

(43) International Publication Date
14 November 2013 (14.11.2013)(51) International Patent Classification:
G10K 11/178 (2006.01)(21) International Application Number:
PCT/US2013/037051(22) International Filing Date:
18 April 2013 (18.04.2013)(25) Filing Language:
English(26) Publication Language:
English(30) Priority Data:
61/645,265 10 May 2012 (10.05.2012) US
13/787,906 7 March 2013 (07.03.2013) US

(71) Applicant: CIRRUS LOGIC, INC. [US/US]; 800 W 6th St., Austin, TX 78701 (US).

(72) Inventors: ALDERSON, Jeffrey; 7205 Twilight Mesa Dr, Austin, TX 78735 (US). HENDRIX, Jon, D.; 1351 Thompson Ranch Rd, Wimberly, TX 78676 (US). LU, Yang; 6636 William Cannon Dr Apt 1313, Austin, TX 78738 (US).

(74) Agent: HARRIS, Andrew, Mitchell; Mitch Harris, Attorney at Law, LLC, P.O. Box 7998, Athens, GA 30604 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: ERROR-SIGNAL CONTENT CONTROLLED ADAPTATION OF SECONDARY AND LEAKAGE PATH MODELS IN NOISE-CANCELING PERSONAL AUDIO DEVICES

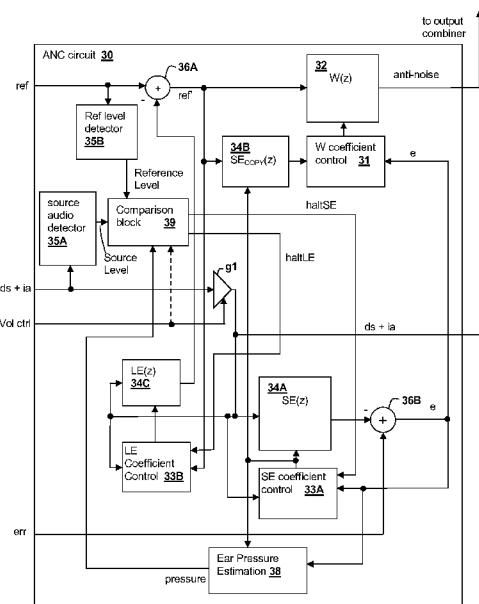


Fig. 3

(57) Abstract: A personal audio device, such as a wireless telephone, generates an anti-noise signal from a microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. The microphone measures the ambient environment, but also contains a component due to the transducer acoustic output. An adaptive filter is used to estimate the electro-acoustical path from the noise-canceling circuit through the transducer to the at least one microphone so that source audio can be removed from the microphone signal. A determination of the relative amount of the ambient sounds present in the microphone signal versus the amount of the transducer output of the source audio present in the microphone signal is made to determine whether to update the adaptive response.

Declarations under Rule 4.17:

- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))*
- *as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))*

Published:

- *without international search report and to be republished upon receipt of that report (Rule 48.2(g))*

ERROR-SIGNAL CONTENT CONTROLLED ADAPTATION OF SECONDARY AND LEAKAGE PATH MODELS IN NOISE-CANCELING PERSONAL AUDIO DEVICES

FIELD OF THE INVENTION

[0001] The present invention relates generally to personal audio devices such as wireless telephones that include adaptive noise cancellation (ANC), and more specifically, to control of ANC in a personal audio device that uses a measure of error signal content to control adaptation of secondary and leakage path estimates.

BACKGROUND OF THE INVENTION

[0002] Wireless telephones, such as mobile/cellular telephones, cordless telephones, and other consumer audio devices, such as MP3 players, are in widespread use. Performance of such devices with respect to intelligibility can be improved by providing noise-canceling using a microphone to measure ambient acoustic events and then using signal processing to insert an anti-noise signal into the output of the device to cancel the ambient acoustic events.

[0003] Noise-canceling operation can be improved by measuring the transducer output of a device to determine the effectiveness of the noise-canceling using an error microphone. The measured output of the transducer is ideally the source audio, e.g., downlink audio in a telephone and/or playback audio in either a dedicated audio player or a telephone, since the noise-canceling signal(s) are ideally canceled by the ambient noise at the location of the transducer. To remove the source audio from the error microphone signal, the secondary path from the transducer through the error microphone can be estimated and used to filter the source audio to the correct phase and amplitude for subtraction from the error microphone

signal. Similarly, ANC performance can be improved by modeling the leakage path from the transducer to the reference microphone. However, when source audio is absent, the secondary path estimate and leakage path estimate cannot typically be updated. Further, when source audio is low in amplitude, the secondary path estimate and leakage path estimate may not be accurately updated, as the error microphone signal and/or the reference microphone signal may be dominated by other sounds.

[0004] Therefore, it would be desirable to provide a personal audio device, including wireless telephones, that provides noise cancellation using a secondary path estimate and/or leakage path estimates to remove the output of the transducer from error and reference signals, respectively, and that can determine whether or not to adapt the secondary path and leakage path estimates.

DISCLOSURE OF THE INVENTION

[0005] The above-stated objective of providing a personal audio device providing noise-cancelling including a secondary path and/or leakage path estimate that are adapted when sufficient source audio magnitude relative to ambient sounds is detected, is accomplished in a personal audio device, a method of operation, and an integrated circuit.

[0006] The personal audio device includes an output transducer for reproducing an audio signal that includes both source audio for providing to a listener and an anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the transducer. A microphone provides a measurement of ambient sounds, but that contains a component of source audio due to the transducer output. The personal audio device further includes an adaptive noise-canceling (ANC) processing circuit within the housing for adaptively generating an anti-noise signal from the at least one microphone signal such that the anti-noise signal causes substantial cancellation of the ambient audio sounds. The ANC processing circuit controls adaptation of an adaptive filter by compensating for the electro-acoustical path from the output of the processing circuit through the transducer into the at least one microphone, so that the component of the output of the at least one microphone can be corrected to remove components of source audio due to the transducer output. The ANC processing circuit permits the adaptive filter to adapt only when the content of the at least one microphone signal due to the source audio present in the transducer output relative to the microphone signal content due to the ambient audio is greater than a threshold, in order to properly model the acoustic and electrical paths.

[0007] The foregoing and other objectives, features, and advantages of the invention will be

apparent from the following, more particular, description of the preferred embodiment of the invention, as illustrated in the accompanying drawings.

DESCRIPTION OF THE DRAWINGS

[0008] **Figure 1A** is an illustration of a wireless telephone **10** coupled to an earbud **EB**, which is an example of a personal audio device in which the techniques disclosed herein can be implemented.

