»UK Patent .,GB

(54) Title of the Invention: USING @ track format code in a cache control block for a track

29130380

(13)B

(45)Date of B Publication 09.09.2020

In a cache to process read and write requests to the track in the cache

(51) INT CL: GO6F 12/0871 (2016.01) GO6F 3/06 (2006.01)
(21) Application No: 2002167 .1
(22) Date of Filing: 19.07.2018

Date Lodged: 18.02.2020

(30) Priority Data:

(31) 15662194 (32) 27.07.2017 (33) US
(86) International Application Data:

PCT/IB2018/055378 En 19.07.2018

(87) International Publication Data:
W02019/021124 En 31.01.2019

(43) Date of Reproduction by UK Office 15.04.2020

(56) Documents Cited:

CN 106294772 A
US 20160232102 A1

US 9582421 B1

(58) Field of Search:

As for published application 2578080 A viz:
INT CL GO6F
Other: DWPI, CNABS, CNKI, SIPOABS

updated as appropriate

Additional Fields
Other: None

(72) Inventor(s):
Kyler Anderson
Kevin John Ash
Matthew Joseph Kalos
Beth Ann Peterson
Lokesh Mohan Gupta

(73) Proprietor(s):
International Business Machines Corporation
(Incorporated in USA - New York)
New Orchard Road, Armonk, New York 10504,
United States of America

(74) Agent and/or Address for Service:

IBM United Kingdom Limited
Intellectual Property Department, Hursley Park,
Winchester, Hampshire, SO21 2JN, United Kingdom

d 0808.9¢ d9

V¥V NV NV W& N\ N K AW F L WA B W T . VAN BV FERWE W Wa VA RV

1/6

100
Host 108

110 FIG. 1
114 Complex

112
127
Network 120

Bus Host Host _
Adaptor Adaptor m
118 Storage System 106

Disk Enclosure Ve 104

Storage | | Storage | | Storage | | Storage
Device | | Device | | Device || Device

130

Device Network Host
Adaptors Adaptor
1244
Bus Host
I Adaptor .
124D
138
Processor 146 Manager Manager
Complex

Cache Management Information 140

148 Track Cache LRU 400
| Index List
Cache Control | | Track Format
0 Block Directory 200

Cache

Cache
Control

Block ID
(Index)

Additional
Irack

Metadata

302
3

304 306 308
Cache LRU
Track ID LRU List
[ist Entry
12 314 316

2/6

Irack Format
Metadata

Track Format Table Entry

FIG. 2

Track Format

Code Valid Flag

Cache Control Block

FIG. 3

ik G M R RS daei

7~ 402

MRU End

FIG 4 LRU End

IR W S EAYE Y4 Y4 g

300;

310

Cache
Timestamp

Invalid

Reason

318

IR W

¥ W AR ¥ M . f N daad B K Al B P WA S W W T WS W S R T e WA N R W

3/6

Receive a read/write request to a target 200

track on a first channel (e.g., bus interface).

502 504

s the No | Return fail on the bus interface
target track in the
cache? through bus adaptor to the host.
Y’e3506 519

008

Indicate the

Does
the write
modity the track

format?

s the
read/write
request a
write?

Yes | reason as track
invalid.

010

Set the track
h14 format code valid
|s the flag to invalid.
track format No
code valid flag
set o
valid?
Yes 516

Determine the track format
metadata in the track format

table corresponding to the track
format code.

013

Use the track format layout
indicated in the track format
metadata to process the reador | F|(G. 5
write request to the target track
In the cache.

¥ W AR ¥ M . f N daad B K Al B P WA S W W T WS W S R T e WA N R W

4/6

600

Receive a read/write request to a target track on a second
channel (e.g., network interface) after failure of the read/write
request on the first channel.

032

Determine the track
format metadata in the

630

s the
track format
code valid flag

set to
valid?

track format table
corresponding to the
track format code.

target track in the
cache?

604
Stage the track from the
storage Into the cache.

Read the metadata for the track
from the storage to determine
the track format.

608

608 610 617

Does
the write Update the

| track format
mOd][gyrg'aet;“aCk metadata.

IS the
read/write
request a
write?

614
Use the track format layout

indicated in the track format - Set the track
metadata to process the read or thﬂeaglggip]ee gg%klr't?’ format code valid
write request to the target track flag to invalid.

In the cache.

FIG. 6

¥ W AR ¥ M . f N daad B K Al B P WA S W W T WS W S R T e WA N R W

5/6

700

Close track metadata for a track in the cache.

102
Process track metadata to determine a track
format of a layout of data in the track.
704
the track format /o
table have a track No Set the track format code
format matching the valid flag to invalid.
determined track
format?
/12 /08
Determine the track format code Set the invalid reason to
for the determined track format track format not
In the track format table. supported.
/14
Include the track format code
In the cache control block.
/16 /18

Set the track format Remove the track metadata
code valid flag to valid. from the memory.

FIG. /

P WA S W W T WS W S R T e WA N R W

WOF M 4B N R L f N\ daek M K dmei

6/6

(S)39IA3(]

3 Il eUIaD
318
18)depy yioMlaN (S)adepau|
0/
174
(8
18 718 208
AR
IEQS)
S 8UISS820.d
952.10]S
— | W B

18 Alowa|\ 018

J08 Wa)SAS Japndwon

¢08

0¢8

IN

AN

tellectual

Property
Office

Application No. GB2002167.1 RTM Date :3 March 2020

The following terms are registered trade marks and should be read as such wherever
they occur in this document:

ExpEther

Java

Intellectual Property Office is an operating name of the Patent Office

www.gov.uk /ipo

1

USING A TRACK FORMAT CODE IN A CACHE CONTROL BLOCK FOR A TRACK IN A CACHE TO PROCESS
READ AND WRITE REQUESTS TO THE TRACK IN THE CACHE

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to a computer program product, system, and method for using a track
format code Iin a cache control block for a track in a cache to process read and write requests to the track in the

cache.

Description of the Related Art

[0002] In a storage environment, a host system may communicate a read/write request to a connected
storage system over network channel through a network adaptor. [f the data is in a cache of the storage system,
..., aread hit, then the data may be returned quickly to the host system. This reduces the delay In returning
requested data to a host |/O request. However, If the requested data is not in the cache of the storage system,
then there may be significant latency realized while the storage system needs to retrieve the requested data from
storage to return. Further, the thread or task executing the host read request may have to be context switched and
deactivated in order to allow the host system to process further [/O requests. When the datais returned to the read
request, then the task must be reactivated and data for the task must be returned to registers and processor cache

to allow processing of the returned data for the read request.

