whether to apply a pre-determined (default)
reshaping function (375), or adaptively determine the inverse reshaping function (380) based
on received parameters (e.g., 207). Following the inverse reshaping (385), the rest of the
decoding follows the traditional decoding pipeline.

Normative In-loop Intra-only Reshaper

[00049] FIG. 2C depicts an example architecture for an encoder (200B_E) using normative
Intra-only in-loop reshaping according to an embodiment of this invention. The design is
quite similar to the design proposed in Ref. [1]; however, to reduce complexity, especially at
it relates to the use of DPB memory (215 and 260), only intra pictures are encoded using this
architecture.

[00050] Compared to out-of-loop reshaping (200A_E), the main difference in encoder
200B_E is that DPB (215) stores inverse-reshaped pictures instead of reshaped pictures. In
other words, the decoded intra pictures need to be inverse reshaped (by inverse reshaping unit
265) before being stored into the DPB. The reasoning behind this approach is that if intra
pictures are coded with reshaping, the improved performance of coding intra pictures will
propagate to improve (implicitly) the coding of the inter pictures as well, even though inter
pictures are coded without reshaping. In this way, one can take advantage of reshaping
without dealing with the complexity of in-loop reshaping for inter pictures. Since inverse
reshaping (265) is part of the inner loop, it can be implemented before the in-loop filter (270).
The advantage of adding inverse reshaping before the in-loop filter is that in this case the
design of the in-loop filter can be optimized based on the characteristics of the original
pictures instead of the forward-reshaped pictures.

[00051] FIG. 2D depicts an example architecture for a decoder (200B_D) using normative

Intra-only in-loop reshaping according to an embodiment of this invention. As depicted in

-9.

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

FIG. 2D, determining the inverse reshaping function (250) and applying inverse reshaping
(265) are now performed before the in-loop filtering (270).

[00052] FIG. 3C depicts an example process (300B_E) for encoding video using an in-
loop intra-only reshaping architecture according to an embodiment of this invention. As
depicted, the flow of operations in FIG. 3C shares many elements with the flow of operations
in FIG. 3A. Now, by default, no reshaping is applied for inter-coding. For intra-coded
pictures, if reshaping is enabled, an encoder has again the option to use a default reshaping
curve or apply adaptive reshaping (312). If a picture is reshaped, inverse reshaping (385) is
part of the process and the associated parameters are encoded in step (327). The
corresponding decoding process (300B_D) is depicted in FIG. 3D.

[00053] As depicted in FIG. 3D, reshaping related operations are enabled only for received
intra pictures and only if intra reshaping was applied on the encoder.

In-loop Reshaper for Prediction Residuals

[00054] In coding, the term ‘residual’ denotes the difference between a prediction of a
sample or data element and its original or decoded value. For example, given an original
sample from the input video (117), denoted as Orig_sample, intra or inter prediction (225)
may generate a corresponding predicted sample (227) denoted as Pred_sample. If there is no
reshaping, the unshaped residual (Res_u) can be defined as

Res_u = Orig_sample — Pred_sample.)
[00055] In some embodiments, it may be beneficial to apply reshaping into the residual
domain. FIG. 2E depicts an example architecture for an encoder (200C_E) using in-loop
reshaping for predicted residuals according to an embodiment of this invention. Let Fwd()
denote the forward reshaping function and let /nv() denote the corresponding inverse
reshaping function. In an embodiment, a reshaped residual (232) may be defined as

Res r=Fwd(Orig_sample) — Fwd(Pred_sample). (2)

[00056] Correspondingly, at the output (267) of the inverse reshaper (265), the
reconstructed sample, denoted as Reco_sample (267), may be expressed as

Reco_sample= Inv(Res_d + Fwd(Pred_sample)), 3)
where Res_d represents the residual (234), a close approximation of Res_r, after the in-loop
coding and decoding in 200C_E.
[00057] Note that although reshaping is applied to the residuals, the actual input video
pixels are not reshaped. FIG. 2F depicts the corresponding decoder (200C_D). Note that as

depicted in FIG. 2F, and based on equation (3), a decoder requires access to both the forward

-10 -

10

15

WO 2019/006300 PCT/US2018/040287

and the inverse reshaping functions, which can be extracted using received metadata (207)
and the “Reshaper Decoding” block (250).
[00058] In an embodiment, to reduce complexity, equations (2) and (3) may be simplified.
For example, assuming that the forward reshaping function can be approximated by a
piecewise linear function and that the absolute difference between Pred_sample and
Orig_sample is relatively small, then equation (2) could be approximated as

Res_r = a(Pred_sample)«Orig_sample —Pred_sample), 4)
where a(Pred_sample) denotes a scaling factor based on the value of Pred_sample. From
equations (3) and (4), equation (3) can be approximated as

Reco_sample= Pred_sample + (1/a(Pred_sample))*Res_r, (35)

Thus, in an embodiment, one needs to communicate to a decoder only the scaling factors
a(Pred_sample) for the piecewise linear model.
[00059] FIG. 3E and FIG. 3F depict example process flows for encoding (300C_E) and
decoding (300C_D) a video using in-loop reshaping of prediction residuals. The processes

are quite similar with those described in FIG. 3A and 3B, and, thus, self-explanatory.

-11 -

10

WO 2019/006300

[00060]

Table 1: Key features for reshaping architectures under consideration

PCT/US2018/040287

Table 1 summarizes the key features of the three proposed architectures.

chitecture

Out-of-Loop

In-Loop Intra only

In-Loop Residual

DPB storage

reshaped pictures

Intra mode: inv.-
reshaped pictures
Inter mode: no reshaping

non-reshaped pictures

intra prediction
performed on

reshaped pictures

reshaped pic

non-reshaped pictures

inter prediction
(motion estimation)
performed on

reshaped pictures

non-reshaped pictures

non-reshaped pictures

extra pic buffer
needed

yes (need buffer to hold
reshaped pictures in

DPB and non-reshaped
pictures for output)

no (on the fly
replacement of picture
samples)

no (on the fly
replacement of residual
samples)

Place/Frequency of
adaptive reshaping
estimation

unrestricted (can be
intra only, scene-based,
or configurable

on intra-pictures only

unrestricted (can be intra
only, scene-based, or
configurable)

complexity for sample
modification
(reshaping)

process all pictures

process only intra-
pictures (lowest
complexity)

process residuals, no
matter intra or inter

loop filter interaction

optimization using
reshaped picture as
reference

optimization using
original picture as
reference

optimization using
original picture as
reference

adaptive,
block/region-level
reshaping possible

no

no

yes

other aspects

inter prediction
performance may suffer
if reference frames have
different reshaping
functions

inter prediction can use
reshaper for current pic to
process residuals against
reference frames (which
may have different
reshaper themselves)

decoder side needs
inverse reshaping
function only

decoder side needs
inverse reshaping
function only

decoder needs both the
forward and the inverse
reshaping functions

[00061]

FIG. 4A and FIG. 4B depict example encoding and decoding processing flows for

encoding and decoding using a combination of the three proposed architectures. As depicted

in FIG. 4A, if reshaping is not enabled, the input video is encoded according to known video

coding techniques (e.g., HEVC and the like) without using any reshaping. Otherwise, the

encoder may select any one of the three main proposed methods, depending on the

capabilities of the target receiver and/or the input characteristics. For example, in an

embodiment, an encoder could switch between these methods at the scene level, where a

‘scene’ is denoted as a sequence of continuous frames with similar luminance characteristics.

-12 -

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

In another embodiment, high level parameters are defined in the Sequence Parameter Set
(SPS) level.

[00062] As depicted in FIG. 4B, a decoder, depending on received signaling of the
reshaping information, can invoke any of the corresponding decoding processes to decode the
incoming coded bitstream.

Hybrid In-loop Reshaping

[00063] FIG. 2G depicts an example architecture (200D_E) for an encoder using a hybrid
in-loop reshaping architecture. This architecture combines elements from both the in-loop
intra only reshaping (200B_E) and the in-loop residual (200C_E) architectures discussed
earlier. Under this architecture, Intra slices are encoded according to the in-loop intra
reshaping encoding architecture (e.g., 200B_E in FIG. 2C), except for one differentiation: for
Intra slices, inverse picture reshaping (265-1) is performed after the loop filtering (270-1). In
another embodiment, in-loop filtering for Intra slices may be performed after inverse
reshaping; however, experimental results have shown that such an arrangement may yield
worse coding efficiency than when inverse reshaping is performed after loop filtering. The
remaining operations remain the same as discussed earlier.

[00064] Inter slices are encoded according to the in-loop residual encoding architecture
(e.g., 200C_E in FIG. 2E), as discussed earlier. As depicted in FIG. 2G, an Intra/Inter Slice
switch allows switching between the two architectures depending on the slice type to be
encoded.

[00065] FIG. 2H depicts an example architecture (200D_D) for a decoder using a hybrid
in-loop reshaping. Again, Intra slices are decoded according to the in-loop intra reshaping
decoder architecture (e.g., 200B_D in FIG. 2D), where again, for intra slices, loop filtering
(270-1) precedes inverse picture reshaping (265-1). Inter slices are decoded according to the
in-loop residual decoding architecture (e.g., 200C_D in FIG. 2F). As depicted in FIG. 2H, an
Intra/Inter Slice switch allows switching between the two architectures depending on the slice
types in the encoded video pictures.

[00066] FIG. 4A can easily be extended to also include the hybrid in-loop reshaping
encoding method by invoking the encoding process 300D-E depicted in FIG. 2G. Similarly,
FIG. 4B can easily be extended to also include the hybrid in-loop reshaping decoding method
by invoking the decoding process 300D-D depicted in FIG. 2H.

Reshaping at the Slice level

[00067] Embodiments of the present invention allow for a variety of slice-level

adaptations. For example, to reduce computations, reshaping may be enabled only for intra

- 13-

10

15

20

25

WO 2019/006300 PCT/US2018/040287

slices or only for inter slices. In another embodiment, reshaping may be allowed based on the
value of a temporal ID (e.g., variable Temporalld of HEVC (Ref. [11]), where Temporalld =
nuh_temporal_id_plus1 — 1). For example, if Temporalld for the current slice is less than or
equal to a predefined value, then the slice_reshaper_enable_flag for the current slice may be
set to 1, otherwise, slice_reshaper_enable_flag will be 0. To avoid sending the
slice_reshaper_enable_flag parameter for each slice, one can specify the
sps_reshaper_temporal_id parameter at the SPS level, thus its value can be inferred.
[00068] For slices where reshaping is enabled, the decoder needs to know which reshaping
model to be used. In one embodiment, it may always use the reshaping model defined at the
SPS level. In another embodiment, it may always use the reshaping model defined in the slice
header. If no reshaping model is defined in the current slice, then it may apply the reshaping
model used in the most recently decoded slice which used reshaping. In another embodiment,
the reshaping model may always be specified in Intra slices, regardless of whether reshaping
is used for an intra slice or not. In such an implementation, the parameters
slice_reshaper_enable_flag and slice_reshaper_model_present_flag need to be decoupled.
An example of such a slice syntax is depicted in Table 5.

Signaling of Reshaping Information

[00069] Information related to forward and/or inverse reshaping may be present at
different information layers, e.g., at the video parameter set (VPS), the sequence parameter
set (SPS), the picture parameter set (PPS), a slice header, supplemental information (SEI), or
any other high-level syntax. As an example, and without limitation, Table 2 provides an
example of high-level syntax in the SPS for signaling on whether reshaping is enabled,
whether reshaping is adaptive or not, and which of the three architectures is being used.

Table 2: Example of reshaping information in SPS

SPS(Descriptor
sps_reshaper_enable flag /*¥1: reshaping on, else off */ u(l)
if (sps_reshaper_enable_flag) {

sps_reshaper_adaptive_flag /* 1: adaptive reshaping is on, else off */ |u(1)
sps_reshaper_architecture /¥ e.g.: 0: out-of-loop, 1:in-loop intra, 2: |ue(v)
in-loop residual */

[00070] Additional information may also be carried at some other layer, say in the slice

header. The reshaping functions can be described by look-up tables (LUT), piecewise

- 14 -

10

15

WO 2019/006300 PCT/US2018/040287

polynomials, or other kinds of parametric models. The type of reshaping model being used to
communicate the reshaping functions can be signaled by additional syntax elements, e.g., a
reshaping_model_type flag. For example, consider a system that uses two distinct
representations: model_A (e.g., reshaping_model_type = 0) represents the reshaping function
as a set of piecewise polynomials (e.g., see Ref. [4]), while in model_B (e.g.,
reshaping_model_type = 1) the reshaping function is derived adaptively by assigning
codewords to different luminance bands based on picture luminance characteristics and visual
importance (e.g., see Ref. [3]). Table 3 provides an example of syntax elements in the slice
header of a picture to assist a decoder to determine the proper reshaping model being used.

Table 3: Example syntax for reshaping signaling in a slice header

slice_segment_header() Descriptor

if (sps_reshaper_adaptive_flag) {
reshaping _model_type ue(v)

if (reshaping_model_type == model_A) {
reshaping_sliceheader_table_model_A()

}
else if (reshaping_model_type == model_B) {
reshaping_sliceheader_table_model_B()

}

else ...

[00071] The following three Tables describe alternative examples of a bitstream syntax for
signal reshaping at the Sequence, Slice, or Coding Tree Unit (CTU) layers.

Table 4: Example of reshaping information in SPS

SPS() Descriptor
sps_reshaper_enable_flag /*1: reshaping on, else off */ u(l)
if (sps_reshaper_enable_flag) {
sps_reshaper_signal_type /* 0:SDR, 1:PQ, 2:HLG */ u(2)

sps_reshaper_ILF_opt /* loop filter in which domain: 2 bits |[u(2)
inter/intra */

sps_reshaper_chromaAdj /* 1: chromaDQP; 2: chroma u(2)
scaling/
sps_reshaper_model_present_flag /*1: present®/ u(l)

if (sps_reshaper_model_present_flag)

sps_reshaper_model ()

- 15 -

10

15

20

WO 2019/006300 PCT/US2018/040287

Table 5: Example syntax for reshaping signaling in a slice header

slice_header() Descriptor

slice_reshaper_model_present_flag u(l)

if (slice_reshaper_model_present_flag)

slice_reshaper_model ()

slice_reshaper_enable_flag u(l)

if (slice_reshaper_enable_flag) {

reshaper_CTU_control_flag /*1: on, CTU level on/off flag®*/_ | u(1)

Table 6: Example syntax for reshaping signaling in a CTU

coding_tree_unit() Descriptor

if (reshape_CTU_control_flag) {
reshaper_CTU_flag ae(v)

[00072] For Tables 4-6, example semantics can be denoted as:

sps_reshaper_enable_flag equal to 1 specifies that reshaper is used in the coded video
sequence (CVS). sps_reshaper_enabled_flag equal to O specifies that reshaper is not used in
the CVS.

slice_reshaper_enable_flag equal to 1 specifies that reshaper is enabled for the current slice.
slice_reshaper_enable_flag equal to O specifies that reshaper is not enabled for the current
slice.

sps_reshaper_signal_type indicates the original codewords distribution or representation.
As an example, and without limitation, sps_reshaper_signal_type equal to O specifies SDR
(gamma); sps_reshaper_signal_type equal to 1 specifies PQ; and sps_reshaper_signal_type
equal to 2 specifies HLG.

reshaper_CTU_control_flag equal to 1 indicate that reshaper is allowed to be adapted for
each CTU. reshaper_CTU_control_flag equal to 0 indicate that reshaper is not allowed to be
adapted for each CTU. When reshaper_CUT_control_flag is not present, the value shall be

inferred to be 0.