[0009] **Figure 1B** is an illustration of electrical and acoustical signal paths in Figure 1A.

[0010] **Figure 2** is a block diagram of circuits within wireless telephone **10**.

[0011] **Figure 3** is a block diagram depicting one example of an implementation of ANC circuit **30** of CODEC integrated circuit **20** of Figure 2.

[0012] **Figure 4** is a block diagram depicting signal processing circuits and functional blocks within CODEC integrated circuit **20**.

BEST MODE FOR CARRYING OUT THE INVENTION

[0013] The present invention encompasses noise-canceling techniques and circuits that can be implemented in a personal audio device, such as a wireless telephone. The personal audio device includes an adaptive noise canceling (ANC) circuit that measures the ambient acoustic environment and generates a signal that is injected into the speaker (or other transducer) output to cancel ambient acoustic events. A reference microphone is provided to measure the ambient acoustic environment, and an error microphone is included to measure the ambient audio and transducer output at the transducer, thus giving an indication of the effectiveness of the noise cancelation. A secondary path estimating adaptive filter is used to remove the playback audio from the error microphone signal, in order to generate an error signal. A leakage path estimating adaptive filter is used to remove the playback audio from the reference microphone signal to generate a leakage-corrected reference signal. However, depending on the relative amount of the transducer output relative to the ambient audio present in the error microphone signal, the secondary path estimate and leakage path estimate may not be updated properly. Therefore, update of the secondary path estimate and leakage path estimate is halted or otherwise managed when the relative amount of ambient audio to transducer output source audio content present in the error microphone signal exceeds a threshold.

[0014] **Figure 1A** shows a wireless telephone **10** proximate to a human ear **5**. Illustrated wireless telephone **10** is an example of a device in which the techniques herein may be employed, but it is understood that not all of the elements or configurations illustrated in wireless telephone **10**, or in the circuits depicted in subsequent illustrations, are required. Wireless telephone **10** is connected to an earbud **EB** by a wired or wireless connection, e.g., a BLUETOOTHTM connection (BLUETOOTH is a trademark or Bluetooth SIG, Inc.). Earbud **EB**

has a transducer, such as speaker **SPKR**, which reproduces source audio including distant speech received from wireless telephone **10**, ringtones, stored audio program material, and injection of near-end speech (i.e., the speech of the user of wireless telephone **10**). The source audio also includes any other audio that wireless telephone **10** is required to reproduce, such as source audio from web-pages or other network communications received by wireless telephone **10** and audio indications such as battery low and other system event notifications. A reference microphone **R** is provided on a surface of a housing of earbud **EB** for measuring the ambient acoustic environment. Another microphone, error microphone **E**, is provided in order to further improve the ANC operation by providing a measure of the ambient audio combined with the audio reproduced by speaker **SPKR** close to ear **5**, when earbud **EB** is inserted in the outer portion of ear **5**. While the illustrated example shows an earbud implementation of a noise-cancelling system, the techniques disclosed herein can also be implemented in a wireless telephone or other personal audio device, in which the output transducer and reference/error microphones are all provided on a housing of the wireless telephone or other personal audio device.

[0015] Wireless telephone **10** includes adaptive noise canceling (ANC) circuits and features that inject an anti-noise signal into speaker **SPKR** to improve intelligibility of the distant speech and other audio reproduced by speaker **SPKR**. Exemplary circuit **14** within wireless telephone **10** includes an audio CODEC integrated circuit **20** that receives the signals from reference microphone **R**, near-speech microphone **NS**, and error microphone **E** and interfaces with other integrated circuits such as an RF integrated circuit **12** containing the wireless telephone transceiver. In other embodiments of the invention, the circuits and techniques disclosed herein may be incorporated in a single integrated circuit that contains control circuits and other

functionality for implementing the entirety of the personal audio device, such as an MP3 player-on-a-chip integrated circuit. Alternatively, the ANC circuits may be included within a housing of earbud **EB** or in a module located along a wired connection between wireless telephone **10** and earbud **EB**. For the purposes of illustration, the ANC circuits will be described as provided within wireless telephone **10**, but the above variations are understandable by a person of ordinary skill in the art and the consequent signals that are required between earbud **EB**, wireless telephone **10** and a third module, if required, can be easily determined for those variations. A near-speech microphone **NS** is provided at a housing of wireless telephone **10** to capture near-end speech, which is transmitted from wireless telephone **10** to the other conversation participant(s). Alternatively, near-speech microphone **NS** may be provided on the outer surface of a housing of earbud **EB**, or on a boom (earpiece microphone extension) affixed to earbud **EB**.

[0016] **Figure 1B** shows a simplified schematic diagram of an audio CODEC integrated circuit **20** that includes ANC processing, as coupled to reference microphone **R**, which provides a measurement of ambient audio sounds **Ambient** that is filtered by the ANC processing circuits within audio CODEC integrated circuit **20**. Audio CODEC integrated circuit **20** generates an output that is amplified by an amplifier **A1** and is provided to speaker **SPKR**. Audio CODEC integrated circuit **20** receives the signals (wired or wireless depending on the particular configuration) from reference microphone **R**, near-speech microphone **NS** and error microphone **E** and interfaces with other integrated circuits such as an RF integrated circuit **12** containing the wireless telephone transceiver. In other configurations, the circuits and techniques disclosed herein may be incorporated in a single integrated circuit that contains control circuits and other functionality for implementing the entirety of the personal audio device, such as an MP3 player-on-a-chip integrated circuit. Alternatively, multiple integrated circuits may be used, for example,

when a wireless connection is provided from earbud **EB** to wireless telephone **10** and/or when some or all of the ANC processing is performed within earbud **EB** or a module disposed along a cable connecting wireless telephone **10** to earbud **EB**.

