wo 2016/112161 A1 |1 IO OO0 OO A A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/112161 A1l

14 July 2016 (14.07.2016) WIPO I PCT
(51) International Patent Classification: (74) Agents: GALLIANI, William S. et al.; Cooley LLP, 1299
HO4L 12/813 (2013.01) Pennsylvania Avenue, NW, Suite 700, Washington, Dis-
(21) International Application Number: trict of Columbia 20004 (US).
PCT/US2016/012429 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, 151", AU, Ag, BA, BB, BG, BH), BN, BR, BW, BY,
7 January 2016 (07.01.2016) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(30) Priority Data: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
62/101,341 8 January 2015 (08.01.2015) Us PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
14/967,064 11 December 2015 (11.12.2015) Us SD, SE, SG, SK, SL, SM, ST, 8V, 8Y, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(71) Applicant: BLUETALON, INC. [US/US]; 541 Jetferson . L
Ave., Suite 202, Redwood City, California 94063 (US). (84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors: VERMA, Pratik; 812 Cameron Court, Hop- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

kins, Minnesota 55343 (US). KHANDUJA, Rakesh; 812
Cameron Court, Hopkins, Minnesota 55343 (US).

TZ, UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,

[Continued on next page]

(54) Title: DISTRIBUTED STORAGE AND DISTRIBUTED PROCESSING QUERY STATEMENT RECONSTRUCTION IN
ACCORDANCE WITH A POLICY

‘ N
Receive Query Statement | 544
A 4
TN
Form Token Components 202
Categorize Token '
Componenis 204
-

Form Modified N
Token Componants 206
Reconstruct Query ™

Statement 208

FIG. 2

(57) Abstract: A non-transitory computer readable storage medium has in-
structions executed by a processor to receive a query statement. The query
statement is one of many distributed storage and distributed processing query
statements with unique data access methods. Token components are formed
from the query statement. The token components are categorized as data com-
ponents or logic components. Modified token components are formed from
the token components in accordance with a policy. The query statement is re-
constructed with the modified token components and original computational
logic and control logic associated with the query statement.

WO 2016/112161 A1 AT 00T TN A

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Published:

GW, KM, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

10

15

20

25

WO 2016/112161 PCT/US2016/012429

DISTRIBUTED STORAGE AND DISTRIBUTED PROCESSING QUERY
STATEMENT RECONSTRUCTION IN ACCORDANCE WITH A POLICY

CROSS-REFERENCE TO RELATED APPLICATION
This application claims priority to U.S. Provisional Patent Application Serial Number
62/101,341, filed January 8, 2015 and U.S. Patent Application No. 14/967,064, filed on

December 11, 2015, the contents of which are incorporated herein by reference.

FIELD OF THE INVENTION
This invention relates generally to data processing in a network. More particularly,
this invention is directed toward distributed storage and distributed processing query

statement reconstruction in accordance with a policy.

BACKGROUND OF THE INVENTION

Query statements can be formed to obtain data from distributed storage and
distributed processing resources. The distributed storage may be a distributed database or a
distributed file system. Apache Hadoop is an open-source software framework for
distributed storage and distributed processing of very large data sets on computer clusters
built from commodity hardware.

The core of Apache Hadoop® consists of a storage part (Hadoop Distributed File
System (HDFS)) and a processing part (MapReduce®). Hadoop splits files into large blocks
and distributes them amongst the nodes in the cluster. To process the data, Hadoop
MapReduce transfers packaged code for nodes to process in parallel, based on the data each
node needs to process. This approach takes advantage of data locality (nodes manipulating
the data that they have) to allow the data to be processed faster and more efficiently than it
would be in a more conventional supercomputer architecture that relies on a parallel file
system where computation and data are connected via high-speed networking.

The Hadoop ecosystem has a variety of access methods. Apache Hive® is a data
warehouse infrastructure built on top of Hadoop for data summarization, query and analysis.
Apache Spark® is an open source cluster computing framework that allows user programs to
load data into a cluster’s memory and query it repeatedly. Solr® is an open source enterprise

search platform that enables full-text search, hit highlighting, faceted search real-time

10

15

20

25

30

WO 2016/112161 PCT/US2016/012429

indexing, dynamic clustering, database integration, NoSQL features and rich document
handling.

Each access method has a query language associated with it to specify what data
should be returned by the server and what operations should be done with the data. These
data access query languages typically behave like set theory operations, which are neither
purely object-oriented nor purely procedural. Therefore, they are not easily broken down into
components that can be re-engineered.

Therefore, it would be desirable to identify techniques to parse queries associated
with different access methods. Further, it would be desirable to provide techniques for

reconstructing queries associated with different access methods to enforce a policy.

SUMMARY OF THE INVENTION

A non-transitory computer readable storage medium has instructions executed by a
processor to receive a query statement. The query statement is one of many distributed
storage and distributed processing query statements with unique data access methods. Token
components are formed from the query statement. The token components are categorized as
data components or logic components. Modified token components are formed from the
token components in accordance with a policy. The query statement is reconstructed with the
modified token components and original computational logic and control logic associated
with the query statement.

BRIEF DESCRIPTION OF THE FIGURES

The invention is more fully appreciated in connection with the following detailed
description taken in conjunction with the accompanying drawings, in which:

FIGURE 1 illustrates a network configured in accordance with an embodiment of the
invention

FIGURE 2 illustrates processing operations associated with an embodiment of the
invention.

FIGURES 3, 4 and 5 illustrate processing operations associated with an embodiment
of the query reconstruction processor 122.

FIGURE 6 illustrates an access control table processed in accordance with an
embodiment of the invention.

FIGURE 7 is a data table processed in accordance with an embodiment of the

invention.

