发明名称
具有屏蔽结构的光连接器

摘要
本发明提供一种在即将嵌合连接器之前不会漏光的光连接器。另外，可以减少屏蔽部件的收纳空间，实现装置的小型化。该光连接器装置具有第一光连接器和第二光连接器，设置有用于屏蔽来自各光连接器的光的屏蔽部件，通过使屏蔽部件相抵而使这些屏蔽部件分别向不屏蔽所述光的位置移动，从而连接第一光连接器和第二光连接器。在第一光连接器的屏蔽部件和第二光连接器的屏蔽部件移动后，这些屏蔽部件以相抵的状态插入到第二光连接器的内部。
1. 一种光连接器装置，具有第一光连接器和第二光连接器，其特征在于，设置有屏蔽来自各光连接器的光的屏蔽部件，通过使所述各个屏蔽部件相抵而使这些屏蔽部件分别向不屏蔽所述光的位置移动，从而连接所述第一光连接器和所述第二光连接器，在所述第一光连接器的屏蔽部件和所述第二光连接器的屏蔽部件移动后，这些屏蔽部件以相抵的状态插入于所述第二光连接器的内部。

2. 如权利要求1所述的光连接器装置，其特征在于：使所述第一光连接器和所述第二光连接器沿其长度方向互相对接而实现光连接，在所述第一光连接器和所述第二光连接器的对接侧分别设置屏蔽部件，该屏蔽部件总是受力以处于屏蔽来自设置在各个光连接器的光纤中的光的闭位置，并且，该屏蔽部件能够在与所述长度方向交叉的方向上移动，当所述第一光连接器和所述第二光连接器互相对接而使所述第一光连接器的屏蔽部件和所述第二光连接器的屏蔽部件相抵时，所述第一光连接器的屏蔽部件和所述第二光连接器的屏蔽部件可在一方的屏蔽部件加诸于另外一方的屏蔽部件的力的作用下，克服前述使屏蔽部件总是处于屏蔽光的闭位置的力，一同移向不遮光的开位置而得以连接。

3. 如权利要求2所述的光连接器装置，其特征在于：所述第一光连接器的屏蔽部件和所述第二光连接器的屏蔽部件，具有在互相对接、相抵时互相滑动的倾斜面，这些倾斜面成彼此互补的关系。

4. 如权利要求3所述的光连接器装置，其特征在于：所述屏蔽部件备有在所述长度方向至少在所述对接侧具有突出部的大致三角形的截面。

5. 如权利要求2至4中任一项所述的光连接器装置，其特征在于：所述第一光连接器的光纤与该第一光连接器的屏蔽部件一体沿所述长度方向移动，所述第二光连接器的光纤即使在该第二光连接器的屏蔽部件与该第二光连接器的光纤发生相对移动的情况下也不会移动其与
该第二光连接器的相对位置，所述第一光连接器的屏蔽部件与第二光连接器的屏蔽部件从所述闭位置向所述开位置移动后，以相抵的状态沿所述长度方向插入于所述第二光连接器的内部，伴随着该插入，所述第一光连接器的光纤插入到所述第二光连接器的内部，由收容有所述第一光连接器的光纤的校正部件来接收所述第二光连接器的光纤，在该校正部件内部，所述第一光连接器的光纤与所述第二光连接器的光纤的端面对接、连接。

6. 如权利要求2至4中任一项所述的光连接器装置，其特征在于：所述屏蔽部件安装于保护部件上，该保护部件具有至少在所述第一光连接器和第二光连接器的内部围绕所述光纤周围的部分，随着所述插入，所述保护部件可以与所述屏蔽部件一同插入所述第二光连接器内部。

7. 如权利要求6所述的光连接器装置，其特征在于：安装于所述第二光连接器的保护部件上的屏蔽部件，至少具有在从所述闭位置移动到所述开位置之间、沿与所述长度方向交叉的方向从所述第二光连接器的插入口突出的部分，由此，防止在所述屏蔽部件从所述闭位置向所述开位置移动前、所述第二光连接器的保护部件和屏蔽部件插入到该第二光连接器内部或在其内部移动。

