US 20140229788A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2014/0229788 A1

Richardson 43) Pub. Date: Aug. 14, 2014
(54) LDPC DESIGN FOR HIGH RATE, HIGH Publication Classification
PARALLELISM, AND LOW ERROR FLOOR
(51) Imt.CL
(71) Applicant: QUALCOMM Incorporated, San HO3M 13/11 (2006.01)
Diego, CA (US) (52) US.CL
CPC oot HO03M 13/1105 (2013.01)
(72) Inventor: Thomas Joseph Richardson, South USPC 714/752
Orange, NJ (US)
57 ABSTRACT
(73) Assignee: QUALCOMM Incorporated, San A method of data encoding is disclosed. An encoder receives
Diego, CA (US) a setof information bits and performs a lifted LDPC encoding
operation on the information bits to produce a codeword. The
(21) Appl. No.: 14/179,871 encoder then punctures all lifted bits of the codeword that
correspond to one or more punctured base bits of a base
(22) Filed: Feb. 13, 2014 LDPC code used for the LDPC encoding operation. The base
LDPC code has no multiple edges, and the one or more
s punctured base bits are those that correspond with one or
Related U.S. Application Data more punctured base nodes, respectively, of the base LDPC
(60) Provisional application No. 61/764,476, filed on Feb. code. For some embodiments, the one or more punctured base

13, 2013.

400
N

nodes correspond to one or more degree 2 variable nodes.

Memory LDPC Encoder
412 414
Encoder 410
Memory LDPC Decoder
422 424
Decoder 420

A

Y

Transceiver

430

_ Communications
Channel

A

A

A

Patent Application Publication Aug. 14,2014 Sheet 1 of 10 US 2014/0229788 A1

100
TN

Variable Nodes 11

Check Nodes 12

FIG. 1A

150
TN

X
111 0 0 %
11 0 0 1 1
H=17"17 0 0 1] *=|%
0111 0 X,
| X5

FIG. 1B

US 2014/0229788 Al

Aug. 14,2014 Sheet 2 0of 10

Patent Application Publication

n—ON r ‘#

Patent Application Publication Aug. 14, 2014 Sheet 3 of 10 US 2014/0229788 A1

Receiver
330

Channel
320
FIG. 3

O

~

(op)

Transmitter

300
TN

US 2014/0229788 Al

Aug. 14,2014 Sheet 4 of 10

Patent Application Publication

|lsuueyn
SUOIBIIUNLIWOYD

v Old

-

'

(0]%57%
JoAlgosuel |

a

2y 1ap0ooe(
> (747 [447
Japo2aqg Ddai Aows |y
0l Jepooug
> (257 457
Japodu3 0dan Aows |y

V/oov

Patent Application Publication Aug. 14, 2014 Sheet S of 10 US 2014/0229788 A1

500
'/

Receive Information Bits To Be Encoded
510

'

Perform LDPC Encoding on Information Bits
to Produce a Codeword
520

'

Puncture Bits of Codeword Based on
Punctured Nodes of LDPC Code, wherein
Punctured Nodes Eliminate Multiple Edges

Between Node Pairs in the Base Graph
530

FIG. 5

Patent Application Publication Aug. 14, 2014 Sheet 6 of 10 US 2014/0229788 A1

600
'/

Receive LDPC Codeword To Be Decoded
610

'

Identify Punctured Codeword Bits Based on
Punctured Nodes of LDPC Code, wherein
Punctured Nodes Eliminate Multiple Edges
Between Node Pairs in the Base Graph
620

'

Perform LDPC Decoding on Received
Codeword to Recover Information Bits
630

FIG. 6

US 2014/0229788 Al

L Old

Aug. 14,2014 Sheet 7 0of 10

Patent Application Publication

v 9 0C vwl € L6 IC OtT 8¢l ¥8 SOI LIT Ivl €5¢€ - - TEl 691 ve€ vIT $SCT 0 - L6 891 ¥ZC 6C 06 Tl -

t6 ¥8I 98 S8I 8¢l T6 t8C 9C LL SLI 6SI T8I £ee - LS ¥ - LLZ PII [II 65 - 8OT IS€ 9IC 99 L8l 0 Tl IvT -
CCC S8 OF 18T 91 vbt (91 TCI 8IT 8ST S¢¢ 9 - ¥9 66 ¢ v - - - 69C 61 60T 68 - 8IT LEI 8S S¢CT IV O
S 0C 9ST 8ST vtt LLT S8 L9 Trl SOI 861 ¢€F 891 €8¢ OIE ¥01 LLT €8 CTLC ¢¢ - <l e - ¢ - - ¢ - 91 0
(. r r o rr.r r ¢t r r +t *r *r °t r °t °t t ;r rt r° 1t [T° ¥ 0 1 I 1
¢ ¢+ rr ¢+ +r r &t ¢ ¥ r r t r ¥ * t T ©° T [T T 00 0 0
0¢c 6C 8 LT 9C &C v¢ €& < I¢ 0C oI 8I LI 90 ST #I ¢ ¢ Il O 6 8 L 9 & ¥ ¢ T 1

/ 004

US 2014/0229788 Al

Aug. 14,2014 Sheet 8 0of 10

Patent Application Publication

Il ¥8C 9L1 I 6£C €0t 8OC S¥C TL ¥8 S¢€l 9¢ L8 0 I .
OST 64T 1ILC 0€€ IS8T €§ 8SC 9S¢ 8ICT ¢€0¢ wc¢ L1 ILT 611 <TCI 1¥C
061 €6 9¢C 8Pl 9L e 681 861 . 98] . . 8¢ . . 1¥C
€1 8Ct¢ 8SC 061 8¢t ¢ e 111 LEl . 8C 6 . 84 . .