10

15

20

25

30

WO 2016/112161 PCT/US2016/012429

FIGURES 8A and 8B illustrate token characterization of tokens of an exemplary
query statement.

FIGURE 9 illustrates the sequential reconstruction of the exemplary query statement
in accordance with an embodiment of the invention.

Like reference numerals refer to corresponding parts throughout the several views of

the drawings.

DETAILED DESCRIPTION OF THE INVENTION

Figure 1 illustrates a network 100 configured in accordance with an embodiment of
the invention. The network 100 includes a server 102 connected to a set of servers 104 1
through 104 N anetwork 106. The server 102 can be a master server, while servers 104 1
through 104 N are worker servers in a distributed storage and a distributed processing
environment. Network 106 may be any combination of wired and wireless networks.

Server 102 includes standard components, such as a central processing unit 110
connected to input/output devices 112 via a bus 114. The input/output devices 112 may
include a keyboard, mouse, touch display and the like. A network interface circuit 116 is also
connected to the bus 114 to provide connectivity to network 106. A memory 120 is also
connected to the bus 114. The memory stores instructions executed by the central processing
unit 110 to implement operations of the invention. In particular, the memory 120 stores a
query reconstruction processor 122 to implement operations disclosed herein.

Each worker server 104 _1 through 104 N also includes standard components, such as
a central processing unit 130, bus 134, input/output devices 132 and a network interface
circuit 136. A memory 140 is connected to bus 132. The memory 140 stores a worker
module 142 to implement distributed storage and distributed processing operations.

The network 100 may also include a client machine 148. The client machine 148
includes standard components, such as a central processing unit 150, input/output devices
152, a bus 154 and a network interface circuit 156. A memory 160 is connected to bus 154.
The memory 160 stores a client module 162 with instructions executed by the central
processing unit 150. The client module 162 may facilitate the formation of a query, which is
then directed toward the query reconstruction processor 122 of master server 102,

Figure 2 illustrates processing operations associated with an embodiment of the query
reconstruction processor 122. Initially, a query statement is received 200. The query
statement is one of a plurality of distributed storage and distributed processing query

statements with unique data access methods. Token components are then formed from the

10

15

20

25

30

WO 2016/112161 PCT/US2016/012429

query statement 202. The token components are then categorized 204. A typical data
analysis query language statement, command, or program, contains one of three separate
components: data elements, computational logic and control logic. Categorization of token
components includes categorizing the tokens as belonging to each of the three different
components.

Modified token components are then formed 206. Finally, the query statement is
reconstructed. That is, the query reconstruction processor 122 determines how the tokens
belonging to the data elements need to be translated or modified to comply with a policy, and
reconstructs the statement with the modified data elements without affecting the
computational or the control logic. The policy may relate to access control, query language
dialect conversion and/or on the fly query optimization.

The query reconstruction processor 122 may include a lexical algorithm, a translation
algorithm and execution algorithms that include order by, group by, unique alias, aggregation
function, where part merging, meta table join, elimination, redaction and replacement
operation algorithms.

The lexical algorithm performs lexical operations on the input query statement to
tokenize the statement and mark the resulting tokens against a particular query language’s
grammar to classify the tokens appropriately as data or logic. This involves breaking down a
statement into ‘words’ and keeping track of the ‘words’ in a data structure that includes the
name, the class and other information such as types, size, etc. By comparing the tokens
against the policy grammar, the ‘words’ are marked as one of the following: database specific
tokens, special characters, language keywords, comments, values, file paths, URIs, aliases
and functions. In addition, the statements are marked for start and stop of sections based on
the tokens identified, for example start and end of JOIN and ON parts of a HiveQL®
statement. In addition, the scope for which a class of the “words’ is applicable is also
identified and marked, for example to distinguish between aliases that are column aliases,
table aliases or sub-query aliases. The translation algorithm then compares the token
identified as data elements against a set of data elements, concepts, schemas, etc. known to
the system to translate or determine the action to take. A star token may be expanded into the
component fields explicitly so that the different fields can be modified individually. Based
on the translation, the policy engine cycles through different execution algorithms to create a
modified policy compliant request.

Figure 3 illustrates more detailed operations associated with an embodiment of the

query reconstruction processor 122. Initially, the query is standardized 300. For example,

10

15

20

25

30

WO 2016/112161 PCT/US2016/012429

the query may be standardized by removing tabs, double spaces, and comments. The query is
then tokenized 302. For example, the tokens may be formed by delimiters such as commas,
semicolons, “\” etc. The list of the tokens is then classified into specific class types 304 based
on how the token should be processed in the rest of the workflow. In the next 10 steps (306 -
324), various parts of the original query are marked so that it can be processed based on the
markings in subsequent steps. The tokens of the type SQL tokens in the token list are then
marked 306. Constants, keywords and special characters are then marked 308. Special
characters, such as double quotes, are handled 310. A query part flag is marked and each
‘where’ clause is processed for a ‘join” condition 312. Query and subquery positions are
marked 314. ‘Join” and ‘on’ flag elements are marked 316. ‘Group by’, ‘order by’ and
‘having’ clauses are marked 318. Resource elements are marked 320. They are then stored
with sequence numbers computed for easy computation and in-memory creation of rules lists
in steps 326, 328 and 330. Table, column, database, schema, file paths and URIs are then
marked in the token list 322. Table alias, subquery and column alias positions are then
marked in the token list 324. A table reference list with all flags is then created 326. A
column reference list with all flags is then created 328. A file path reference lists with all
flags is then created 330. The primary type of the query is identified 332. It is then
determined whether the query needs to be modified 334. If query modification is not needed
(334 - false), the query is not changed 336. Query reconstruction is then terminated 338.