8. 如权利要求1至4中任一项所述的光连接器装置，其特征在于：所述第一光连接器是插口式连接器，所述第二光连接器是插塞式连接器。

9. 如权利要求8所述的光连接器装置，其特征在于：所述插塞式连接器和插口式连接器由转接器连接。
具有屏蔽机构的光连接器

技术领域

本发明涉及一种光连接器，进一步说是关于一种具有防止来自光纤的光泄漏的屏蔽机构的光连接器。

背景技术

例如，日本特表 2001-526803 号公报中公开了一种具有屏蔽机构的光连接器的既有例子。该光连接器是由一个转接器将两个光连接器互相关联而来的，在转接器上设置有防止从这两个光连接器的光纤漏光的屏蔽部件，同时，在各个光连接器上也设置有屏蔽部件。对于这些屏蔽部件，在插入各连接器时，伴随着这些插入动作，转接器侧的屏蔽部件在那些连接器的作用下被推向转接器的上方空间，即被移动到开位置；另一方面，在插入各连接器时，伴随着这些插入动作，设置于各连接器上的屏蔽部件通过与转接器的相互作用而被推向转接器的上方空间，即被移动到开位置。

专利文献 1：日本特开 2001-208938 号公报公开了一种不具有屏蔽部件的光连接器。

专利文献 2：日本特表 2001-526803 号公报公开了一种具有屏蔽部件的光连接器。

但是，在所述光连接器中，由于当连接器插入转接器时，屏蔽部件已经从关位置移动到开位置，所以存在各连接器在嵌合前已经漏光的问题。另外，由于将这些屏蔽部件设置成可被推向转接器的上方空间的结构，所以作为屏蔽部件的收容空间需要相当大的区域，从而出现装置尺寸变大的问题。

发明内容

本申请发明是为解决这些既有技术上的问题点而进行的，目的是提供一种具有使各连接器在即将嵌合时不漏光的屏蔽部件的光连接器。
器。另外，本发明的另外一个目的是减小屏蔽部件的收容空间，实现装置的小型化。

为了实现所述目的，本发明提供一种光连接器装置，具有第一光连接器和第二光连接器，其特征在于，设置有屏蔽来自各光连接器的光的屏蔽部件，通过使所述各个屏蔽部件相抵而使这些屏蔽部件分别向不屏蔽所述光的位置移动，从而连接所述第一光连接器和所述第二光连接器，在所述第一光连接器的屏蔽部件和所述第二光连接器的屏蔽部件移动后，这些屏蔽部件以相抵的状态插入于所述第二光连接器的内部。这样，就可以提供一种在各个连接器即将嵌合前不漏光的光连接器装置，而且，可以减小屏蔽部件的收容空间，实现装置的小型化。

另外，本发明是一种使第一光连接器和第二光连接器沿其长度方向互相对接而实现光连接的光连接器装置，其特征在于，在所述第一光连接器和所述第二光连接器的对接侧分别设置屏蔽部件，该屏蔽部件总是受力以处于屏蔽来自设置在各个光连接器的光纤中的光的闭位置，并且，该屏蔽部件能够在与所述长度方向交叉的方向上移动。当所述第一光连接器和所述第二光连接器互相对接而使所述第一光连接器的屏蔽部件和所述第二光连接器的屏蔽部件相抵时，所述第一光连接器的屏蔽部件和所述第二光连接器的屏蔽部件可在一方的屏蔽部件加诸于另外一方的屏蔽部件的力的作用下，克服前述力，一同向不遮光的开位置而得以连接。这样，可以提供一种在各个连接器即将嵌合前不漏光的光连接器装置。

在所述的光连接器装置中，所述第一光连接器的屏蔽部件和所述第二光连接器的屏蔽部件，具有在互相对接、相抵时互相滑动的倾斜面，这些倾斜面可以成彼此互补的关系。另外，在所述的光连接器装置中，所述倾斜面也可以具有在所述长度方向上至少在所述对接侧备有突出部的大致三角形的截面。这样，屏蔽部件就可以更顺畅地移动。