I I I I I I I I I I I I I 0 I I

i i i i i i i i i i i i I 0O 0 0

91 Sl 14! ¢l Cl Il 01 6 3 L 9 S 14 ¢ C I

1/ 008

US 2014/0229788 Al

Aug. 14,2014 Sheet 9 of 10

Patent Application Publication

6 Old

L - 11 9 €9 - -9 ILT €5¢€ gL ¢1¢ - - 0 8¢ -

el ¥l - e - or - 9% - - - 68l - LSE €T - 09C Oze - 8¢C oIl -

S - 9t - s6l 091 16 0Ott S L -wo- - - 6l 0

I 00 - € 16T S 4 IT¢ 881 : ot 66 - - - S 0 -0 -

13 0 S/ R /1 R 74 S | 4 ¢ ¢ge see v - Iy - 8¢t -

e - ocr & €& - - - 86l - Lt - - : T LIT SLT 19T - 8L oIl -
¢ - 0sC - 9Ur e - 18 - 05 - WT - - 00T - VI e - 6IT 0
oL T 8T - 9t . T : ¢ LIT S¢ 8ol [4 -0
0 I T 1T T 1 1 1 [1 1 1 T T T T T T I

I 1 [T T 1 T T T I
|

8C LT 9C ST VO & W

Ic 0C ol B8I LI 91 €SI ¥l ¢l

[4EN0!

US 2014/0229788 Al

Aug. 14,2014 Sheet 10 of 10

Patent Application Publication

9¢0T SInpo Buipooag DdAT

¥€0T 8Inpo Buipooug OdAn

2€01 84013 Eleg

0¢0l
10SS820.d

SPJOMBPOD

0S0 Adowsy

0001 ©21A8(g suoneduNwwo)

0lL0lL
Janl@osuel |

_
_
_
_
_
_
-~

slid
uonEBWL.IoLU|

US 2014/0229788 Al

LDPC DESIGN FOR HIGH RATE, HIGH
PARALLELISM, AND LOW ERROR FLOOR

RELATED APPLICATIONS

[0001] This application claims priority under 35 U.S.C.
§119(e) of the co-pending and commonly-owned U.S. Pro-
visional Patent Application No. 61/764,476, titled “LDPC
Design for High Rate, High Parallelism, Low Error Floor, and
Simple Encoding,” filed Feb. 13, 2013, which is hereby incor-
porated by reference in its entirety.

TECHNICAL FIELD

[0002] The present embodiments relate generally to com-
munications and data storage systems, and specifically to
communications and data storage systems that use LDPC
codes.

BACKGROUND OF RELATED ART

[0003] Many communications systems use error-correcting
codes. Specifically, error correcting codes compensate for the
intrinsic unreliability of information transfer in these systems
by introducing redundancy into the data stream. Low density
parity check (LDPC) codes are a particular type of error
correcting codes which use an iterative coding system. LDPC
codes can be represented by bipartite graphs (often referred to
as “Tanner graphs™), wherein a set of variable nodes corre-
sponds to bits of a codeword, and a set of check nodes corre-
spond to a set of parity-check constraints that define the code.
A variable node and a check node are considered “neighbors”
if they are connected by an edge in the graph. A bit sequence
having a one-to-one association with the variable node
sequence is a valid codeword if and only if, for each check
node, the bits associated with all neighboring variable nodes
sum to zero modulo two (i.e., they include an even number of
1’s).

[0004] For example, FIG. 1A shows a bipartite graph 100
representing an exemplary LDPC code. The bipartite graph
100 includes a set of 5 variable nodes 110 (represented by
circles) connected to 4 check nodes 120 (represented by
squares). Edges in the graph 100 connect variable nodes 110
to the check nodes 120. FIG. 1B shows a matrix representa-
tion 150 of the bipartite graph 100. The matrix representation
150 includes a parity check matrix H and a codeword vector
X, where x1-x5 represent bits of the codeword x. More spe-
cifically, the codeword vector X represents a valid codeword if
and only if Hx=0. FIG. 2 graphically illustrates the effect of
making three copies of the graph of FIG. 1A, for example, as
described in commonly owned U.S. Pat. No. 7,552,097.
Three copies may be interconnected by permuting like edges
among the copies. If the permutations are restricted to cyclic
permutations, then the resulting graph corresponds to a quasi-
cyclic LDPC with lifting Z=3. The original graph from which
three copies were made is referred to herein as the base graph.
[0005] A received LDPC codeword can be decoded to pro-
duce a reconstructed version of the original codeword. In the
absence of errors, or in the case of correctable errors, decod-
ing can be used to recover the original data unit that was
encoded. LDPC decoder(s) generally operate by exchanging
messages within the bipartite graph 100, along the edges, and
updating these messages by performing computations at the
nodes based on the incoming messages. For example, each
variable node 110 in the graph 100 may initially be provided
with a “soft bit” (e.g., representing the received bit of the

Aug. 14,2014

codeword) that indicates an estimate of the associated bit’s
value as determined by observations from the communica-
tions channel. Using these soft bits the LDPC decoders may
update messages by iteratively reading them, or some portion
thereof, from memory and writing an updated message, or
some portion thereof, back to, memory. The update opera-
tions are typically based on the parity check constraints of the
corresponding LDPC code. In implementations for lifted
LDPC codes, messages on like edges are often processed in
parallel.

[0006] LDPC codes designed for high speed applications
often use quasi-cyclic constructions with large lifting factors
and relatively small base graphs to support high parallelism in
encoding and decoding operations. LDPC codes with higher
code rates (e.g., the ratio of the message length K to the
codeword length N) tend to have relatively fewer parity
checks. If the number of base parity checks is smaller than the
degree of a variable node (e.g., the number of edges con-
nected to a variable node), then, in the base graph, that vari-
able node is connected to at least one of the base parity checks
by two or more edges (e.g., the variable node may have a
“double edge”). Having a based variable node and a base
check node connected by two or more edges is generally
undesirable for parallel hardware implementation purposes.
For example, such double edges may result in multiple con-
current read and write operations to the same memory loca-
tions, which in turn may create data coherency problems.
Pipelining of parallel message updates can be adversely
affected by the presence of double edges.

