PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

GO6F A2

(11) International Publication Number:

(43) International Publication Date:

WO 99/12085

11 March 1999 (11.03.99)

(21) International Application Number: PCT/IL98/00430

(22) International Filing Date: 3 September 1998 (03.09.98)

(30) Priority Data:

60/057,818 4 September 1997 (04.09.97) uUs

(71) Applicant (for all designated States except US): CAMELOT
INFORMATION TECHNOLOGIES LTD. [IL/IL]; Matam,
Advanced Technology Center, 31905 Haifa (IL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BAHRAV, Yuval [IL/IL];
Shlomtzion Street 24, 34406 Haifa (IL). GUR, Moshe
[IL/IL]; Barazani Street 1, 69121 Tel Aviv (IL).

(74) Agents: FENSTER, Paul et al.; Fenster & Company Patent
Attorneys, Ltd., P.O. Box 10256, 49002 Petach Tikva (IL).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO
patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, Fi, FR, GB, GR,
IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: HETEROGENEOUS NEURAL NETWORKS

(57) Abstract

A method of constructing a neural network, comprising: providing a definition file, containing high-level specifications regarding
a desired neural network; and compiling the definition file using software to generate a neural network which meets the specifications.
Preferably, the specifications comprise a statistical specification of neuron interconnections.




Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

ITreland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
A

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe




10

15

20

25

30

WO 99/12085 PCT/IL98/00430
HETEROGENEOUS NEURAL NETWORKS .

RELATED APPLICATIONS

The present invention claims the benefit under 119(e) of U.S. Provisional patent
application number 60/057,818, of like title and filed on September 4, 1997, the disclosure of
which is incorporated herein by reference.

FIELD OF THE INVENTION

This invention is related to the field of neural network design and, in particular, to
automated generation of neural networks.

BACKGROUND OF THE INVENTION

Neural networks are a tool developed in the 1960’s to deal with challenging pattern
recognition tasks. In the 1960's it had become apparent that conventional computational
solutions were not suitable in cases where “soft” decisions are required, in particular,
identification and classification tasks where a system has to deal with noisy information or
where very few of the inputs are expected to match a template. Since the brain is capable of
solving such problems, neural networks are traditionally modeled after some aspects of the
brain. However, as the brain is a very complex organ and not much is known about its inner
workings, the modeling usually captures only a very few of the aspects of the brain. Many of
the most common neural network in use today bear little or no resemblance to any biological
structures and function in a manner which is mostly unrelated to any biological functioning.

A standard definition of neural networks, as found for example in "Neural Networks",
by Simon Haykin, p. 2, Macmillan Collage publishing Company, New York (1994) is:

" A neural network is a massively distributed processor that has a natural propensity for
storing experimental knowledge and making it available for use. It resembles the brain in two
aspects:

1. Knowledge is acquired by the networks through a learning process.

2. Inter-neuron connections strengths known as synaptic weights are used to store the
knowledge."

One advantage of neural networks, as implerhented in the art, is their ability to learn
and identify patterns even without a prior definition of the patterns which might exist in an
input data set. Another advantage of neural networks is their ability to recognize patterns
which are similar, but not identical, to a previously learned pattern. Neural networks are
therefore used in systems that perform such tasks as hand-writing recognition, radar signature

detection, object recognition and target identification. A most important advantage of neural



10

15

20

25

30

WO 99/12085 PCT/IL98/00430
networks is that each neuron operates in parallel to all the other neurons, making each neural _

network a massively parallel architecture.

A typical neural network has the following structure: an input layer, at which input is
presented to the neural network, an output layer at which outputs are produced by the neural
network and a classification section between the input and output layers, in which a plurality
of patterns are stored and which classification layer generates an output value set in response
to an input value set. Classification, as used herein, includes pattern matching and
optimization. Neural networks typically has a two stage life cycle: a first, training, stage in
which the neural network learns a wide variety of input patterns and a second, active, stage in
which the neural network does not learn any more but only generates output sets in response to
input sets, according to data stored in the training stage. In some cases, the neural network is
periodically retrained during its active use.

The learning which neural networks perform is a set of actions dedicated to reducing
the error on an empirical parameter. In each neural network architecture this parameter and the
actions taken are different according to the learning rules devised by the net's designer. The
learning is manifested by changing the weights (strength) of the connections between the
different processing units (neurons), in response to the presentation of an input pattern or a
repetitive set of input patterns. Each class of network architecture includes a learning rule
which states the algorithm by which the weight of a connection is changed in response to
different parameters.

Most neural networks are constructed by taking a standard architecture and defining
various parameters of the architecture. The definition of an architecture includes the
interconnection between the neurons, the learning function and how an individual neuron acts
upon its input. The number of neurons and the number of layers (in multi-layer networks) in a
neural network are usually parameters of the network.

There are several common architectures for neural networks: Back Error Propagation,
Hopfield (has only one layer), Self Organizing Map, Boltzman Machine, RBF nets and ART
nets. These architectures are characterized by the response of an individual neuron upon its
input, by the type of interconnection between individual components of the network and by the
training process which is used. In all these architectures, each of the learned patterns is stored
in the entire network. Usually, the patterns are stored by the configuration of connection
strengths between individual neurons.

Neural networks comprise a plurality of individual “neurons”. Each neuron has many

inputs and a single output. However, the single output can be connected in parallel to the
2



10

15

20

25

30

WO 99/12085 PCT/IL98/00430
inputs of many other neurons. In operation, a typical neuron weighs and sums the inputs anid _

generates an output responsive to the summed inputs, i.e., it performs a transformation
function. In some systems, a neuron generates an output only if the weighted sum is above a
certain threshold. Messages between the neurons may be encoded by an amplitude or by a
frequency. In most (or all) practical systems, the data is encoded using an amplitude value.
Some small scale experimental implementations of frequency encoded neural networks have
been built for research purposes. However, even in these cases, no general architecture for
frequency encoded neural networks has been proposed. In addition, since these
implementations are experimental, they do not have any interaction with the outside world. In
the brain, the data is encoded using a frequency encoding.

Many neural networks operate by converging to a stable state, at which point the
presented output is the "correct” output. However, in some cases, a neural network may get
caught in a loop, whereby all the neurons fire together and the neural network jumps between
states. This situation is called phase-locking and it is a major limitation on the ability of neural
networks to operate in an unsupervised manner.

A typical neural network has a very small number of neurons (<100), is homogeneous
in structure, is hand crafted for a particular task and is then taught the patterns of the task.
However, even such hand crafting does not imply freedom of design. Rather, a designer
chooses a pre-defined architecture and then sets various parameters such as the number of
layers and the number of neurons in each layer. The designer is usually forced to design an
algorithmic preprocessor to normalize the data, so the chosen architecture can recognize and
perform successful learning on the data. Clearly, such construction methods are inefficient
from an industrial point of view and require a high level of competence. The designer can, of
course, develop his own unique architecture which is designed for the task at hand, however
this is practical only in research setting, since designing such an architecture can take many
years. In any case, when a designer builds an application specific neural network he modifies
parameters of a general architecture and then the resulting neural network is trained to do the
task. ’

B. J. Copeland, in "Artificial Intelligence", published by Blackwell publishers,. 238
Main street, Cambridge, Massachusetts 02142 USA, in 1993, asserts in chapter 10.5 that the
brain has a very complex geometrical-connective structure, while neural networks do not have
any structure. In particular, he notes that in the brain, neurons are more often connected to

nearby neurons and less often connected to far neurons, thus creating groups in the brain.



10

15

20

25

30

WO 99/12085 PCT/IL98/00430
It should be noted that multi-layer neural networks cannot be considered to have a task-_

related structure. Multi-layer neural networks have all the neurons in one layer connected to all
the neurons in the next layer, but inside a layer, there is no connection between neurons. Thus,
the interconnection structure is a uniform one, at least with respect to being independent of the
specific function of the neural network. It is the general architecture which could be considered
to have a structure, however, this structure is unrelated to the function performed by the
network, except that a multi-layer structure is used.

John Kelly, in "Artificial Intelligence A Modern Myth", published by Ellis Horwood
Limited, Market Cross House, Cooper Street, Chichester, West Sussex, PO191EB, England in
1993, asserts that not much is known about brain functions outside of the sensory systems, so
that saying that an architecture [of a neural network] imitates the brain is pure conjecture. In
addition, he notes that the wide variety of behaviors exhibited by individual neurons is almost
completely ignored in neural network modeling.

SUMMARY OF THE INVENTION

It is an object of some embodiments of the present invention to provide a method of
constructing large and complex neural networks.

It is another object of some embodiments of the present invention to provide a method
of automatically generating a neural network.

Another object of some embodiments of the present invention is to provide a neural
network which is useful for processing of data, beyond simple pattern recognition, preferably,
without requiring any training of the neural network.

It is also an object of some aspect of the present invention to provide a non-
homogeneous neural network and method for construction thereof.

Preferred embodiments of the present invention have various aspects, some of which
are detailed below. It should however be appreciated that not every embodiment of the present
invention has all the aspects described below. Rather, some preferred embodiments of the
present invention may have only a few (or none) of these aspects.

A first aspect of the invention relates to the use of non-homogenous neural networks.
Conventional neural networks comprises a plurality of similar neurons, which are
interconnected in a set manner, typically, the individual connection strengths are random.
Usually, each neuron is connected to all the other neurons, in its layer or in adjacent layers,
depending on the type of network. Rather than being such a homogenous neural network, a
neural network in accordance with a preferred embodiment of the invention comprises a

plurality of types of neurons. Different types of neurons typically have different properties,
4



10

15

20

25

30

WO 99/12085 PCT/IL98/00430
such as response threshold, output potential amplitude and duration, outgoing weight arid _
connection morphology. Alternatively or additionally, different parts of the neural network
have different connection morphologies between individual neurons.

A second aspect of the invention relates to the construction of non-homogenous neural
networks. In accordance with a preferred embodiment of the invention, a neural network is
automatically generated from a definition file, i.e., compiled. Preferably, the definition file
includes a statistical description of connection probabilities between different neurons.
Preferably, the distribution creates functional groups of neurons. Typically, neurons are more
interconnected within each group and less interconnected between groups. Alternatively or
additionally, the definition file includes a description of various types of neurons, which may
be characterized, inter alia, by their excitation threshold, their transfer function and the
number of connections thereto. Additionally, the definition file may include definitions for
individual neurons, i.e. a functional group having only a single neuron. Preferably, the
definitions are stored in using an object-oriented data structure, in which each type of neuron is
a variant of previously defined types. Preferably, the definition file is created by a user
manipulating a spatial representation of a neural network. In a preferred embodiment of the
invention, the defined structure is related to the function which the network performs.

In a preferred embodiment of the invention, the neural network is described as a three-
(or higher) dimensional body, which has neurons distributed evenly therethrough. This design
methodology whereby the neural network is treated as a physical object, is unique to some
preferred embodiments of the present invention.

A third aspect of the invention relates to the type of neural network which can be
constructed using methods according to various embodiments of the present invention. Using
various aspects of the present invention, it is possible to design and build a neural network
which performs a particular function. Such a neural network is an analogue of a computer
program, in as much as a programmer builds a description file, similar to writing a program
and then complies it to yield an object which performs a desired function. Examples of such
functions include scaling and rotating of input. In p’articular, such a neural network will not
generally be required to undergo any amount of training at all. To the extent it is deemed
necessary, such a neural network may include a section which can be trained and which
performs any required pattern recognition function. Typically, such a section is small,
however, it may include any portion of the neural network and may even encompass the entire

network.



10

15

20

25

30

WO 99/12085 PCT/IL98/00430
In addition, such a neural network can be integrated with executable code, such as—.

compiled C++ code, whereby the neural network is treated as a subroutine or, alternatively,
where the C++ code is used to perform a complex calculation. In one example, the neural
network is compiled into an object which can accept an input pattern and produce an output
file in any desired format. Preferably, the object includes algorithmic pre- and post- processing
portions, which convert the input from an external format to an internal format and/or which
convert the output from an internal format to an external format. The object may be executed
from a command line prompt or from a program written in a high level language. In addition,
such an object may be used in parallel by more than one program. It should be appreciated that
such a neural network can include tens of thousands of neurons. For example, an IBM-PC
compatible computer with 32MB of memory and a Pentium® 166 processor successfully
executed a neural network with 50,000 neurons and approximately 500,000 connections. On
such a system, a time tick (defined latter) takes approximately between 500-1500msec,
depending on the level of excitation of the network.

1t should be noted that a neural network in accordance with a preferred embodiment of
the invention has (at least in part) a pre-designed, non-adaptable, functional architecture. Since
the structure is not generally data specific it is more robust to noise and other changes and less
limited in the range of data patterns it can process.