If the query needs modification (334 — true), it is determined whether the query is a
‘select’ type query 340. If the query is not a select query (340 — false), it is determined
whether it is another form of query 342. If so (342 — true) processing proceeds to A2 344 of
Figures 5. If the query is not of the type “select’ or a type recognized (342 — false), then no
change is required 336 and query reconstruction processing is terminated 338.

Returning to block 340, if the query is a select query (340 — true), it is determined
whether the query is expandable 346. If so (346 — true), the star schema is expanded 348 and
processing proceeds to Al 350 of Figures 4. The process of expansion of the “*’ replaces the
token “*” with the comma delimited list of tokens for columns that the table contains based on
the information about the table available at the time of the query processing. After the
processing at A2 344, the query response is obtained 352 and processing terminates 338.
After the processing of Al 350, the modified query is obtained 352 and executed.

Turning to Figure 4 A.1 processing 350 begins by reading a rule from a list of access
control rules 400 to operate on the select query with “*” expansion and marking done from

previous steps. In this example, the rules relate to a data access policy. In this example, there

10

15

20

25

30

WO 2016/112161 PCT/US2016/012429

are four types of permissions tested at decision blocks 402, 404, 406 and 408. If the rule if of
type “deny’ (402 — true) permission is denied and the rule is processed in block 410. If the
rule is a deny on a file path (412 — true), then the file rule reference list is updated to include
the given rule in block 414. After the file rule reference list is updated, the processing loops
to block 416, which tests whether the entire rules list has been processed. If there is still an
entry in the list, processing returns to block 400. If the entire list has been processed, the
modified query is constructed starting with the reading of the query tokens from the query
token list in block 426. If the rule is not a deny on a file path (412 — false) but on a table
instead (418 — true), then the table rule reference list is updated and processing loops to block
416. If the rule is not on a file path (412 — false) or a table (418 — false) but instead on a
column, then the column rule reference list is updated and processing loops to block 416. If
the deny rule is not applicable to file, table or column, then no changes to any rule reference
lists are made and the processing loops to block 416 to iterate over the next rule in the rules
list. Similar processing is performed in the case of allow with filter 404, deny with filter 406
and allow 408 permissions on file, table or column. In case a given rule doesn’t match any of
the deny (402 — false), allow with filter (404 — false), deny with filter (406 — false), or allow
types (408 — false), the processing skips to the next rule in the rules list without changes to
any of the file, table or column rule reference lists.

After all the rules in the access control lists are iterated over, from block 416
processing proceeds to block 426. A token is read from the query token list 426. The token
is compared with the table rule reference list and if a match is not found (428 — false), the
selected token is appended to the query string without modification 430. The processing
continues through blocks 432 and 426 for the next token until the last token of the query
string is processed, the final modified query is prepared 434 and the processing returns to
block 352 of Figure 3.

If a match is found between a token in the query string with a table from the table rule
reference list (428 — true) and the rule for that table contains a filter (436 — true), a new
‘where’ clause is constructed in accordance with the filter rule specified to modify the token
438. Any aliases associated with the table or the column names are discovered and processed
440 before the modified token with filters and alias is appended to query string 430 and the
processing continues through to the end of the original query string (432 and 426). In case
the table rule matched in 428 is not a filter rule (436 — false) but instead a “deny all read” type
(442 — true), the processing skips to the preparation of the modified query that reflects the
table level deny rule in block 434, before returning to block 352 of Figure 3.

10

15

20

25

30

WO 2016/112161 PCT/US2016/012429

Consider the case where a match for a table is found (434 — true), but a filter rule is
not found (436 — false) and a deny rule is not found (442 — false). In this case, a match is
sought for a column rule in the reference list 444. If a match does exist (444 — true), column
filter rules are evaluated 446. If a rule exists (446 — true), a case statement is created and
appended 448. Aliases are then handled 440 and control returns to block 430. If column
filter rules do not exist (446 — false), a column mask rule 450 is tested. If such a rule exists
(450 — true) a masking function is added 452. If a column mask rule does not exist (450 —
false), a column denial rule is checked 454. If a column denial rule exists (454 — true), a
default expression by data type is accessed and appended 456. Aliases are then handled 440
and control returns to block 430. When the token list is finally processed, the final query is
prepared and buffered 434. Control then returns to block 352 of Figure 3.

If a match sought for a column rule in the reference list 444 does not exist (444 —
false), a match is sought for a file path rule in the reference list 458. If a match for the file
path does exist (460 — true), the file path is modified to a default value reflecting the deny
permission, otherwise (460 — false) no change to file path is processed. Control then returns
to block 430. When the token list is finally processed, the final query is prepared and
buffered 434. Control then returns to block 352 of Figure 3.

Figure 5 illustrates processing associated with A2 of block 344. Initially, the query is
checked for insert, load, update, delete or alter commands 500. If such a command exists
(500 — true) a rule is read from the subset of the access control list associated with such
commands 502 and matched with the resource of type file path, table or column. If the rule is
on a file path (504 — true), then the file rule reference list is updated to include the given rule
506. After the file rule reference list is updated, the processing loops to block 508, which
tests whether the entire rules list has been processed. If there is still an entry in the list,
processing returns to block 502. If the entire list has been processed, the modified query is
constructed starting with the reading of the query tokens from the query token list in block
518. If the rule is not on a file path (504 — false), but is on a table instead (510 — true), then
the table rule reference list is updated and processing loops to block 508. If the rule is not on
a file path (504 — false) or a table (510 — false) but is instead on a column, then the column
rule reference list is updated 516 and processing loops to block 508. If the rule is not
applicable to file, table or column, then no changes to any rule reference lists are made and
the processing loops to block 508 to iterate over the next rule in the rules list.