SUMMARY

[0007] This Summary is provided to introduce in a simpli-
fied form a selection of concepts that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to limit the scope of
the claimed subject matter.

[0008] A device and method of operation are disclosed that
may aid in the encoding and/or decoding of low density parity
check (LDPC) codewords. It is noted that the addition of a
punctured variable node (also known as a state variable node)
into the base graph design can effectively increase the number
of checks in the graph by one without changing the rate
parameters (k and n) of the code. For some embodiments, an
encoder may receive a set of information bits and perform an
LDPC encoding operation on the information bits to produce
a codeword. The device may then puncture a set of lifted
codeword bits corresponding to one or more base variable
nodes based on a lifted LDPC code used for the LDPC encod-
ing operation, wherein the punctured bits correspond with
one or more punctured base variable nodes, respectively, of
the base LDPC graph. It is understood that punctured variable
nodes in the graphical description of the code can be elimi-
nated from the description by a check node combining pro-
cess operating on the lifted parity check matrix. Therefore, at
least one of the one or more punctured base nodes is under-
stood to eliminate multiple edges between node pairs of the
base graph for the lifted LDPC code when the elimination of
the punctured variable node results in multiple edges.
[0009] For some embodiments, the one or more punctured
nodes may include a variable node having a degree equal to,
or one less than, a number of check nodes of the LDPC code.
For example, at least one of the punctured nodes may be a
highest-degree variable node of the LDPC code. In such an

US 2014/0229788 Al

embodiment, the high degree ofthe node is often desirable for
enhancing the performance of the code. For example, the
puncturing allows higher variable node degree while avoiding
double edges in the base graph. The presence of the punctured
variable node in the graph effectively increases the number of
check nodes that would otherwise be present in a base graph
of a code of the same size and rate. For other embodiments, at
least one of the punctured nodes may be a degree two variable
node used to split a check node that would otherwise be
connected to a variable node of the LDPC code by two or
more edges. A punctured degree two node can be eliminated
from the description by adding the two parity checks to which
it is connected. The at least one punctured base degree two
variable node may thus be used to eliminate double edges in
the base LDPC graph. Similarly, a high degree punctured
node may be eliminated from a parity check matrix represen-
tation by an elimination process summing constraint nodes to
effectively reduce the degree of the variable node to one. A
degree one punctured node can be eliminated from the graph
along with its neighboring check node without altering the
code. Such an elimination process is likely to introduce
double or multiple edges into the representation which is
undesirable for parallel implementation of decoding.

[0010] By ecliminating or reducing double (or multiple)
edges from the base LDPC graph, the present embodiments
may reduce the complexity of the hardware that performs
LDPC decoding operations in parallel, thereby increasing the
processing efficiency of LDPC decoders that implement
lifted LDPC codes. This further simplifies read and/or write
operations performed in memory, and ensures that the read
and write operations are not performed out of order. By allow-
ing larger variable node degrees, while avoiding double
edges, the present embodiments may also improve the error
correcting performance of the LDPC coding system.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present embodiments are illustrated by way of
example and are not intended to be limited by the figures of
the accompanying drawings, where:

[0012] FIGS. 1A-1B show graphical and matrix represen-
tations of an exemplary LDPC code;

[0013] FIG. 2 graphically illustrates the effect of making
three copies of the graph of FIG. 1A;

[0014] FIG. 3 shows a communications system in accor-
dance with some embodiments;

[0015] FIG. 4 is a block diagram of a communications
device in accordance with some embodiments;

[0016] FIG. 5 is an illustrative flow chart depicting an
LDPC encoding operation in accordance with some embodi-
ments;

[0017] FIG. 6 is an illustrative flow chart depicting an
LDPC decoding operation in accordance with some embodi-
ments;

[0018] FIG. 7 shows an exemplary parity check matrix
associated with an LDPC code with rate r=27/30;

[0019] FIG. 8 shows an exemplary parity check matrix
associated with an LDPC code with rate r=13/15;

[0020] FIG. 9 shows an exemplary parity check matrix
associated with an LDPC code with rate r=21/28; and
[0021] FIG. 10 is a block diagram of a communications
device in accordance with some embodiments.

Aug. 14,2014

DETAILED DESCRIPTION

[0022] In the following description, numerous specific
details are set forth such as examples of specific components,
circuits, and processes to provide a thorough understanding
of the present disclosure. The term “coupled” as used herein
means connected directly to or connected through one or
more intervening components or circuits. Also, in the follow-
ing description and for purposes of explanation, specific
nomenclature is set forth to provide a thorough understanding
of the present embodiments. However, it will be apparent to
one skilled in the art that these specific details may not be
required to practice the present embodiments. In other
instances, well-known circuits and devices are shown in
block diagram form to avoid obscuring the present disclosure.
Any of the signals provided over various buses described
herein may be time-multiplexed with other signals and pro-
vided over one or more common buses. Additionally, the
interconnection between circuit elements or software blocks
may be shown as buses or as single signal lines. Each of the
buses may alternatively be a single signal line, and each of the
single signal lines may alternatively be buses, and a single
line or bus might represent any one or more of a myriad of
physical or logical mechanisms for communication between
components. The present embodiments are not to be con-
strued as limited to specific examples described herein but
rather to include within their scope all embodiments defined
by the appended claims.

[0023] FIG. 3 shows a communications system 300 in
accordance with some embodiments. A transmitter 310 trans-
mits a signal onto a channel 320, and a receiver 330 receives
the signal from the channel 320. The transmitter 310 and
receiver 330 may be, for example, computers, switches, rout-
ers, hubs, gateways, and/or similar devices. In some embodi-
ments, the channel 320 is wireless. In other embodiments, the
channel 320 is a wired link (e.g., a coaxial cable or other
physical connection).