[0003] There is a need In the art for improved technigues for processing host read/write requests to the
cache.

SUMMARY

[0004] In a first embodiment, provided are a computer program product, system, and method for using a

track format code in a cache control block for a track in a cache to process read and write requests to the track In
the cache. A track format table associates track format codes with track format metadata, wherein each of the
track format metadata indicates a layout of data in a track. A track Is staged from the storage into the cache and
track format metadata for the track staged into the cache Is processed. A determination is made as to whether the
track format table has track format metadata matching the track format metadata of the track staged to the cache.
A determination Is made as to whether a track format code from the track format table for the track format metadata

in the track format table matches the track format metadata of the track staged into the cache in response to the

2

track format table having the matching track format metadata. A cache control block for the track being added to
the cache Is generated including the determined track format code when the track format table has the matching

track format metadata.

[0005] With the first embodiment, a track format code is added to the cache control block for a track in the

cache to use to determine the track layout and format when processing the track in the cache by looking up the

track format metadata for the track format code In the track format table. This provides fast access to the track
format metadata for a track in cache without having to read and process track metadata for the track from the
storage. This fast access to the track format metadata substantially reduces the latency for processing read and
write requests because reading track metadata to determine the track format metadata is a substantial component

of read/write processing latency.

[0006] In a second embodiment, the first embodiment may additionally include that a read or write request to
a target track is recelved from the host on a first channel connecting to the host. A determination is made as to
whether the target track is in the cache. A determination is made as to whether the cache control block for the
target track includes a valid track format code from the track format table in response to determining that the target
track Is In the cache. The read or write request is failed in response to determining that the target track is not in the
cache or determining that the cache control block does not include a valid track format code. The failing the read or
write request causes the host to resend the read or write request to the target track on a second channel

connecting to the host.

[0007] With the second embodiment, If the read or write request is received on a channel requiring fast
response time, such as if the request is sent on a bus interface where the host thread for the read/ write request is
spinning on the request while waiting for a response, the request is failed if there is no valid track format code for
the track Iin the cache. If there is no valid track format code, then the response will not be able to satisfy time
requirements for a fast access channel because the track metadata will need to be accessed to determine the track
format. However, If there is a valid track format code, then the request can be responded to within the timing

requirements for the fast channel because there will be minimal latency to determine the track format metadata

from the track format table using the track format code in the cache control block.

[0008] In a third embodiment, the second embodiment may additionally include a first channel that provides

faster processing of the read or write request than the second channel.

[0009] With the third embodiment, the track format table allows fast processing for the fast channel by

providing the track format codes to use to determine the track format metadata for a track.

3

[0010] In a fourth embodiment, the second embodiment may additionally include that a read or write request
to the target track Is received on a second channel connected to the host after failing the read or write request for
the target track when the target track is not in the cache. At least one of the operations of the staging the target
track into the cache, the processing the track format metadata, the determining whether the track format table has
the matching track format metadata, the determining the track format code, and the generating the cache control

block are performed in response to receiving the read or write request on the second channel.

[0011] With the fourth embodiment, if the request on the fast channel is failed because there is no valid track
format code for the target track in the cache control block, then the request is resent on a slower second channel
where the host thread managing the I/O request would have context switched because of the expected longer time
for the request response on the second channel. In such case, when the request is received on the slower
channel, then the request will be processed when there is no valid track format code for the target track, which will
require at least one of staging the target track into cache and reading the track metadata to determine track format
metadata, which may be used to determine the track format code to include in the cache control block to reduce

latency for future requests toward the track.

[0012] In a fifth embodiment, the second embodiment may additionally include that a read or write request to
the target track Is received on the second channel connected to the host after failing the read or write request for
the target track having the cache control block that includes an invalid track format code. In response to receiving
the read or write request on the second channel when the cache control block for the target track does not have a
valid track format code, track format metadata is read for the target track to process the read or write request
received on the second channel. A determination is made as to whether the track format table has track format
metadata matching the read track format metadata. A determination is made of a track format code from the track
format table for the matching track format metadata in response to the track format table having the matching track
format metadata. The determined track format code is included in the cache control block for the target track as a

valid track format code.

[0013] With the fifth embodiment, when the request for the target track Is received on the slower second

channel after failing the request on the faster first channel, the track format metadata is then read and a track
format code determined and included in the cache control block to allow for fast processing of the read/write
request on the second channel for future requests to the target track, so that the track format metadata can be

quickly determined without having to read track metadata from storage for future requests.

[0014] In a sixth embodiment, the first embodiment may additionally include that the cache control block
includes a valid flag indicating whether the cache control block includes a valid track format code. The valid flag Is

set to valid when adding the track format code to the cache control block. A write to update a track in the cache is

4

received when there Is a cache control block for the track to update in the cache including a track format code. A
determination is made as to whether the update to the track modifies a track format. The valid flag Is set to indicate

invalid in response to determining that the update to the track modifies the track format.

[0013] With the sixth embodiment, a valid track format code Is used to indicate whether the track format code

In a cache control block Is valid. This flag is set to invalid when the track format is changed by a write operation,

because in such circumstance the track format code In the cache control block no longer accurately represents the
track format of the track, which was changed by the update. The valid track format code provides information that
allows for a fast determination of whether the cache control block includes a valid track format code that can be

used to process the read or write request.

[0016] In a seventh embodiment, provided are a computer program product, system and method for
managing read and write requests from a host to tracks in storage cached in a cache. A track format table
assoclated track format codes with track format metadata, wherein each of the track format metadata indicates a
layout of datain atrack. In cache control blocks for tracks in the cache, at least one cache control block of the
cache control blocks include one of the track format codes in the track format table indicating the track format
metadata for the track. A read or write request to a target track Is received from the host in the cache. A
determination is made as to whether the cache control block for the target track includes a valid track format code.
The track format metadata is determined for the valid track format code from the track format table in response to
determining that the cache control block includes the valid track format code. The determined track format

metadata Is used to process the read or write request to the target track in the cache.

[0017] With the seventh embodiment, when the cache control block for a target track includes a valid track
format code, then the track format metadata for the target track can be quickly determined from the track format
table without having to read the track metadata from the storage. This use of the track format table substantially

reduces the latency in processing read and write requests to target tracks.

[0018] In an eighth embodiment, provided are a computer program product, system and method for
managing read and write requests from a host to tracks in storage cached in a cache. A track format table
assoclates track format codes with track format metadata, wherein each of the track format metadata indicates a
layout of data in a track. A read or write request to a target track in the cache is received from the host on one of a
first channel and a second channel connecting to the host. A determination is made as to whether a cache control
block for the target track includes a valid track format code In the track format table. The read or write request is
falled In response to determining that the cache control block does not include the valid track format code when the
read or write request Is received on the first channel. The track format metadata for the valid track format code is

determined from the track format table in response to determining that the cache control block includes the valid

5

track format code. The determined track format metadata is used to process the read or write request to the target

track In the cache.