在所述的光连接器装置中，所述第一光连接器的光纤与该第一光连接器的屏蔽部件一体移动，所述第二光连接器的光纤即使在该第二
光连接器的屏蔽部件与该第二光连接器的光纤发生相对移动的情况下，也不会移动其与该第二光连接器的相对位置，所述第一光连接器的屏蔽部件与第二光连接器的屏蔽部件从所述闭位置向所述开位置移动后，以相抵的状态沿所述长度方向插入于所述第二光连接器的内部，伴随着该插入，所述第一光连接器的光纤插入到所述第二光连接器的内部，由收容有所述第一光连接器的光纤的校正部件来接收所述第二光连接器的光纤，在该校正部件内部，所述第一光连接器的光纤与所述第二光连接器的光纤的端面对接、连接。这样，就可以减小屏蔽部件的收容空间，实现装置的小型化。

在所述的光连接器装置中，所述屏蔽部件安装于保护部件上，该保护部件具有至少在所述第一光连接器和第二光连接器的内部围绕所述光纤周围的部分，随着所述插入，所述保护部件可以与所述屏蔽部件一同插入所述第二光连接器内部。这样，就可以更加强化对光纤的保护。

在所述的光连接器装置中，安装于所述第二光连接器的保护部件上的屏蔽部件，至少具有在从所述闭位置移向所述开位置之前、沿与所述长度方向交叉的方向从所述第二光连接器的插入口突出的部分，由此，防止在所述屏蔽部件从所述闭位置向所述开位置移动前、所述第二光连接器的保护部件和屏蔽部件插入到该第二光连接器内部或在其内部移动。这样，就不会发生在闭位置上因失误而导致光纤破损的问题。

另外，在所述的光连接器装置中，所述第一光连接器是插口式连接器，所述第二光连接器是插塞式连接器，而且，可以通过转接器来连接这些插塞式连接器和插口式连接器。

根据本发明，可以提供一种具有在即将嵌合连接器前不漏光的屏蔽机构的光连接器。另外，还可以减小屏蔽部件的收容空间，实现装置的小型化。

附图说明

图1是本发明一个实施方式中的光连接器的概略立体图。
图 2 是表示图 1 中的光连接器的长度方向上纵剖面的图，表示的
是插口和插塞连接到转接器前的状态。
图 3 是表示图 1 中的光连接器的长度方向上纵剖面的图，表示的
是插口和插塞连接到转接器后的状态。
图 4 是本发明一个实施方式中插塞的长度方向上的纵剖面。
图 5 是本发明一个实施方式中插塞的主要结构部件的概略分解立体
图。
图 6 是本发明一个实施方式中插口的长度方向上的纵剖面。
图 7 是插口和插塞各自的位置附近的概略立体图。
图 8 是图 7 的沿 8-8 线所作的概略剖面图，按照时间顺序表示各
连接阶段。

具体实施方式

下面说明本发明一个实施方式中的光连接器。

虽然在本实施方式中特别地说明了将光纤的 “光纤线材（将光纤
去掉包层后的线，相对于该光纤线材，包有包层的为光纤芯线）” 在其
端面互相对接连接型的光连接器，但是本发明不限于这种类型的光连
接器，同样也适用于用氧化锆等保护光纤线材的光连接器。

另外，在本实施方式中，特别地例示了多芯型的光连接器、即配
备了多根光纤的光连接器，如同以下记述中所明示的那样，本发明不
限于多芯型，同样可适用于只配有 1 根光纤的单芯型光连接器。

1. 整体结构

首先，参照图 1 至图 3 来说明该光连接器的整体结构。图 1 是由
转接器 2、借助该转接器 2 而互相对称的插口式连接器（以下称为 “插
口”）3、以及插塞式连接器（以下称为 “插塞”）5 构成的光连接器 1
的概略立体图。但是，在该图中，对转接器 2 长度方向的切断面进行
了明示，而对于插口 3 和插塞 5 则省略了几个结构部件。

另外，图 2 表示的是沿图 1 所示的插口 3 和插塞 5 的 2-2 线所作
的概略剖面图，即其长度方向上的概略纵剖面，表示插塞和插口在连
接到转接器 2 前的状态。而图 3 所示的是这些插塞和插口连接到转接
器 2 后的状态，图示方法同图 2。但是，在这些图 2、3 中，对于插口 3 和插塞 5，是简化了几个结构部件而进行图示的。另外，在这些图中，虽然没有特别图示光纤，但是如图 1 所示那样，可以认为光纤分别沿插口和插塞的中心大约横亘全长地设置于其中。