A fourth aspect of the present invention relates to the type of neural network
communication scheme preferred for some aspects of the present invention. In a preferred
embodiment of the invention, communication between neurons is encoded using
frequency/pulse train encoding, whereby, a higher value is preferably encoded as a higher
frequency. In a preferred embodiment of the invention, a random time delay is applied at the
output of each neuron, in order to prevent phase locking. Thus, it is not possible for all the
neurons to work in complete synchrony. In one preferred embodiment of the invention, the
delay is constant for each neuron and may be determined when the neural network is
constructed. Alternatively, the delay is randomly generated for each neuron, each time it
generates an output. Another advantage of such a random delay is that it assists the neural
network in escaping local minima. Alternatively or additionally, a refractory period is supplied
after the neuron fires, thereby giving the neural network a non-linear response.

A fifth aspect of the present invention relates to a highly efficient method of simulating
a neural network using a serial computer. As a result, a standard desktop computer can very
quickly simulate a network having tens of thousands of neurons. More powerful computers

may, of course, simulate even larger networks. As another result, embedded real-time neural
6



10

15

20

25

30

WO 99/12085 PCT/IL98/00430
networks are also practical. In a preferred embodiment of the invention, an individual neuron _

is simulated as having at least one time-coded input buffer. Inputs to a neuron are added into
the buffer, such that each element of the buffer corresponds to the sum of the signals which
arrived at a particular time. Each input is multiplied, prior to being added to the buffer, by a
time-decay weighting factor, such that earlier signals are given a higher weight. Preferably, the
peak weight is not at the earliest time, but somewhat, later. Thus, the weighting function
preferably, rises and then falls, with time. If the value in the buffer which corresponds to the
current time is above a threshold, the neuron generates an output. Alternatively, other, user
supplied, decision functions may be used. As can be appreciated, this type of design requires
only addition and multiplication operations and is therefore easy to implement efficiently. In
addition, such a design is easy to optimize and does not require many computational resources.

A sixth aspect of the invention relates to using a real time scale. As described above,
each input to a neuron is time stamped. Preferably, the neural network operates in discrete time
steps. Since time is directly modeled in some embodiments of the present invention, true
Hebbian learning can be practiced, where a the weight between two neurons is increased if
they fire at a correlated frequency and/or substantially at the same time. In some Hebbian
Jearning schemes, weights are increased also if the two neurons are inhibited from firing at the
same time. Alternatively or additionally, the connection weight between two neurons is
decreased if their firing is not correlated. Preferably, a Hebbian network has two layers, an
input and an output layer, where each neuron in the input layer is connected to a corresponding
neuron in the output layer and each neuron in the output layer is connected to each neuron in
the output layer. However, the input may be directly projected unto the learning layer.
Preferably, all the connections weights are negative (inhibitory connections) at the onset of
training. Alternatively or additionally, the Hebbian algorithm includes a restraining factor
which limits connection weights are limited to a maximum value. Prior art neural networks do
not utilize time modeling and, therefore, true Hebbian learning cannot be performed. In
addition, a neural network in accordance with a preferred embodiments of the invention
generates output even before the network stabilized. Ina prior art neural network, such output
cannot have any meaning.

A seventh aspect of the present invention relates to a new programming methodology
for neural networks, which is made possible by the previously described aspects of the present
invention. The heterogeneous structure of neural network in accordance with some aspects of
the present invention, make it possible to design modular neural networks. In particular, such a

neural network may includes modules copied from a library of neural networks. Further, a
7



10

15

20

25

30

WO 99/12085 PCT/IL98/00430
neural network, in accordance with a preferred embodiment of the invention, may have a_.

modular-hierarchical structure. For debugging purposes it is then possible to debug each
module individually. Further, since different structures in the neural network have different
functions, the functioning of such structures, and even of individual neurons may be analyzed
to aid debugging. One result of the new design methodologies is that making a change in a
neural network is a matter of minutes, not days or weeks. This is possible because only a
single module of the neural network must be changed, the neural network does not usually
need to be retrained (since usually most or all of it are non-trainable) and each module has an
internal structure which may be intuited by a human operator. Thus, an iterative design process
may be used for designing neural networks. Training where necessary is also preferably
shortened by an order of magnitude, since most of the training time (in prior art neural
networks) is usually expended on training the neural network to approximate the learned
function. This approximation is automatically provided for in preferred embodiments of the
present invention, since the neural network preferably has a structure which approximates
performing the desired function.

In a preferred embodiment of the invention, various aspect of neural network design
are automated. For example, there is no generally agreed upon method of determining a
minimum required number of neurons, in a neural network, for a particular task. In a preferred
embodiment of the invention, a user generates rules for a neural network, stipulates a
maximum number of required neurons and provides example data sets. An automated program
then generates a plurality of neural networks, each with a different number of neurons, and
performs a search for the neural network with the smallest number of neurons which still
meets the criteria.

An eighth aspect of the present invention relates to particular neural networks which
perform data processing of a type not previously possible using a neural network, which data
processing is of a type crucial for generalized pattern recognition tasks. A neural network in
accordance with a preferred embodiment of the invention, can also handle data representation
issues, such as pre-processing the angle of an input iﬁage. The problems of scale and rotation
invariance have not previously been solvable using neural network techniques. In most, if not
all, practical neural networks, data must be normalized (by an algorithmic program) for the NN
to properly operate.

A ninth aspect of some preferred embodiments of the present invention relates to
learning by varying parameters of a neural network, alternatively or additionally to synapse

weight, for example synapse delay, neuron threshold, output shape and/or duration, refractory
8



10

15

20

25

30

WO 99/12085 PCT/IL98/00430
period and/or other operational parameters of neurons. In a preferred embodiment of the_.

invention, these parameters are modified as a function of a global state of the network, for
example a back-propagation error function and/or as a function of local states, for example a
level and/or pattern of sub-threshold activity. In a preferred embodiment of the invention,
these learning methods are applied to a heterogeneous neural network. Alternatively or
additionally, these learning methods are applied to other types of neural networks, for
example, non-structured neural networks. Training techniques used may be any of those
known in the art, for example back propagation.

There is therefore provided in accordance with a preferred embodiment of the
invention a method of constructing a neural network, comprising:

providing a definition file, containing high-level specifications regarding a desired
neural network; and

compiling the definition file using software to generate a neural network which meets
the specifications.

Preferably, the specifications comprise a statistical  specification of neuron
interconnections. Preferably, the statistical specification comprises a specification of
connections from outputs of neurons to inputs of other neurons. Alternatively or additionally,
the statistical specification comprises a specification of connections to inputs of neurons from
outputs of other neurons. Alternatively or additionally, the statistical specification comprises a
spatial distribution.

In a preferred additional or alternative embodiment of the invention, the definition file
comprises definitions of a plurality of neuron types. Preferably, the definition file comprises
definitions of at least 5 neuron types. Preferably, the definition file comprises definitions of at
least 15 neuron types. Preferably, the definition file comprises definitions of at least 50 neuron
types. Alternatively or additionally, the definition of neuron types comprises a hierarchical
definition of neuron types.

Alternatively or additionally, the definition file comprises a modular definition file,
each module comprising a definition of a neural network module and the definition file
defining at least one interconnection between individual modules. Alternatively or
additionally, the definition file comprises a definition of parameters for a trainable and
uniform neural-network architecture. Alternatively or additionally, the definition file

comprises user-defined functions which perform portions of a neuron's activity.



10

15

20

25

30

WO 99/12085 PCT/IL98/00430

In a preferred embodiment of the invention, the method comprises: testing said _
generated neural network; modifying said definition file; and repeating said compiling, said
testing and said modifying until said generated neural network meets a predetermined criteria.

Alternatively or additionally, compiling comprises generating error messages
responsive to mistakes in the definition file. Preferably, the errors are caused by a non-
existence of a neural network meeting the specifications.

Alternatively or additionally, compiling comprises: generating an array of neurons; and
assigning a particular type definition to selected one of the neurons.

Alternatively or additionally, compiling comprises: generating an array of neurons; and
defining forward connections between a first plurality of neurons and a second plurality of
neurons.

Alternatively or additionally, compiling comprises: generating an array of neurons; and

defining backward connections to a third plurality of neurons from a fourth plurality of
neurons.

Alternatively or additionally, compiling comprises: generating an array of neurons; and
defining direct connections between at least one neuron and at least a second neuron.

There is also provided in accordance with a preferred embodiment of the invention, a
method of neural network design, comprising:

determining a function to be performed by a neural network;

designing a neural network architecture suitable for performing the function; and

generating a neural network having the designed architecture.

Preferably, designing an architecture comprises imposing a structure on a
homogeneous neural network. Alternatively or additionally, designing an architecture
comprises interconnecting at least two existing neural network modules. Alternatively or
additionally, designing an architecture comprises defining functional groupings of neurons in
the neural network.

There is also provided in accordance with a preferred embodiment of the invention, a
method of neural network construction, comprising: ’

providing a first neural network;

providing a second neural network; and

interconnecting the first and second neural networks.

Preferably, the first neural network and the second neural network each comprise
neurons having different characteristics. Alternatively or additionally, providing a second

neural network, comprises selecting the second neural network from a library of neural
10



10

15

20

25

30

WO 99/12085 PCT/1L.98/00430
nefworks. Alternatively or additionally, providing a first neural network comprises debuggin;g -
the first neural network prior to said interconnecting. Alternatively or additionally, providing a
first neural network comprises training the first neural network prior to said interconnecting.

Alternatively or additionally, interconnecting the first and second neural networks
comprises providing a third neural network which matches the inputs and outputs of the first
and second neural networks.

In a preferred embodiment of the invention, the first and second neural networks each
have a scale and comprising changing the scale of the second neural network to match the
scale of the first neural network.

There is also provided in accordance with a preferred embodiment of the invention, a
method of designing a neural network, comprising:

providing a initial neural network;

providing a range of allowed values for at least one parameter, which parameter defines
allowed mutations in the initial neural network; and

searching an answer-space defined by the allowed range to find a neural network which
is more optimal, in a predefined manner, than the initial neural network and which found
neural network performs a predefined function.

Preferably, searching comprises:

automatically generating a new neural network; and

determining if the new neural network performs the predefined function.

Preferably, automatically generating a new neural network comprises modifying an
existing neural network.

There is also provided in accordance with a preferred embodiment of the invention, a
method of neural network construction, comprising:

defining a function to be performed by a neural network; and

constructing a neural network to perform the function, wherein constructing does not
include training the neural network to perform the function.

There is also provided in accordance with a preferred embodiment of the invention, a
method of neural network construction, comprising:

spatially defining a group of neurons of the neural network, which group comprise only
a portion of the neurons in the neural network; and

setting a characteristic of the defined group.

Preferably, the characteristic comprises a spatial distribution function. Alternatively or

additionally, the characteristic comprises a compiled high-level language function which
11



10

15

20

25

30

WO 99/12085 PCT/IL98/00430
determines the output response of the neurons in the group. Alternatively or additionally, the—

characteristic comprises the probability of connection from the selected neurons to other
neurons. Alternatively or additionally, the characteristic comprises the probability of
connection from to selected neurons from other neurons. Alternatively or additionally, the
characteristic comprises an integrator function of the neurons. Alternatively or additionaily,
the characteristic comprises a firing threshold of the neurons. Alternatively or additionally, the
characteristic comprises a number of connections from said neurons. Alternatively or
additionally, the characteristic comprises a delay distribution function of outputs from said
neurons. Alternatively or additionally, the characteristic comprises a distribution of connection
weights for said neurons.

In a preferred embodiment of the invention, the method includes constructing an
integrated circuit which performs the function of said neural network. Preferably, said circuit
comprises individual circuits for individual neurons of said neural network.

There is also provided in accordance with a preferred embodiment of the invention, a
neural network constructed according to any of the above described methods.

There is also provided in accordance with a preferred embodiment of the invention, a
computer-readable media having a computer program stored therein, wherein said program,
when executed on a general purpose computer for which the program is adapted, causes the
computer to simulate a neural network, constructed, as described above.

There is also provided in accordance with a preferred embodiment of the invention a
method of testing a neural network having a plurality of input lines, comprising:

providing an image;

projecting the image unto the plurality of input lines; and

analyzing an output of the neural network. Preferably, the image comprises a sequence
of images.

There is also provided in accordance with a preferred embodiment of the invention a
method of testing a neural network, comprising:

providing a neural network having a plurality(of individual neurons, a plurality of input
lines and a plurality of output lines; and

tracing the output of at least one neuron, which neuron is not directly connected to an
output line.

There is also provided in accordance with a preferred embodiment of the invention, a

method of testing a neural network, comprising:

12



10

15

20

25

30

WO 99/12085 PCT/IL98/00430
providing a neural network having a plurality of individual neurons, a plurality of input -
lines and a plurality of output lines; and

forcing an input to at least one neuron, which neuron is not directly connected to an
input line.

