

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2012307157 B2

(54) Title
Neutralising antibodies to the major exotoxins TcdA and TcdB of Clostridium difficile

(51) International Patent Classification(s)
C07K 16/12 (2006.01) **A61P 31/04** (2006.01)
A61K 39/40 (2006.01)

(21) Application No: **2012307157** (22) Date of Filing: **2012.09.10**

(87) WIPO No: **WO13/038156**

(30) Priority Data

(31) Number	(32) Date	(33) Country
61/638,731	2012.04.26	US
61/535,532	2011.09.16	US

(43) Publication Date: **2013.03.21**
(44) Accepted Journal Date: **2017.08.03**

(71) Applicant(s)
UCB Pharma S.A.

(72) Inventor(s)
Humphreys, David Paul;Lightwood, Daniel John;Tyson, Kerry Louise;Knight, David Edward Ormonde;Herve, Karine Jeannine Madeleine;Compson, Joanne Elizabeth;Page, Matthew Jon Timothy;Payne, Andrew Charles;Fisher, Nicola Louise;Mackenzie, Brendon;Cox, Matthew

(74) Agent / Attorney
Griffith Hack, GPO Box 1285, Melbourne, VIC, 3001, AU

(56) Related Art
WO 2006/121422

(43) International Publication Date
21 March 2013 (21.03.2013)(51) International Patent Classification:
C07K 16/12 (2006.01) *A61P 31/04* (2006.01)
A61K 39/40 (2006.01)(21) International Application Number:
PCT/GB2012/052222(22) International Filing Date:
10 September 2012 (10.09.2012)

(25) Filing Language: English

(26) Publication Language: English

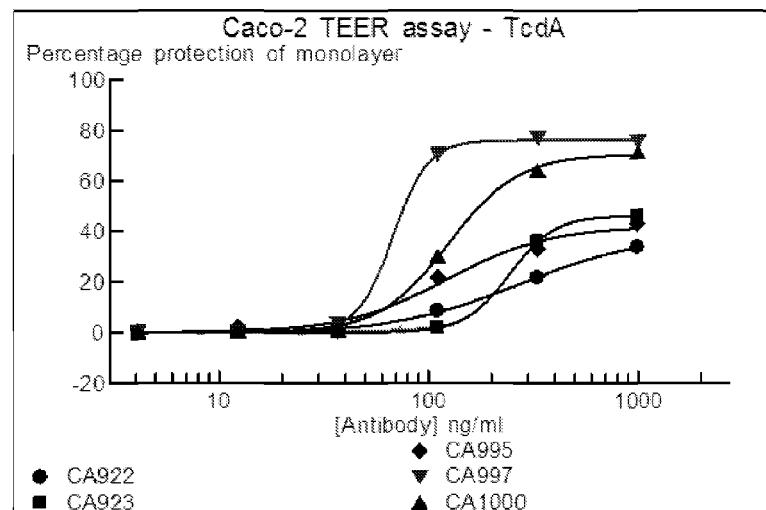
(30) Priority Data:
61/535,532 16 September 2011 (16.09.2011) US
61/638,731 26 April 2012 (26.04.2012) US

(71) Applicant (for all designated States except US): UCB PHARMA S.A. [BE/BE]; 60 Allée de la Recherche, B-1070 Brussels (BE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HUMPHREYS, David Paul [GB/GB]; c/o IPD, UCB Celltech, 208 Bath Road, Slough, Berkshire SL1 3WE (GB). LIGHTWOOD, Daniel John [GB/GB]; c/o IPD, UCB Celltech, 208 Bath Road, Slough, Berkshire SL1 3WE (GB). TYSON, Kerry Louise [GB/GB]; c/o IPD, UCB Celltech, 208 Bath Road, Slough, Berkshire SL1 3WE (GB). KNIGHT, David Edward Ormonde [GB/GB]; c/o IPD, UCB Celltech, 208

Bath Road, Slough, Berkshire SL1 3WE (GB). HERVÉ, Karine Jeannine Madeleine [FR/GB]; c/o IPD, UCB Celltech, 208 Bath Road, Slough, Berkshire SL1 3WE (GB). COMPSON, Joanne Elizabeth [GB/GB]; c/o IPD, UCB Celltech, 208 Bath Road, Slough, Berkshire SL1 3WE (GB). PAGE, Matthew Jon Timothy [GB/GB]; c/o IPD, UCB Celltech, 208 Bath Road, Slough, Berkshire SL1 3WE (GB). PAYNE, Andrew Charles [GB/GB]; c/o IPD, UCB Celltech, 208 Bath Road, Slough, Berkshire SL1 3WE (GB). FISHER, Nicola Louise [GB/GB]; c/o IPD, UCB Celltech, 208 Bath Road, Slough, Berkshire SL1 3WE (GB). MACKENZIE, Brendon [GB/GB]; c/o IPD, UCB Celltech, 208 Bath Road, Slough, Berkshire SL1 3WE (GB). COX, Matthew [GB/GB]; c/o IPD, UCB Celltech, 208 Bath Road, Slough, Berkshire SL1 3WE (GB).


(74) Agent: THOMPSON, John; UCB Celltech, 208 Bath Road, Slough, Berkshire SL1 3WE (GB).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,

[Continued on next page]

(54) Title: NEUTRALISING ANTIBODIES TO THE MAJOR EXOTOXINS TCDA AND TCDB OF CLOSTRIDIUM DIFFICILE

Figure 62A

(57) Abstract: This present invention describes the derivation and selection of antibodies capable of neutralising the major exotoxins; TcdA and TcdB of *Clostridium difficile*. The invention also describes novel neutralisation and antigen binding properties of individual Mabs and mixtures thereof.

RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- *with international search report (Art. 21(3))*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*
- *with sequence listing part of description (Rule 5.2(a))*

(84) Designated States (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

NEUTRALISING ANTIBODIES TO THE MAJOR EXOTOXINS TCDA AND TCDB OF CLOSTRIDIUM DIFFICILE

The present invention relates to antibodies to exotoxins of *Clostridium difficile*, for 5 example TcdA and TcdB, pharmaceutical compositions comprising the same, processes of producing said antibodies and compositions and use of the antibodies and compositions in treatment and/or prophylaxis, in particular treatment or prophylaxis of *Clostridium difficile* infection, pseudomembranous colitis, fulminant colitis and/or toxic mega colon.

The two major exotoxins TcdA and TcdB have been established as the major 10 pathogenicity determinants of *Clostridium difficile* in a large number of *in vitro* and *in vivo* studies. Non-toxigenic strains are not pathogenic to animals and man (1, 2). To date a clear understanding of the role of binary toxin has yet to be established (3).

Both toxins are entero- and cyto-toxic, but the balance of evidence suggests that TcdA is a more powerful enterotoxin than TcdB, whilst TcdB is typically observed to be ~1000x 15 more cytotoxic than TcdA (4). Whilst both toxins are capable of inducing an inflammatory response, TcdA appears to aid the migration of the more inflammatory TcdB deeper into the gut mucosa (5).

In toto, a large collection of data generated for over 30 years support a model where 20 both toxins are likely to be important in the human disease process. It is probable that TcdA initiates early (i.e. before TcdB) and rapid (i.e. 1-3 hours) gut damage through loss of tight junctions and destruction of villi tips and hence diarrhoea, probably through albumin driven fluid loss. This damage to the integrity of the gut lining enables TcdB to exert its superior 25 molar potency (TcdB is typically cited as being 1000x more cytotoxic than TcdA) more rapidly and effectively (i.e. deeper into tissue, alternative cellular targets and damaging systemically accessed organs). Either toxin can be effective alone *in vitro* on human or animals cells and tissues. Either toxin can be effective alone *in vivo* in animals depending upon other eliciting factors such as mechanical damage, barrier overload and host specific sensitivities. It is now 30 clear that in hamsters at least either TcdA or TcdB alone delivered by a *Clostridium difficile* gut infection can cause death (1). It is well established that A-B+ strains are capable of causing symptoms and death in humans (6,7). However, the majority (~95%) of clinical strains are A+B+ hence drugs aimed at treating *Clostridium difficile* infections (CDI) must be capable of neutralising the activities of and clearing both toxins effectively.

CDI is most typically a nosocomial infection of older patients or those with 35 complicating co-morbidities. However, an increase in community acquired infections has been noted. Infection is almost always associated with or induced by use of broad spectrum

antibiotics. Healthcare associated costs are estimated to be in excess of \$1bn per annum in the US alone. These costs are primarily due to patients having longer hospitals stays. Current therapies involve the use of antibiotics such as clindamycin, vancomycin or fidaxomicin which kill the *Clostridium difficile* cells within the gut. Current therapies address the bacterial infection but do not deal with or prevent directly the significant pathogenesis caused by TcdA and TcdB which are major contributors to CDI symptoms and mortality.

CDI symptoms in humans include mild to severe diarrhoea, pseudomembranous colitis (PMC) and fulminant colitis or so called toxic mega colon. Death results in 5-15% of patients receiving current best care. Thus at the present time there is no specific therapy available to patients to prevent the damage and injury caused by *C. difficile* toxins after infection.

Raising an antibody response through vaccination and parenteral administration of polyclonal and monoclonal antibodies have all been shown to be capable of protecting animals from symptoms of diarrhoea and death (8-15). Early studies in hamsters suggested that antibodies against TcdA alone were all that was necessary for protection. However, use of strains functionally deleted for TcdA or TcdB demonstrate that either toxin is capable of causing disease in hamsters, but that both toxins together are more effective (1).

For therapeutic applications, monoclonal antibodies (Mabs) can offer efficacy, safety, manufacturing and regulatory advantages over serum derived polyclonal antibodies or serum derived hyper-immune sera. For these reasons Mabs are usually the preferred option for therapeutic products.

There have been a number of attempts to generate protective Mabs against TcdA and TcdB. The most advanced of these in the clinic is a mixture of 2 IgG1 Mabs, one against each TcdA and TcdB originally called CDA1 and MDX1388 developed by MBL and Medarex. They were demonstrated to be unable to fully protect hamsters in models of acute or relapse infections (15). This Mab combination is now being developed as MK3415A by Merck Inc. In a human phase II trial MK3415A resulted in a statistically significant reduction in disease recurrence ($p = 0.006$) (see also Lowy *et al.*, NEJM (2010) 362: 197-205) but did not affect the duration / severity of diarrhoea or death rates (16). This may mean that these antibodies may only be useful for preventing recurrence of infection. Recurrence of infection results in approximately 25% of patients. Thus there likely to be a significant patient population in which these antibodies are not effective.

In order to be able to have a positive influence upon diarrhoea (for example as a result of acute damage to gut tight junctions due to TcdA) and death (for example resulting from prolonged poor nutritional status, dehydration stress and initiation of an inflammatory cascade, widespread anatomical damage to the gut lining and possibly damage to distant organs due to

systemic toxin TcdB more so than TcdA) Mabs are required with superior affinity, toxin neutralisation, superior prevention of loss of TEER (trans-epithelial electrical resistance), antigen decoration and antigen immune clearance.

It is to be understood that if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art in Australia or any other country.

Summary of the Present Invention

The present invention provide a Mab(s) with a very high level of potency *in vitro* and *in vivo* which have the potential to have an impact upon duration and severity of diarrhoea and death rate in humans suffering from *Clostridium difficile* infection (CDI).

A first aspect provides a pharmaceutical composition for reducing the duration and/or severity of diarrhoea, morbidity and/or mortality in a patient with *Clostridium difficile* infection or at risk of said infection, the composition comprising one or more monoclonal antibodies that specifically bind antigen TcdA123 and/or TcdA456, wherein the antibody has high affinity of 500pM or higher for the target antigen TcdA123 and said one or more monoclonal antibodies are independently selected from:

i) an antibody comprising a heavy chain wherein the heavy chain variable domain comprises a sequence given in SEQ ID NO:4 for CDR-H1, a sequence given in SEQ ID NO:5 for CDR-H2 and a sequence given in SEQ ID NO:6 for CDR-H3, and a light chain wherein the light chain variable domain comprises a sequence given in SEQ ID NO:1 for CDR-L1, a sequence given in SEQ ID NO:2 for CDR-L2 and a sequence given in SEQ ID NO:3 for CDR-L3;

ii) an antibody comprising a heavy chain wherein the heavy chain variable domain comprises a sequence given in SEQ ID NO:34 for CDR-H1, a sequence given in SEQ ID NO:35 for CDR-H2 and a sequence given in SEQ ID NO:36 for CDR-H3, and a light chain wherein the light chain variable domain comprises a sequence given in SEQ ID NO:31 for CDR-L1, a sequence given in SEQ ID NO:32 for CDR-L2 and a sequence given in SEQ ID NO:33 for CDR-L3;

iii) an antibody comprising a heavy chain wherein the heavy chain variable domain comprises a sequence given in SEQ ID NO:44 for CDR-H1, a sequence given in SEQ ID NO:45 for CDR-H2 and a sequence given in SEQ ID NO:46 for CDR-H3, and a light chain wherein the light chain variable domain comprises a sequence given in SEQ ID NO:41 for CDR-L1, a sequence given in SEQ ID NO:42 for CDR-L2 and a sequence given in SEQ ID NO:43 for CDR-L3; and

iv) an antibody comprising a heavy chain wherein the heavy chain variable domain comprises a sequence given in SEQ ID NO:54 for CDR-H1, a sequence given in SEQ ID NO:55 for CDR-H2 and sequence given in SEQ ID NO:56 for CDR-H3, and a light chain wherein the light chain variable domain comprises a sequence given in SEQ ID NO:51 for CDR-L1, a sequence given in in SEQ ID NO:52 for CDR-L2 and a sequence given in SEQ ID NO:53 for CDR-L3.

5 A second aspect provides use of a pharmaceutical composition according to the first aspect in the manufacture of a medicament for treating or preventing *Clostridium difficile* infection or a complication therefrom.

10 A third aspect provides use of one or more monoclonal antibodies independently selected from:

i) a monoclonal antibody comprising a heavy chain wherein the heavy chain variable domain comprises a sequence given in SEQ ID NO:4 for CDR-H1, a sequence given in SEQ ID NO:5 for CDR-H2 and a sequence given in SEQ ID NO:6 for CDR-H3, and a light chain 15 wherein the light chain variable domain comprises a sequence given in SEQ ID NO:1 for CDR-L1, a sequence given in in SEQ ID NO:2 for CDR-L2 and a sequence given in SEQ ID NO:3 for CDR-L3;

ii) a monoclonal antibody comprising a heavy chain wherein the heavy chain variable domain comprises a sequence given in SEQ ID NO:34 for CDR-H1, a sequence given in 20 SEQ ID NO:35 for CDR-H2 and a sequence given in SEQ ID NO:36 for CDR-H3, and a light chain wherein the light chain variable domain comprises a sequence given in SEQ ID NO:31 for CDR-L1, a sequence given in in SEQ ID NO:32 for CDR-L2 and a sequence given in SEQ ID NO:33 for CDR-L3;

iii) a monoclonal antibody comprising a heavy chain wherein the heavy chain variable 25 domain comprises a sequence given in SEQ ID NO:44 for CDR-H1, a sequence given in SEQ ID NO:45 for CDR-H2 and a sequence given in SEQ ID NO:46 for CDR-H3, and a light chain wherein the light chain variable domain comprises a sequence given in SEQ ID NO:41 for CDR-L1, a sequence given in in SEQ ID NO:42 for CDR-L2 and a sequence given in SEQ ID NO:43 for CDR-L3; and

30 iv) a monoclonal antibody comprising a heavy chain wherein the heavy chain variable domain comprises a sequence given in SEQ ID NO:54 for CDR-H1, a sequence given in SEQ ID NO:55 for CDR-H2 and sequence given in SEQ ID NO:56 for CDR-H3, and a light chain wherein the light chain variable domain comprises a sequence given in SEQ ID NO:51

for CDR-L1, a sequence given in SEQ ID NO:52 for CDR-L2 and a sequence given in SEQ ID NO:53 for CDR-L3,

in the manufacture of a medicament for treating or preventing *Clostridium difficile* infection or a complication therefrom.

5 A fourth aspect provides a method for treating or preventing *Clostridium difficile* infection or a complication therefrom, the method comprising administering to a patient a pharmaceutical composition according to the first aspect.

In one embodiment there is provided a monoclonal antibody specific to antigen TcdA or TcdB, wherein the antibody has high affinity for the target antigen and is suitable for
10 reducing the duration and/or severity of diarrhoea and morbidity in a patient with *Clostridium difficile* infection or at risk of said infection.

In one embodiment there is provided a Mab specific to TcdA or TcdB, or a population
15 of at least two Mabs at least one of which is specific to TcdA and at least one of which is specific to TcdB, wherein the EC₅₀ of the or each antibody or the combination of antibodies is 200ng/ml or less, for example 150ng/ml or less such as 100ng/ml.

The antibodies of the present disclosure are useful because they are likely to provide a means of treating the severity and duration of symptoms of a primary infection such as diarrhoea in a patient or preventing death and not just prevent the reoccurrence of disease symptoms.

20 In at least some embodiments the antibodies according to the present disclosure show no reduction in potency in the presence of high concentrations of toxin.

Detailed Description of the Present Invention

Specific as employed herein is intended to refer to an antibody that only recognises the antigen to which it is specific or an antibody that has significantly higher binding affinity
25 to the antigen to which it is specific compared to binding to antigens to which it is non-specific, for example 5, 6, 7, 8, 9, 10 times higher binding affinity.

Binding affinity may be measured by standard assays such as surface plasmon resonance, such as BIACore.

In one embodiment the EC₅₀ is less than 75, 70, 60, 65, 55, 50, 45, 40, 35, 30, 25, 20,
30 15, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1.5 ng/ml *Clostridium difficile* infection in cell culture assays and the patient. This is significantly lower (more potent) than known antibodies and is thought to be a major factor as to why the antibodies of the present disclosure have a significant and positive impact on survival of subjects receiving treatment.

As employed herein potency is the ability of the antibody to elicit an appropriate biological response, for example neutralisation of the deleterious toxin effects, at a given dose

or concentration. Examples of potency include the percent maximal neutralisation of toxin activity (extent of protection), the lowest relative concentration of Mab to antigen (e.g. EC₅₀), the speed and durability of neutralisation activity.

In cell culture assays neutralisation might be observed as one or more of the following:

5 prevention of binding of toxin to cells, immunoprecipitation of toxin from solution, prevention of loss of cell form and shape, prevention of loss of cytoskeletal structures, prevention of loss of cell monolayer tight junctions and trans-epithelial electrical resistance, prevention of cell death, apoptosis and production of pro-inflammatory cytokines such as TNF α , IL-1 β , IL-6 and MIP1 α .

10 In tissue section and explant assays neutralisation may, for example be observed as prevention of necrosis and/or oedematous fluid accumulation.

In *in vivo* assays neutralisation may be observed as one or more of the following: prevention of fluid accumulation in ligated ileal loops and prevention of gut tissue necrosis, diarrhoea, pseudo-membrane formation or death of animals,

15 Thus in one embodiment there is provided an antibody (for example an anti-toxin A antibody) comprising a CDR, such as 1, 2, 3, 4, 5 or 6 CDRs, selected from:

QASQSI SNALA	SEQ ID NO: 1
SASSLAS	SEQ ID NO: 2
QYTHYSHTSKNP	SEQ ID NO: 3
20 GFTI SYYMS	SEQ ID NO: 4
IISGGHFTWYANWAKG	SEQ ID NO: 5
AYVSGSSFNGYAL	SEQ ID NO: 6

In one embodiment sequences 1 to 3 are in a light chain of the antibody.

In one embodiment sequences 4 to 6 are in a heavy chain of the antibody.

25 In one embodiment SEQ ID NO: 1 is CDR L1, SEQ ID NO: 2 is CDR L2 and SEQ ID NO: 3 is CDR L3.

In one embodiment SEQ ID NO: 4 is CDR H1, SEQ ID NO: 5 is CDR H2 and SEQ ID NO: 6 is CDR H3.

30 In one embodiment SEQ ID NO: 1 is CDR L1, SEQ ID NO: 2 is CDR L2, SEQ ID NO: 3 is CDR L3, SEQ ID NO: 4 is CDR H1, SEQ ID NO: 5 is CDR H2 and SEQ ID NO: 6 is CDR H3.

In one embodiment there is provided a variable region, such as a light chain variable region with the following sequence (Antibody 922 anti-toxin A antibody;Light chain Variable region sequence) SEQ ID NO: 7:

DPVMTQSPSTLSASVGDRVТИTCQASQSISNALAWYQQKPGKAPKLLIYSSASSLASGVPSRFK
GSGSGTEFTLTISLQPDDFATYYCQYTHYSHTSKNPFGGGKTVEIK

wherein the CDRs are underlined and construct is referred to herein as 922.g1 VK (gL1).

The polynucleotide sequence encoding SEQ ID NO: 7 is shown in Figure 1 and SEQ

5 ID NO: 8 therein.

In one embodiment there is provided a variable region, such as a heavy chain variable region with the following sequence (Antibody 922 anti-toxin A antibody heavy chain variable region sequence) SEQ ID NO: 9:

EVQLVESGGGLVQPGGSLRLSCAASGFTISSLVMSWVRQAPGKGLEWIGIISSGGHFTWYANW

10 AKGRFTI SSDSTVYLQMNSLRDEDTATYFCARAYVSGSSFNGYALWGQGTLVTVS

wherein the CDRs are underlined and construct is referred to herein as 922.g1 VH (gH1)

The polynucleotide sequence encoding SEQ ID NO: 9 is shown in Figure 1 and SEQ ID NO: 10 therein.

In one embodiment the antibody comprises the variable regions shown in SEQ ID NO:

15 7 and 9.

Thus in one embodiment there is provided an antibody (for example an anti-toxin A antibody) comprising a CDR, such as 1, 2, 3, 4, 5 or 6 CDRs, selected from:

QASQSI SNYLA SEQ ID NO: 11

SASTLAS SEQ ID NO: 12

20 QYSHYGTGVFGA SEQ ID NO: 13

AFSLSNYYMS SEQ ID NO: 14

IISSGSNALKWYASWPKG SEQ ID NO: 15

NYVGSGSYYGMDL SEQ ID NO: 16

In one embodiment sequences 11 to 13 are in

In one embodiment sequences 14 to 16 are in a heavy chain of the antibody.

In one embodiment SEQ ID NO: 11 is CDR L1, SEQ ID NO: 12 is CDR L2.

ID NO: 13 is CDR L3.
In one embodiment SEQ ID NO: 14 is CDR H1, SEQ ID NO: 15 is CDR H2 and SEQ

ID NO; 16 is CDR H3.

NO: 13 is CDR L3, SEQ ID NO: 14 is CDR H1, SEQ ID NO: 15 is CDR H2 and SEQ ID NO: 16 is CDR H3.

In one embodiment there is provided a variable region, such as a light chain variable region with the following sequence (Antibody 923 anti-toxin A antibody; Light chain Variable region sequence) SEQ ID NO: 17:

DVVMQTSPSSLSASVGDRVТИTCQASQSISNYLAWYQQKPGKVPKLLIYSASTLASGVPSRFK
GSGSGTQFTLTISLQPEDVATYYCQYSHYGTGVFGAFGGGTKVEIK

wherein the CDRs are underlined and construct is referred to herein as CA923.g1 gL1

The polynucleotide sequence encoding SEQ ID NO: 17 is shown in Figure 1 and SEQ

5 ID NO: 18 therein.

In one embodiment there is provided a variable region, such as a heavy chain variable region with the following sequence (Antibody 923 anti-toxin A antibody heavy chain variable region sequence) SEQ ID NO: 19:

EVQLVESGGGLVQPGGSLRLSCAASAFSLNSYYMSWVRQAPGKGLEWIGIISSGSNALKWYAS

10 WPKGRFTISKDSTTVYLQMNSLRAEDTATYFCARNYVGSGSYYGMDLWGQGTLVTVS

wherein the CDRs are underlined and construct is referred to herein as CA923.g1 gH1

The polynucleotide sequence encoding SEQ ID NO: 19 is shown in Figure 2 and SEQ ID NO: 20 therein.

In one embodiment an antibody according to the invention comprises variable regions shown in SEQ ID NO 17: and SEQ ID NO: 19.

In one embodiment there is provided an antibody (for example an anti-toxin A antibody) comprising a CDR, such as 1, 2, 3, 4, 5 or 6 CDRs, selected from:

QASQSISSYFS SEQ ID NO: 21

GASTLAS SEQ ID NO: 22

20 QCTDYSIGIYFGG SEQ ID NO: 23

GFSLSSYYMS SEQ ID NO: 24

IISSGSSTTFTWYASWAKG SEQ ID NO: 25

AYVGSSYYGFDP SEQ ID NO: 26

In one embodiment sequences 21 to 23 are in

In one embodiment sequences 24 to 26 are in a heavy chain of the antibody.

In one embodiment SEQ ID NO: 21 is CDR L1, SEQ ID NO: 22 is CDR L2.

ID NO; 23 is CDR L3.

In one embodiment SEQ ID NO; 24 is CDR H1, SEQ ID NO; 25 is CDR H2 and SEQ

ID NO; 26 is CDR H3.

NO; 23 is CDR L3, SEQ ID NO: 24 is CDR H1, SEQ ID NO: 25 is CDR H2 and SEQ ID NO; 26 is CDR H3.

In one embodiment there is provided a variable region, such as a light chain variable region with the following sequence (Antibody 993 anti-toxin A antibody; Light chain Variable region sequence) SEQ ID NO: 27:

DVVMQTSPSTLSASVGDRVТИTCQASQSISYYFSWYQQKPGKAPQLLIYGASTLASGVPSRFK
GSGSGTELTLTISSLQPDDFATYYCQCTDYSGIYFGGFGGGTKVEIK

wherein the CDRs are underlined and construct is referred to herein as CA993.g1 gL1

The polynucleotide sequence encoding SEQ ID NO: 27 is shown in Figure 2 and SEQ

5 ID NO: 28 therein.

In one embodiment there is provided a variable region, such as a heavy chain variable region with the following sequence (Antibody 993 anti-toxin A antibody heavy chain variable region sequence) SEQ ID NO: 29:

EVQLVESGGGLVQPGGSLKLSCTAGFSLSSYYMSWVRQAPGKGLEWIGIISSGSSTFTWYA

10 SWAKGRFTISKTTVYQLQMNSLKTEDTATYFCARAYVGSSSYGFDPWGQGTLVTVS

wherein the CDRs are underlined and construct is referred to herein as CA993.g1 gH1

The polynucleotide sequence encoding SEQ ID NO: 29 is shown in Figure 2 and SEQ ID NO: 30 therein.

In one embodiment an antibody according to the invention comprises variable regions shown in SEQ ID NO: 27 and SEQ ID NO: 29.

In one embodiment there is provided an antibody (for example an anti-toxin A antibody) comprising a CDR, such as 1, 2, 3, 4, 5 or 6 CDRs, selected from:

QASQSINNYFS SEQ ID NO: 31

GAANLAS SEQ ID NO: 32

20 QNNYGVH IYGAA SEQ ID NO: 33

GFSL SNY DMI SEQ ID NO: 34

FINTGGITYYASWAKG SEQ ID NO: 35

VDDYIGAWGAGL SEQ ID NO: 36

In one embodiment sequences 31 to 33 are in

In one embodiment sequences 34 to 36 are in a heavy chain of the antibody.

In one embodiment SEQ ID NO: 31 is CDR L1, SEQ ID NO: 32 is CDR L2.

ID NO; 33 is CDR L3.
In one embodiment SEQ ID NO: 34 is CDR H1, SEQ ID NO: 35 is CDR H2 and SEQ

30 In one embodiment SEQ ID NO: 31 is CDR L1, SEQ ID NO: 32 is CDR L2, SEQ ID NO; 33 is CDR L3, SEQ ID NO: 34 is CDR H1, SEQ ID NO: 35 is CDR H2 and SEQ ID NO; 36 is CDR H3.