- 16 -

10

15

20

25

WO 2019/006300 PCT/US2018/040287

reshaper_CTU_flag equal to 1 specifies that reshaper is used for the current CTU.
reshaper_CUT_flag equal to O specifies that reshaper is not used for the current CTU. When
reshaper_CTU_flag is not present, the value shall be inferred to equal to
slice_reshaper_enabled_{flag.

sps_reshaper_model_present_flag equal to 1 indicates sps_reshaper_model() is present in
sps. sps_reshaper_model_present_{flag equal to 0 indicates sps_reshaper_model() is not
present in SPS.

slice_reshaper_model_present_flag equal to 1 indicates slice_reshaper_model() is present
in slice header. slice_reshaper_model_present_flag equal to O indicates
slice_reshaper_model() is not present in SPS.

sps_reshaper_chromaAdj equal to 1 indicates that chroma QP adjustment is done using
chromaDQP. sps_reshaper_chromaAdj equal to 2 indicates that chroma QP adjustment is
done using chroma scaling.

sps_reshaper_ILF_opt indicates whether the in-loop filter should be applied in the original
domain or the reshaped domain for intra and inter slices. For example, using a two-bit

syntax, where the least significant bit refers to intra slices:

sps_reshaper_ILF_opt | In-loop filter operations

00 In original domain for both intra and inter

01 In original domain for inter, in reshaped domain for
intra

10 In reshaped domain for inter, in original domain for
intra

11 In reshaped domain for both intra and inter

[00073] In some embodiments, this parameter may be adjusted at the slice level. For
example, in an embodiment, a slice may include a slice_reshape_ILFOPT_flag when
slice_reshaper_enable_flag is set to 1. In another embodiment, in SPS, one may include an
sps_reshaper_ILF_Tid parameter if sps_reshaper_ILF_opt is enabled. If TemporallD for
current slice <= sps_reshaper_ILF_Tid and slice_reshaper_enable_flag is set to 1, then the
In-loop Filter is applied in reshaping domain. Otherwise, it is applied in the non-reshaped
domain.

[00074] In Table 4, chroma QP adjustment is controlled at the SPS level. In an

embodiment, chroma QP adjustment may also be controlled at the slice level. For example, in

-17 -

10

15

20

WO 2019/006300 PCT/US2018/040287

each slice, one may add the syntax element slice_reshape_chromaAdj_flag when
slice_reshaper_enable_flag is set to 1. In another embodiment, in SPS, one may add the
syntax element sps_reshaper_ChromaAdj_Tid if sps_reshaper_chromaAdj is enabled. If
TemporallD for current slice <= sps_reshaper_ChromaAdj_Tid and
slice_reshaper_enable_flag is set to 1, then chroma adjustment is applied. Otherwise,
chroma adjustment is not applied. Table 4B depicts an example variation of Table 4 using the
syntax described earlier.

Table 4B: Example syntax for reshaping signaling in SPS using temporal IDs

SPS() Descriptor
sps_reshaper_enable_flag /*1: reshaping on, else off */ u(l)
if (sps_reshaper_enable_flag) {
sps_reshaper_signal_type /* 0:HDR, 1:PQ, 2:HLG */ u(2)

sps_reshaper_ILF_opt /* loop filter in which domain: 2 bits |[u(2)
inter/intra */
if (sps_reshaper_ILF_opt == 3)

sps_reshaper_ILF_Tid u(3)
sps_reshaper_chromaAdj /* 1: chromaDQP; 2: u(2)
chromaScaling/
if (sps_reshaper_chromaAdj)
sps_reshaper_chromaAdj_Tid u(3)
sps_reshaper_model_present_flag /*1: present™®/ u(l)

if (sps_reshaper_model_present_flag)
sps_reshaper_model ()

}
sps_reshaper_ILF_Tid specifies the highest TemporallD where in-loop filter is applied for a

reshaped slice in the reshaped domain.

sps_reshaper_chromaAdj_Tid specifies the highest TemporallD for which chroma
adjustment is applied for a reshaped slice.

[00075] In another embodiment, the reshaping model may be defined using a reshape-
model ID, e.g., reshape_model_id, for example, as part of the slice_reshape_model()
function. The reshaping model can be signaled at the SPS, PPS, or slice-header levels. If
signaled in SPS or PPS, the value of the reshape_model_id can also be inferred from
sps_seq_parameter_set_id or pps_pic_parameter_set_id. An example of how to use
reshape_model_id for slices which do not carry slice_reshape_model() (e.g.,
slice_reshaper_model_present_flag equal to 0) is shown below in Table 5B, a variation of

Table 5.

- 18-

10

15

20

25

WO 2019/006300 PCT/US2018/040287

Table 5B: Example syntax for reshaping signaling in a slice header using
reshape_model_id

slice_header() Descriptor

slice_reshaper_model_present_flag u(l)

if (slice_reshaper_model_present_flag)

slice_reshaper_model ()

else
reshape_model_id ue(v)
slice_reshaper_enable_flag u(l)

if (slice_reshaper_enable_flag) {
reshaper_CTU_control_flag /*1: on, CTU level on/off flag*/ u(l)

In example syntax, the parameter reshape_model_id specifies the value for the
reshape_model being used. The value of reshape_model_id shall be in the range of O to 15.
[00076] As an example of using the proposed syntax, consider an HDR signal coded using
the PQ EOTF, where reshaping is used at the SPS level, no specific reshaping is used at the
slice level (reshaping is used for all slices), and CTU adaptation is allowed only for Inter
slices. Then:

sps_reshaper_signal_type = 1 (PQ);

sps_reshaper_model_present_flag = 1;

/I Note: One can manipulate the slice_reshaper_enable_flag to enable and disable reshaper for
inter slices.

slice_reshaper_enable_flag = 1;

if (CTUAdp)

{
if (I_slice)

slice_reshaper_model_present_flag = 0;
reshaper_CTU_control_flag = 0;
else

slice_reshaper_model_present_flag = O;

-19-

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

reshaper_CTU_control_flag = 1;

else

slice_reshaper_model_present_flag = 0;

reshaper_CTU_control_flag = 0;

[00077] In another example, consider an SDR signal where reshaping is applied only at the
slice level, and only for Intra slices. CTU reshaping adaptation is allowed only for Inter
slices. Then:
sps_reshaper_signal_type = 0 (SDR);
sps_reshaper_model_present_flag = 0;
slice_reshaper_enable_flag =1;
if (I_slice)
{

slice_reshaper_model_present_flag = 1;

reshaper_CTU_control_flag = 0;
}
else
{

slice_reshaper_model_present_flag = O;

if (CTUAdp)

reshape_CTU_control_flag = 1;
else
reshaper_CTU_control_flag = 0;
}
[00078] Atthe CTU level, in an embodiment, CTU-level reshaping may be enabled based
on the luminance characteristics of the CTU. For example, for each CTU, one may compute
the average luminance (e.g., CTU_avg_lum_value), compare it with one or more thresholds,
and decide whether to turn reshaping on or off based on the results of those comparisons. For
example,
if CTU_avg_lum_value < THRI1, or
if CTU_avg_lum_value > THR2, or

-20 -

10

15

20

25

WO 2019/006300 PCT/US2018/040287

if THR3<CTU_avg_lum_value<THR4,
then reshaper CTU_Flag = 1 for this CTU.

In an embodiment, instead of using the average luminance, one may use some other
luminance characteristic of the CTU, such as the minimum, maximum, or average luminance,
variance, and the like. One may also apply chroma-based characteristics of the CTU, or one
may combine luminance and chroma characteristics and thresholds.
[00079] As described earlier (e.g., in relation to the steps in FIG. 3A, 3B, and 30),
embodiments may support both a default or static reshaping function, or adaptive reshaping.
A ““default reshaper” can be used to perform a pre-defined reshaping function, therefore
reducing the complexity for analyzing each picture or scene in deriving a reshaping curve. In
this case, there is no need for signaling an inverse reshaping function at the scene, picture, or
slice level. The default reshaper can be implemented by either using a fixed mapping curve
stored in the decoder to avoid any signaling, or it can be signaled once as part of the sequence
level parameter sets. In another embodiment, a previously decoded adaptive reshaping
function could be re-used for later pictures in coding order. In another embodiment,
reshaping curves may be signaled in a differential way against previously decoded ones. In
other embodiments, (for example for in-loop residual reshaping where both the Inv() and
Fwd() functions are needed to perform inverse reshaping), one could signal in the bitstream
only one of the In() or Fwd() functions, or, alternatively, to reduce decoder complexity,
both. Tables 7 and 8 provide two examples for signaling reshaping information.
[00080] In Table 7, the reshaping function is communicated as a set of second order
polynomials. It is a simplified syntax of the Exploratory Test Model (ETM) (Ref. [5]). An
earlier variation can also be found in Ref. [4].

Table 7: Example syntax for piece-wise representation of a reshaping function
(model_A)

reshaping_sliceheader_table_model_A() { Descriptor
reshape_input_luma_bit_depth_minus8 ue(v)
coeff_log2_offset_minus2 ue(v)
reshape_num_ranges_minus| ue(v)
reshape_equal_ranges_flag u(l)
reshape_global_offset_val u(v)

if(!reshape_equal_ranges_flag)
for (i=0;1<reshape_num_ranges_minusl+ 1; i++)

reshape_range_val[i] u(v)
reshape_continuity_flag u(l)
for(i=0;i <reshape_num_ranges_minusl + 2; i++) {

reshape_poly_coeff_order(_int[i] ue(v)
reshape_poly_coeff_order(_frac[i] u(v)

-21 -

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

1

if(reshape_continuity_flag==1) {
reshape_poly_coeff_orderl_int se(v)
reshape_poly_coeff_orderl_frac u(v)

reshape_input_luma_bit_depth_minus8 specifies the sample bit depth of the input luma
component of the reshaping process.

coeff_log2_offset_minus2 specifies the number of fractional bits for reshaping related
coefficients calculations for the luma component. The value of coeff_log2_offset_minus2
shall be in the range of to 3, inclusive.

reshape_num_ranges_minus1 plus 1 specifies the number of ranges in the piece-wise
reshaping function. When not present, the value of reshape_num_ranges_minusl is inferred
to be 0. reshape_num_ranges _minus]1 shall be in the range of 0 to 7, inclusive for luma
component.

reshape_equal_ranges_flag equal to 1 specifies that piece-wise reshaping function is
partitioned into NumberRanges pieces with nearly equal length and the length of each range
is not explicitly signalled. reshape_equal_ranges_flag equal to O specifies that the length of
each range is explicitly signalled.

reshape_global_offset_val is used to derive the offset value that is used to specify the
starting point of Oth range.

reshape_range_val| i | is used to derive the length of the i-th range of the luma component.
reshape_continuity_flag specifies the continuity properties of the reshaping function for the
luma component. If reshape_continuity_flag is equal to 0, zeroth order continuity is applied
to the piecewise linear inverse reshaping functions between consecutive pivot points. If
reshape_continuity_flag is equal to 1, first order smoothness is used to derive the full second
order polynomial inverse reshaping functions between consecutive pivot points.
reshape_poly_coeff_order(_int [i | specifies the integer value of the i-th piece O-th order
polynomial coefficient for luma component.

reshape_poly_coeff_order(_frac [i] specifies the fractional value of the i-th piece 0-th
order polynomial coefficient for luma component.

reshape_poly_coeff_order1_int specifies the integer value of the 1-st order polynomial
coefficient for luma component.

reshape_poly_coeff_order1_frac specifies the fractional value of the 1 -st order polynomial

coefficient for luma component.

-22 -

WO 2019/006300 PCT/US2018/040287

[00081] Table 8 describes an example embodiment of an alternative parametric
representation according to the model_B discussed earlier (Ref. [3]).

Table 8: Example syntax for parametric representation of a reshaping function

(model_B)
5

reshaping_sliceheader_table_model_B() { Descriptor
reshape_model_profile_type ue(v)
reshape_model_scale_idx u(2)
reshape_model_min_bin_idx u(5)
reshape_model_max_bin_idx u(5)
reshape_model_num_band u(4)
for (i=0; 1< reshape_model_num_band; i++) {

reshape_model_band_profile_delta [i | u(l)

}

1

[00082] In Table 8, in an embodiment, syntax parameters may be defined as:

reshape_model_profile_type specifies the profile type to be used in the reshaper

construction Process.

reshape_model_scale_idx specifies the index value of a scale factor (denoted as
10 ScaleFactor) to be used in the reshaper construction process. The value of the ScaleFactor
allows for improved control of the reshaping function for improved overall coding efficiency.
Additional details on using this ScaleFactor are provided in relation to the discussion on the
reshaping function reconstruction process (e.g., as depicted in FIG. 5A and FIG. 5B). As an
example, and without limitation, the value of reshape_model_scale_idx shall be in the range
15 of 0to 3, inclusive. In an embodiment, the mapping relationship between scale_idx and

ScaleFactor as shown in the Table below is given by:

ScaleFactor = 1.0 — 0.05* reshape_model_scale_idx.

reshape_model_scale_idx | ScaleFactor
0 1.0
1 0.95
2 0.9
3 0.85

In another embodiment, for a more efficient fixed-point implementation,

20 ScaleFactor = 1 — 1/16* reshape_model_scale_idx.

_23 .

10

15

20

25

WO 2019/006300 PCT/US2018/040287

reshape_model_scale_idx | ScaleFactor
0 1.0
1 0.9375
2 0.875
3 0.8125

reshape_model_min_bin_idx specifies the minimum bin index to be used in the reshaper
construction process. The value of reshape_model_min_bin_idx shall be in the range of O to
31, inclusive.

reshape_model_max_bin_idx specifies the maximum bin index to be used in the reshaper
construction process. The value of reshape_model_max_bin_idx shall be in the range of O to
31, inclusive.

reshape_model_num_band specifies the number of bands to be used in the reshaper
construction process. The value of reshape_model_num_band shall be in the range of 0 to 15,
inclusive.

reshape_model_band_profile_delta [i] specifies the delta value to be used to adjust the
profile of the i-th band in the reshaper construction process. The value of
reshape_model_band_profile_delta [i] shall be in the range of 0 to 1, inclusive.

[00083] Compared to Ref. [3], the syntax in Table 8 is far more efficient by defining a set
of “default profile types,” say, highlights, mid-tones and darks. In an embodiment, each type
has a pre-defined visual band importance profile. The pre-defined bands and corresponding
profiles can be implemented as fixed values in the decoder or they can also be signaled using
a high-level syntax (such as sequence parameter set). At the encoder, each image is first
analyzed and categorized into one of the profiled types. The profile type is signaled by syntax
element “reshape_model_profile_type.” In adaptive reshaping, in order to capture the full
range of image dynamics, the default profiling is further adjusted by a delta for each or a
subset of the luminance bands. The delta values are derived based on visual importance of the
luminance bands, and are signaled by the syntax elements
“reshape_model_band_profile_delta."