When the end list check of block 508 is reached, control proceeds to block 518 where

a token is read from the token list. An attempt is made to match the token to a file path

10

15

20

25

30

WO 2016/112161 PCT/US2016/012429

reference list 520. If a match is not found (520 — false), an attempt is made to match the
token to a table reference list 526. If a match is found for a file path (520 — true) or a table
(526 — true) a denial check is made 522. If denial is not necessary (522 — false) a loop check
for the end of the access control list is made 532 and control returns to block 518 if the end is
not reached. If there is a file path denial or a table denial (522 — true) a deny response is
fetched 524 and an end state 530 is reached. Consider the case where a match for the file
path (520 — false) and table is not found (526 — false), an attempt is made to match the token
to a column 528. If the token matches the column reference list (528 — true) a column denial
check is made 530. If there is a column denial (534 — true), the column token is swapped
with a default pre-defined value representing a deny in block 534, before a loop check for the
end of the access control list is made 532 and control returns to block 518 if the end is not
reached. If a denial rule is not necessary (530 — false), the column token is left unmodified
and the control returns to block 532.

Returning to block 500 of Figure 5, if the query does not have the specified elements
(500 — false), the query is processed for other valid commands 536. An attempt is made in
block 538 to match a tuple of ‘resource’ and ‘command’ from the query with tuples in the
subset of the access control list associated with the query types already processed in block
340 of Figure 3 and block 500 of Figure 5. In block 540 it is determined whether a match is
found. If a match exists (540 — true) an allow permission is tested 542. If allow is applicable
(542 — true), the query is forwarded unmodified and processing is completed 548. If allow is
not applicable (542 — false), the query is modified to conform with a deny format and
processing is completed 548. If a match to a valid resource or commands is not found (540 —
false), the query is modified to conform with an error message associated with ‘not available’
response 546 and the processing is completed 548.

The foregoing is more fully appreciated in connection with a specific example.
Consider the case of a user “bob™ and an access control list of with a filter field (filter:
first name="<userid>") and a deny command (deny: salary). Figure 6 illustrates an access
control table with a resource column, an access permission column and a filter column. Now
consider the data table of Figure 7, which includes a table name column, a column name
column and a resource column. Now consider the following SQL statement: select
a.*.b.salary as total income from emp a, payroll b where a.employeeid=b.employeeid. The
processing of Figures 3 results in the table spanning Figure 8 A and Figure 8B. The table
includes a token column. The token column has individual words or tokens of the query. A

token flag column characterizes the nature of the token (e.g., keyword, special character,

10

15

20

25

30

WO 2016/112161 PCT/US2016/012429

alias, schema element, etc.). A token flag category characters a token as a column or table
token. A schema sequence number column ascribes numeric values to keywords. The
remaining columns relate to flag values, including query level flag, query part flag, query
sequence ID, query number, start query flag, end query flag, added token flag and onpart flag.

Since a select query is involved, the processing of Figures 4 is invoked to sequentially
construct a modified query as incrementally shown in Figure 9. The final query is select
a.FIRSTNAME, a. EMPLOYEEID, 0 as total income from emp a, payroll b where (
a.employeeid = b.employeeid) and (a. FIRSTNAME in (‘bob’)).

The following discussion relates to implementation details associated with various
embodiments of the invention. Any query language processed is standardized by replacing
the multiple spaces, tabs, new lines and enter characters with the single space character.
Comments are removed. The input statement is tokenized using a delimiter set. That is, a
token is searched is a database keywords list. If the token is found in the list, then the token
is added in the token list with its specific type and sub type set. The token is checked if its a
constant (integer / float). Then the token is added according to its type in the token list. For
the keywords which are not found in the keyword list and in a constants list, the token is
added in the token list as an invalid or other token (e.g., OTHERTOKEN). If the token to be
added is a special character, then the token is checked for different special characters and
added in the token list according to the type of the token. If the token is “*” then the given
token is checked for a column element or part of an expression and then the given “*” token
is added in the token list along with appropriate related columns or expressions.

The token is checked to determine if it contains any relational operator then that token
is added to the token list with type set as relational operator. A string between single quotes
and double quotes is added as a literal to the token list. The quotes and the string between the
quotes are considered as a single token and type is set according to the quotes added
(SINGQLITERAL/ DOUBQLITERAL). The string between the square brackets is added as
a single string with the type set as other token (ASOTHERTOKEN). If the token is a space
character, then the token is added with type set as SPACEFLAG. The query token array
(Indexed Query Token List) is created from the query token list.

SELECT, FROM and WHERE parts are marked for query level, such as main query
or subquery. Also marked are the start and end of the MAIN and SUB QUERIES with the
help of opening and closing parenthesis. If any inconsistency found in the number of opening
and closing parentheses, then an error is reported. With the help of start of SELECT, FROM
and WHERE parts the parts of the complete tokens are marked. The SELECT part is marked

10

15

20

25

30

WO 2016/112161 PCT/US2016/012429

from the start of the SELECT part up to the start of the FROM part. The FROM part is
marked from the start of the FROM part up to the start of the WHERE part. The WHERE
part is marked from the start of the WHERE part to the end of the query. If in between the
marking of any part a sub query is started, then its marking is done in the same way as the
start of SELECT, FROM and WHERE parts.

The start and end JOIN and ON parts are marked in the FROM part of the given
statement. The start and end of JOIN and ON parts are marked according to the count of the
JOIN and ON keywords in the statement. The start of the JOIN part is marked from the
token having the JOIN keyword and end is marked at the token where the ON keyword is
found. If before the ON keyword there is WHERE, ORDER and GROUP keyword found
then the token previous to that is marked as the end of the JOIN part and the ON part is not
present in that case. If the ON part is present for a JOIN condition then its start is from the
ON keyword itself and end is on WHERE, ORDER or GROUP keywords or at the start of
new JOIN condition.