There is also provided in accordance with a preferred embodiment of the invention, a
method of testing a neural network, comprising:

replacing at least a portion of the neural network with a stub; and

providing an input data set to the neural network; and

analyzing an output from the neural network, which output is responsive to the input
data set.

There is also provided in accordance with a preferred embodiment of the invention, a
method of simulating a neuron which generates an output responsive to inputs the neuron
receives from a plurality of input lines, comprising:

adding the inputs to at least one time-stamped buffer, responsive to the time at which
the inputs are received by the neurons; and

generating an output responsive to the values in the buffer.

Preferably, generating a response comprises generating a response if the value of the
buffer at the current time is above a threshold. Alternatively or additionally, generating a
response comprises generating a response if a sum of values in the buffer from a range of
times at and prior to the current time, is above a threshold. Alternatively or additionally,
adding comprises weighting the inputs with a weight responsive to their reception time.
Alternatively or additionally, generating an output comprises generating an output at a
stochastic delay.

There is also provided in accordance with a preferred embodiment of the invention, an
electro-mechanical device, comprising:

a user input panel;

a mechanical portion; and

a neural network which controls the mechanical portion responsive to user inputs from
the user input panel, wherein the electro-mechanical device does not utilize an algorithmic
circuit for controlling the mechanical portion.

Preferably, the neural network operates substantially in real-time.

There is also provided in accordance with a preferred embodiment of the invention,

apparatus for generating a neural network, comprising:

13



10

15

20

25

30

WO 99/12085 : PCT/IL98/00430
storage for a definition file; and

a compiler which generates a neural network meeting the specifications in the
definition file.

Preferably, the apparatus comprises a syntax analyzer which analyses the syntax of the
definition file. Alternatively or alternatively, the apparatus comprises an error-message
generator which generates error messages responsive to the analysis of said syntax analyzer

There is also provided in accordance with a preferred embodiment of the invention a
neural network comprising:

a first, non-trainable, plurality of interconnected neurons; and

a second, trainable, plurality of interconnected neurons.

Preferably, the training of said second plurality of neural networks is controlled by the
first plurality of neural networks. Alternatively or additionally, at least one of said second first
plurality of neurons and said second plurality of neurons comprises a neuron having at least
one trainable connection and at least one non-trainable connection.

There is also provided in accordance with a preferred embodiment of the invention, a
neural network comprising a plurality of interconnected neurons, wherein said neurons do not
perform a pattern matching function and are not trainable.

There is also provided in accordance with a preferred embodiment of the invention, a
neural network comprising a plurality of interconnected neurons, wherein most of the neurons
are grouped into a plurality of functional groups and wherein most of the connections of
neurons in each functional group are with neurons in the same functional group.

There is also provided in accordance with a preferred embodiment of the invention, a
neural network comprising a plurality of interconnected neurons which generate output
signals, wherein the output signals are frequency encoded spike trains and wherein each
neuron delays its output by a different amount.

Preferably, each neuron stochastically delays its output.

There is also provided in accordance with a preferred embodiment of the invention, a
neural network, for controlling an industrial process c'omprising:

a plurality of interconnected neurons which generate output signals, wherein the output
signals are frequency encoded spike trains;

a input device; and

an output device,

wherein said neural network generates controls said output device, responsive to said

input device to achieve a desired effect on the industrial process.
14



10

15

20

25

30

WO 99/12085 : PCT/IL98/00430

There is also provided in accordance with a preferred embodiment of the invenﬁon, a
neural network comprising:

at least ohe neuron of a first type;

at least one neuron of a second type; and

at least one neuron of a third type.

Preferably, said different types have different integrator functions. Alternatively or
additionally, said different types have different numbers of connections therefrom.

There is also provided in accordance with a preferred embodiment of the invention, a
method of training a neural network comprising:

providing a neural network having a design function and having a trainable portion;
and

training the neural network, wherein said training is performed while the neural
network performs its designated function.

There is also provided in accordance with a preferred embodiment of the invention, a
method of training a neural network comprising:

providing a neural network having a design function and having a trainable portion;
and

training the neural network, wherein said training is controlled by the neural network,
without external intervention.

There is also provided in accordance with a preferred embodiment of the invention, a
method of training a neural network comprising:

providing a neural network having a trainable portion comprising a plurality of
neurons, each of said neurons having at least one non-synapse-weight parameter; and

training the neural network by modifying at least one of said at least one non-synapse-
weight parameters of said neurons.

Preferably, said training comprises modifying at least one synapse-weight parameter of
said neurons. Alternatively or additionally, said neural network comprises a heterogeneous
neural network. Alternatively or additionally, said training is responsive to a global state of
said neural network. Preferably, said global state comprises an error function of said network.

In a preferred embodiment of the invention, said training is responsive to a local state
of said neural network. Preferably, said training is responsive to a state of a neuron being
trained. Alternatively or additionally, said training is responsive to a state of a neuron which
provides an input to a neuron being trained. Alternatively or additionally, said training is

responsive to a state of a neuron which receives an output from a neuron being trained.
15



10

15

20

25

30

WO 99/12085 PCT/IL98/00430

Alternatively or additionally, said training is responsive to a correlation between a neuren
being trained and a second neuron. Alternatively or additionally, said training comprises back
propagation. Alternatively or additionally, said at least one non-synapse-weight parameter
comprises a response threshold. Alternatively or additionally, said at least one non-synapse-
weight parameter comprises an output signal duration. Alternatively or additionally, said at
least one non-synapse-weight parameter comprises an output signal wave-form. Alternatively
or additionally, said at least one non-synapse-weight parameter comprises a synapse delay.
BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be more clearly understood from the detailed description of
the preferred embodiments with reference to the accompanying figures, in which:

Fig. 1 is a schematic drawing of a three-layer prior art neural network;

Fig. 2 is a schematic high-level depiction of a neural network in accordance with a
preferred embodiment of the invention;

Fig. 3 is a flow chart of a typical neural network construction process in accordance
with a preferred embodiment of the present invention;

Fig. 4 is a schematic diagram of a preferred, efficient implementation of a neuron, in
accordance with a preferred embodiment of the invention;

Fig. 5 is a schematic high level design of a neural network which scales its input;

Fig. 6 is a schematic diagram of a detail of the connection of a particular scale layer to
an input layer in the neural network of Fig. 5; and

Fig. 7 is a schematic high-level diagram of a neural network which functions as a
simple calculator.

DETAIL DESCRIPTIONS OF PREFERRED EMBODIMENTS

Fig. 1 is a schematic drawing of a prior art neural network 20. Neural network 20
includes a plurality of input lines 22, a plurality of output lines 24 and a plurality of individual
neurons 26. In the example of Fig. 1, neurons 26 are arranged in three layers, a layer 28 which
is connected to input lines 22, an output layer 32 which is connected to output lines 24 and an
intermediate layer 30 connected between layers 28 and 32. Every neuron in layer 28 is
connected to every neuron in layer 30. It should be appreciated that neural network 20 has no
structure beyond this layer structure and that each layer does not form a functional group,
inasmuch as there are no connections between neurons in the same layer. Such a neural
network may be used for approximation or classification tasks, whereby input which is
presented at input lines 22 generates an output at output lines 24. Neural network 20 is a three

layer neural network, however, it should be noted that there is no structure in neural network
16



10

15

20

25

30

WO 99/12085 PCT/IL98/00430
20 beyond that conferred by the layers. In particular, it should be noted that the layer structure

is a general characteristic of the architecture of this type of NN, it is not related to the specific
task which the NN performs, beyond the decision to use such an architecture for the specific
task.

A distinction should be made between two types of neural networks, practical neural
networks and models of brain functions. What differentiates these two types is that practical
neural networks have an input and an output and the processing they perform affects devices
outside the neural network. Brain models do not have and real input or output and their
functioning is not related to an actual process being performed outside of the brain model
simulation.

Most conventional neural networks have only a few tens of or a few hundred neurons.
As can be appreciated, when a neural network, such as neural network 20 is made larger, the
number of interconnections between neurons increases to an unmanageable degree. In
addition, there is no satisfactory method of debugging any size network, let alone a very large
network. One issue to be noted is that neural networks are typically constructed manualily,
however, there are no accepted methods of building a neural network using team work or by
any person other than a very experienced neural network designer. The type of architecture
chosen is usually bases on the designer's experience and intuition. Once the designer selected
the architecture type, he then selects values for various parameters of the network, such as the
number of neurons and generates a network having these parameters. Then, the network is
trained to perform a specific task. If the network is not suitable, the training step will fail and
the designer can either choose a new network architecture or try changing the parameters.

Another issue to be noted is that many neural networks utilize learning algorithms
which seek a minima for some error criteria. In some cases, the function searches for a local
minima, in others, it searches for a global minima. As the network becomes larger, the
probability of the search mechanism becoming trapped in an incorrect local minima increases
exponentially. In addition, some networks, such as Hopfield networks experience the
spontaneous appearance of spurious states (local minima) which are unrelated to the task of the
neural network. Again, as the network becomes larger, the probability of a spurious state
appearing increases greatly.

Fig. 2 is a schematic higher-level depiction of a neural network 40 in accordance with a
preferred embodiment of the invention. Neural network 40 is not just an interconnected group
of neurons, as in the prior art, rather, neural network 40 has a distinct structure and is made up

of sub-components. Blocks 42, 44, 46 and 48 are all conglomerates of neurons and not
17



10

15

20

25

30

WO 99/12085 PCT/IL98/00430

individual neurons as shown in Fig. 1. A plurality of input lines 50 may be connected to more
than one neuron block and, likewise, a plurality of output lines 52 may also be connected to
more than one neuron block and may also interconnect neuron blocks. As will be described
below in more detail, each of blocks 42-48 preferably has an individual function and/or
structure.

There are several major advantages to using a neural network with an internal structure,
such as neural network 40. First, neural network 40 may be described and analyzed in a
hierarchical manner. Hierarchy is a major tool for dealing with engineering aspects of complex
structures. Another such tool is modularization. Neural network 40 is adapted to be treated as a
modular structure. For example, each of blocks 42-48 may be constructed and debugged
individually and then connected up to form neural network 40. Many techniques which were
developed for large and complex engineering projects can now, for a first time, be applied to
the design and construction of neural networks, in particular CASE (computer aided software
engineering) tools. An exemplary tool is the use of libraries, whereby a system is built up of
components, many of which were designed and constructed for a previous system and may
now be reused. As might be appreciated, components in libraries have the additional advantage
of having been thoroughly debugged. Components and libraries may also be provided by third
parties. A more detailed description of such tools and techniques is described latter in this
specification.

Another advantage to using structured neural networks is that the operation of such a
neural network is more intuitively understandable by a human programmer. For example,
given two neural networks which calculate the function (at+b)*c, a first neural network, in
accordance with the present invention, will typically be divided into two blocks, one which
performs the addition and one which performs the multiplication. While a second neural
network, in accordance with the prior art, will typically perform the entire calculation using
one group of neurons, trained to perform this particular calculation, by pattern matching. A
human programmer will find it much easier to "understand” the first neural network and can
also easily modify it to perform a different function. Further, as explained herein, the
calculated function can easily be converted to (at+b)/c, by replacing the "multiplication” neuron
block with a "division" neuron block from a library.

In order to understand various aspects of the present invention, it is useful to assign a
type to individual neurons in a neural network. The "type" of a neuron is determined by its
various properties, including the number of input connections, the threshold of excitation

and/or any other activation function and/or the output function. In addition, the neurons are
18



10

15

20

25

30

WO 99/12085 PCT/IL98/00430

usually organized into functional groups, each of which usually performs a particular function. _
One example of a functional group is a column, such as found in the human visual cortex.
Each such column can detect if the orientation of an input is a particular orientation. There is
no necessary equivalence between functional groups and modules (described below). Usually,
but not always, a functional group may be characterized by the density of interconnections
between neurons within a group and by the density of connections between neurons of
different groups. Typically, the number of connections within a group is larger than outside a
group, as is also typical of modules. However, this is not necessarily the case.

As can be appreciated, individually defining neurons and their interconnections can be
a very tedious, if not an impossible, task for large numbers of neurons. In a preferred
embodiment of the invention, instead of defining all the individual connections, only the
'probabilities of connections between the different types of neurons are defined. A compiler
then generates a neural network which meets the criteria set forth. Preferably, the definitions
are stored in a definition file. Additionally, the connection profiles of individual neurons may
also be defined in the definition file. As can be appreciated, by defining the probability of
interconnections, the neurons are also functionally grouped. In a preferred embodiment of the
invention, connections are defined between hierarchies of types, rather than between
individual types. Thus, a plurality of types may be grouped together to define a super-type and
the probability of interconnection between such a super-type and a second super-type or an
individual type are then defined. Grouping may be by spatial location (defined below),
functional relation ship, type-definition hierarchy, or any other method.