In one embodiment there is provided a variable region, such as a light chain variable region with the following sequence (Antibody 995 anti-toxin A antibody; Light chain Variable region sequence) SEQ ID NO: 37:

DVVMTQSPSTLSASVGDRVATICQASQSINNYFSWYQQKPGKAPKLLIYGAANLASGVPSRFK
 GSGSGTEYTLTISSLQPDDFATYSCQNNYGVHIYGAAFGGGTKEIK

wherein the CDRs are underlined

5 The polynucleotide sequence encoding SEQ ID NO: 37 is shown in Figure 3 and SEQ ID NO: 38 therein.

In one embodiment there is provided a variable region, such as a heavy chain variable region with the following sequence (Antibody 995 anti-toxin A antibody heavy chain variable region sequence) SEQ ID NO: 39

10 EVQLVESGGGLVQPGGSLRLSCTASGFSLSNYDMIWVRQAPGKGLEYIGFINTGGITYYASWA
KGRFTISRDSSTVYLQMNSLRAEDTATYFCARVDDYIGAWGAGLWGQGTLVTVS

wherein the CDRs are underlined

The polynucleotide sequence encoding SEQ ID NO: 39 is shown in Figure 3 and SEQ ID NO: 40 therein.

15 In one embodiment an antibody according to the invention comprises variable regions shown in SEQ ID NO: 37 and SEQ ID NO: 39.

In one embodiment there is provided an antibody (for example an anti-toxin A antibody) comprising a CDR, such as 1, 2, 3, 4, 5 or 6 CDRs, selected from:

QASQSISSYLS	SEQ ID NO: 41
-------------	---------------

20 RASTLAS	SEQ ID NO: 42
------------	---------------

LGVYGYSNDDGIA	SEQ ID NO: 43
---------------	---------------

GIDLSSHMC	SEQ ID NO: 44
-----------	---------------

VIYHFGSTYYANWATG	SEQ ID NO: 45
------------------	---------------

ASIAGYSAFDP	SEQ ID NO: 46
-------------	---------------

25 In one embodiment sequences 41 to 43 are in a light chain of the antibody.

In one embodiment sequences 44 to 46 are in a heavy chain of the antibody.

In one embodiment SEQ ID NO: 41 is CDR L1, SEQ ID NO: 42 is CDR L2 and SEQ ID NO: 43 is CDR L3.

30 In one embodiment SEQ ID NO: 44 is CDR H1, SEQ ID NO: 45 is CDR H2 and SEQ ID NO: 46 is CDR H3.

In one embodiment SEQ ID NO: 41 is CDR L1, SEQ ID NO: 42 is CDR L2, SEQ ID NO: 43 is CDR L3, SEQ ID NO: 44 is CDR H1, SEQ ID NO: 45 is CDR H2 and SEQ ID NO: 46 is CDR H3.

In one embodiment there is provided a variable region, such as a light chain variable region with the following sequence (Antibody 997 anti-toxin A antibody; Light chain Variable region sequence) SEQ ID NO: 47:

ALVMTQSPSSFSASTGDRVТИTCQASQSISSYLSWYQQKPGKAPKLLIYRASTLASGVPSRFS
GSGSGTEYLTISCLOSEDFATYYCLGVYGYSNDDGIAFGGGTKVEIK

wherein the CDRs are underlined

The polynucleotide sequence encoding SEQ ID NO: 47 is shown in Figure 3 and SEQ ID NO: 48 therein.

In one embodiment there is provided a variable region, such as a heavy chain variable region with the following sequence (Antibody 997 anti-toxin A antibody heavy chain variable region sequence) SEQ ID NO: 49:

EVQLVESGGGLVQPGGSLRLSCTVSGIDLSSHHMCWVRQAPGKGLEYIGVIYHFGSTYYANWA
TGRFTISKDSTTVYLOMNSLRAEDTATYFCARASIAGYSAFDPWGOGTLVTVS

wherein the CDRs are underlined

The polynucleotide sequence encoding SEQ ID NO: 49 is shown in Figure 1.

ID NO: 50 therein.

In one embodiment an antibody according to the invention comprises variable regions

in SEQ ID NO: 47 and SEQ ID NO: 49.

In one embodiment there is provided an antibody (for example an anti-

ly) comprising a CDR, such as 1, 2, 3, 4, 5 or 6

QASQSIYSYLA SEQ ID NO: 51

DAS1FLAS

QGNAYTSNSHDNA SEQ ID NO: 53

G1DLSSDAVG SEQ ID NO: 34

TIAATFDSTTIAASWARG

In one embodiment sequences 54 to 55 are in a light chain of the antibody.

In one embodiment sequences 51 to 56 are in a heavy chain of the antibody.

30 ID NO: 52-1-CDR-L2

In one embodiment SEQ ID NO: 54 is CDR H1, SEQ ID NO: 55 is CDR H2 and SEQ ID NO: 56 is CDR H3.

In one embodiment SEQ ID NO: 51 is CDR L1, SEQ ID NO: 52 is CDR L2, SEQ ID NO: 53 is CDR L3, SEQ ID NO: 54 is CDR H1, SEQ ID NO: 55 is CDR H2 and SEQ ID NO: 56 is CDR H3.

In one embodiment there is provided a variable region, such as a light chain variable region with the following sequence (Antibody 1000 anti-toxin A antibody; Light chain Variable region sequence) SEQ ID NO: 57:

EIVMTQSPSTLSASVGDRVTITCQASQSIYSYLAWYQQKPGKAPKLLIYDASTLASGVPSRFK

5 GSGSGTEFTLTISLQPDDFATYYCQGNAYTSNSHDNAFGGGTKVEIK

wherein the CDRs are underlined.

The polynucleotide sequence encoding SEQ ID NO: 57 is shown in Figure 4 and SEQ ID NO: 58 therein.

In one embodiment there is provided a variable region, such as a heavy chain variable region with the following sequence (Antibody 1000 anti-toxin A antibody heavy chain variable region sequence) SEQ ID NO: 59:

EVQLVESGGGLIQPGGSLRLSCTVSGIDLSSDAVGWVRQAPGKGLEIGIIATFDSTYYASWA
KGRFTISKASSTTVYLQMNSLRAEDTATYFCARTGSWYYISGWGSYYYGMDLWGQGTLVTVS
wherein the CDRs are underlined.

15 The polynucleotide sequence encoding SEQ ID NO: 59 is shown in Figure 4 and SEQ ID NO: 60 therein.

In one embodiment an antibody according to the invention comprises variable regions shown in SEQ ID NO: 57 and SEQ ID NO: 59.

In one embodiment there is provided an antibody (for example an anti-toxin B antibody) comprising a CDR, such as 1, 2, 3, 4, 5 or 6 CDRs, selected from:

RASKSVSTLMH SEQ ID NO: 61

LASNLES SEQ ID NO: 62

QQTWNPDWT SEQ ID NO: 63

GFTFSNYGMA SEQ ID NO: 64

25 SISSSGGSTYYRDSVKG SEQ ID NO: 65

VIRGYVMDA SEQ ID NO: 66

In one embodiment sequences 61 to 63 are in a light chain of the antibody.

In one embodiment sequences 64 to 66 are in a heavy chain of the antibody.
In one embodiment SEQ ID NO: 61 is CDR L1, SEQ ID NO: 62 is CDR L2 and SEQ
30 ID NO: 63 is CDR L3

In one embodiment SEQ ID NO: 64 is CDR H1, SEQ ID NO: 65 is CDR H2 and SEQ ID NO: 66 is CDR H3.

In one embodiment SEQ ID NO: 61 is CDR L1, SEQ ID NO: 62 is CDR L2, SEQ ID NO: 63 is CDR L3, SEQ ID NO: 64 is CDR H1, SEQ ID NO: 65 is CDR H2 and SEQ ID NO: 66 is CDR H3.

In one embodiment there is provided a variable region, such as a light chain variable region with the following sequence (Antibody 926 anti-toxin B antibody; Light chain Variable region sequence) SEQ ID NO: 67:

5 DTVLTQSPATLSLSPGERATLSCRASKSVSTLMHWFQQKPGQAPKLLIYLASNLESGVPARFS
GSGSGTDFTLTISSEPEDFAVYYCQQTWNDPWTFGGGTKVEIK

wherein the CDRs are underlined.

The polynucleotide sequence encoding SEQ ID NO: 67 is shown in Figure 5 and SEQ ID NO: 68 therein.

10 In one embodiment there is provided a variable region, such as a heavy chain variable region with the following sequence (Antibody 926 anti-toxin B antibody heavy chain variable region sequence) SEQ ID NO: 69:

EVELLESGGGLVQPGGSLRLSCEASGFTFSNYGMAVRQAPTKGLEWVTSSISSGGSTYYRDS
VKGRFTISRDNAKSSLYLQMNSLRAEDTATYYCTTVIRGYVMDAWGQGTLVTVS

wherein the CDRs are underlined.

15 The polynucleotide sequence encoding SEQ ID NO: 69 is shown in Figure 5 and SEQ ID NO: 70 therein.

In one embodiment there is provided an antibody (for example an anti-toxin B antibody) comprising a CDR, such as 1, 2, 3, 4, 5 or 6 CDRs, selected from:

	RASGSV <u>STLMH</u>	SEQ ID NO: 71
20	KASN <u>LAS</u>	SEQ ID NO: 72
	H <u>QSWNSDT</u>	SEQ ID NO: 73
	GFT <u>FSNYGMA</u>	SEQ ID NO: 74
	TINYDGRT <u>THYRDSVKG</u>	SEQ ID NO: 75
	I <u>SRSHYFDC</u>	SEQ ID NO: 76

25 In one embodiment sequences 71 to 73 are in a light chain of the antibody.

In one embodiment sequences 74 to 76 are in a heavy chain of the antibody.

In one embodiment SEQ ID NO: 71 is CDR L1, SEQ ID NO: 72 is CDR L2 and SEQ ID NO: 73 is CDR L3.

30 In one embodiment SEQ ID NO: 74 is CDR H1, SEQ ID NO: 75 is CDR H2 and SEQ ID NO: 76 is CDR H3.

In one embodiment SEQ ID NO: 71 is CDR L1, SEQ ID NO: 72 is CDR L2, SEQ ID NO: 73 is CDR L3, SEQ ID NO: 74 is CDR H1, SEQ ID NO: 75 is CDR H2 and SEQ ID NO: 76 is CDR H3.

In one embodiment there is provided a variable region, such as a light chain variable region with the following sequence (Antibody 927 anti-toxin B antibody; Light chain Variable region sequence) SEQ ID NO: 77:

5 DTQMTQSPSTLSASVGDRVTITCRASGSVSTLMHWYQQKPGKAPKLLIYKASNLASGVPSRFS
GSGSGTEFTLTISLQPDDFATYYCHQSWNSDTFGQGTRLEIK
wherein the CDRs are underlined

The polynucleotide sequence encoding SEQ ID NO: 77 is shown in Figure 5 and SEQ ID NO: 78 therein.

In one embodiment there is provided a variable region, such as a heavy chain variable 10 region with the following sequence (Antibody 927 anti-toxin B antibody heavy chain variable region sequence) SEQ ID NO: 79:

EVQLVESGGVVQPGRSLRLSCAASGFTFSNYGMAWVRQAPGKGLEWVATINYDGRTHYRDS
VKGRTFISRDNSKSTLYLQMNSLRAEDTAVYYCTSISRSHYFDCWGQGTLVTVS

wherein the CDRs are underlined.

15 The polynucleotide sequence encoding SEQ ID NO: 79 is shown in Figure 5 and SEQ ID NO: 80 therein.

In one embodiment an antibody according to the invention comprises variable regions shown in SEQ ID NO: 77 and SEQ ID NO: 79.

20 In one embodiment there is provided an antibody (for example an anti-toxin B antibody) comprising a CDR, such as 1, 2, 3, 4, 5 or 6 CDRs, selected from:

KASKSISNHLA	SEQ ID NO: 81
SGSTLQS	SEQ ID NO: 82
QQYDEYPYT	SEQ ID NO: 83
GFSLQSYTIS	SEQ ID NO: 84
25 AISGGGSTYYNLPLKS	SEQ ID NO: 85
PRWYPRSYFDY	SEQ ID NO: 86

In one embodiment sequences 81 to 83 are in a light chain of the antibody.

In one embodiment sequences 84 to 86 are in a heavy chain of the antibody.

30 In one embodiment SEQ ID NO: 81 is CDR L1, SEQ ID NO: 82 is CDR L2 and SEQ ID NO: 83 is CDR L3.

In one embodiment SEQ ID NO: 84 is CDR H1, SEQ ID NO: 85 is CDR H2 and SEQ ID NO: 86 is CDR H3.

35 In one embodiment SEQ ID NO: 81 is CDR L1, SEQ ID NO: 82 is CDR L2, SEQ ID NO: 83 is CDR L3, SEQ ID NO: 84 is CDR H1, SEQ ID NO: 85 is CDR H2 and SEQ ID NO: 86 is CDR H3.

In one embodiment there is provided a variable region, such as a light chain variable region with the following sequence (Antibody 1099 anti-toxin B antibody; Light chain Variable region sequence) SEQ ID NO: 87:

5 DVQLTQSPSFLSASVGDRVТИTCKASKSISNHLAWYQEKPGKANKLLIHSGSTLQSGTPSRFS
GSGSGTEFTLTISSLQPEDFATYYCQQYDEYPYTFGQGTRLEIKRT
wherein the CDRs are underlined.

In one embodiment the last two amino acids (RT) of SEQ ID NO: 87 are omitted.

The polynucleotide sequence encoding SEQ ID NO: 87 is shown in Figure 6 and SEQ ID NO: 88 therein. In one embodiment the codons encoding the last two amino acids (RT) are 10 omitted.

In one embodiment there is provided a variable region, such as a heavy chain variable region with the following sequence (Antibody 1099 anti-toxin B antibody heavy chain variable region sequence) SEQ ID NO: 89:

15 EVQLQESGPGLVKPSETLSLTCTVSGFSLQSYTISWVRQPPGKQLEWIAAISGGGSTYYNLP
KSRVTISRDTSKSQVLKLSSVTAADTAVYYCTRPRWYPRSYFDYWGRGTLVTS
wherein the CDRs are underlined

The polynucleotide sequence encoding SEQ ID NO: 89 is shown in Figure 6 and SEQ ID NO: 90 therein.

20 In one embodiment an antibody according to the invention comprises variable regions shown in SEQ ID NO 87: and SEQ ID NO: 89.

In one embodiment there is provided an antibody (for example an anti-toxin B antibody) comprising a CDR, such as 1, 2, 3, 4, 5 or 6 CDRs, selected from:

	RASQRISTSIH	SEQ ID NO: 91
	YASQ <u>S</u> IS	SEQ ID NO: 92
25	QQSYSSLYT	SEQ ID NO: 93
	GFTFSDSYMA	SEQ ID NO: 94
	SISYGGTIIQYGDSVK <u>G</u>	SEQ ID NO: 95
	RQGTYARYLDF	SEQ ID NO: 96

In one embodiment sequences 91 to 93 are in a light chain of the antibody.

30 In one embodiment sequences 94 to 96 are in a heavy chain of the antibody.

In one embodiment SEQ ID NO: 91 is CDR L1, SEQ ID NO: 92 is CDR L2 and SEQ ID NO: 93 is CDR L3.

In one embodiment SEQ ID NO: 94 is CDR H1, SEQ ID NO: 95 is CDR H2 and SEQ ID NO: 96 is CDR H3.

In one embodiment SEQ ID NO: 91 is CDR L1, SEQ ID NO: 92 is CDR L2, SEQ ID NO: 93 is CDR L3, SEQ ID NO: 94 is CDR H1, SEQ ID NO: 95 is CDR H2 and SEQ ID NO: 96 is CDR H3.

In one embodiment there is provided a variable region, such as a light chain variable region with the following sequence (Antibody 1102 anti-toxin B antibody; Light chain Variable region sequence) SEQ ID NO: 97:

NIVLTQSPATLSLSPGERATLSCRASQRISTSIHWYQQKPGQAPRLLIKYASQSISGIPARFS
GSGSGTDFTLTISSEPEDFAVYYCQQSYSSLYTFGQGTKLEIK

wherein the CDRs are underlined

The polynucleotide sequence encoding SEQ ID NO: 97 is shown in Figure 6 and SEQ ID NO: 98 therein.

In one embodiment there is provided a variable region, such as a heavy chain variable region with the following sequence (Antibody 1102 anti-toxin B antibody heavy chain variable region sequence) SEQ ID NO: 99:

EVQLVESGGLVQPGGSLRLSCAVSGFTFSDSYMAWVRQAPGKGLEWIASISYGGTIIQYGDS
VKGRFTISRDNAKSSLYLQMNSLRAEDTAVYYCARRQGTYARYLDFWGQGTLVTVS

wherein the CDRs are underlined.

The polynucleotide sequence encoding SEQ ID NO: 99 is shown in Figure 7 and SEQ ID NO: 100 therein.

In one embodiment an antibody according to the invention comprises variable regions shown in SEQ ID NO 97: and SEQ ID NO: 99.

In one embodiment there is provided an antibody (for example an anti-toxin B antibody) comprising a CDR, such as 1, 2, 3, 4, 5 or 6 CDRs, selected from:

RASESVSTLLH	SEQ ID NO: 101
KASNLAS	SEQ ID NO: 102
HQSWNSPPT	SEQ ID NO: 103
GFTFSNYGMA	SEQ ID NO: 104
IINYDASTTHYRDSVKG	SEQ ID NO: 105
YGRSHYFDY	SEQ ID NO: 106

In one embodiment sequences 101 to 103 are in a light chain of the antibody.

In one embodiment sequences 104 to 106 are in a heavy chain of the antibody.

In one embodiment SEQ ID NO: 101 is CDR L1, SEQ ID NO: 102 is CDR L2 and SEQ ID NO: 103 is CDR L3.

In one embodiment SEQ ID NO: 104 is CDR H1, SEQ ID NO: 105 is CDR H2 and

SEQ ID NO: 106 is CDR H3.

In one embodiment SEQ ID NO: 101 is CDR L1, SEQ ID NO: 102 is CDR L2, SEQ ID NO: 103 is CDR L3, SEQ ID NO: 104 is CDR H1, SEQ ID NO: 105 is CDR H2 and SEQ ID NO: 106 is CDR H3.

In one embodiment there is provided a variable region, such as a light chain variable region with the following sequence (Antibody 1114 anti-toxin B antibody; Light chain Variable region sequence) SEQ ID NO: 107:

ATQMTQSPSSL SASVGDRVTITCRASESVSTLLHWYQQKPGKAPKLLIYKASNLASGVPSRFS
GSGSGTDFTLTISLQPEDFATYYCHQSWNSPPTFGQGTKLEIK

wherein the CDRs are underlined.

The polynucleotide sequence encoding SEQ ID NO: 107 is shown in Figure 7 and SEQ ID NO: 108 therein.

In one embodiment there is provided a variable region, such as a heavy chain variable region with the following sequence (Antibody 1114 anti-toxin B antibody heavy chain variable region sequence) SEQ ID NO: 109:

EVQLVESGGLVQPGGSLRLSCAASGFTFSNYGMAWVRQAPGKGLEWVAIIINYDASTTHYRDS
VKGRFTISRDNAKSSLYLQMNSLRAEDTAVYYCTRYGRSHYFDYWGQTLVTVS

wherein the CDRs are underlined.

The polynucleotide sequence encoding SEQ ID NO: 109 is shown in Figure 7 and SEQ ID NO: 110 therein.

In one embodiment an antibody according to the invention comprises variable regions shown in SEQ ID NO: 107 and SEQ ID NO: 109.

In one embodiment there is provided an antibody (for example an anti-toxin B antibody) comprising a CDR, such as 1, 2, 3, 4, 5 or 6 CDRs, selected from:

	RASESVSTLLH	SEQ ID NO: 111
25	KASN ^L AS	SEQ ID NO: 112
	HQS ^W NSPPT	SEQ ID NO: 113
	GFTFSNYGMA	SEQ ID NO: 114
	I IINYDASTTHYRDSVK	SEQ ID NO: 115
	YGRSHYFDY	SEQ ID NO: 116

30 In one embodiment sequences 111 to 113 are in a light chain of the antibody.

In one embodiment sequences 114 to 116 are in a heavy chain of the antibody.

In one embodiment SEQ ID NO: 111 is CDR L1, SEQ ID NO: 112 is CDR L2 and SEQ ID NO: 113 is CDR L3.

In one embodiment SEQ ID NO: 114 is CDR H1, SEQ ID NO: 115 is CDR H2 and

35 SEQ ID NO: 116 is CDR H3.

In one embodiment SEQ ID NO: 111 is CDR L1, SEQ ID NO: 112 is CDR L2, SEQ ID NO: 113 is CDR L3, SEQ ID NO: 114 is CDR H1, SEQ ID NO: 115 is CDR H2 and SEQ ID NO: 116 is CDR H3.

In one embodiment there is provided a variable region, such as a light chain variable region with the following sequence (Antibody 1114 graft 8 anti-toxin B antibody; Light chain Variable region sequence) SEQ ID NO: 117:

DTVLTQSPSSLSASVGDRVТИTCRASESVTLH^{WY}QQKPGKAPKLLIYKASNLASGVPSRFS
GSGSGTDFTLTISLQPEDFATYYCHQS^{WNS}PPTFGQGTKLEIK

wherein the CDRs are underlined.

$$T_1 = -1 = 1 - \epsilon_1$$

10 The polynucleotide sequence encoding SEQ ID NO: 117 is shown in Figure 8 and SEQ ID NO: 118 therein.

In one embodiment there is provided a variable region, such as a heavy chain variable region with the following sequence (Antibody 1114 graft 8 anti-toxin B antibody heavy chain variable region sequence) SEQ ID NO: 119:

15 EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYGMAWVRQAPGKGLEWVAIINYDASTTHYRDS
VKGRFTISRDNAAKSSLYLQMNSLRAEDTAVYYCTRYGRSHYFDYWGQGTLVTVS

wherein the CDRs are underlined.

The polynucleotide sequence encoding SEQ ID NO: 119 is shown in Figure 8 and SEQ ID NO: 120 therein.

20 In one embodiment an antibody according to the invention comprises variable regions shown in SEQ ID NO: 117 and SEQ ID NO: 119.

In one embodiment there is provided an antibody (for example an anti-toxin B antibody) comprising a CDR, such as 1, 2, 3, 4, 5 or 6 CDRs, selected from:

KASQNIYMYLN SEQ ID NO: 121

25 NTNKLHT SEQ ID NO: 122

LQHKSFPYT SEQ ID NO: 123

GFTFRDSFMA SEQ ID NO: 124

SISYEGDKTYYGDSVKG SEQ ID NO: 125

LTITTSQDS SEQ ID NO: 126

30 In one embodiment sequences 121 to 123 are in a light chain of the antibody.

In one embodiment sequences 124 to 126 are in a heavy chain of the antibody.

In one embodiment SEQ ID NO: 121 is CDR L1, SEQ ID NO: 122 is CDR L2 and SEQ ID NO: 123 is CDR L3.

In one embodiment SEQ ID NO: 124 is CDR H1, SEQ ID NO: 125 is CDR H2 and

35 SEQ ID NO: 126 is CDR H3.

In one embodiment SEQ ID NO: 121 is CDR L1, SEQ ID NO: 122 is CDR L2, SEQ ID NO: 123 is CDR L3, SEQ ID NO: 124 is CDR H1, SEQ ID NO: 125 is CDR H2 and SEQ ID NO: 126 is CDR H3.

In one embodiment there is provided a variable region, such as a light chain variable

5 region with the following sequence (Antibody 1125 anti-toxin B antibody; Light chain
Variable region sequence) SEQ ID NO: 127:

DIQMTQSPSSLSASVGDRVТИTCKASQNІYMYLNWYQQKPGKAPKRLIYNTNKLHTGVPSRFS
GSGSGTEYTLTISSLQPEDFATYYCLQHKSFPYTFGQGKLEIK

wherein the CDRs are underlined.

10 The polynucleotide sequence encoding SEQ ID NO: 127 is shown in Figure 8 and SEQ
ID NO: 128 therein.

In one embodiment there is provided a variable region, such as a heavy chain variable region with the following sequence (Antibody 1125 anti-toxin B antibody heavy chain variable region sequence) SEQ ID NO: 129:

15 EVQLVESGGGLVQPGGSLRLSCAASGFTFRDSFMAWVRQAPGKGLEWVASISYEGDKTYYGDS
VKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARLTITSGDSWGQGTMVTVSS
wherein the CDRs are underlined

In one embodiment the last amino acid (S) of SEQ ID NO: 129 is omitted

The polynucleotide sequence encoding SEQ ID NO: 129 is shown in Figure 9 and SEQ 20 ID NO: 130 therein. In one embodiment the codon AGC encoding the last amino acid S is omitted.

In one embodiment an antibody according to the invention comprises variable regions shown in SEQ ID NO: 127 and SEQ ID NO: 129.

In one embodiment there is provided antibody (for example an anti-toxin B antibody) comprising a CDR, such as 1, 2, 3, 4, 5 or 6 CDRs, selected from:

KASOHVGTNVD SEO ID NO: 131

GASIRYT SEQ ID NO: 132

GASTBYXT SEQ ID NO: 133

LOVNYNDYT

CHIENGNECMS

30 SISRS:CGNAVYRDSVKG SEQ ID NO: 135

RAYSSBEEF SEQ ID NO: 136

In one embodiment sequences 131 to 133 are in a light chain of the antibody.

In one embodiment sequences 134 to 136 are in a heavy chain of the antibody.

In one embodiment SEQ ID NO: 131 is CDR L1, SEQ ID NO: 132 is CDR L2 and
35 SEQ ID NO: 133 is CDR L3.

In one embodiment SEQ ID NO: 134 is CDR H1, SEQ ID NO: 135 is CDR H2 and SEQ ID NO: 136 is CDR H3.

In one embodiment SEQ ID NO: 131 is CDR L1, SEQ ID NO: 132 is CDR L2, SEQ ID NO: 133 is CDR L3, SEQ ID NO: 134 is CDR H1, SEQ ID NO: 135 is CDR H2 and SEQ ID NO: 136 is CDR H3.

In one embodiment there is provided a variable region, such as a light chain variable region with the following sequence (Antibody 1129 anti-toxin B antibody; Light chain Variable region sequence) SEQ ID NO: 137:

DTQMTQSPSSLSASVGDRVTITCKASQHVGTNDWYQQKPGKVPKLIYGASIRYTGVPDRFT

10 GSGSGTDFTLTISSLQPEDVATYCLQYNNPTFGQGTKLEIK

wherein the CDRs are underlined.

The polynucleotide sequence encoding SEQ ID NO: 137 is shown in Figure 8 and SEQ ID NO: 138 therein.

In one embodiment there is provided a variable region, such as a heavy chain variable region with the following sequence (Antibody 1129 anti-toxin B antibody heavy chain variable region sequence) SEQ ID NO: 139:

EVQLVESGGVVQPGRSLRLSCATSGFIFSNFGMSWRQAPGKGLEWVASIPSGGNAYRDS

VKGRFTISRDNSKTTLYLQMNSLRAEDTAVYCTRRAYSPFAFWGQGTLVTVS

wherein the CDRs are underlined.

20 In one embodiment the last amino acid (S) of SEQ ID NO: 139 is omitted.

The polynucleotide sequence encoding SEQ ID NO: 139 is shown in Figure 8 and SEQ ID NO: 140 therein. In one embodiment the codon AGC encoding the last amino acid S is omitted.

25 In one embodiment an antibody according to the invention comprises variable regions shown in SEQ ID NO: 137 and SEQ ID NO: 139.