In marking of schema elements present in the input statement, the invalid tokens and
the double quoted string literal tokens are considered. In the case of marking of schema
elements first the FROM part of the input statement is processed in order to mark the tables
present in the input. After marking of tokens in the FROM part, the schema elements in the
query are marked from the inner nested depth to the upper levels. The token present is
traversed in the given range and the token is checked for an invalid token or a double quoted
string.

The given token is searched in a database sequence tree. If it is not found, then a
check is made for a mapping for the given token at the database level. If the token is found
as a database element, then the next token after the “.” in the Schema Sequence Tree is
checked or the mapping at the schema level is checked. Thereafter, checks are made for table
and column. If database and schema are marked and the table is not marked, then the process
for the database and schema is also reverted. If the token is not for the database element
marking, then the schema is searched. A table and a column is treated in the same way.

After marking of the schema elements in the FROM part the table and sub query
aliases are marked. It is determined if the token part is marked as a FROM part. For a
FROM part there is a check of whether the token is a start of a sub query in the FROM part.
If so, then the list is traversed up to the end of the sub query. After the end of the sub query
there is a check of whether an alias is defined at the end of the query. If the token in the
FROM part is not the start of the sub query then there is a check for the table element in the

10

10

15

20

25

30

WO 2016/112161 PCT/US2016/012429

FROM part. If the token is the table element, then there is a check of whether the token is
next to the table element (skipping spaces). An alias is then checked. If an alias for the sub
query or the table is found then there is a check of whether the alias name is the unmapped
name. If it is the unmapped name, then it is changed to the real name. The given token is
then marked a SUBQUERY or TABLE alias. After the marking of the token, the given token
is searched in the complete statement and the tokens which are identical to the alias token are
also marked as the alias according to the type if they have the “.” as the next token (skipping
the spaces in between).

After marking of the schema elements, column aliases are marked. The statement is
traversed. It is determined whether the token belongs to the SELECT part. It is determined if
the token is a double quoted string and the previous token is a column element (skipping the
spaces in between). Then the given token is marked as column alias. If the token is an “AS”
keyword, then the next token is marked as a column alias. If the type of token is such that the
token can be marked as a column alias, then the previous and next tokens of the given token
are checked. If the next token of the given token is the ;" of the SELECT part or the FROM
keyword, then the token can be marked as an alias if the previous token satisfies the
condition. If the token previous to the given token is a column element, end of the sub query,
“END” keyword itself, single quoted or constant literals, pseudo column or the closing
parenthesis “)” then the given token is marked as the column alias. If the alias for the column
is found then it is checked whether the alias name is the unmapped name and if it is
unmapped name then change to the real name. After the marking of the token the given
token is searched in the complete statement and the tokens which are identical to the alias
token are also marked as the alias if it does not belong to the same statement and it has no “.”
in the tokens next to it.

This section describes the star expansion process for the star present in the main query
SELECT part. The main query SELECT partis searched for a “*” and if found it is marked
as a column element. Before expanding the star, the table reference list for the given
statement is generated. The table reference list contains the information about the table and
sub queries used in the FROM part of the input statement. It also stores the information
about the table referenced in the query. Previous tokens of the star are checked (skipping
spaces in between). CASE 1: a star comes with some specification. There may be 3 different
specifications. In the case of a table alias there is a search for the table for which the given
alias is defined. If the schema information is also given with the table name then, it adds the

given information, otherwise it generates the search key with the default schema and database

11

10

15

20

25

30

WO 2016/112161 PCT/US2016/012429

information. For the generated search key for the table it gets all the columns of the given
table and adds the given column in the expanded list for the “*’. In the case of a table name
the schema information for the table given is fetched in the specification with the “*’. If the
schema information is not present with the table, then it generates the search key with the
default schema and database specification. For the generated search key for the table it gets
all the columns of the given table and adds the given column in the expanded list for the *’.
In the case of a sub query alias, the start and the end of the sub query is found. The alias is
added as a specification with the “*’. A SELECT column list for the sub query is generated.
The complete SELECT column list for the statement is traversed. If the SELECT column
node contains the ‘*’ then the table reference list for that sub query is generated and the star
is expanded for the given sub query. The expanded nodes are inserted in the list where
columns are added for the expanded star. If the SELECT column node does not contain the
“*” then the given node is inserted in the expanded list by checking the alias for the node.
CASE 2: a star comes without any specification. In this case, the start of the table
reference list is identified for the given statement. Before processing the particular table
reference node, the query separator index for the given node and the query separator index for
the “*” are checked. If both are identical, then it is processed. Then the table reference node
type is checked. If the type is “TABLE” then the search key for the given table is generated
and its column list is obtained. The list of the column with the specification of table is added
in the link list generated to be replaced with the column. If the type of the table reference
node is “sub query” then, the start and the end of the sub query is obtained and the SELECT
column list is generated for the given statement. If the sub query does not have the alias
defined for it in the statement, then a unique alias is generated for the given sub query. The
complete SELECT column list for the given statement is traversed. If the SELECT column
node contains the “* then the table reference list for that sub query is generated and the star
is expanded for the given sub query. The expanded nodes are inserted in the list where
columns are added for the expanded star. If the SELECT column node does not contain the
“*> then the given node is inserted in the expanded list by checking the alias for the node.
This section describes the algorithm used to find an expression. This algorithm is
called once the query tokenization and marking of a query part is completed. Each token of
the input statement is checked to determine whether the type of the current token is
ASOTHERTOKEN. If the type is not other token then, there is a check of whether the current
token is one of the following keywords: FROM, WHERE, ORDER, GROUP, BY, HAVING,
AND, OR. If the token is one of the given keywords, then the algorithm updates the last