A functional grouping may include more than one type of neuron. Conversely, similar
types of neurons may belong to different functional groups, in which case they are usually
defined as having different types. One or more of the following parameters are usually defined
for the interconnections and the neurons:

(a) a probability of a (forward) connection between an output of a neuron of a first type

and an input of a neuron of a second type; alternatively or additionally to defining a
second "type", the connection may be defined between the first type and a
functional grouping or a group of types;

(b) a probability of a (backwards) connection between an input of a first neuron of one

type and an output of a neuron of a second type;

(c) distributions of neurons types between the functional groupings;

(d) learning properties of an interconnection between two neurons, including, learning

function, such as a back-propagation learning function, weight increment and
19



10

15

20

25

30

WO 99/12085 . PCT/IL98/00430

decrement rules, stop learning criteria, ability to learn is preferably also defined as -

a distribution on the interconnections, however, it may be defined as a property of a
neuron type;

() an integrator/output function of a neuron, including an integrator function without a

threshold, may be provided as a high-level language function, such as C++; and

(f) excitation threshold;

(g) output signal shape, amplitude and duration, typically an alpha function which has

a fast rise, a slow descent, all unipolar and repeating at a certain frequency;

(h) synapse properties (may be defined by connection type and/or by target/source

neuron type), including: delay time distribution, weight; and

(i) for input cells, a spatial-temporal response profile.

In addition, the definition file includes other information, such as the number of
neurons, the location of the input and output points, global values such as an delay distribution
(defined later). In a preferred embodiment of the invention, the definition file has an
hierarchical object oriented structure. For example, the characteristics of a particular neuron
may be described as being a variant of a different neuron type, with only a few differences (a
sub-class in OOP terminology).

Functional grouping of neurons, in accordance with the present invention, may be
achieved, inter alia, by using one or more of three methods: (a) by creating modular units
which are self-contained and which include input and output lines (b) by imposing structure
upon an initially homogeneous network or (c) by directly defining interconnection
probabilities between neuron types and individual neurons.

In a preferred embodiment of the present invention, and as described in more detail
below, method (b) is provided for by assigning spatial coordinates to each neuron. Structure is
imposed by selecting spatial groups of neurons and defining their properties, including, a
spatial distribution of interconnection probabilities. Preferably, the neurons are assigned three-
dimensional coordinates, however, fewer or more coordinates may be used. Preferably, the
neural groups are selected and manipulated using a gi”aphical display which shows a projection
and/or slices of the spatial representation of the neural network. In such a display, different
neuron types are preferably assigned different colors.

The spatial distributions may include direction and/or distance information. Distance
usually corresponds to functional grouping, where nearby neurons are more likely to belong to
the same functional grouping than further-away neurons. In some preferred embodiment of the

inventions parameters other than interconnection probabilities are defined as distributions,
20



10

15

20

25

30

WO 99/12085 PCT/IL98/00430

including, the number of connections to a neuron, its excitation threshold or various -

parameters which may be associated with its output function.

It may not be possible to construct a network using the definition file, in which case,
the compiler generates error messages, as described below. Preferably, the compiler also
generates warning messages.

Fig. 3 is a flow chart of a typical neural network construction process in accordance
with a preferred embodiment of the present invention. The process with first be generally
described and then each individual step will be described in greater detail.

It will be appreciated by a person skilled in the art that not all of the described features
are necessary to practice the invention. Rather, various embodiments of the present invention
may utilize different selected ones of the features described herein.

The process starts when a user generates a definition file of a desired network. Then the
user complies the definition file to create an exemplary neural network. Since the compilation
is a stochastic process, different compilations will yield similar, but not same neural networks.
However, by using a same random number seed for the random number generator in the
compilation process, different compilations can be made to yield equal neural networks. If the
compiler cannot generate a neural network based on the definition file, the user is so inform
and the user must modify the definition file. If the compilation succeeds, the user (preferably)
defines at least one input set for testing the neural network. If the user so desires, the input set
may be used to debug the neural network, i.e., to determine if it complies with its specification.
If at any point in the debugging the user decides that the neural network does not meet its
specifications, he may modify the definition file. This debugging is typically repeated with
many sets of input data.

Additionally, the user will usually wish to ascertain that the specifications of the neural
network are reasonable. Therefore, the user may analyze the results obtained to ensure that not
only is the neural network performing its desired function, but that the desired function is
actually desired, in view of the rest of a total system in which the neural network will be
integrated. This analysis may also be performed usirig multiple sets of data and, if the user so
decides, he may modify the definition file and recompile the neural network.

Once the neural network is debugged and pronounced suitable, it may be integrated
into the total system or into some portion of it. Debugging of the total system may also suggest
changes in the neural network, which might require modifying the definition file. It should be
appreciated that this above described process is a variation of the iterative model for software

design, which has not hereto been feasible for the design and construction of neural networks.
21



10

15

20

25

30

WO 99/12085 PCT/IL98/00430
NEURAL NETWORK DEFINITION

In accordance with a preferred embodiment of the invention, a neural network editor is
provided for generating and maintaining a definition file of a neural network. Preferably, such
an editor is a spatial editor whereby a three-dimensional model of a neural network is
manipulated by a user. In addition, such an editor preferably also enables text based editing of
the definition file. Preferably, the editor includes a grammar checker for checking the grammar
of the definition file. A description of one such editing process, in accordance with a preferred
embodiment of the invention, follows.

First, the user defines the number of neurons in the network and describes a general
three-dimensional form (typically a simple shape, such as a sphere, a cube or a box).
Alternatively, the user may select an existing neural network for modification or as a base for
design. Additionally or alternatively, the user may select the number of neurons in the net only
at the end of the design process. Preferably, the user defines an initial neural network size and
modifies this size during the design process. Once a basic neural network design is generated
or selected, some or all of the following steps may be performed, in any order decided upon by
the user, until the design is complete. Where spatial selections are described, a user may select
a portion of a displayed neural network using a pointing device or he may define the spatial
form of the selection in functional terms, i.e., ranges of distances and angles. Once such a
selection is displayed, a user can preferably modify it using the pointing device.

(a) The user spatially selects a portion of the (displayed) neural network and defines its
type. Usually, such a definition is associated with a displayed color. The user may
also define various a parameters of the neuron type, such as excitation threshold,
number of connections and other parameters as described above. This process may
also be performed on an individual neuron basis.

(b) The user controls the amount of data displayed and/or its level of detail. This can
be done by controlling the visibility of a selected type of neuron, a grouping of
neurons or a type of interconnection. In addition, if functional groups are grouped
together in a hierarchical structure, the level of detail of that structure can also be
controlled.

(c) The user manipulate a (three-dimensional) view of the neural network..

(d) The user deletes individual neurons, groups of neurons or types of neurons.

(e) The user adds individual neurons.

() The user changes global definitions of the neural network, usually using a text-

based editor.
22



10

15

20

25

30

WO 99/12085 PCT/IL98/00430

(g) The user save a portion (or all) of the neural network in a file. Preferably, using -
such a saved portion as a building block for a future neural network.

(h) The user loads a neural network portion from a library and interconnects the new
neural networks with the one from the library. A neural network portion may also
comprise many neural networks. Such a neural network can also be a conventional
neural network, either trained, untrained or partially trained.

(i) The user defines an output function for a neuron type or for an individual neuron.

() The user defines where the input and the output of the neural network will be. It
should be noted that since the user can view any portion or projections of the
network, defining the outputs may be only a semantic issue in some cases.

(k) The user selects a group of neurons to be a memory unit and defines how these
neurons will be trained.

(I) The user defines or selects a learning function for any trainable portion of the
neural network. It should be noted that a neuron may have both trainable and non-
trainable connections, since in most cases, the training is in the connections, not the
neurons.

(m) The user defines or selects a function which initializes the weights of connections
for a group of neurons according to a function, preferably a spatial distribution
function. Such a function might be one which modifies existing weight definitions
of the neurons' connections. Typically this step is performed for trainable portions,
but also possibly for some non-trainable portions of the net.

(n) The user groups several neurons or neuron types as a super-group, for purposes of
manipulation.

A neural network portion may be stored as a definition file. Typically, with a random
seed which will generate the particular stored network. Alternatively, the individual neurons
with their connections and their connection weights may be stored. This is especially useful for
storing trained neural networks.

Modification of individual neurons is espec’ially important when modeling sensory
neurons. Or when defining neurons which connect to external input and outputs which are not
neural network based. In a preferred embodiment of the invention, sensory neurons are defined
using mathematical functions. For example, the excitation threshold of a group of input
neurons may be defined to change over the range of 1-10, with an overlap of 10% between
receptive field areas of (functionally) adjacent neurons. The inputs of the individual input

neurons are typically spatially distributed, as are the input weights of these neurons.
23



10

15

20

25

30

WO 99/12085 PCT/IL98/00430
Alternatively or additionally, the distribution of connection type, whether inhibitory or -

excitatory is also spatially distributed. In a preferred embodiment of the invention, the user
selects from one of several predefined distributions of the input neurons and their connection
types and weights. Alternatively, the user may supply any user defined distribution.

Two types of structured construction of neural networks should be differentiated. A
first type is "modular”" construction in which finished modules are connected together. Each
individual module is usually separately debugged and usually also stored in a library. A second
type is "fuzzy grouping" in which groups of neurons are selected and the spatial distribution of
interconnections therebetween are defined. "Fuzzy grouping”, unlike "modular” design, does
not necessarily define sharp transitions between groups of neurons having different functions.
In fact, an overlap between two functional groups is possible.

Another aspect of neural network definition relates to defining architectures, especially
architectures for trainable neural networks. In a typical prior art architecture, the following
three definitions are usually lumped together:

(a) the physical structure of the network, including how the neurons are interconnected,;

(b) how the network is trained, for example, by forcing values at its output; and

(c) the training function: how it is decided if to change a weight and how the weight is
changed.

In accordance with a preferred embodiment of the invention, each of these three
aspects of the architecture may be separately modified, especially the training function. Thus,
effectively, new neural network architectures may be created. In a preferred embodiment of
the invention, a back-propagation architecture is modified by changing (only) the learning
function to a Hebbian learning function.

Once the neural network is defined the user compiles the definition file to generate a
neural network.

NEURAL NETWORK COMPILATION

Not all definition files describe a legal neural network. Some definition files may
simply contain syntax errors. In some cases, the p’robability distributions described do not
allow any neural network. In other cases, the compiler may not be able to generate a proper
neural network in a reasonable amount of time. In such cases, the compiler preferably indicates
to the user where the error occurred in the definition file and, preferably, indicates to the user
what a suitable correction might be, for example, what range of values for a parameter will

enable a neural network to be generated.

24



10

15

20

25

30

WO 99/12085 PCT/IL98/00430

The following data files are preferably used as an input to the compiler (and described
otherwise herein collectively as a definition file):

(a) A general network architecture file, which describes the topology and size of the net
and the types of all the neurons in the net.

(b) A neuron definition file(s) which defines the characteristics of each neuron type, for
example, the integrator type and learning function.

(c) A (forward) connection definition file(s), which describes, for each type of
connection, parameters which describe the connection, including, weight and statistical delay
function.

(d) A backwards connection file, which describes, for each type of connection, the
neurons which are to provide the input data (by type and/or spatial distribution), the average
number of output connections for each source neuron, a scoring function to use on each
interconnection and/or a statistical delay function. It should be noted that backward
connections are useful for defining connections from an input layer to a particular functional
group of neurons.

(e) A direct connection file, which describes direct connections between individual
neurons. Preferably, two types of interconnections are defined, excitatory and inhibitory. In
addition, the weight of the interconnection is preferably defined, either as an absolute or as a
probability. Preferably, a statistical delay function for the interconnections is also defined.

A compilation process preferably includes the following steps:

(a) Reading and verification of all data input files. In this step the compiler reads the
definition files and checks them syntactically and for errors in data. Function definitions, such
as an integrator function, are usually verified when they are used. Data and definitions are
typically verified in this step.

(b) Generating a net database structure, responsive to the data in the general
architecture definition file.

(c) Forward connecting. The forward connections are defined and the connection
characteristics, such as weight are initialized. Typically, each target neuron is assigned a
probability of being connected to a source neuron and the neurons with the highest score are
then defined as being connected. The assigned probability and the selection of a neuron as a
target neuron is dependent on a spatial distribution function, which may be user supplied.

(d) Backward connecting. Each neuron "selects" source neurons so that the average
number of connections into each neuron is the defined average. Typically, when both forward

and backward connections are defined, the number of actual connections is the sum of the two
25



10

15

20

25

30

WO 99/12085 PCT/IL98/00430
numbers. Alternatively, the compiler tries to assure that the forward and backward connections —

will match. Typically, only an average number of connections can be assured.