In one embodiment there is provided an antibody (for example an anti-toxin B antibody) comprising a CDR, such as 1, 2, 3, 4, 5 or 6 CDRs, selected from:

KASKSISNHLA SEQ ID NO: 141

SGSTLQP SEQ ID NO: 142

30 QQYDEYPYT SEQ ID NO: 143

GFSLNSYTIT SEQ ID NO: 144

AISGGGSTYFNSALKS SEQ ID NO: 145

PRWYPRSYFDY SEQ ID NO: 146

In one embodiment sequences 141 to 143 are in a light chain of the antibody.

35 In one embodiment sequences 144 to 146 are in a heavy chain of the antibody.

In one embodiment SEQ ID NO: 141 is CDR L1, SEQ ID NO: 142 is CDR L2 and SEQ ID NO: 143 is CDR L3.

In one embodiment SEQ ID NO: 144 is CDR H1, SEQ ID NO: 145 is CDR H2 and SEQ ID NO: 146 is CDR H3.

5 In one embodiment SEQ ID NO: 141 is CDR L1, SEQ ID NO: 142 is CDR L2, SEQ ID NO: 143 is CDR L3, SEQ ID NO: 144 is CDR H1, SEQ ID NO: 145 is CDR H2 and SEQ ID NO: 146 is CDR H3.

In one embodiment there is provided a variable region, such as a light chain variable region with the following sequence (Antibody 1134 anti-toxin B antibody; Light chain

10 Variable region sequence):

DVQLTQSPSFLSASVGDRVITITCKASKSISNHLAWYQEKPGKANKLLIHSGSTLQPGT
PSRFSGSGSGTEFTLTISLQPEDFATYYCQQYDEYPYTFGQGTRLEIK

SEQ ID NO: 147

wherein the CDRs are underlined.

15 The polynucleotide sequence encoding SEQ ID NO: 147 is shown in Figure 9 and SEQ ID NO: 148 therein.

In one embodiment there is provided a variable region, such as a heavy chain variable region with the following sequence (Antibody 1134 anti-toxin B antibody heavy chain variable region sequence) SEQ ID NO: 149:

20 EVQLQESGPGLVKPSETLSLTCTVSGFSLNSYTITWVRQPPGKGLEWIAAISGGGSTYFNSAL
KSRVTISRDTSKSQVSLKLSSVTAADAVYYCTRPRWYPRSYFDYWGRGTLVTVs

wherein the CDRs are underlined

The polynucleotide sequence encoding SEQ ID NO: 149 is shown in Figure 9 and SEQ ID NO: 150 therein.

25 In one embodiment an antibody according to the invention comprises variable regions shown in SEQ ID NO 147: and SEQ ID NO: 149.

In one embodiment there is provided antibody (for example an anti-toxin B antibody) comprising a CDR, such as 1, 2, 3, 4, 5 or 6 CDRs, selected from:

KASQNVGNNA SEQ ID NO: 151

30 YASNRF SEQ ID NO: 152

QRVYQSTWT SEQ ID NO: 153

GFSLTSYYVH SEQ ID NO: 154

CIRTGGNTEYQSEFKS SEQ ID NO: 155

GNYGFAY SEQ ID NO: 156

35 In one embodiment sequences 151 to 153 are in a light chain of the antibody.

In one embodiment sequences 154 to 156 are in a heavy chain of the antibody.

In one embodiment SEQ ID NO: 151 is CDR L1, SEQ ID NO: 152 is CDR L2 and SEQ ID NO: 153 is CDR L3.

In one embodiment SEQ ID NO: 154 is CDR H1, SEQ ID NO: 155 is CDR H2 and

5 SEQ ID NO: 156 is CDR H3.

In one embodiment SEQ ID NO: 151 is CDR L1, SEQ ID NO: 152 is CDR L2, SEQ ID NO: 153 is CDR L3, SEQ ID NO: 154 is CDR H1, SEQ ID NO: 155 is CDR H2 and SEQ ID NO: 156 is CDR H3.

In one embodiment there is provided a variable region, such as a light chain variable

10 region with the following sequence (Antibody 1151 anti-toxin B antibody; Light chain
Variable region sequence) SEQ ID NO: 157:

Variable region sequence) SEQ ID NO: 157:

AIQMTQSPSSLASVGDRVITCKASQNVGNNAWYQHKPGKAPKLLIYYASNRFTGVPSRFT
GGGYGTDFTLTISLOPEDFATYYCORYVOSTWTFGOGTKVEIK

wherein the CDRs are underlined.

15 The polynucleotide sequence encoding SEQ ID NO: 157 is shown in Figure 9 and SEQ ID NO: 158 therein.

In one embodiment there is provided a variable region, such as a heavy chain variable region with the following sequence (Antibody 1151 anti-toxin B antibody heavy chain variable region sequence) SEO ID NO: 159:

20 EVQLQESGPGLVKPSETLSLTCTVSGFSLTSYYVHWVRQPPGKGLEWMGCIRTGGNTEYQSEF
KSRVTISRDTSKNOVSLKLSSVTAADTAVYYCARGNYGFAYWGOGLTVS

wherein the CDRs are underlined.

The polynucleotide sequence encoding SEQ ID NO: 159 is shown in Figure 9 and SEQ ID NO: 160 therein.

25 In one embodiment an antibody according to the invention comprises variable regions shown in SEQ ID NO: 157 and SEQ ID NO: 159.

In one embodiment there is provided an antibody (for example an anti-toxin B antibody) comprising a CDR, such as 1, 2, 3, 4, 5 or 6 CDRs, selected from:

KASQNIKYLD SEQ ID NO: 161

30 NIOSLHT SEO ID NO: 162

FOHNSGW SEQ ID NO: 163

GFTFTOAAMF SEO ID NO: 164

BTSTKSNNFATYYPDSVKG SEQ ID NO: 165

PAYYYDGTVPEAY SEQ ID NO: 166

35 In one embodiment sequences 161 to 163 are in a light chain of the antibody.

In one embodiment sequences 164 to 166 are in a heavy chain of the antibody.

In one embodiment SEQ ID NO: 161 is CDR L1, SEQ ID NO: 162 is CDR L2 and SEQ ID NO: 163 is CDR L3.

5 In one embodiment SEQ ID NO: 164 is CDR H1, SEQ ID NO: 165 is CDR H2 and SEQ ID NO: 166 is CDR H3.

In one embodiment SEQ ID NO: 161 is CDR L1, SEQ ID NO: 162 is CDR L2, SEQ ID NO: 163 is CDR L3, SEQ ID NO: 164 is CDR H1, SEQ ID NO: 165 is CDR H2 and SEQ ID NO: 166 is CDR H3.

10 In one embodiment there is provided a variable region, such as a light chain variable region with the following sequence (Antibody 1153 anti-toxin B antibody; Light chain Variable region sequence) SEQ ID NO: 167:

DIQMTQSPSSLSASVGDRVITITCASQNINKYLDWYQQKPGKVPKLLIYNIQSLHTGIPSRFSGSGSGTDFTLTISLQPEDDVATYYCFQHNSGWTFGQGTRLEIK

wherein the CDRs are underlined.

15 The polynucleotide sequence encoding SEQ ID NO: 167 is shown in Figure 10 and SEQ ID NO: 168 therein.

In one embodiment there is provided a variable region, such as a heavy chain variable region with the following sequence (Antibody 1153 anti-toxin B antibody heavy chain variable region sequence) SEQ ID NO: 169:

20 EVQLVESGGGLVQPGGSLKLSCAASGFTFTQAAMFWVRQASGKGLEGIARISTKSNNFATYYPDSVKGRFTISRDDSKNTVYLMQNSLKTEDTAVYYCTAPAYYYDGTVPFAYWGQGTLVTVS wherein the CDRs are underlined.

The polynucleotide sequence encoding SEQ ID NO: 169 is shown in Figure 10 and SEQ ID NO: 170 therein.

25 In one embodiment an antibody according to the invention comprises variable regions shown in SEQ ID NO: 167 and SEQ ID NO: 169.

In one embodiment there is provided antibody comprising 6 CDRs independently selected from SEQ ID NOs 1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35, 36, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66, 71, 72, 73, 30 74, 75, 76, 81, 82, 83, 84, 85, 86, 91, 92, 93, 94, 95, 96, 101, 102, 103, 104, 105, 106, 111, 112, 113, 114, 115, 116, 121, 122, 123, 124, 125, 126, 131, 132, 133, 134, 135, 136, 141, 142, 143, 144, 145, 146, 151, 152, 153, 154, 155, 156, 161, 162, 163, 164, 165 and 166.

In one embodiment there is provided an anti-TcdA antibody comprising 6 CDRs independently selected from SEQ ID NOs 1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 35 25, 26, 31, 32, 33, 34, 35, 36, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55 and 56.

In one embodiment there is provided an anti-TcdB antibody comprising 6 CDRs independently selected from SEQ ID NOs 61, 62, 63, 64, 65, 66, 71, 72, 73, 74, 75, 76, 81, 82, 83, 84, 85, 86, 91, 92, 93, 94, 95, 96, 101, 102, 103, 104, 105, 106, 111, 112, 113, 114, 115, 116, 121, 122, 123, 124, 125, 126, 131, 132, 133, 134, 135, 136, 141, 142, 143, 144, 145, 146, 5 151, 152, 153, 154, 155, 156, 161, 162, 163, 164, 165 and 166.

In one embodiment there is provided an antibody which comprises two variable regions independently selected from SEQ ID NOs: 7, 9, 17, 19, 27, 29, 37, 39, 47, 49, 57, 59, 67, 69, 77, 79, 87, 89, 97, 99, 107, 109, 117, 119, 127, 129, 137, 139, 147, 149, 157 and 159.

In one embodiment there is provided an antibody which comprises two variable regions 10 independently selected from SEQ ID NOs: 7, 9, 17, 19, 27, 29, 37, 39, 47, 49, 57 and 59.

In one embodiment there is provided an antibody which comprises two variable regions independently selected from SEQ ID NOs: 67, 69, 77, 79, 87, 89, 97, 99, 107, 109, 117, 119, 127, 129, 137, 139, 147, 149, 157 and 159.

In one embodiment the antibodies according to the invention are humanized.

15 In one embodiment the antibody or antibodies are directed to the C terminal “cell binding” portion of the TcdA and/or TcdB toxin.

In one embodiment an antibody according to the invention is suitable for neutralising toxin A or toxin B.

Neutralising as employed herein is intended to refer to the elimination or reduction of 20 harmful/deleterious effects of the target toxin, for example at least a 50% reduction in the relevant harmful effect.

The inventors have established by using internal comparisons between antibodies discovered in this application and by comparison against antibodies well described in the art (Babcock et al. 2006; Lowy et al., 2010) that some antibodies have the desirable characteristic 25 of maintaining effective neutralization (for example low EC₅₀ and high % protection) even at high toxin concentrations. Other antibodies including those described in the art do not maintain effective toxin neutralization at high toxin concentrations.

Effective toxin concentrations can be defined as a ‘lethal dose’ (LD) in titration studies in the absence of neutralizing antibodies. Neutralisation assays are typically conducted at an 30 LD of 50% of complete cell killing (*i.e.* an LD₅₀) but may be more rigorously conducted at an LD₈₀.

Assays may also be performed under considerably more challenging conditions such as LD₉₀, LD₉₅ and/or LD_{max} (LD_{max} is the maximal toxin quantity which can be included in an assay as constrained by assay volume and maximum toxin concentration / solubility). Such 35 assays aim to mimic the early stages of infection of humans when *C. difficile* growth in the

bowel is rampant and diarrhea and other symptoms lead one to hypothesise that toxin concentrations are at their highest. Antibodies which effectively neutralize damaging toxin activities under high toxin concentration conditions are thought by the present inventors to have special clinical value for the control of symptoms in human infections. In one embodiment the antibody or antibodies of the present disclosure have useful, for example low EC₅₀ values and/or high % protection from cell death for one or more the LD₈₀, LD₉₀, LD₉₅ and/or LD_{max}. In one embodiment the EC₅₀ in the one or more of the latter situations is 15ng/ml or less, for example 10ng/ml or less, such as 5ng/ml or less, in particular 1ng/ml or less. In one embodiment the % protection from cell death is >90%, or >75% or >50%.

Thus in one embodiment the present disclosure provides an antibody or a combination of antibodies which maintain toxin neutralization even in the presence of high levels of toxin, for example as measured in an assay provided herein.

The harmful effect of toxin may, for example be measured in a suitable in vitro assay. In one embodiment the neutralization is measured in an assay given in Example 1 below. Also provided is an antibody or antibodies identified in a neutralization assay, for example wherein the potency of the antibody is maintained in the presence of high levels of toxin.

Toxin A is used interchangeably with TcdA.

Toxin B is used interchangeably with TcdB.

In one embodiment an antibody according to the invention is a monoclonal antibody or binding fragment thereof.

In one embodiment a monoclonal antibody according to the invention is capable of neutralising TcdA with very high potency and affinity.

In one embodiment a monoclonal antibody according to the invention is capable of neutralising TcdA with very high potency and affinity and high avidity.

Avidity as employed herein refers to the combined strength of multiple binding affinities.

In one embodiment a monoclonal antibody according to the invention is capable of neutralising TcdA with very high potency and affinity and high avidity and high valency of binding.

Valency of binding as employed herein refers to the ability for a monoclonal antibody to bind to an antigen multiple times. High valency of binding hence results in high levels of decoration of antigen with antibodies and / or high levels of cross-linking of toxin molecules, which is thought to be advantageous.

Anti-TcdA Mabs according to the present disclosure may be suitable for neutralising the early effects of TcdA, for example on cells such as loss of tight junctions.

Tight junction as employed herein is intended to refer to impermeable zone of connection between cells within a monolayer or anatomical tissue structure. Fluid loss does not occur when tight junctions retain their structural and functional integrity. Loss of tight junctions is an indication that the cell has been compromised by toxin and is well documented as being an early step in the toxic effects of TcdA and TcdB (25) and results in loss of fluid containing serum, immunoglobulin and ions (26, 3). Loss of tight junctions is thought to be a first step on the onset of diarrhoea in humans.

The TEER assay system, can be used to measure the loss of tight junction *in vitro*. TEER is an acronym for trans epithelial electric resistance assay and it is generally employed to measure the permeability of a differentiated cell layer representative of a gut endothelial lining. However, in the context of screening for antibodies TEER loss can be employed to identify antibodies that slow or prevent damage to the tight junctions and hence is a surrogate for protection against tissue damage leading to diarrhoea.

Often Caco-2 cells are employed since they are derived from human colon cells and are known to form differentiated monolayers with cells connected by tight junctions. A kit is commercially available from Becton-Dickinson named the Caco-2 BioCoat HTS plate system (BD Biosciences/ 354802). The instructions in the kit are suitable for testing in the present context. The resistance of the membrane changes when the membrane has been compromised.

Generally the antibody will be pre-incubated with the toxin before addition to the TEER system to establish if the antibody can prevent or slow the damage to the membrane caused by the toxin. The assay may be performed over a suitable period, for example 24 hours taking measurements at certain time-points. The present inventors have established that the 4 hour time point is particularly discriminating for therapeutically useful antibodies. The concentration of toxin employed in the TEER assay is generally in the range 100-200ng/ml, most preferably 125ng/ml

The concentration of antibody (for example IgG1) employed in the TEER assay is generally in the range of 4 to 2000ng/ml, for example 50 to 1000ng/ml, such as 100 to 500ng/ml.

In one embodiment the EC₅₀ of the antibody in the TEER assay employed in said condition is at least 200ng/ml, for example less than 100ng/ml, such as about 60-80ng/ml.

In one embodiment there is provided an anti-TcdA antibody or an anti-TcdB antibody suitable for use as a therapeutic agent in the treatment or prevention of *C. difficile* infection, wherein said antibody was screened and selected employing a TEER assay.

In one aspect there is provided a method of screening an antibody in a TEER assay for the ability to slow or prevent loss of tight junctions. In one embodiment the antibody or

antibodies screened are anti-TcdA antibodies. In one embodiment the antibody or antibodies screened are anti-TcdB antibodies. In one embodiment the antibody or antibodies screened are a combination of anti-TcdA and anti-TcdB antibodies. In one embodiment the method comprises the step of identifying an appropriate antibody or antibodies and expressing suitable 5 quantities of same. In one embodiment the method comprises the further step of formulating said antibody or antibodies in a pharmaceutical formulation. In one embodiment the method comprises the further step of administering said antibody or antibodies or said formulation to a patient in need thereof.

In one embodiment multiple antibodies of the disclosure may be capable of binding to 10 the target toxin (TcdA or TcdB), which may aid immune clearance of the toxin.

Multiple antibodies as employed herein is intended to refer to multiple copies of an antibody with the same sequence or an antibody with the same amino acid sequence or an antibody specific to the same target antigen but with a different amino acid sequence.

In one embodiment the antibodies according to the invention are specific to the target 15 antigen, for example specific to an epitope in the target antigen.

In one embodiment the antibodies of the invention are able to bind to the target antigen in two or more locations, for example two or three locations, such as four, five, six, seven, eight, nine, ten or more locations, for example the toxin may comprise repeating domains and thus an antibody may be specific to an epitope and in fact that epitope may be present in the 20 antigen several times i.e. in more than one location. Thus given antibodies may bind the same epitope multiple times in different locations in the antigen.

In one embodiment the antibody binds to the given antigen multiple times, for example 2 to 20 times such as 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16 times. In one embodiment the antibody binds the given antigen at least 3 times. This multiple binding is thought to be 25 important in neutralisation and/or clearance of the toxin. Whilst not wishing to be bound by theory it is thought that multiple binding, for example 3 more times, i.e. by decoration with 3 or more Fc fragments is important in triggering rapid clearance of the toxin (24) primarily via the liver and spleen (27, 28).

In one embodiment the anti-TcdA antibody binds 3 or more times, for example 3 to 16 30 times.

In one embodiment the anti-TcdA antibody binds 12 times.

In one embodiment the anti-TcdA antibody binds 2 times.

In one embodiment an anti-TcdA antibody binds in the catalytic-terminal cell binding domain of TcdA.

35 In one embodiment the anti-Tcd B antibody binds 2 or more times, for example 2 times.

In one embodiment an anti-TcdB antibody binds in the catalytic-terminal cell binding domain of TcdB.

In one embodiment the antibody or antibodies according to disclosure are capable of cross-linking toxin molecules, for example one arm of the antibody molecule binds one toxin molecule and another of the antibody binds a epitope in a different toxin molecule, thereby forming a sort of immune complex. The formation of the latter may also facilitate activation of the immune system to clear the relate toxin and thereby minimise the deleterious *in vivo* effects of the same.

In one embodiment an innate immune response, such as complement is activated.

10 In one embodiment the antibody or antibodies of the disclosure have high potency against toxins derived from strains of different ribotypes, for example 003, 027, 078.

In one embodiment antibodies against TcdA may have an EC₅₀ in the range of 0.1 – 100ng/ml, such as 1 to 10ng/ml and a maximal inhibition in the range of 50-100% at toxin concentrations of LD₈₀₋₉₅, for example against toxins from strains of ribotypes 003, 027 and 15 078.

In one embodiment antibodies against TcdA may have an EC₅₀ in the range of 0.1 – 100ng/ml, such as 1 to 10ng/ml and a maximal inhibition in the range of 60-100%, 70-100%, 80-100% or 90-100% at toxin concentrations of LD₈₀₋₉₅, for example against toxins from strains of ribotypes 003, 027 and 078.

20 In one embodiment antibodies against TcdB may have EC₅₀ in the range of 0.1 – 100ng/ml, such as 1 to 10ng/ml and a maximal inhibition in the range of 50-100% at toxin concentrations of LD₈₀₋₉₅, for example against toxins from strains of ribotype 003.

In one embodiment antibodies against TcdB may have EC₅₀ in the range of 0.1 – 100ng/ml, such as 1 to 10ng/ml and a maximal inhibition in the range of 60-100%, 70-100%, 25 80-100% or 90-100% at toxin concentrations of LD₈₀₋₉₅, for example against toxins from strains of ribotype 003.

In one embodiment there are provided combinations of antibodies according to the invention, for example combinations of antibodies specific to TcdA, combinations of antibodies specific to TcdB or combinations of antibodies to specific to TcdA and antibodies 30 specific to TcdB.

Combinations of antibodies specific to TcdA will generally refer to combinations of antibodies directed to different epitopes on the target antigen TcdA, or at least with different binding properties.

Combinations of antibodies specific to TcdB will generally refer to combinations of antibodies directed to different epitopes on the target antigen TcdB, or at least with different binding properties.

5 The combinations may comprise 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 distinct antibodies, for example 2, 3, 4 or 5 antibodies.

In one embodiment there is provided a combination of one anti-TcdA antibody and two anti-TcdB, for example wherein the anti-TcdA antibody is 997 and where the anti-TcdB antibodies are 1125 and 1151

10 In particular there is provided a combination of one anti-TcdA antibody comprising a heavy variable region with a sequence as shown in SEQ ID NO:49 and a light variable region with a sequence shown in SEQ ID NO: 47 and two anti-TcdB antibodies the first with a heavy variable region shown in SEQ ID NO: 129 and a light variable region shown in SEQ ID NO: 127, and the second with a heavy variable region shown in SEQ ID NO: 159 and light variable region shown in SEQ ID NO: 157.

15 Distinct antibodies as employed herein is intended to refer to antibodies with different amino acid sequences, which may bind the same epitope or different epitopes on the target antigen.

Also provided by the present invention is a specific region or epitope of TcdA which is bound by an antibody provided by the present invention, in particular an antibody comprising the 20 heavy chain sequence given in SEQ ID NO:49 and the light chain sequence given in SEQ ID NO:47.

Also provided by the present invention is a specific region or epitope of TcdB which is bound by an antibody provided by the present invention, in particular an antibody comprising the heavy chain sequence given in SEQ ID NO:129 and the light chain sequence given in SEQ ID 25 NO:127 or an antibody comprising the heavy chain sequence given in SEQ ID NO:159 and the light chain sequence given in SEQ ID NO:157.

30 This specific region or epitope of the TcdA or TcdB toxins can be identified by any suitable epitope mapping method known in the art in combination with any one of the antibodies provided by the present invention. Examples of such methods include screening peptides of varying lengths derived from the toxins for binding to the antibody of the present invention with the smallest fragment that can specifically bind to the antibody containing the sequence of the epitope recognised by the antibody. The peptides may be produced synthetically or by proteolytic digestion of the toxin polypeptide. Peptides that bind the antibody can be identified by, for example, mass spectrometric analysis. In another example, NMR spectroscopy or X-ray 35 crystallography can be used to identify the epitope bound by an antibody of the present invention.

Once identified, the epitopic fragment which binds an antibody of the present invention can be used, if required, as an immunogen to obtain additional antagonistic antibodies which bind the same epitope.

Antibodies which cross-block the binding of an antibody according to the present

5 invention may be similarly useful in neutralizing toxin activity. Accordingly, the present invention also provides a neutralizing antibody having specificity for TcdA or TcdB, which cross-blocks the binding of any one of the antibodies described above to TcdA or TcdB and/or is cross-blocked from binding these toxins by any one of those antibodies. In one embodiment, such an antibody binds to the same epitope as an antibody described herein above. In another 10 embodiment the cross-blocking neutralising antibody binds to an epitope which borders and/or overlaps with the epitope bound by an antibody described herein above. In another embodiment the cross-blocking neutralising antibody of this aspect of the invention does not bind to the same epitope as an antibody of the present invention or an epitope that borders and/or overlaps with said epitope.

15 Cross-blocking antibodies can be identified using any suitable method in the art, for example by using competition ELISA or BIACore assays where binding of the cross blocking antibody to TcdA or TcdB prevents the binding of an antibody of the present invention or *vice versa*.

20 In one embodiment there is provided a method of generating an anti-TcdA or anti-TcdB antibody, in particular a neutralizing antibody and/or an antibody which cross-blocks the binding of an antibody described herein, said method comprising the steps of immunizing a host with a suitable antigen, for example an antigen shown in any one of SEQ ID Nos 173 to 194 or a combination thereof. The said method may also comprise one or more the following 25 steps, for example identifying an antibody of interest (in particular using a functional assay such as TEER assay), expressing the antibody of interest, and optionally formulating the antibody as a pharmaceutically acceptable composition.

Thus in one aspect the present disclosure provides a method of immunizing a host with an amino acid sequence shown in SEQ ID Nos 173 to 194 or a combination thereof.

30 In one embodiment the antibodies according to the invention have an affinity to the target antigen of 10nM or less, for example 1nM or less such as 900pM, in particular 800pM, 700pM, 600pM or 500pM, such as 60pM.

In one embodiment the affinity is for TcdA or TcdB or a fragment thereof. In one example the fragment is TcdA123 corresponding to residues S1827-D2249 of TcdA. In one

example the fragment is TcdA456 corresponding to residues G2205-R2608. In one embodiment the fragment is TcdB1234 corresponding to residues S1833-E2366 of TcdB.

In one embodiment antibodies according to the invention or a combination thereof have an EC₅₀ of 200ng/ml or less, for example 150ng/ml or less such as 100ng/ml or less, such as in 5 the range 0.1 to 10ng/ml.

The individual component antibodies of mixtures are not required to have an EC₅₀ in said range provided that when they are used in combination with one or more antibodies the combination has an EC₅₀ in said range.

Advantageously, the antibodies of the invention are stable, for example are thermally 10 stable at temperatures above 50°C such as 60 or 70°C.

The antibodies and combinations according to the present invention also have one or more of the following advantageous properties: slow off rate, high affinity, high potency, the ability to bind multiple times to the target antigen, to neutralise the toxin by a mechanism which reduces the loss of measurable TEER activity, to stimulate or assist the hosts natural 15 immune response, to catalyse or assist in immune clearance of the pathogen (or toxin) and/or to educate the immune system to respond appropriately to the pathogen (or toxin).

The residues in antibody variable domains are conventionally numbered according to a system devised by Kabat *et al.* This system is set forth in Kabat *et al.*, 1987, in Sequences of Proteins of Immunological Interest, US Department of Health and Human Services, NIH, USA 20 (hereafter “Kabat *et al.* (supra)”). This numbering system is used in the present specification except where otherwise indicated.

The Kabat residue designations do not always correspond directly with the linear numbering of the amino acid residues. The actual linear amino acid sequence may contain fewer or additional amino acids than in the strict Kabat numbering corresponding to a 25 shortening of, or insertion into, a structural component, whether framework or complementarity determining region (CDR), of the basic variable domain structure. The correct Kabat numbering of residues may be determined for a given antibody by alignment of residues of homology in the sequence of the antibody with a “standard” Kabat numbered sequence.

30 The CDRs of the heavy chain variable domain are located at residues 31-35 (CDR-H1), residues 50-65 (CDR-H2) and residues 95-102 (CDR-H3) according to the Kabat numbering system. However, according to Chothia (Chothia, C. and Lesk, A.M. J. Mol. Biol., 196, 901-917 (1987)), the loop equivalent to CDR-H1 extends from residue 26 to residue 32. Thus unless indicated otherwise ‘CDR-H1’ as employed herein is intended to refer to residues 26 to

35, as described by a combination of the Kabat numbering system and Chothia's topological loop definition.

The CDRs of the light chain variable domain are located at residues 24-34 (CDR-L1), residues 50-56 (CDR-L2) and residues 89-97 (CDR-L3) according to the Kabat numbering
5 system.

Antibodies for use in the present invention may be obtained using any suitable method known in the art. The toxin A and/or toxin B polypeptide/protein including fusion proteins, for example toxin-Fc fusions proteins or cells (recombinantly or naturally) expressing the polypeptide (such as activated T cells) can be used to produce antibodies which specifically
10 recognise the target toxins. The toxin polypeptide may be the full length polypeptide or a biologically active fragment or derivative thereof.

Polypeptides may be prepared by processes well known in the art from genetically engineered host cells comprising expression systems or they may be recovered from natural biological sources. In the present application, the term "polypeptides" includes peptides,
15 polypeptides and proteins. These are used interchangeably unless otherwise specified. The sequence for TcdA from ribotype 027 is given in SEQ ID NO: 171 (Uniprot accession number C9YJ37) and the sequence for TcdB from ribotype 027 is given in SEQ ID NO: 172 (Uniprot accession number C9YJ35).