12

10

15

20

25

30

WO 2016/112161 PCT/US2016/012429

index to the current token index + 1. This last index is used to determine the start of the
expression. If the type of the current token is marked as the other token, then it loops the
token from the last index up to the total token count. While looping, it takes care of the
opening and closing parenthesis count and the CASE and END tokens. It breaks the loop
when the parenthesis count is zero and there is no open case statement and the current token
of the inner loop is something which can be used to end the current expressions for example
(.7, FROM, WHERE, AND, OR, GROUP, BY, ORDER etc.). While breaking, it marks the
previous token as the end of the expression and updates the last index to current index + 1 for
the next expression. Next, there is a search for the given input expression in the list of the
expressions stored in the memory. The search is made by comparing each token of a
complete expression list with the token of the current input expressions. If any expression is
matched then, there is a search for a map name from the mapping information populated for
real to virtual un-mapping. The mapping information returns the name of the virtual column
(label). The current input expression information is stored in the back trace list which is used
in case of virtual to physical un-mapping after access control. The current input expression is
changed to the virtual label with which it is mapped. If the expression is the part of the main
query select part, then the main query select part is searched to determine if the alias is
defined for the expression or not. If not, then the structure which will be used later to add a
column level alias for the expression is updated.

The following describes generation of the back trace list at the time of real to virtual
un-mapping, which is used by the virtual to real un-mapping process after access control.
This section describes the nodes added in the back trace list for the one to one element
mapping. The nodes for the expression based mapping are added at the time when an
expression is found in the input and is replaced by the virtual column explained above.

Each token of the input statement is checked to determine whether the map name
boolean flag for the current token is set to TRUE. Ifitis not set to TRUE, then the token is
skipped. If the flag is set to TRUE, then memory is allocated for the back trace list node and
its data. Back trace node data for the current node is populated. The information stored may
include level of the node (Database/Schema/Table/column), type of mapping (one to one),
physical element value, virtual element value, part and level of the token in the input
statement, and table/column sequence order. If the current token is of type TABLE, then the
complete input list is traversed to search if the alias is defined for the given table. If the alias

is defined, then that alias information is stored along with the back trace data. After storing

13

10

15

20

25

30

WO 2016/112161 PCT/US2016/012429

the complete information in the back trace node the current node is inserted into the back
trace list. This back trace list is used at the time of un-mapping from virtual to physical layer.

The UNMAP method resolves the UNMAP condition. The UNMAP condition
contains the virtual elements that need to be resolved with their physical counterparts. The
whole input condition is parsed to find the mapping for each element. If the mapping of the
column or table is found in the back trace list, then the virtual column or table element is
replaced with the token that that is associated with the mapping. There may be three cases:
(1) if the case is virtual table.virtual column, then UNMAP both the table and column, (2) if
the case is alias.virtual column, then do not change the alias but the column, (3) if the case is
virtual _column only, then UNMAP the column. If the mapping is not found in back trace list
then there are three cases (1) if the element is a valid physical element do not do anything
(keep this element as it is), (2) if the columns table is used in the current statement and if the
case is virtual table.virtual column and mapping of virtual column is not found in the back
trace list, then first find the physical table and physical column for this virtual column. If this
physical table is found in the back trace list, then the table and column are replaced with the
tokens associated with the mapping. The third case is if the alias.virtual column and
mapping of virtual column are not found in the back trace list, then the physical table and
physical column for this virtual column is searched for first. If this physical table is found in
the back trace list, then the physical table’s alias and the physical column are replaced with
this mapping. If the case is virtual column only and mapping of virtual column is not found
in back trace list, then the physical table and physical column for this virtual column are
searched for first. If this physical table is found in the back trace list, the physical column is
replaced with this mapping.

An embodiment of the present invention relates to a computer storage product with a
non-transitory computer readable storage medium having computer code thereon for
performing various computer-implemented operations. The media and computer code may
be those specially designed and constructed for the purposes of the present invention, or they
may be of the kind well known and available to those having skill in the computer software
arts. Examples of computer-readable media include, but are not limited to: magnetic media,
optical media, magneto-optical media and hardware devices that are specially configured to
store and execute program code, such as application-specific integrated circuits (“ASICs™),
programmable logic devices (“PLDs”) and ROM and RAM devices. Examples of computer
code include machine code, such as produced by a compiler, and files containing higher-level

code that are executed by a computer using an interpreter. For example, an embodiment of

14

10

15

WO 2016/112161 PCT/US2016/012429

the invention may be implemented using JAVA®, C++, or other object-oriented
programming language and development tools. Another embodiment of the invention may be
implemented in hardwired circuitry in place of, or in combination with, machine-executable
software instructions.

The foregoing description, for purposes of explanation, used specific nomenclature to
provide a thorough understanding of the invention. However, it will be apparent to one
skilled in the art that specific details are not required in order to practice the invention. Thus,
the foregoing descriptions of specific embodiments of the invention are presented for
purposes of illustration and description. They are not intended to be exhaustive or to limit the
invention to the precise forms disclosed; obviously, many modifications and variations are
possible in view of the above teachings. The embodiments were chosen and described in
order to best explain the principles of the invention and its practical applications, they thereby
enable others skilled in the art to best utilize the invention and various embodiments with
various modifications as are suited to the particular use contemplated. It is intended that the

following claims and their equivalents define the scope of the invention.

15

10

15

20

WO 2016/112161 PCT/US2016/012429

In the claims:

1. A non-transitory computer readable storage medium with instructions executed by a
processor to:

receive a query statement, wherein the query statement is one of a plurality of
distributed storage and distributed processing query statements with unique data access
methods;

form token components from the query statement;

categorize the token components as data components or logic components;

form modified token components from the token components in accordance with a
policy; and

reconstruct the query statement with the modified token components and original

computational logic and control logic associated with the query statement.