(e) Additional connections. Any connections which are defined to be performed after
compilation, such as changes made on a compiled network, or block copies (defined below)
are applied to the network at this point.

(f) Additional table prepai‘ations. In this step, various data may be arranged in tables for
more efficient use during run time. One example is a list of all the incoming connections to a
neuron, which is useful for various types of learning functions.

The compiled neural network may be a stand-alone program for a particular machine.
Alternatively, it may be a VHDL definition file for generating a hardware embodiment of the
neural network, using further hardware design tools, as known in the art. Preferably, a
hardware embodiment of the neural network is in the form of a data table, which defines the
neural network and an emulator which uses the data table to perform the neural network
functions. Such an emulator may be a standard hardware unit, with the data table being
downloaded as firmware. Alternatively, at least some of the data table may be modified as part
of a training session. Alternatively or additionally, the VHDL file is of a hardwired version of
the network.

In a preferred embodiment of the invention, such a neural network is used as an
embedded neural network for the electronic control of an electronic device, such as an air-
conditioner, a washing machine or an automobile. A neural network is especially useful when
fuzzy-logic type control of a device is required. In an embedded embodiment, the output
functions used by neurons are preferably limited to those which are easily and simply
implemented in hardware. Preferably, in non-research settings, the compiled neural network
and the run time will include a minimum of debugging utilities.

It should be noted that a neural network in accordance with the present invention is
inherently better adapted to hardware implementation than conventional neural networks.
First, only a small number of the connections between individual neurons are trainable, so
most connections can be hardwired. In some cases, t};ere are no trainable connections. Second,
as described below, an individual neuron, in accordance with a preferred embodiment of the
invention, is very simple and it will be appreciated by a person skilled in the art that such a
neuron can be implemented using only a small area of an IC. Third, as described herein, the
neural network is typically structured so that most interconnections are local, i.e., to nearby

neurons, so the number of long-distance connections is small.

26



10

15

20

25

30

WO 99/12085 , PCT/IL98/00430
For these same reasons, a neural network in accordance with a preferred embodiment -

of the invention is also more suitable for a distributed computation embodiment, inasmuch as
the neural network is already divided into modules having a limited amount of
communications therebetween and all of which are to be executed in parallel.

Once a neural network is compiled, the user may, in a preferred embodiment of the
invention, redefine the properties of individual neurons and/or add and/or delete individual
neurons, by directly modifying the neural network and without recompiling the entire
definition file. Typically this is done using the neural network editor, described above.
Typically, such changes are stored in a special section of the definition file and are
automatically applied to the neural network when the definition file is next compiled.

A special type of modification is a block copy. In many neural networks, there are
significant repetitions of structure. In some cases it is desirable to copy a portion of the
network, or only definitions thereof before compilation (during network design). However, in
many cases, it is desirable to copy a block of actual compiled connections (block copy), after
the definition file is compiled. In a preferred embodiment of the invention, the user defines a
network which is large enough for the original and copied blocks and defines connections only
for the original block. After compilation, the connections and/or type definitions of the original
block, are copied to the unused area of the network. Alternatively, only some of the definitions
may be copied. One issue to be considered is connections between neurons inside the copied
block and neurons outside the copied block. In one preferred embodiment of the invention,
connections are absolute. Thus, if a neuron inside the block was connected to a particular input
neuron, then the copied neuron will also be connected to the same neuron. Alternatively or
additionally, at least some of the external connections may be defined to be relative. Thus, if
the copied block is 10 neurons away, in a particular direction, from the original block, the
connection will be transferred to an input neuron which is also 10 neurons away. Alternatively
or additionally, a more complex functional relationship may be defined between the original
connection locations and the copied connection locations.

TEST-INPUT DESIGN '

A neural network development system in accordance with a preferred embodiment of
the invention, preferably includes a dedicated input design editor for generating test-input data
sets for debugging and testing of a neural network. The input editor preferably enables the user
to define spatial input patterns and how they change in time. In addition, the user can select an
input set from a library of input sets. The selected input set can then be modified using

functions which change the input set spatially or temporally to better match the current
27



10

15

20

25

30

WO 99/12085 PCT/IL98/00430

testing/debugging situation. In one preferred embodiment of the invention, the height and/or
width of the input data is temporally modified. Data can also be imported, for example by
projecting images or image sequences unto the inputs of a neural network. The data in the
input set can be associated with individual input lines. Alternatively, the user defines the
geometry of the input lines (matrix, linear, etc.) and allows the input design tool to project the
data unto the input lines. This technique is especially important when the same data 1s used to
test a plurality of neural networks having different scales. The projection method may also be
user defined, for example, to include a smoothing function.
Preferably, the user can define an input resolution and/or a background intensity level.
NEURAL NETWORK DEBUGGING
In any system which does not translate specifications directly into executable
programs, any generated programs must be debugged to verify that they work (i.e., do not
hang or cause faults) and that they meet the specifications. In prior art neural networks, since
nothing is known of their inner-workings, only the output of the network is analyzed.
However, in accordance with a preferred embodiment of the present invention, since the neural
network is constructed to have and has a structure and functional groups, the inner-workings of
the neural network are preferably debugged. The inner-workings may be analyzed, either as
modules or even down to the level of an individual neuron. The outputs may be analyzed in
real-time or they may be stored in data files and analyzed after the execution of the neural
network is over. Off-line analysis of module outputs is important in order to determine
mismatch between two modules of the neural network.
Debugging may be approached using one or more of the following techniques:
(a) single stepping through the operation of the network;
(b) tracing the output (spike train) and/or input of individual neurons;
(c) tracing the output of groups of neurons, possibly the output being reprojected in a
user defined manner;
(d) replacing modules with stubs, which stubs may be emulated by programs, by a data
table or by a different module;
(e) dictating input values to various neurons, or, more preferably, dictating outputs of
various neurons;
(f) tracing and/or debugging of the output functions of individual neurons, which may

be written in a "standard" high-level language;

28



10

20

25

30

WO 99/12085 PCT/IL98/00430
(g) partially retracing the execution of a neural network and presenting new input or —
changing various parameters of the neural network to determine their effect on the

output of the neural network;

(h) analyzing a correlation between two or more neurons, preferably shown as a

correlation diagram of their outputs and/or their inputs; and

(i) viewing a graphical representation of the connections of a single neuron or a

(specified) group of neurons and analyzing changes in the activity on the
connections and/or changes in weights (in a learning portion of the neural network).

As with the input, the output of the neural network or of portions thereof may be
projected in real-time to generate an image or a sequence of images. Alternatively, a designer
may view the activity of a slice or a spatial sector of the neural network, as it changes with
time.

One important issue which should be tested during debugging is the tendency of the
neural network to hang, i.e., not reach an end-state. Neural networks according to the present
invention are less prone to hanging, as described below, however, the tendency to hang is
important and testing for it is usually performed by generating a very large range of input sets
and determining the distribution of relaxation times of the neural network. Typically, once an
input set which generates long relaxation times is identified, new input sets which are similar
to that input set are generated.

In a preferred embodiment of the invention, such a debugging activity is performed
automatically by the debugger.

The debugging process described above may be repeated for many input sets and the
neural network modified if necessary until the neural network is deemed to be debugged. It
should be appreciated that in some cases, debugging will necessitate changes in the definition
of the neural network. Some of such changes may require debugging the neural network again
with previously used input sets. In such cases, the output of the neural network may be
compared to the output of the unmodified neural netvx’/ork, either in real-time or off-line.

It should be appreciated that a neural network may be debugged either before, after or
during training (if such training is relevant for the particular neural network). When debugging
a neural network during training, an additional feature which is preferably provided, is the
ability to partially undo the training of a neural network.

RESULT ANALYSIS
The output of the neural network, obtained using the debugger, may be exported to an

analysis program, such as a spreadsheet or a mathematical package. These results are
29



10

15

20

25

30

WO 99/12085 PCT/IL98/00430
preferably compared to the specifications of the neural network to determine if the user has

properly defined the neural network. If the neural network does not meet the specifications, the.
user must modify the neural network. The results may also be analyzed to determine the
efficiency of the neural network. Efficiency may be measured by the number of neurons
required to perform a task and by the time it takes to perform the task.

In a preferred embodiment of the invention, the analysis of the results is used by an
automatic programming system to automatically modify the neural network to better match its
specifications. Automatic modification is made possible by the combination of two factors (a)
the generation of the neural network from a compiled definition file and (b) the structure of the
file being mostly parameter definitions and not structured programming steps.

One example of automatic modification is in scaling of the neural network. A user
defines a maximum number of neurons which he is willing to have in a particular neural
network and also defines output specifications for various input sets to the neural network. The
user then designs a neural network and allows the system to automatically generate a neural
network having a minimum number of neurons. In accordance with one preferred embodiment
of the invention, the system first generates a neural network having the maximum number of
neurons and then the system thins the neural network by randomly deleting neurons from the
neural network and checking to see if it still matches the specifications of the original neural
network. In accordance with another preferred embodiment of the invention, the system
recompiles the neural network with a smaller number of neurons instead of thinning it, until it
can no longer meet the specification. The optimal number of neurons is preferably determined
using a search techniques as known in the art, for example, binary search. The user may also
define portions of the neural network which may be thinned and portions which cannot be
thinned, for example, the input neurons may be designated as being non-thinable.

Another example of automatic modification is scale increasing, where a user defines
and debugs a small-scale neural network and then allows the system to generate a new neural
network having a larger scale and/or resolution.

Yet another example of automatic modification is optimization-type searching. In this
technique, the user defines a neural network and defines permissible ranges for various of the
parameters therein. The system searches the space formed by the allowed ranges of parameters
to find a set of parameters which better meets the specifications required of the neural network.
The system then uses this set of parameters to generate a neural network.

Another aspect of the present invention relates to optimization techniques for pruning

the compiled neural network. One technique comprises running several test data sets on the
30



10

15

20

25

30

WO 99/12085 PCT/IL98/00430

neural network and erasing ail neurons which fire less than a certain amount. Another
technique comprises running several test data sets on the neural network and erasing a
connection if it was used less than a predetermined number of times or if it affected the output
of less than a certain number of neurons a certain number of times.

INTEGRATION

Once a neural network module is generated it can be integrated into a real-world
system. Such a system may be a more complex neural network or it may be a "standard"
software system which uses the neural network for a particular, designated task. Additionally
or alternatively, the system may be a neural network system which uses "standard" software
for a particular designated task.

As described above, a neural network module may be selected from a library to be
integrated with a parent neural network. In some cases, a library module may be automatically
scaled to match the parent neural network, for example, by generating a new neural network
module with the correct scale. In some cases, a neural network may be scaled simply by
increasing the number of neurons of each type, in the network's definition file. One such
example is a when the neural network comprises a plurality of columns and each column has a
different type of neuron. In other cases the library module may be non-scaleable, for example,
as a result of some types of manually design. In such cases, a special, matching, neural
network may be used to interconnect the library module to the parent neural network. The
matching neural network typically scales input and/or output between the parent neural
network and the library module. Matching neural networks can be automatically generated
from a generic specification by defining the number of inputs and the number of outputs of the
matching network. Such a matching neural network will usually both scale the input to the
output and apply a smoothing function.

One example of such a neural network comprises a single layer. The inputs of each
neuron in this layer are connected, using a Gaussian distribution function to outputs of the
parent network. The size of the source area is dependent on the scaling factor. For example, in
a one dimensional matching example, if the input is half the size of the output, than the size of
the source area is a little over two neurons.

Additionally or alternatively, a matching neural network may generated by supplying a
standard neural network and training it to convert an input data pattern to an output data

pattern. Alternatively or additionally, a matching neural network may be manually

constructed.

31



10

15

20

25

30

WO 99/12085 PCT/IL98/00430

In a preferred embodiment of the invention, when a neural network is attached to -an_
existing neural network and has a different size therefrom, blank neurons are automatically
provided to buffer the smaller of the two neural networks. Preferably, some or all of these
blank neurons, if not otherwise interconnected later, are deleted by the user.

One important issue in multi-module neural network is the synchronization between
different modules. In the prior art, neural networks are treated as a single unit, whose output is
meaningful only after the network output stabilizes. In contrast, in a preferred embodiment of
the invention, the operation of various modules of a neural network are synchronized.
preferably, one of two types of synchronization is used, either a system clock type
synchronization, where all of the modules (but not necessarily functional groups within the
modules) are synchronized to a single clock, or a serve-when-ready type synchronization,
where a particular module operates when all of its inputs are ready. It should be appreciated
that these two synchronization methods can be combined. In addition, there can exist several
groups of modules, each with its own local clock. In a serve-when ready type synchronization,
some modules may operate even if not all their inputs are ready. In such cases, there is
preferably an input to these modules which indicates that certain inputs are not ready yet.

These synchronization techniques may be applied using the network itself or with the
aid of an external, algorithmic, program.