[00084] In one embodiment, the delta value can take only the O or 1 values. At the
encoder, the visual importance is determined by comparing the percentage of band pixels in

the whole image with the percentage of band pixels within “dominant bands,” where

-4 -

10

15

20

WO 2019/006300 PCT/US2018/040287

dominant bands may be detected using a local histogram. If pixels within a band concentrate
in a small local block, the band is most likely visual important in the block. The counts for
dominant bands are summed up and normalized to form a meaningful comparison to get the
delta values for each band.
[00085] In a decoder, a reshaper function reconstruction process has to be invoked to
derive the reshaping LUTs based on methods described in Ref. [3]. Therefore, complexity is
higher compared to the simpler piece-wise approximation model, which only needs to
evaluate the piece-wise polynomial functions to compute the LUT. The benefit of using a
parametric-model syntax is that it can significantly reduce the bitrate of using a reshaper. For
example, based on typical testing content, the model depicted in Table 7 needs 200-300 bits
to signal a reshaper, while a parametric model (as in Table 8) only uses about 40 bits.
[00086] In another embodiment, as depicted in Table 9, the forward reshaping look-up
table may be derived according to a parametric model for the dQP values. For example, in an
embodiment,

dQP = clip3(min, max, scale*X+offset),
wherein min and max denote the boundaries of dQP, scale and offset are two parameters of
the model, and X denotes a parameter derived based on signal luminance (e.g., a pixel’s
luminance value, or for blocks, a metric of block luminance, e.g., its minimum, maximum,
average, variance, standard deviation, and the like). For example, without limitation,

dQP = clip3(-3, 6, 0.015*X —7.5).

Table 9: Example syntax for parametric representation of a reshaping function (model
©

sps_reshaper_model C() { descriptor

full_range_input _flag u(l)
dQP_model_scale_int_prec ue(v)
if (dQP_model_scale_int_prec > 0) {

dQP_model_scale_int u(v)
1
dQP_model_scale_frac_prec_minusl6 ue(v)
dQP_model_scale_frac u(v)
if (dQPModelScaleAbs) {

dQP_model_scale_sign u(l)

!
dQP_model_offset_int_prec_minus3 ue(v)
dQP_model_offset_int u(v)
dQP_model_offset_frac_prec_minusl ue(v)
dQP_model_offset_frac u(v)

_25.-

10

15

20

WO 2019/006300 PCT/US2018/040287

if (dQPModelOffsetAbs) {

dQP_model_offset_sign u(l)
!
dQP_model_abs_prec_minus3 ue(v)
dQP_model_max_abs u(v)
if (dQP_model_max_abs) {

dQP_model_max_sign u(l)
!
dQP_model_min_abs u(v)
if (dQP_model_min_abs) {

dQP_model_min_sign u(l)
!

!
[00087] In an embodiment, parameters in Table 9 may be defined as follows:

full_range_input_flag specifies the input video signal range. A full_range_input_flag of O
corresponds to a standard dynamic range input video signal. A full_range_input_flag of 1
corresponds to full range input video signal. When not present, full_range_input_flag is

inferred to be 0.

Note: As used herein, the term “full-range video” denotes that the valid codewords in the
video are not “limited.” For example, for 10-bit full range video, the valid codewords are
between 0 and 1023, where 0 is mapped to the lowest luminance level. In contrast, for 10-bit
“standard range video,” the valid codewords are between 64 and 940, and 64 is mapped to the

lowest luminance level.

For example, the calculation of “full range” and “standard range” may be computed as
follows:
for normalized luminance values Ey’ in [0 1], to code in BD bits (e.g., BD = 10, 12, and the
like):

full range: Y = clip3(0, (I<<BD) — 1, Ey’* ((1<<BD) -1)))

standard range: Y = clip3(0, (1<<BD) — 1, round(1<<(BD-8)*(219*Ey’+16)))

This syntax is similar to the “video_full_range_flag” syntax in HEVC VUI parameters as

described in Section E.2.1 of the HEVC (H.265) Specification (Ref. [11]).

- 26 -

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

dQP_model_scale_int_prec specifies the number of bits used for the representation of
dQP_model_scale_int. A dQP_model_scale_int_prec equals to (indicates

dQP_model_scale_int is not signaled and is inferred to be 0.

dQP_model_scale_int specifies the integer value of dQP model scale.

dQP_model_scale_frac_prec_minus16 plus 16 specifies the number of bits used for the

representation of dQP_model_scale_{frac.

dQP_model_scale_frac specifies the fractional value of the dQP model scale.

The variable dQPModelScaleAbs is derived as:
dQPModelScale Abs = dQP_model_scale_int << (dQP_model_scale_frac_prec_minus16 +
16) + dQP_model_scale_frac

dQP_model_scale_sign specify the sign of dQP model scale. When dQPModelScaleAbs

equals 0, dQP_model_scale_sign is not signaled and it is inferred to be O.

dQP_model_offset_int_prec_minus3 plus 3 specifies the number of bits used for the

reprentation of dQP_model_offset_int.

dQP_model_offset_int specifies the integer value of dQP model offset.

dQP_model_ offset _frac_prec_minusl plus 1 specifies the number of bits used for the

representation of dQP_model_ offset_frac.

dQP_model_ offset_frac specifies the fractional value of the dQP model offset.

The variable dQPModelOffsetAbs is derived as:
dQPModelOffsetAbs = dQP_model_offset_int << (dQP_model_offset frac_prec_minusl +
1) + dQP_model_offset_frac

dQP_model_offset_sign specifies the sign of dQP model offset. When dQPModelOffsetAbs

equals 0, dQP_model_offset_sign is not signaled and is inferred to be 0.

-27 -

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

dQP_model_abs_prec_minus3 plus 3 specifies the number of bits used for the

representation of dQP_model_max_abs and dQP_model_min_abs.

dQP_model_max_abs specifies the integer value of dQP model max.

dQP_model_max_sign specifies the sign of dQP model max. When dQP_model_max_abs

equals 0, dQP_model_max_sign is not signaled and is inferred to be 0.

dQP_model_min_abs specifies the integer value of dQP model min.

dQP_model_min_sign specifies the sign of dQP model min. When dQP_model_min_abs

equals 0, dQP_model_min_sign is not signaled and is inferred to be 0.

Decoding Process for Model C

[00088] Given the syntax elements of Table 9, the reshaping LUT may be derived as
follows.

The variable dQPModelScaleFP is derived as:

dQPModelScaleFP = ((1- 2*dQP_model_scale_sign) * dQPModelScaleAbs) <<

(dQP_model_offset_frac_prec_minusl + 1).

The variable dQPModelOffsetFP is derived as:
dQPModelOffsetFP = ((1-2* dQP_model_offset_sign) * dQPModelOffsetAbs) <<

(dQP_model_scale frac_prec_minus16 + 16).

The variable dQPModelShift is derived as:
dQPModelShift = (dQP_model_offset_frac_prec_minusl + 1) +

(dQP_model_scale frac_prec_minus16 + 16).
The variable dQPModelMaxFP is derived as:
dQPModelMaxFP = ((1- 2*dQP_model_max_sign) * dQP_model_max_abs) <<

dQPModelShift.

The variable dQPModelMinFP is derived as:

_08 -

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

dQPModelMinFP = ((1- 2*dQP_model_min_sign) * dQP_model_min_abs) <<
dQPModelShift.

for Y =0: maxY // For example, for 10-bit video, maxY=1023
{
dQPLY] = clip3(dQPModelMinFP, dQPModelMaxFP, dQPModelScaleFP*Y +
dQPModelOffsetFP);
slope[Y] = exp2((dQP[Y]+3)/6); // fixed point exp2 implementation where
exp2(x) = 27 x);
}
If (full_range_input_flag==0) /1 if input is standard range video
For Y out of standard range (i.e. Y = [0:63] and [940:1023]), set slope[Y] = 0;

CDF[0] = slope[0];
for Y =0: maxY-1

{
CDF[Y+1] = CDF[Y] + slope[Y]; // CDF[Y]is the integral of slope[Y]
1
for Y=0: maxY
{

FwdLUT[Y] = round(CDF[Y [*maxY/CDF[maxY]); // rounding and normalization to

get FwdLUT

}
[00089] In another embodiment, as depicted in Table 10, the forward reshaping
function may be represented as a collection of luma pivot points (In_Y) and their
corresponding codewords (Out_Y). To simplify coding, the input luminance range is
described in terms of a starting pivot and a sequence of equally-spaced subsequent pivots
using a linear piece-wise representation. An example of representing a forward reshaping
function for 10-bit input data is depicted in FIG. 7.

Table 10: Example syntax for pivot-based representation of a reshaping function (model
D)

sps_reshaper_model D() { descriptor

full_range_input_flag u(l)

-29.

10

15

20

WO 2019/006300 PCT/US2018/040287

bin_pivot_start u(v)
bin_cw_start u(v)
log2_num_equal_bins_minus3 ue(v)
equal_bin_pivot_delta u(v)
bin_cw_in_first_equal_bin u(v)
bin_cw_delta_abs_prec_minus4 ue(v)
for(i=0;1i<NumEqualBins - 1 ;i++) {
bin_cw_delta_abs[i] u(v)
if (bin_cw_delta_abs[i]) {
bin_cw_delta_sign] i | u(l)
1
1
1
[00090] In an embodiment, parameters in Table 10 may be defined as follows:

full_range_input_flag specifies the input video signal range. A full_range_input_flag of O
corresponds to standard range input video signal. A full_range_input_flag of 1 corresponds to
full range input video signal. When not present, full_range_input_{flag is inferred to be 0.
bin_pivot_start specifies the pivot value of the first equal-length bin (710). When
full_range_input_flag equals to 0, bin_pivot_start shall be larger than or equal to the smallest
standard range input, and shall be smaller than the largest standard range input. (For
example, for 10-bit SDR input, bin_pivot_start (710) shall be between 64 and 940).
bin_cw_start specifies the mapped value (715) of bin_pivot_start (710) (e.g., bin_cw_start =
FwdLUT[bin_pivot_start]).
log2_num_equal_bins_minus3 plus 3 specifies the number of equal-length bins subsequent
to the starting pivot (710). The variable NumEqualBins and NumTotalBins are defined by:
NumEqualBins = 1<<(log2_num_equal_bins_minus3+3)
if full_range_input_flag == 0

NumTotalBins = NumEqualBins + 4
else

NumTotalBins = NumEqualBins + 2
Note: Experimental results show that most forward reshaping functions may be represented

using eight equal-length segments; however, complex reshaping functions may require more

segments (e.g., 16 or more).

-30 -

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

equal_bin_pivot_delta specifies the length of the equal-length bins (e.g., 720-1, 720-N).
NumEqualBins * equal_bin_pivot_delta shall be less than or equal to valid input range. (For
example, if full_range_input_{flag is 0, valid input range should be 940-64 = 876 for 10-bit
inputs; if full_range_input_flag is 1, valid input range should be from O to 1023 for 10-bit
inputs.)

bin_cw_in_first_equal_bin specifies the number of mapped codewords (725) in the first
equal-length bin (720-1).

bin_cw_delta_abs_prec_minus4 plus 4 specifies the number of bits used for the
reprentation of bin_cw_delta_abs[i] for each subsequent equal bin.

bin_cw_delta_abs] i] specifies the value of bin_cw_delta_abs| i] for each subsequent
equal-length bin. bin_cw_delta[i | (e.g., 735) is the difference of codewords (e.g., 740) in
current equal-length bin i (e.g., 720-N) compared with the codewords (e.g., 730) in the
previous equal-length bin i-1.

bin_cw_delta_sign[i] specifies the sign of bin_cw_delta_abs[i]. When
bin_cw_delta_abs[i] equals 0, bin_cw_delta_sign] i | is not signaled and is inferred to be 0.

The variable bin_cw_delta[i] = (1- 2*bin_cw_delta_sign[i])* bin_cw_delta_abs[i]

Decoding Process for Model D

[00091] Given the syntax elements of Table 10, the reshaping LUT may be derived as
follows for a 10-bit input:
Define constants:

minIN = minOUT = 0;

maxIN = maxOUT = 27BD — 1 = 1023 for 10-bit //BD = Bit depth

minStdIN = 64 for 10-bit

maxStdIN = 940 for 10-bit

Step 1: derive pivot value In_Y [j] for j = 0: NumTotalBins
InY[0]=0;
In_Y [NumTotalBins] = maxIN;

if (full_range_input_flag==0)
{
In_Y [1]=minStdIN;
In_Y [2] = bin_pivot_start;

-31 -

10

15

20

25

30

WO 2019/006300

for (j = 3: NumTotalBins — 2)
InY[j]l=In_Y[j-1]+ equal bin_pivot_delta;
In_Y [NumTotalBins — 1 | = maxStdIN;
}
else
{
In_Y [1] =bin_pivot_start;
for j =2: NumTotalBins - 1
InY[j]l=In_Y[j-1]+ equal bin_pivot_delta;

PCT/US2018/040287

Step 2: derive mapped value Out_Y [j] for j= 0: NumTotalBins

Out. Y[0]=0;
Out_Y [NumTotalBins | = maxOUT;

if (full_range_input_flag==0)

{
OutY[1]=0;
Out Y[2]=bin cw_start;
Out_Y [3]=bin_cw_start + bin_cw_in_first_equal_bin;
bin_cw [3] = bin_cw_in_first_equal_bin;
for j=(4 : NumTotalBins — 2)
bin_cw|[j]=bin_cw[j-1]+bin_cw delta[j—4];
from idx 0
for j=(4 : NumTotalBins — 2)
Out_Y[jl=0Ou_Y[j-1]+binewl[]j];
Out_Y [NumTotalBins — 1] = maxOUT;
}
else
{

Out Y[1]=bin cw_start;
Out_Y [2 | = bin_cw_start + bin_cw_in_first_equal_bin;
bin_cw [2] = bin_cw_in_first_equal_bin;
for j=(3: NumTotalBins — 1)
-32-

// bin_cw_delta[i | start

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

bin_cw|[j]= bin_cw[j-1]+bin_cw delta[j—3]; //bin_cw_deltali | start
fromidx O
for j = 3: NumTotalBins - 1
Out. Y[j]l=0Out_Y[j-1]+bin_cwl[j];
}
Step 3: Linear interpolation to get all LUT entry
Init: FwdLUT]]

for (j = 0: NumTotalBins — 1)

{
InS =In_YI[j];
InE =InY[j+1];
OutS =0ut_Y[j];
OutE =Out_Y[j +11;
fori=In_Y[j]:In_Y[j+1]-1
{
FwdLUT [i | = OutS + round { (OutE — OutS) * (i —InS) / (InE — InS));
}
}

FwdLUT [In_Y [NumTotalBins | | = Out_Y [NumTotalBins |;

[00092] In general, reshaping can be switched on or off for each slice. For example,
one may only enable reshaping for intra slices and disable reshaping for inter slices. In
another example, one may disable reshaping for inter-slices which have the highest temporal
level. (Note: as an example, as used herein, temporal sub-layers may match the definition of
temporal sub-layers in HEVC.) In defining the reshaper model, in one example, one may
only signal the reshaper model in SPS, but in another example, one may signal the slice
reshaper model in intra slices. Alternatively, one may signal the reshaper model in SPS and
allow the slice reshaper model to update the SPS reshaper model for all slices, or one may
only allow the slice reshaper model to update the SPS reshaper model for intra slices. For
inter slices which follow an intra slice, one may apply either the SPS reshaper model or an

intra slice reshaper model.

-33 .

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

[00093] As another example, FIG. 5A and 5B depict a reshaping function
reconstruction process in a decoder according to an embodiment. The process uses the
methods described herein and in Ref. [3] with a visual rating range in [0 5].

[00094] As depicted in FIG. 5A, first (step 510), the decoder extracts the
reshape_model_profile_type variable and sets (steps 515, 520, and 525) for each bin the

appropriate initial band profile. For example, in pseudocode:

if (reshape_model_profile_type == 0) R[bi] = Roright[bil;
elseif (reshape_model_profile_type == 1) R[bi] = Raark[bil;
else R[bi] = Rmia[bi].