The antigen polypeptide may in some instances be part of a larger protein such as a
20 fusion protein for example fused to an affinity tag.

Antibodies generated against the antigen polypeptide may be obtained, where immunisation of an animal is necessary, by administering the polypeptides to an animal, preferably a non-human animal, using well-known and routine protocols, see for example Handbook of Experimental Immunology, D. M. Weir (ed.), Vol 4, Blackwell Scientific
25 Publishers, Oxford, England, 1986). Many warm-blooded animals, such as rabbits, mice, rats, sheep, cows, camels or pigs may be immunized. However, mice, rabbits, pigs and rats are generally most suitable.

Monoclonal antibodies may be prepared by any method known in the art such as the hybridoma technique (Kohler & Milstein, 1975, *Nature*, 256:495-497), the trioma technique,
30 the human B-cell hybridoma technique (Kozbor et al., 1983, *Immunology Today*, 4:72) and the EBV-hybridoma technique (Cole et al., *Monoclonal Antibodies and Cancer Therapy*, pp77-96, Alan R Liss, Inc., 1985).

Antibodies for use in the invention may also be generated using single lymphocyte antibody methods by cloning and expressing immunoglobulin variable region cDNAs
35 generated from single lymphocytes selected for the production of specific antibodies by, for

example, the methods described by Babcock, J. et al., 1996, Proc. Natl. Acad. Sci. USA 93(15):7843-7848; WO92/02551; WO2004/051268 and International Patent Application number WO2004/106377.

Humanised antibodies (which include CDR-grafted antibodies) are antibody molecules 5 having one or more complementarity determining regions (CDRs) from a non-human species and a framework region from a human immunoglobulin molecule (see, e.g. US 5,585,089; WO91/09967). It will be appreciated that it may only be necessary to transfer the specificity determining residues of the CDRs rather than the entire CDR (see for example, Kashmiri et al., 10 2005, Methods, 36, 25-34). Humanised antibodies may optionally further comprise one or more framework residues derived from the non-human species from which the CDRs were derived.

As used herein, the term 'humanised antibody molecule' refers to an antibody molecule 15 wherein the heavy and/or light chain contains one or more CDRs (including, if desired, one or more modified CDRs) from a donor antibody (e.g. a murine monoclonal antibody) grafted into a heavy and/or light chain variable region framework of an acceptor antibody (e.g. a human antibody). For a review, see Vaughan et al, Nature Biotechnology, 16, 535-539, 1998. In one embodiment rather than the entire CDR being transferred, only one or more of the specificity determining residues from any one of the CDRs described herein above are transferred to the human antibody framework (see for example, Kashmiri et al., 2005, Methods, 36, 25-34). In 20 one embodiment only the specificity determining residues from one or more of the CDRs described herein above are transferred to the human antibody framework. In another embodiment only the specificity determining residues from each of the CDRs described herein above are transferred to the human antibody framework.

When the CDRs or specificity determining residues are grafted, any appropriate 25 acceptor variable region framework sequence may be used having regard to the class/type of the donor antibody from which the CDRs are derived, including mouse, primate and human framework regions. Suitably, the humanised antibody according to the present invention has a variable domain comprising human acceptor framework regions as well as one or more of the CDRs provided herein.

30 Thus, provided in one embodiment is a humanised antibody which binds toxin A or toxin B wherein the variable domain comprises human acceptor framework regions and non-human donor CDRs.

Examples of human frameworks which can be used in the present invention are KOL, 35 NEWM, REI, EU, TUR, TEI, LAY and POM (Kabat et al., *supra*). For example, KOL and NEWM can be used for the heavy chain, REI can be used for the light chain and EU, LAY and

POM can be used for both the heavy chain and the light chain. Alternatively, human germline sequences may be used; these are available at: <http://vbase.mrc-cpe.cam.ac.uk/>

In a humanised antibody of the present invention, the acceptor heavy and light chains do not necessarily need to be derived from the same antibody and may, if desired, comprise 5 composite chains having framework regions derived from different chains.

Also, in a humanised antibody of the present invention, the framework regions need not have exactly the same sequence as those of the acceptor antibody. For instance, unusual residues may be changed to more frequently-occurring residues for that acceptor chain class or type. Alternatively, selected residues in the acceptor framework regions may be changed so 10 that they correspond to the residue found at the same position in the donor antibody (see Reichmann et al., 1998, *Nature*, 332, 323-324). Such changes should be kept to the minimum necessary to recover the affinity of the donor antibody. A protocol for selecting residues in the acceptor framework regions which may need to be changed is set forth in WO 91/09967.

Generally the antibody sequences disclosed in the present specification are humanised.

15 The invention also provides sequences which are 80%, 90%, 91%, 92%, 93% 94%, 95% 96%, 97%, 98% or 99% similar to a sequence or antibody disclosed herein.

"Identity", as used herein, indicates that at any particular position in the aligned sequences, the amino acid residue is identical between the sequences. "Similarity", as used herein, indicates that, at any particular position in the aligned sequences, the amino acid 20 residue is of a similar type between the sequences. For example, leucine may be substituted for isoleucine or valine. Other amino acids which can often be substituted for one another include but are not limited to:

- phenylalanine, tyrosine and tryptophan (amino acids having aromatic side chains);
- lysine, arginine and histidine (amino acids having basic side chains);
- aspartate and glutamate (amino acids having acidic side chains);
- asparagine and glutamine (amino acids having amide side chains); and
- cysteine and methionine (amino acids having sulphur-containing side chains).

Degrees of identity and similarity can be readily calculated (Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing. Informatics and 30 Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987, Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991, the BLAST™ software available from NCBI (Altschul, S.F. et al., 1990, *J. Mol. Biol.* 35 215:403-410; Gish, W. & States, D.J. 1993, *Nature Genet.* 3:266-272. Madden, T.L. et al.,

1996, Meth. Enzymol. 266:131-141; Altschul, S.F. et al., 1997, Nucleic Acids Res. 25:3389-3402; Zhang, J. & Madden, T.L. 1997, Genome Res. 7:649-656,).

The antibody molecules of the present invention include a complete antibody molecule having full length heavy and light chains or a fragment thereof and may be, but are not limited to Fab, modified Fab, Fab', modified Fab', F(ab')2, Fv, Fab-Fv, Fab-dsFv, single domain antibodies (e.g. VH or VL or VHH), scFv, bi, tri or tetra-valent antibodies, Bis-scFv, diabodies, triabodies, tetrabodies and epitope-binding fragments of any of the above (see for example Holliger and Hudson, 2005, Nature Biotech. 23(9):1126-1136; Adair and Lawson, 2005, Drug Design Reviews - Online 2(3), 209-217). The methods for creating and manufacturing these antibody fragments are well known in the art (see for example Verma et al., 1998, Journal of Immunological Methods, 216, 165-181). Other antibody fragments for use in the present invention include the Fab and Fab' fragments described in International patent applications WO2005/003169, WO2005/003170 and WO2005/003171. Multi-valent antibodies may comprise multiple specificities e.g bispecific or may be monospecific (see for example WO 92/22853 and WO05/113605). Bispecific and multispecific antibody variants are especially considered in this example since the aim is to neutralise two independent target proteins: TcdA and TcdB. Variable regions from antibodies disclosed herein may be configured in such a way as to produce a single antibody variant which is capable of binding to and neutralising TcdA and TcdB.

In one embodiment the antibody according to the present disclosure is provided as TcdA or TcdB binding antibody fusion protein which comprises an immunoglobulin moiety, for example a Fab or Fab' fragment, and one or two single domain antibodies (dAb) linked directly or indirectly thereto, for example as described in WO2009/040562.

In one embodiment the fusion protein comprises two domain antibodies, for example as a variable heavy (VH) and variable light (VL) pairing, optionally linked by a disulphide bond, for example as described in WO2010/035012.

In one embodiment the Fab or Fab' element of the fusion protein has the same or similar specificity to the single domain antibody or antibodies. In one embodiment the Fab or Fab' has a different specificity to the single domain antibody or antibodies, that is to say the fusion protein is multivalent. In one embodiment a multivalent fusion protein according to the present invention has an albumin binding site, for example a VH/VL pair therein provides an albumin binding site.

In one embodiment the multivalent fusion protein according to the invention binds TcdA and TcdB.

In one embodiment the multivalent fusion protein according to the invention binds TcdB in multiple positions, for example has distinct binding regions specific for two different epitopes.

The constant region domains of the antibody molecule of the present invention, if

5 present, may be selected having regard to the proposed function of the antibody molecule, and in particular the effector functions which may be required. For example, the constant region domains may be human IgA, IgD, IgE, IgG or IgM domains. In particular, human IgG constant region domains may be used, especially of the IgG1 and IgG3 isotypes when the antibody molecule is intended for therapeutic uses and antibody effector functions are required.

10 Alternatively, IgG2 and IgG4 isotypes may be used when the antibody molecule is intended for therapeutic purposes and antibody effector functions are not required, e.g. for simply neutralising or agonising an antigen. It will be appreciated that sequence variants of these constant region domains may also be used. For example IgG4 molecules in which the serine at position 241 has been changed to proline as described in Angal et al., *Molecular Immunology*,

15 1993, 30 (1), 105-108 may be used. It will also be understood by one skilled in the art that antibodies may undergo a variety of posttranslational modifications. The type and extent of these modifications often depends on the host cell line used to express the antibody as well as the culture conditions. Such modifications may include variations in glycosylation, methionine oxidation, diketopiperazine formation, aspartate isomerization and asparagine deamidation. A

20 frequent modification is the loss of a carboxy-terminal basic residue (such as lysine or arginine) due to the action of carboxypeptidases (as described in Harris, RJ. *Journal of Chromatography* 705:129-134, 1995).

In one embodiment the antibody heavy chain comprises a CH1 domain and the antibody light chain comprises a CL domain, either kappa or lambda.

25 Biological molecules, such as antibodies or fragments, contain acidic and/or basic functional groups, thereby giving the molecule a net positive or negative charge. The amount of overall “observed” charge will depend on the absolute amino acid sequence of the entity, the local environment of the charged groups in the 3D structure and the environmental conditions of the molecule. The isoelectric point (pI) is the pH at which a particular molecule or solvent

30 accessible surface thereof carries no net electrical charge. In one example, the antibody and fragments of the invention may be engineered to have an appropriate isoelectric point. This may lead to antibodies and/or fragments with more robust properties, in particular suitable solubility and/or stability profiles and/or improved purification characteristics.

Thus in one aspect the invention provides a humanised antibody engineered to have an

35 isoelectric point different to that of the originally identified antibody from which it is derived.

The antibody may, for example be engineered by replacing an amino acid residue such as replacing an acidic amino acid residue with one or more basic amino acid residues. Alternatively, basic amino acid residues may be introduced or acidic amino acid residues can be removed. Alternatively, if the molecule has an unacceptably high pI value acidic residues 5 may be introduced to lower the pI, as required. It is important that when manipulating the pI care must be taken to retain the desirable activity of the antibody or fragment. Thus in one embodiment the engineered antibody or fragment has the same or substantially the same activity as the “unmodified” antibody or fragment.

Programs such as ** ExPASY http://www.expasy.ch/tools/pi_tool.html, and 10 http://www.iut-arles.up.univ-mrs.fr/w3bb/d_abim/compo-p.html, may be used to predict the isoelectric point of the antibody or fragment.

It will be appreciated that the affinity of antibodies provided by the present invention may be altered using any suitable method known in the art. The affinity of the antibodies or variants thereof may be measured using any suitable method known in the art, including 15 BIACore, using an appropriate isolated natural or recombinant protein or a suitable fusion protein/polypeptide.

The present invention therefore also relates to variants of the antibody molecules of the present invention, which have an improved affinity for TcdA or TcdB, as appropriate. Such variants can be obtained by a number of affinity maturation protocols including mutating the 20 CDRs (Yang et al., J. Mol. Biol., 254, 392-403, 1995), chain shuffling (Marks et al., Bio/Technology, 10, 779-783, 1992), use of mutator strains of *E. coli* (Low et al., J. Mol. Biol., 250, 359-368, 1996), DNA shuffling (Patten et al., Curr. Opin. Biotechnol., 8, 724-733, 1997), phage display (Thompson et al., J. Mol. Biol., 256, 77-88, 1996) and sexual PCR (Crameri et al., Nature, 391, 288-291, 1998). Vaughan et al. (supra) discusses these methods of affinity 25 maturation.

Improved affinity as employed herein in this context refers to an improvement refers to an improvement over the starting molecule.

If desired an antibody for use in the present invention may be conjugated to one or more effector molecule(s). It will be appreciated that the effector molecule may comprise a 30 single effector molecule or two or more such molecules so linked as to form a single moiety that can be attached to the antibodies of the present invention. Where it is desired to obtain an antibody fragment linked to an effector molecule, this may be prepared by standard chemical or recombinant DNA procedures in which the antibody fragment is linked either directly or via a coupling agent to the effector molecule. Techniques for conjugating such effector molecules 35 to antibodies are well known in the art (see, Hellstrom et al., Controlled Drug Delivery, 2nd

Ed., Robinson et al., eds., 1987, pp. 623-53; Thorpe et al., 1982, *Immunol. Rev.*, 62:119-58 and Dubowchik et al., 1999, *Pharmacology and Therapeutics*, 83, 67-123). Particular chemical procedures include, for example, those described in WO 93/06231, WO 92/22583, WO 89/00195, WO 89/01476 and WO 03031581. Alternatively, where the effector molecule is 5 a protein or polypeptide the linkage may be achieved using recombinant DNA procedures, for example as described in WO 86/01533 and EP0392745.

The term effector molecule as used herein includes, for example, biologically active proteins, for example enzymes, other antibody or antibody fragments, synthetic or naturally occurring polymers, nucleic acids and fragments thereof e.g. DNA, RNA and fragments 10 thereof, radionuclides, particularly radioiodide, radioisotopes, chelated metals, nanoparticles and reporter groups such as fluorescent compounds or compounds which may be detected by NMR or ESR spectroscopy.

Other effector molecules may include chelated radionuclides such as ^{111}In and ^{90}Y , ^{177}Lu , $^{213}\text{Bismuth}$, $^{252}\text{Californium}$, $^{192}\text{Iridium}$ and $^{188}\text{Tungsten}/^{188}\text{Rhenium}$; or drugs 15 such as but not limited to, alkylphosphocholines, topoisomerase I inhibitors, taxoids and suramin.

Other effector molecules include proteins, peptides and enzymes. Enzymes of interest include, but are not limited to, proteolytic enzymes, hydrolases, lyases, isomerases, 20 transferases. Proteins, polypeptides and peptides of interest include, but are not limited to, immunoglobulins, toxins such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin, a protein such as insulin, tumour necrosis factor, α -interferon, β -interferon, nerve growth factor, platelet derived growth factor or tissue plasminogen activator, a thrombotic agent or an anti-angiogenic agent, e.g. angiostatin or endostatin, or, a biological response modifier such as a 25 lymphokine, interleukin-1 (IL-1), interleukin-2 (IL-2), granulocyte macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), nerve growth factor (NGF) or other growth factor and immunoglobulins.

Other effector molecules may include detectable substances useful for example in diagnosis. Examples of detectable substances include various enzymes, prosthetic groups, 30 fluorescent materials, luminescent materials, bioluminescent materials, radioactive nuclides, positron emitting metals (for use in positron emission tomography), and nonradioactive paramagnetic metal ions. See generally U.S. Patent No. 4,741,900 for metal ions which can be conjugated to antibodies for use as diagnostics. Suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; suitable prosthetic groups include streptavidin, avidin and biotin; suitable fluorescent materials include 35 umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine

fluorescein, dansyl chloride and phycoerythrin; suitable luminescent materials include luminol; suitable bioluminescent materials include luciferase, luciferin, and aequorin; and suitable radioactive nuclides include ^{125}I , ^{131}I , ^{111}In and ^{99}Tc .

In another example the effector molecule may increase the half-life of the antibody in vivo, and/or reduce immunogenicity of the antibody and/or enhance the delivery of an antibody across an epithelial barrier to the immune system. Examples of suitable effector molecules of this type include polymers, albumin, albumin binding proteins or albumin binding compounds such as those described in WO05/117984.

Where the effector molecule is a polymer it may, in general, be a synthetic or a naturally occurring polymer, for example an optionally substituted straight or branched chain polyalkylene, polyalkenylene or polyoxyalkylene polymer or a branched or unbranched polysaccharide, e.g. a homo- or hetero- polysaccharide.

Specific optional substituents which may be present on the above-mentioned synthetic polymers include one or more hydroxy, methyl or methoxy groups.

Specific examples of synthetic polymers include optionally substituted straight or branched chain poly(ethyleneglycol), poly(propyleneglycol) poly(vinylalcohol) or derivatives thereof, especially optionally substituted poly(ethyleneglycol) such as methoxypoly(ethyleneglycol) or derivatives thereof.

Specific naturally occurring polymers include lactose, amylose, dextran, glycogen or derivatives thereof.

“Derivatives” as used herein is intended to include reactive derivatives, for example thiol-selective reactive groups such as maleimides and the like. The reactive group may be linked directly or through a linker segment to the polymer. It will be appreciated that the residue of such a group will in some instances form part of the product as the linking group between the antibody fragment and the polymer.

The size of the polymer may be varied as desired, but will generally be in an average molecular weight range from 500Da to 50000Da, for example from 5000 to 40000Da such as from 20000 to 40000Da. The polymer size may in particular be selected on the basis of the intended use of the product for example ability to localize to certain tissues such as tumors or extend circulating half-life (for review see Chapman, 2002, Advanced Drug Delivery Reviews, 54, 531-545). Thus, for example, where the product is intended to leave the circulation and penetrate tissue, for example for use in the treatment of a tumour, it may be advantageous to use a small molecular weight polymer, for example with a molecular weight of around 5000Da. For applications where the product remains in the circulation, it may be advantageous to use a

higher molecular weight polymer, for example having a molecular weight in the range from 20000Da to 40000Da.

Suitable polymers include a polyalkylene polymer, such as a poly(ethyleneglycol) or, especially, a methoxypoly(ethyleneglycol) or a derivative thereof, and especially with a

5 molecular weight in the range from about 15000Da to about 40000Da.

In one example antibodies for use in the present invention are attached to poly(ethyleneglycol) (PEG) moieties. In one particular example the antibody is an antibody fragment and the PEG molecules may be attached through any available amino acid side-chain or terminal amino acid functional group located in the antibody fragment, for example any free 10 amino, imino, thiol, hydroxyl or carboxyl group. Such amino acids may occur naturally in the antibody fragment or may be engineered into the fragment using recombinant DNA methods (see for example US 5,219,996; US 5,667,425; WO98/25971, WO2008/038024). In one example the antibody molecule of the present invention is a modified Fab fragment wherein the modification is the addition to the C-terminal end of its heavy chain one or more amino acids 15 to allow the attachment of an effector molecule. Suitably, the additional amino acids form a modified hinge region containing one or more cysteine residues to which the effector molecule may be attached. Multiple sites can be used to attach two or more PEG molecules.

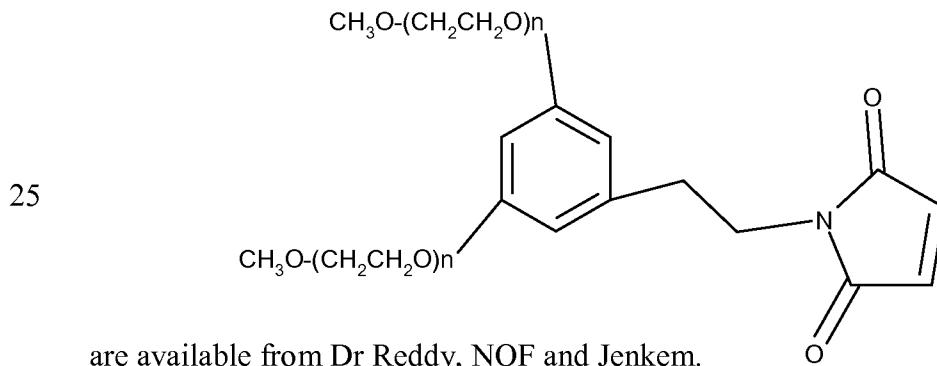
Suitably PEG molecules are covalently linked through a thiol group of at least one cysteine residue located in the antibody fragment. Each polymer molecule attached to the 20 modified antibody fragment may be covalently linked to the sulphur atom of a cysteine residue located in the fragment. The covalent linkage will generally be a disulphide bond or, in particular, a sulphur-carbon bond. Where a thiol group is used as the point of attachment appropriately activated effector molecules, for example thiol selective derivatives such as maleimides and cysteine derivatives may be used. An activated polymer may be used as the 25 starting material in the preparation of polymer-modified antibody fragments as described above. The activated polymer may be any polymer containing a thiol reactive group such as an α -halocarboxylic acid or ester, e.g. iodoacetamide, an imide, e.g. maleimide, a vinyl sulphone or a disulphide. Such starting materials may be obtained commercially (for example from Nektar, formerly Shearwater Polymers Inc., Huntsville, AL, USA) or may be prepared from 30 commercially available starting materials using conventional chemical procedures. Particular PEG molecules include 20K methoxy-PEG-amine (obtainable from Nektar, formerly Shearwater; Rapp Polymere; and SunBio) and M-PEG-SPA (obtainable from Nektar, formerly Shearwater).

In one embodiment, the antibody is a modified Fab fragment or diFab which is

35 PEGylated, i.e. has PEG (poly(ethyleneglycol)) covalently attached thereto, e.g. according to

the method disclosed in EP 0948544 or EP1090037 [see also "Poly(ethyleneglycol) Chemistry, Biotechnical and Biomedical Applications", 1992, J. Milton Harris (ed), Plenum Press, New York, "Poly(ethyleneglycol) Chemistry and Biological Applications", 1997, J. Milton Harris and S. Zalipsky (eds), American Chemical Society, Washington DC and "Bioconjugation

5 Protein Coupling Techniques for the Biomedical Sciences", 1998, M. Aslam and A. Dent, Grove Publishers, New York; Chapman, A. 2002, Advanced Drug Delivery Reviews 2002, 54:531-545]. In one example PEG is attached to a cysteine in the hinge region. In one example, a PEG modified Fab fragment has a maleimide group covalently linked to a single thiol group in a modified hinge region. A lysine residue may be covalently linked to the 10 maleimide group and to each of the amine groups on the lysine residue may be attached a methoxypoly(ethylene glycol) polymer having a molecular weight of approximately 20,000Da. The total molecular weight of the PEG attached to the Fab fragment may therefore be approximately 40,000Da.


15 Particular PEG molecules include 2-[3-(N-maleimido)propionamido]ethyl amide of N,N'-bis(methoxypoly(ethylene glycol) MW 20,000) modified lysine, also known as PEG2MAL40K (obtainable from Nektar, formerly Shearwater).

Alternative sources of PEG linkers include NOF who supply GL2-400MA2 (wherein m in the structure below is 5) and GL2-400MA (where m is 2) and n is approximately 450:

20 That is to say each PEG is about 20,000Da.

Further alternative PEG effector molecules of the following type:

In one embodiment there is provided an antibody which is PEGylated (for example with a PEG described herein), attached through a cysteine amino acid residue at or about amino acid 226 in the chain, for example amino acid 226 of the heavy chain (by sequential numbering).

5 In one embodiment one certain antibodies according to the present disclosure have the following properties:

Antibody	Affinity (pM)		Valency of binding	EC₅₀ (ng/ml)
	TcdA₁₂₃	TcdA₄₅₆	TcdA, est.	
CA922	4.06	2.59	16	1.21
CA923	64.7	312	12	160.42
CA995	nil	119	1	37.64
CA997	132	66.8	12	6.25
CA1000	73.3	84.1	2	19.73

The present invention also provides compositions such as a pharmaceutical composition of antibody or combination of antibodies defined herein.

10 The present invention also provides a composition that comprises at least two antibodies according to the invention, for example wherein at least one antibody therein is specific to TcdA and at least one antibody therein is specific to TcdB or alternatively at least two antibodies specific to TcdA or at least two antibodies specific to TcdB.

In one embodiment there is provided a composition that comprises multiple antibodies specific to TcdA and optionally one or more antibodies specific to TcdB.

15 In one embodiment there is provided a composition that comprises multiple antibodies specific to TcdB and optionally one or more antibodies specific to TcdA.

Thus in one embodiment there is provided a composition comprising 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 antibodies according to the invention i.e. distinct antibodies.

20 The invention describes one particular mixture comprising 3 Mabs, one Mab of which is specific for TcdA and two Mabs of which are specific for TcdB. This mixture demonstrated very high levels of protection from death and gut inflammation from a lethal infective oral dose of *Clostridium difficile* in hamsters.

25 In particular there is provided a composition comprising a combination of one anti-TcdA antibody comprising a heavy variable region with a sequence as shown in SEQ ID NO:49 and a light variable region with a sequence shown in SEQ ID NO: 47 and two anti-

TcdB the first with a heavy variable region shown in SEQ ID NO: 129 and a light variable region shown in SEQ ID NO: 127, and the second with a heavy variable region shown in SEQ ID NO: 159 and light variable region shown in SEQ ID NO: 157.

5 In one embodiment wherein the composition comprises 3 antibodies, such as one anti-TcdA and two anti-TcdB antibodies the antibodies are in the ratio of 50%, 25% and 25% respectively of the total antibody content thereof.

In one embodiment there is provided a composition comprising 2, 3, 4 or 5 antibodies specific to TcdA and optionally 1, 2, 3, 4 or 5 antibodies specific to TcdB.

10 In one embodiment the compositions provided according to the invention are well defined, for example are mixtures of monoclonal antibodies rather than simply polyclonal compositions derived from an immunised or immune competent host.

In one embodiment the composition of antibodies has an EC₅₀ of 200ng/ml or less, for example 150ng/ml or less, such as 100ng/ml or less, such as 0.1 to 10ng/ml.

15 Advantageously the antibodies described herein have very high levels of biophysical stability and so are suitable for inclusion in mixtures of antibodies.

In one aspect a pharmaceutical formulation or composition according to the invention further comprises a pharmaceutically acceptable excipient.

20 Pharmaceutically acceptable carriers in therapeutic compositions may additionally contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents or pH buffering substances, may be present in such compositions. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries and suspensions, for ingestion by the patient.

25 Suitable forms for administration include forms suitable for parenteral administration, e.g. by injection or infusion, for example by bolus injection or continuous infusion. Where the product is for injection or infusion, it may take the form of a suspension, solution or emulsion in an oily or aqueous vehicle and it may contain formulatory agents, such as suspending, preservative, stabilising and/or dispersing agents. Alternatively, the antibody molecule may be in dry form, for reconstitution before use with an appropriate sterile liquid.

30 Once formulated, the compositions of the invention can be administered directly to the subject. The subjects to be treated can be animals. However, in one or more embodiments the compositions are adapted for administration to human subjects.

35 Suitably in formulations according to the present disclosure, the pH of the final formulation is not similar to the value of the isoelectric point of the antibody or fragment, for example if the pH of the formulation is 7 then a pI of from 8-9 or above may be appropriate.

Whilst not wishing to be bound by theory it is thought that this may ultimately provide a final formulation with improved stability, for example the antibody or fragment remains in solution.

In one embodiment the composition or formulation of the present disclosure comprises 1-200mg/mL of antibodies, that is to say the combined antibody content, for example

5 150mg/mL or less, such as 100mg/mL or less, in particular 90, 80, 70, 60, 50, 40, 30, 20, 10mg/mL or less.

In one embodiment a composition or formulation according to the present disclosure comprises 20mg/mL of each antibody therein.