In a preferred embodiment of the invention, a buffer module is provided between two
connected modules. This buffer module has the property that its output is substantially one
value when its inputs are changing and the input values once these values have stabilized.
Thus, the connected module can easily change its functioning responsive to the stabilization of
its input. A buffer module can constructed, for example, using a neural network having a
plurality of layers, where a delay is provided between a first layer and a second layer and
wherein the output of the buffer module is the input of the module, inhibited by the subtraction
of the first two layers. If the two layers have substantially the same data, then the input is
stabilized and no inhibitory signal will be generated. If however, the two layers are different,
an inhibitor signal will be generated and the output of the buffer module can be some preset
value.

Such a buffer module can be enhanced to form a latch-buffer, where the previously
stabilized input is provided until a new stabilized input is available. The latch may also be
activated by an external signal, which may be supplied by an external clock.

In a preferred embodiment of the invention, a separate module detects, from a plurality

of such buffers and/or module, the state of readiness of data and decides which modules are
32



10

15

20

25

30

WO 99/12085 - ) ) PCT/IL98/00430
allowed to proceed with their operation. This type of centralized control is especially.

important when the neural network must interact with real-world tasks.

A clock is preferably provided by a dedicated neural network module which generates
a periodic signal. This signal preferably only controls the transfer of data between module,
while within modules, data transfer may be controlled either using internal clocks or without
control.

In one preferred embodiment of the invention, one module "runs" a second module as a
subroutine, at each run possibly controlling the activity of the module through specific inputs.
Preferably, the one module does not start a second ruin until the first run is over. The one
module may run the subroutine module with a plurality of different data sets and then generate
an output responsive to which of the runs was most successful.

Combining a neural network with an existing "standard" software system requires that
the inputs to- and the outputs from- the neural network be translated between binary notation
and the notation used by the neural network. The input data may then be projected onto the
network, or provided as input to selected neurons. Preferably, several converters are provided
for converting from standard file formats to the input format preferred by the neural network.
As mentioned above, the transfer (output) function of an individual neuron may be any user
defined function, including a compiled C++ function. Data-input to a neural network may thus
be achieved by providing the neural network with an individual neuron whose output function
reads data from the surrounding "standard" software system. Output from the neural network
may be achieved in a similar manner.

In a preferred embodiment of the invention, the entire activity of the neural network is
recorded as an output file. Alternatively or additionally and especially where the neural
network interacts with an outside system, the user preferably defines one or more output
functions which translate the activity of the network to a particular data output. Such a
function may be, inter alia, a selection of a few of the neuron outputs, a projection of such
outputs, statistics of the activity of all or part of the neural network or even a post-processed
output from at least a portion of the network. ,

Synchronization between a neural network portion of the system and a "standard
software" portion of the system may also be achieved using special neurons. In addition, the
output of individual neurons may be delayed using their individual output function. In this
manner, it is possible to control the flow of data and/or functioning of a neural network using a

high-level language. High-level languages, such as C++, are typically more suited to process

33



10

15

20

25

30

WO 99/12085 PCT/IL98/00430
control than are neural networks. Such a C++ function may be used to supply clock signal and

make decisions regarding data flow.

When the "standard software" component is to be integrated into a neural network
system, the connection therebetween can be achieved using similar methods to those described
above with respect to a neural network component in a software system.

It should be appreciated that a neural network system in accordance with a preferred
embodiment of the invention may incorporated several different types of neural networks
and/or standard software and/or prior-art type neural networks. In a preferred embodiment of
the invention, the neural network generation system includes general architectures for prior-art
type neural networks. Thus the system as described above may be used to construct, test and
debug any type of neural network.

By the introduction of structure and modular- and hierarchical- design to neural
networks, the present invention enables the use of many CASE (computer aided software
engineering) tools in the field of neural network design.

Some of the most important tools have already been described: using libraries for
standard components; reusing modules and/or designs of modules; using an iterative design
process; dividing work between different people; hierarchical decomposition of a project;
modular construction of a project; debugging, especially using program stubs; and test-data set
design.

In addition, other CASE tools and techniques may be used, including tracking changes

of the definition files and their effect on the neural networks; version control; and library

modules.
IMPLEMENTATION DETAILS

Although the above described methods of neural network design and construction are
suitable for many implementations of neural networks, the inventors have found the
implementation described below to be especially useful and efficient.

A first design issue is the use of spike train encoding. In most neural network systems,
the neurons generate either a binary value or a’single multi-valued output (amplitude
encoding). In a preferred embodiment of the present invention, a neuron generates a train of
pulses in which the data is encoded by variations in frequency and length of the pulses.
Preferably, the train of pulses is continuous with the data being encoded by changes in the
frequency of the spikes.

A second design issue is preventing phase-locking. Spike-train encoding is inherently

less susceptible to phase-locking than amplitude encoding. In addition, in a preferred
34



10

15

20

25

30

WO 99/12085 7 PCT/IL98/00430
embodiment of the invention, a random delay is attached to the output function of the neuron,
The addition of such a delay does not adversely affect the data carried by the spike train but it
does reduce the probability of all the neurons. firing in phase with each other. The random
delay may be embodied as a different constant delay for each neuron (or even neuron type) or
it may be embodied as a random delay each time the neuron generates an output.

It should be noted that other aspect of the invention may be performed using amplitude
encoding or combined amplitude and frequency encoding.

A third design issue is providing time-decay of the input. In a preferred embodiment of
the invention, signals which reach a neuron at a later time are reduced in importance by a
reduction in amplitude. Preferably, a biological type function is used, which reduces the
amplitude of both early- and late- arriving spike signals. Alternatively, any user defined decay
may be used, including a Poisson decay and a Gaussian decay function, which reduces the
amplitude of both early- and late- arriving spike trains.

Fig. 4 is a schematic diagram of a preferred, efficient, implementation of a neuron 60,
in accordance with a preferred embodiment of the invention. Neuron 60 is shown receiving
inputs 61, 63 and 65 from three neurons 62, 64 and 66 (respectively). Neuron 60 includes a
time-stamped circular buffer 68 into which all such input is placed. When the sum of the
inputs is above a threshold 76, neuron 60 generates an output 78. Each data sample from
inputs 61, 63 and 65 is time-stamped and weighed with a decay value responsive to that time
before being summed with the values already in the buffer. As described above, the decay
value may be generated from a user defined table or it may be a peaked distribution.
Preferably, neuron 60 only checks the current data value to see if it is above a threshold.
Alternatively, a moving window average of some sort may be used. Typically, a certain
propagation delay time is associated with the propagation of input from its arrival at neuron 60
until it can be used. In a preferred embodiment of the invention, a refractory period is defined
for each neuron, which limits its ability to generate a second output signal at too short a time
after generating a first output signal.

In a preferred embodiment of the invention the only delay between the generation of

inputs 61, 63 and 65 and their insertion into buffer 68 is a time delay associated with

preventing phase-lock. Alternatively or additionally, the distance between neurons is
interpreted as adding a delay factor. Such a distance may be defined using purely geometrical
terms (as appropriate for the n-space of the neural network). Additionally or alternatively, the

distance may be defined by the belonging of two neurons to different modules. Alternatively

35



10

15

20

25

30

WO 99/12085 PCT/IL98/00430

or additionally, a different delay and/or delay distribution is assigned per type of connection
between neurons.

In a preferred embodiment of the invention, the integrator function compares the sums
of the inputs to the threshold 76. Alternatively. Any other type of integrator function, possibly
user defined, is used. In one example, the integrator function models a resting potential, by
modifying the effective threshold. Alternatively, other aspects of the cell membrane may be
modeled by the integrator function. In another example, the integrator function uses a
windowed average of the time-stamped buffer rather than a single value.

In a preferred embodiment of the invention, more than one time-stamped buffer is
used. In one example, each type of input connection has its own input buffer. In another
example, inhibitory inputs have a different buffer than excitatory inputs. The sum of the
inhibitory inputs may be subtracted from the sum of the excitatory inputs to model a single
buffer. Alternatively, inhibitory inputs are assigned a greater weight when the excitatory inputs
are lower. In one preferred embodiment of the invention, each buffer has a different refractory
period, such that after a generation of an output signal, the values in the buffer are considered
zero. In a preferred embodiment of the invention, the refractory period is modeled by changing
threshold 76. Thus, a relative refractory period is also possible.

It will be appreciated by a person skilled in the art that since only addition and
multiplication (by a weight) need to be performed, simulating the operation of neuron 60 can
be done very efficiently. Alternatively, an implementation of neuron 60 can be made fast and
simple.

One special type of neuron is an input neuron. In a preferred embodiment of the
invention an input neuron has its inputs arranged in a particular spatial distribution. Preferably,
there is at least some overlap between two adjacent neurons. Alternatively or additionally,
when two neurons are sensitive to different input amplitudes, there is preferably at least some
overlap between their sensitivity ranges. It should be noted that spatial distributions may also
have more than two dimensions. Thus, when data is, projected onto a neural network, a solid
shape may be projected unto a three-dimensional array of input lines. It should be noted that
such spatial distribution functions can perform filtering, such as smoothing, hi-pass and low-
pass filtering.

In a preferred embodiment of the invention, an input neuron has a integrator function
which converts an amplitude input signal into a frequency modulated signal. Preferably, this is
achieved by integrating all the values in the input buffer and generating a spike when the

values pass a threshold. The next integration cycle uses only new data. In a preferred
36



10

15

20

25

30

WO 99/12085 PCT/1L98/00430
embodiment of the invention, the neuron has a baseline output frequency. This baselin'e
frequency is modified responsive to the input. If the input has a low amplitude, the output
frequency is lowered below the baseline, if a higher amplitude than the frequency is increased.
In a preferred embodiment of the invention, the input neuron includes a decay function, such
that old data in the input buffer is ignored. Alternatively or additionally, the neuron adapts to a
certain input level by applying a decay function to the input, when the input is constant.

In a preferred embodiment of the invention, the neural network is a stand-alone
program which can run on any general purpose computer, for example, in the WINDOWS
95® gystem, it preferably includes a data file and an associated DLL. In a preferred
embodiment of the invention, an encapsulated solution is provided, such that the generated
neural network is ready to run. Prior art applications typically generate a c-code program
which needs to be complied by a user. In a preferred embodiment of the invention, the
encapsulated neural network includes a input and/or output transformation filters which
convert "algorithmic style" data to data suitable for a particular neural network and vice versa.
As used herein, the term neural network includes, inter alia, a hardware device which emulates
the function of a neural network, a hardware neural network and a software program which
emulates a neural network. Typically, such software is provided for a general propose
computer.

In a preferred embodiment of the invention, the runtime process includes the following
steps:

(a) Reading input into the net. In this step, the input is read. Preferably, the input
function is user supplied. Such an input function can read ASCII format, a database format or
an internal format generated by the input-editor. All the data is preferably loaded at one time
so that a data vector, having a time dimension is generated. In a network having a two-
dimensional input layer, the data vector will be three dimensional: X, Y & T. The T dimension
is discrete and depends on the time-tick resolution. Alternatively, and especially in real-time
neural networks, where the data is not previously available, data is loaded and converted for
each tick in real-time.

(b) Initializing all run-time functions and data.

(c) Validating the running functions. Each function is validated to ensure that it is
properly called and has all of its associated data files. Preferably, user defined functions

include a validation portion which is run at this time.

37



10

15

20

25

30

WO 99/12085 PCT/IL98/00430
(d) For each time tick, for each neuron, all the input data to a neuron are entered into

the buffer(s) of the neuron; the integrator on the neuron is run; and the outputs from the neuron
are generated.

(e) Outputs are sent to a data file and/or another program (as described above) either
for each time tick or after the run is over for example, if the network output stabilizes, the
input data is finished and/or a predetermined amount of time passes. As described above, the
activity of each neuron in the net can also be saved.

In a preferred embodiment of the invention, a user selects only a subgroup of neurons
to be active during a run. Preferably, the user selects a module unit of the neural network.
Preferably, the selected group of neurons is run on a recording of a previous run of a neural
network. In such a case, the neuron repeats tits activity in that run. Then, the output of this
module is used as an input for the testing of a second module.

It should be noted that two runs may not have exactly the same output, due to the
stochastic nature of the network. However, the average output will generally be the same.

For a learning neural network the above described process may be different. Typically,
a learning neural network is run in two modes, learn and normal. Normal was described above.
However, it should be noted that some neural networks in accordance with a preferred
embodiment of the invention are always in a learning mode.