[0019] With the eight embodiment, if the read/write request is received on the channel requiring fast
processing, then the request is failed if the cache control block for the target track does not include the track format

code because the latency introduced by having to read the track metadata will not allow the request on the first

channel to complete within a required time. However, if the cache control block includes a valid track format code,
then the request on the first channel can be processed because the response can be returned within the required

time for the first channel when the track format metadata can be determined from the track format table.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] Embodiments of the invention will now be described, by way of example only, with reference to the
accompanying drawings in which:

FIG. 1 illustrates an embodiment of a storage environment.

FIG. 2 illustrates an embodiment of a track format table entry.

FIG. 3 illustrates an embodiment of a cache control block.

FIG. 4 illustrates an embodiment of a Least Recently Used (LRU) list of tracks in the cache.

F1G. 5 illustrates an embodiment of operations to process a read/write request received on a first channel, such as
a bus Interface.

F1G. © illustrates receive an embodiment of operations to process a read/write request recelved on a second
channel, such as a network.

FIG. 7 illustrates an embodiment of operations to close track metadata and determine a track format code for the
track in cache of the closed track metadata.

F1G. 8 illustrates an embodiment of a computer architecture used with described embodiments.

DETAILED DESCRIPTION

[0021] In a storage environment, a host system may first communicate a read/write request to a connected

storage system over a fast channel, such as a bus interface, such as the Peripheral Component Interconnect

—xpress (PCle) interface. For a read/write request over the fast channel which is supposed to complete within a

threshold time, the host system holds the application thread for the read/write request in a spin loop waiting for the
request to complete. This saves processor time associated with a context swap, which deactivates the thread and
reactivates the thread In response to an interrupt when a response to the read/write request is received. If the data
for the read/write request sent on the fast channel is not in cache, then the storage system may fail the read/write

request and the host system may communicate the same read/write request over a storage area network via a host

6

adaptor, which is slower than processing the 1/O request over the bus, e.g., PCle interface. Communicating the
read/write request over the second channel requires the host system to perform a context switch from the task
handling the read/write request to another task while waiting for the read/write request to complete. Context
switching Is costly because it requires the processor running the task to clear all registers and L1 and L2 caches for
the new task, and then when completing the new task, reactivate the context switched task and return the state

data to the reqisters and L1 and L2 caches for the task that was context switched while waiting for the read/write

request to complete.

[0022] Certain read/write operations need to be completed within a threshold time, else they are failed. The
storage system will have to access track metadata to process a request to a track. The track metadata provides
Information on the format of data and layout of records in the track that are needed in order to perform reads and
writes to the track. However, the reading of the track metadata from the storage comprises a substantial portion of
the latency in processing read/write request. Described embodiments provide improvements to cache technology
that reduce cache operation latency by including a track format code in the cache control block for a track in the
cache. This track format code may be used for fast access to the track format from a track format table without
having to read the track metadata from storage. By eliminating the need to read the track metadata from a
metadata track in storage to determine the track layout, described embodiments increase the likelihood that
read/write requests on the first channel that need to be completed within a threshold time are completed by
accessing the track layout information for a track from the track format table, associating track format codes with

track format information for common track formats.

[0023] With described embodiments, a read/write request to a target track on a channel requiring that the
request be completed within a threshold time is processed if the track format code for the target track is within the
cache control block for the target track. Using the track format code to access the track format metadata from the
track format table reduces the latency of access to the track format metadata to allow the read/write request to
complete within the time threshold. This keeps the time the host thread is spinning on the read/write request task
for the read/write request sent on the bus interface within an acceptable time threshold. However, If the cache
control block for the target track does not have avalid track format code, then the read/write request on the first
channel is failled because it is unlikely the read/write request can complete within the threshold time given that the
track format metadata will have to be retrieved from the storage. Failing the read/write request on the first channel,
causes the host to redrive the read/write request on the second channel. The processing of the read/write request
on the second channel reads in the track metadata from the storage to allow for processing the read/write request

and adding the track format code to the cache control block for the target track.

[0024] FIG. 1 illustrates an embodiment of a storage environment in which a host 100 directs read and write

requests to a storage system 102 to access tracks in volumes configured in storage devices 104 in a disk enclosure

;

106. The host 100 includes a processor complex 108 of one or more processor devices and a memory 110
including an operating system 111 executed by the processor complex 108. The host operating system 111
generates read and write requests to tracks configured in the storage devices 104. The host 100 includes hardware

to communicate read and write requests on two different channels. A first channel is a bus interface, such as a

Peripheral Component Interconnect Express (PCle), including a bus 112, a bus switch 114 to connect one or more

devices on the bus 112, including the processor complex 108, a memory system 110, and a bus host adaptor 116

to extend the bus interface over an external bus interface cable 118 to the storage system 102. Additional bus

Interface technology to extend the bus interface may be utilized, including PCle extender cables or components,

such as a distributed PCle switch, to allow PCle over Ethernet, such as with the ExpEther technology. A second
channel to connect the host 100 and storage system 102 uses a network host adaptor 120, connected to the bus
112, that connects to a separate network 122 over which the host 100 and storage system 102 additionally
communicate. The first channel through the bus interface may comprise a faster access channel than the network

122 interface through the network host adaptor 120.

[0025] The storage system 102 includes a bus interface comprising a bus 124a, 124b, a bus switch 126 to
connect to endpoint devices on the bus 124a, 124b, and a bus host adaptor 128 to connect to the external bus
interface cable 118 to allow communication over the bus interface to the host 100 over the first channel. The
storage system 102 includes an Input/Output bay 130 having the bus host adaptor 128, one or more device
adaptors 132 to connect to the storage devices 104, ana one or more network host adaptors 134 to connect to the

network 122 and host systems.

[0026] The storage system 102 includes a processor complex 136 of one or more processor devices and a
memory 138 having a cache 140 to cache tracks accessed by the connected hosts 100. The memory 138 includes
a cache manager 142 and a storage manager 144. The storage manager 144 manages access requests from
processes in the hosts 100 and storage system 102 for tracks in the storage 104. The devices 136, 138, 128, 132,

and 134 connect over the bus interface implemented In the bus lanes 124a, 124b and bus switch 126.