In one embodiment there is provided a formulation comprising:

10 33mg/mL or less of one anti-TcdA antibody comprising a heavy variable region with a sequence as shown in SEQ ID NO: 49 and a light variable region with a sequence shown in SEQ ID NO: 47, and

28mg/mL or less of a first anti-TcdB with a heavy variable region shown in SEQ ID NO: 129 and a light variable region shown in SEQ ID NO: 127, and

15 25mg/mL of a second anti-TcdB with a heavy variable region shown in SEQ ID NO: 159 and light variable region shown in SEQ ID NO: 157.

In one embodiment the pharmaceutical formulation at a pH in the range of 4.0 to 7.0 comprises: 1 to 200mg/mL of an antibody according to the present disclosure, 1 to 100mM of a buffer, 0.001 to 1% of a surfactant,

20 a) 10 to 500mM of a stabiliser,
b) 5 to 500 mM of a tonicity agent, or
c) 10 to 500mM of a stabiliser and 5 to 500 mM of a tonicity agent.

In one embodiment the composition or formulation according to the present disclosure comprises the buffer phosphate buffered saline.

25 For example the formulation at approximately pH6 may comprise 1 to 50mg/mL of antibody, 20mM L-histidine HCl, 240 mM trehalose and 0.02% polysorbate 20. Alternatively a formulation at approximately pH 5.5 may comprise 1 to 50mg/mL of antibody, 20mM citrate buffer, 240mM sucrose, 20mM arginine, and 0.02% polysorbate 20.

The pharmaceutical compositions of this invention may be administered by any number 30 of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, transcutaneous (for example, see WO98/20734), subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, intravaginal or rectal routes. Hyposprays may also be used to administer the pharmaceutical compositions of the invention. Typically, the therapeutic compositions may be prepared as

injectables, either as liquid solutions or suspensions. Solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared.

Direct delivery of the compositions will generally be accomplished by injection, subcutaneously, intraperitoneally, intravenously or intramuscularly, or delivered to the
5 interstitial space of a tissue.

The compositions can also be administered into a lesion or directly into the gastrointestinal tract by for example, encapsulated oral dosage for swallowing, through a nasogastric tube to the stomach or ileum, through a rectal tube or enema solutions or by rectal capsule. Dosage treatment may be a single dose schedule or a multiple dose schedule.

10 It will be appreciated that the active ingredient in the composition will be an antibody molecule. As such, it will be susceptible to degradation in the gastrointestinal tract. Thus, if the composition is to be administered by a route using the gastrointestinal tract, the composition will need to contain agents which protect the antibody from degradation but which release the antibody once it has been absorbed from the gastrointestinal tract.

15 A thorough discussion of pharmaceutically acceptable carriers is available in Remington's Pharmaceutical Sciences (Mack Publishing Company, N.J. 1991).

The present invention also provides an antibody or antibody combination or a composition comprising the same, as described herein, for treatment, for example for the treatment or prophylaxis of *C. difficile* infection or complications associated with the same
20 such as diarrhoea, colitis in particular pseudomembranous colitis, bloating, abdominal pain and toxic megacolon.

Prophylaxis can also be achieved by the administration of pre-formed complexes of inactivated toxin antigen (toxoid) and antibody in order to create a vaccine.

In one embodiment the antibodies, combinations thereof and compositions comprising
25 the same according to the invention are suitable for treating infection with so-called super strains of *C. difficile*, i.e. hypervirulent strains such as ribotype 027.

The antibodies and compositions according to the present invention are suitable for use in the treatment or prophylaxis of acute and/or chronic effects of the relevant *C. difficile* toxins during primary infection.

30 The antibodies and compositions according to the present invention are suitable for use in the treatment or prophylaxis of effects of the relevant *C. difficile* toxins during secondary infection or re-infection. International guidelines enshrine time intervals after a primary infection which hence defines a secondary (or recurrent) infection as being distinct from a continuation of existing symptoms sometimes described as a relapse (29). Research has shown
35 that secondary infections can be the result of the same strain or ribotype as the primary

infection. In such cases recurrence rather than relapse relies on agreed temporal constraints. However, research also clearly shows that secondary infection can also be the result of infection of a strain or ribotype distinct from that of the primary infection. In one study, 48% of disease recurrences were the result of a second strain distinct from that having caused the first 5 infection (30). In another study, more than 56% of disease recurrences were the result of a second strain distinct from that having caused the first infection (31).

In one embodiment the antibodies, combinations thereof and compositions comprising the same according to the invention are suitable for use in the prevention of damage, for example long term structural damage to the epithelium of the colon.

10 In one embodiment the antibodies, combinations and composition are suitable for preventing *C. difficile* infection including recurrence of infection, in particular nosocomial infection.

15 In one embodiment the antibodies, combinations thereof and compositions comprising the same according to the invention are suitable for reducing the risk of recurrence of *C. difficile* infection.

Advantageously, the antibodies of the present disclosure can be administered prophylactically to prevent infection or re-infection because in the absence of toxin to which the antibody is specific the antibody is simply to be cleared from the body without causing adverse interactions with the subjects body tissues.

20 Advantageously the antibodies of the present disclosure seem to elicit a rapid response after administration, for example within one or two days of administration rapid clearance of the target toxin is invoked, this may prevent vital organs such as the lungs, heart and kidneys being damaged. This is the first time that agents have been made available with can be employed to prevent damage or injury to a patient by toxins A and/or B in the acute *C. difficile* 25 infection stage.

Thus in one embodiment the antibodies, combinations thereof and compositions comprising the same according to the invention are suitable for preventing damage to vital organs.

30 In one embodiment the antibody, combinations or formulations described herein are suitable for preventing death of an infected patient, if administered within an appropriate time frame before irreparable damage has been done by the toxins.

The antibodies of the present disclosure have fast on-rates, which facilitates the rapid effect *in vivo*.

In one embodiment the patient population is over 60, such as over 65 years of age.

35 In one embodiment the patient population is 5 years old or less.

The antibodies according the invention may be employed in combination with antibiotic treatment for example metronidazole, vancomycin or fidaxomicin.

A range of *in vitro* data exemplify the properties of the Mabs and Mab mixtures. We show that one mixture of 3 Mabs (50% molar quantities of anti-TcdA and 50% molar quantities of anti-TcdB components) was able to protect hamsters from a lethal CDI.

In one embodiment there is provided a method of treating a patient in need thereof by administering a therapeutically effective amount of an antibody as described herein or antibody combination or a composition comprising the same, for example in the treatment or prophylaxis of *C. difficile* infection or complications associated with the same such as diarrhoea, colitis in particular pseudomembranous colitis, bloating, abdominal pain and toxic megacolon.

In one embodiment the antibody, combination or formulation is administered by a parenteral route, for example subcutaneously, intraperitoneally, intravenously or intramuscularly. The data in the Examples generated in hamsters indicates that the doses administered by this route reach the gut and thus are able to generate a therapeutic effect.

In one embodiment the antibody, combination or formulation is administered orally, for example an enterically coated formulation.

In one embodiment there is provided use of an antibody, combination or formulation as described herein for the manufacture of a medicament for the treatment or prophylaxis of *C. difficile* infection.

In one embodiment the dose administered is in the range 1 to 1000mg/Kg, for example 10 to 75mg/Kg, such 20 to 50mg/Kg.

In one embodiment the half-life of the antibody or antibodies in mice and hamsters *in vivo* is in the range 6 to 8 days in healthy (uninfected) animals and hence are expected to have half-lives in humans in the range of 14-28 days.

In one embodiment the antibody or antibodies are given as one dose only.

In one embodiment the antibody or antibodies are given as a weekly or biweekly dose.

In one embodiment the antibody or antibodies are given as once daily doses.

In one embodiment there is provided complex comprising TcdA or an immunogenic fragment thereof, complexed with one or more anti-TcdA antibodies defined herein. The complex may be employed as the antigen in a vaccine formulation, for example suitable for generating protective antibodies to toxin A *in vivo* after administration to a human.

In one embodiment there is provided complex comprising TcdB or an immunogenic fragment thereof, complexed with one or more anti-TcdB antibodies defined herein. The

complex may be employed as the antigen in a vaccine formulation, for example suitable for generating protective antibodies to toxin B in vivo after administration to a human.

Th1-type immunostimulants which may be formulated to produce adjuvants suitable for use in the present invention include and are not restricted to the following.

5 In one embodiment there is provided a complex comprising TcdA or an immunogenic fragment thereof and TcdB or an immunogenic fragment thereof, wherein each toxin or fragment is complexed with one or more antibodies specific thereto, wherein the complex is suitable for administration as a vaccine formulation.

10 Antibody:antigen complexes are known to be taken up by the immune system in an Fc receptor mediated process (27, 28) and pre-formed complexes of antibody:antigen complexes have been successfully used as vaccines in human clinical trials (22).

In one or more embodiments the vaccine formulation further comprises an adjuvant as an immunostimulant.

15 Monophosphoryl lipid A, in particular 3-de-O-acylated monophosphoryl lipid A (3D-MPL), is a preferred Th1-type immunostimulant for use in the invention. 3D-MPL is a well known adjuvant manufactured by Ribi Immunochem, Montana. Chemically it is often supplied as a mixture of 3-de-O-acylated monophosphoryl lipid A with either 4, 5, or 6 acylated chains. It can be purified and prepared by the methods taught in GB 2122204B, which reference also discloses the preparation of diphosphoryl lipid A, and 3-O-deacylated variants thereof. Other 20 purified and synthetic lipopolysaccharides have been described (US 6,005,099 and EP 0 729 473 B1; Hilgers *et al.*, 1986, *Int.Arch.Allergy.Immunol.*, 79(4):392-6; Hilgers *et al.*, 1987, Immunology, 60(1):141-6; and EP 0 549 074 B1). A preferred form of 3D-MPL is in the form of a particulate formulation having a small particle size less than 0.2mm in diameter, and its method of manufacture is disclosed in EP 0 689 454.

25 Saponins are also preferred Th1 immunostimulants in accordance with the invention. Saponins are well known adjuvants and are taught in: Lacaille-Dubois, M and Wagner H. (1996. A review of the biological and pharmacological activities of saponins. *Phytomedicine* vol 2 pp 363-386). For example, Quil A (derived from the bark of the South American tree Quillaja Saponaria Molina), and fractions thereof, are described in US 5,057,540 and 30 "Saponins as vaccine adjuvants", Kensil, C. R., *Crit Rev Ther Drug Carrier Syst*, 1996, 12 (1-2):1-55; and EP 0 362 279 B1. The haemolytic saponins QS21 and QS17 (HPLC purified fractions of Quil A) have been described as potent systemic adjuvants, and the method of their production is disclosed in US Patent No. 5,057,540 and EP 0 362 279 B1. Also described in these references is the use of QS7 (a non-haemolytic fraction of Quil-A) which acts as a potent 35 adjuvant for systemic vaccines. Use of QS21 is further described in Kensil *et al.* (1991. *J.*

Immunology vol 146, 431-437). Combinations of QS21 and polysorbate or cyclodextrin are also known (WO 99/10008). Particulate adjuvant systems comprising fractions of QuilA, such as QS21 and QS7 are described in WO 96/33739 and WO 96/11711. One such system is known as an Iscorn and may contain one or more saponins.

5 Another preferred immunostimulant is an immunostimulatory oligonucleotide containing unmethylated CpG dinucleotides (“CpG”). CpG is an abbreviation for cytosine-guanosine dinucleotide motifs present in DNA. CpG is known in the art as being an adjuvant when administered by both systemic and mucosal routes (WO 96/02555, EP 468520, Davis *et al.*, *J.Immunol.*, 1998, 160(2):870-876; McCluskie and Davis, *J.Immunol.*, 1998, 161(9):4463-10 6). Historically, it was observed that the DNA fraction of BCG could exert an anti-tumour effect. In further studies, synthetic oligonucleotides derived from BCG gene sequences were shown to be capable of inducing immunostimulatory effects (both *in vitro* and *in vivo*). The authors of these studies concluded that certain palindromic sequences, including a central CG motif, carried this activity. The central role of the CG motif in immunostimulation was later 15 elucidated in a publication by Krieg, *Nature* 374, p546 1995. Detailed analysis has shown that the CG motif has to be in a certain sequence context, and that such sequences are common in bacterial DNA but are rare in vertebrate DNA. The immunostimulatory sequence is often: Purine, Purine, C, G, pyrimidine, pyrimidine; wherein the CG motif is not methylated, but other unmethylated CpG sequences are known to be immunostimulatory and may be used in 20 the present invention.

In certain combinations of the six nucleotides a palindromic sequence is present. Several of these motifs, either as repeats of one motif or a combination of different motifs, can be present in the same oligonucleotide. The presence of one or more of these immunostimulatory sequences containing oligonucleotides can activate various immune 25 subsets, including natural killer cells (which produce interferon g and have cytolytic activity) and macrophages (Wooldridge *et al* Vol 89 (no. 8), 1977). Other unmethylated CpG containing sequences not having this consensus sequence have also now been shown to be immunomodulatory.

CpG when formulated into vaccines, is generally administered in free solution together 30 with free antigen (WO 96/02555; McCluskie and Davis, *supra*) or covalently conjugated to an antigen (WO 98/16247), or formulated with a carrier such as aluminium hydroxide ((Hepatitis surface antigen) Davis *et al.* *supra* ; Brazolot-Millan *et al.*, *Proc.Natl.Acad.Sci.*, USA, 1998, 95(26), 15553-8).

Such immunostimulants as described above may be formulated together with carriers, 35 such as for example liposomes, oil in water emulsions, and or metallic salts, including

aluminium salts (such as aluminium hydroxide). For example, 3D-MPL may be formulated with aluminium hydroxide (EP 0 689 454) or oil in water emulsions (WO 95/17210); QS21 may be advantageously formulated with cholesterol containing liposomes (WO 96/33739), oil in water emulsions (WO 95/17210) or alum (WO 98/15287); CpG may be formulated with

5 alum (Davis *et al. supra* ; Brazolot-Millan *supra*) or with other cationic carriers.

Combinations of immunostimulants are also preferred, in particular a combination of a monophosphoryl lipid A and a saponin derivative (WO 94/00153; WO 95/17210; WO 96/33739; WO 98/56414; WO 99/12565; WO 99/11241), more particularly the combination of QS21 and 3D-MPL as disclosed in WO 94/00153. Alternatively, a combination of CpG plus a

10 saponin such as QS21 also forms a potent adjuvant for use in the present invention.

Alternatively the saponin may be formulated in a liposome or in an Iscorn and combined with an immunostimulatory oligonucleotide.

Thus, suitable adjuvant systems include, for example, a combination of monophosphoryl lipid A, preferably 3D-MPL, together with an aluminium salt.

15 Thus is one embodiment the adjuvant is a combination of QS21 and 3D-MPL in an oil in water or liposomal formulation.

An enhanced system involves the combination of a monophosphoryl lipid A and a saponin derivative particularly the combination of QS21 and 3D-MPL as disclosed in WO 94/00153, or a less reactogenic composition where the QS21 is quenched in cholesterol

20 containing liposomes (DQ) as disclosed in WO 96/33739. This combination may additionally comprise an immunostimulatory oligonucleotide.

A particularly potent adjuvant formulation involving QS21, 3D-MPL & tocopherol in an oil in water emulsion is described in WO 95/17210 and is another preferred formulation for use in the invention.

25 Another preferred formulation comprises a CpG oligonucleotide alone or together with an aluminium salt.

In a further aspect of the present invention there is provided a method of manufacture of a vaccine formulation as herein described, wherein the method comprises admixing a polypeptide according to the invention with a suitable adjuvant.

30 Particularly suitable adjuvant combinations for use in the formulations according to the invention are as follows:

- i) 3D-MPL + QS21 in a liposome
- ii) Alum + 3D-MPL
- iii) Alum + QS21 in a liposome + 3D-MPL
- iv) Alum + CpG

- v) 3D-MPL + QS21 + oil in water emulsion
- vi) CpG

As used herein, the term “comprising” in context of the present specification should be interpreted as “including”.

5 Embodiments and preferences may be combined as technically appropriate.

The disclosure herein describes embodiments comprising certain integers. The disclosure also extends to the same embodiments consisting or consisting essentially of said integers.

10 FIGURES

- Fig 1-10** shows various antibody and fragment sequences
- Fig 11** shows sera titres for TcdA and TcdB
- Fig 12** shows anti TcdA (Ribotype 003) in-vitro neutralization data for single Mabs
- Fig 13** shows anti TcdA (Ribotype 003) in-vitro neutralization data for single and paired Mabs
- Fig 14-15** shows anti TcdA (Ribotype 003) in-vitro neutralization data for paired Mabs
- Fig 16-18** shows anti TcdA (Ribotype 003) in-vitro neutralization data for three Mab mixtures
- Fig 19-20** shows anti TcdA (Ribotype 003) in-vitro neutralization data for four and five Mab mixtures
- Fig 21-22** shows anti TcdA (Ribotype 003) in-vitro neutralization data for single and paired Mabs at different TcdA concentrations
- Fig 23-24** shows anti TcdA (Ribotype 003) in-vitro neutralization data for single and to five Mab mixtures at different TcdA concentrations
- Fig 25-26** shows anti TcdB (Ribotype 003) in-vitro neutralization data for single Mabs
- Fig 27-30** shows anti TcdB (Ribotype 003) in-vitro neutralization data for paired Mabs
- Fig 31-33** shows anti TcdB (Ribotype 003) in-vitro neutralization data for three Mab mixtures
- Fig 34-40** shows anti TcdB (Ribotype 003) in-vitro neutralization data for two Mab mixtures at different toxin concentrations
- Fig 41-45** shows anti TcdB (Ribotype 003) in-vitro neutralization data for two Mab mixtures at different relative Mab ratios and different toxin concentrations
- Fig 46-59** shows TcdB neutralisation data for single antibodies and pairs of antibodies
- Fig 60** shows the amino acid sequence for TcdA
- Fig 61** shows the amino acid sequence for TcdB

5 **Fig 62** shows TEER assay data for TcdA in a histogram format
Fig 62A shows TEER assay data for TcdA in line graph format
Fig 63 shows a meier-kaplan curve for the combination of antibodies 997, 1125 and
 1151, high concentration is 50mg/Kg and low concentration is 5mg/Kg
 50mg/kg' dose gave 100% protection to day 11, ~82% protection to day 28.
 5mg/kg' dose resulted in non-durable and incomplete protection.
Fig 64 shows bodyweight changes for vancomycin and vehicle treated hamsters
Fig 65 shows the bodyweight for low dose antibodies 5mg/Kg and high dose antibodies
 50mg/Kg
10 **Fig 66** shows photographs of a colon where the animal received treatment with
 antibodies according to the present disclosure vs a control
Fig 67-68 show effects of vortexing on antibody stability
Fig 69 shows a comparison of aggregation stability for various antibodies
Fig 70-73 show neutralisation of TcdA for various ribotypes
15

EXAMPLES

Antibody Generation

A range of different immunogens and screening reagents were either purchased or produced by conventional *E. coli* expression techniques in order to provide a diverse and broad immune
20 response and to facilitate identification and characterisation of monoclonal antibodies (listed in Table 1). In cases where recombinant proteins or peptides were generated, sequences were based on ribotype 027. The sequence for TcdA from ribotype 027 is given in SEQ ID NO: 171 (Uniprot accession number C9YJ37) and the sequence for TcdB from ribotype 027 is given in SEQ ID NO: 172 (Uniprot accession number C9YJ35).
25 Sprague Dawley rats and half-lop rabbits were immunised with either synthetic peptides mapping to regions common to both TcdA and TcdB full-length toxin, formaldehyde-inactivated toxoid A, binding domain fragments of Toxin A (CROPs1,2,3 or CROPs4,5,6) or binding domain fragment of Toxin B (CROPs1,2,3,4), or in some cases, a combination of the above. Following 2 to 6 immunisations, animals were sacrificed and PBMC, spleen and bone
30 marrow harvested. Sera were monitored for binding to Toxin A domains, toxin B domains, toxin or toxoid by ELISA. Sera titres of 2 such immunisations are shown in figure 11.
UCB SLAM was used as a means to generate monoclonal antibodies. B cells were cultured directly from immunised animals (Zubler et al., 1985). This step enabled sampling of a large percentage of the B cell repertoire. By incorporating the selected lymphocyte antibody method
35 (SLAM) (Babcock et al., 1996) it was possible to deconvolute positive culture wells and

identify antigen-specific antibody-secreting cells. Here we used a modified version of SLAM (UCB SLAM (Tickle et al. 2009)) that utilises a fluorescence-based method to identify antigen-specific B cells from culture wells. B cell cultures were set up and supernatants were first screened for their ability to bind a relevant purified toxin domain (binding, translocation or catalytic) in a bead-based assay using an Applied Biosystem 8200 cellular detection system. This was a homogeneous assay using B cell culture supernatant containing IgG, biotinylated toxin domains coated onto streptavidin beads and a goat anti-rat/rabbit Fc-Cy5 conjugate. Cell cultures positive for binding to TcdA or TcdB components from this assay were selected for use in cell-based functional assays to identify neutralisers of toxin-induced cytotoxicity.

5 Approximately 12,000 toxin-specific positives were identified in the primary binding screen from a total of 40 x 50-plate experiments. This equated to the screening of approximately 0.5 billion B cells. Heavy and light variable region gene pairs were isolated from single cells harvested by micromanipulation from approximately 100 toxin-neutralising wells following reverse transcription (RT)-PCR. These V-region genes were then cloned as mouse IgG1/kappa

10 full-length antibodies for rat variable regions and rabbit IgG/kappa full-length antibodies for rabbit variable regions. Antibodies were re-expressed in a HEK-293 transient expression system. These recombinant antibodies were then retested for their ability to neutralise toxin in cell based assays. Recombinant antibodies were also screened by BIACore to determine affinity for a given toxin domain and to also determine the specificity and approximate the number of

15 binding events of antibody to toxin. Based on in vitro activity in cell based assays and affinity measurements, lead candidates were selected for humanisation. Unless otherwise stated, all the data herein was generated using the humanised antibodies.

20 A panel of recombinant, *E. coli*-produced toxin fragments (TcdA), *C. difficile*-derived toxin or toxoid (A) and synthetic peptides (B) were generated or purchased from commercial sources.

25 **Table 1. Toxin A (TcdA) sequence related reagents for screening and immunizations.**

Fragment	Residue number	Source
TcdA catalytic	M1-E659	UCB <i>E. coli</i> expression
TcdA translocation	K577-D1350	UCB <i>E. coli</i> expression
TcdA CROPS ₁₂₃ (TcdA123)	S1827-D2249	UCB <i>E. coli</i> expression
TcdA CROPS ₄₅₆ (TcdA456)	G2205-R2608	UCB <i>E. coli</i> expression
TcdA CROP ₁	S1827-N1978	UCB <i>E. coli</i> expression
TcdA CROP ₂	G1966-N2133	UCB <i>E. coli</i> expression
TcdA CROP ₃	G2100-D2249	UCB <i>E. coli</i> expression
TcdA CROP ₄	G2213-N2381	UCB <i>E. coli</i> expression

TcdA CROP ₅	G2328-N2494	UCB E. coli expression
TcdA CROP ₆	G2462-N2609	UCB E. coli expression
TcdA CROP ₇	R2554-D2701	UCB E. coli expression
TcdB catalytic	M1-A593	UCB E. coli expression
TcdB translocation	R576-D1349	UCB E. coli expression
TcdB binding (TcdB1234)	S1833-E2366	UCB E. coli expression
TcdB CROP ₁	S1833-S1981	UCB E. coli expression
TcdB CROP ₂	G1968-D2113	UCB E. coli expression
TcdB CROP ₃	G2100-E2247	UCB E. coli expression
TcdB CROP ₄	G2234-E2366	UCB E. coli expression
Toxin A	Full length	purchased
Toxin B	Full length	purchased
Toxoid A	Full length	purchased

Table 2. Toxin B (TcdB) sequence related reagents for screening and immunizations.

Toxin Domain	Amino acid Sequence	
Catalytic	SPVEKNLHFVWIGGEVSD	SEQ ID NO: 173
Catalytic	NLAAASDIVRL	SEQ ID NO: 174
Catalytic	CGGVYLDVDMPLPGIH	SEQ ID NO: 175
Catalytic	CGGVYLDVDMPLPGIHSDLFK	SEQ ID NO: 176
Catalytic	CWEMIKLEAIMKYK	SEQ ID NO: 177
Catalytic	CTNLVIEQVKNR	SEQ ID NO: 178
Catalytic	PEARSTISLSGP	SEQ ID NO: 179
Catalytic	CSNLIVVKQIENR	SEQ ID NO: 180
Catalytic	TEQEINSLWSFDQA	SEQ ID NO: 181
Catalytic	TEQEINSLWSFDPEARSTISLSGPC	SEQ ID NO: 182
Translocation	NVEETYPGKLLC	SEQ ID NO: 183
Translocation	Acetyl-CANQYEVRINSEGR	SEQ ID NO: 184
Translocation	VNTLNAAFFIQSLIC	SEQ ID NO: 185
Translocation	YAQLFSTGLNTIC	SEQ ID NO: 186
Translocation	CAGISAGIPSLVNNEL	SEQ ID NO: 187
Translocation	DDLVISEIDFNNNSIC	SEQ ID NO: 188
Translocation	MEGGSGHTVT	SEQ ID NO: 189
Translocation	AVNDTINVLPTITEGIPIVSTILDGINLGAAIKEL	

	SEQ ID NO: 190	
Binding	CGFEYFAPANTDANNIEGQA	SEQ ID NO: 191
Binding	CGYKYFAPANTVNDNIYGQA	SEQ ID NO: 192
Binding	CKYYFNTNTAEA	SEQ ID NO: 193
Binding	CKYYFDEDTAEA	SEQ ID NO: 194

Expression and purification of *C. difficile* anti-toxin Mabs

Separate light chain and heavy chain mammalian expression plasmids were combined in equimolar ratios and used to transfect HEK-293 or CHO-S cells. For small scale expression

5 studies lipofectamine and HEK-293 cells were used whereas for production of larger batches of IgG electroporation into CHO-S was preferred.

Culture supernatants were loaded onto a MabSelect SuRe column (in PBS pH 7.4). Antibody was eluted with 100% 0.1M Sodium Citrate pH 3.4 buffer. Samples were neutralized to pH7.4 with Tris.Cl pH8.0. Aggregate was removed by Superdex 200 Gel Filtration column in PBS

10 pH 7.4.

TABLE 3

Antibody	Cell type	Volume of SN (L)	Expression type	Amount purified (mg)
CA164_00997.g1_P3	CHO	10	Transient	755.93
CA164_00922.g1_P3	CHO	0.5	Transient	129.36
CA164_01125.g2_P3	CHO	10	Transient	498.96
CA164_01151.g4_P3	CHO	5	Transient	262.43

Example 1 In-vitro neutralization of TcdA activity by purified Mabs

All neutralisation screening assays were run in 96 well polystyrene plates. The assay uses CACO-2 cells grown, and screened in MEM + 20% FCS, 2mM Q, and NEAA. Any antibody

15 combinations are at equal molar ratios unless stated otherwise. **Day 1:** Cells were plated @ 3000 per well in 50 μ l media, and incubated for 24 hrs; **Day 2:** Purified samples of humanised Mab were added to 96 well round bottomed polypropylene sterile plates; Spike PP plates with toxin A at a concentration sufficient to generate the appropriate lethal dose i.e. LD₅₀ or above and incubate for 1 hr, at 37°C; Add 50 μ l of this mixture to cell plates and incubate for 96 hrs;

20 **Day 5:** Add Methylene blue (0.5% Methylene Blue 50% ethanol); Incubate for 1 hr at room temperature; Lyse the cells with 1% N-Lauryl Sarcosine, and Read on the BIOTEK Synergy2 plate reader at 405nm. The results are shown in Fig 12 to 24. EC₅₀ and % maximum neutralization of TcdA activity shown confirm that the selected antibodies have very high potencies as single agents. Combinations of 2 to 5 of these did not improve upon the best EC₅₀

or % maximum neutralization. Lack of any synergy when combining Mabs CA922, 923, 995, 997 and 1000 is an important observation and may be due to the fact the each antibody alone has exceptionally high levels of affinity and potency. Supporting data in Example 5 also show that some of the Mabs (e.g. CA997) are capable of binding to TcdA subdomains many times.