[0024] Imperfections of various components in the com-
munications system 300 may become sources of signal
impairment, and thus cause signal degradation. For example,
imperfections in the channel 320 may introduce channel dis-
tortion, which may include linear distortion, multi-path
effects, and/or Additive White Gaussian Noise (AWGN). To
combat potential signal degradation, the transmitter 310 and
the receiver 330 may include LDPC encoders and decoders.
Specifically, the transmitter 310 may perform LDPC encod-
ing on outgoing data to produce a codeword that can be
subsequently decoded by the receiver 330 (e.g., through an
LDPC decoding operation) to recover the original data. For
some embodiments, the transmitter 310 may transmit LDPC-
encoded codewords with one or more “punctured” bits, for
example, based on an LDPC code with one or more punctured
variable nodes.

[0025] “Lifting” enables LDPC codes to be implemented
using parallel encoding and/or decoding implementations
while also reducing the complexity typically associated with
large LDPC codes. More specifically, lifting is a technique for
generating a relatively large LDPC code from multiple copies
of'a smaller base code. For example, a lifted LDPC code may
be generated by producing a number (Z) of parallel copies of
the base graph and then interconnecting the parallel copies
through permutations of edge clusters of each copy of the
base graph. A more detailed discussion of lifted LDPC codes
may be found, for example, in the book titled, “Modern Cod-

US 2014/0229788 Al

ing Theory,” published Mar. 17, 2008, by Tom Richardson
and Ruediger Urbanke, which is hereby incorporated by ref-
erence in its entirety.

[0026] Forexample, when processing a codeword with lift-
ing size Z, an LDPC decoder may utilize Z processing ele-
ments to perform parity check or variable node operations on
all Z edges of a lifted graph concurrently. Specifically, each
parity check operation may involve reading a corresponding
soft bit value from memory, combining the soft bit value with
other soft bit values associated with the check node and
writing a soft bit back to memory that results from the check
node operation. Double edges in the base graph may trigger
parallel reading of the same soft bit value, in a memory
location, twice during a single parallel parity check update.
Additional circuitry may thus be needed to combine the soft
bit values that are written back to memory, so as to properly
incorporate both updates. Eliminating double edges in the
base graph helps to avoid this extra complexity.

[0027] By eliminating or reducing double (and/or multiple)
edges from the base LDPC code, the puncturing may reduce
the complexity of the hardware that performs parallel check
node or variable node operations, thereby increasing the par-
allel processing efficiency of a corresponding LDPC decoder.
This further simplifies read and/or write operations per-
formed in memory, and ensures that the read and write opera-
tions are not performed out of order.

[0028] Puncturing is the act of removing bits from a code-
word to yield a shorter codeword. Thus, punctured variable
nodes correspond to codeword bits that are not actually trans-
mitted. Puncturing a variable node in an LDPC code creates a
shortened code (e.g. due to the removal of a bit), while also
effectively removing a check node. Specifically, for a matrix
representation of an LDPC code, including bits to be punc-
tured, where the variable node to be punctured has a degree of
one (such a representation may be possible through row com-
bining provided the code is proper), puncturing the variable
node removes the associated bit from the code and effectively
removes its single neighboring check node from the graph. As
a result, the number of check nodes in the graph is reduced by
one. Ifthe base transmitted block length is n—p, where p is the
number of punctured columns, and the number of base parity
checks is m, then the rate is (n-m)/(n—p). The binary infor-
mation block size is (n-m)*Z, and the transmitted block size
is (n—p)*Z. Note that if we increase n and p by 1 we may
increase m by 1 and leave the rate and block size unchanged.
[0029] Asanexample, consider arate 0.9 code in which the
base block length is 30. Without puncturing, the number of
check nodes that would be used to define the base code is 3,
resulting in a (27, 30) code (e.g., K=27 message bits, N=30
codeword bits). Such a code is likely to have double (or more)
edges connecting at least one check node to a variable node
(e.g., unless all variable nodes have a maximum degree of 3).
However, it may be desirable to have larger degree variable
nodes (e.g., degree=4), for example, to ensure a deep error
floor. If a punctured variable node is introduced into the
LDPC code, thereby increasing the total number of variable
nodes to 31, then the number of base check nodes increases to
4. It is now possible to have degree 4 base variable nodes
without double edges in the base graph. We note, however,
such an LDPC code is still a (27, 30) code.

[0030] In the bipartite graph representation of an LDPC
code, a punctured degree-two variable node effectively
merges its two neighboring check nodes into a single check
node. The punctured degree two variable node effectively

Aug. 14,2014

indicates that its two neighboring check nodes have, absent
the degree two node, the same parity. Accordingly, punctured
degree-two variable nodes may be used to “split” check
nodes, thereby appearing to increase the total number of
check nodes. This mechanism may therefore be used to
remove multiple edges from an LDPC code. A variable node
is typically connected to at least one check node by two or
more edges if the degree of the variable node is greater than
the total number of check nodes (N) in the base graph. Thus,
multiple edges in a base graph may be avoided and/or elimi-
nated by introducing one or more degree-two variable nodes
(i.e., assuming at least one variable node in the base graph has
a degree greater than N).

[0031] Puncturing a high degree base variable node of the
LDPC code can also increase the number of check nodes. In
addition, high degree check nodes can be desirable in high
performing LDPC design. For example, the highest degree
variable node may correspond to a variable node having a
degree equal to (or one less than) the total number of check
nodes in the base graph. Such a high degree variable node can
evidently be present in a base graph without any double
edges. As described in greater detail below, a punctured vari-
able node is treated as “erased” at decoding. Thus, for codes
targeting low error rates, it may be desirable to prevent such
nodes from participating in the combinatorial structures (e.g.,
trapping sets or near codewords) that give rise to error floor
events. Having a high degree generally makes it less likely
that a node will contribute to an error floor event.

[0032] Furthermore, high degree punctured variable nodes
in the graph may improve the performance of the code. It is
known that punctured nodes in a graph can improve the so-
called iterative threshold of the code structure. In standard
irregular LDPC designs (i.e., without punctured variable
nodes), thresholds can be improved by increasing the average
degree in the bipartite graph, and thus increasing the degrees
of the variable and check nodes. With punctured variable
nodes, the same effect may be achieved with lower average
degree, thereby reducing the complexity of the LDPC code.
Furthermore, LDPC code structures having lower average
degrees may perform better on smaller graphs. Thus, punc-
turing high-degree variable nodes may both increase the num-
ber of check nodes (thus allowing higher degrees) and
improve the performance of codes with limited maximum
variable node degrees.