[00095] In step 530, the decoder adjusts each band profile using the received

reshape_model_band_profile_delta[b;] values, as in

for (i = 0: reshape_model_num_band-1)
{R[bi] = R[bi] + reshape_model _band_profile_delta [bil]}.

[00096] In step 535, the decoder propagates the adjusted values to each bin profile, as
in

if bin[j] belongs to band b;, R_bin[j] = R[bi].

[00097] In step 540, the bin profiles are modified, as in
if (j > reshape_model_max_hin_idx) or (j < reshape_model_min_hin_idx)
{R_bin[j1=01}.
[00098] In parallel, in steps 545 and 550, the decoder can extract the parameters to

compute the scale factor value and candidate codewords for each bin[j], as in
ScaleFactor = 1.0 — 0.05* reshape_model_scale_idx
CW_dft[j] = codewords in the bin if using default reshaping
CW_PQJj]=TotalCW/TotalNumBins.

[00099] In computing the ScaleFactor value, for a fixed-point implementation, instead

of using the scaler 0.05 one may use 1/16 = 0.0625 instead.

-34 -

10

15

20

25

30

35

WO 2019/006300 PCT/US2018/040287

[000100] Continuing to FIG. 5B, in step 560, the decoder starts a codeword (CW) pre-

assignment for each bin based on the bin profile, as in

If R_bin[j] == 0, CW[j] =0

If R_bin[j] == 1, CW([j] = CW_dft[jl/2;

If R_bin[j] == 2, CW[j] = min(CW_PQ]j], CW_dft[j]);
If R_bin[j] == 3, CW[j] = (CW_PQ]j] + CW_dft[j])/2;
If R_bin[j] >=4, CW[j] = max(CW_PQ][jl, CW_dft[j]);

[000101] In step 565, it computes the total used codewords and refines/completes the
codeword (CW) assignments, as in

CWoyseqd = Sum(CW[J])
if CWysed > TotalCW, rebalance CW[j] = CW[jl/(CWuses/TotalCW);

else

{
CW_remain = TotalCW — CWysed ;

CW_remain is assigned to the bins with largest R_bin[j]);
}

[000102] Finally, in step 565, the decoder a) generates the forward reshaping function
(e.g., FwdLUT) by accumulating the CW[j] values, b) multiplies the ScaleFactor value with
the FwdLLUT values to form the final FwdLUT (FFwdLUT), and c) it generates the inverse
reshaping function InvLUT based on the FFwdLUT.

[000103] In a fixed-point implementation, computing the ScaleFactor and FFwdLUT

may be expressed as:

ScaleFactor = {1<< SF_PREC) - reshape_model_scale_idx

FFwdLUT = (FwdLUT * ScaleFactor + (1 << (FP_PREC + SF_PREC - 1))} >> (FP_PREC +
SF_PREC),

where SF_PREC and FP_PREC are predefined precision-related variables (e.g.,
SF_PREC=4, and FP_PREC=14), “c = a << n” denotes a binary left shift operation of a by n
bits (or ¢ = a*(2")), and “c = a >> n” denotes a binary right shift operation of a by # bits (or ¢

= al(2")).

-35-

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

Chroma QP derivations
[000104] Chroma-coding performance is closely related to the luma-coding
performance. For example, in AVC and HEVC, a table is defined to specify the relationship
between the quantization parameters (QP) for luma and chroma components, or between
luminance and chrominance. The specifications also allow to use one or more chroma QP
offsets for additional flexibility in defining the QP relationship between luma and chroma.
When reshaping is used, the luma value is modified, hence, the relationship between
luminance and chrominance might be modified as well. To maintain and further improve the
coding efficiency under reshaping, in an embodiment, at the coding unit (CU) level, a chroma
QP offset is derived based on the reshaping curve. This operation needs to be performed at
both the decoder and the encoder.
[000105] As used herein, the term “coding unit” (CU) denotes a coded block (e.g., a
macroblock and the like). For example, without limitation, in HEVC, a CU is defined as “a
coding block of luma samples, two corresponding coding blocks of chroma samples of a
picture that has three sample arrays, or a coding block of samples of a monochrome picture or
a picture that is coded using three separate color planes and syntax structures used to code the
samples.”
[000106] In an embodiment, the chroma quantization parameter (QP) (chromaQP) value
may be derived as follows:

1) Based on the reshaping curve, derive the equivalent luma dQP mapping,

dQPLUT:

for CW = 0: MAX_CW_VALUE-1
dQPLUT [CW]=-6*log2(slope[CW]);

where slope[CW] denotes the slope of the forward reshaping curve at each
CW (codeword) point, and MAX_CW_VALUE is the maximum codeword
value for a given bit-depth, for example, for a 10-bit signal,
MAX_CW_VALUE = 1024 (219).

Then, for each coding unit (CU):

2) compute the coding unit’s average luminance, denoted as AvgY:

- 36 -

10

15

20

25

WO 2019/006300 PCT/US2018/040287

3) compute the chromaDQP value based on dQPLUT][], AvgY, the reshaping
architecture, the inverse reshaping function Inv(), and the slice type, as shown

on the Table 11 below:

Table 11:Example chromaDQP values according to reshaping

architectures
Reshaping Intra slice Inter slice
Architecture
Qut-of-loop dQPLUT[Inv(AvgY)] dQPLUT[Inv(AvgY)]
In-loop intra only | dQPLUT[Inv(AvgY)] 0
reshaper
In-loop reshaper dQPLUT[AvgY] dQPLUT[AvgY]
for residuals
Hybrid in-loop dQPLUT[Inv(AvgY)] dQPLUT[AvgY]
reshaping

4) compute chromaQP as:

chromaQP = QP_luma + chromaQPOffset + chromaDQP;

where chromaQPOffset denotes a chroma QP offset, and QP_luma denotes the luma QP for
the coding unit. Note that the value of the chroma QP offset may be different for each
chroma component (say, Cb and Cr) and chroma QP offset values are communicated to the

decoder as part of the coded bitstream.

[000107] In an embodiment, dQPLUTI[] can be implemented as a pre-defined LUT. Assume
one divides all codewords into N bins (e.g, N = 32) and each bin contains
M=MAX_CW_VALUE/N codewords (e.g, M = 1024/32 = 32). When one assigns a new
codewords to each bin, they can limit the number of codewords to be 1 to 2*M, so they can
precompute dQPLUT]1 ...2*M] and save it as a LUT. This approach can avoid any floating-
point computations or the approximation of fix point computations. It can also save
encoding/decoding time. For each bin, one fixed chromaQPOffset is used for all codewords
in this bin. The DQP value is set to equal to dQPLUTI[L] where L is the number of
codewords for this bin, where 1 <L < 2*M.
The dQPLUT values may be precomputed as follows:
fori=1:2*M

slopeli] = /M;

dQPLUTTIi] = -6*log2(slope[i]);

end

-37-

10

15

20

25

WO 2019/006300 PCT/US2018/040287

Different quantization schemes can be used to get an integer QP value when computing
dQPLUTIx], such as: round(), ceil(), floor() or a mix of them. For example, one can set a
threshold TH, and if Y<TH, use floor() to quantize dQP value, else, when Y = TH, use ceil()
to quantize dQP value. The usage of such quantization schemes and the corresponding
parameters can be pre-defined in a codec or can be signaled in the bitstream for adaptation.
An example syntax which allows mixing of quantization schemes with one threshold as

discussed earlier is shown as follows:

quant_scheme_signal_table() { Descriptor
if (sps_reshaper_chromaAdj > 0) {
quant_scheme_idc // 0: round(), 1: ceil(), 2: floor(), 3: mix u(2)
if (quant_scheme_idc == 3) { //mix
quant_change_threshold u(v)
first_quant_scheme_idc u(2)
second_quant_scheme_idc u(2)
}
}
}

The quant_scheme_signal_table() function can be defined at different levels of the reshaping
syntax (e.g. the sequence level, the slice level, and the like), depending on the adaptation
need.

[000108] In another embodiment, chromaDQP values may be computed by applying a
scaling factor to the residue signal in each coding unit (or transform unit, to be more
specific). This scaling factor may be a luma-dependent value and can be computed: a)
numerically, e.g., as the first order derivative (slope) of the forward reshaping LUT (see for

example equation (6) in the next Section), or b) as:

dQP(x)

Slope(x)=2C¢).

When computing Slope(x) using dQP (x), dQP can be kept in floating point precision without
integer quantization. Alternatively, one may compute quantized integer dQP values using a
variety of different quantization schemes. In some embodiments, such scaling can be
performed at the pixel level instead of at the block level, where each chroma residue can be
scaled by a different scale factor, derived using the co-located luma prediction value of that
chroma sample. Thus,

Table 12: Example chroma dQP values using scaling for hybrid in loop reshaping
architecture
| Update | Intra slice | Inter slice |

- 38 -

10

15

20

25

WO 2019/006300 PCT/US2018/040287

CU-based Scu=SlopeLUT[Inv(AvgY)] Scu=SlopeLUT[AvgY]
chroma scaling C Res scaled=C Res*S cu | C Res scaled=C Res *
(same S_cu S cu

scaler shared by
all samples in

CU)

Pixel-based Spx=SlopeLUT[Inv(ColPredY)] | Spx=SlopeLUT[ColPredY]
chroma scaling C_Res_scaled =C_Res* S_px C Res scaled=C Res *
(different S_px S_px

scaler in each

sample)

For example, if CSCALE_FP_PREC = 16
* Forward scaling: after chroma residual is generated, before transformation and
quantization:
— C_Res=C_orig—C_pred
— C_Res_scaled=C_Res * S + (1 << (CSCALE_FP_PREC - 1))) >>
CSCALE_FP_PREC
» Inverse scaling: after chroma inverse quantization and inverse transformation, but
before reconstruction:
— C_Res_inv = (C_Res_scaled << CSCALE_FP_PREC)/S
— C Reco=C Pred + C Res_inv;

where S is either S_cu or S_px.

Note: In Table 12, in computing Scu, the average luma of a block (AvgY) is calculated
before applying inverse reshaping. Alternatively, one may apply inverse reshaping before
computing the average luma, e.g., Scu=SlopeLUT[Avg(Inv[Y])]. This alternative order of
computations applies to computing values in Table 11 as well; that is, computing Inv(AvgY)
could be replaced by computing Avg(Inv[Y]) values. The latter approach may be considered
more accurate, but has increased computational complexity.

Encoder Optimizations with Respect to Reshaping

[000109] This section discusses a number of techniques to improve coding efficiency in the
encoder by jointly optimizing the reshaping and encoder parameters when reshaping is a part
of a normative decoding process (as described in one of the three candidate architectures). In
general, encoder optimization and reshaping are tackling the coding problem at different
places with their own limitations. In a traditional imaging and coding system there are two

types of quantization: a) sample quantization (e.g., gamma or PQ coding) in the baseband

-39.

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

signal and b) transform-related quantization (part of compression). Reshaping is located in-
between. Picture-based reshaping is in general updated on a picture basis and only allows
sample value mappings based on its luminance level, without consideration of any spatial
information. In a block-based codec (such as, HEVC), transform quantization (e.g., for luma)
is applied within a spatial block and can be adjusted spatially, therefore encoder optimization
methods have to apply the same set of parameters for a whole block containing samples with
different luminance values. As appreciated by the inventors and described herein, joint

reshaping and encoder optimization can further improve coding efficiency.

Inter/Intra Mode Decision

[000110] In traditional coding, inter/intra-mode decisions are based on computing a
distortion function (dfunc()) between the original samples and the predicted samples.
Examples of such functions include the sum of square errors (SSE), the sum of absolute
differences (SAD), and others. In an embodiment, such distortion metrics may be used using
reshaped pixel values. For example, if the original dfuncK) uses Orig_sample(i) and
Pred_sample(i), when reshaping is applied, dfunct() may use their corresponding reshaped
values, Fwd(Orig_sample(i)) and Fwd(Pred_sample(i)). This approach allows for a more
accurate inter/intra mode decision, thus improving coding efficiency.

LumaDQP with reshaping

[000111] Inthe JCTVC HDR common test conditions (CTC) document (Ref. [6]),

lumaDQP and chromaQPoffsets are two encoder settings used to modify quantization (QP)
parameters for luma and chroma components to improve HDR coding efficiency. In this
invention, several new encoder algorithms are proposed to further improve the original
proposal. For each lumaDQP adaptation unit (for example, a 64x64 CTU), a dQP value is
computed based on the unit’s average input luma value (as in Table. 3 of Ref. [6]). The final
quantization parameter QP used for each Coding Units within this lumaDQP adaptation unit
should be adjusted by subtracting this dQP. The dQP mapping table is configurable in the
encoder input configuration. This input configuration is denoted as dQPip.

[000112] As discussed in Ref. [6] and [7], in existing coding schemes, the same lumaDQP
LUT dQPip is used for both intra and inter pictures. Intra-picture and inter-picture may have
different properties and quality characteristics. In this invention, it is proposed to adapt the
lumaDQP settings based on picture coding type. Therefore, two dQP mapping tables are

configurable in the encoder input configuration, and are denoted as dQPipinza and dQOP ipiver-

- 40 -

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

[000113] As discussed earlier, when using the in-loop Intra reshaping method, because
reshaping is not performed on inter pictures, it is important that some lumaDQP setting is
applied to inter-coded pictures to achieve similar quality as if the inter pictures are reshaped
by the same reshaper used for intra picture. In one embodiment, the lumaDQP setting for
inter-pictures should match the characteristics of the reshaping curve used in intra pictures.
Let

Slope(x) = Fwd’(x) = (Fwd(x+dx)- Fwd(x-dx))/(2dx), (6)
denote the first derivative of the forward reshaping function, then, in an embodiment, denote
the automatically derived dQPa.:0(x) values may be computed as follows:

If Slope(x) = 0, then dQP.u0(x) = 0, otherwise

dQP uu:0(x) = 6log2(Slope(x)), (7
where dQPq.0(x) may be clipped in a reasonable range, for example, [-6 6].

[000114] If lumaDQP is enabled for intra pictures with reshaping (i.e, external
dQPipinma 1s set), lumaDQP for inter-pictures should take that into considerations. In an
embodiment, the final inter dQ P may be computed by adding the dQP 4.0 derived from the
reshaper (equation (7)) and the dQPipmna setting for intra pictures. In another embodiment, to
take advantage of intra quality propagation, the dQPjnq for inter-pictures can be set either to
dQP aus or just at a small increment (by setting dQPinpinser) and added to dQP auso.

[000115] In an embodiment, when reshaping is enabled, the following general rules for
setting luma dQP values may apply:

1) Luma dQP mapping tables can be set independently for intra and inter pictures
(based on picture coding type);

2) If a picture inside the coding loop is in the reshaped domain (e.g., intra
pictures in in-loop Intra reshaping architecture or all pictures in out-of-loop reshaping
architecture), the input luma to delta QP mapping, dQPip, needs to be translated to reshaped
domain dQP;, as well. That is

dOPrsp(x) = dQPinp|Inv(x)]. (8)

3) If a picture inside the coding loop is in non-reshaped domain (e.g., inverse-
reshaped or not reshaped, for example, inter pictures in in-loop Intra reshaping architecture or
all pictures in in-loop residual reshaping architecture), the input luma to delta QP mapping
does not need to be translated and can be used directly.

) Automatic inter deltaQP derivation is only valid for in-loop Intra reshaping
architecture. The actual delta QP used for inter pictures in such case is the summed values of

auto-derived and input:

_41 -

10

15

20

25

WO 2019/006300 PCT/US2018/040287

dQPfinalx] = dQPinp[x] + dQPauso[x], ©)
and dQPrinalx] can be clipped to a reasonable range, for example [-12 12];

5) The luma to dQP mapping table can be updated in every picture or when there
is a change of reshaping LUT. Actual dQP adaptation (from a block’s average luma value,
get the corresponding dQP for quantization of this block) can happen at CU level (encoder
configurable).