[0017] In general, the ANC techniques illustrated herein measure ambient acoustic events (as opposed to the output of speaker **SPKR** and/or the near-end speech) impinging on reference microphone **R**, and also measure the same ambient acoustic events impinging on error microphone **E**. The ANC processing circuits of illustrated wireless telephone **10** adapt an anti-noise signal generated from the output of reference microphone **R** to have a characteristic that minimizes the amplitude of the ambient acoustic events at error microphone **E**. Since acoustic path $P(z)$ extends from reference microphone **R** to error microphone **E**, the ANC circuits are essentially estimating acoustic path $P(z)$ combined with removing effects of an electro-acoustic path $S(z)$ that represents the response of the audio output circuits of CODEC IC **20** and the acoustic/electric transfer function of speaker **SPKR**. The estimated response includes the coupling between speaker **SPKR** and error microphone **E** in the particular acoustic environment which is affected by the proximity and structure of ear **5** and other physical objects and human head structures that may be in proximity to earbud **EB**. Leakage, i.e., acoustic coupling, between speaker **SPKR** and reference microphone **R** can cause error in the anti-noise signal generated by the ANC circuits within CODEC IC **20**. In particular, desired downlink speech and other internal audio intended for reproduction by speaker **SPKR** can be partially canceled due to the leakage path $L(z)$ between speaker **SPKR** and reference microphone **R**. Since audio measured by reference microphone **R** is considered to be ambient audio that generally should be canceled, leakage path $L(z)$ represents the portion of the downlink speech and other internal audio that is present in the reference microphone signal and causes the above-described erroneous operation.

Therefore, the ANC circuits within CODEC IC **20** include leakage-path modeling circuits that compensate for the presence of leakage path $L(z)$. While the illustrated wireless telephone **10** includes a two microphone ANC system with a third near-speech microphone **NS**, a system may be constructed that does not include separate error and reference microphones. Alternatively, when near-speech microphone **NS** is located proximate to speaker **SPKR** and error microphone **E**, near-speech microphone **NS** may be used to perform the function of the reference microphone **R**. Also, in personal audio devices designed only for audio playback, near-speech microphone **NS** will generally not be included, and the near-speech signal paths in the circuits described in further detail below can be omitted.

[0018] Referring now to **Figure 2**, circuits within wireless telephone **10** are shown in a block diagram. CODEC integrated circuit **20** includes an analog-to-digital converter (ADC) **21A** for receiving the reference microphone signal and generating a digital representation **ref** of the reference microphone signal, an ADC **21B** for receiving the error microphone signal and generating a digital representation **err** of the error microphone signal, and an ADC **21C** for receiving the near-speech microphone signal and generating a digital representation of near-speech microphone signal **ns**. CODEC IC **20** generates an output for driving speaker **SPKR** from an amplifier **A1**, which amplifies the output of a digital-to-analog converter (DAC) **23** that receives the output of a combiner **26**. Combiner **26** combines audio signals **ia** from internal audio sources **24**, the anti-noise signal **anti-noise** generated by ANC circuit **30**, which by convention has the same polarity as the noise in reference microphone signal **ref** and is therefore subtracted by combiner **26**, a portion of near-speech signal **ns** so that the user of wireless telephone **10** hears their own voice in proper relation to downlink speech **ds**, which is received from radio frequency (RF) integrated circuit **22**. In accordance with an embodiment of the

present invention, downlink speech **ds** is provided to ANC circuit **30**. Combined downlink speech **ds** and internal audio **ia** forming source audio (**ds+ia**) is provided to combiner **26**, so that source audio (**ds+ia**) is always present to estimate acoustic path $S(z)$ with a secondary path adaptive filter within ANC circuit **30**. Near-speech signal **ns** is also provided to RF integrated circuit **22** and is transmitted as uplink speech to the service provider via antenna **ANT**.

[0019] **Figure 3** shows one example of details of ANC circuit **30** that can be used to implement ANC circuit **30** of Figure 2. A combiner **36A** removes an estimated leakage signal from reference microphone signal **ref**, which in the example is provided by a leakage-path adaptive filter **34C** having a response $LE(z)$ that models leakage path $L(z)$. Combiner **36A** generates a leakage-corrected reference microphone signal **ref'**. An adaptive filter **32** receives leakage-corrected reference microphone signal **ref'** and under ideal circumstances, adapts its transfer function $W(z)$ to be $P(z)/S(z)$ to generate the anti-noise signal **anti-noise**, which is provided to an output combiner that combines the anti-noise signal with the audio to be reproduced by speaker **SPKR**, as exemplified by combiner **26** of Figure 2. The coefficients of adaptive filter **32** are controlled by a W coefficient control block **31** that uses a correlation of two signals to determine the response of adaptive filter **32**, which generally minimizes the error, in a least-mean squares sense, between those components of leakage-corrected reference microphone signal **ref'** present in error microphone signal **err**. The signals processed by W coefficient control block **31** are the leakage-corrected reference microphone signal **ref'** shaped by a copy of an estimate of the response of path $S(z)$ (i.e., response $SE_{COPY}(z)$) provided by filter **34B** and another signal that includes error microphone signal **err**. By transforming leakage-corrected reference microphone signal **ref'** with a copy of the estimate of the response of path $S(z)$, response $SE_{COPY}(z)$, and minimizing error microphone signal **err** after removing components of

error microphone signal **err** due to playback of source audio, adaptive filter **32** adapts to the desired response of $P(z)/S(z)$.

[0020] In addition to error microphone signal **err**, the other signal processed along with the output of filter **34B** by W coefficient control block **31** includes an inverted amount of the source audio ($ds + ia$) including downlink audio signal **ds** and internal audio **ia**. Source audio ($ds + ia$) is processed by a filter **34A** having response $SE(z)$, of which response $SE_{COPY}(z)$ is a copy. Filter **34B** is not an adaptive filter, per se, but has an adjustable response that is tuned to match the response of adaptive filter **34A**, so that the response of filter **34B** tracks the adapting of adaptive filter **34A**. By injecting an inverted amount of source audio ($ds + ia$) that has been filtered by response $SE(z)$, adaptive filter **32** is prevented from adapting to the relatively large amount of source audio ($ds + ia$) present in error microphone signal **err**. By transforming the inverted copy of downlink audio signal **ds** and internal audio **ia** with the estimate of the response of path $S(z)$, the source audio ($ds + ia$) that is removed from error microphone signal **err** before processing should match the expected version of downlink audio signal **ds** and internal audio **ia** reproduced at error microphone signal **err**. The source audio ($ds + ia$) matches the amount of source audio ($ds + ia$) present in error microphone signal **err** because the electrical and acoustical path of $S(z)$ is the path taken by source audio ($ds + ia$) to arrive at error microphone **E**.