5 Hence it seems probable that these 5 Mabs represent that the maximum affinity, potency and valency that is achievable when targeting the C-terminal cell binding domain of TcdA. The antibodies were also effective at neutralising very high toxin concentrations ranging from LD₈₀ to greater than LD₉₅ (LD_{max}) but some modest increases in EC₅₀ (i.e. decreases in potency) were observed with very high levels of [TcdA]. These data are also surprising since
10 others have shown substantial reductions in potency when testing elevated TcdA concentrations (20).

The high potency and affinity of the Mabs described here, e.g. for CA997; is not due solely to their high valency of binding. Others (20 and WO06/071877) describe anti-TcdA Mabs capable of binding up to 14 times. These Mabs only had affinities in the range 0.3 to 100nM
15 and showed incomplete protection against TcdA mediated cell killing, alone (26-63% protection) or in pairs (31-73% protection). Hence it has been demonstrated that high valency of binding to TcdA does not necessarily invoke either high affinity of binding to or neutralisation of TcdA. Neither the affinities nor valency of binding to TcdA were described for Mab CDA-1 (18 and US7625559). Thus Mabs described herein to have surprising affinity,
20 potency and valency.

TABLE 4 Anti TcdA 1, 2 & 3 Mab combinations at a single TcdA conc. (LD₈₀)

Antibody	Final (highest) Mab conc.ng/ml	EC ₅₀ (ng/ml)
922	500	1.21
923	500	160.42
995	500	37.64
997	500	6.25
1000	500	19.73
922+923	500	3.58
922+925	500	3.326
922+997	500	2.88
922+1000	500	2.64
923+995	500	60.23
923+997	500	7.54
923+1000	500	9.24
995+997	500	7.29
995+1000	500	19.63
997+1000	500	4.46
922+923+995	500	4.72
922+923+997	500	3.23
922+923+1000	500	3.21
922+995+997	500	2.22
922+995+1000	500	2.85
922+997+1000	500	2.22
923+995+997	500	5.04
923+995+1000	500	9.49
995+997+1000	500	5.84
922+923+995+997	500	2.75
922+923+995+1000	500	3.75
922+995+997+1000	500	3.46
923+995+997+1000	500	4.81
922+923+997+1000	500	3.06
922+923+995+997+1000	500	4.72

TABLE 5 Anti TcdA single, paired, and triplet Mab combinations at various TcdA concentrations, where TcdA is at its LD₈₀, LD₉₀, LD₉₅ and LD_{max}.

Toxin TcdA	Sample	Final Mab conc.ng/ml	EC ₅₀ (ng/ml)
@ 3000 pg/ml (LD _{MAX})	922	500	4.89
	997	500	10.99
	1000	500	50.17
	922+997	500	7.18
	922+1000	500	6.99
	997+1000	500	9.437
	922+997+1000	500	10.80
	922+997+1000+995	500	15.03
	922+997+1000+995+923	500	7.16
@ 1000 pg/ml (LD ₉₅)	922	500	1.24
	997	500	3.42
	1000	500	9.60
	922+997	500	1.85
	922+1000	500	2.51
	997+1000	500	3.61
	922+997+1000	500	2.40
	922+997+1000+995	500	2.74
	922+997+1000+995+923	500	2.38
@ 700 pg/ml (LD ₉₀)	922	500	0.84
	997	500	2.40
	1000	500	6.23
	922+997	500	1.19
	922+1000	500	1.33
	997+1000	500	2.68
	922+997+1000	500	1.84
	922+997+1000+995	500	2.17
	922+997+1000+995+923	500	2.06
@ 350 pg/ml (LD ₈₀)	922	500	0.39
	997	500	1.18
	1000	500	2.76
	922+997	500	0.67
	922+1000	500	0.85
	997+1000	500	2.06
	922+997+1000	500	0.83
	922+997+1000+995	500	0.97
	922+997+1000+995+923	500	0.98

Example 2 Anti TcdB *in-vitro* neutralization by purified Mab.

Assay methods description:

All neutralisation screening assays were run in 96 well polystyrene plates.

The assay uses CACO-2 cells grown, and screened in MEM + 20% FCS, 2mM Q, and NEAA. Unless stated all Ab combinations are in equal ratios.

- Day 1: Cells are plated @ 3000 per well in 50 μ l media, and incubated for 24 hrs
- Day 2: Purified samples of humanised Mab were added to 96 well round bottomed polypropylene sterile plates
- Spike PP plates with toxin B lot # 031 and incubate for 1 hr, at 37°C
- Add 50 μ l of this mixture to cell plates
- Incubate for 96 hrs
- Day 5: Add Methylene blue (0.5% Methylene Blue 50% ethanol)
- Incubate for 1 hr at room temperature
- Lyse the cells with 1% N-Lauryl Sarcosine
- Read on the BIOTEK Synergy2 plate reader at 405nm

The data in Figures 25 to 33 show that single Mabs alone were relatively ineffective at neutralizing TcdB, both in terms of % maximum neutralization and activity (EC₅₀). However, when the antibodies were combined in two's and three's considerable improvements in both % maximum neutralization and activity (EC₅₀) were observed. 1125 and 1151 were selected as a best pairing, although other good pairings were observed: 1125+1153, 1125+1134.

The most effective pairs of Mabs were selected empirically and were found retrospectively to make unexpected and surprising combinations when regarding the individual potencies of each Mab. For example, in Table 6 only CA927 had a TcdB neutralisation potential which could result in a defined EC₅₀ whilst the TcdB neutralisation potential of both CA1125 and CA1151 were insufficient under these assay conditions to result in a defined EC₅₀. However, CA927 was not found to be the most effective Mab to use within a combination. The best CA927 containing combination had an EC₅₀ of 13.5ng/ml whereas other two Mab combinations had EC₅₀'s as low as 2.59 and 4.71ng/ml. In another example, in Table 8 CA1099 had the lowest TcdB neutralisation EC₅₀ under the assay conditions used. However, CA1099 was not found to be the most effective Mab to use within a combination. The best CA1099 containing combination had an EC₅₀ of 6ng/ml whereas other two Mab combinations had EC₅₀'s as low as 2 and 1ng/ml. We might speculate that the most effective pairings of Mabs are defined by their cooperative binding modalities especially as defined by having non-overlapping epitopes.

TABLE 6 Anti-TcdB Mab combinations and relative Mab ratios at constant toxin concentration.

Sample	Final Mab conc.ng/ml	EC ₅₀ (ng/ml)
1125.g2	1000	>1000
1134.g5	1000	>1000
927.g2	1000	12.89
1153.g8	1000	>1000
1102.g4	1000	>1000
927+1099	1000	>1000
927+1102	1000	>1000
927+1114	1000	>111.111
927+1125	1000	13.55
927+1134	1000	51.58
1099+1114	1000	>1000
1102+1114	1000	>333.333
1102+1125	1000	15.51
1114+1134	1000	19.70
1114+1151	1000	25.69
1114+1153	1000	27.48
1125+1134	1000	2.59
1125+1151	1000	4.71
1125+1153	1000	21.23
1125+1134+1114	1000	3.77
1125+1134+927	1000	2.63
1125+1151+1114	1000	4.90
1125+1151+927	1000	5.69
1125.g2+1134.g5+927.g2	1000	5.83
1125.g2+1134.g5+1153.g8	1000	9.89
1125.g2+1134.g5+1102.g4	1000	2.72

Example 3 Neutralisation of TcdB by combinations of purified Mab.

All neutralisation screening assays were run in 96 well polystyrene plates.

The assay uses CACO-2 cells grown, and screened in MEM + 20% FCS, 2mM Q, and NEAA.

- Day 1: Cells are plated @ 3000 per well in 50 μ l media, and incubated for 24 hrs
- Day 2: Purified samples of humanised Mab were added to 96 well round bottomed polypropylene sterile plates
- Spike PP plates with toxin B (VPI 10463) and incubate for 1 hr, at 37°C
- Add 50 μ l of this mixture to cell plates
- Incubate for 72 hrs
- Day 5: Add Methylene blue (0.5% Methylene Blue 50% ETOH)
- Incubate for 1 hr at room temperature
- Lyse the cells with 1% N-Lauryl Sarcosine
- Read on the BIOTEK Synergy2 plate reader at 405nm

The results are shown in Figures 34 to 45.

These data show that the best pair of Mabs for neutralizing TcdB at a range of toxin concentrations was CA1125 and CA1151. Moreover, the 1125+1151 combination was largely unaffected by changes in the relative molar ratios which is in contrast to 1125+1153.

TABLE 7 Anti-TcdB Mab combinations and relative Mab ratios at 3 different toxin concs.

Antibody combination	EC50 values (ng/ml)		
	TcdB LD60	TcdB LD77	TcdB LD85
1125.g2 + 927.g2 (50:50)	2.8	6	11.3
1125.g2 + 1102.g4 (50:50)	4	13	44
1125.g2 + 1114.g8 (50:50)	3.5	7.1	25.4
1125.g2 + 1134.g5 (50:50)	0.48	1.4	4
1125.g2 + 1151.g4 (50:50)	0.85	0.85	1.5
1125.g2 + 1153.g8 (50:50)	2.7	5.2	25.2
1125.g2 + 1134.g5 (25:75)	<0.15	0.84	7.2
1125.g2 + 1151.g4 (25:75)	0.73	1	2.1
1125.g2 + 1153.g8 (25:75)	7	10	27
1125.g2 + 1134.g5 (75:25)	0.66	1.2	2.5
1125.g2 + 1151.g4 (75:25)	1.4	1.2	8.3
1125.g2 + 1153.g8 (75:25)	2.9	7.5	30

The data show that even the most active specific paired combinations have surprisingly and non-predictably different properties relative to each other. The EC₅₀ of the preferred combination of CA1125 and CA1151 in equimolar ratios is largely unaffected by an increasing [TcdB]. The three

relative molar ratios of Mabs tested (i.e. 25:75 vs 50:50 vs 75:25) have very similar EC₅₀'s to each other, suggesting that CA1125 and CA1151 have especially complementary modes of action. This is in contrast to the combination of CA1125 with CA1134 where the increase in EC₅₀ (i.e. reduction of potency) with higher [TcdB] is more substantial and where the three Mab molar ratios are not equally effective: The CA1125:CA1134 ratio of 25:75 is notably less potent than 50:50 and 75:25. This suggests that the combined potency of CA1125+CA1134 is more dependent upon the CA1125 component. The EC₅₀ of all three molar combinations of CA1125 and CA1153 is substantially affected by increasing [TcdB] suggesting that CA1153 is a less suitable partner for combination with CA1125. *In toto*, these data show that CA1125 and CA1151 are a particularly favourable combination since the highest potency is maintained across a range of Mab and TcdB molar ratios.

TABLE 8 TcdB neutralisation – 1 or 2 anti-TcdB Mabs at constant toxin dose (LD₈₀).

Antibody	IC50 (ng/ml)
1099	2
1102	N/A
1114	103
1125	N/A
1134	8
1151	182
1153	260
926	N/A
927	N/A
1099 + 1125	6
1114 + 1125	7
1151 + 1125	2
1134 + 1125	1
1102 + 1125	6
1125 + 1153	12
926 + 1125	42
927 + 1125	4

TABLE 9 TcdB neutralisation – 1 or 2 anti-TcdB Mabs at various TcdB doses.

Antibody combination	EC50 values (ng/ml)			Maximum neutralisation		
	TcdB LD75	TcdB LD86	TcdB LD90	TcdB LD75	TcdB LD86	TcdB LD90
1125.g2	n/a	n/a	n/a	40%	25%	15%
1114.g8	n/a	n/a	n/a	45%	25%	15%
1134.g5	n/a	n/a	n/a	45%	25%	15%
1151.g4	n/a	n/a	n/a	45%	25%	20%
1153.g8	28.3	n/a	n/a	65%	35%	28%
1125.g2 + 1114.g8 (50:50)	10.1	243.8	n/a	85%	65%	40%
1125.g2 + 1134.g5 (50:50)	1.7	22.6	n/a	87%	60%	40%
1125.g2 + 1153.g8 (50:50)	6.1	32.2	n/a	95%	75%	48%
1125.g2 + 1151.g4 (50:50)	0.8	2.8	19.1	85%	80%	55%
1125.g2 + 1151.g4 (25:75)	1.2	2.8	47.2	85%	75%	60%
1125.g2 + 1151.g4 (75:25)	2.9	3.8	2.6	75%	70%	60%

These data show that combination of Mabs, especially CA1125 and CA1151 improve both the potency as measured by EC₅₀ but also as measured by % maximum protection. The % maximum protection is of particular relevance in this assay method since the Mab:TcdB mixture is incubated with cells for a long time (72h). Since TcdB is toxic to Caco-2 cells in the range of pg/ml in 2-4h this measure may be considered to be a very difficult test of Mab neutralisation ability and may reflect the ability of Mab mixture with regard to their binding kinetics or modalities. In turn this may reflect the ability of Mab mixtures to protect against the effects of TcdB during an established infection when there may be substantial quantities of TcdB within tissues for many hours.

Selected data from Tables 6-9 are further illustrated in Figures 46-59.

Example 4 Valency of binding of Mabs to TcdB sub-domains.

The number of moles of binding events of anti-*C. difficile* TcdB antibodies to TcdB₁₂₃₄ was determined by Surface Plasmon Resonance (SPR) on a Biacore 3000 (GE Healthcare).

Streptavidin was immobilized on a CM5 sensor chip (GE Healthcare) to a level of ~4000RU via amine coupling and biotinylated TcdB₁₂₃₄ was bound at 500-600RU. Two 20µl injections of the same anti-TcdB antibody mixtures (final concentration of each antibody was 500nM) were injected over this surface at 10µl/min and the saturating binding response recorded. The surface was regenerated after every cycle using HCl. All the data was corrected for background binding using the response to the streptavidin only reference flowcell.

Table 10: Surface plasmon resonance analysis of the number of IgG binding sites on TcdB₁₂₃₄

Antibody combination	No. of binding cycle repeats	Binding Response (RU)	Binding relative to CA927 average response
CA1125.g2	10	750	0.9
CA1151.g4	10	1232	1.6
CA1125_CA1151	4	1941	2.5
CA1125_CA927	3	1570	2.0
CA1151_CA927	3	1959	2.5
CA927	8	791	1.0

All responses have been expressed relative to a multiple of CA927 average response (final column table 10) since CA927 appears to be representative of a Mab which binds to TcdB₁₂₃₄ once only.

Immobilized CA1125, when bound to TcdB₁₂₃₄, does not allow CA1125 to bind further supporting the idea that CA1125 has one binding site on TcdB₁₂₃₄ and that after this has been saturated that no other binding site for CA1125 can be found. However, when TcdB₁₂₃₄ has been saturated by CA1125, CA1151 can still bind. This demonstrates that CA1151 binds at alternative sites to that occupied by CA1125. Together these data show that CA1125 is a single binder of TcdB₁₂₃₄ whereas 1151 IgG binds to TcdB₁₂₃₄ more than once, most likely twice. Hence a mixture of CA1125 and CA1151 can bind to TcdB₁₂₃₄ approximately 3 times.

All antibodies combinations have an additive binding response showing that there are 2 or more non-competitive sites on TcdB₁₂₃₄ bound by these combinations.

Example 5 Valency of binding of Mabs to TcdA sub-domains.

The number of moles of binding events of anti-*C. difficile* TcdA antibodies to TcdA₁₂₃ and A₄₅₆ were determined by Surface Plasmon Resonance (SPR) on a Biacore 3000 (GE Healthcare).

Streptavidin was immobilized on a CM5 sensor chip (GE Healthcare) via amine coupling to a level of ~4000RU and biotinylated TcdA₁₂₃ was bound to one flowcell and TcdA₄₅₆ was bound to a different flowcell to a response of ~500RU. Two 30µl injections of the same anti-TcdA antibody at 1µM were injected over both flowcells at 10µl/min and the saturating binding response recorded.

The surface was regenerated after every cycle using HCl. All the data was corrected for background binding using the response to the streptavidin only reference flowcell.

Table 11: SPR analysis of the binding responses of IgGs to immobilised TcdA₁₂₃ and TcdA₄₅₆

	CA997	CA1000	CA997/CA1000 ratio
TcdA ₁₂₃	1069	166	6
TcdA ₄₅₆	1285	407	3

Antibodies CA997 and CA1000 bind to TcdA₁₂₃ in a ratio of six CA997's to one CA1000 whereas they bind to TcdA₄₅₆ in a ratio of three CA997's to one CA1000 (Table 2).

The maximum antibody response for CA997, corrected for molecular weight and immobilized toxin level is similar for TcdA₁₂₃ and TcdA₄₅₆. This suggests that CA997 binds TcdA₄₅₆ six times and CA1000 binds twice to TcdA₄₅₆. Hence antibody CA997 likely binds to TcdA whole toxin (TcdA) approximately 12 times.

Overall CA997 binds six times or more to A₁₂₃ and six times or more to A₄₅₆, whereas CA1000 binds at least once to A₁₂₃ and twice to A₄₅₆.

Increased valency of binding to TcdA and TcdB may have two important effects *in vivo*. The first is that any Mab or Mab mixture which is capable of binding TcdB more than once will have increased potential to form inter-toxin binding events and hence immunoprecipitation.

Immunoprecipitation can contribute to potency by reducing the solubility of toxin and forming very large macromolecular complexes which hence reduce the effective working concentration of toxin. Such large protein complexes may be taken up by macrophages and monocytes resident in the tissue and may contribute to an augmented host immune response. Antigen:antibody complexes bearing Fc fragments have been specifically shown to be capable of priming a host immune response against a gut pathogen (21). Also, soluble antigen:antibody complexes have been successfully used as a vaccine directed against the antigen in human clinical trials (22). In addition, immune decoration of toxin with Fc bearing IgG may contribute to immune clearance using normal mechanisms through the liver and spleen. In general, higher levels of Fc decoration of antigen lead to faster and more complete levels of clearance (23). Critically, it may be that presence of 2 or more Mab Fc domains per toxin, especially 3 Fc domains per toxin may represent a critical number of Fcs required for very rapid and substantial clearance of toxin (24). The anti-TcdA Mab CA997 is likely capable of binding to TcdA up to 12 times and the combination of CA1125 and CA1151 is likely capable of binding to TcdB 3 times. Hence the 3 Mab mixture is very likely to be capable of providing for these kinds of additional potency mechanisms *in vivo*.

Example 6 Mab neutralisation of loss of TEER caused by TcdA.

C. difficile monolayer integrity assay is performed using the Becton-Dickinson (BD) Caco-2 BioCoat HTS plate system.

Day 1 – Caco-2 cells seeded @ 2×10^5 /ml per well of the plate insert in 500 μ l Basal seeding medium (provided by BD). 35ml of Basal seeding medium added to the feeder tray. Cells incubated for 24 hours at 37°C. **Day 2** – Basal seeding medium removed from inserts and feeder tray, and replaced with Entero-STIM differentiation medium (supplied by BD). 500 μ l added per well insert and 35ml to the feeder tray. Cells incubate for a further 72hrs at 37°C. **Day 5** – Antibodies prepared at 2x concentration relative to that to be used in the assay well in a polypropylene plate and toxin A. Toxin A added to antibodies at a concentration of 125ng/ml and plate incubated for 1hr at 37°C. 1ml of Caco-2 growth medium (MEM + 20% FCS, 2mM Q, NEAA) added to each well of a standard 24-well TC plate. BioCoat insert plate transferred to the 24-well TC plate. Entero-STIM medium removed from inserts and replaced with 400 μ l of toxin:Ab mixture.

Loss of tight junctions between gut cells is the key early effect of TcdA on cell monolayers and gut tissue sections and is the primary cause of diarrhoea. Albumin and other serum proteins are lost into the gut lumen along with accompanying serum fluid. The loss of trans-epithelial electrical resistance in differentiated cultured cells which have formed a monolayer is a useful surrogate for the protection against the acute effects of TcdA. Three antibodies shown have good levels of protection against TEER loss, Figure 62. It is notable and surprising that the abilities of these Mabs in TEER assays do not reflect those seen in toxin neutralization as measured in a cell proliferation assay. CA922 has the best performance in a cell proliferation assay ($EC_{50} = 1.21$ ng/ml) and yet this is considerably out-performed in the TEER assay by an antibody (CA1000) which has >10 x lower potency in a cell proliferation assay ($EC_{50} = 19.73$ ng/ml). CA997 had the best performance in the TEER assay since it had both high levels of protection and maintained this at the lower Mab concs. CA997 had a substantial potential to neutralize TEER loss with maximal inhibition approaching 80% and an EC_{50} of approximately 80ng/ml at 4h. These observations are unexpected since the Mabs in question all had high affinities for TcdA domains (CA922 ~4pM, CA997 ~132pM, CA1000 ~73pM). These data suggest that CA997 and CA1000 recognise epitopes important in TEER loss or neutralize TcdA by different mechanism to other Mabs. Furthermore, since CA1000 is estimated to bind to holotoxin twice (once in TcdA₁₂₃ and once in TcdA₄₅₆) CA1000 may define 'TEER critical' epitopes within the TcdA cell binding regions which might have particular value for defining vaccine immunogens. Results are shown in Figures 62.

Example 7 Affinity of anti-*C. difficile* toxin antibodies for sub-domains of TcdA and TcdB: TcdA₁₂₃, TcdA₄₅₆ and TcdB₁₂₃₄.

Kinetic constants for the interactions of anti-*C. difficile* TcdA and TcdB antibodies were determined by surface plasmon resonance conducted on a BIACore 3000 using CM5 sensor chips. All experiments were performed at 25°C. Affinipure F(ab')₂ fragment goat anti-human IgG, Fc fragment specific (Jackson ImmunoResearch) was immobilised on a CM5 Sensor Chip (GE) via amine coupling chemistry to a capture level of ≈7000 response units (RUs). HBS-EP buffer (10mM HEPES pH 7.4, 0.15 M NaCl, 3 mM EDTA, 0.005 % Surfactant P20, Biacore AB) was used as the running buffer with a flow rate of 10 µL/min. A 10 µL injection of each antibody at 1µg/ml or lower was used for capture by the immobilised anti-human IgG, Fc. TcdA123, TcdA456 or TcdB1234 were titrated over captured purified antibodies at doubling dilutions from 12.5nM at a flow rate of 30 µL/min. For antibodies present in culture supernatants, a single concentration of 12.5nM of TcdA123 or TcdA456 and 50nM of TcdB1234 was passed over the antibodies at 30ul/min. Kinetics were calculated on n=2 The surface was regenerated at a flowrate of 10uL/min by two 10 µL injections of 40 mM HCl, and a 5 µL injection of 5 mM NaOH.

Double referenced background subtracted binding curves were analysed using the BIAevaluation software (version 3.2) following standard procedures. Kinetic parameters were determined from the fitting algorithm.

TABLE 12 Anti-TcdA Mab affinities and binding kinetics

	Antibody ID	ka (1/Ms)	kd (1/s)	KD (M)	KD(pM)	Material/Assay	
TcdA123	CA164_00922.g1	1.09E+06	4.43E-06	4.06E-12	4.06	Purified Mab 5 point titration	
	CA164_00923.g1	5.36E+05	3.47E-05	6.47E-11	64.7		
	CA164_00995.g1	No binding		No binding	132		
	CA164_00997.g1	7.84E+05	1.03E-04	1.32E-10			
	CA164_01000.g1	1.33E+05	9.78E-06	7.33E-11	73.3		
	CA164_00993.g1	9.00E+05	5.00E-06	5.56E-12	5.56	Supernatant 2x 1 point titration	
TcdA456	CA164_00922.g1	1.29E+06	3.33E-06	2.59E-12	2.59	Purified Mab 5 point titration	
	CA164_00923.g1	6.16E+05	1.92E-04	3.12E-10	312		
	CA164_00995.g1	2.87E+05	3.42E-05	1.19E-10	119		
	CA164_00997.g1	9.21E+05	6.15E-05	6.68E-11	66.8		

CA164_01000.g1	3.55E+05	2.98E-05	8.41E-11	84.1	
CA164_00993.g1	1.25E+06	5.00E-06	4.00E-12	4.00	Supernatant 2x 1point titration

TABLE 13 Anti-TcdB Mab affinities and binding kinetics

Antibody ID	ka (1/Ms)	kd (1/s)	KD(M)	KD (pM)	Material/Assay
TcdB1234	CA164_1125.g2	2.64E+05	3.23E-05	1.22E-10	Purified Mab 3 point titration
	CA164_1151.g4	7.49E+05	4.13E-04	5.51E-10	Purified Mab 3 point titration
	CA164_926.g1	1.38E+05	7.12E-05	5.16E-10	Supernatant 2x 1point titration
	CA164_927.g2	3.97E+05	3.61E-05	9.11E-11	Purified Mab 3 point titration
	CA164_1099.g2	5.24E+05	1.63E-05	3.10E-11	Purified Mab 3 point titration
	CA164_1102.g4	1.17E+05	3.78E-04	3.25E-09	Supernatant 2x 1point titration
	CA164_1114.g2	2.87E+05	1.97E-03	6.87E-09	Supernatant 2x 1point titration
	CA164_1114.g8	2.55E+05	1.85E-03	7.25E-09	Supernatant 2x 1point titration
	CA164_1129.g1	1.89E+05	2.30E-04	1.22E-09	Supernatant 2x 1point titration
	CA164_1134.g5	5.09E+05	2.45E-05	4.81E-11	Purified Mab 3 point titration
	CA164_1153.g8	1.43E+05	4.48E-05	3.14E-10	Purified Mab 3 point titration

The anti-TcdA affinities are particularly high compared to the published affinities of other Mabs. We demonstrate that affinities as low as 4pM are achievable. The preferred CA997 has an affinity of 132pM, CA1125 122pM and CA115 551pM. CA995 clearly shows that it does not bind to

CROPs A₁₂₃ and hence that demonstrates that the Mab shown here have properties which are different from each other in surprising and unexpected ways. CA922, 923, 997 and 1000 do bind at least once to CROPs A123 and A456. Hence these 4 Mabs confirming that each must bind to holotoxin at least twice. We have been unable to derive affinities for the binding of these Mabs to holotoxin due to technical constraints. However, given the high affinities and valencies demonstrated for the anti-TcdA Mabs it is possible to speculate that the functional affinities against holotoxin may be even stronger than those illustrated for binding to toxin sub-domains. The anti-TcdB Mabs also demonstrated strong affinities reaching as low as 31pM. In particular CA1125, 1151, 927, 1099, 1134 and 1153 show affinities which surpass those demonstrated by others.

Example 8 Biophysical characteristion of *C. difficile* anti-toxin humanised IgG1 Molecules.

Molecules analysed

Anti-TcdA IgG1:

CA164_00922.g1
CA164_0923.g1
CA164_0995.g1
CA164_0997.g1
CA164_01000.g1

Anti-TcdB IgG1

CA164_01125.g1
CA164_01125.g2
CA164_01134.g4
CA164_01134.g5
CA164_01134.g6
CA164_01102.g1
CA164_01102.g4
CA164_01151.g4

Antibody combinations need to be made up of Mabs having high levels of stability in order to mitigate potential risks of aggregation during long term storage. Thermal stability (Tm) is used as one measure. Of special value to Mab mixtures is measuring their propensity to aggregate due to physical stress such as agitation or shaking. Aggregates are undesirable components of drug

compositions since they may reduce storage life time and may pose a safety risk to patients at certain levels. The Tm data show that all 5 anti-TcdA Mabs have high Tm stability, whilst three (CA922, 923 and 997) have very high Tm's in the range of 79-81°C. Of the anti-TcdB Mabs tested all but two have very high Tm's. Of note is that CA997, CA1125 and CA1151 which were tested in the hamster infection study (Example 9) had very high Tm's (79.2°C, 79.3°C and 80.8°C respectively) which makes them suitable for use in a Mab mixture.