[000116] Table 13 summarizes the dQP settings for each one of the three proposed
architectures.

Table 13: dQP setting

chitecture Out-of-Loop In-Loop Intra only In-Loop Residual
Intra Picture dQPfina(x) = dQPsp(x) = | dOPfinar(x) = dQPsp(x) = | dQPfinai(x) = dQOPinpmira(x)
dQP AQPinpinra[InV(X)] AQPinpinra[InV(X)]
Inter Picture dQPfinal(x) = dQPrsp(x) = dQPfinal(x) = dQPﬁnal(x) = dQPiannter(x)
dQP dQPiannter[InV(X)] dQPaum(x)+dQPiannter(x)

Rate Distortion Optimization (RDQ)
[000117] In the JEMG6.0 software (Ref. [8]), RDO (Rate Distortion Optimization) pixel-

based weighted distortion is used when lumaDQP is enabled. The weight table is fixed based
on luminance values. In an embodiment, the weight table should be adaptively adjusted based
on the lumaDQP setting, computed as proposed in the previous section. Two weights, for

sum of square error (SSE) and sum of absolute differences (SAD) are proposed as follows:

dQP[x]

weight _SSE[x]=273), (10a)
. (dQP[x])
weight_SAD[x] =2 & . (10b)

[000118] The weight computed by equation (10a) or equation (10b) is the total weight
based on the final dQP, which comprises both input lumaDQP and derived dQP from the
forward reshaping function. For example, based on equation (9), equation (10a) can be

written as

dQPfinal[x]) (dQPinp[x]‘l' AQPgyto [x])
=2

weightssg[x] = 2< 3 3

_ (T et

The total weight can be separated by weight computed by input lumaDQP:

(dqpinp[x])
weightssp[X]_inp = 2 3

and weight from reshaping:

_42 .-

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

] (dQPauw[x]) (Glogz(slope(x)))
weightssg [X]reshape =2 3 = 2 3

= (Slope(x))?.
When the total weight is computed using total dQP by computing weight from reshaping
first, it losses the precision by the clipping operation to get an integer dQPauo. Instead,
directly using the slope function to calculate weight from reshaping can preserve higher
precision of the weight and therefore is more favorable.
[000119] Denote as Waqgp the weight derived from input lumaDQP. Let f'(x) denote the
first derivative (or slope) of the forward reshaping curve. In an embodiment, the total weight
takes into consideration both the dQP values and the shape of the reshaping curve, thus a total
weight value may be expressed as:

weight,oeq = Clip3(0.0,30.0, Wyop * f'(x)?). (11)
[000120] A similar approach can be applied to chroma components as well. For

example, in an embodiment, for chroma, dQP[x] can be defined according to Table 13.

Interaction with Other Coding Tools

[000121] When reshaping is enabled, this section provides several examples of proposed
changes needed in other coding tools. The interactions might exist for any possible existing
or future coding tools to be included in the next generation video coding standard. The
examples given below are not limiting. In general, the video signal domain (reshaped, non-
reshaped, inverse-reshaped) during the coding steps need to be identified and operations
dealing with the video signal at each step need to take the reshaping effect into consideration.
Cross-component linear model prediction

[000122] In CCLM (cross-component linear model prediction) (Ref. [8]) predicted

chroma samples pred, (i, j) may be derived using a luma reconstruction signal recL’(i, Jj):
predc(i, j) =a- recL'(i, j) + B. (12)
[000123] When reshaping is enabled, in an embodiment, one may need to distinguish if
the luma reconstructed signal is in reshaped domain (e.g., out-of-loop reshaper or in-loop
intra reshaper) or in non-reshaped domain (e.g., in-loop residual reshaper). In one
embodiment, one can implicitly use the reconstruction luma signal as-is without any
additional signaling or operation. In other embodiments, if the reconstructed signal is in a
non-reshaped domain, one may translate the reconstruction luma signal to also be in the non-

reshaped domain, as in:

predc(i, j) = a - Inv(rec,'(i, j)) + B. (13)

_43 -

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

[000124] In other embodiments, one can add bitstream syntax elements to signal which
domain is desired (reshaped or non-reshaped), which can be decided by an RDO process, or
one can derive the decision based on decoded information, thus saving overhead required by
explicit signaling. One can perform corresponding operations to the reconstructed signal
based on the decision.

Reshaper with residual prediction tool

[000125] In the HEVC range extension profile, a residual prediction tool is included.

The chroma residual signal is predicted from the luma residual signal at the encoder side as:

Ar(x,y) = 1.(x,) = (@x 1/ (x,3))>>3, (14)
and it is compensated at the decoder side as:
7(x, y) = Arl(x,)+ (axr(x,y))>>3, (15)

where 7. denotes the chroma residual sample at a position (X, y), r, denotes the
reconstructed residual sample of the luma component, Ar,. denotes the predicted signal using
inter-color prediction, Ar/ denotes the reconstructed signal after coding and decoding Ar,.,

and r/ denotes the reconstructed chroma residual.

[000126] When reshaping is enabled, one may need to consider which luma residual to use
for chroma residual prediction. In one embodiment, one may use the “residual” as-is (may be
reshaped or non-reshaped based on reshaper architecture). In another embodiment, one may
enforce the luma residual to be in one domain (such as in non-reshaped domain) and perform
proper mappings. In another embodiment, proper handling may either be derived by a
decoder, may be explicitly signaled as described earlier.

Reshaper with adaptive clipping

[000127] Adaptive Clipping (Ref. [8]) is a new tool introduced to signal an original data
range with respect to the content dynamics, and do adaptive clipping instead of fixed clipping
(based on internal bit-depth information) at each step in the compression workflow (e.g., in

transform/quantization, loop filtering, output) where clipping happens. Let
Teiip = Clippp (T, bitdepth, C) = Clip3(ming, max;,T), (16)

where x = Clip3(min, max, c¢) denotes:

- 44 -

10

15

20

25

WO 2019/006300 PCT/US2018/040287

min,if ¢ < min
x = ymax,if ¢ = max,
¢, otherwise

and

e (is the component ID (typically Y, Cb, or Cr)

®* min. is the lower clipping bound used in current slice for component ID €

®* max, is the upper clipping bound used in current slice for component ID €
[000128] When reshaping is enabled, in an embodiment, one may need to figure out the
domain the data flow is currently in and to perform the clipping correctly. For example, if
dealing with clipping in reshaped domain data, the original clipping bounds need to be
translated to the reshaped domain:

Teip = Clippp (T, bitdepth, C) =
= Clip3(Fwd (min¢), Fwd(max;),T). (17

In general, one needs to process each clipping step properly with respect to the reshaping
architecture.

Reshaper and Loop Filtering

[000129] In HEVC and JEM 6.0 software, the loop filters, such as ALF and SAO need to

estimate optimal filter parameters using reconstructed luma samples and the uncompressed
“original” luma samples. When reshaping is enabled, in an embodiment, one may specify
(explicitly or implicitly) the domain they want to perform filter optimization. In one
embodiment, one can estimate the filter parameters on the reshaped domain (when
reconstruction is in reshaped domain, versus a reshaped original). In other embodiments, one
can estimate the filter parameters on non-reshaped domain (when reconstruction is in the
non-reshaped domain or inverse reshaped, versus the original).

For example, depending on the in-loop reshaping architecture, the in-loop filter optimization
(ILFOPT) options and operations can be described by Tables 14 and 15.

Table 14. In loop filtering optimization in in-loop intra only reshaping architect and in-
loop hybrid reshaping

Intra-frame Inter-frame
Option 1: estimate ¢ Encoder side: ¢ Encoder side:
and perform loop o Use the already reshaped o Forward reshape original inter
filtering (LF) in original intra image as LF image as LF reference
reshaped domain; reference o Forward reshape the
reconstructed inter image

- 45 -

WO 2019/006300

PCT/US2018/040287

o Use the reconstructed intra
image (in reshaped domain)
and LF reference to estimate
LF parameters; two cases,
depending on the position of
the LF module versus the
inverse reshaping module
(block 265 and 270 in Fig.
2C):
®» if inverse reshaping is

performed before LF, need
to apply forward reshaping
on the reconstructed intra

image

if inverse reshaping is to be
performed after LF, use the
reconstructed intra image
directly

o Apply LF to the reconstructed
intra image in reshaped
domain

o Inverse reshape the whole
reconstructed intra image

o Store in DPB

® Decoder side:

o Apply LF to the reconstructed
intra image in reshaped
domain; two cases, depending
on the position of the LF
module versus the inverse
reshaping module (block 265
and 270 in Fig. 2D):
®» if inverse reshaping is

performed before LF, need

to forward reshape the

o Estimate LF parameters

o Apply LF to the reconstructed
inter image in reshaped
domain

o Inverse reshape the whole
reconstructed inter image

o Store in DPB

® Decoder side:

o Forward reshape the
reconstructed inter image

o Apply LF to the reconstructed
inter image in reshaped
domain

o Inverse reshape the whole
reconstructed inter image

o Store in DPB

- 46 -

WO 2019/006300

PCT/US2018/040287

reconstructed intra image
before applying LF

* if inverse reshaping is to be
performed after LF, apply
LF on reconstructed intra
image directly

o Inverse reshape the whole
reconstructed intra image

o Store in DPB

Option 2: estimate
and perform LF in
the non-reshaped

domain

¢ Encoder side:

o Inverse reshape original image
as LF reference if in-place
reshaping has been performed
on original image buffer; or
fetch non-reshaped original
image as LF reference

o Inverse reshape the
reconstructed intra image

o Estimate LF parameters

o Inverse-reshape the whole
reconstructed image

o Apply LF to the reconstructed
intra image

o Store in DPB

® Decoder side:

o Inverse-reshape the whole
reconstructed image

o Apply LF to the reconstructed
intra image

o Store in DPB

(Exact traditional LF workflow)
¢ Encoder side:
o Use the reconstructed inter
image and original image as
LF reference to estimate LF
parameters
o Apply LF to the reconstructed
inter image
o Store in DPB
¢ Decoder side:
o Apply LF to the reconstructed
inter image

o Store in DPB

Table 15. In loop filtering optimization in in-loop residue reshaping architect

In-loop residue

reshaping

Intra-frame and Inter-frame

(same as Inter-frame operations in Table 14)

_47 -

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

[000130] While most of the detailed discussions herein refer to methods performed on the
luminance component, a person skilled in the art will appreciate that similar methods may be
performed in the chroma color components and chroma related parameters, such as
chromaQPOffset (e.g., see Ref. [9]).

In-Loop Reshaping and Regions of Interest (ROD)

[000131] Given an image, as used herein, the term ‘region of interest’ (ROI) denotes a
region of the image that is considered of special interest. In this section, novel embodiments
are presented which support in-loop reshaping for region of interests only. That is, in an
embodiment, reshaping may be applied only inside an ROI and not outside. In another
embodiment, one may apply different reshaping curves in a region of interest and outside the
region of interest.

[000132] The use of ROIs is motivated by the need to balance bit rate and image
quality. For example, consider a video sequence of a sunset. On the top-half of the images
one may have the sun over a sky of relatively uniform color (thus pixels in the sky
background may have very low variance). In contrast, the bottom half of the image may
depict moving waves. From a viewer’s perspective, the top may be considered far more
important than the bottom. On the other hand, the moving waves, due to higher variance in
their pixels, are harder to compress, requiring more bits per pixels; however, one may want to
allocate more bits on the sun-part than the waves part. In this case, the top half could be
denoted as the region of interest.

ROI Description

[000133] Nowadays most codecs (e.g., AVC, HEVC, and the like) are block based. To

make implementation simple, one can specify the region in units of blocks. Without
limitation, using HEVC as an example, a region may be defined as a multiple of Coding
Units (CUs) or Coding Tree Units (CTUs). One can specify one ROI or multiple of ROIs.
Multiple ROIs can be distinct or overlapped. An ROI does not need to be rectangle. The
syntax for ROIs may be provided at any level of interest, such as the slice level, the picture
level, the video stream level, and the like. In an embodiment, the ROI is specified first in the
sequence parameter set (SPS). Then in a slice header, one can allow small variations of ROI.
Table 16 depicts an example of syntax where one ROI is specified as multiple CTUs in a
rectangle region. Table 17 describes the syntax of a modified ROI at the slice level.

Table 16: SPS syntax for ROI
SPS() { Descriptor

sps_reshaper_enable_flag u(l)

~48 -

10

15

WO 2019/006300 PCT/US2018/040287
if (sps_reshaper_enable_flag) {
sps_reshaper_active_ROI_flag u(l)
if (sps_reshaper_active_ROI_flag) {
reshaper_active_ ROI_in_CTUsize_left ue(v)
reshaper_active_ ROI_in_CTUsize_right ue(v)
reshaper_active_ ROI_in_CTUsize_top ue(v)
reshaper_active_ ROI_in_CTUsize_bottom ue(v)
}
}
}
Table 17: Slice header syntax for ROI
reshaping_sliceheader_table() { Descriptor
if (sps_reshaper_active_ROI_flag) {
reshape_model_ROI_modification_flag u(l)
if (reshape_model_ROI_modification_flag) {
reshaper_ROI_mod_offset_left se(v)
reshaper_ROI_mod_offset_right se(v)
reshaper_ROI_mod_offset_top se(v)
reshaper_ROI_mod_offset_bottom se(v)
}
}
}

sps_reshaper_active_ROI_flag equal to 1 specifies that ROI exists in the coded video

sequence (CVS). sps_reshaper_active_ROI_flag equal to O specifies that ROI does not exist

in CVS.

reshaper_active_ ROI_in_CTUsize_left, reshaper_active_ ROI_in_CTUsize_right,

reshaper_active_ROI_in_CTUsize_top and reshaper_active_ROI_in_CTUsize_bottom,

each specifies the sample of the pictures in RO, in terms of a rectangle region specified in

picture coordinates. The coordinates are equal to offset*CTUsize for left and top and

offset*CTUsize-1 for right and bottom.

reshape_model_ROI_modification_flag equal to 1 specifies that ROI is modified in current

slice. reshape_model_ROI_modification_flag equal to O specifies that ROI is not modified in

current slice.

- 49 -

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

reshaper_ROI_mod_offset_left, reshaper ROI_mod_offset_right,
reshaper_ROI_mod_offset_top, and reshaper_ROI_mod_offset_bottom each specifies
the offset value of left/right/top/bottom from reshaper_active_ ROI_in_CTUsize_left,
reshaper_active_ROI_in_CTUsize_right, reshaper_active_ROI_in_CTUsize_top

and reshaper_active_ROI_in_CTUsize_bottom.

For multiple ROIs, the example syntax for Tables 16 and 17 for a single ROI could be
extended using an index (or ID) for each ROI, similarly to the scheme used in HEVC to
define using SEI messaging multiple pan-scan rectangles (see HEVC specification, Ref. [11],

Section D.2.4).