[0027] The cache manager 142 maintains accessed tracks in the cache 140 for future read access to the

tracks to allow the accessed tracks to be returned from the faster access cache 140 instead of having to retrieve

from the storage 104. Further, tracks in the cache 140 may be updated by writes. A track may comprise any unit

of data configured in the storage 104, such as a track, Logical Block Address (LBA), etc., which Is part of a larger

grouping of tracks, such as a volume, logical device, etc.

[0028] The cache manager 142 maintains cache management information 146 in the memory 138 to manage
read (unmodified) and write (modified) tracks in the cache 140. The cache management information 146 may

include a track format table 200 having track format codes for common track format descriptors providing details of

8

a layout and format of data in a track; track index 148 providing an index of tracks in the cache 140 to cache control
blocks in a control block directory 300; and a Least Recently Used (LRU) list 400 for tracks in the cache 140. The
control block directory 300 includes the cache control blocks, where there is one cache control block for each track
in the cache 140 providing metadata on the track in the cache 140. The track index 148 associates tracks with the
cache control blocks providing information on the tracks in the cache 140. Upon determining that the cache LRU

list 400 is full or has reached a threshold level, tracks are demoted from the LRU list 400 to make room for more

tracks to stage into the cache 140 from the storage 104.

[0029] In certain embodiments, there may be multiple hosts 100 that connect to the storage system 102 over
the first and second channels to access tracks in the storage devices 104. In such case, the storage system 102
would have at least one bus host adaptor 128 to connect to the bus interface 118 of each connected host 100 and

one or more network host adaptors 134 to connect to the network host adaptors 120 on the hosts 100.

[0030] In one embodiment, the bus interfaces 112, 114, 116, 118, 124a, 124b, 126, and 128 may comprise a

Peripheral Component Interconnect Express (PCle) bus interface technology. In alternative embodiments, the bus
interfaces 112, 114, 116, 118, 124a, 124b, 126, and 128 may utilize suitable bus interface technology other than

°Cle. The bus host adaptors 116 and 128 may comprise PCle host adaptors that provide the interface to connect
to the PCle cable 118. The network 122 may comprise a Storage Area Network (SAN), a Local Area Network
(LAN), a Wide Area Network (WAN), the Internet, an Intranet, etc., and the network host adaptors 120, 134 provide

the network 122 connections between the hosts 100 and storage system 102.

[0031] The storage system 102 may comprise a storage system, such as the International Business
Vachines Corporation (IBM®) DS8000® and DS8880 storage systems, or storage controllers and storage systems
from other vendors. (IBM and DS8000 are trademarks of International Business Machines Corporation throughout
the world). The host operating system 111 may comprise an operating system such as Z Systems Operating
System (Z/0OS®) from International Business Machines Corporation ("IBM”) or other operating systems known in the

art. (Z/0S Is a registered trademark of IBM throughout the world).

[0032] The storage devices 104 In the disk enclosure 106 may comprise different types or classes of storage

devices, such as magnetic hard disk drives, solid state storage device (SSD) comprised of solid state electronics,

—EPROM (Electrically Erasable Programmable Read-Only Memory), flash memory, flash disk, Random Access

Memory (RAM) drive, storage-class memory (SCM), etc., Phase Change Memory (PCM), resistive random access
memory (RRAM), spin transfer torque memory (ST T-RAM), conductive bridging RAM (CBRAM), magnetic hard disk
drive, optical disk, tape, etc. Volumes in a storage space may further be configured from an array of devices, such

as Just a Bunch of Disks (JBOD), Direct Access Storage Device (DASD), Redundant Array of Independent Disks

(RAID) array, virtualization device, etc. Further, the storage devices 104 in the disk enclosure 106 may comprise

9

heterogeneous storage devices from different vendors and different types of storage devices, such as a first type of

storage devices, e.g., hard disk drives, that have a slower data transfer rate than a second type of storage devices,
e.g., SSDs.

[0033] FIG. 2 illustrates an embodiment of a track format table entry 200i in the track format table 200, which

includes a track format code 202 and the track format metadata 204. In certain embodiments Count Key Data

(CKD) track embodiments, the track format metadata 204 may comprise a track format descriptor (TFD) indicating a
number of records in the track, a block size, a number of blocks in the track, a data length of each of the records,
and a control interval size indicating an amount of data that is read or written atomically as a unit, number of blocks
in a control interval, and whether a control interval spans two tracks, and other information. The track format code
202 may comprise an index value of the index entry 20071 in the track format table 200. For instance, if there are
32 track format table entries 200, then the track format code 202 may comprise 5 bits to reference the different

possible number of 32 entries 200,

[0034] FIG. 3 illustrates an embodiment of a cache control block 3001 for one of the tracks in the cache 140,
including, but not limited to, a cache control block identifier 302, such as an index value of the cache control block
3001; atrack ID 304 of the track in the storage 104; the cache LRU list 306 in which the cache control block 3001 is
Indicated; an LRU list entry 308 at which the track is indicated; a cache timestamp 310 indicating a time the track
was added to the cache 140 and indicated on the LRU list 306; additional track metadata 312 typically maintained
for tracks stored in the cache 140, such as a dirty flag indicting whether the track was modified; a track format code
314 comprising one of the track format codes 202 of the track format metadata 204 describing the layout of data In
the track 304 represented by the cache control block 300i; a track format code valid flag 316 indicating whether the
track format code 314 is valid or invalid; and an invalid reason 318 indicating a reason for the track format code

valid flag 316 code being invalid, as indicated In the track format code valid flag 316.

[0035] FIG. 4 illustrates an embodiment of an LRU list 400i, such as having a most recently used (MRU) end
402 identifying a track most recently added to the cache 140 or most recently accessed in the cache 140 and a
least recently used (LRU) end 404 from which the track identified at the LRU end 404 is selected to demote from
the cache 140. The MRU end 402 and LRU end 404 point to track identifiers, such as a track identifier address or a
cache control block index for the track, of the tracks that have been most recently added and in the cache 140 the

longest, respectively, for tracks indicated in that list 400.

[0036] FIG. 5 illustrates an embodiment of operations performed by the cache manager 142 and storage

manager 144 to process a read/write request to a target track received on a first fast channel, such as the PCle bus

interface via bus host adaptor 128. Upon receiving (at block 500) the read/write request at the bus host adaptor
128, If (at block 502) the target track is not in the cache 140, then the storage manager 144 returns (at block 504)

10

fail to the read/write request on the first channel or bus host adaptor 128 to the host 100, which causes the host 100
to retry the read/write request on the second channel or network host adaptor 120, 134. Failure Is returned
because If the target track is not in the cache 140, then the target track and track metadata needs to be staged into
cache 140, which would likely exceed the time threshold for read/writes on the first channel, where the host
processor is spinning on the thread of the read/write request. |f (at block 502) the target track is in the cache 140 is

a write and If (at block 508) the write modifies the track format, then the cache manager 142 sets (at block 510) the

track format code valid flag 316 to invalid and indicates (at block 512) the invalid reason 318 that the track in the
cache 140 was invalidated as track format change. The storage manager 144 then returns (at block 504) fail to the
host 100 because the track metadata needs to be read from the storage 104 to update with the modified track

format.