[0033] FIG. 4 is a block diagram of a communications
device 400 in accordance with some embodiments. The com-
munications device 400 includes an encoder 410, a decoder
420, and a transceiver 430, which transmits and/or receives
LDPC-encoded codewords via a communications channel.
The encoder 410 includes a memory 412, and an LDPC
encoder 414. The memory 412 may be used to store data (i.e.,
information bits) to be encoded by the LDPC encoder 414.
The LDPC encoder 414 processes the information bits stored
in the memory 412 by generating codewords, based on an
LDPC code, to be transmitted to another device.

[0034] For some embodiments, the LDPC code may be a
lifted LDPC code. Further, for some embodiments, the base
LDPC code may include one or more punctured nodes. The
LDPC encoder 414 may thus puncture one or more bits of the
codeword which correspond with respective punctured nodes
of the base LDPC code. These punctured codeword bits are
not transmitted by the transceiver 430. For some embodi-
ments, the punctured nodes may include a base variable node
having a degree equal to, or one less than, a number of check

US 2014/0229788 Al

nodes of the LDPC code. For example, at least one of the
punctured nodes may be a highest-degree variable node of the
LDPC code. For other embodiments, at least one of the punc-
tured nodes may be used to split a check node that is con-
nected to a variable node of the LDPC code by two or more
edges. Such a punctured node may be used to eliminate
double edges in the base graph for the lifted LDPC code.

[0035] The decoder 420 includes a memory 422 and an
LDPC decoder 424. The memory 422 stores codewords,
received via the transceiver 430, to be decoded by the LDPC
decoder 424. The LDPC decoder 424 processes the code-
words stored in the memory 424 by iteratively performing
parity check operations, using an LDPC code, and attempting
correcting any bits that may have been received in error. For
some embodiments, the LDPC code may be a lifted LDPC
code. Further, for some embodiments, the received codeword
may include one or more puncture bits as determined, for
example, based on a set of punctured nodes of the correspond-
ing LDPC code. As described above, with reference to F1G. 3,
the punctured nodes may be determined based on the degrees
of the variable nodes of the LDPC code. The LDPC decoder
424 may thus treat these punctured nodes as erased for pur-
poses of decoding. For example, the LDPC decoder 424 may
set the log-likelihood ratios (LLRs) of the punctured nodes to
zero at initialization.

[0036] Forsomeembodiments,the LDPC decoder 424 may
include a plurality of processing elements to perform the
parity check or variable node operations in parallel. For
example, when processing a codeword with lifting size Z, the
LDPC decoder 424 may utilize a number (Z) of processing
elements to perform parity check operations on all Z edges of
a lifted graph, concurrently. Specifically, each parity check
operation may involve reading a corresponding soft bit value
from memory 422, combining the soft bit value with other
soft bit values associated with the check node and writing a
soft bit back to memory 422 that results from the check node
operation. A double edge in a base LDPC code may trigger
parallel reading of the same soft bit value memory location
twice during a single parallel parity check update. Thus,
additional circuitry is typically needed to combine the soft bit
values that are written back to memory, so as to properly
incorporate both updates. However, eliminating double edges
in the LDPC code, for example, as described above with
respect to FIG. 3, helps to avoid this extra complexity.

[0037] FIG. 5 is an illustrative flow chart depicting an
LDPC encoding operation 500 in accordance with some
embodiments. With reference, for example, to FIG. 4, the
encoder 410 first receives a set of information bits to be
encoded (510). The information bits may correspond to data
intended to be transmitted to another device (e.g., a receiving
device) over a communications channel or network. For
example, the information bits may be received from a central
processing unit (CPU) and stored in memory 412.

[0038] Theencoder 410 may then perform an LDPCencod-
ing operation on the information bits to produce an LDPC
codeword (520). For some embodiments, the LDPC encoder
414 may encode the information bits into LDPC codewords
based on an LDPC code that is shared by the encoder 410 and
a corresponding decoder (e.g., of the receiving device). Each
codeword may include the original information bits, or a
portion thereof, as well as a set of parity bits which may be
used (e.g., by the decoder) to perform parity check operations
on and/or recover the original information bits.

Aug. 14,2014

The encoder 410 may further puncture one or more bits of the
LDPC codeword based on base punctured variable nodes of
the LDPC code (530). For example, the one or more punc-
tured codeword bits may correspond with one or more base
variable punctured nodes, respectively, of the base LDPC
code. Specifically, at least some of the punctured nodes are
provided to eliminate multiple edges between node pairs in
the base graph of the lifted LDPC code. For some embodi-
ments, the punctured nodes may include a variable node
having a degree equal to, or one less than, a number of check
nodes of the LDPC code. For other embodiments, at least one
of the punctured nodes may be a degree 2 variable node. For
example, the degree 2 variable node may be used to split a
check node that would otherwise be connected to another
variable node of the LDPC code by two or more edges. For
some embodiments both may occur, specifically, both a high
degree punctured variable node and a degree two punctured
node may occur in the base graph. For some embodiments,
the LDPC code may be a lifted LDPC code. Still further, the
LDPC code may be based on a quasi-cycling lifting, wherein
the permutations of edge clusters are cyclic permutations.
[0039] FIG. 6 is an illustrative flow chart depicting an
LDPC decoding operation 600 in accordance with some
embodiments. With reference, for example, to FIG. 4, the
decoder 420 first receives an LDPC codeword to be decoded
(610). The LDPC codeword may be received from a trans-
mitting device, for example, in the form of a quadrature
amplitude modulated (QAM) data signal. Accordingly, the
LDPC codeword may correspond with a subset of labeling
bits of the de-mapped QAM data signal.