In the shaking aggregation assay, CA997 and 922 had the lowest propensity to aggregate of the 5 anti-TcdA Mabs. Similarly, CA115 and 1151 had the lowest aggregation propensities of the anti-TcdB Mabs. Hence the use of CA997, 1125 and 1151 as a Mab mixture may have special value since they are more likely to survive co-formulation and storage at high protein concentrations.

Estimation of isoelectric point (pI) by capillary IEF

Samples were prepared by mixing the following: 30ul Protein sample at 2mg/ml, 0.35% Methylcellulose, 4% pH3-10 ampholytes (Pharmalyte), synthetic pI markers (4.65 and 9.77), 1ul of each stock solution, and HPLC grade water to make up the final volume to 200ul. The mixture was then analysed using iCE280 IEF analyzer (pre-focusing at 1500V for 1 min followed by focusing at 3000V for 6mins). The calibrated electropherograms were then integrated using Empower software (from Waters)

Thermal stability (Tm) measured via Thermofluor assay.

This method uses Sypro orange fluorescent dye to monitor the unfolding process of protein domains. The dye binds to exposed hydrophobic regions that become exposed as a consequence of unfolding which results in a change to the emission spectrum.

The sample (5ul at 1mg/ml) is mixed with a 5ul of a stock solution of Sypro orange (30x) and the volume made up to 50ul with PBS, pH 7.40.

10ul aliquots of this solution is applied to wells in a 384 well plate (n=4).

The plate is placed in a 7900HT fast real-time PCR system containing a heating device for accurate temperature control. The temperature is increased from 20°C to 99°C (Ramp rate of 1.1°C/min). A CCD device simultaneously monitors the fluorescence changes in the wells. An algorithm is used to process intensity data and take into account multiple transitions.

Stressing of samples by agitation.

During manufacture antibody samples are subjected to mechanical stress generated by processes such as pumping and filtration. This may cause denaturation and consequently aggregation due to exposure of the protein to air-liquid interfaces and shear forces resulting in the ultimate loss of

bioactivity. Stress by vortexing is a method to screen the robustness of the antibody samples for prediction of aggregation stability.

Both anti-TcdA and anti-TcdB IgG1 molecules were subjected to stress by agitation, by vortexing using an Eppendorf Thermomixer Comfort at 25 °C, 1400rpm. Sample size was 250uL, (x3 per sample) in a 1.5 mL conical Eppendorf-style capped tube (plastic), in PBS pH 7.4. Each sample was brought to a concentration of 1mg/ml (using extinction coefficient calculated from sequence) and aggregation was monitored by absorbance at 340nm and/or 595nm, by use of a Varian Cary 50-Bio spectrophotometer, measured at intervals for up to 24 hours.

Results Table 14 provides a summary of the measured pI and Tm data for both anti-TcdA and anti-TcdB IgG1 molecules.

Table 14 : Compilation of pI and Tm Data

	measured pI	Tm(Fab) in PBS	Tm(CH2)
Anti-TcdA IgG1			
CA164_00922.g1	8.8	81	69.2
CA164_0923.g1	9.2	79	69.3
CA164_0995.g1	8.5	71	no data*
CA164_0997.g1	8.3	79.2	68.4
CA164_01000.g1	7.74	70.5	no data*
Anti-TcdB IgG1			
CA164_01125.g1	9.2	79.3	69.4
CA164_01125.g2	9.2	79.5	69.3
CA164_01134.g4	9.3	78.4	69.4
CA164_01134.g5	9.2	76.4	69.2
CA164_01134.g6	9.2	76.6	69.6
CA164_01102.g1	9.1	69	no data*
CA164_01102.g4	9.1	69.1	no data*
CA164_01151.g4	9.2	80.8	69.8

*denotes that it was not possible to discern the Fab and CH2 domains.

Measured pI

The measured pI of the molecules were high (except for CA164_01000.g1_P3) and away from the pH of formulation buffers such as PBS, pH 7.4 and 50m sodium acetate/125mM sodium chloride,

pH 5. This may mean that buffers with pH's suitable for co-formulation of two or more Mabs can be selected.

Thermal Stability (Tm) Measured *via* Thermofluor assay

Since all of the molecules are IgG1, the Tm of the Fc domain (Tm(CH2)) are the same. The difference in thermal stability between the molecules can be determined by the Tm of the Fab' domain (Tm(Fab)).

For the anti-TcdA molecules, the rank order (most stable first) was CA922≥997>923>995>1000 and for the anti-TcdB molecules (most stable first) was

CA1151.g4>1125.g1,g4>1134.g4>1134.g5≥1134.g6>1102.g1=1102.g4.

Stressing of samples by agitation

It was possible to determine different aggregation stability between the different antibodies, Figure 67 shows the effect of agitation *via* vortexing on different anti-TcdA IgG1 molecules in PBS, pH 7.4.

It was possible to determine a ranking order (most aggregation stable first) :

CA922≥997>923≥995>1000

Figure 68 shows the effect of agitation *via* vortexing on different anti-TcdB molecules.

It was possible to rank the order of aggregation stability, such that the CA1125 grafts appeared more stable than the CA1134 molecules which were more stable than the CA1102 molecules.

A further study was performed to compare directly the aggregation stability of the anti-TcdB molecule (CA1151.g4) with the more stable molecule CA1125.g2 (see Figure 2) and more aggregation stable anti-TcdA molecules (CA922.g1 and CA997.g1). The results can be seen in Figure 69.

Further results for these 4 Mabs are also shown in Figures 67 and 68.

For the anti-TcdA molecules, CA922.g1 and CA997.g1, CA922 were preferable based on the analyses above, although apart from CA1000) all molecules could be considered suitable candidates for use as therapeutic IgG1.

For the anti-TcdB molecules, the biophysical characteristics could be grouped within the family of grafts based on the aggregation stability and Tm, such that the CA1125 grafts potentially proved more stable. The CA1102 grafts showed poorest Tm data and also showed the greatest tendency to aggregate *via* stress by agitation.

A study using CA1151.g4 showed that this molecule exhibited slightly increased aggregation stability relative to CA1125.g2 and seemed equivalent to the TcdA molecules (CA922.g1 and

CA997.g1. All four molecules showed equivalent Tm values. CA997, CA1125 and CA1151 show very high levels of thermostability and very low levels of aggregate formation after agitation.

Example 9 Anti-*C. difficile* toxin Mab hamster infection study.

The hamster infection study was performed by Ricerca Biosciences LLC, Cleveland, Ohio, USA. The study protocol was approved by the Ricerca IACUC committee. Active and control components (composition and dose) were blinded to Ricerca staff until after completion of the planned 28 day study period.

Golden Syrian male hamsters (weight 82-103g, 54 days old) were individually housed in HEPA filtered disposable cages and fed Teklad Global Diet 2016 and water *ad libitum*. After acclimatisation, hamsters were pre-dosed (i.p.) with Mab mixtures or PBS (vehicle control) once a day for each of 4 days: days -3, -2, -1 and 0. Two doses of Mab were investigated: high dose = 50mg/kg each of anti-TcdA and anti-TcdB components and low dose 5mg/kg each of anti-TcdA and anti-TcdB components.

The drug combination tested was composed of one anti-TcdA antibody (CA997.g1) which constituted 50% of the injected protein and two anti-TcdB antibodies (CA1125.g2 and CA1151.g4) which together constituted 50% of the injected protein but which alone constituted 25% of the injected protein. Hamsters were sensitised (day -1) with 50mg/kg of Clindamycin phosphate in PBS (s.c.) before being challenged 1 day later (day 0) with 3.4 x 106 c.f.u. of vegetative cells from strain ATCC43596. Vancomycin was dosed at 5mg/kg twice a day for 5 days (p.o.) on days 1, 2, 3, 4, 5.

Viability checks were performed on animals twice a day, animals found to be *in extremis* were euthanised and counted as dead. Body weights were determined on each day of dosing, then twice weekly and before euthanising survivors. Gross necropsy was performed on all animals. Survival curves were created by the method of Kaplan and Meier. Survival curves were analysed using the P value from the log rank test compared to the Bonferroni corrected threshold of P = 0.005. The Vancomycin treated group were not included in the analysis. All statistical tests were done with Prism v5.04. All groups contained 11 animals, except the Vancomycin control group which contained 5 animals.

Survival curves can be seen in Figure 63. Hamsters receiving PBS (control) all died on days +2 and +3, whilst those receiving vancomycin treatment for 5 days all died on days +10 and +11. Hamsters receiving the high dose of UCB Mab mixture all survived until day +11, thereafter only two animals died until the end of the 28 day study. Hamsters receiving the low dose of UCB Mab

mixture all survived until day +3, thereafter animals were lost fairly steadily until day +16 when all had died. The data show exceptional levels and duration of protection when compared to published data for use of anti-toxin Mabs in hamsters (18). These *in vivo* data support the *in vitro* observations of very high level performance for neutralization and stability.

There is no apparent link between death and body weight during the acute phase (days 1-5) of the infection, Figures 64-65. Hence it may be supposed that hamsters die of overwhelming direct and indirect effects of TcdA and TcdB. Hamsters which survive the acute period due to partial protection (UCB low dose) of neutralizing Mabs lose weight, presumably due to gut damage and altered nutritional status. It was notable that many of the hamsters which went on to survive the 28 period of the study due to the protective effects of the UCB high dose Mabs recovered from weight loss and indeed even gained weight. This may be taken as evidence of the superior protective effects of the UCB Mabs enabling the gut to function as normal.

Table 15. Gross pathology scores

Group	Black caecum	Dark red caecum	Red caecum	Pink caecum	Normal caecum	Anogenital staining 'wet-tail'	Red small intestine
PBS control	1	9	1	0	0	1	1
UCB low	0	4	5	2	0	4	1
UCB high	0	0	1	1	9	3	0

It is clear that UCB Mabs were able to protect the large and small intestines from the bloody effusions caused by TcdA and TcdB.

The results are shown in Figures 63 to 66

The photographs in Figure 66 show typical gross pathologies for the swelling and bloody effusions of caeca caused by TcdA and TcdB (left image, PBS control, animal death on day 2) and a normal stool filled caeca after protection by UCB high dose Mabs (right image, UCB high dose, animal surviving to day 28). These data show that after protection with a high dose of UCB Mabs the large intestine can return to normal morphology and function.

Example 10 Neutralisation of TcdA from different ribotyped strains by purified Mab.

Clinical infections are caused by a variety of different strains. Strain differences are characterized using a number of different methods of which ribotyping is a key one. Different ribotype strains are observed to have different pathogenicity, infection and sporulation properties. All of the TcdA

neutralization shown above used TcdA purified from strain known as VPI10463. However, the predominant aggressively pathogenic strain associated with out-breaks is called ribotype 027. Other key ribotypes include 078, 001, 106. Amino acid sequence difference have been observed between toxins produced by different ribotypes and hence it is important that Mabs are capable of neutralizing toxin from a diverse set of clinical isolates. CA922, 997 and 1000 were tested for their ability to neutralize TcdA from strains 027 and 078 and compared to their abilities against TcdA from VPI10463. Mabs were tested at 4 [TcdA] and found to be capable of neutralizing all toxins without significant difference at LD₈₀, LD₉₀ and LD₉₅

Table 16

EC50 values (ng/ml) - TcdA strain VPI 10463				
Antibody	LD80	LD90	LD95	LDmax
CA164_922	0.27	0.9	1.2	>500
CA164_997	1	2.5	3.5	25.4
CA164_1000	3.6	13.5	19.3	>500

Table 17

EC50 values (ng/ml) - TcdA ribotype 027				
Antibody	LD80	LD90	LD95	LDmax
CA164_922	0.19	0.25	0.41	1.46
CA164_997	0.92	1.27	1.75	7.19
CA164_1000	2.25	2.49	3.52	16.32

Table 18

EC50 values (ng/ml) - TcdA ribotype 078				
Antibody	LD80	LD90	LD95	LDmax
CA164_922	0.11	0.12	0.25	0.68
CA164_997	0.33	0.64	1.11	2.57
CA164_1000	2.04	2.41	5.03	14.16

Example 11 PK data

A PK study of a human IgG1 (20mg/kg) in healthy hamsters. The hamster PK was found a half-life similar to Mabs in mice or rats. (t_{1/2} 6-8 days). i.p. and s.c. dosing were essentially the same.

The pharmacokinetics and distribution to the gut of a hIgG1 Mab was studied in 'normal' (non-infected) golden Syrian hamsters. Purified Mab was administered to male hamsters (120-135g) by CARE Research LLC, Fort Collins, Colorado, USA and samples were assayed by UCB Pharma. The study was approved by the CARE IACUC committee. Eight animals each received a single dose of 20 mg/kg of IgG1, four were dosed *i.p.*, four were dosed *s.c.* Blood was collected at 1, 3, 8, 24, 48, 72, 103 and 168 hours post-dose, serum was separated before storage at -80°C. Blood was also taken from two untreated hamsters in order to provide assay controls. Following euthanasia, a

2cm length of colon was cut from the caeca junction onwards from each hamster. The colon section was flushed with wash buffer (50% (v/v) PBS containing 50% (v/v) Sigma protease inhibitor cocktail (P2714) before being opened and separation and removal of the mucosa from the underlying muscle. Mucosal samples were placed in 0.5ml of wash buffer homogenized until visually uniform and stored at 4°C before immediate shipping on wet ice. For the anti-human IgG1 ELISA Nunc maxisorp 96 well plates were coated overnight in 0.1M NaHCO₃ pH 8.3 with Goat F(ab')₂ anti-human IgG-Fcγ fragment (Jackson 109-006-098), plates were washed with PBS-Tween (PBS/0.1% (v/v) Tween 20) and then blocked with 1.0% (w/v) BSA & 0.1% (v/v) Tween in PBS. Serum samples were diluted in sample-conjugate buffer (1% (w/v) BSA, 0.2% Tween in PBS) and after washing were revealed with goat anti-human kappa-HRP (Cambridge Bioscience 2060-05) in sample-conjugate buffer and TMB with a 2.5M H₂SO₄ stop solution.

Gut, Mucosa and Serum Levels:

Serum samples collected from blood taken at 168 hour time point and colon samples were removed after this.

20mg/kg IP at 168 hour

Sample	ng/mL per cm mucosa	serum µg/mL
1001	23.2	75.0
1002	13.7	90.8
1003	21.8	70.5
1004	53.8	119.4

20mg/kg SC at 168 hour

Sample	ng/mL per cm mucosa	serum µg/mL
2001	41.4	108.7
2002	62.1	76.6
2003	35.6	163.7
2004	37.3	153.3

Serum Data

		Hamster <i>i.p.</i>		Hamster <i>s.c.</i>	
		Mean	SE of mean	Mean	SE of mean
C_{max}:	µg/mL	202	12	186	21
T_{max}:	hr	36	7	76	16
AUC_(last):	hr·µg/mL	22626	1378	22371	2258
AUC_(inf):	hr·µg/mL	43287	7169	61290	17637
% Extrapolation:		43.7	9.2	54	11.7
CL/F	mL/hr/kg	0.50	0.07	0.43	0.13
MRT_{inf}	h	223	53	310	88
t_{½,z}:	h	149.2	36.9	188.5	61.9

The data is also shown in Figure 70 and 71

Hamster ID		Mean	SE
IP serum kinetics			
C_{max}:	µg/mL	202	12
T_{max}:	hr	36	7
AUC_(last):	hr·µg/mL	22626	1378
AUC_(inf):	hr·µg/mL	43287	7169
% Extrapolation:		43.7	9.2
CL/F	mL/hr/kg	0.50	0.07
MRT_{inf}	h	223	53
t_{½,z}:	h	149.2	36.9
SC serum kinetics			
Hamster ID		Mean	SE
C_{max}:	µg/mL	186	21
T_{max}:	hr	76	16

AUC_(0-∞) :	hr·μg/mL	22371	2258
AUC₍₀₋₆₎ :	hr·μg/mL	61290	17637
% Extrapolation:		54	11.7
CL/F	mL/hr/kg	0.43	0.13
MRT_{inf}	h	310	88
t_{1/2}:	h	188.5	61.9

It was also shown that hIgG1 could be found in ‘scrapings’ of the gut i.e that hIgG1 gets into the vasculature of healthy gut – and so could be protective in ‘prophylactic dosing’. This effect would be even more profound in humans since they have a cognate hFcRn.

Example 12 Serum Levels in Hamsters with *C. difficile* Infection

This study was to determine the serum concentration of CA725.0, CA726.0, CA997.g1 CA1125.g2, and CA01151.g4 following i.p. administration (various doses detailed below) in the Golden Syrian Hamster.

Humanised Mabs were quantified using liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis following tryptic digestion. Quantitation was achieved by comparison to authentic standard material spiked at known concentrations into blank matrix, with spiked horse myoglobin used as the internal standard.

A unique (“proteotypic”) peptide common to all of the humanised Mabs investigated was selected (DTLMISR, a CH2 region peptide) and both samples and calibration samples were tryptically digested as outlined. Tryptic digest of 5 μ l serum samples was performed overnight using sequencing grade modified Trypsin (Promega, Southampton, UK) following denaturation / reduction with acetonitrile / Tris (2-carboxyethyl) phosphine and carbamido-methylation with iodoacetamide (Sigma-Aldrich, Poole, UK).

The LC-MS/MS system consisted of a CTC HTS-x Autosampler (CTC Analytics, Zwingen, Switzerland), a Agilent 1290 LC system (Agilent Technologies, Stockport, UK) and a Sciex 5500 QTrap MS system (AB Sciex, Warrington, UK), equipped with a Turbo V ion source operated in electrospray mode. Analytes were separated using an Onyx Monolithic C18 column (100x4.6 mm, Phenomenex, Macclesfield, UK) with a gradient of 2 to 95 % (v/v) water/acetonitrile (0.1 %

formic acid) delivered at 1.5 mL/min over 6 minutes. The injection volume was 10 µL; all of the eluent was introduced into the mass spectrometer source. The source temperature of the mass spectrometer was maintained at 600 °C and other source parameters (e.g. collision energy, declustering potential, curtain gas pressure etc.) were optimized to achieve maximum sensitivity for the peptide of interest. Selective transitions for each proteotypic peptide of interest were monitored.

Unique (“proteotypic) peptides were selected for all of the analytes of interest; samples were analysed following tryptic digestion.

Plasma concentrations calculated based on the peptides monitored are outlined below.

For CA164_00997 and CA164_01151, interfering peaks were observed in the MRM traces. For this reason, these two analytes could not be quantified in the samples.

Total h-IgG was quantified in all samples using a peptide common to all analytes of interest. This was done using a combined standard curve of all five analytes. The validity of this approach is demonstrated by the fact that the sum of the concentrations observed for CA164_00725 and CA164_00726 are in good agreement (within experimental error) of the concentration observed for total h-IgG.

Using this approach, the total concentration of h-IgG in the samples of animals dosed with CA164_00997, CA164_01125 and CA164_01151 was determined.

Overall the data obtained indicate that the exposure of all five analytes of interest was similar for a given dose.

Study groups

Grp	Treatment	Actual Treatments	Dose days	Treatment components	
				Anti-toxin A	Anti-toxin B
4	Treatment 3	Vehicle PBS 5mL/kg i.p.	3, -2, -1, 0		
2	Vancomycin	Vancomycin 5mg/kg b.i.d. p.o.	1, 2, 3, 4, 5		
1	Treatment 1	UCB LD* 5mg/kg A 5mg/kg i.p.	3, -2, -1, 0	CA997.g1_P3 5mg/kg	CA1125.g2_P3 2.5mg/kg
5	Treatment 4	UCB HD* 50mg/kg A 50mg/kg i.p.	3, -2, -1, 0	CA997.g1_P3 50mg/kg	CA1125.g2_P3 25mg/kg
6	Treatment 5	Competitor LD* 5mg/kg A 5mg/kg i.p.	3, -2, -1, 0	CA726_P3 5mg/kg	CA725_P3 5mg/kg
3	Treatment 2	Competitor HD* 50mg/kg A 50mg/kg i.p.	3, -2, -1, 0	CA726_P3 50mg/kg	CA725_P3 50mg/kg

Table 19

Group/time	Day	Animal No	Dose	Serum conc µg/mL total h-IgG
1	1	44	5 mg/kg 997, 2.5 mg/kg 1125, 2.5 mg/kg 1151	280
	1	45		302
	1	46		182
	6	45		61
	6	47		71
	6	49		45
3	1	60	50 mg/kg 725, 50 mg/kg 726	3040
	1	61		3330
	1	62		2990
	6	62		583
	6	63		913
	6	64		1240
	28	64		199
	28	65		36
4	1	71	Vehicle	nd
	1	72		nd
	1	73		nd
5	1	82	50 mg/kg 997, 25 mg/kg 1125, 25 mg/kg 1151	3050
	1	83		2790
	1	84		2370
	6	82		838
	6	83		645
	6	84		855
	28	82		116
	28	83		65
	28	84		66
	28	85		44
	28	86		101
	28	87		89

	28	88		27
	28	89		31
	28	90		66
	1	93		335
6	1	94		322
	1	95		260
	6	200		103
	6	202		62
	6	203		79
	28	203		nd

nd - not detected (LOQ = 2.5 µg/mL for all analytes

na - not analysed: interference in the sample was observed for 997 and 1151

Table 20 Antibody CA725 is prior art antibody MDX1388. Antibody CA726 is prior art antibody CDA1 as described (15) A summary of this data is presented in Figure 72.

Group	Caecal pathology					Small intestine pathology	
	Black	Dark Red	Red	Pink	Normal	Dark Red	Red
PBS control	1	9	1	0	0	0	1
MDX high 50mg/Kg x4	0	1	4	4	2	1	0
UCB high 50mg/Kg x4	0	0	1	1	9	0	0

References

1. Kuehne, S et al., "The role of toxin A and toxin B in *Clostridium difficile* Infection" Nature (2010) 467: 711-713.
2. Davies AH et al., "Super toxins from a super bug: structure and function of *Clostridium difficile* toxins" Biochem. J (2011) 436: 517-526.
3. Rothman, S et al., "Differential Cytotoxic Effects of Toxins A and B Isolated from *Clostridium difficile*" Infect. Imm. (1984) 46: 324-331.
4. Du, T and Alfa, MJ "Translocation of *Clostridium difficile* toxin B across polarized Caco-2 cell monolayers is enhanced by toxin A" Can J Infect Dis. (2004) 15: 83-88.

5. Kim, Iaconis and Rolfe. "Immunization of Adult Hamsters against *Clostridium difficile*-Associated Ileoceccitis and Transfer of Protection to Infant Hamsters" Infect. Imm. (1987) 55:2984-2992
6. Rupnik JCM (2003) 41:1118-1125
7. Chaves-Olarte JBC (1999) 274:11046-11052.
8. Lylerly, DM et al., "Passive Immunization of Hamsters against Disease Caused by *Clostridium difficile* by Use of Bovine Immunoglobulin G Concentrate" Infection and Immunity (1991) 59:2215-2218.
9. Lylerly, DM et al., "Vaccination against Lethal *Clostridium difficile* Enterocolitis with a Nontoxic Recombinant Peptide of Toxin A" Current Microbiology (1990) 21:29-32.
10. Lylerly, DM et al., "Characterization of Toxins A and B of *Clostridium difficile* with Monoclonal Antibodies" Infect. Imm. (1986) 54:70-76.
11. Corthier et al., "Protection against Experimental Pseudomembranous Colitis in Gnotobiotic Mice by Use of Monoclonal Antibodies against *Clostridium difficile* Toxin A" Infect. Imm. (1991) 59: 1192-1195.
12. Kink JA and Williams JA, "Antibodies to Recombinant *Clostridium difficile* Toxins A and B Are an Effective Treatment and Prevent Relapse of *C. difficile*-Associated Disease in a Hamster Model of Infection" Infect. Imm. (1998) 66:2018-2025.
13. Ma D, et al., Progenics inc. ASM Poster 27th May 2010
14. Hansen, G and Demarest, SJ. WO 2006/0718877 A2
15. Babcock GJ, et al., "Human monoclonal antibodies directed against toxins A and B prevent *Clostridium difficile*-induced mortality in hamster" Infect. Imm.(2006) 74:6339-6347.
16. Lowy I et al., "Treatment with Monoclonal Antibodies against *Clostridium difficile* Toxins" NEJM (2010) 362: 197-205.
17. Zubler, R. H., Erard, F., Lees, R. K., Van, L. M., Mingari, C., Moretta, L. & MacDonald, H. R. (1985). Mutant EL-4 thymoma cells polyclonally activate murine and human B cells via direct cell interaction. J. Immunol. 134, 3662-3668
18. Babcock, J. S., Leslie, K. B., Olsen, O. A., Salmon, R. A. & Schrader, J. W. (1996). A novel strategy for generating monoclonal antibodies from single, isolated lymphocytes producing antibodies of defined specificities. Proc. Natl. Acad. Sci. U. S. A 93, 7843-7848
19. Tickle, S., Adams, R., Brown, D., Griffiths, M., Lightwood, D. & Lawson, A. (2010). High-Throughput Screening for High Affinity Antibodies , pp. 303-307.
20. Demarest et al., mAbs (2010) 2:190-198

21. Yoshida et al., *J. Clin. Invest.* (2006) 116: 2142-2151
22. Xu et al., *Vaccine* (2005) 23:2658-2664.
23. Yousaf et al., *Clin. Exp. Immunol.* (1986) 66:654-660
24. Mannik et al., *J. Exp. Med.* (1971) 133: 713-739
25. Nusrat et al., *Infection and Immunity* (2001) 69:1329-1336
26. Lima et al., *Infect Immun* (1988) 56:582-588
27. Ravichandran et al *J of Pharmacology and Experimental Therapeutics.* (2006) 318: 1343-1351
28. Takahashi et al., (2009) *Vaccine* 27:2616-2619
29. Cohen et al., *Infect. Cont. and Hosp. Epidem.* (2010) 31: 431-455
30. Barbut et al., *J. Clin. Microbiol.* (2000) 38: 2386-2388
31. Wilcox et al., *J. Hospital Infection* (1998) 38: 93-100.

CLAIMS

1. A pharmaceutical composition for reducing the duration and/or severity of diarrhoea, morbidity and/or mortality in a patient with *Clostridium difficile* infection or at risk of said infection, the composition comprising one or more monoclonal antibodies that specifically bind antigen TcdA123 and/or TcdA456, wherein the monoclonal antibody has high affinity of 500pM or higher for the antigen TcdA123 and/or TcdA456 and said one or more monoclonal antibodies are independently selected from:

- i) a monoclonal antibody comprising a heavy chain wherein the heavy chain variable domain comprises a sequence given in SEQ ID NO:4 for CDR-H1, a sequence given in SEQ ID NO:5 for CDR-H2 and a sequence given in SEQ ID NO:6 for CDR-H3, and a light chain wherein the light chain variable domain comprises a sequence given in SEQ ID NO:1 for CDR-L1, a sequence given in SEQ ID NO:2 for CDR-L2 and a sequence given in SEQ ID NO:3 for CDR-L3;
- ii) a monoclonal antibody comprising a heavy chain wherein the heavy chain variable domain comprises a sequence given in SEQ ID NO:34 for CDR-H1, a sequence given in SEQ ID NO:35 for CDR-H2 and a sequence given in SEQ ID NO:36 for CDR-H3, and a light chain wherein the light chain variable domain comprises a sequence given in SEQ ID NO:31 for CDR-L1, a sequence given in SEQ ID NO:32 for CDR-L2 and a sequence given in SEQ ID NO:33 for CDR-L3;
- iii) a monoclonal antibody comprising a heavy chain wherein the heavy chain variable domain comprises a sequence given in SEQ ID NO:44 for CDR-H1, a sequence given in SEQ ID NO:45 for CDR-H2 and a sequence given in SEQ ID NO:46 for CDR-H3, and a light chain wherein the light chain variable domain comprises a sequence given in SEQ ID NO:41 for CDR-L1, a sequence given in SEQ ID NO:42 for CDR-L2 and a sequence given in SEQ ID NO:43 for CDR-L3; and
- iv) a monoclonal antibody comprising a heavy chain wherein the heavy chain variable domain comprises a sequence given in SEQ ID NO:54 for CDR-H1, a sequence given in SEQ ID NO:55 for CDR-H2 and a sequence given in SEQ ID NO:56 for CDR-H3, and a light chain wherein the light chain variable domain comprises a sequence given in SEQ ID NO:51 for CDR-L1, a sequence given in SEQ ID NO:52 for CDR-L2 and a sequence given in SEQ ID NO:53 for CDR-L3.