[0037] If (at block 506) the read/write request is a read or if (at block 508) the request is a write that does not
modify the track format, then the cache manager 142 determines (at block 514) if the track format code valid flag
316 Is set to valid. If so, then the cache manager 142 determines (at block 516) the track format metadata 204 in
the track format table 200 corresponding to the track format code 314 in the cache control block 3001. The cache
manager 142 uses (at block 518) the track format [ayout indicated in the determined track format metadata 204 to
process the read or write request to the target track in the cache 140. If the request is a write, a dirty flag 312 in the
cache control block 3001 may be set to indicate the track is modified. If (at block 514) the track format code valid
flag 316 Is Invalid, meaning there is no fast access to track format information available through the track format
code 314, then the storage manager 144 returns (at block 504) fail on the bus interface to the bus host adaptor 123
because the track format table 200 cannot be used, and the track metadata needs to be read from the storage 104,

which would introduce too much latency for the fast read/write on the first channel.

[0038] With the embodiment of operations of FIG. 5, during a fast write over the bus interface or first channel,
If the track format metadata may be accessed without latency through the track format table 200, then the
read/write request Is allowed to proceed when the transaction can be processed very quickly because the track
metadata can be obtained directly from the track format table 200 through the track format code 314, without having
to read the track metadata from storage 104. However, if the cache control block 3001 does not have a valid track
format code 314 to allow low latency access of track format metadata, then the read/write request Is failed because
the transaction will not likely complete within a fast time threshold. This determination is important to avoid host
delays Iin processing other tasks while the host processor is spinning on the thread handling the read/write request
while waiting for the read/write request to complete. If the track metadata can be accessed from the track format
table 200 than there is a high likelihood the read/write can complete on the bus interface channel within the time
required to avoid the host processor holding the thread for too long, which causes other I/O requests to be queued
and delayed. If the track metadata cannot be accessed from the track format table 200 and needs to be read from

the storage 104, then it is unlikely the read/write request will complete within the time threshold for the host

11

processor to spin on the thread for the read/write request, and failure is returned. Returning failure when the track
metadata cannot be obtained from the track format table 200 causes the host thread waiting on the read/write
request task to be deactivated and the host processor may context switch to processing other tasks, and then the

read/write request is retried on the second network channel during the context switch.

[0039] FIG. 6 illustrates an embodiment of operations performed by the cache manager 142 and storage

manager 144 to process a read/write request to a target track received on a second channel, such as the network
122 on network host adaptor 134. Upon receiving (at block 600) the read/write request, if (at block 602) the target
track 1s not in the cache 140, then the cache manager 142 stages (at block 604) the track from the storage 104 to
the cache 140 and reads (at block 606) the track metadata for the target track from the storage 104 to determine
the track format, e.g., size of blocks, control interval, layout of records on the track, etc. If (at block 608) the
read/write request is a write and If (at block 610) the write modifies the track format, then the cache manager 142
updates (at block 612) the track metadata to indicate the modified track format and sets (at block 614) the track
format code valid flag 316 to invalid. The track metadata 312 is further updated (at block 616) to indicate the track
s modified or dirty. If (at block 608) the request is a read or from block 616, the cache manager 142 uses (at block

618) the track format layout indicated in the track format metadata to process the read or write request to the target

track in the cache 140.

[0040] If (at block 602) the target track is in the cache 140 and if (at block 630) the track format code valid
flag 316 Is set to valid, then the cache manager 142 determines (at block 632) the track format metadata 204 in the
track format table 200 corresponding to the track format code 314 in the cache control block 300i~ for the target
track. From block 632, control proceeds to block 608 to process the read/write request. |f (at block 630) the track
format code valid flag 316 Is set to invalid, then control proceeds to block 606 to read the metadata for the track

form the storage 104 to determine the track format layout.

[0041] With the embodiment of FIG. 6, when the read/write request is received on the second slower
channel, such as over the network 122, where the host operating system 111 would have performed a context
switch for the thread handling the read/write request, the cache manager 142 may read the track metadata from the
storage 104 to determine the track layout to process the request. During this time, the host processing of further
host requests Is not delayed because the host thread handling the read/write request is context switched and not

active, until the read/write request returns complete.

[0042] FIG. 7 illustrates an embodiment of operations performed by the cache manager 142 when closing the
track metadata for a track in the cache 140, which involves destaging the track metadata to the storage 104 if
changed. Upon closing (at block 700) the track metadata for a track in the cache 140, the cache manager 142

processes (at block 702) the track metadata to determine a track format or a layout of data in the track. If (at block

12

704) the track format table 200 does not have a track format metadata 204 matching the determined track format
from the track metadata, which may happen if the determined track format is irregular, then the track format code
valid flag 316 Is set (at block 706) to invalid and the invalid reason 318 is set to indicate that the track format is not
supported. In such situation, read./write requests to the track having an irregular format are only processed when

received through the second channel via network host adaptor 134.

[0043] If (at block 704) the track format table has a track format metadata 204 matching the determined track
format from the track metadata, then the cache manager 142 determines the track format code 202 for the
determined track format metadata 204 in the track format table 200 and includes the track format code 202 in the
field 314 in the cache control block 3001. The track format code valid flag 316 is set (at block 716) to valid. From
block 708 or 716, control proceeds to block 718 to destage the track metadata from the memory 138 if modified or

discard If not modified.

[0044] With the operations of FIG. 7, the track format information may be indicated in the cache control block
3001 with a track format code 202 having a limited number of bits to index track format metadata 204 describing
track layout In a track format table 200, where the track metadata itself would not fit into the cache control block
300i. For future read/write accesses, If a valid track format code 314 is provided, then the cache manager 142 may
use that code 314 to obtain with low latency the track format metadata 204 from the track format table 200 without

having to read the track metadata from the storage 104 and process to determine the track format.

[0045] The present invention may be implemented as a system, a method, and/or a computer program
product. The computer program product may include a computer readable storage medium (or media) having
computer readable program instructions thereon for causing a processor to carry out aspects of the present

iInvention.

[0046] The computer readable storage medium can be a tangible device that can retain and store
instructions for use by an instruction execution device. The computer readable storage medium may be, for
example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an
electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A
non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a
portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable
compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded
thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, IS

not to be construed as being transitory signals per se, such as radio waves or other freely propagating

13

electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g.,

light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.