2. The non-transitory computer readable storage medium of claim 1 wherein the policy

is an access control policy.

3. The non-transitory computer readable storage medium of claim 1 wherein the policy

is a query language dialect conversion policy.

4, The non-transitory computer readable storage medium of claim 1 wherein the policy

1s a query optimization policy.

5. The non-transitory computer readable storage medium of claim 1 wherein the logic

components are categorized as computational logic components or control logic components.

6. The non-transitory computer readable storage medium of claim 1 wherein the token
components are alternately categorized as database specific tokens, special characters,

language keywords, comments, values, aliases, file paths, URIs and functions.

16

WO 2016/112161

PCT/US2016/012429

100
102 \\ 106 104 _1 \\
110 {112 116 136 132 130
{ 4 [
CPU e NIC ® g '1 NIC O CPU
X A 3 X Y &
¥ A4 A
1 120) f F
" v/ 134 /140
Query Reconstruction ™ "
Processor 122 Worker Module 142
O
O
148
2 104 N -O
150 152 156
{ { {
CPU O NIC | g
F-N Y N
¥ Y 4
s\.._ N
154 / 160
™
Chient Module 162

FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO 2016/112161

219

‘ N
Receive Query Statement 300
kA
N
Form Token Components 209
Categorize Token T
Components 204
A4
Form Modified TN
Token Components 206
Reconstruct Query -
Statement 208
FIG. 2

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/012429

WO 2016/112161 PCT/US2016/012429
3/9

Fig. 3

Standardized the input gueny ¢

TEON wvveand
H09 by reraoving teba doubie s Tolenizeis standardza o AUE S kens Wentted it |

BUEDHNS, P cusry based on dedrdters wpe clegy
st
hak constants, guery l
Eeyvannds & spacst

Mark the 53 tokerg in e
ke fist

Mardis §§ and double quotes e ™ Sharacierns based on e
guery dlaiect

FOE e e

hark oin’ and ‘onfiag

k)' 38
s . 5 . . s . IS : ’ e =
Mark fable, adlumn, datsbase, Mark the reacurcs slements E‘,. htark ‘group by, ‘orter byt and f

Mask quary part fisg ans »ﬁ Merk query gm‘ subgueny
sroness whery' siguse for < posiiong
el ponddiion

2 ERNNRNNNNNL

L]
e

JEE gonama, Bl path, URER any store fis seano heving clayise -
skt Bt HERR

l 20 R
30

Craghs
Ma“k tabie iz, subguary Cregle - ?’f‘g ’?.h. o Craale & fils
W colunn wibxs positiongic Pl iebic efoance Pl eolin rpfarance list]
i with 8% fiags

tohan fst fistwith atf flags markas poattion

referance il
with aff flag

T gag

F40- \\
trz.e «*‘

%%

e
5

>

’°~e£eam E?§ iy the 332

ETRR
SUV3I8

Fiotuen query
without change

f'ﬁ bz other ‘

o
b type of

RN

Pl i
Retam the :
Seocerceedl IO QUBTY B8 K
FEAROTISY -

Atop

NN

SUBSTITUTE SHEET (RULE 26)

WO 2016/112161 PCT/US2016/012429
4/9

Q";‘ﬁ‘“‘* s 3 g " - 4.“- ? ey $ cp o &%
l T .. A— _ o Fig 4 (Floswe chart A

A rale o e rule

;‘mz‘«ﬁ a r;;v rpfargnos s 3
TR IR
kY
mamarny SOL T 414
fat o read)
LNy miisw
489N fitery
hied
: ™
Lovap ti ang af ~~
e Het of rules p i %
§ S $ 80
............................ {
e ssion ™, ue g
Gy with
TR fijtgr?
Add nde o collms
yuts sefersrne st
- 434
v
fign oo D08 B fied
e §52 W‘qa‘m & tabis from
el o «L,Qﬁu nide 3;3’;}*"
e o o~ =
i thiz and of =y Taise
ke sl L)
& v $BF
e S "“,f £
LTioes 5 toke? & Does & toke
o 'n:::i\. 3 oot matdia fis
o ; frowy g nale
s 4 T SN Rl &
- it s ist?
K
Aoped &
tokan Ry o
nEW QUEy
atring : 0)
o . Prooess Create 3 case A teiss
L where' tlause gomeoned ‘@-""Stgﬁf N
i T for
& dey 4)
; », read?
< i % &
FEG E . ff
A & F5 G, Rt
"\\.‘_)‘x’f
Ca
pf\){‘xx‘*‘ el | ~ig the codimn e, S the
A o St Fo iaghCE e e path
* with 8
" ‘_>‘.;’l Jefapit
ETLiE waliue
SEF——— poindg in
™ &1 BO0RES
5 jad
et the delult _ riig;;:e
& .>~“§-‘m t» s ot ; TSRS
s o i e o deny? o
o
o
-~ falsa
R, & I S ..d:

Prapars the foval ny

N

-
PR

SUBSTITUTE SHEET (RULE 26)