Processing of ROIs in in-loop Intra-only reshaping

For intra-only reshaping, the ROI part of the picture is reshaped first, then coding is applied.
Because reshaping is only applied to the ROI, one might see a boundary between the ROI and
non-ROI parts of a picture. Since a loop filter (e.g. 270 in FIG. 2C or FIG. 2D) can go across
boundaries, special care must be taken for ROIs for loop filter optimization (ILFOPT). In an
embodiment, it is proposed that that loop filter is applied only where the whole decoded
picture is in the same domain. That is, the whole picture is either all in the reshaped domain
or all in the non-reshaped domain. In one embodiment, at the decoder side, if loop filtering is
applied on a non-reshaped domain, one should first apply inverse reshaping to the ROI
section of the decoded picture, and then apply the loop filter. Next, the decoded picture is
stored into the DPB. In another embodiment, if the loop filter is applied on the reshaped
domain, one should first apply reshaping to the non-ROI part of the decoded picture, then
apply the loop filter, and then inverse reshape the whole picture. Next, the decoded picture is
stored into the DPB. In yet another embodiment, if loop filtering is applied on the reshaped
domain, one can first inverse-reshape the ROI part of the decoded picture, then reshape the
whole picture, then apply the loop filter, then inverse reshape the whole picture. Next, the
decoded picture is stored into the DPB. The three approaches are summarized in Table 18.
From a computation point of view, method “A” is the simpler. In an embodiment, the
enabling of ROI can be used to specify the order of performing inverse reshaping versus loop
filtering (LF). For example, if ROl is actively used (e.g. SPS syntax flag = true), then LF
(block 270 in Fig. 2C and Fig. 2D) is performed after inverse reshaping (block 265 in Fig. 2C
and Fig. 2D). If ROl is not actively used, then LF is performed before inverse reshaping.

-50 -

10

15

20

25

WO 2019/006300 PCT/US2018/040287

Table 18. Loop-filtering (L.F) options using ROIs

Method A Method B Method C
® Inverse-reshape the ROI | ® Apply reshaping to the ¢ Inverse-reshape the ROI
of a decoded picture non-ROI part of a of a decoded picture
* Apply Loop filtering (LF) decoded picture ® Reshape the whole
to the whole picture * Apply LF to the whole picture
e Storein DPB picture e Apply LF to the whole
® Inverse-reshape the picture
whole picture ® Inverse-reshape the
¢ Store in DPB whole picture
¢ Store in DPB

Processing of ROIs in in-loop prediction residual reshaping

[000134] For an in-loop (prediction) residuals reshaping architecture (e.g., see 200C_D
in FIG. 2F), at the decoder, using equation (3), processing may be expressed as:
If (currentCTU belongs to ROI)
Reco_sample=Inv(Res_d + Fwd(Pred_sample)), (see equation (3))
else
Reco _sample= Res_d + Pred _sample

end

ROIs and encoder considerations

[000135] In an encoder, each CTU needs to be checked whether it belongs to an ROI or
not. For example, for in-loop, prediction residual reshaping, a simple check based on
equation (3) may perform:
If (currentCTU belong to ROI)
apply weighted distortion in RDO for luma. The weigh is derived based on equation
(10)
else
apply non-weighted distortion in RDO for luma
end
[000136] An example encoding workflow which takes into consideration ROIs during
reshaping may comprise the following steps:

— For an Intra picture:

-51 -

WO 2019/006300 PCT/US2018/040287

— Apply forward reshaping to the ROI area of the original picture
— Code the Intra frame
— Apply inverse reshaping to the ROI area of the reconstructed picture before the
loop filter (LF)
5 — Perform loop filtering in the unshaped domain as follows (e.g., see method “C” in
Table 18), which includes the following steps:

» Apply forward reshaping to the Non-ROI area of the original picture (in
order to make the whole original picture reshaped for the loop filter
reference)

10 » Apply forward reshaping to the whole picture area of the reconstructed
picture

* Derive loop filter parameters and apply loop filtering

* Apply inverse reshaping to the whole picture area of the reconstructed

picture and store in the DPB

15 Atencoder side, since LF need to have non-compressed reference image for filter parameter
estimation, the treatment of LF reference for each method is as in Table 19:

Table 19. Treatment of LF reference regarding ROIs

Method A Method B Method C
¢ Use non-reshaped ® Apply reshaping on ® Apply reshaping on
original input picture for whole (both non-ROI and whole (both non-ROI and
LF reference; ROI part) of the original ROI part) of the original
input picture for LF input picture for LF
reference; reference;

— For an Inter picture:
— When coding an inter frame, for each CU inside the ROI, apply prediction
20 residual reshaping and weighted distortion on luma; for each CU outside the ROI,
do not apply any reshaping
— Loop filtering optimization (option 1) is performed as before (as if no ROI has
been used):
» Forward reshape the whole picture area of the original picture
25 * Forward reshape the whole picture area of the reconstructed picture
» Derive loop filter parameters and apply loop filtering
* Apply inverse reshaping to the whole picture area of the reconstructed

picture and store in DPB

-5

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

Reshaping of HL.G-coded content

[000137] The term HybridLog-Gamma or HLG denotes another transfer function
defined in Rec. BT. 2100 for mapping high-dynamic range signals. HLG was developed to
maintain backward compatibility with traditional standard dynamic range signals coded using
the traditional gamma function. When comparing the codeword distribution between PQ-
coded content and HLG-coded content, the PQ mapping tends to allocate more codewords in
dark and bright areas, while the majority of HLG content codewords appears to be allocated
into the middle range. Two approaches can be used for HLG luma reshaping. In one
embodiment, one may simply convert HLG content into PQ content and then apply all the
PQ-related reshaping techniques discussed earlier. For example, the following steps could be
applied:
1) Map HLG luminance (e.g., ¥) to PQ luminance. Let the function or LUT of the
transformation be denoted as HLG2PQLUT(Y)
2) Analyze the PQ luminance values and derive a PQ-based forward reshaping function
or LUT. Denote it as PQAdpFLUT(Y)
3) Merge the two functions or LUTs into a single function or LUT: HLGAdpFLUTJi]=
PQAdpFLUT[HLG2PQLUTIi]].
[000138] Since HLG codeword distribution is quite different from the PQ codeword
distribution, such an approach may produce suboptimal reshaping results. In another
embodiment, the HLG reshaping function is derived directly from HLG samples. One may
apply the same framework as used for PQ signals, but change the CW_Bins_Dft table to
reflect characteristics of an HLG signal. In an embodiment, using the mid-tones profile for
HLG signals, several CW_Bins_Dft Tables are designed according to user-preferences. For

example, when it is preferred to preserve highlights, for alpha = 1.4,

g DItHLGCWBInO = { &, 14, 17, 19, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36,
37,38, 39, 39, 40, 41, 41, 42, 43, 43, 44, 44, 30 }.

When it is preferred to preserve the mid-tones (or mid-range):

g DItHLGCWBInl= { 12, 16, 16, 20, 24, 28, 32, 32, 32, 32, 36, 36, 40, 44, 48, 52, 56, 52,
48, 44, 40, 36, 36, 32, 32, 32, 26, 26, 20, 16, 16, 12 }.

When it is preferred to preserve skin tones:

g DItHLGCWBIn2= {12, 16, 16, 24, 28, 32, 56, 64, 64, 64, 64, 56, 48, 40, 32, 32, 32, 32, 32,
32,28, 28, 24, 24, 20, 20, 20, 20, 20, 16, 16, 12};

-53 .-

10

15

WO 2019/006300 PCT/US2018/040287

[000139] From a bitstream syntax point of view, to differentiate between PQ and HLG-
based reshaping, a new parameter, denoted as sps_reshaper_signal_type, is added, where
the value sps_reshaper_signal_type indicates the signal type that was reshaped (e.g., O for
gamma-based SDR signals, 1 for PQ-coded signals , and 2 for HLG-coded signals).

[000140] Examples of syntax tables for HDR reshaping in SPS and slice header for both
PQ and HLG, with all features discussed earlier (e.g., ROI, in loop filter optimization
(ILFOPT), and ChromaDQPAdjustment), are shown in Tables 20 and 21.

Table 20: Example SPS syntax for reshaping
SPS(Descriptor

sps_reshaper_enable_flag /*1: reshaping on, else off */ u(l)
if (sps_reshaper_enable_flag) {
sps_reshaper_adaptive flag /* 1: adaptive reshaping is on, else off */ |u(1)

sps_reshaper_signal_type /*e.g.: 0: SDR, 1:PQ, 2: HLG */ u(2)
sps_in_loop_filter_opt_flag /* ILFOPT flag*/ u(l)
sps_luma_based_chroma_qp_offset_flag /*chromaDQPAjustment u(l)
flag*/
sps_reshaper_active_ROI_flag u(l)
if (sps_reshaper_active_ROI_flag) {
reshaper_active_ ROI_in_CTUsize_left ue(v)
reshaper_active_ ROI_in_CTUsize_right ue(v)
reshaper_active_ROI_in_CTUsize_top ue(v)
reshaper_active_ROI_in_CTUsize_bottom ue(v)

}

}

sps_in_loop_filter_opt _flag equal to 1 specifies that in-loop filter optimization to be

performed in the reshaped domain in the coded video sequence (CVS).
sps_in_loop_filter_opt _flag equal to O specifies that in-loop filter optimization to be
performed in the non-reshaped domain in CVS.

sps_luma_based_chroma_qp_offset_flag equal to 1 specifies that luma based chroma QP offset
is derived (e.g. according to Table 11 or 12) and applied to chroma coding of each CU in the
coded video sequence (CVS). sps_luma_based_chroma_qp_offset_flag equal to O specifies
that luma based chroma QP offset is not enabled in CVS.

Table 21: Example syntax for reshaping at the slice level

reshaping_sliceheader_table_model() { Descriptor

reshape_model_profile_type ue(v)

reshape_model_scale_idx u(2)

reshape_model_min_bin_idx u(s)

reshape_model_max_bin_idx u(5)

reshape_model_num_band u(4)

for (i=0; 1< reshape_model_num_band; i++) {
reshape_model_band_profile_delta [i | u(l)

-54 -

10

15

20

25

WO 2019/006300 PCT/US2018/040287

1
if (sps_reshaper_active_ROI_flag) {

reshape_model_ROI_modification_flag u(l)

if (reshape_model_ROI_modification_flag) {
reshaper_ROI_mod_offset_left se(v)
reshaper_ROI_mod_offset_right se(v)
reshaper_ROI_mod_offset_top se(v)
reshaper_ROI_mod_offset_bottom se(v)

}

Improving Chroma quality

[000141] Proponents of HLG-based coding argue that it provides better backward
compatibility with SDR signaling. Therefore, in theory, HLG-based signals could employ the
same encoding settings as legacy SDR signals. But when viewing HLG-coded signals in
HDR mode, some color artifacts can still be observed, especially in achromatic regions (such
as white and gray color). In an embodiment, such artifacts can be reduced by adjusting the
chromaQPOffset values during encoding. It is suggested that for HLG content one applies
less aggressive chromaQP adjustment than what is used when coding PQ signals. For
example, in Ref. [10], the model to assign QP offsets for Cb and Cr based on the luma QP

and a factor based on the capture and representation colour primaries is described as:

QPoffsetCh = Clip3 (—12, 0,Round(cq, * (k * QP+l))), (18a)
QPoffsetCr = Clip3 (—12,0, Round(ce * (k * QP +l))), (18b)

where ce, = 1 if the capture color primaries are the same as the representation color primaries,
ceb=1.04 if the capture color primaries are equal to the P3D65 primaries and the
representation color primaries are equal to the Rec. [TU-R BT.2020 primaries, and c=1.14 if
the capture color primaries are equal to the Rec. ITU-R BT.709 primaries and the
representation primaries are equal to the Rec. ITU-R BT.2020 primaries. Similarly, ce- = 1 if
the capture color primaries are the same as the representation color primaries, ce=1.39 if the
capture color primaries are equal to the P3D65 primaries and the representation color
primaries are equal to the Rec. ITU-R BT.2020 primaries, and c=1.78 if the capture color
primaries are equal to the Rec. ITU-R BT.709 primaries and the representation primaries are
equal to the Rec. ITU-R BT.2020 primaries. Finally, k = —0.46 and [= 0.26.

[000142] In an embodiment, it is proposed to use the same model but with different,
parameters that yield a less aggressive chromaQPOffset change. For example, without

limitation, in an embodiment, for Cb in equation (18a), cs,b = 1, k =-0.2, and / =7, and for Cr

-55-

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

in equation (18b), cr=1, k = -0.2, and / = 7. FIG. 6A and FIG. 6B depict examples of how
chromaQPOffset values change according to the luma quantization parameter (QP) for PQ
(Rec. 709) and HLG. PQ-related values change more dramatically than HLG-related values.
FIG. 6A corresponds to Cb (equation (18a)), while FIG. 6B corresponds to Cr (equation
(18b)).

References

Each one of the references listed herein is incorporated by reference in its entirety.

[1] PCT Application PCT/US2016/025082, In-Loop Block-Based Image Reshaping in High
Dynamic Range Video Coding, filed on March 30, 2016, also published as WO 2016/164235,
by G-M. Su.

[2] D. Baylon, Z. Gu, A. Luthra, K. Minoo, P. Yin, F. Pu, T. Lu, T. Chen, W. Husak, Y. He,
L. Kerofsky, Y. Ye, B. Yi, “Response to Call for Evidence for HDR and WCG Video
Coding: Arris, Dolby and InterDigital”, Doc. m36264, July (2015), Warsaw, Poland.

[3] U.S. Patent Application 15/410,563, Content-Adaptive Reshaping for High Codeword
representation Images, filed on Jan. 19, 2017, by T. Lu et al.

[4] PCT Application PCT/US2016/042229, Signal Reshaping and Coding for HDR and Wide
Color Gamut Signals, filed on July 14, 2016, also published as WO 2017/011636, by P. Yin
et al.

[5] "Exploratory Test Model for HDR extension of HEVC", K. Minoo et al., MPEG output
document, JCTVC-W0092 (m37732), 2016, San Diego, USA.

[6] E. Frangois, J. Sole, J. Strém, P. Yin, “Common Test Conditions for HDR/WCG video
coding experiments”, JCTVC doc. 21020, Geneva, Jan. 2017.

[7] A. Segall, E. Francois, and D. Rusanovskyy, “JVET common test conditions and
evaluation procedures for HDR/WCG Video,” IVET-E1020, ITU-T meeting, Geneva,
January 2017.

[8] JEM 6.0 software: https://jvet.hhi.fraunhofer.de/svn/svn_ HMJEMSoftware/tags/HM-
16.6-JEM-6.0

[9] U.S. Provisional Patent Application Ser. No. 62/406,483, filed on Oct. 11, 2016,

“Adaptive Chroma Quantization in Video Coding for Multiple Color Imaging Formats,” 'T.
Lu et al., also filed as U.S. Patent Application Ser. No. 15/728,939, published as U.S. Patent
Application Publication US 2018/0103253.

- 56 -

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

[10] J. Samuelsson et al. (Eds), “Conversion and coding practices for HDR/WCG Y’CbCr
4:2:0 Video with PQ Transfer Characteristics,” JCTVC-Y 1017, ITU-T/ISO meeting,
Chengdu, Oct. 2016.

[11] ITU-T H.265, “High efficiency video coding, *“ ITU, version 4.0, (12/2016).