如同这些图所明示的那样，转接器 2 呈筒状，从设置于其两端的相关向的开口部 21 分别接收插口 3 和插塞 5 的大约一半。经由转接器 2 的开口部 21，在图示箭头所示的 A 方向上，插口 3 和插塞 5 分别插入到转接器 2 的内部，这样，插口 3 和插塞 5 在其顶端侧就可以互相对接而实现光连接，进一步说，在转接器 2 的中心附近，插口 3 和插塞 5 各自的光纤线材在其端面对接而互相连接。图 3 表示的是光连接时的状态。

为了将插入到转接器 2 上的插口 3 和插塞 5 保持于其中，在插口 3 和插塞 5 以及转接器 2 上分别设置卡止部。插口 3 和插塞 5 的卡止部 31、31'在其外部构架（下述图 5 中 “57” 所示的部件）的上下位置呈凹状设置，另一方面，转接器 2 的卡止部 23 设置在其内部朝向自身中心施力的 4 根悬臂梁状卡止片 25 的各顶端附近。当插口 3 和插塞 5 插入到转接器 2 内一定程度时，转接器 2 的凸状卡止部 25 在卡止片 25 的弹力作用下咔嚓一声嵌合在插口 3 和插塞 5 的凹状卡止部 31、31' 上，从而插口 3 和插塞 5 由规定的力而保持在转接器 2 内部。

2. 插塞

下面参照图 4、图 5 进一步详细说明插塞的结构。图 4 以与图 2 和图 3 相同的方法，表示插塞长度方向上的整个纵剖面；图 5 则是插塞的主要结构部件的概略分解立体图。另外，在此也省略了几个结构部件。

正如这些图所示的那样，插塞 5 的最外侧由简状壳体 53 构成。在紧靠该壳体 53 的内侧，简状的外部构架 57 的大致整体由壳体 53 所覆盖。外部构架 57 的内部设有以可沿其长度方向滑动的状态被大致整体收容的内部构架 61。另外，在外部构架 57 的后端设置有通过将自身的顶端部收容于外部构架 57 的后端而将其封闭的止动部件 65。另外，
止动部件 65 后端侧的一部分 70 与其他部分相比外周稍小一些，可以设置罩 69 以将形成得稍小的部分 70 覆盖。在内部构架 61 和止动部件 65 之间，配置有一部分收容在止动部件 65 顶端部的凹部 67 中的弹簧 77。通过该弹簧 77 的作用，内部构架 61 总是处于在插塞的长度方向上朝着其对接侧被施力的状态。这样，就可以吸收在插口 3 和插塞 5 相连接时、即在插塞 5 和插口 3 的内部构架相碰撞时的冲击等。

在内部构架 61 顶端侧的内侧，设置有可在插塞 5 的长度方向上滑动的保护部件（保护装置）75。由内部构架 61 大致覆盖保护部件 75 整体。保护部件 75，在至少其一部分环绕光纤 11、特别是光纤线材，保护其内部的光纤线材，安装于该保护部件 75 上的可开关的屏蔽部件（遮光器）85 防止来自光纤 11 的光泄漏（图 1 中省略了保护部件 75）。后面将对此进行详细地说明。在内部构架 61 和保护部件 75 之间，配置有一部分收容在内部构架 61 顶端部的凹部中的弹簧 87。通过该弹簧 87 的作用，保护部件 75 总是处于在内部构架 61 的长度方向上朝着对接侧被施力的状态。另外，即使在这样的状态下，由于保护部件 75 的一部分 78 和内部构架 61 的一部分 68 在与长度方向交叉的方向上相抵，所以不会存在内部构架 61 从外部构架 57 的顶端脱落的问题。另外，即使在屏蔽部件 85、保护部件 75 克服该弹簧 87 的力而相对于内部构架 61 发生相对移动时，除了屏蔽部件 85、保护部件 75 以外的其他结构部件，例如光纤 11（没有图示）也能维持相对于内部构架 61（插塞 5 连接器）的相对位置。因此，如果着眼于光纤 11，在屏蔽部件 85、保护部件 75 相对于内部构架 61 发生相对移动时，光纤 11 处于只由内部构架 61 保护而不受保护部件 75 保护的状态。