WO 2016/112161 PCT/US2016/012429

5/9

504 s

E g P Cnart A2

o addruleboflends |
- i

safieoree e

Resd g rue
fromy s -
e
AGL st

o lagqueny
&
o, poat

Add nde b table nide N
refarercs st 3

N B

Ak rateto cofamn
RREIVRL3 Vi gy

Rend a tokan an
the guany token st
N Y

S

R

o
Eal - $:F
ey

P
falag
et S
= Ehyvas the foken
mBoh 8 coliumn 3_'24
st e:ﬂir}fﬁ** {
" B 5. S S Yok
; fadse Modily the
queErg s
o dary Quary
BAS e defa : Format
P & . & deny valse in gueny
oo i ang 548
o ke it]
o~
{
‘ ¥ e
AW ——
-+ $
Process all her i Kbl i resoums’ and Trammand fupdk e the reguest
EgLesis with the e AUL HaL
H ¢
Fo L> v\f“
B35 e B3E o
BAD o, B4z g
| i = e g
U el the effaot ™, THE N
HOR? CEE -,
o N,
o B
flogit the
; B guery fogdeny et
Rehanan puenyfomst
3 unkrown J
y Tuleeror
i

B4 o

SUBSTITUTE SHEET (RULE 26)

WO 2016/112161

PCT/US2016/012429
6/9

resource aCCess

filter

mask

1.1.1.* 1 {allo

W) 1.1.1.2 in {'bob’}

1.1.2.3 0 {deny)

Fig 6.
table name column identified in sequence database
{B.S.T.0}
emp eraployeeid 1111
firstname 1.1.1.2
payroll employeeid 1.1.2.1
salary 1.1.2.3
Fig 7.

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/012429

WO 2016/112161

7/9

onbeEg
BIUSHIG

I0MADY
IDBIBUD

<t
31830}

FEPHLIEUD

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/012429

WO 2016/112161

JRIoBIEYD

SGIIBIBYD

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/012429

WO 2016/112161

9/9

{La00,) W SN NISHI S CiNY .M posdode g = pesiodiue e
({0og,) U IWYNLISHILE Ny { peelioidule g = pisefoidiuse
sAcduie g = plasAoidiuae
peahoiduis g = gwmmo?&m.m
= piesioidiuse

0 = PE3BAOIILS B

= piastopiuis e
= pPissiopduis e
pesAoduine
pesiodwise

i

[EREIV R

BIBYM

2ist
2iBHM
EYET

DIBYM

nhed
nhed
cihed ¢
oiked

f e die W 30T

C gis W0 B0
Y diue wog suiost

e chue 0L S0
g dibs Wl suIod

B0} 58 D
12101 SE O
1101 5B O

g dibs wol) oo 18I0 S8
g diba wol swoou 18I0 S8
2 dis Wol oo 18I0l S8 &

£ G (0] 8100
£ Os 0y 810
B o LG 81U00
v g wioy S1L0eD
B s Wio 3o
B g Wioy o
B s Wio 3o
e iLe WO BL0M
2 chiue o S0H

10101 S8 O
10101 S8 O

B0} 58 D
1101 5B O
1101 5B O

‘B e WOl SICouIBI0L S8 O
2 G Lo SIIeouTIe10) SR O
‘B e WOl SICouIBI0L S8 O

£ D WO SO0
£ D WO SO0
diiky WIGHE SO0
duls WK SWoeD
WG S1H00

T T o 58

3 RI0)SE O

210} 58 0
B
B

Al

g

o

FAAGHNTE
CHETAD TN
CHIEFADTINT
CHETAD TN
CHETAD TN
TCIEEAD N

¢ omy

5

HAD AN
HAD AN
.Qmm%C:Eﬁm. AN LSHIdE
HITACTHNT B TN SHISE
CHITACTANT E EPYNLSHIAE
CHITACTANT E EPYNLSMIAE
CHITACTANT E PN SHIAE
TCHEBACTIND € TEP N LS
TCHEBACTIND € TEP N LS

CHEBACTINDE IWRLEMS R
CHIEBAQTNT e TRV LEIE e ‘
HAAD e 5

mm}_q MNLSHidE

@

HAOdH e
.Qmm%@:ﬁﬁm.m SWYNIGHIAE
TACTHNTE TWVNISHIAE 19
SACTANEE SRYN LG

4E AW LS
AN LRI
Sulide
Suid®
Suid®
,uxI.m

L

5
oy

CHEBACTIHNE
HIZAD TNT
HIFAD TNT
CHAETAD TN
CHAETAD TN
CHERAD NS ‘

@ W WD

]

[N GG]

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

PCT/US2016/012429 31.03.2016

International application No.
PCT/US16/12429

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - HO4L 12/813 (2016.01)
CPC - GOSF 21/6218

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

CPC Classifications: HO4L 12/1407; HO4L 63/102; GO6F 12/02; GO6F

Minimum documentation searched (classification system followed by classification symbols)
IPC(8) Classifications: HO4W 48/14; GO6F 13/37, HO4L 12/813 (2016.01)

21/6218

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of

Keywords: query; token; storage; categor®; language; dialect; polic*.

data base and, where practicable, search terms used)

PatSeer (US, EP, WO, JP, DE, GB, CN, FR, KR, ES, AU, IN, CA, INPADOC Data); Google/ GooglePatents; IEEE; EBSCO, Espacenet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

document.

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2014/0317226 A1 (CLEVERSAFE, INC.) 23 October 2014; Abstract; paragraphs [0034], 1,2,46
[ooss}, [0116). e
Y 3
Y US 6539425 B1 (STEVENS, M et al.) 25 March 2003; Column 8, lines 56-5.8; Column 9, lines 3
40-41; Column 10, lines 37-38.
US 2008/0046462 A1 (KAUFMAN, M et al.) 21 February 2008; whole document. 1-6
A US 2014/0163948 A1 (AT&T INTELLECTUAL PROPERTY |, L.P.) 12 June 2014; whole 1-6

I:I Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the apﬁlication but cited to understand
the principle or theory underlying the invention

“X"” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

14 March 2016 (14.03.2016)

Date of mailing of the international search report

31 MAR 2016

Name and mailing address of the ISA/

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorized officer
Shane Thomas

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - wo-search-report