[0047] Computer readable program instructions described herein can be downloaded to respective
computing/processing devices from a computer readable storage medium or to an external computer or external

storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless

network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission,
routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface
In each computing/processing device receives computer readable program instructions from the network and
forwards the computer readable program instructions for storage in a computer readable storage medium within the

respective computing/processing device.

[0048] Computer readable program instructions for carrying out operations of the present invention may be
assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent
Instructions, microcode, firmware instructions, state-setting data, or either source code or object code written in any
combination of one or more programming languages, including an object oriented programming language such as
Java, Smalltalk, C++ or the like, and conventional procedural programming languages, such as the "C’
programming language or similar programming languages. The computer readable program instructions may
execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly
on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter
scenario, the remote computer may be connected to the user's computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer

(for example, through the Internet using an Internet Service Provider). In some embodiments, electronic circuitry

including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable
logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the
computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the

present invention.

[0049] Aspects of the present invention are described herein with reference to flowchart illustrations and/or
block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the
invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and
combinations of blocks In the flowchart illustrations and/or block diagrams, can be implemented by computer

readable program instructions.

[0050] These computer readable program instructions may be provided to a processor of a general purpose

computer, special purpose computer, or other programmable data processing apparatus to produce a machine,

14

such that the Instructions, which execute via the processor of the computer or other programmable data processing
apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block
or blocks. These computer readable program instructions may also be stored in a computer readable storage
medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in
a particular manner, such that the computer readable storage medium having instructions stored therein comprises

an article of manufacture including instructions which implement aspects of the function/act specified in the

flowchart and/or block diagram block or blocks.

[0051] The computer readable program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other device to cause a series of operational steps to be performed
on the computer, other programmable apparatus or other device to produce a computer implemented process, such
that the instructions which execute on the computer, other programmable apparatus, or other device implement the

functions/acts specified in the flowchart and/or block diagram block or blocks.

[0052] The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation
of possible implementations of systems, methods, and computer program products according to various
embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a
module, segment, or portion of instructions, which comprises one or more executable instructions for implementing
the specified logical function(s). In some alternative implementations, the functions noted in the block may occur out
of the order noted In the figures. For example, two blocks shown in succession may, In fact, be executed
substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the
functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose

hardware and computer instructions.

[0053] The computational components of FIG. 1, including the host 100 and storage system 102 may be
implemented in one or more computer systems, such as the computer system 802 shown in FIG. 8. Computer
system/server 802 may be described in the general context of computer system executable instructions, such as
program modules, being executed by a computer system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so on that perform particular tasks or implement
particular abstract data types. Computer system/server 802 may be practiced In distributed cloud computing
environments where tasks are performed by remote processing devices that are linked through a communications
network. In a distributed cloud computing environment, program modules may be located in both local and remote

computer system storage media including memory storage devices.

15

[0054] As shown In Fig. 8, the computer system/server 802 is shown in the form of a general-purpose
computing device. The components of computer system/server 802 may include, but are not [imited to, one or more
processors or processing units 804, a system memory 806, and a bus 808 that couples various system components
Including system memory 806 to processor 804. Bus 808 represents one or more of any of several types of bus
structures, Including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a

processor or local bus using any of a variety of bus architectures. By way of example, and not limitation, such

architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced

|SA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component

Interconnects (PCI) bus.

[00595] Computer system/server 802 typically includes a variety of computer system readable media. Such
media may be any available media that is accessible by computer system/server 802, and it includes both volatile

and non-volatile media, removable and non-removable media.

[0056] System memory 806 can include computer system readable media in the form of volatile memory,
such as random access memory (RAM) 810 andfor cache memory 812. Computer system/server 802 may further
include other removable/non-removable, volatile/non-volatile computer system storage media. By way of example
only, storage system 813 can be provided for reading from and writing to a non-removable, non-volatile magnetic
media (not shown and typically called a "hard drive"). Although not shown, a magnetic disk drive for reading from
and writing to a removable, non-volatile magnetic disk (e.g., a "floppy disk"), and an optical disk drive for reading
from or writing to a removable, non-volatile optical disk such as a CD-ROM, DVD-ROM or other optical media can
be provided. In such instances, each can be connected to bus 808 by one or more data media interfaces. As will be
further depicted and described below, memory 806 may include at least one program product having a set (e.g., at

least one) of program modules that are configured to carry out the functions of embodiments of the invention.

[0057] Program/utility 814, having a set (at least one) of program modules 816, may be stored in memory

806 by way of example, and not limitation, as well as an operating system, one or more application programs, other

program modules, and program data. Each of the operating system, one or more application programs, other
program modules, and program data or some combination thereof, may include an implementation of a networking
environment. The components of the computer 802 may be implemented as program modules 816 which generally
carry out the functions and/or methodologies of embodiments of the invention as described herein. The systems of
FIG. 1 may be implemented In one or more computer systems 802, where If they are implemented in multiple

computer systems 802, then the computer systems may communicate over a network.

[0058] Computer system/server 802 may also communicate with one or more external devices 818 such as a

keyboard, a pointing device, a display 820, etc.; one or more devices that enable a user to interact with computer

16

system/server 802; and/or any devices (e.g., network card, modem, etc.) that enable computer system/server 802
to communicate with one or more other computing devices. Such communication can occur via Input/Output (I/O)
Interfaces 822. Still yet, computer system/server 802 can communicate with one or more networks such as a local
area network (LAN), a general wide area network (WAN), and/or a public network (e.g., the Internet) via network
adapter 824. As depicted, network adapter 824 communicates with the other components of computer

system/server 802 via bus 808. It should be understood that although not shown, other hardware and/or software

components could be used in conjunction with computer system/server 802. Examples, include, but are not limited

to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives,

and data archival storage systems, etc.

[0059] The terms "an embodiment’, "embodiment’, "embodiments”, "the embodiment’, "the embodiments”,

‘one or more embodiments’, "some embodiments”, and "one embodiment” mean "one or more (but not all)

embodiments of the present invention(s)" unless expressly specified otherwise.

[0060] The terms "including”, "comprising”, “having” and variations thereof mean "including but not limited to",

unless expressly specified otherwise.

[0061] The enumerated listing of items does not imply that any or all of the items are mutually exclusive,

unless expressly specified otherwise.

[0062] The terms "a", "an" and "the" mean "one or more", unless expressly specified otherwise.

[0063] Devices that are in communication with each other need not be in continuous communication with
each other, unless expressly specified otherwise. In addition, devices that are in communication with each other

may communicate directly or indirectly through one or more intermediaries.