[0040] The decoder 420 may identify one or more punc-
tured bits of the LDPC codeword based on base punctured
nodes of the LDPC code (620). For example, the one or more
punctured codeword bits may correspond with one or more
base punctured nodes, respectively, of the LDPC code. As
described above, at least some ofthe base punctured nodes are
provided to eliminate multiple edges between node pairs in
the base graph of the lifted LDPC code. For some embodi-
ments, the punctured nodes may include a variable node
having a degree equal to, or one less than, a number of check
nodes of the LDPC code. For other embodiments, at least one
of the punctured nodes may be a degree 2 variable node. As
described above, the degree 2 variable node may be used to
split a check node that would otherwise be connected to
another variable node of the LDPC code by two or more
edges. For some embodiments, the LDPC code may be a
lifted LDPC code (e.g., based on a quasi-cyclic lifting).
[0041] Thedecoder 420 may then perform an LDPC decod-
ing operation on the received codeword to recover the original
information bits (630). For example, the LDPC decoder 424
may process the codeword by iteratively performing parity
check operations, using the LDPC code, and attempting to
correct any bits that may have been received in error. For
some embodiments, the LDPC decoder 424 may treat the
punctured codeword bits as erased during the decoding opera-
tion, for example, by setting the LLRs of the punctured nodes
to zero at initialization.

[0042] In the present embodiments, each of the LDPC
codes may be viewed as a two dimensional binary array of
size Zxn, where n is the base (transmission) block length. For
some embodiments, the proposed downstream codes are
defined such that Z=360. In each constellation, k bits may be
taken at a time, per dimension (e.g., for 1024QAM, k=5).
Furthermore, k is a factor of 360, and k bits may be taken at a

US 2014/0229788 Al

time columnwise, thus generating 360/k dimensions or 180/k
symbols per column. It should thus be noted that k is a factor
of 60 for the setk €{1, 2, 3, 4, 5, 6}, in the cases of interest.
[0043] FIGS. 7, 8, and 9 show exemplary parity check
matrices 700, 800, and 900, respectively, in accordance with
some embodiments. In each of the parity check matrices 700,
800, and 900, the top row indexes columns of H. The second
row indicates information (1) and parity (0) columns. The
third row indicates transmitted columns (1) and punctured
columns (0).

[0044] Note that the parity check matrices 700 and 800,
which are associated with LDPC codes with rates r=27/30
and r=13/15, respectively, are systematic. However, the parity
check matrix 900, which is associated with an LDPC code
with rate r=21/28, has a punctured information column, and is
therefore not fully systematic.

[0045] Further, the parity check matrix 700 has a punctured
degree two variable node (index 0). Such a node may split a
single parity check into two. This ensures that the base matrix
has no double edges, and facilitates some of the embodiments
described herein. An equivalent code representation can be
constructed by merging the two parity checks and eliminating
the punctured degree 2 variable node. Moreover, such an
equivalent representation shall have double or multiple edges
in the base graph.

[0046] FIG. 10 is a block diagram of a communications
device 1000 in accordance with some embodiments. The
communications device 1000 includes a transceiver 1010, a
processor 1020, and memory 1030. The transceiver 1010 may
be used for communicating data to and/or from the commu-
nications device 1000. For example, the transceiver 1010 may
receive and/or transmit information bits between the commu-
nications device 1000 and a CPU. The encoder interface 1010
may also output and/or receive LDPC codewords between the
communications device 1000 and another communications
device in a network.

[0047] Memory 1030 may include a data store 1032 that
may be used as alocal cache to store the received information
bits and/or codewords. Furthermore, memory 1030 may also
include a non-transitory computer-readable storage medium
(e.g., one or more nonvolatile memory elements, such as
EPROM, EEPROM, Flash memory, a hard drive, etc.) that
can store the following software modules:

[0048] an LDPC encoding module 1034 to encode a set
of information bits, using an LDPC code, to produce a
codeword;

[0049] an LDPC decoding module 1036 to decode
LDPC codewords using an LDPC code.

Each software module may include instructions that, when
executed by the processor 1020, may cause the encoder 1000
to perform the corresponding function. Thus, the non-transi-
tory computer-readable storage medium of memory 1030
may include instructions for performing all or a portion of the
operations described above with respect to FIGS. 5-6. It
should be noted that, while the modules 1034-1036 are
depicted as software in memory 1030, any of the module may
be implemented in hardware, software, firmware, or a com-
bination of the foregoing.

[0050] The processor 1020, which is coupled between the
encoder interface 1010 and the memory 1030, may be any
suitable processor capable of executing scripts of instructions
of one or more software programs stored in the decoder 1000
(e.g., within memory 1030). For example, the processor 1020

Aug. 14,2014

may execute the LDPC encoding module 1034 and/or the
LDPC decoding module 1036.

[0051] The LDPC encoding module 1034 may be executed
by the processor 1020 to encode the information bits, using
the LDPC code, to produce a codeword. For example, the
processor 1020, in executing the LDPC encoding module
1034, may perform an LDPC encoding operation on the infor-
mation bits based on an LDPC code that is shared by the
LDPC encoding module 1034 and a decoding module of a
corresponding receive device. Each codeword may include
the original information bits as well as a set of parity bits
which may be used to perform parity checks on and/or
recover the original information bits. For some embodiments,
the LDPC code may be a lifted LDPC code (e.g., based on a
quasi-cyclic lifting).

[0052] The processor 1020, in executing the LDPC encod-
ing module 1034, may further puncture one or more bits of the
codeword based on the corresponding LDPC code. For
example, the one or more punctured codeword bits may cor-
respond with one or more punctured nodes, respectively, of
the LDPC code. As described above, at least some of the
punctured nodes are provided to eliminate multiple edges
between node pairs in the base graph for the lifted LDPC
code. For some embodiments, the punctured nodes may
include a variable node having a degree equal to, or one less
than, a number of check nodes of the LDPC code. For other
embodiments, at least one of the punctured nodes may be a
degree 2 variable node (e.g., used to split a check node that
would otherwise be connected to another variable node of the
LDPC code by two or more edges).