[0021] To implement the above, adaptive filter **34A** has coefficients controlled by SE coefficient control block **33A**, which processes the source audio ($ds + ia$) and error microphone signal **err** after removal, by a combiner **36B**, of the above-described filtered downlink audio signal **ds** and internal audio **ia**, that has been filtered by adaptive filter **34A** to represent the expected source audio delivered to error microphone **E**. Adaptive filter **34A** is thereby adapted

to generate an error signal **e** from downlink audio signal **ds** and internal audio **ia**, that when subtracted from error microphone signal **err**, contains the content of error microphone signal **err** that is not due to source audio (**ds+ia**). Similarly, LE coefficient control **33B** also is adapted to minimize the components of source audio (**ds+ia**) present in leakage-corrected reference microphone signal **ref'**, by adapting to generate an output that represents the source audio (**ds+ia**) present in reference microphone signal **ref**. However, if downlink audio signal **ds** and internal audio **ia** are both absent or low in amplitude, the content of error microphone signal **err** and reference microphone signal **ref** will primarily consist of ambient sounds, which may not be suitable for adapting response **SE(z)** and response **LE(z)**. Therefore, error microphone signal **err** may have sufficient amplitude, and yet be unsuitable in content to be useful as a training signal for response **SE(z)**. Similarly, reference microphone signal **ref** may not contain the proper content to train response **LE(z)**. In ANC circuit **30**, a source audio detector **35A** detects whether sufficient source audio (**ds + ia**) is present, and a comparison block **39** updates the secondary path estimate and leakage path estimate if sufficient source audio (**ds + ia**) is present as indicated by the magnitude of control signal **Source Level**. The threshold applied to determine whether sufficient source audio (**ds + ia**) is present can be determined from a magnitude of reference microphone signal **ref**, as determined by a reference level detector **35B**, and as indicated by the magnitude of control signal **Reference Level**. Comparison block **39** determines whether the magnitude of control signal **Source Level** is sufficiently great compared to the magnitude of control signal **Reference Level** and de-asserts control signal **haltSE** to permit SE coefficient control **33A** to update response **SE(z)** only if sufficient source audio (**ds + ia**) is present. Similarly, comparison block **39** de-asserts control signal **haltLE** to permit LE coefficient control **33B** to update response **LE(z)** only if sufficient source audio (**ds + ia**) is present and may apply the same criteria as for

control signal **haltSE**, or a different threshold may be used. Level detector **35B** includes both amplitude detection, and optionally filtering, to obtain the magnitude of reference microphone signal **ref**. In one exemplary implementation, reference level detector **35B** uses a wideband root-mean-square (RMS) detector to determine the magnitude of the ambient sounds. In another example, reference level detector **35B** includes a filter that filters reference microphone signal **ref** to select one or more frequency bands before making an RMS amplitude measurement, so that particular frequencies that will cause improper adaptation of response $SE(z)$ and response $LE(z)$ can be prevented from causing such a disruption, while other sources of ambient noise might be permitted while adapting response $SE(z)$ and response $LE(z)$.

[0022] An alternative to using source audio detector **35A** to determine the relative amount of source audio ($ds + ia$) present in error microphone signal **err**, is to use a volume control signal **Vol ctrl** as an indication of the magnitude of source audio ($ds + ia$) being reproduced by speaker **SPKR**. Volume control signal **Vol ctrl** is applied to source audio ($ds + ia$) by a gain stage **g1**, which also controls the amount of source audio ($ds + ia$) provided to adaptive filter **34A** and adaptive filter **34C**. Additionally, whether volume control signal **Vol ctrl** or control signal **Source Level** is compared to the threshold provided by control signal **Reference Level**, the degree of coupling between the listener's ear and personal audio device **10** can be estimated by an ear pressure estimation block **38** to further refine the determination of whether response $SE(z)$ and response $LE(z)$ can be adapted. Ear pressure estimation block **38** generates an indication, control signal **pressure**, of the degree of coupling between the listener's ear and personal audio device **10**. Comparison block **39** can then use control signal **Pressure** to reduce the threshold provided by control signal **Reference Level**, since a higher value of control signal **Pressure**

generally indicates that the source audio present in the acoustic output of speaker **SPKR** is more effectively coupled to the listener's ear, and thus for a given level of source audio ($ds + ia$), the amount of source audio ($ds + ia$) heard by the listener is increased with respect to the level of ambient noise. Techniques for determining the degree of coupling between the listener's ear and personal audio device **10** that may be used to implement comparison block **39** are disclosed in U.S. Patent Application Publication US20120207317A1 entitled "EAR-COUPLING DETECTION AND ADJUSTMENT OF ADAPTIVE RESPONSE IN NOISE-CANCELING IN PERSONAL AUDIO DEVICES", the disclosure of which is incorporated herein by reference.

[0023] Referring now to **Figure 4**, a block diagram of an ANC system is shown for implementing ANC techniques as depicted in Figure 3, and having a processing circuit **40** as may be implemented within CODEC integrated circuit **20** of Figure 2. Processing circuit **40** includes a processor core **42** coupled to a memory **44** in which program instructions are stored, the program instructions comprising a computer-program product that may implement some or all of the above-described ANC techniques, as well as implementing other signal processing algorithms. Optionally, a dedicated digital signal processing (DSP) logic **46** may be provided to implement a portion of, or alternatively all of, the ANC signal processing provided by processing circuit **40**. Processing circuit **40** also includes ADCs **21A-21C**, for receiving inputs from reference microphone **R**, error microphone **E** and near-speech microphone **NS**, respectively. DAC **23** and amplifier **A1** are also provided by processing circuit **40** for providing the transducer output signal, including anti-noise as described above.

[0024] While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing, as well as other changes in form and details may be made therein without departing from the spirit and scope of the invention.

CLAIMS

WHAT IS CLAIMED IS:

1. A personal audio device, comprising:

a personal audio device housing;

a transducer mounted on the housing for reproducing an audio signal including both source audio for playback to a listener and an anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the transducer;

at least one microphone mounted on the housing for providing at least one microphone signal indicative of the ambient audio sounds and that contains a component due to the acoustic output of the transducer; and

a processing circuit that generates the anti-noise signal to reduce the presence of the ambient audio sounds heard by the listener, wherein the processing circuit implements an adaptive filter having a response that shapes the source audio and a combiner that removes the source audio from the at least one microphone signal to provide a corrected microphone signal, and wherein the processing circuit determines a relative magnitude of a source audio component of the acoustic output of the transducer present in the at least one microphone signal and the ambient audio sounds present in the at least one microphone signal, and wherein the processing circuit takes action to prevent improper adaptation of the adaptive filter in response to determining that the relative magnitude of the source audio component of the acoustic output of the transducer present in the at least one microphone signal to the ambient audio sounds present in the at least one microphone signal indicates that the adaptive filter may not adapt properly.