在内部构架 61 的顶端侧以外的部分中，其上面的一部分和侧面的一部分被去掉，成为内部露出的状态。在组装插塞时，平板 89 从露出侧上部沿图示箭头所示的方向（参照图 5）收容在该露出部 63 中。然后，露出部 63、平板 89、以及内部构架 61 的整体，在平板 89 的上面和内部构架 61 的底面，被夹在口字型夹持器（夹持件）93 的相对面 94a、b 之间。在插入光纤时，用楔形工具使夹持器 93 的相对面
呈张大状态，并以该状态插入光纤。这样，就可以在夹持器 93 的力的作用下以规定的力保持处于露出部 63 和平板 89 之间的光纤 11。另外，为了提高由夹持器 93 夹持光纤 11 时的保持力，内部构架 61 的露出部 63 上可以设置例如突起 64。此外，为了定位光纤，同样地，也可以在内部构架 61 的露出部 63 上设置例如夹有间隙 60 的 V 槽 72, 72'。

3. 插口

图 6 表示的是插口 3 在长度方向上的剖面。该图与表示插塞 5 的图 4 相对应。在图 6 中，与图 4 同样的部件在附图标记后边加“1”表示。若将与这些图加以对比则不难发现，插口 3 只在保护部件和对该保护部件施力的弹簧这两处与插塞 5 不同，而其他的结构部件与插塞 5 完全一样。这里主要以不同点为中心进行说明。

如参照图 4 等说明的那样，插塞的保护部件 75，以在内部构架 61 的内部可沿其长度方向滑动的状态、且以由弹簧 87 的作用而总是处于被施力的状态进行设置。另外，该保护部件 75 的大致整体被收容在内部构架 61 的内部。对之相对地，插口的保护部件 73 如图 6 所示，以一部分从内部构架 61'突出的状态固定于其上。在此，并未使用弹簧，插口的保护部件 73 无法像插塞的保护部件 75 那样能够在内部构架 61'的内部滑动。另外，与插塞的保护部件 75 不同的是，在插口的保护部件 73 中，用于接收插塞 5 的光纤线材并使之与插口 3 的光纤线材对齐、即校准的校正部件 74 被嵌入到其顶端部的凹部 79 中。

4. 插塞与插口的关系

如上所述，因为插口 3 和插塞 5 只在保护部件 73, 75 及其周边部件不一样，所以只要更换这些部件，就可以作为插塞或插口而加以使用。进一步说，在插口、插塞的内部构架 61, 61'上，若不用弹簧、嵌入内置有校正部件的保护部件 73, 则可以作为插口 3 而加以使用，若使用弹簧、嵌入不含校正部件的保护部件 75, 则可以作为插塞 5 而加以使用。另外，也可以在保护部件 73 中装入校正部件 74, 屏蔽部件 83 而使其整体作为一个组装体，从而可将这 3 个部件整体地取下。根据以上结构，完全没有必要分别制造插口 3 和插塞 5，基本上可以共
用全部部件。由此，根据这样的结构，可以实现制造成本的降低。另外，特别是对于插口 3，在此，因为内置有校正部件 74 的保护部件 73 可以从内部构架 61' 上取下，所以容易进行校正部件 74 的清洁，从而可以将校准性能经常维持在高水平。很明显，以上结构、即只更换一部分的部件就可进行插口和插塞的互换的结构，不限于锁连接器，也可以应用在例如电连接器之类的其他各种连接器上。当然，这种结构也可以适用于在保护部件上没有安装屏蔽部件的情况（图 1 所示状态）。

5. 操作方法

下面参照图 7、图 8，对使用本发明光连接器的插口和插塞的光连接方法，进一步说，对插塞的光纤线材与插口的光纤线材之间的连接方法进行说明。图 7 表示的是插口和插塞各自的顶端附近的概略立体图。图 8 是沿图 7 的 8-8 线所作的概略剖面图，按照时间顺序显示各连接阶段。

如图 8 所明示的那样，在组装插塞 5 时，设置于其上的光纤顶端、即光纤线材 115 的端面 116，到达与内部构架 61 的顶端位置相同的位置。但该光纤线材 115 在其顶端附近不受任何支撑。因此，在插塞 5 中，光纤以其顶端附近的光纤线材 115 可稍稍浮动的状态保持为悬臂状。