[0064] A description of an embodiment with several components in communication with each other does not

imply that all such components are required. On the contrary a variety of optional components are described to

llustrate the wide variety of possible embodiments of the present invention.

[0065] When a single device or article is described herein, it will be readily apparent that more than one
device/article (whether or not they cooperate) may be used in place of a single device/article. Similarly, where more
than one device or article is described herein (whether or not they cooperate), it will be readily apparent that a
single device/article may be used in place of the more than one device or article or a different number of
devices/articles may be used instead of the shown number of devices or programs. The functionality and/or the

features of a device may be alternatively embodied by one or more other devices which are not explicitly described

17

as having such functionality/features. Thus, other embodiments of the present invention need not include the device

itself.

[0066] The foregoing description of various embodiments of the invention has been presented for the
purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise

form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the

scope of the invention be limited not by this detailed description, but rather by the claims appended hereto. The
above specification, examples and data provide a complete description of the manufacture and use of the
composition of the invention. Since many embodiments of the invention can be made without departing from the

spirit and scope of the invention, the invention resides In the claims herein after appended.

18

CLAIMS

1. A computer program product for managing read and write requests from a host to tracks in storage cached
In a cache, the computer program product comprising a computer readable storage medium having computer
readable program code embodied therein that is executable to perform operations, the operations comprising:

maintaining a track format table associating track format codes with track format metadata, wherein each

of the track format metadata indicates a layout of data in a track;

staging a track from the storage to the cache;

processing track format metadata for the track staged into the cache;

determining whether the track format table has track format metadata matching the track format metadata
of the track staged to the cache;

determining a track format code from the track format table for the track format metadata in the track
format table matching the track format metadata of the track staged into the cache in response to the track format
table having the matching track format metadata; and

generating a cache control block for the track being added to the cache including the determined track

format code when the track format table has the matching track format metadata.

2. The computer program product of claim 1, wherein the operations further comprise:
recelving a read or write request to a target track from the host on a first channel connecting to the host;

determining whether the target track is in the cache;

determining whether the cache control block for the target track includes a valid track format code from the
track format table in response to determining that the target track is in the cache; and

failling the read or write request in response to determining that the target track is not in the cache or
determining that the cache control block does not include a valid track format code, wherein the failing the read or
write request causes the host to resend the read or write request to the target track on a second channel

connecting to the host.

3. The computer program product of claim 2, wherein the first channel provides faster processing of the read

or write request than the second channel.

4 The computer program product of claim 2, wherein the operations further comprise:

receiving the read or write request to the target track on a second channel connected to the host after
failling the read or write request for the target track when the target track is not in the cache, wherein at least one of
the operations of the staging the target track into the cache, the processing the track format metadata, the

determining whether the track format table has the matching track format metadata, the determining the track

19

format code, and the generating the cache control block are performed in response to receiving the read or write

request on the second channel.

5. The computer program product of claim 2, wherein the operations further comprise:

recelving the read or write request to the target track on the second channel connected to the host for the
target track having the cache control block that includes an invalid track format code;

In response to receliving the read or write request on the second channel when the cache control block for
the target track does not have a valid track format code, performing:

reading track format metadata for the target track to process the read or write request received on the
second channel: and

determining whether the track format table has track format metadata matching the read track format
metadata;

determining a track format code from the track format table for the matching track format metadata in
response to the track format table having the matching track format metadata; and

Including the determined track format code In the cache control block for the target track as a valid track

format code.

o. The computer program product of claim 1, wherein the track format metadata in the track format table
Indicates at least one of a number of records in a track, a block size, a number of blocks In the track, a data length
of each of the records, and a control interval size indicating an amount of data that is read or written atomically as a
unit, and wherein the track format code has fewer bits than the track format metadata and the cache control block

does not have sufficient available space to store the track format metadata.

/. The computer program product of claim 1, wherein the cache control block includes a valid flag indicating
whether the cache control block includes a valid track format code, wherein the valid flag is set to valid when adding
the track format code to the cache control block, wherein the operations further comprise:

receiving a write to update a track in the cache, wherein there is a cache control block for the track to
update In the cache including a track format code;

determining whether the update to the track modifies a track format; and

setting the valid flag to indicate invalid in response to determining that the update to the track modifies the

track format.

8. The computer program product of claim 7, wherein the operations further comprise:
using the track format code in the cache control block to determine the track format metadata from the
track format table to use to update the track in the cache in response to determining that the update to the track

does not modify the track format.

20

9. The computer program product of claim 1, wherein the cache control block includes a valid flag indicating
whether the cache control block includes a valid track format code wherein the operations further comprise:
setting the valid flag to invalid in response to the track format table not having the matching track format

metadata.

10. The computer program product of claim 1, wherein the cache control block includes a valid flag indicating

whether the cache control block includes a valid track format code, wherein the operations further comprise:
setting invalid reason bits in the cache control block when a valid flag is set to indicate there Is no valid
track format code In the cache control block indicating one of that the track was invalidateq, the track is not full, a

format of the track is irregular, and a data length of the track is not supported for caching.

11. A computer program product for managing read and write requests from a host to tracks in storage cached
In a cache, the computer program product comprising a computer readable storage medium having computer
readable program code embodied therein that is executable to perform operations, the operations comprising:

maintaining a track format table associating track format codes with track format metadata, wherein each
of the track format metadata indicates a layout of data in a track;

maintaining cache control blocks for tracks in the cache, wherein at least one cache control block of the
cache control blocks include one of the track format codes in the track format table indicating the track format
metadata for the track

receiving a read or write request to a target track in the cache from the host;

determining whether the cache control block for the target track includes a valid track format code;

determining the track format metadata for the valid track format code from the track format table In
response to determining that the cache control block includes the valid track format code; and

using the determined track format metadata to process the read or write request to the target track in the

cache.

12. The computer program product of claim 11, wherein the recelving step comprises receiving a read or write

request from the host on one of a first channel and a second channel connecting to the host; and the operations

further comprise:

failling the read or write request in response to determining that the cache control block does not include

the valid track format code when the read or write request is received on the first channel.

13. The computer program product of claim 12, wherein the operations further comprise:
reading track metadata for the target track from the storage in response to determining that the cache
control block for the target track does not include a valid track format code;

determining track format metadata from the read track metadata for the target track;

2

determining whether the track format table includes a track format code for the determined track format
metadata: and

including the track format code determined from the track format table in the cache control block in
response to determining the track format table includes a track format code for the determined track format

metadata.