2. The personal audio device of Claim 1, wherein the at least one microphone signal includes an error microphone signal provided by an error microphone mounted on the housing proximate to the transducer, wherein the adaptive filter is a secondary path adaptive filter that adapts to model a response of a secondary path taken by the source audio through the transducer and into the error microphone signal, and wherein an output of the secondary path adaptive filter is combined with the error microphone signal to generate an error signal indicative of the source audio component of the acoustic output of the transducer.

3. The personal audio device of Claim 2, wherein the at least one microphone signal includes a reference microphone signal provided by a reference microphone mounted on the housing for measuring the ambient audio sounds, and further comprising a leakage path adaptive filter that adapts to model a response of a leakage path taken by the source audio through the transducer and into the reference microphone signal, and wherein an output of the leakage path adaptive filter is combined with the reference microphone signal to generate a leakage-corrected reference microphone signal from which the anti-noise signal is generated.

4. The personal audio device of Claim 1, wherein the at least one microphone signal includes a reference microphone signal provided by a reference microphone mounted on the housing for measuring the ambient audio sounds, wherein the adaptive filter is a leakage path adaptive filter that adapts to model a response of a leakage path taken by the source audio through the transducer and into the reference microphone signal, and wherein an output of the leakage path adaptive filter is combined with the reference microphone signal to generate a leakage-corrected reference microphone signal from which the anti-noise signal is generated.

5. The personal audio device of Claim 1, wherein the processing circuit computes a ratio of a first magnitude of the source audio component of the acoustic output of the transducer present in the error signal relative to a second magnitude of the ambient audio sounds present in the error signal and compares the ratio to a threshold, wherein the processing circuit further halts adaptation of the secondary path adaptive filter in response to determining that the ratio is less than the threshold.

6. The personal audio device of Claim 1, wherein the processing circuit detects a magnitude of the source audio and uses the magnitude of the source audio to determine the magnitude of the source audio component of the acoustic output of the transducer present in the error signal.

7. The personal audio device of Claim 1, wherein the processing circuit uses a volume control setting applied as gain to the source audio to determine the magnitude of the source audio component of the acoustic output of the transducer present in the error signal.

8. The personal audio device of Claim 1, wherein the processing circuit detects a magnitude of the ambient sounds using the at least one microphone, and wherein the processing circuit uses the magnitude of the ambient audio sounds to determine the magnitude of the ambient audio sounds present in the error signal.

9. The personal audio device of Claim 8, wherein the processing circuit detects the magnitude of the ambient sounds by determining a wideband root-mean-square amplitude of at least one microphone signal generated by the at least one microphone.

10. The personal audio device of Claim 8, wherein the processing circuit detects the magnitude of the ambient sounds by determining a root-mean-square amplitude of at least one microphone signal generated by the at least one microphone in one or more predetermined frequency bands.
11. The personal audio device of Claim 8, wherein the processing circuit detects a magnitude of the source audio and compares the magnitude of the source audio to a magnitude of at least one microphone signal generated by the at least one microphone to determine the relative magnitude of the source audio component of the acoustic output of the transducer present in the error signal and the ambient audio sounds present in the error signal.
12. The personal audio device of Claim 11, wherein the processing circuit determines a degree of coupling between the transducer and an ear of the listener and wherein the processing circuit adjusts the comparing of the magnitude of the source audio to a magnitude of the at least one microphone signal with the determined degree of coupling.
13. The personal audio device of Claim 1, wherein the processing circuit determines a degree of coupling between the transducer and an ear of the listener and wherein the processing circuit adjusts the determined relative magnitude of the source audio component of the acoustic output of the transducer present in the error signal and the ambient audio sounds present in the error signal in conformity with the determined degree of coupling.

14. A method of countering effects of ambient audio sounds by a personal audio device, the method comprising:

adaptively generating an anti-noise signal to reduce the presence of the ambient audio sounds heard by the listener;

combining the anti-noise signal with source audio;

providing a result of the combining to a transducer;

measuring the ambient audio sounds and an acoustic output of the transducer with at least one microphone;

implementing an adaptive filter having a response that shapes the source audio and a combiner that removes the source audio from at least one microphone signal to provide a corrected microphone signal;

determining a relative magnitude of a source audio component of the acoustic output of the transducer present in the at least one microphone signal and the ambient audio sounds present in the at least one microphone signal; and

taking action to prevent improper adaptation of the adaptive filter in response to determining that the relative magnitude of the source audio component of the acoustic output of the transducer present in the at least one microphone signal to the ambient audio sounds present in the at least one microphone signal indicates that the adaptive filter may not adapt properly.

15. The method of Claim 14, wherein the at least one microphone signal includes an error microphone signal provided by an error microphone mounted on the housing proximate to the transducer, wherein the adaptive filter is a secondary path adaptive filter that adapts to model a response of a secondary path taken by the source audio through the transducer and into the error microphone signal, and wherein the method further comprises combining an output of the secondary path adaptive filter with the error microphone signal to generate an error signal indicative of the source audio component of the acoustic output of the transducer.

16. The method of Claim 15, wherein the at least one microphone signal further includes a reference microphone signal provided by a reference microphone mounted on the housing for measuring the ambient audio sounds, and wherein the method further comprising:

generating a leakage correction signal using a leakage path adaptive filter that adapts to model a response of a leakage path taken by the source audio through the transducer and into the reference microphone signal; and

combining the leakage correction signal with the reference microphone signal to generate a reference signal from which the anti-noise signal is generated.

17. The method of Claim 14, wherein the at least one microphone signal includes a reference microphone signal provided by a reference microphone mounted on the housing for measuring the ambient audio sounds, and wherein the method further comprising:

generating a leakage correction signal using a leakage path adaptive filter that adapts to model a response of a leakage path taken by the source audio through the transducer and into the reference microphone signal; and

combining the leakage correction signal with the reference microphone signal to generate a reference signal from which the anti-noise signal is generated.

18. The method of Claim 14, wherein the determining comprises computing a ratio of a first magnitude of the source audio component of the acoustic output of the transducer present in the error signal relative to a second magnitude of the ambient audio sounds present in the error signal and comparing the ratio to a threshold, and wherein the taking action comprises halting adaptation of the secondary path adaptive filter in response to determining that the ratio is less than the threshold.

19. The method of Claim 14, further comprising detecting a magnitude of the source audio, wherein the determining uses the detected magnitude of the source audio to determine the magnitude of the source audio component of acoustic output of the transducer present in the error signal.

20. The method of Claim 14, wherein the determining uses a volume control setting applied as gain to the source audio to determine the magnitude of the source audio component of the acoustic output of the transducer present in the error signal.