In a learning mode, a set of inputs (training set) is preferably defined to be run on the
network consecutively. Learning functions (preferably user defined) are called during the run
time to effect the learning process. At least a primary set of parameters of these functions is
preferably defined in the system. Preferably, user defined functions can be run at the start
and/or end of each training set, the start and/of end of each input set and/or at the start and end
of each time tick. These functions may also be used to determine if to repeat an input set, skip
to a next input or a next training set and other training control functions. Preferably, different
functions may be defined for each connection type. Another function, preferably run during a
time tick, is preferably defined to calculate neuron-dependent calculation. This function may in
turn use other functions which determine if to change’ connection weights and/or to effect these
changes. Typically, most of these myriad of functions will perform no actions.

Alternatively or additionally, to learning by changing synapse weights, other
parameters of neurons and/or inter-neuron connections may be modified as part of a learning
scheme. These parameters include, for example, synapse delay, threshold values, refractory
period and/or shape and/or duration of the neuron output signal. The modification of the

parameters may be a function of global and/or local state of the neural network. Global states
38



10

15

20

25

30

WO 99/12085 : PCT/11.98/00430
include, for example, the performance of the entire network and/or modules thereof, for-

example an error function used for supervised learning such as back propagation. Local states
include for example an activity level and/or distribution of activity of the current neuron,
characteristics of the activity at below threshold levels, the activity of neighboring neurons,
such as those which provide input to and/or receive output from the current neuron and/or
activity levels of groups of neighboring neurons, especially complete modules. Alternatively
or additionally, a user may defining a training connection between non-neighboring neurons
and/or groups of neurons. One type of preferred training relationship is a Hebbian-like learning
function in which a parameter is increased, decreased and/or optimized as a function of
correlation between instantaneous characteristics of two neurons, for example, their firing.

A shape of an output function may be modified, for example, by selecting between
several preset function forms. Alternatively or additionally, the output function may be
parametrized and these parameters may be varied. In one example, the decay length of the
output signal may be such a parameter.

In a preferred embodiment of the invention, the modification of parameters of neurons
as part of a learning process may be defined to be non-monotonic and/or non-linear functions.
In one example, a synapse threshold is decreased if the average level of activity of the synapse
is between a minimum and a maximum values. These values may also be calculated on the fly,
based, for example, on the instantaneous activity level in the entire neural network.

In the above described embodiments, only a few of the many available parameters
known to apply to neurons and to complex neurological structures have been used. As can be
appreciated, the above-described framework may be easily expanded to include these
parameters. However, the use of a structured neural network is deemed to be the most
important single valuable parameter. In addition, the above implementation includes a
particular set of parameters which the inventors have determined as being suitable for neural
network design.

The present invention includes the use modeling of many such parameters, including:
resting potential, threshold, refractory period, tempbral encoding of information, stochastic
delay in firing, usage of post synaptic potential and not binary outputs, distance dependent
synaptic delays and statistical definition of spatial distribution of the connections. In particular,
it should be noted that the spatial description of a neural network in accordance with a
preferred embodiment of the invention, make it simple to model the effect of spatial
distributions of neurotransmitters and their diffusion through the brain. This might be

achieved, for example by defining a time-varying spatial distribution function of the neurons,
39



10

15

20

25

30

WO 99/12085 7 PCT/IL98/00430
determining the local concentration at each neuron and modifying the behavior of each neuron

responsive to that local concentration and a model of the effect of that concentration on that
neuron type. In a preferred embodiment of the invention, neuron types may, as part of their
output function, affect these spatial distributions, by a feedback mechanism, such as modeling

the (local) release of selected neurotransmitters and/or activation of enzymes which breakdown

such neurotransmitters.
DESIGNING NEURAL NETWORKS

Designing structured neural networks to perform particular tasks is a new field and, as
such, there is no existing rule book. However, the following guidelines can be suggested.

(a) In many cases the task can be broken down into modules, preferably in a
hierarchical manner using methodology similar to that well known in the art of design of
computer software and complicated electronic hardware.

(b) Where possible, such breakdown should include as many existing neural network
modules as possible.

(c) Within a particular module, various parallel-programming techniques may be used.
In particular, the following process may be used:

(1) Decide what the positive portion of the output of a network should look
like, responsive to its input.

(2) Decide what the blank portions of the output should look like.

(3) Analyze the outputs and inputs of the net to define a discrete set of input
and/or output conditions.

(4) Parametrically define a group of cells, that for a particular input condition
generates the desired output. Used the parametrized definition, a different group of cells may
be defined for each input condition.

(5) Define a criteria for a group of cells to inhibit another group.

(6) Connect, in parallel, a plurality of groups of cells, so that only one group

can generate an output.
EXAMPLES OF STRUCTURED NEURAL NETWORKS

Like integrated circuits and computer programs, structured neural networks may take a
variety of forms and perform a variety of functions, limited only by the ability of a neural
network designer. The following examples show neural networks which operate in a manner

completely different from conventional neural networks or which perform functions which it

has not been possible to implement hereto.

40



10

15

20

25

30

WO 99/12085 PCT/1L98/00430

SCALING NEURAL NETWORK

In classical pattern matching, the following procedure for matching an input stimuli to
stored representations often used: scaling the input to a certain size; rotating the input to a
certain angle (the size and angle should be the same as for stored representations; and
comparing the scaled and rotated representation to the stored representations. Typically only
the last step has been performed using neural networks. In accordance with a preferred
embodiment of the invention, also the first and second steps are performed using a neural
network.

Fig. 5 is a schematic high level design of a neural network 100 which scales its input.
Network 100 comprises an input layer 102, including an area 104 on which the input stimuli is
projected. Network 100 also comprises a plurality of scale layers 106, 110 and 114 and an
output layer 118 on which the output of the network will be projected. The purpose of network
100 is to generate an output in which the input best utilizes the size of the output area. Thus
similar inputs will generally be scaled to similar sizes.

Network 100 operates in the following manner, each possible scale of image is
generated and the image scale which is best is projected unto the output. To this end, the
number of the scale layers is dependent on the scale resolution desired. Each of the scale layers
is connected to input layer 102, with a different scale. For example, input stimuli 104 is
enlarged to a region 108 in layer 106 and reduced in size in regions 112 and 116 of scale layers
110 and 114, respectively. These connections are indicated by the lines marked "data". Each
layer inhibits all the layers which have a scale smaller than itself, these inhibitory connections
are marked as "inhibit". All the layers are projected unto the output layers, with their outputs
summed. These connections are marked as "project”. In a preferred embodiment, scale-layers
also inhibit layers with a larger scale (not shown), however, this inhibition is preferably
weaker than the inhibition of smaller-scale scale layers.

In operation, the layer with the highest activity will inhibit the operation of all the other
layers, so that the output layer will contain substantially only the data from the layer with the
highest activity. ,

Fig. 6 is a schematic diagram of a detail of the connection of a particular scale layer
120 to input layer 102 in neural network 100 of Fig. 5. For clarity, only the connections of a
single line 122 of neurons to a single line 124 of neurons is shown. In this simple 2:1 scaling,
each neuron in the scale layer receives input from two neurons in the input layer. As can be
appreciated, a smoothing function may be applied during scaling, such as by partially

overlapping the inputs of the neurons in line 124.
41



10

15

20

25

30

WO 99/12085 PCT/IL98/00430
In the above description is has been assumed that the input stimuli is centered in the -

input layer. As can be appreciated, centering can be achieved in the same manner as scaling.
Instead of scale-layers, shift layers are used. Preferably, the inhibitory connections between a
shift-layer and other layers are weighed so that data in the center is preferred over data at the
edges.

ROTATING NEURAL NETWORK

A neural network which rotates its input may be constructed similarly to the scaling
neural network, except, that instead of scale-layers, rotate layers are used. The data in each
rotate layer is at a different orientation relative to the input layer. In addition the inhibition is
between all the different orientations and not only in a particular order of inhibition.

In a preferred embodiment of the invention, the aspect ratio of the rotated image is the
same as the input layer. However, there exists a trade-off between the width of the rotate layer
and the precision of the rotation. If the aspect ration of the rotate layer the same as the input
layer, the network will generally be more robust. However, if the rotate layer uses a large
aspect ration, the precision of the rotation will be higher. A large aspect ratio can be achieved,
for example, by reducing the resolution of the rotated image, during the rotation.

A combined scale-rotate network may be generated using a single network with a
plurality of scale-rotate layers, each with a different scale and rotation. Alternatively, two
networks, one scaling and one rotating are connected together as two modules.

Another possible rotation network is based on a Nobel winning model of how the
visual cortex determines an orientation. In this model, there is an input layer and a plurality of
rotate-column (which correspond to rotate-layers). However, the connection between the
layers is statistical rather than deterministic. Each rotate-column corresponds to a slice of the
image on the input layer. Such a slice is a projection of a rectangular portion of the input layer,
which portion has a particular orientation. Each neuron in the rotate column is randomly (at
least without any logic currently known) connected to a number of input neurons. Thus, for a
particular rotate column, the average rotation of the neurons is a particular angle. However, the
column does not correspond to a rotated image. Poésibly, the column also encode the input
image in some unknown manner.

It is not thought that there is competition between the orientation column at this stage
in the visual processing. However, in a practical rotating network, such competition is

preferably provided.

42



10

15

20

25

30

WO 99/12085 : PCT/IL98/00430
It should be noted that this network does not rotate an image, it only provides the

rotation angle. However, such a determined rotation angle can serve as excitatory and
inhibitory connections to control a second network which does perform rotation.
MEMORY UNIT NEURAL NETWORK

In conventional neural network, the function of the entire neural network may be
summed up as "pattern recognition”. In order for a conventional neural network to perform its
function it must be trained. In addition, material which is learned by such a conventional
neural network is stored over the entire neural network. In a neural network in accordance with
a preferred embodiment of the invention, many functions besides pattern recognition may be
performed by a neural network. These functions are performed by the neural network as-is,
without requiring the neural network to be trained. Such a neural network may of course
incorporate a trainable portion. However, a neural network, in accordance with a preferred
embodiment of the invention, can utilize a trainable segment for storing data, for example,
when comparing two images which are received with a time delay.

Fig. 7 is a schematic high-level diagram of a neural network which functions as a
calculator which can either add or subtract a number from a currently displayed sum. Portion
80, indicated by the dotted line, is the neural network. Neural network 80 has one output, to a
display 82 and three inputs, a numerical input 84, a input 88 which indicates if an "add" button
was pressed and an input 86 which indicates if a "subtract" button was pressed. Neural
network 80 includes a memory 90 which continuously outputs its contents, to display 82, to a
subtraction unit 94 and to an addition unit 92. Units 92 and 94 are hard-wired to add (or
subtract) numerical input 84 and the input from memory 90. However, unless either the "add"
or the "subtract" button is pressed they output the value in memory 90. Thus, the value in
memory 90 is not changed. If such a button is pressed, memory is then "trained” with the new
value. Since memory unit 90 is completely under control of neural network 80, it can be reset
and the training started and stopped at will. Preferably, trainable interconnections are defined
to be trainable by defining the properties of the neuron which generates the signal on the
interconnection. Input and/or output connections of a neuron may be defined as trainable. As
with regular connection types, the connection of trainable interconnections may be user
determined using a spatial distribution. A trainable neuron, in accordance with a preferred
embodiment of the invention, includes inputs which reset its learned output function and/or set
it to a desired value and/or instruct the neuron to begin training or to stop training.

Alternatively, a neural network in accordance with a preferred embodiment of the

invention has a portion which is defined by the user as trainable, in the usual sense of the
43



10

WO 99/12085 PCT/1L98/00430
word. The user then preferably defines the type of training and the training function. The —

training might then be performed before incorporating the neural network in a system, it may
be performed during a calibration stage of the system or it may be performed as part of the
regular operation of the system.

The above examples may not be the ideal way to perform the above described
functions. However, these examples illustrate the breadth, scope and applicability of the
present invention.

The present invention has been described in terms of preferred, non-limiting
embodiments thereof. It should be understood that features described with respect to one
embodiment may be used with other embodiments and that not all embodiments of the
invention have all of the features shown in a particular figure. In particular, the scope of the
invention is not defined by the preferred embodiments but by the following claims. When used
in the following claims, the terms "comprises", "comprising”, "includes", "including" or the

>

like means "including but not limited to".

44



10

15

20

25

30

WO 99/12085 PCT/1L.98/00430
CLAIMS

1. A method of constructing a neural network, comprising:
providing a definition file, containing high-level specifications regarding a desired

neural network; and

compiling the definition file using software to generate a neural network which meets

the specifications.

2. A method according to claim 1, wherein the specifications comprise a statistical

specification of neuron interconnections.

3. A method according to claim 2, wherein the statistical specification comprises a

specification of connections from outputs of neurons to inputs of other neurons.

4. A method according to claim 2, wherein the statistical specification comprises a

specification of connections to inputs of neurons from outputs of other neurons.

5. A method according to claim 2, wherein the statistical specification comprises a spatial

distribution.

6. A method according to claim 1, wherein the definition file comprises definitions of a

plurality of neuron types.