14, A computer program product for managing read and write requests from a host to tracks in storage cached
In a cache, the computer program product comprising a computer readable storage medium having computer
readable program code embodied therein that is executable to perform operations, the operations comprising:
maintaining a track format table associating track format codes with track format metadata, wherein each
of the track format metadata indicates a layout of data in a track;
receiving a read or write request to a target track in the cache from the host on one of a first channel and a

second channel connecting to the host;

determining whether a cache control block for the target track includes a valid track format code in the
track format table: and

failling the read or write request in response to determining that the cache control block does not include
the valid track format code when the read or write request is received on the first channel;

determining the track format metadata for the valid track format code from the track format table In
response to determining that the cache control block includes the valid track format code; and

using the determined track format metadata to process the read or write request to the target track in the

cache.

15. The computer program product of claim 14, wherein the operations further comprise:

reading track metadata for the target track from the storage in response to determining that the cache
control block for the target track does not include a valid track format code when the read or write request is
received on the second channel:

determining track format metadata from the read track metadata for the target track;

determining whether the track format table includes a track format code for the determined track format
metadata; and

including the track format code determined from the track format table in the cache control block in
response to determining the track format table includes a track format code for the determined track format

metadata.

16. A system for managing read and write requests from a host to tracks in storage, comprising:

d Processor,

a cache to cache tracks from the storage;

22

a computer readable storage medium having computer readable program code embodied therein that is
executable to perform operations, the operations comprising:

maintaining a track format table associating track format codes with track format metadata, wherein each
of the track format metadata indicates a layout of data in a track;

staging a track from the storage to the cache;

processing track format metadata for the track staged into the cache;

determining whether the track format table has track format metadata matching the track format metadata
of the track staged to the cache;

determining a track format code from the track format table for the track format metadata in the track
format table matching the track format metadata of the track staged into the cache in response to the track format
table having the matching track format metadata; and

generating a cache control block for the track being added to the cache including the determined track

format code when the track format table has the matching track format metadata.

17, The system of claim 16, wherein the operations further comprise:

recelving a read or write request to a target track from the host on a first channel connecting to the host;

determining whether the target track is in the cache;

determining whether the cache control block for the target track includes a valid track format code from the
track format table in response to determining that the target track is in the cache; and

falling the read or write request in response to determining that the target track is not in the cache or
determining that the cache control block does not include a valid track format code, wherein the failing the read or
write request causes the host to resend the read or write request to the target track on a second channel

connecting to the host.

18. The system of claim 1/, wherein the first channel provides faster processing of the read or write request

than the second channel.

19. A method for managing read and write requests from a host to tracks in storage cached in a cache,
comprising:

maintaining a track format table associating track format codes with track format metadata, wherein each
of the track format metadata indicates a layout of data in a track;

staging a track from the storage to the cache;

processing track format metadata for the track staged into the cache;

determining whether the track format table has track format metadata matching the track format metadata

of the track staged to the cache;

23

determining a track format code from the track format table for the track format metadata in the track
format table matching the track format metadata of the track staged into the cache in response to the track format
table having the matching track format metadata; and

generating a cache control block for the track being added to the cache including the determined track

format code when the track format table has the matching track format metadata.

20. The method of claim 19, further comprising:
receiving a read or write request to a target track from the host on a first channel connecting to the host;

determining whether the target track is in the cache;

determining whether the cache control block for the target track includes a valid track format code from the
track format table in response to determining that the target track is in the cache; and

failling the read or write request in response to determining that the target track is not in the cache or
determining that the cache control block does not include a valid track format code, wherein the failing the read or
write request causes the host to resend the read or write request to the target track on a second channel

connecting to the host.

21. The method of claim 20, further comprising:

receiving the read or write request to the target track on a second channel connected to the host after
falling the read or write request for the target track when the target track is not in the cache, wherein at least one of
the operations of the staging the target track into the cache, the processing the track format metadata, the
determining whether the track format table has the matching track format metadata, the determining the track
format code, and the generating the cache control block are performed in response to receiving the read or write

request on the second channel.

22. The method of claim 20, further comprising:

recelving the read or write request to the target track on the second channel connected to the host after
falling the read or write request for the target track having the cache control block that includes an invalid track
format code;

In response to receiving the read or write request on the second channel when the cache control block for
the target track does not have a valid track format code, performing:

reading track format metadata for the target track to process the read or write request received on the
second channel: and

determining whether the track format table has track format metadata matching the read track format
metadata;

determining a track format code from the track format table for the matching track format metadata in

response to the track format table having the matching track format metadata; and

24

including the determined track format code In the cache control block for the target track as a valid track

format code.

23. The method of claim 19, wherein the cache control block includes a valid flag indicating whether the cache
control block includes a valid track format code, wherein the valid flag is set to valid when adding the track format
code to the cache control block, wherein the operations further comprise:

recelving a write to update a track in the cache, wherein there is a cache control block for the track to
update In the cache including a track format code;

determining whether the update to the track modifies a track format; and

setting the valid flag to indicate invalid in response to determining that the update to the track modifies the

track format.

24. A method for managing read and write requests from a host to tracks in storage cached in a cache, the
method comprising:

maintaining a track format table associating track format codes with track format metadata, wherein each
of the track format metadata indicates a layout of data in a track;

maintaining cache control blocks for tracks in the cache, wherein at least one cache control block of the
cache control blocks include one of the track format codes In the track format table indicating the track format
metadata for the track:

receiving a read or write request to a target track in the cache from the host;

determining whether the cache control block for the target track includes a valid track format code;

determining the track format metadata for the valid track format code from the track format table in
response to determining that the cache control block includes the valid track format code; and

using the determined track format metadata to process the read or write request to the target track in the

cache.

29. A system for managing read and write requests from a host to tracks in storage cached in a cache, the
system comprising:

a Processor;

a cache to cache tracks from the storage,

a computer readable storage medium having computer readable program code embodied therein that Is

executable to perform operations, the operations comprising:

maintaining a track format table associating track format codes with track format metadata, wherein each
of the track format metadata indicates a layout of data in a track;

maintaining cache control blocks for tracks in the cache, wherein at [east one cache control block of the
cache control blocks include one of the track format codes In the track format table indicating the track format

metadata for the track:

29

receiving a read or write request to a target track in the cache from the host;

determining whether the cache control block for the target track includes a valid track format code;

determining the track format metadata for the valid track format code from the track format table in
response to determining that the cache control block includes the valid track format code; and

using the determined track format metadata to process the read or write request to the target track in the

cache.

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DRAWINGS
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - CLAIMS
	Page 27 - CLAIMS
	Page 28 - CLAIMS
	Page 29 - CLAIMS
	Page 30 - CLAIMS
	Page 31 - CLAIMS
	Page 32 - CLAIMS
	Page 33 - CLAIMS