21. The method of Claim 14, further comprising detecting a magnitude of the ambient sounds using the at least one microphone, and wherein the determining uses the magnitude of the ambient audio sounds to determine the magnitude of the ambient audio sounds present in the error signal.

22. The method of Claim 21, wherein the detecting detects the magnitude of the ambient sounds by determining a wideband root-mean-square amplitude of at least one microphone signal generated by the at least one microphone.

23. The method of Claim 21, wherein the detecting detects the magnitude of the ambient sounds by determining a root-mean-square amplitude of at least one microphone signal generated by the at least one microphone in one or more predetermined frequency bands.

24. The method of Claim 21, wherein the detecting detects a magnitude of the source audio and compares the magnitude of the source audio to a magnitude of at least one microphone signal generated by the at least one microphone to determine the relative magnitude of the source audio component of the acoustic output of the transducer present in the error signal and the ambient audio sounds present in the error signal.

25. The method of Claim 24, further comprising:

determining a degree of coupling between the transducer and an ear of the listener; and
adjusting the comparing of the magnitude of the source audio to a magnitude of at least
one microphone signal generated by the at least one microphone in conformity with the
determined degree of coupling.

26. The method of Claim 14, further comprising:

determining a degree of coupling between the transducer and an ear of the listener; and
adjusting the determined relative magnitude of the source audio component of the
acoustic output of the transducer present in the error signal and the ambient audio sounds present
in the error signal in conformity with the determined degree of coupling.

27. An integrated circuit for implementing at least a portion of a personal audio device, comprising:

an output for providing an output signal to an output transducer including both source audio for playback to a listener and an anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the transducer;

at least one microphone input for receiving at least one microphone signal indicative of the ambient audio sounds and that contains a component due to the acoustic output of the transducer; and

a processing circuit that adaptively generates the anti-noise signal to reduce the presence of the ambient audio sounds heard by the listener, wherein the processing circuit implements an adaptive filter having a response that shapes the source audio and a combiner that removes the source audio from the at least one microphone signal to provide a corrected microphone signal, and wherein the processing circuit determines a relative magnitude of a source audio component of the acoustic output of the transducer present in the at least one microphone signal and the ambient audio sounds present in the at least one microphone signal, and wherein the processing circuit takes action to prevent improper adaptation of the adaptive filter in response to determining that the relative magnitude of the source audio component of the acoustic output of the transducer present in the at least one microphone signal to the ambient audio sounds present in the at least one microphone signal indicates that the adaptive filter may not adapt properly.

28. The integrated circuit of Claim 27, wherein the at least one microphone signal includes an error microphone signal indicative of the ambient audio sounds and the acoustic output of the transducer, wherein the adaptive filter is a secondary path adaptive filter that adapts to model a response of a secondary path taken by the source audio through the transducer and into the error microphone signal, and wherein an output of the secondary path adaptive filter is combined with the error microphone signal to generate an error signal indicative of the source audio component of the acoustic output of the transducer.

29. The integrated circuit of Claim 28, wherein the at least one microphone signal includes a reference microphone signal indicative of the ambient audio sounds, and further comprising a leakage path adaptive filter that adapts to model a response of a leakage path taken by the source audio through the transducer and into the reference microphone signal, and wherein an output of the leakage path adaptive filter is combined with the reference microphone signal to generate a leakage-corrected reference microphone signal from which the anti-noise signal is generated.

30. The integrated circuit of Claim 27, wherein the at least one microphone signal includes a reference microphone signal indicative of the ambient audio sounds, wherein the adaptive filter is a leakage path adaptive filter that adapts to model a response of a leakage path taken by the source audio through the transducer and into the reference microphone signal, and wherein an output of the leakage path adaptive filter is combined with the reference microphone signal to generate a reference signal from which the anti-noise signal is generated.

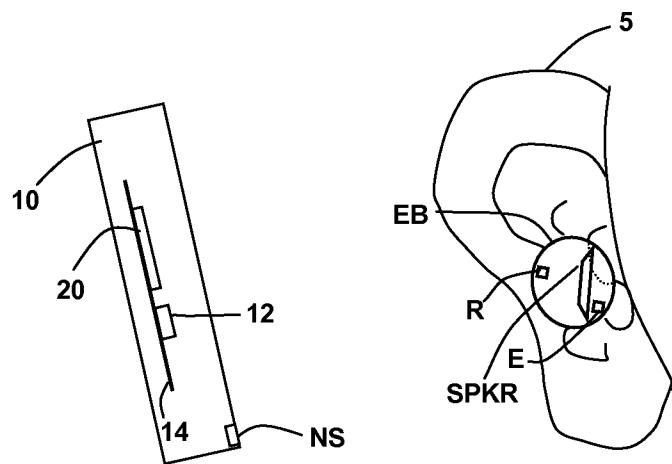
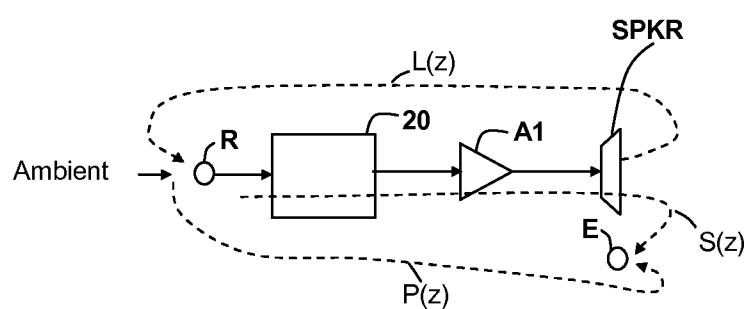
31. The integrated circuit of Claim 27, wherein the processing circuit computes a ratio of a first magnitude of the source audio component of the acoustic output of the transducer present in the error signal relative to a second magnitude of the ambient audio sounds present in the error signal and compares the ratio to a threshold, wherein the processing circuit further halts adaptation of the secondary path adaptive filter in response to determining that the ratio is less than the threshold.

32. The integrated circuit of Claim 27, wherein the processing circuit detects a magnitude of the source audio and uses the magnitude of the source audio to determine the magnitude of the source audio component of the acoustic output of the transducer present in the error signal.

33. The integrated circuit of Claim 27, wherein the processing circuit uses a volume control setting applied as gain to the source audio to determine the magnitude of the source audio component of the acoustic output of the transducer present in the error signal.

34. The integrated circuit of Claim 27, wherein the processing circuit detects a magnitude of the ambient sounds using the at least one microphone, and wherein the processing circuit uses the magnitude of the ambient audio sounds to determine the magnitude of the ambient audio sounds present in the error signal.