[0053] The LDPC decoding module 1036 may be executed
by the processor 1020 to decode LDPC codewords using the
LDPC code. For some embodiments, the processor 1020, in
executing the LDPC decoding module 1036, may first iden-
tify one or more punctured bits of the received codeword
based on the LDPC code. The processor 1020 may then
perform an LDPC decoding operation on the received code-
word, while treating the punctured codeword bits as erased.
For example, the LDPC decoding module 1036, as executed
by the processor 1020, may set the LLRs of the punctured
nodes to zero at initialization. For some embodiments, the
LDPC code may be a lifted LDPC code (e.g., based on a
quasi-cyclic lifting).

[0054] As described above, the punctured codeword bits
may correspond with respective punctured nodes of the
LDPC code, wherein at least some of the punctured nodes are
provided to eliminate multiple edges between node pairs in
the base graph for the lifted LDPC code. For some embodi-
ments, the punctured nodes may include a variable node
having a degree equal to, or one less than, a number of check
nodes of the LDPC code. For other embodiments, at least one
of the punctured nodes may be a degree 2 variable node (e.g.,
used to split a check node that would otherwise be connected
to another variable node of the LDPC code by two or more
edges).

[0055] In the foregoing specification, the present embodi-
ments have been described with reference to specific exem-
plary embodiments thereof. It will, however, be evident that
various modifications and changes may be made thereto with-
out departing from the broader scope of the disclosure as set
forth in the appended claims. The specification and drawings
are, accordingly, to be regarded in an illustrative sense rather
than a restrictive sense. For example, the method steps
depicted in the flow charts of FIGS. 5-6 may be performed in

US 2014/0229788 Al

other suitable orders, multiple steps may be combined into a
single step, and/or some steps may be omitted.

What is claimed is:

1. A method of data encoding, the method comprising:

receiving a set of information bits;

performing a lifted low density parity check (LDPC)

encoding operation on the set of information bits to
produce a codeword; and

puncturing all lifted bits of the codeword that correspond to

one or more punctured base bits of a base LDPC code

used for the LDPC encoding operation, wherein:

the one or more punctured base bits are those that cor-
respond with one or more punctured base nodes,
respectively, of the base LDPC code; and

the base LDPC code has no multiple edges.

2. The method of claim 1, wherein the one or more punc-
tured base nodes correspond to one or more variable nodes
having a degree equal to, or one less than, a number of check
nodes of the base LDPC code.

3. The method of claim 1, wherein at least one of the one or
more punctured base nodes corresponds to a highest-degree
variable node of the base LDPC code.

4. The method of claim 1, wherein the one or more punc-
tured base nodes correspond to one or more degree 2 variable
nodes.

5. The method of claim 4, wherein the one or more punc-
tured base nodes split one or more respective check nodes that
are each connected to another variable node, and wherein
each of the other variable nodes is connected by edges to both
elements of the corresponding split check node.

6. The method of claim 4, wherein the one or more punc-
tured base nodes eliminate double edges in the base LDPC
code.

7. The method of claim 1, wherein a quasi-cyclic lifting is
applied to the base LDPC code, and wherein permutations of
edge clusters in the quasi-cyclic lifting are cyclic permuta-
tions.

8. A method of data decoding, the method comprising:

receiving an LDPC codeword;

identifying all lifted bits of the LDPC codeword that cor-

respond to one or more punctured based bits of a base

LDPC code, wherein:

the one or more punctured base bits are those that cor-
respond with one or more punctured base nodes,
respectively, of the base LDPC code; and

the base LDPC code has no multiple edges; and

performing an LDPC decoding operation on the received

codeword to recover a set of information bits, wherein

the identified lifted bits are treated as erased for purposes

of decoding.

9. The method of claim 8, wherein the one or more punc-
tured base nodes correspond to one or more variable nodes
having a degree equal to, or one less than, a number of check
nodes of the base LDPC code.

10. The method of claim 8, wherein at least one of the one
or more punctured base nodes corresponds to a highest-de-
gree variable node of the base LDPC code.

11. The method of claim 8, wherein the one or more punc-
tured base nodes correspond to one or more degree 2 variable
nodes.

12. The method of claim 11, wherein the one or more
punctured base nodes split one or more respective check
nodes that are each connected to another variable node, and

Aug. 14,2014

wherein each of the other variable nodes is connected by
edges to both elements of the corresponding split check node.

13. The method of claim 11, wherein the one or more
punctured base nodes eliminate double edges in the base
LDPC code.

14. The method of claim 8, wherein a quasi-cyclic lifting is
applied to the base LDPC code, and wherein permutations of
edge clusters in the quasi-cyclic lifting are cyclic permuta-
tions.

15. A computer-readable storage medium containing pro-
gram instructions that, when executed by a processor pro-
vided within a communications device, causes the device to:

receive a set of information bits;

perform a lifted LDPC encoding operation on the set of

information bits to produce a codeword; and

puncture all lifted bits of the codeword that correspond to

one or more punctured base bits of a base LDPC code

used for the LDPC encoding operation, wherein:

the one or more punctured base bits are those that cor-
respond with one or more punctured base nodes,
respectively, of the base LDPC code; and

the base LDPC code has no multiple edges.

16. The computer-readable storage medium of claim 15,
wherein the one or more punctured base nodes correspond to
one or more variable nodes having a degree equal to, or one
less than, a number of check nodes of the base LDPC code.

17. The computer-readable storage medium of claim 15,
wherein at least one of the one or more punctured base nodes
corresponds to a highest-degree variable node of the base
LDPC code.

18. The computer-readable storage medium of claim 15,
wherein the one or more punctured base nodes correspond to
one or more degree 2 variable nodes.

19. The computer-readable storage medium of claim 18,
wherein the one or more punctured base nodes split one or
more respective check nodes that are each connected to
another variable node, and wherein each of the other variable
nodes is connected by edges to both elements of the corre-
sponding split check node.

