
W. B. ORTON.
OIL CAN.
APPLICATION FILED JULY 2, 1908.

UNITED STATES PATENT OFFICE.

WILBER B. ORTON, OF FARMINGTON, ILLINOIS.

OIL-CAN.

No. 868,691.

Specification of Letters Patent.

Ratented Oct. 22, 1907.

Application filed July 2, 1906. Serial No. 324.349.

To all whom it may concern:

Beit known that I, Wilber B. Orton, a citizen of the United States, residing at Farmington, in the county of Fulton and State of Illinois, have invented certain 5 new and useful Improvements in Oil-Cans; and I do hereby declare that the following is a full, clear, and exact description of the invention, which will enable others skilled in the art to which it appertains to make and use the same.

This invention pertains to improvements in vessels used for carrying, transporting and storing fluids; relating more particularly to cans holding kerosene, gasolene and the like.

The main object of the invention is to provide a can 15 of the kind named that will be perfectly fluid tight so that there can be no leakage therefrom.

Another object of the invention is to provide a can with a peculiarly arranged device through which the can is supplied with its containing fluid and through 20 which also the oil is poured from the can.

A further object of the nvention is to provide an oil can with peculiarly arranged means for admitting air to the can to take the place of the oil being withdrawn therefrom.

A further object is to improve oil cans generally by providing simple means for making them fluid tight and to permit or rather provide an air entrance thereto which will not become clogged or stopped up but that will readily supply air to take the place of the oil being 30 withdrawn from the can.

A further object is to provide a can wherein a device is employed by which the oil and air passages may be both closed or both opened simultaneously.

In the appended drawing, Figure 1 is a sectional ele-35 vation of a portion of an oil can showing my invention. Fig. 2 is a sectional elevation of a portion of my imprevement showing a member seated therein and held by means of a spring. Fig. 3 is a top view of a portion of an oil can showing a part of the invention thereon. 40 Fig. 4 is a sectional elevation of a portion of an oil can showing a slightly modified form of the device I employ.

A represents the oil can which is provided with a member B having a tapered bore C, the small end of the bore being at its lower end as shown. Said member B 45 is soldered or otherwise secured in the top of the can near one edge and is provided with a pouring spout D. Opening through the wall of the member B into the spout D is a hole E by which the bore C may communicate with said spout. Fitted within the bore is a 50 stopper E' having a recess F therein which opens through the lower end into the can as shown in Fig. 1. Said stopper is provided with an opening G through its side to register with the opening E mentioned.

It will be seen that when the can is tipped to pour 55 the oil, passage is found through the recess F, opening G, and opening E to the spout. When it is desired to

interrupt the passage to prevent oil from leaking from the can through the spout when traveling, the stopper is given a turn sufficient to carry the opening G out of register with the hole E so that even though the can 60 may be lying on its side there will be no chance for oil to escape. The stopper is ground into its seat in the member B so that an absolutely fluid tight fit is had through which the fluid cannot pass. In the wall of the member B opposite that side in which is the hole 65 E are two openings H and J the former being above and outside the can and the latter beneath the top within the can as shown. Secured to the under side of the top is a tube K; one end terminating at the opening J described and preferably soldered to the member 70 B in order to provide a tight joint. The opposite end of the tube is carried to the side of the can opposite that which carries the members B and E'.

The two openings H and J are connected through a groove L in the surface of the member E', said groove 75 and the inner surface of the member B-forming a conduit as clearly shown. When the stopper E' occupies the position shown in Fig. 1 the oil can pass out of the can when the latter is tipped in the usual manner and as the oil escapes, air can enter the can to take the place 80 of it through the holes H and J and the conduit or tube K described. The opening or outlet G in the stopper, and the said groove L being at opposite sides of said stopper must register with the opening E and the holes H and J respectively when oil is to be withdrawn. 85 For the same reason, when the oil is shut off the air passage is also closed so that the can is both fluid and air tight. As a matter of fact it is not necessary to have the groove L opposite the opening G so long as the holes H and J are positioned so that when the oil pas- 90 sage is opened air may enter the can during the time of exit of the oil as will be understood.

I have provided at M a spring whose free end extends to a point where it can bear-upon the stopper and hold that member in place in its seat. The opposite end 95 is secured to the member B but may be soldered or riveted to the can if desired. It is not the intention to confine myself to the use of the tube K within the can since it may be placed outside as shown in Fig. 4 where it is denoted by the letter N its remote end 100 opening through the top of the can as indicated at O. In this form the two holes in the member B', which corresponds to B in the other figures, are both above the can-top as shown.

1. A device of the class described comprising a fluid re- 105 ceptacle, a fixed member at the top thereof provided with a bore and having a spout connected therewith there being a fluid passage through the wall of said member outside the receptacle communicating with the said spout, there being also an air passage in the wall outside the receptacle 110 and at the opposite side of the member and having a second air passage through said wall inside of and communicating with the interior of the receptacie, a movable stop-

per adapted to seat fluid tight in the bore of the member and having a central recess for fluid, there being a fluid passage in the stopper for connecting the recess with the spout, there being a groove in the outer surface of the stopper, one end terminating at the outer air passage in the member outside the receptacle, its other end terminating at the remaining air passage within the receptacle, thereby connecting both apertures substantially in the manner shown and for the purposes set forth, and means for holding the stopper in position within the bore but for at will permitting its removal therefrom.

2. A device of the class described comprising a fluid receptacle, a member secured in the top thereof and provided with a conical bore, there being a fluid passage through 15 its wall outside the receptacle, there being an aperture through said wall also outside the receptacle for the passage of air, there being a second air passage through said wall inside of and communicating with the interior of said receptacle, a tube inside the receptacle and communicating

at one end with the interior air aperture, its other end terminating in the top of the receptacle, a conical stopper adupted to seat fluid tight in the member and having a fluid passage therethrough connecting the interior of the receptacle with the fluid passage in the member outside the receptacle and having also a groove in its surface, the ends of the groove terminating one inside and the other outside the receptacle, and connecting the separate air apertures in the member substantially as shown, and a member normally positioned upon the stopper for holding it in place but shiftable to permit the removal of said 30 stopper.

In testimony whereof I affix my signature, in presence of two witnesses.

i be

WILBER B. ORTON.

Witnesses:
B. F. ECKLEY,

L. H. CONE.