EXAMPLE COMPUTER SYSTEM IMPLEMENTATION
[000143] Embodiments of the present invention may be implemented with a computer
system, systems configured in electronic circuitry and components, an integrated circuit (IC)
device such as a microcontroller, a field programmable gate array (FPGA), or another
configurable or programmable logic device (PLD), a discrete time or digital signal processor
(DSP), an application specific IC (ASIC), and/or apparatus that includes one or more of such
systems, devices or components. The computer and/or IC may perform, control, or execute
instructions relating to integrated signal reshaping and coding of images, such as those
described herein. The computer and/or IC may compute any of a variety of parameters or
values that relate to the signal reshaping and coding processes described herein. The image
and video embodiments may be implemented in hardware, software, firmware and various
combinations thereof.
[000144] Certain implementations of the invention comprise computer processors which
execute software instructions which cause the processors to perform a method of the
invention. For example, one or more processors in a display, an encoder, a set top box, a
transcoder or the like may implement methods related to integrated signal reshaping and
coding of images as described above by executing software instructions in a program
memory accessible to the processors. The invention may also be provided in the form of a
program product. The program product may comprise any non-transitory medium which
carries a set of computer-readable signals comprising instructions which, when executed by a
data processor, cause the data processor to execute a method of the invention. Program
products according to the invention may be in any of a wide variety of forms. The program
product may comprise, for example, physical media such as magnetic data storage media
including floppy diskettes, hard disk drives, optical data storage media including CD ROMs,
DVDs, electronic data storage media including ROMs, flash RAM, or the like. The
computer-readable signals on the program product may optionally be compressed or
encrypted.
[000145] Where a component (e.g. a software module, processor, assembly, device,

circuit, etc.) is referred to above, unless otherwise indicated, reference to that component

-57.-

WO 2019/006300 PCT/US2018/040287

(including a reference to a "means") should be interpreted as including as equivalents of that
component any component which performs the function of the described component (e.g.,
that is functionally equivalent), including components which are not structurally equivalent to

the disclosed structure which performs the function in the illustrated example embodiments

of the invention.

- 58 -

10

WO 2019/006300 PCT/US2018/040287

EQUIVALENTS, EXTENSIONS, ALTERNATIVES AND MISCELLANEOUS

[000146] Example embodiments that relate to the efficient integrated signal reshaping
and coding of images are thus described. In the foregoing specification, embodiments of the
present invention have been described with reference to numerous specific details that may
vary from implementation to implementation. Thus, the sole and exclusive indicator of what
is the invention, and is intended by the applicants to be the invention, is the set of claims that
issue from this application, in the specific form in which such claims issue, including any
subsequent correction. Any definitions expressly set forth herein for terms contained in such
claims shall govern the meaning of such terms as used in the claims. Hence, no limitation,
element, property, feature, advantage or attribute that is not expressly recited in a claim
should limit the scope of such claim in any way. The specification and drawings are,

accordingly, to be regarded in an illustrative rather than a restrictive sense.

-59 .-

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

CLAIMS
What is claimed is:
1. A method for coding of images with a processor, the method comprising:
accessing with a processor an input image (117) in a first codeword representation;
generating a forward reshaping function mapping pixels of the input image to a
second codeword representation, wherein the second codeword representation allows for a
more efficient compression than the first codeword representation;
generating an inverse reshaping function based on the forward reshaping function,
wherein the inverse reshaping function maps pixels from the second coding representation to
the first coding representation;
for an input pixel region in the input image;
computing (225) a predicted region based in pixel data in a reference frame
buffer or previously coded spatial neighbors;
generating a reshaped residual region based on the input pixel region, the
predicted region, and the forward reshaping function;
generating a quantized residual region based on the reshaped residual region;
generating a dequantized residual region based on the coded residual region;
generating a reconstructed pixel region based on the dequantized residual
region, the predicted region, the forward reshaping function, and the inverse reshaping
function; and
generating a reference pixel region to be stored on the reference frame buffer

based on the reconstructed pixel region.

2. The method of claim 1, further comprising:

generating a reshaper signaling bitstream which characterizes the forward reshaping
function and/or the inverse reshaping function; and

multiplexing the reshaper bitstream with a coded bitstream generated based on the

input image to generate an output bitstream.

3. The method of claim 1, wherein generating the quantized residual region comprises:
applying a forward coding transform to the reshaped residual region to generate
transformed data; and
applying a forward coding quantizer to the transformed data to generate quantized

data.

- 60 -

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

4. The method of claim 3, wherein generating the dequantized residual region comprises:
applying an inverse coding quantizer to the quantized data to generate inverse-
quantized data; and
applying an inverse coding transform to the inverse-quantized data to generate the

dequantized residual region.

5. The method of claim 1, wherein generating the reference pixel region to be stored on the

reference frame buffer comprises applying a loop filter to the reconstructed pixel region.

6. The method of claim 1, wherein generating the reshaped residual region comprises
computing:

Res_r(i) = Fwd(Orig_sample(i)) — Fwd(Pred_sample(i)),
where Inv() denotes the inverse reshaping function, Fwd() denotes the forward reshaping
function, Res_r(i) denotes a pixel of the reshaped residual region, Orig_sample(i) denotes a

pixel of the input image region, and Pred_sample(7) denotes a pixel of the predicted region.

7. The method of claim 6, wherein generating the reconstructed pixel region comprises
computing:

Reco_sample (i) = Inv(Res_d(i) + Fwd(Pred_sample(i))),
where Recon_sample (i) denotes a pixel of the reconstructed pixel region and Res_d(i)
denotes a pixel of the dequantized residual region representing a close approximation of the

Res_r(i) pixel.

8. The method of claim 6, wherein generating the reshaped residual region comprises
computing:
Res_r(i) = a(Pred_sample(D))«Orig_sample(i) —Pred_sample(i)),

where a(Pred_sample(i)) denotes a scaling factor based on the value of Pred_sample(i).
9. The method of claim 8, wherein generating the reconstructed pixel region comprises

computing

Reco_sample (i) = Pred_sample(i) + (1/a(Pred_sample(i)))* Res_d(i).

-6l -

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

10. A method for decoding with a processor a coded bitstream to generate an output image in
a first codeword representation, the method comprising:
receiving a coded image partially coded in a second codeword representation, wherein
the second codeword representation allows for a more efficient compression than the first
codeword representation;
receiving reshaping information for the coded image;
generating based on the reshaping information a forward reshaping function mapping
pixels from the first codeword representation to the second codeword representation;
generating based on the reshaping information an inverse reshaping function, wherein
the inverse reshaping function maps pixels from the second codeword representation to the
first codeword representation;
for a region of the coded image;
generating a decoded reshaped residual region;
generating a predicted region based on pixels in a reference pixel buffer or
previously decoded spatial neighbors;
generating a reconstructed pixel region based on the decoded reshaped
residual region, the predicted region, the forward reshaping function, and the inverse
reshaping function; and
generating an output pixel region for the output image based on the
reconstructed pixel region; and

storing the output pixel region in the reference pixel buffer.

11. The method of claim 10, wherein generating the reconstructed pixel region comprises
computing:

Reco_sample (i) = Inv(Res_d(i) + Fwd(Pred_sample(i))),
where Reco_sample (i) denotes a pixel of the reconstructed pixel region, Res_d(i) denotes a
pixel of the decoded reshaped residual region, Inv() denotes the inverse reshaping function,
Fwd() denotes the forward reshaping function, and Pred_sample(i) denotes a pixel of the

predicted region.

12. The method of claim 10 wherein instead of generating a forward and an inverse reshaping
function, the method comprises:
generating a reshaping scaling function based on the reshaping information;

and for the region of the coded image;

- 62 -

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

generating the reconstructed pixel region based on the decoded reshaped residual

region, the predicted region, and the reshaping scaling function.

13. The method of claim 12, wherein generating the reconstructed pixel region comprises
computing:

Reco_sample (i) = Pred_sample(i) + (1/a(Pred_sample(i)))*Res_d(i),
where Reco_sample (i) denotes a pixel of reconstruction pixel region, Res_d(7) denotes a
pixel of the decoded reshaped residual region, a() denotes the reshaping scaling function, and

Pred_sample(i) denotes a pixel of the predicted region.

14. A method for coding images with a processor, the method comprising:

accessing with a processor an input image (117) in a first codeword representation;

selecting a reshaping architecture from two or more candidate coding architectures for
compressing the input image in a second codeword representation, wherein the second
codeword representation allows for a more efficient compression than the first codeword
representation, wherein the two or more candidate coding architectures comprise an out-of-
loop reshaping architecture, an in-loop-for intra pictures only reshaping architecture, and an
in-loop architecture for prediction residuals; and

compressing the input image according to the selected reshaping architecture.

15. The method of claim 14, wherein compressing the input image according to the out-of-
loop reshaping architecture comprises:

generating a forward reshaping function mapping pixels of the input image to the
second codeword representation,

generating an inverse reshaping function based on the forward reshaping function,
wherein the inverse reshaping function maps pixels from the second codeword representation
to the first codeword representation;

generating a reshaped input image based on the input image and the forward
reshaping function; and

compressing the reshaped input image to generate an output bitstream.

16. The method of claim 14, wherein compressing the input image according to the in-loop

Intra-only reshaping architecture comprises:

-63 -

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

generating a forward reshaping function mapping pixels of the input image to the
second codeword representation,
generating an inverse reshaping function based on the forward reshaping function,
wherein the inverse reshaping function maps pixels from the second codeword representation
to the first codeword representation;
for an input pixel region in the input image to be coded in intra mode;
generating a reshaped region based on the input pixel region and the forward
reshaping function;
computing a predicted region based on pixel data in previously coded spatial
neighbors;
generating a coded residual region based on a residual between the reshaped
input pixel region and the predicted region;
generating a decoded residual region based on the coded region;
generating a reconstructed pixel region based on the decoded residual region,
the predicted region, and the inverse reshaping function; and
generating a reference pixel region to be stored on the reference frame buffer

based on the reconstructed pixel region.

17. The method of claim 14, wherein compressing the input image according to the in-loop

architecture for prediction residuals comprises executing a method according to claim 1.

18. The method of claim 14, wherein the two or more candidate coding architectures
comprise a hybrid in-loop architecture, wherein intra slices in the input image are encoded
according to the in-loop-for intra only reshaping architecture and inter slices in the input

image are encoded according to the in-loop architecture for prediction residuals.

19. A method for decoding with a processor a coded bitstream to generate an output image in
a first codeword representation, the method comprising:
receiving a coded bitstream comprising one or more coded images, wherein at least
part of a coded image is in a second codeword representation, wherein the second codeword
representation allows for a more efficient compression than the first codeword representation;
determining a reshaping decoder architecture based on metadata in the coded

bitstream, wherein the reshaping decoder architecture comprises one of an out-of-loop

- 64 -

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

reshaping architecture, an in-loop-for intra pictures only reshaping architecture, or an in-loop
architecture for prediction residuals;
receiving reshaping information for a coded image in the coded bitstream; and
decompressing the coded image according to the reshaping decoder architecture to

generate the output image.

20. The method of claim 19, wherein decompressing the coded image according to the out-of-
loop reshaping architecture comprises:

generating based on the reshaping information an inverse reshaping function, wherein
the inverse reshaping function maps pixels from the second codeword representation to the
first codeword representation;

decompressing the coded image to generate a decoded reshaped image; and

applying the inverse reshaping function to the decoded reshaped image to generate the

output image.

21. The method of claim 19, wherein decompressing the coded image according to the in-
loop intra-only reshaping architecture comprises:
generating based on the reshaping information an inverse reshaping function, wherein
the inverse reshaping function maps pixels from the second codeword representation to the
first codeword representation;
for a region of an intra coded image;
generating a decoded region using intra prediction;
generating an inverse reshaped region based on the inverse reshaping function
and the decoded region;
generating an output pixel region for the output image based on the inverse
reshaped region; and

storing the output pixel region in a reference pixel buffer.

22. The method of claim 19, wherein decompressing the coded bitstream according to the in-
loop architecture for prediction residuals comprises executing a method according to claim

10.

23. The method of claim 19, wherein the reshaping decoder architecture comprises a hybrid

in-loop architecture, wherein intra slices in the coded bitstream are decoded according to the

-65 -

10

15

20

25

30

WO 2019/006300 PCT/US2018/040287

in-loop-for intra only reshaping architecture and inter slices in the coded bitstream are

decoded according to the in-loop architecture for prediction residuals.

24. The method of claims 1-9, 15-18, further comprising methods to optimize encoding
related decisions based on the forward reshaping function, wherein the encoding-related
decisions comprise one or more of inter/intra-mode decision, dQP optimizations, rate
distortion optimizations, cross-component linear model prediction, residual prediction,

adaptive clipping, or loop filtering.

25. The method of claim 19, wherein reshaping information for the coded image comprises
one or more of:

a flag indicating whether reshaping is enabled in the coded image,

a flag indicating whether reshaping is adaptive or “default” (pre-defined),

a flag indicating the reshaping architecture to be used in decoding the coded image,

a flag indicating a model type for representing an inverse or forward reshaping
function, or

a set of syntax elements representing the reshaping function.

26. The method of claim 25, wherein reshaping information for the coded image comprises
one or more of:

a flag indicating whether reshaping is enabled only in a region of interest in the coded
image; and

a flag indicating whether in-loop filtering is performed in the reshaped domain or in

the original or inverse-reshaped domain.

27. The method of claim 1, wherein the input pixel region comprises a region of interest

image.

28. The method of claim 10, wherein the region of the coded image comprises a region of

interest image.

29. An apparatus comprising a processor and configured to perform any one of the methods

recited in claims 1-28.

- 66 -

WO 2019/006300 PCT/US2018/040287

30. A non-transitory computer-readable storage medium having stored thereon computer-

executable instruction for executing a method in accordance with any of the claims 1-28.

_67 -

WO 2019/006300 PCT/US2018/040287
1/20
105 110 115 120
o~
102 107 112 117
, Image o) . . Post- - .
Generation ®1 Production Production Coding
122
v
130 135 100
o o~ \
132 ;
N T . Display
® Decoding Management
FiIG. 1A
150 120 130 160
o - o~ -
117 c 152 122 132 , 162
Forward wd ol T , o inverse
smmnnnnnn Reshaping 3 Coding # Decoding ® Reshaping a—
Prior Art

FiG. 1B

PCT/US2018/040287

WO 2019/006300

2/20

44
WIesiIsHg

A4

IVEV)

w1

ozz

{124} 940

3 W0oz

3
Lo
3

1

Ve "5id
480 v\,mzj | # Sio doo
+
4t BJIU}
% HOLIIPS.d 4 SN
J1Ul /el
Y44
- \wf Juideyssy |
OBL D.m 2iN13td pMd |

-

0te

*

¥

0apiA nduyy

UOCIIBLLILST
Jadeysay

C

S0¢

H

H

H

fJ

£11

PCT/US2018/040287

WO 2019/006300

3/20

"

dooj Suipoosp

S19}14 doo

AT

213U vJ
% 04T
UOIP Sl
Jsupfeatuy |
+€.
ARy 1 Aupg
RN A D AU

g¢ "Oid
i
(354) m Suideysay o Sanon
$94) 840 79z | 2JNI0Ld 3SIeAU # PIA pepooeg
i
S oS —
m [y
097 m f 59 Fwoq
w 8uipoosg
i Jsdeyssy
!
U Y S
m M 108 057
m (44}
SAAL S N Wes s
!
i
o

Mﬁfs\ a voonz

PCT/US2018/040287

WO 2019/006300

4/20

I€ "Bid
» 0 v , Buideysoy Juuisyjy doo {"334)
LR > " oanpig oy [Butiely dool 124) 840
¥ - S
597 M 042 f
UoIPIPa 5127
weasnsug Mﬁmm d m
b e o e
i
& ;
i
LS Suid M
P AP Hiaeysay
IVEYD = 0Bl A - .m,i,m\ m o3pIA Indu
i
]
w W S
T 11 uonewnss T
ﬁ Jadeysay

.