另一方面，在组装插口 3 时，设置于其上的光纤顶端，即光纤线材 113 的端面 114，到达校正部件 74 的中间位置附近，从而与可以浮动的光纤线材 115 不同的是，插口的光纤线材 113 不浮动。在该校正部件 74 的内部，插口 3 的光纤线材 113 和插塞 5 的光纤线材 115 的端面 114、116 相互对接、连接。但是，在组装插口 3 时，在光纤线材 113 的端面 114 到达与内部构架 61' 的顶端位置相同的位置这一点上与插塞 5 相同。

设置在插口的保护部件 73、插塞的保护部件 75 上的各个屏蔽部件 83、85，用来屏蔽从这些光纤线材 113、115 所泄漏的光。这些屏蔽部件 83、85，分别以可沿与插口、插塞的长度方向交叉的方向滑动
的状态设置在保护部件 73、75 上。在一端固定在内部构架 61、61'而另一端固定在屏蔽部件 83、85 的单侧面上的板簧 82 的作用下，这些屏蔽部件 83、85 处于总是被施力的状态。当屏蔽部件 83、85 不受任何外力时，这些屏蔽部件 83、85 如图 8(a) 所示那样配置在闭位置，即配置在实质上屏蔽来自光纤 11 的光，即来自光纤线材 113、115 的顶端发出的光的位置。另一方面，当这些屏蔽部件 83、85 在接接器 2 的内部相互对接、相抵时，通过其倾斜面 81 的相互滑动、互相作用，屏蔽部件 83、85 克服板簧 82 的弹力而滑动，从图 8(a) 所示的闭位置向 (b) 和 (c) 所示的开位置移动，即向并未遮蔽来自光纤线材 113、115 顶端的光的位置移动。其结果是插口 3 和插塞 5 被光连接。显然，采用这样的结构，插塞 5 和插口 3 只有在它们互相对接、相抵时才进行光连接，可以防止因为漏光而对眼睛造成影响的问题。另外，屏蔽部件 83、85 还可以防止灰尘进入，可以减少连接损失。

为了使屏蔽部件的作用更加有效，屏蔽部件最好具有在插口 3、插塞 5 的长度方向上至少在对接侧突出的大致三角形的截面，另外，其倾斜面 81 最好如图 8 所示那样成互补形状。倾斜角会，例如可以成大约 40 度。通过形成这样的形状，当插塞 5 的屏蔽部件 83、85 与插口的屏蔽部件 83、85 互相对接、相抵时，可以使相互的作用力相等。在此情况下，可以以大致同时同样的动作进行屏蔽部件 83、85 从闭位置向开位置的移动。因此，漏光的可能性就得到最大程度的抑制。而屏蔽部件的形状只要能够屏蔽来自光纤 11 的光即可，其他部分设置成什么形状都可以。例如，可以将屏蔽部件的厚度 80（图 7）设置得比图示的更薄，或者去掉，换言之，也可以进一步加大屏蔽部件的开口部。

接下来，进一步详细地说明插塞的屏蔽部件 85 和插口的屏蔽部件 83 的相互作用。当这些屏蔽部件互相对接、相抵时，一方加诸于另一方的作用力可以分解成两个方向，即长度方向和与该长度方向交叉的方向。显然，在后者的力的作用下，插口和插塞的屏蔽部件 83、85 分别以大致同时、同样的状态从图 8(a) 所示的闭位置向 (b) 和 (c)
所示的开位置移动。而前者力的作用，在插口和插塞却稍有不同。即，对于插口 3，安装有屏蔽部件 83 的保护部件 73 以从内部构架 61'稍稍突出的状态进行设置，并且与内部构架 61'不发生相对移动，所以，在该长度方向力的作用下，插口的屏蔽部件 83 只被推入插塞 5 一侧。另一方面，对于插塞 5，安装有屏蔽部件 85 的保护部件 75 以可朝内部构架 61 的内部滑动的方式进行设置，所以，在该长度方向的力的作用下，插塞 5 的屏蔽部件 85 以与插口的屏蔽部件 83 相抵的状态与保护部件 73 的一部分一同插入到插塞的内部构架 61 的内部。另外，与此同时，插塞的保护部件 75 在插塞的内部构架 61 内部移动。只是，由于插塞的内部构架 61 和插口的内部构架 61'是相同的，从而其大小相同，所以，在插口的保护部件 73 中，插入到插塞内部构架 61 的就只是从插口的内部构架 61'突出的部分。最终，插口 3 和插塞 5 互相靠近直至其内部构架 61、61'的顶端边缘 62、62'相互抵接。该状态如图 8 (c) 所示。