20. The computer-readable storage medium of claim 18,
wherein the one or more punctured base nodes eliminate
double edges in the base LDPC code.

21. The computer-readable storage medium of claim 15,
wherein a quasi-cyclic lifting is applied to the base LDPC
code, and wherein permutations of edge clusters in the quasi-
cyclic lifting are cyclic permutations.

22. A computer-readable storage medium containing pro-
gram instructions that, when executed by a processor pro-
vided within a communications device, causes the device to:

receive an LDPC codeword;

identify all lifted bits of the LDPC codeword that corre-

spond to one or more punctured based bits of a base

LDPC code, wherein:

the one or more punctured base bits are those that cor-
respond with one or more punctured base nodes,
respectively, of the base LDPC code; and

the base LDPC code has no multiple edges; and

perform an LDPC decoding operation on the received

codeword to recover a set of information bits, wherein

the identified lifted bits are treated as erased for purposes

of decoding.

23. The computer-readable storage medium of claim 22,
wherein the one or more punctured base nodes correspond to

US 2014/0229788 Al

one or more variable nodes having a degree equal to, or one
less than, a number of check nodes of the base LDPC code.

24. The computer-readable storage medium of claim 22,
wherein at least one of the one or more punctured base nodes
corresponds to a highest-degree variable node of the base
LDPC code.

25. The computer-readable storage medium of claim 22,
wherein the one or more punctured base nodes correspond to
one or more degree 2 variable nodes.

26. The computer-readable storage medium of claim 25,
wherein the one or more punctured base nodes split one or
more respective check nodes that are each connected to
another variable node, and wherein each of the other variable
nodes is connected by edges to both elements of the corre-
sponding split check node.

27. The computer-readable storage medium of claim 25,
wherein the one or more punctured base nodes eliminate
double edges in the base LDPC code.

28. The computer-readable storage medium of claim 22,
wherein a quasi-cyclic lifting is applied to the base LDPC
code, and wherein permutations of edge clusters in the quasi-
cyclic lifting are cyclic permutations.

29. A communications device, comprising:

a memory to store a set of information bits; and

an encoder to:

perform a lifted LDPC encoding operation on the set of
information bits to produce a codeword; and
puncture all lifted bits of the codeword that correspond
to one or more punctured base bits of a base LDPC
code used for the LDPC encoding operation, wherein:
the one or more punctured base bits are those that
correspond with one or more punctured base nodes,
respectively, of the base LDPC code; and
the base LDPC code has no multiple edges.

30. The device of claim 29, wherein the one or more punc-
tured base nodes correspond to one or more variable nodes
having a degree equal to, or one less than, a number of check
nodes of the base LDPC code.

31. The device of claim 29, wherein at least one of the one
or more punctured base nodes corresponds to a highest-de-
gree variable node of the base LDPC code.

32. The device of claim 29, wherein the one or more punc-
tured base nodes correspond to one or more degree 2 variable
nodes.

33. The device of claim 32, wherein the one or more punc-
tured base nodes split one or more respective check nodes that
are each connected to another variable node, and wherein
each of the other variable nodes is connected by edges to both
elements of the corresponding split check node.

34. The device of claim 32, wherein the one or more punc-
tured base nodes eliminate double edges in the base LDPC
code.

35. The device of claim 29, wherein a quasi-cyclic lifting is
applied to the base LDPC code, and wherein permutations of
edge clusters in the quasi-cyclic lifting are cyclic permuta-
tions.

36. A communications device, comprising:

a memory to store an LDPC codeword; and

a decoder to:

Aug. 14,2014

identify all lifted bits of the LDPC codeword that corre-
spond to one or more punctured based bits of a base
LDPC code, wherein:
the one or more punctured base bits are those that
correspond with one or more punctured base nodes,
respectively, of the base LDPC code; and
the base LDPC code has no multiple edges; and
perform an LDPC decoding operation on the received
codeword to recover a set of information bits, wherein
the identified lifted bits are treated as erased for pur-
poses of decoding.

37. The device of claim 36, wherein the one or more punc-
tured base nodes correspond to one or more variable nodes
having a degree equal to, or one less than, a number of check
nodes of the base LDPC code.

38. The device of claim 36, wherein at least one of the one
or more punctured base nodes corresponds to a highest-de-
gree variable node of the base LDPC code.

39. The device of claim 36, wherein the one or more punc-
tured base nodes correspond to one or more degree 2 variable
nodes.

40. The device of claim 39, wherein the one or more punc-
tured base nodes split one or more respective check nodes that
are each connected to another variable node, and wherein
each of the other variable nodes is connected by edges to both
elements of the corresponding split check node.

41. The device of claim 39, wherein the one or more punc-
tured base nodes eliminate double edges in the base LDPC
code.

42. The device of claim 36, wherein a quasi-cyclic lifting is
applied to the base LDPC code, and wherein permutations of
edge clusters in the quasi-cyclic lifting are cyclic permuta-
tions.

43. An encoder, comprising:

means for receiving a set of information bits;

means for performing a LDPC encoding operation on the

set of information bits to produce a codeword; and

means for puncturing all lifted bits of the codeword that

correspond to one or more punctured base bits of a base

LDPC code used for the LDPC encoding operation,

wherein:

the one or more punctured base bits are those that cor-
respond with one or more punctured base nodes,
respectively, of the base LDPC code; and

the base LDPC code has no multiple edges.

44. A decoder, comprising:

means receiving an LDPC codeword;

means for identifying all lifted bits of the LDPC codeword

that correspond to one or more punctured based bits of a

base LDPC code, wherein:

the one or more punctured base bits are those that cor-
respond with one or more punctured base nodes,
respectively, of the base LDPC code; and

the base LDPC code has no multiple edges; and

means for performing an LDPC decoding operation on the

received codeword to recover a set of information bits,

wherein the identified lifted bits are treated as erased for

purposes of decoding.

#* #* #* #* #*