35. The integrated circuit of Claim 34, wherein the processing circuit detects the magnitude of the ambient sounds by determining a wideband root-mean-square amplitude of the at least one microphone signal.



36. The integrated circuit of Claim 34, wherein the processing circuit detects the magnitude of the ambient sounds by determining a root-mean-square amplitude of the at least one microphone signal in one or more predetermined frequency bands.

37. The integrated circuit of Claim 34, wherein the processing circuit detects a magnitude of the source audio and compares the magnitude of the source audio to a magnitude of the at least one microphone signal to determine the relative magnitude of the source audio component of the acoustic output of the transducer present in the error signal and the ambient audio sounds present in the error signal.

38. The integrated circuit of Claim 37, wherein the processing circuit determines a degree of coupling between the transducer and an ear of the listener and wherein the processing circuit adjusts the comparing of the magnitude of the source audio to a magnitude of the at least one microphone signal generated by the at least one microphone in conformity with the determined degree of coupling.

39. The integrated circuit of Claim 27, wherein the processing circuit determines a degree of coupling between the transducer and an ear of the listener and wherein the processing circuit adjusts the determined relative magnitude of the source audio component of the acoustic output of the transducer present in the error signal and the ambient audio sounds present in the error signal in conformity with the determined degree of coupling.

1/4

Fig. 1A**Fig. 1B**

2/4

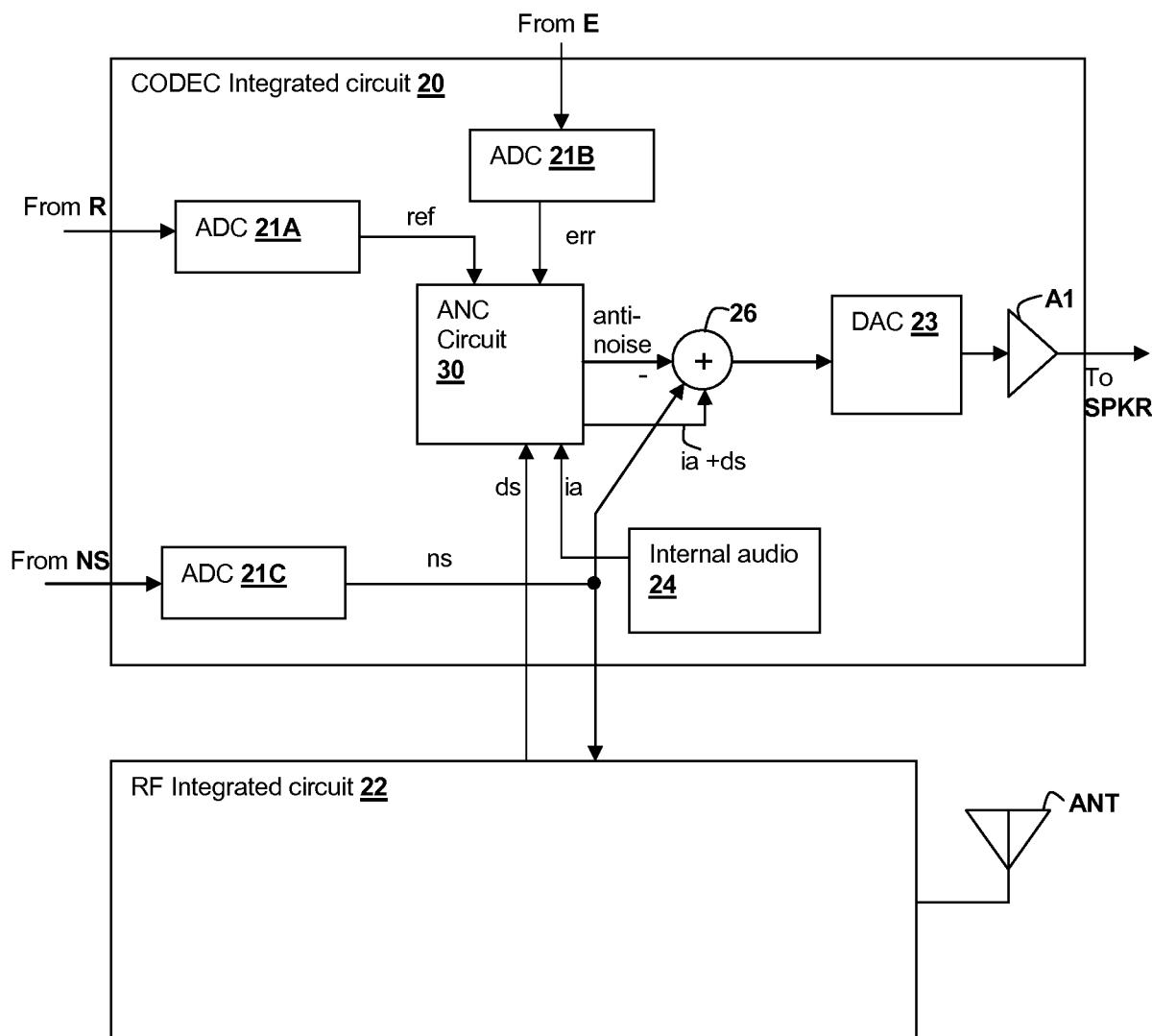
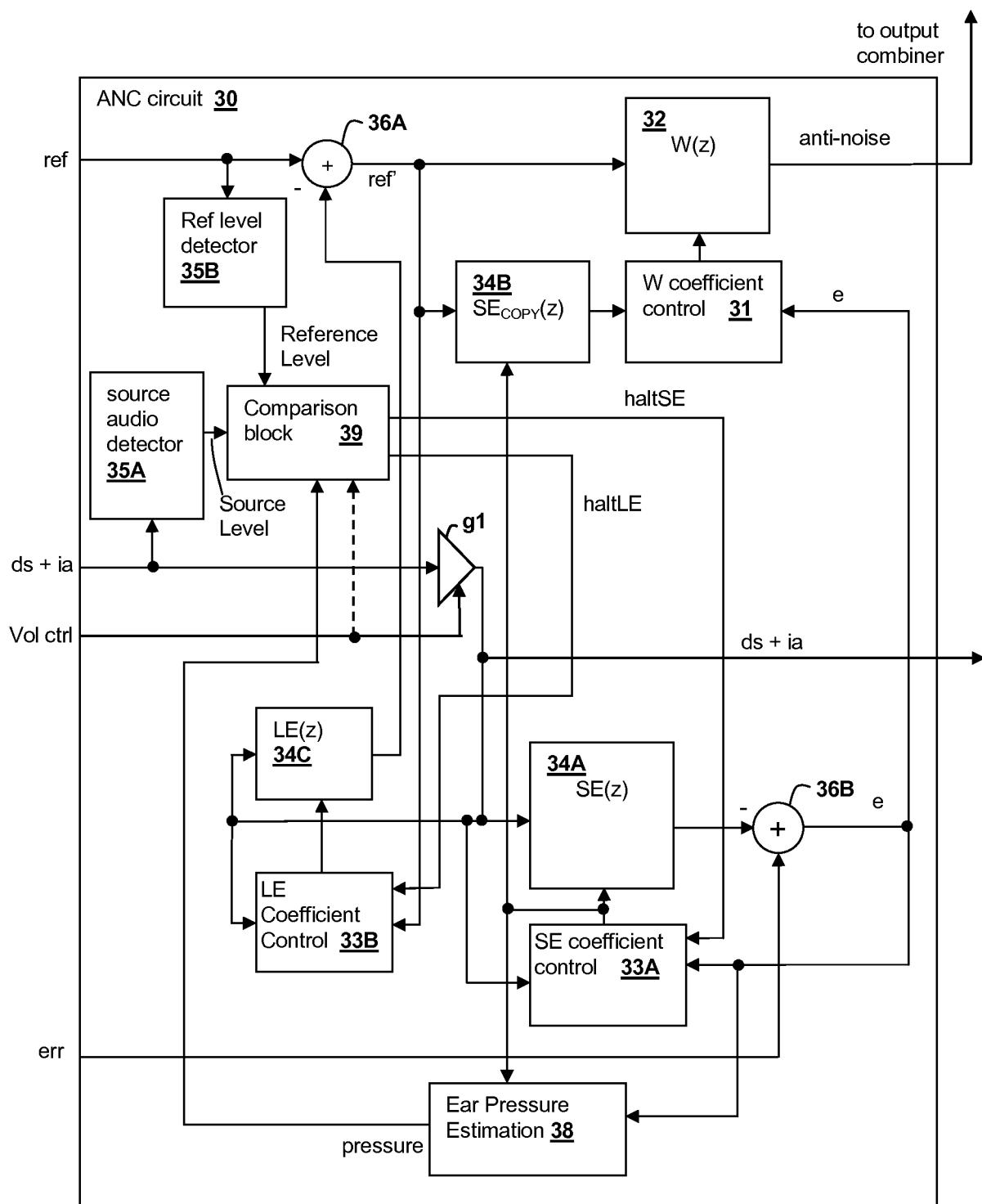