为了便于理解，现在以光纤线材 113、115 为中心对上述的插口和插塞的相互作用进行说明。当插口和插塞互相接近时，在插塞中，只有屏蔽部件 85、保护部件 75 相对于其他部件做相对移动，光纤线材 115 仍留在其位置。其结果是，插塞的光纤线材 115 只由内部构架 61 保护，而保护部件 75 处于被去掉的状态。另一方面，在插口中，屏蔽部件 83、保护部件 73 与内部构架 61'的相对位置不变，光纤线材 113 也与屏蔽部件 83、保护部件 73 一同被插入到插塞的内部构架 61 中。其结果是，伴随着插口的屏蔽部件 83、保护部件 73、光纤线材 113 插入到插塞的内部构架 61，插塞的光纤线材 115 被插入到设置在插口保护部件 73 中的校正部件 74 中。因插口的光纤线材 113 的一部分预先收容在校正部件 74 中，通过将插塞的光纤线材 115 插入到该校正部件 74 中，光纤线材 115 的端面与光纤线材 113 的端面就会对接而实现连接。另外，为了更加容易地使校正部件 74 接收光纤线材 115，最好设置从插塞的光纤线材 115 的接收侧朝向插口 3 的光纤线材 113 偏转的倾斜引导面 76。
根据以上结构，在即将进行插口和插塞的光连接之前，不会出现光从一方方向另一方泄漏的问题，另外，因为双方的屏蔽部件可以收容到一方的内部构架内部，所以可以共用空间，实现装置的小型化。

另外，很显然，只有在由交叉方向的力而使屏蔽部件从闭位置移动到开位置后才能由长度方向的力将插塞的屏蔽部件插入到内部构架的内部，或者使保护部件在内部构架的内部移动。原因是，在插塞的屏蔽部件从闭位置移动到开位置之前，屏蔽部件背面的一部分在与插塞的长度方向交叉的方向上，突出到内部构架的插入口边缘的外部并与该边缘相抵，从而起到防止保持部件向内部构架的内部移动的止动功能。这样，屏蔽部件在闭位置上防止保护部件的移动，在开位置上允许其移动。其结果是，在闭位置，因为保护部件不会在内部构架的内部滑动，所以不会发生因失误而导致光纤破坏的问题。同理，只有在由交叉方向的力而使屏蔽部件从闭位置向开位置移动之后，才能由长度方向上的力而将插口的屏蔽部件插入到插塞的内部构架中。

6. 安装方法等

在实际组装时，最好在将插口与插塞与转接器连接前，单独将转接器用焊接等安装到基板或嵌板上。如上所明示的那样，因为在转接器上没有特别设置用于对齐光纤的校正部件，所以按照这样的安装顺序，不会出现因往基板等上焊接时的热或者振动等使校正部件发生故障的问题。换言之，可以得到降低光纤线材连接部分上的应力的效果。另外，并非将光连接器本身安装到基板上，而是仅安装转接器即可，所以，容易进行实际组装。另外，也容易从转接器上将插口、插塞取下。还有，可以先向转接器上安装插口，也可以先向转接器上安装插塞，还可以同时进行这两个安装。

7. 其他

在以上实施方式中，列举了使用转接器的光连接器，但本发明也可以适用于不使用转接器的光连接器。在这种情况下，只要在插口或
插塞的一方或双方设置能够使二者连接的卡止部即可。

另外，在以上实施方式中，插口或插塞的屏蔽部件的侧面最好是平滑的三角形，但也可以设置一定程度的台阶部。

符号说明
1 光连接器
2 转接器
3 插口式连接器
5 插塞式连接器
11 光纤
61 内部构架
75 保护部件
83 屏蔽部件
85 屏蔽部件
87 弹簧
89 平板
93 夹持器
113 光纤线材
114 端面
115 光纤线材
116 端面
117 光纤芯线