7. A method according to claim 6, wherein the definition file comprises definitions of at

least 5 neuron types.

8. A method according to claim 6, wherein the definition file comprises definitions of at

least 15 neuron types.

9. A method according to claim 6, wherein the definition file comprises definitions of at

least 50 neuron types.

10. A method according to claim 6, wherein the definition of neuron types comprises a

hierarchical definition of neuron types.
45



10

15

20

25

30

WO 99/12085 PCT/IL98/00430

11. A method according to claim 1, wherein the definition file comprises a modular
definition file, each module comprising a definition of a neural network module and the

definition file defining at least one interconnection between individual modules.

12. A method according to claim 1, wherein the definition file comprises a definition of

parameters for a trainable and uniform neural-network architecture.

13. A method according to claim 1, wherein the definition file comprises user-defined

functions which perform portions of a neuron's activity.

14. . A method according to claim 1, comprising:
testing said generated neural network;
modifying said definition file; and

repeating said compiling, said testing and said modifying until said generated neural

network meets a predetermined criteria.

15. A method according to claim 1, wherein compiling comprises:

generating error messages responsive to mistakes in the definition file.

16. A method according to claim 15, wherein the errors are caused by a non-existence of a

neural network meeting the specifications.

17. A method according to claim 1, wherein compiling comprises:
generating an array of neurons; and

assigning a particular type definition to selected one of the neurons.

18. A method according to claim 1, wherein comﬁiling comprises:
generating an array of neurons; and

defining forward connections between a first plurality of neurons and a second plurality

of neurons.

19. A method according to claim 1, wherein compiling comprises:

46



10

15

20

25

30

WO 99/12085 PCT/IL98/60430
generating an array of neurons; and

defining backward connections to a third plurality of neurons from a fourth plurality of

neurons.

20. A method according to claim 1, wherein compiling comprises:
generating an array of neurons; and

defining direct connections between at least one neuron and at least a second neuron.

21. A method of neural network design, comprising:
determining a function to be performed by a neural network;
designing a neural network architecture suitable for performing the function; and

generating a neural network having the designed architecture.

22. A method according to claim 21, wherein designing an architecture comprises

imposing a structure on a homogeneous neural network.

23. A method according to claim 21, wherein designing an architecture comprises

interconnecting at least two existing neural network modules.

24. A method according to claim 21, wherein designing an architecture comprises defining

functional groupings of neurons in the neural network.

25. A method of neural network construction, comprising:
providing a first neural network;
providing a second neural network; and

interconnecting the first and second neural networks.

26. A method according to claim 25, wherein the first neural network and the second

neural network each comprise neurons having different characteristics.

27. A method according to claim 25, wherein providing a second neural network,

comprises selecting the second neural network from a library of neural networks.

47



10

20

25

30

WO 99/12085 PCT/IL98/00430
28. A method according to claim 25, wherein providing a first neural network comprises —

debugging the first neural network prior to said interconnecting.

29. A method according to claim 25, wherein providing a first neural network comprises

training the first neural network prior to said interconnecting.

30. A method according to claim 25, wherein interconnecting the first and second neural

networks comprises providing a third neural network which matches the inputs and outputs of

the first and second neural networks.

31. A method according to claim 25, wherein the first and second neural networks each

have a scale and comprising changing the scale of the second neural network to match the

scale of the first neural network.

32. A method of designing a neural network, comprising:

providing a initial neural network;

providing a range of allowed values for at least one parameter, which parameter defines
allowed mutations in the initial neural network; and

searching an answer-space defined by the allowed range to find a neural network which
is more optimal, in a predefined manner, than the initial neural network and which found

neural network performs a predefined function.

33. A method according to claim 32, wherein searching comprises:
automatically generating a new neural network; and

determining if the new neural network performs the predefined function.

34. A method according to claim 33, wherein automatically generating a new neural

network comprises modifying an existing neural network.

35. A method of neural network construction, comprising:
defining a function to be performed by a neural network; and
constructing a neural network to perform the function, wherein constructing does not

include training the neural network to perform the function.

48



10

15

20

25

30

WO 99/12085 PCT/IL98/00430

36. A method of neural network construction, comprising:
spatially defining a group of neurons of the neural network, which group comprise only
a portion of the neurons in the neural network; and

setting a characteristic of the defined group.

37. A method according to claim 36, wherein the characteristic comprises a spatial

distribution function.

38. A method according to claim 36, wherein the characteristic comprises a compiled high-

level language function which determines the output response of the neurons in the group.

39. A method according to claim 36, wherein the characteristic comprises the probability

of connection from the selected neurons to other neurons.

40. A method according to claim 36, wherein the characteristic comprises the probability

of connection to selected neurons from other neurons.

41. A method according to claim 36, wherein the characteristic comprises an integrator

function of the neurons.

42. A method according to claim 36, wherein the characteristic comprises a firing

threshold of the neurons.

43, A method according to claim 36, wherein the characteristic comprises a number of

connections from said neurons.

44. A method according to claim 36, wherein the characteristic comprises a delay

distribution function of outputs from said neurons.

45. A method according to claim 36, wherein the characteristic comprises a distribution of

connection weights for said neurons.

49



10

15

20

25

30

WO 99/12085 PCT/IL98/00430
46. A method according to any of claims 1-45, comprising, constructing an integrated _

circuit which performs the function of said neural network.

47. A method according to claim 46, wherein said circuit comprises individual circuits for

individual neurons of said neural network.
48. A neural network constructed according to the method of any of claims 1-45.

49. A computer-readable media having a computer program stored therein, wherein said
program, when executed on a general purpose computer for which the program is adapted,

causes the computer to simulate a neural network according to claim 48.

50. A method of testing a neural network having a plurality of input lines, comprising:
providing an image;
projecting the image unto the plurality of input lines; and

analyzing an output of the neural network.

51. A method according to claim 50, wherein the image comprises a sequence of images.

52. A method of testing a neural network, comprising:

providing a neural network having a plurality of individual neurons, a plurality of input

lines and a plurality of output lines; and

tracing the output of at least one neuron, which neuron is not directly connected to an

output line.

53. A method of testing a neural network, comprising:

providing a neural network having a plurality of individual neurons, a plurality of input

lines and a plurality of output lines; and

forcing an input to at least one neuron, which neuron is not directly connected to an

input line.

54. A method of testing a neural network, comprising:

replacing at least a portion of the neural network with a stub; and

50



10

15

20

25

30

WO 99/12085

providing an input data set to the neural network; and

PCT/IL98/00430

analyzing an output from the neural network, which output is responsive to the input 7

data set.

55. A method of simulating a neuron which generates an output responsive to inputs the
neuron receives from a plurality of input lines, comprising:

adding the inputs to at least one time-stamped buffer, responsive to the time at which

the inputs are received by the neurons; and

generating an output responsive to the values in the buffer.

56. A method according to claim 55, wherein generating a response comprises generating a

response if the value of the buffer at the current time is above a threshold.

57. A method according to claim 55, wherein generating a response comprises generating a

response if a sum of values in the buffer from a range of times at and prior to the current time,

is above a threshold.

58. A method according to claim 55, wherein adding comprises weighting the inputs with a

weight responsive to their reception time.

59. A method according to claim 55, wherein generating an output comprises generating an

output at a stochastic delay.

60.  An electro-mechanical device, comprising:

a user input panel;

a mechanical portion; and

a neural network which controls the mechanical portion responsive to user inputs from

the user input panel, wherein the electro-mechanical device does not utilize an algorithmic

circuit for controlling the mechanical portion.

61. A device according to claim 60, wherein the neural network operates substantially in

real-time.

51



10

15

20

25

30

WO 99/12085 PCT/IL98/00430
62. Apparatus for generating a neural network, comprising:

storage for a definition file; and

a compiler which generates a neural network meeting the specifications in the

definition file.

63. Apparatus according to claim 62, comprising a syntax analyzer which analyses the

syntax of the definition file.

64.  Apparatus according to claim 63, comprising an error-message generator which

generates error messages responsive to the analysis of said syntax analyzer

65. A neural network comprising:
a first, non-trainable, plurality of interconnected neurons; and

a second, trainable, plurality of interconnected neurons.

66. A neural network according to claim 65, wherein the training of said second plurality

of neural networks is controlled by the first plurality of neural networks.

67. A neural network according to claim 65, wherein at least one of said second first
plurality of neurons and said second plurality of neurons comprises a neuron having at least

one trainable connection and at least one non-trainable connection.

68. A neural network comprising a plurality of interconnected neurons, wherein said

neurons do not perform a pattern matching function and are not trainable.

69. A neural network comprising a plurality of interconnected neurons, wherein most of
the neurons are grouped into a plurality of functional groups and wherein most of the
connections of neurons in each functional group are with neurons in the same functional

group.
70. A neural network comprising a plurality of interconnected neurons which generate
output signals, wherein the output signals are frequency encoded spike trains and wherein each

neuron delays its output by a different amount.

52



10

15

20

25

30

WO 99/12085 PCT/IL98/00430

71. A neural network according to claim 70, wherein each neuron stochastically delays its
output.
72. A neural network, for controlling an industrial process comprising:

a plurality of interconnected neurons which generate output signals, wherein the output
signals are frequency encoded spike trains;

a input device; and

an output device,

wherein said neural network generates controls said output device, responsive to said

input device to achieve a desired effect on the industrial process.

73. A neural network comprising:
at least one neuron of a first type;
at least one neuron of a second type; and

at least one neuron of a third type.

74. A neural network according to claim 73, wherein said different types have different

integrator functions.

75. A neural network according to claim 73, wherein said different types have different

numbers of connections therefrom.

76. A method of training a neural network comprising:
providing a neural network having a design function and having a trainable portion;

and

training the neural network, wherein said training is performed while the neural

network performs its designated function.

77. A method of training a neural network comprising:

providing a neural network having a design function and having a trainable portion;

and

training the neural network, wherein said training is controlled by the neural network,

without external intervention.
53



10

15

20

25

30

WO 99/12085 PCT/IL98/00430

78. A method of training a neural network comprising:
providing a neural network having a trainable portion comprising a plurality of
neurons, each of said neurons having at least one non-synapse-weight parameter; and

training the neural network by modifying at least one of said at least one non-synapse-

weight parameters of said neurons.

79. A method according to claim 78, wherein said training comprises modifying at least

one synapse-weight parameter of said neurons.

80. A method according to claim 78, wherein said neural network comprises a

heterogeneous neural network.

81. A method according to claim 78, wherein said training is responsive to a global state of

said neural network.

82. A method according to claim 81, wherein said global state comprises an error function

of said network.

83. A method according to claim 78, wherein said training is responsive to a local state of

said neural network.

84. A method according to claim 83, wherein said training is responsive to a state of a

neuron being trained.

85. A method according to claim 83, wherein said training is responsive to a state of a

neuron which provides an input to a neuron being trained.

86. A method according to claim 83, wherein said training is responsive to a state of a

neuron which receives an output from a neuron being trained.

87. A method according to claim 83, wherein said training is responsive to a correlation

between a neuron being trained and a second neuron.

54



10

15

WO 99/12085 PCT/IL98/00430

88. A method according to any of claims 78-87, wherein said training comprises back

propagation.

89. A method according to any of claims 78-87, wherein said at least one non-synapse-

weight parameter comprises a response threshold.

90. A method according to any of claims 78-87, wherein said at least one non-synapse-

weight parameter comprises an output signal duration.

91. A method according to any of claims 78-87, wherein said at least one non-synapse-

weight parameter comprises an output signal wave-form.

92. A method according to any of claims 78-87, wherein said at least one non-synapse-

weight parameter comprises a synapse delay.

55



WO 99/12085 PCT/IL98/00430

40

48 —

RN

)

FIG.2



WO 99/12085

PCT/IL98/00430

2/4

DEFINE [

NET ~ ]

COMPILE

e INPUT

DEFINE

DEBUG

NET

ANALYZE

FIG.3

/8

64

RESULTS

INTEGRATION

6

e

68
2P
76
] \\_J}/’Q\\:éi’
63 ' \72
74

‘x
60 FIG.4



PCT/IL98/00430

GOl

~~—gl1

A
HQH.:,OW_L 103rodd 103royd

118IHNI

3/4

WO 99/12085

é TIgIHNI
il 801
RN ! N A BN
pLL oLl 901
Viv(Q
vivd vivd
\./ ¢0l
i 001
/llﬁo_



WO 99/12085

4/4
102\
OO0OO0O00000
122 [Q0QQ000Q
120\&& | z
D
24— 00« FI1G.6

(86 ///84 //88
- INPUT +
e E - 80
1 -
o L
- MEMORY + _i\\\
| |
L |92
94 | 50~/ |
! l

DISPLAY | -82

FIG.7



	Abstract
	Bibliographic
	Description
	Claims
	Drawings