S0¢

«ﬂ\ 38007

PCT/US2018/040287
5/20

WO 2019/006300

ae "Oid
M {esyu) dooy w
| Suipoosp) g
| w suideysay » dulsljy dooy # || ('}34) 840 w » | | 0BPIA Papo0aQ
| UNIMg "Auj m
m |
i 2 i]
m Mmm m MNN | f
m x m 097 ! &y
! i i |
| UOIIDIPDId P suipols(- w
m BAIU Jadeyssy ,M w
| |
t !
M S w
m asz | w
w Mumj m 7z
o, . . m (2
M T LBLD e LOVavD e i WIEB1ISIY
!
i

PCT/US2018/040287

WO 2019/006300

6/20

3¢ "Bid
duideysay
5 # . p Buiiayy doo
180 yET [enpisay “Auj 97 HHE €001
LR BN 4 ﬂ
Weassug m 597

0 m ORIPRId o ("324) 940

aaaaa | 7227 smuifeanu

!

i A f

m STT

m ¥

i

VEYD = 0%l jnaam dutdeysay oapip ndu
) e fenpisay "pm4 w .

m n
| %] : S
| m | HOIEWIST LTT
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE Jadeysay

Wl\ 32007

S

50¢

PCT/US2018/040287

WO 2019/006300

7/20

dooj| Suipoosp

211U

¥

ILIRTEIN

k

Fuusyjy doot

4¢ "Did

¥

{"1o4) gda

k4

-
¥

SEMIT

duiposag Jjedeysay

Suideysay [enpisay "Auj

.,

05¢

!
m
m
m
m
m
m
m
i
m Jsiu/eaiul
m
m
|
!
!
m
m
m
m
m

2

A

¥

03PIA PEPOIRQ

&

WEBJISHY

Wl\ 2002

PCT/US2018/040287

5¢ "Bid

8/20

WO 2019/006300

- A N Suideysay n Bunany
- ®.0 " BNPISIY AL doo?
& %
§ ¥ !
§ i
R uooipaud - a
" isyuifenu § {sauniod
i m CRTESEIET)!
!
§ i
@ Fud m
B ! auleysay
UBL e ¥ INDISTY piemiod [M -
i i {aoys soui)
| ' ! oapin
M i i Pa81FNJISU0IBY
i t i
| ! i -
o o e o o o e o e o o o {§2¥) 840G
i
1B21151g m 7
4
N A TN Fuapy M Fudeysay
8.0 HJK i doon f i 3SIBAL|
b " i
. Sy i H
1042 i T-59 3 UIHMS 304S
LIP3 M,.EEEEEEM w8
B34 M Jeauy
1 i
¥ m
- - -
| 3’ TN Zundeysad i
avEvD = ORL = U 2inid Py 1 M
3 % i (o35 2u3uy)
§ § §
m i i HOIELST
Brre G S A S TS R RGN D GNP N U SAAD AN S S SN SR GV SRR GNP SV U SR e Wl U S AR O SR G D WD SN e v e S e

Jadeysay

W{\ 3 aoor

PCT/US2018/040287

WO 2019/006300

9/20

{seinioid sou

o

SIEIETY

il

O3PIA
papolagq

{194} 940

i

HZ "BDid

uoesuaduiod UoIoW
Juoiioipead ey

A .
f
Suideysay m
K] d .
ULISj GO0 - snpisay ‘AUj é,.iiiizw
!
f
{2215 193U} ;
f
i
f
f
AhY oo B e L IvayD
+ + {20115 B3} M "
YOHMS DS ; M 3
EE%@EM W %
UONSIPad Buideysay » Fuiposaq WeaisHy
eaju 3413244 AU tedeysay
ch
1-697
B SULISHY dooT (JM.QR ﬁf\ a aooz

WO 2019/006300 PCT/US2018/040287

10/20

300A_E

\ < Start encoding >

Start a slice g

312

305

" Adaptive

Y o g v . ReghapIHg? - s 315 \‘—j
%v R No-—-—-—-—-—v g\’
Picture Analysis¥™ >~33p Fetch Default
g Reshaper
Reshaper
Estimation f\v325
: 330
Encode 337
Reshaper e\}
E Perform Fwd. Picture 335

Reshaping (\}

el Perform regular encoding g

in-loop filtering

DPB storage

.. Finish Eﬂc(}diﬂg :...;.;g;g Yeg

FiG. 34

WO 2019/006300

300A_D

380

g\) Yeg
|

370 (\7

11/20

< Start decoding >

N |

Parse a slice

Perform Regular
decoding

In-loop filtering

DPB storage

Decode
Reshaper

Fetch Default
Reshaper

{ 375

Perform Inv. Picture

PCT/US2018/040287
)
355
——
390

reshaping

FiG. 3B

Output Decoded
Video

No

WO 2019/006300 PCT/US2018/040287

12/20

(Start encoding)

Start a slice

Slice Type? inter=-
312
S N e 305
& Adaptive
Yo g : ptive " w
; ~. Reshaping? .- No
; Rt 315
Picture Analysis r""\.azc &\) Perform regular
i Fetch Default inter slice
Reshaper b\ q5c 330 Reshaper coding
Estimation (\)
l Perform Fwd.
Picture Reshaping Perform intra Prediction
i and Residual

Transform/Quantization

;----Yes Pictu re Reshaped
385, | Perform Inv. Picture ’ i
Reshaping
{ hNo

327w}

Encode Reshaper

in-loop filtering

DPB storage

{ Finish Enmdmg
3008 _E '

FIG. 3C

WO 2019/006300 PCT/US2018/040287

13/20

(Start Decoding)

Parse a slice

E—-——-—-—-intra e 21

Perform Intra Prediction
and Residual Decoding

355 Pertorm Regular

{-*"’” inter slice

decoding

37— o

~ Adaptive

Yes A,
> . Reshaping?

Fetch Default

Becode Reshaper

Reshaper

Perform inv.
Picture
Reshaping

In-loop filtering

DPB storage

Cutput Decoded
Video

Finish Decoding }

3008 D

FiG. 3D

WO 2019/006300 PCT/US2018/040287

14/20

(Start encoding)

Start a slice

pﬂﬁffaﬂ’“

eshaping Enabled?

Yes

“adaptive

‘ies Reshaping? No—
Picture Analysis Fetch Default
i Reshaper
Reshaper
Estimation
Perform regular
encoding
Encode
Reshaper

Perform encoding with In-
loop Residual reshaping
and reconstruction

in-lcogp filtering

{PB storage

FmiSh EnCOdmg Yeg

End of sequence?

300C_E

FiG. 3E

WO 2019/006300

YeS

" Adaptive

Decode
Reshaper

Reshaping?

15/20

(Start Decoding)

PCT/US2018/040287

Parse a slice

Reshaping Enabled?

Semmmmms No
Fetch Default
Reshaper

Perform decoding with inv. In-
ioop Residual reshaping and

reconstruction

QOutput Decoded

Perform Regular
decoding

in-loop filtering

Video

DPB storage

Yes End of sequence?

§ Finish Decoding §

FiG. 3F

300C_D

WO 2019/006300

16/20

PCT/US2018/040287

| Start Encoding

Yes

“Reshaper
~architecture..

in-loop intra only

in loop residual

eshapmg Enabie

invoke regular
encoding
PrOCess

invoke encoding process of
Qut -of-loop reshaper
architecture
300A_E

Invoke encoding process of
fn-loop intra reshaper
architecture 3008 _E

invoke encoding process of In-
loop residual reshaper
architecture 300C_E

FiG. 44

Yes

Finish Encoding

1 Start Decoding §

Parse high level
syntax

Reshaper

Reshaping Enabied

in-loop intra only

- Y invoke regular
Out-of-loop W in ioop residual decoding
process

invoke decoding process of
Qut-of- loop reshaper
architecture 300A D

Invoke decoding process of in-
loop intra reshaper architecture
300B_D

invoke decoding process of in-
foop residual reshaper
architecture 300C D

FiG. 48

Finish Decoding

PCT/US2018/040287

WO 2019/006300

17/20

Vs "Oid

Ovs

[[luig yoes jo§ 95ED

Dd PUB 8SEX YNEIBP J0) PIOMBPOo0 alepipued aindwo)

ajjoid uig Ajipow

3

ajjosd uig o3 9jyoad pueq paisnipe siededoiyd

RN

Joloey ajeos aynduiod

SEY

1

ava

LoAladal

Hg] exsp opyoid pueq |opow adeysas

uisn sjyosd pueq isnipe ‘1q pueq Yyoes Jo4

C

0es

IUBIWOT 3UOY
-pi Joy {ssuenodwt}
ajijoid pueq [eiul yneg

JUBUOD
yiep Jod {ssuersodu}
2jijoid pueqd (21Ul Y0194

e

54

{suoipiw} 7

Slusiels

" adhyT

oad jspow” ade

XELUAS BSiBd/BAI808Y

i

$5920.d
oansuoY Jodeysay 1elg

A
{tep} ¥ f
078

e,

W02 W3 404
{soueniodiuy) sjiyosd
pueq jeniul yoiad

ey

143109} ¢

WO 2019/006300

18/20

Start codeword pre-assignment for each bin
based on bin profile

:

Compute total used codewords
Refine and complete codeword assignment

:

Accumulate CWIj] to form forward reshaping
function FwdiUT;
FFwdLUT = ScaleFactor*FwdLUT
Inverse FFPwdLUT to get inverse reshaping
function InvLUT;

Y
=

FiG. 5B

PCT/US2018/040287

565

565

chroma(QPoffset - b

chromaQPoffset - Cr

WO 2019/006300

19/20

PCT/US2018/040287

Y "
X, eeetsenmayien
4 k He
AU Ty PO
6 - - ,y_,)
-8 i s
104 T, .
..
_12 by $ i 3 {
0 10 20 30 40 50 60
apP{Y)
FiG. 64
0 Nt
2k . \} A
\ N
4+ N POy HLG
6. N :
__8 i ',‘.,.\...
“10L N,
Noa
-12 : - ‘ ; ;
0 10 20 30 40 50 o0
OP{Y}

FiG. 6B

PCT/US2018/040287

WO 2019/006300

20/20

FIG. 7

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2018/040287
A. CLASSIFICATION OF SUBJECT MATTER
INV. HO4N19/107 HO4N19/117 HO4N19/174 HO4N19/176 HO4N19/463
HO4N19/503 HO4N19/159 HO4N19/136 HO4N19/82
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HO4N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X WO 20127122425 Al (DOLBY LAB LICENSING 1-13,24,
CORP [US]; TOURAPIS ALEXANDROS [US]) 27-30
13 September 2012 (2012-09-13)

Y abstract 14-23,
paragraphs [0005], [0019] - [0029], 25,26
[0034], [0039], [0045]
figures 1A,1B,6,8

X WO 2016/164235 Al (DOLBY LABORATORIES 1-13,24,
LICENSING CORP [US]) 27-30

13 October 2016 (2016-10-13)
cited in the application
abstract
paragraphs [0036],
figure 3A

[0050], [0051]

_/__

See patent family annex.

Further documents are listed in the continuation of Box C.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international

- "X" document of particular relevance; the claimed invention cannot be
filing date

considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

14 November 2018

Date of mailing of the international search report

26/11/2018

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Fassnacht, Carola

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

International application No.
INTERNATIONAL SEARCH REPORT PLT/U52018/040287
BoxNo.ll Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. |:| Claims Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2. |:| Claims Nos.:

because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

3. |:| Claims Nos.:

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. lll Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

—_

As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. |:| As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of
additional fees.

3. |:| As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. |:| No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the
payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

m No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)

International Application No. PCT/ US2018/ 040287

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of)
inventions in this international application, as follows:

1. claims: 1-13, 24, 27-30

A method for coding of images using forward reshaping
function, comprising:

generating an inverse reshaping function based on the
forward reshaping function; computing a predicted region
based in pixel data in a reference frame buffer or
previously coded spatial neighbors; generating a reshaped
residual region based on the input pixel region, the
predicted region, and the forward reshaping function;
generating a quantized residual region based on the reshaped
residual region; generating a dequantized residual region
based on the coded residual region; generating a
reconstructed pixel region based on the dequantized residual
region, the predicted region, the forward reshaping
function, and the inverse reshaping function; and generating
a reference pixel region to be stored on the reference frame
buffer based on the reconstructed pixel region.

2. claims: 14-23, 25, 26

A method for coding of images comprising selecting a
reshaping architecture from two or more candidate coding
architectures, wherein:

the two or more candidate coding architectures comprise an
out-of-loop reshaping architecture, an in-loop-for intra
pictures only reshaping architecture, and an in-loop
architecture for prediction residuals; and compressing the
input image according to the selected reshaping
architecture.

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2018/040287

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

X,P

TANIA POULI ET AL: "Progressive color
transfer for images of arbitrary dynamic
range",

COMPUTERS AND GRAPHICS, ELSEVIER, GB,

vol. 35, no. 1,

5 November 2010 (2010-11-05), pages 67-80,
XP028132917,

ISSN: 0097-8493, DOI:
10.1016/J.CAG.2010.11.003

[retrieved on 2010-11-11]

the whole document

MINOO (ARRIS) K ET AL: "Description of
the reshaper parameters derivation process
in ETM reference software",

23. JCT-VC MEETING; 19-2-2016 - 26-2-2016;
SAN DIEGO; (JOINT COLLABORATIVE TEAM ON
VIDEO CODING OF ISO/IEC JTC1/SC29/WG11 AND
ITU-T SG.16); URL:
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,
no. JCTVC-WOO31,

11 January 2016 (2016-01-11), XP030117798,
section "3 Algorithms for reshaping
look-up-tables derivation", pages 3-11
FRANGCOIS E ET AL: "Description of Core
Experiment 12 (CE12): Mapping for HDR
content",

10. JVET MEETING; 10-4-2018 - 20-4-2018;
SAN DIEGO; (THE JOINT VIDEO EXPLORATION
TEAM OF ISO/IEC JTC1/SC29/WG11 AND ITU-T
SG.16); URL:
HTTP://PHENIX.INT-EVRY.FR/JVET/,,

no. JVET-J1032-v2, 4 May 2018 (2018-05-04)
, XP030151335,

section "4.4 [JVET-J0015, Dolby]: in-Toop
reshaping", pages 5-6

MINOO (ARRIS) K ET AL: "Description of
the Exploratory Test Model (ETM) for
HDR/WCG extension of HEVC",

23. JCT-VC MEETING; 19-2-2016 - 26-2-2016;
SAN DIEGO; (JOINT COLLABORATIVE TEAM ON
VIDEO CODING OF ISO/IEC JTC1/SC29/WG11 AND
ITU-T SG.16); URL:
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,
no. JCTVC-W0092,

10 February 2016 (2016-02-10),
XP030117870,

section 3 HDR video analysis and
reshaping, Fig. 1 and 2

1-13,24,
27-30

1-13,24,
27-30

1-13,24,
27-30

14-23,
25,26

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2018/040287
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 2012122425 Al 13-09-2012 CN 104054338 A 17-09-2014
EP 2684365 Al 15-01-2014
US 2014003527 Al 02-01-2014
WO 2012122425 Al 13-09-2012
WO 2016164235 Al 13-10-2016 CN 107439012 A 05-12-2017
EP 3281409 Al 14-02-2018
JP 6383116 B2 29-08-2018
JP 2018514145 A 31-05-2018
US 2018124399 Al 03-05-2018
WO 2016164235 Al 13-10-2016

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - claims
	Page 63 - claims
	Page 64 - claims
	Page 65 - claims
	Page 66 - claims
	Page 67 - claims
	Page 68 - claims
	Page 69 - claims
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - wo-search-report
	Page 91 - wo-search-report
	Page 92 - wo-search-report
	Page 93 - wo-search-report
	Page 94 - wo-search-report