Fig. 2

3/4

Fig. 3

4/4

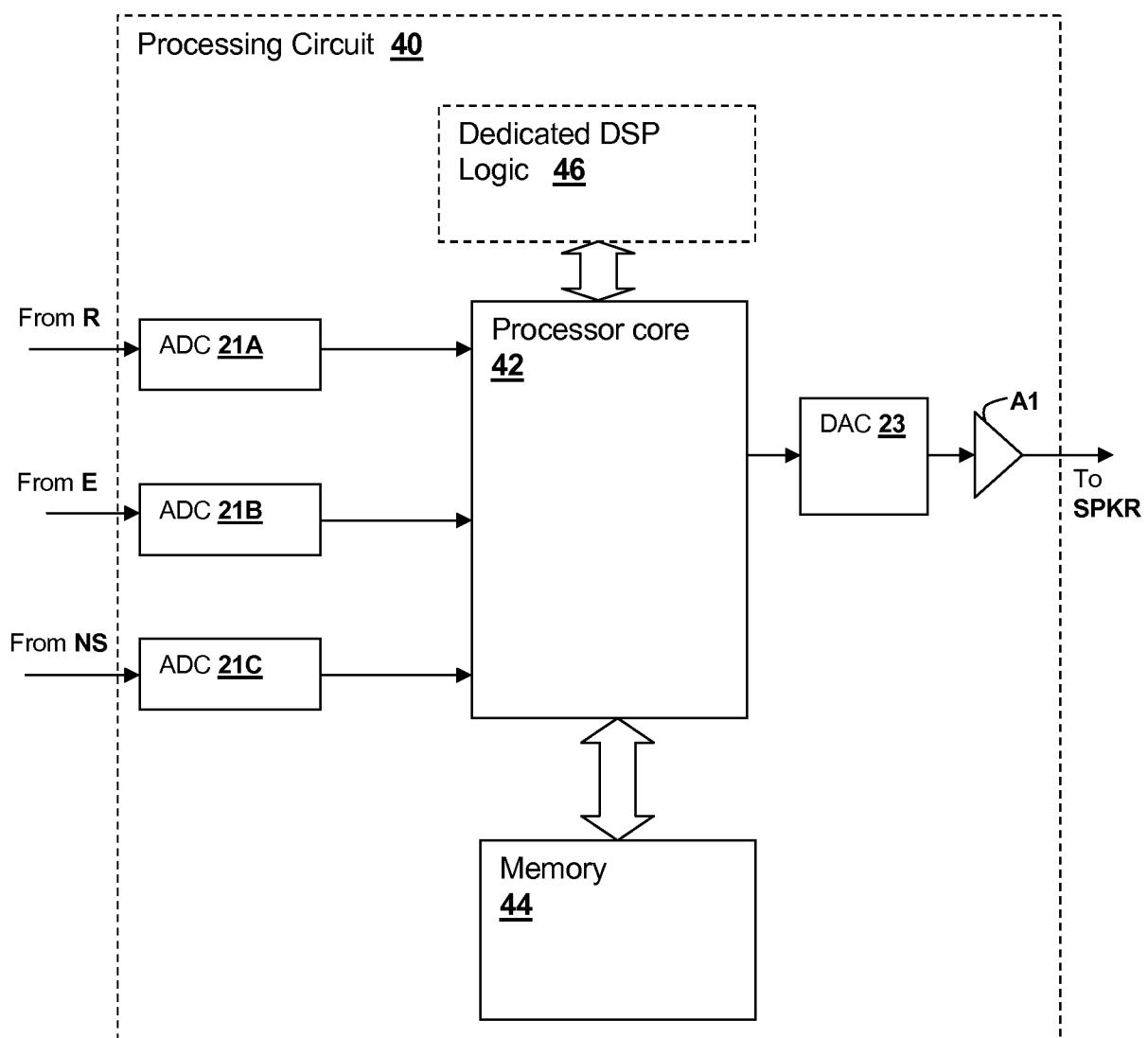


Fig. 4