2. A pharmaceutical composition according to claim 1 wherein the one or more monoclonal antibodies comprise a heavy chain wherein the heavy chain variable domain comprises a sequence given in SEQ ID NO:44 for CDR-H1, a sequence given in SEQ ID NO:45 for CDR-H2 and a sequence given in SEQ ID NO:46 for CDR-H3, and a light chain wherein the light chain variable domain comprises a sequence given in SEQ ID NO:41 for CDR-L1, a sequence given in SEQ ID NO:42 for CDR-L2 and a sequence given in SEQ ID NO:43 for CDR-L3.
3. A pharmaceutical composition according to claim 2 wherein the one or more monoclonal antibodies comprise a heavy chain comprising the sequence given in SEQ ID NO:49 and a light chain comprising the sequence given in SEQ ID NO:47.
4. A pharmaceutical composition according to claim 1 wherein the one or more monoclonal antibodies comprise a heavy chain wherein the heavy chain variable domain comprises a sequence given in SEQ ID NO:54 for CDR-H1, a sequence given in SEQ ID NO:55 for CDR-H2 and a sequence given in SEQ ID NO:56 for CDR-H3, and a light chain wherein the light chain variable domain comprises a sequence given in SEQ ID NO:51 for CDR-L1, a sequence given in SEQ ID NO:52 for CDR-L2 and a sequence given in SEQ ID NO:53 for CDR-L3.
5. A pharmaceutical composition according to claim 4 wherein the one or more monoclonal antibodies comprise a heavy chain comprising the sequence given in SEQ ID NO:59 and a light chain comprising the sequence given in SEQ ID NO:57.
6. A pharmaceutical composition according to any one of claims 1 to 5, wherein at least one monoclonal antibody is a neutralizing antibody that maintains neutralizing activity at high concentrations of toxin, optionally wherein the monoclonal antibody is effective against ribotypes 003, 012, 027 and 078.
7. A pharmaceutical composition according to any one of claims 1 to 6, wherein the one or more monoclonal antibodies have an EC₅₀ in a TEER assay in the range of 60 to 80ng/ml when measured at 4h after initiation of the assay.
8. A pharmaceutical composition according to any one of claims 1 to 7 further comprising a monoclonal antibody which specifically binds TcdB, the anti-TcdB monoclonal antibody comprising a heavy chain wherein the heavy chain variable domain comprises at least one of a CDR having the sequence given in SEQ ID NO: 124 for CDR-H1, a CDR having the sequence given in SEQ ID NO: 125 for CDR-H2 and a CDR having the sequence given in SEQ ID NO: 126 for CDR-H3, and a light chain wherein the light chain

variable domain comprises at least one of a CDR having the sequence given in SEQ ID NO: 121 for CDR-L1, a CDR having the sequence given in SEQ ID NO: 122 for CDR-L2 and a CDR having the sequence given in SEQ ID NO: 123 for CDR-L3.

9. A pharmaceutical composition according to claim 8 wherein the anti-TcdB monoclonal antibody comprises a heavy chain comprising the sequence given in SEQ ID NO: 129 and a light chain comprising the sequence given in SEQ ID NO: 127.

10. A pharmaceutical composition according to any one of claims 1 to 9 further comprising a monoclonal antibody which specifically binds TcdB, the anti-TcdB monoclonal antibody comprising a heavy chain wherein the heavy chain variable domain comprises at least one of a CDR having the sequence given in SEQ ID NO: 154 for CDR-H1, a CDR having the sequence given in SEQ ID NO: 155 for CDR-H2 and a CDR having the sequence given in SEQ ID NO: 156 for CDR-H3, and a light chain wherein the light chain variable domain comprises at least one of a CDR having the sequence given in SEQ ID NO: 151 for CDR-L1, a CDR having the sequence given in SEQ ID NO: 152 for CDR-L2 and a CDR having the sequence given in SEQ ID NO: 153 for CDR-L3.

11. A pharmaceutical composition according to claim 10 wherein the anti-TcdB monoclonal antibody comprises a heavy chain comprising the sequence given in SEQ ID NO: 159 and a light chain comprising the sequence given in SEQ ID NO: 157.

12. A pharmaceutical composition according to any one of claims 1 to 11, comprising two or more monoclonal antibodies that specifically bind TcdB.

13. A pharmaceutical composition according to any one of claims 1 to 12, comprising two or more monoclonal antibodies that specifically bind to TcdA.

14. A pharmaceutical composition according to any one of claims 1 to 13, wherein the composition comprises 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 distinct monoclonal antibodies.

15. A pharmaceutical composition according to any one of claims 1 to 15, further comprising a pharmaceutically acceptable excipient.

16. Use of a pharmaceutical composition according to any one of claims 1 to 15 in the manufacture of a medicament for treating or preventing *Clostridium difficile* infection or a complication therefrom.

17. Use of one or more monoclonal antibodies independently selected from:

i) a monoclonal antibody comprising a heavy chain wherein the heavy chain variable domain comprises a sequence given in SEQ ID NO:4 for CDR-H1, a sequence given in SEQ ID NO:5 for CDR-H2 and a sequence given in SEQ ID NO:6 for CDR-H3, and a light chain wherein the light chain variable domain comprises a sequence given in SEQ ID NO:1 for CDR-L1, a sequence given in in SEQ ID NO:2 for CDR-L2 and a sequence given in SEQ ID NO:3 for CDR-L3;

ii) a monoclonal antibody comprising a heavy chain wherein the heavy chain variable domain comprises a sequence given in SEQ ID NO:34 for CDR-H1, a sequence given in SEQ ID NO:35 for CDR-H2 and a sequence given in SEQ ID NO:36 for CDR-H3, and a light chain wherein the light chain variable domain comprises a sequence given in SEQ ID NO:31 for CDR-L1, a sequence given in in SEQ ID NO:32 for CDR-L2 and a sequence given in SEQ ID NO:33 for CDR-L3;

iii) a monoclonal antibody comprising a heavy chain wherein the heavy chain variable domain comprises a sequence given in SEQ ID NO:44 for CDR-H1, a sequence given in SEQ ID NO:45 for CDR-H2 and a sequence given in SEQ ID NO:46 for CDR-H3, and a light chain wherein the light chain variable domain comprises a sequence given in SEQ ID NO:41 for CDR-L1, a sequence given in in SEQ ID NO:42 for CDR-L2 and a sequence given in SEQ ID NO:43 for CDR-L3; and

iv) a monoclonal antibody comprising a heavy chain wherein the heavy chain variable domain comprises a sequence given in SEQ ID NO:54 for CDR-H1, a sequence given in SEQ ID NO:55 for CDR-H2 and sequence given in SEQ ID NO:56 for CDR-H3, and a light chain wherein the light chain variable domain comprises a sequence given in SEQ ID NO:51 for CDR-L1, a sequence given in in SEQ ID NO:52 for CDR-L2 and a sequence given in SEQ ID NO:53 for CDR-L3,

in the manufacture of a medicament for treating or preventing *Clostridium difficile* infection or a complication therefrom.

18. A method for treating or preventing *Clostridium difficile* infection or a complication therefrom, the method comprising administering to a patient a pharmaceutical composition according to any one of claims 1 to 15.

19. Use according to claim 16 or claim 17 or a method according to claim 18, wherein treating or preventing further comprises administering a compound selected the group comprising metronidazole, vancomycin, clindamycin, fidaxomicin and combinations thereof.

Figure 1**SEQ ID NO: 8 polynucleotide sequence encoding anti-toxin A antibody 922.g1 VK (gL1)**

GACCCTGTGA TGACCCAGAG TCCGAGCACT CTTTCTGCCT CCGTGGGAGA CCGCGTGACC
ATTACATGTC AGGCTTCACA AAGTATCTCC AATGCTCTGG CCTGGTATCA GCAGAAACCC
GGCAAAGCCC CTAAGCTGCT CATCTACTCT GCATCAAGCC TGGCTAGCGG CGTGCCAAGC
CGATTCAAGG GGAGCGGTT TGGCACTGAG TTTACGCTGA CCATCAGTAG CTTGCAGCCT
GACGATTTG CAACCTATTA CTGCCAGTAC ACACACTACT CCCATACATC TAAAAACCCA
TTCGGAGGGG GTACTAAGGT CGAAATAAAG

SEQ ID NO: 10 polynucleotide sequence encoding anti-toxin A antibody 922.g1 VH (gH1)

GAAGTGCAAT TGGTGGAAAG TGGCGGAGGA CTGGTGCAAC CGGGGGTAG TCTGCGACTG
AGCTGTGCTG CCTCCGGCTT TACCATTAGC TCCTACTATA TGAGCTGGGT TCGACAGGCC
CCTGGAAAAG GACTCGAATG GATCGGCATC ATATCTTCCG GTGGGCATTT CACCTGGTAC
GCAAACCTGGG CTAAGGGGAG ATTACAGATT AGCAGCGACT CCACAACCGT GTACCTGCAA
ATGAACAGCC TGAGGGATGA GGACACTGCC ACATATTCT GCGCACGCGC TTACGTGAGC
GGAAGCTCAT TTAATGGCTA TGCAGTGTGG GGGCAAGGAA CACTCGTGAC TGTCTCG

SEQ ID NO: 18 polynucleotide sequence encoding anti-toxin A antibody CA923.g1 gL1

GACGTCGTGATGACTCAGAGCCCATCTAGTCTGAGCGCTAGCGTCGGAGACCGAGTCACAATTACC
TGTCAAGCCTCCCAGAGCATCTCCAACACTACCTGGCCTGGTACCAACAGAAACCTGGCAAGGTGCC
AAGCTGCTGATCTATAGTGCCTCACACTCGCAAGCGCGTCCGTCACGCTTAAGGGATCTGGC
TCTGGCACTCAGTTCACCTTGACGATCTCAAGCCTGCAGCCAGAAGATGTGGCCACCTATTACTGC
CAGTATTCCCACACTACGGGACTGGGTGTTGGTGCCTTGGAGGTGGGACCAAAGTGGAGATAAAG

Figure 2**SEQ ID NO: 20 polynucleotide sequence encoding anti-toxin A antibody CA923.g1 gH1**

GAAGTTCAACTTGTGGAATCTGGAGGGGGCTCGTCAGCCTGGTGGAAAGCCTTAGACTGAGCTGC
GCTGCATCCGATTTCCCTGTCCAACACTACATGAGCTGGGTGCACAGCACCAGGCAAGGGA
CTGGAATGGATTGGCATCATAAGCTCCGGTCCAATGCCCTGAAATGGTACGCATCATGGCCGAAA
GGCCGCTTACCATATAAGCAAGGACTCCACCACCGTCTATCTGCAGATGAACCTATTGCGTGCCGAG
GACACTGCAACGTACTTCTGTGCTCGCAACTACGTGGGAAGCGGATCTTATTATGGCATGGATCTG
TGGGGACAAGGTACACTCGTGACCGTCTCG

SEQ ID NO: 28 polynucleotide sequence encoding anti-toxin A antibody CA993.g1 gL1

GATGTCGTGA TGACTCAGTC CCCCTCTACA TTGAGTGCCT CTGTCGGTGA TCGAGTTACC
ATCACCTGTC AAGCAAGCCA GAGCATCAGC TCCTACTTCT CTTGGTACCA GCAAAAGCCG
GGAAAAGCCC CTCAAATGCT GATTATGGG GCCTCAACAC TGGCTTCTGG CGTGCATCA
AGATTCAAGG GATCTGGCTC CGGCACTGAG CTTACACTGA CCATTAGCTC CCTGCAACCT
GACGATTTG CTACCTACTA CTGCCAGTGC ACCGACTATA GTGGGATATA TTTCGGCGGA
TTTGGGGGAG GGACGAAAGT GGAAATCAAG

SEQ ID NO: 30 polynucleotide sequence encoding anti-toxin A antibody CA993.g1 gH1

GAAGTTCAGC TGGTCGAGAG CGGAGGCGGA CTGGTGCAAC CTGGTGGTAG CCTGAAACTC
TCTTGTACTG CCTCCGGGTT TTCCCTGAGC TCTTACTATA TGTATGGGT GAGACAGGCT
CCCGGGAAAG GATTGGAATG GATCGGGATT ATCTCCTCCG GCTCTTCCAC CACTTTCACA
TGGTACGCCT CATGGGCAAAG GGGGAGGTG ACCATAAGCA AGACAAGCAG GACCGTGTAT
CTTCAGATGA ACTCCCTGAA GACGGAGGAT ACTGCCACCT ACTTTGCGC TCGGGCCTAT
GTGGGCTCAA GCTCTTACTA TGGCTTCGAC CCATGGGAC AGGGCACACT TGTGACCGTC
TCG

Figure 3

SEQ ID NO: 38 polynucleotide sequence encoding anti-toxin A antibody 995.g1 VL region

GACGTCGTGA TGACACAGAG CCCTTCAACA CTGTCGCAA GCGTGGCGA TAGGGTCACC
 ATAACGTGCC AGGCCTCTCA ATCCATCAAC AACTATTTA GCTGGTACCA GCAGAAGCCA
 GGCAAGGCTC CGAAACTTCT GATCTACGGA GCTGCCAACC TGGCAAGTGG CGTGCATCA
 CGGTTCAAGG GATCCGGGAG CGGTACTGAG TATACCCCTGA CCATTCATC TCTCCAACCC
 GACGATTCG CCACCTACTC CTGCCAGAAT AATTACGGCG TGACATCTA TGGAGCTGCC
 TTTGGCGGTG GGACAAAAGT GGAAATTAAG

SEQ ID NO: 40 polynucleotide sequence encoding anti-toxin A antibody 995.g1 VH region

GAAGTTCAGC TGGTCGAGAG TGGGGGAGGG CTTGTGCAAC CTGGTGGCTC CCTCCGCTG
 AGCTGTACTG CTTCTGGATT CTCACTGAGC AATTACGACA TGATCTGGGT GCGACAGGCA
 CCCGGCAAAG GACTGGAGTA CATTGGCTTC ATCAACACCG GGGGTATAAC GTACTATGCC
 TCATGGGCTA AGGGGCGCTT TACAATTAGT AGGGATTCT CTACCGTGT CCTGCAGATG
 AACTCACTGA GAGCCGAGGA CACTGCCACA TATTCCTGCG CTCGGTGGA TGACTATATC
 GGGGCCTGGG GCGCCGGATT GTGGGGCCAA GGAACACTGG TCACCGTCTC G

SEQ ID NO: 48 polynucleotide sequence encoding anti-toxin A antibody 997.g1 VL region

GCACTCGTGATGACACAGAGCCGAGTAGCTTAGTGCCTAACCGGTGATAGGGTCACTATTACT
 TGCCAAGCCTCTCAGAGTATATCTAGCTATCTGAGCTGGTACCAAGCAAAGCCGGAAAGGCTCCT
 AAACTGCTGATCTACCGGGCTTCCACATTGGCCTCCGGCTTCCCTACGCTTAGCAGCTCCGGA
 TCCGGAACCGAGTACACCCTGACTATCTCTGCCTGCAATCTGAGGACTTCGCAACCTACTATTGT
 CTGGGCGTCTACGGATATAGCAACGATGACGGGATGCCCTCGCGGGTACCAAAGTGGAAATT
 AAG

Figure 4

SEQ ID NO: 50 polynucleotide sequence encoding anti-toxin A antibody 997.g1 VH region

GAGGTGCAACTTGTGGAAAGCGGGGGAGGACTGGTGAGCTGGCTGGGCTCATGGAGACTGAGCTGC
 ACCGTTCTGGTATTGACCTGAGCTCCCATCATATGTGCTGGTGCAGGACCCGGAAAGGA
 CTGGAATACATCGCGTATACCACTTTGGCTCTACATACTATGCCACTGGCAACTGGCGA
 TTCACAATTAGCAAGGACTCAACTACCGTTACCTGCAAATGAATAGCCTGAGGGCTGAGGAACT
 GCCACCTATTCTGTGCCGGCTTCAATGCCGGCTATTCTGCCTTGATCCATGGGGCAAGGA
 ACACCTCGTACCGTCTCG

SEQ ID NO: 58 polynucleotide sequence encoding anti-toxin A antibody 1000.g1 VL region

GAAATCGTGA TGACGCAGTC ACCAAGCACA CTGAGCGCTT CTGTGGGAGA TCGGGTCACA
 ATAACCTGTC AGGCCTCCC GAGCATCTAC TCTTATCTGG CATGGTACCA GCAGAAGCCA
 GGGAAAGCTC CCAAGCTGCT GATTATGAC GCCAGCACTT TGGCTCCGG TGTTCTAGT
 AGGTTCAAAG GCTCCGGAAG CGGTACCGAG TTTACCCCTGA CCATCTCATC TCTGCAACCC
 GATGACTTTG CCACATACTA TTGCCAGGGG AATGCCCTACA CTTCCAACTC ACACGACAAC
 GCATTGGGG GAGGCACCAA AGTCGAAATT AAG

SEQ ID NO: 60 polynucleotide sequence encoding anti-toxin A antibody 1000.g1 VH region

GAAGTTCAGC TGGTCGAGAG CGGAGGGGGT TTGATTCTAGC CCGGTGGCTC ACTTAGATTG
 AGCTGCACCG TGTCCGGAAT CGATCTGTCA TCTGATGCCG TGGGCTGGGT GCGACAGGCA
 CCTGGAAAG GACTGGAGTA TATAGGGATC ATGCCACCT TCGACTCCAC ATACTACGCT
 AGCTGGCAA AAGGGCGCTT TACGATTAGC AAGGCCCTCCT CTACTACCCT GTACCTCCAA
 ATGAACATCAC TGAGGGCCGA GGACACTGCC ACTTATTCT GTGCTGGAC CGGTAGCTGG
 TACTACATCT CTGGCTGGGG CTCCTACTAT TATGGCATGG ACCTGTGGGG ACAGGGGACA
 CTCGTGACCG TCTCG

Figure 5**SEQ ID NO: 68 polynucleotide sequence encoding anti-toxin B antibody 926.g1 VL region**

GATACCGTGCTGACCCAGAGCCCTGCTACATTGTCAGTGAGCCCCGGGAGAGGGCCACATTGAGC
TGCCGGGCTCAAAATCCGTGTCCACCCCTCATGCACTGGTTTCAGCAAAAGCCCAGGGCAGGCCCA
AAACTGCTGATCTACCTCGCATCTAACCTTGAATCTGGCGTGCCGGCCGCTTAGTGGCTCCGGA
AGCGGAACCGACTTCACACTGACGATTAGCTCCCTGGAGCCTGAGGATTTCGCCGTACTATTGC
CAGCAAACTTGGAATGACCCTTGGACTTCGGGGCGGTACTAAGGTCGAAATAAAG

SEQ ID NO: 70 polynucleotide sequence encoding anti-toxin B antibody 926.g1 VH region

GAGGTGGAACTGCTCGAATCTGGTGGTGGCTGGTGCAGCCCAGGTGGATCTCTGAGATTGTCATGC
GAGGCATCCGGCTTACCTTTCAACTACGGAATGGCCTGGGTGAGACAGGCCAACGAAGGGG
CTCGAATGGGTTACAAGCATCAGCTCTCTGGGGGATCTACTTACTATCGCGATAGCGTCAAAGGC
CGGTTACCATTAGCCGAGATAATGCCAAATCAAGCCTGTATCTGCAAATGAACAGCCTGAGGGCT
GAGGACACCGGCCACATACTATTGTACAACCGTGATAAGGGCTACGTGATGGACGCATGGGACAG
GGGACATTGGTTACCGTCTCG

SEQ ID NO: 78 polynucleotide sequence encoding anti-toxin B antibody 927.g2 VL region

GACACACAGA TGACCCAGAG CCCATCCACT TTGTCCTGCAT CCGTGGCGA CCGAGTGACA
ATCACCTGTA GAGCAAGCGG TTCCGTGAGC ACACTGATGC ATTGGTACCA GCAGAAGCCT
GGGAAGGCTC CCAAGCTGCT GATCTACAAA GCCAGCAACC TTGCCTCCGG CGTTCCAAGC
CGGTTAGCG GTTCCGGATC TGGAACCGAG TTCACCCCTGA CCATATCAAG CCTGCAACCC
GACGACTTCG CCACCTACTA TTGCCACCAG AGCTGGAATA GCGACACGTT CGGGCAAGGC
ACAAGGCTGG AAATCAA

SEQ ID NO: 80 polynucleotide sequence encoding anti-toxin B antibody 927.g2 VH region

GAGGTGCAAC TTGTGGAAAG CGGAGGGGGC GTGGTCCAAC CCGGAAGAAG TCTCCGTCTT
TCTTGCGCCG CAAGTGGCTT CACCTTTCC AACTACGGAA TGGCCTGGGT TCGACAAGCT
CCTGGGAAAG GATTGGAGTG GGTGGCCACT ATCAACTATG ACGGACGCAC GACACACTAC
CGAGACTCTG TTAAGGGCG CTTTACGATT TCCCGCGACA ATAGCAAGAG CACCCCTCTAC
CTGCAAATGA ATAGCCTCCG GGCCGAGGAT ACTGCTGTGT ACTATTGTAC CTCCATCTCA
CGGAGCCACT ACTTCGATTG CTGGGGACAA GGCACACTCG TGACTGTCTCG

Figure 6

SEQ ID NO: 88 polynucleotide sequence encoding anti-toxin B antibody 1099.g2 VL region

GACGTCCAGC TCACTCAATC TCCCTCCTT CTGTCGCTT CTGTGGCGA TCGCGTGACA
 ATAACCTGCA AGGCCTCAA ATCAATTAGC AACCACCTGG CATGGTATCA GGAGAACGCT
 GGCAAAGCCA ATAAGCTGCT GATCCACTCC GGCTCAACTC TGCAATCCGG TACCCCAAGC
 CGATTAGCG GATCTGGGAG CGGAACCGAG TTCACACTTA CCATTAGCTC CCTGCAACCG
 GAGGACTTCG CCACCTATTA CTGCCAGCAA TACGACGAAT ACCCCTATAC GTTCGGCAA
 GGGACAAGAT TGGAAATCAA GCGTACG

SEQ ID NO: 90 polynucleotide sequence encoding anti-toxin B antibody 1099.g2 VH region

GAAGTTCAGC TGCAGGAATC TGGACCTGGC TTGGTGAAAC CAAGCGAGAC ACTTAGTCTC
 ACTTGCACCG TTTCCGGCTT CTCCCTCAA TCCTACACGA TCTCTGGGT GCGGCAACCA
 CCCGGAAAG GACTGGAATG GATCGCAGCC ATTAGCGGGG GAGGGAGCAC CTATTACAAC
 TTGCCTCTCA AGAGCCGCGT GACCATAATCC CGTGACACAA GCAAGAGCCA GGTTCCCTG
 AAGCTGAGCT CCGTGAATGC TGCCGATACG GCTGTTACT ATTGCACCCG ACCTCGCTGG
 TATCCCCGTT CCTATTTCGA CTACTGGGA AGAGGCACAC TGGTTACCGT CTCG

SEQ ID NO: 98 polynucleotide sequence encoding anti-toxin B antibody 1102.g4 VL region

AACATCGTGC TGACACAGTC TCCTGCAACC CTTCACTGT CTCCAGGTGA ACGAGCAACC
 CTGAGTTGTA GAGCCAGTCA GAGGATCTCC ACGAGCATTG ACTGGTATCA GCAAAAGCCT
 GGGCAAGCTC CCAGACTCTT GATCAAGTAC GCCTCTCAGA GCATAAGTGG CATTCCAGCT
 AGGTTAGCG GCTCAGGCTC AGGAACAGAC TTCACTCTGA CCATCAGCTC CCTGGAACCG
 GAGGACTTG CCGTCTATTA CTGCCAGCAA TCCTACTCCA GTCTGTACAC CTTCGGCAG
 GGTACTAAAC TGGAGATAAA G

Figure 7

SEQ ID NO: 100 polynucleotide sequence encoding anti-toxin B antibody 1102.g4 VH region

GAAGTGCAGC TGGTCGAATC CGGGGGAGGT TTGGTGCAAC CAGGTGGCTC ACTGAGACTG
 AGCTGTGCCG TTTCCGGCTT TACGTTCTCA GACAGTTATA TGGCCTGGGT GCGTCAAGCA
 CCTGGAAAAG GGCTGGAGTG GATTGCCAGT ATCAGCTATG GTGGGACCAT AATCCAGTAC
 GGCGATAGCG TCAAGGGCAG GTTACTATC TCCAGGGACA ACGCCAAGTC AAGCCTTAC
 CTGCAGATGA ATTCTCTCCG CGCAGAGGAT ACCGCTGTGT ATTACTGCAC TAGACGGCAG
 GGAACCTACG CTCGATACCT GGACTTCTGG GGTCAAGGAA CACTCGTTAC AGTCTCG

SEQ ID NO: 108 polynucleotide sequence encoding anti-toxin B antibody 1114.g2 VL region

GCGACGCAAA TGACTCAGTC GCCCTCATCG CTTAGCGCGT CCGTCGGAGA TAGAGTGACG
 ATCACCTGCC GCGCATCAGA GTCGGTGTCC ACACTCCTCC ACTGGTATCA GCAGAAACCG
 GGGAAAGGCAC CAAAACCTTT GATCTACAAA GCCAGCAACC TTGCGTCCGG TGTCCCGTCA
 AGGTTCTCCG GGAGCGGTTG GGGGACAGAC TTTACTTGA CCATTCGTC GCTTCAGCCG
 GAGGACTTCG CCACCTATTA CTGTCATCAG TCATGGAACG CACCTCCCAC ATTTGGCCAG
 GGAACGAAAC TCGAAATCAA G

SEQ ID NO: 110 polynucleotide sequence encoding anti-toxin B antibody 1114.g2 VH region

GAAGTACAAC TCGTAGAGTC AGGGGGTGGG CTGGTCCAAC CTGGCGGCTC CCTTCGGCTT
 TCGTGTGCCG CCTCGGGATT CACGTTAGC AATTACGGTA TGGCCTGGGT GAGGCAGGCA
 CCAGGGAAGG GTCTTGAGTG GGTAGCGATC ATCAACTATG ATGCAAGCAC CACCCACTAC
 AGGGATAGCG TCAAGGGACG TTTACTATC AGCCGGGATA ATGCGAAATC CTCGCTCTAT
 CTGCAGATGA ACTCCCTCAG AGCCGAGGAC ACCGCAGTGT ACTATTGCAC ACGATACGGA
 CGCTCGCACT ATTCGACTA TTGGGGACAG GGGACGCTCG TAACTGTCTC G

Figure 8**SEQ ID NO: 118 polynucleotide sequence encoding anti-toxin B antibody 1114.g8 VL region**

GACACGGTCC TGACTCAGTC GCCCTCATCG CTTAGCGCGT CCGTCGGAGA TAGAGTGACG
 ATCACCTGCC GCGCATCAGA GTCGGTGTCC ACACTCCTCC ACTGGTATCA GCAGAAACCG
 GGGAAAGGCAC CAAAACCTTT GATCTACAAA GCCAGCAACC TTGCGTCCGG TGTCCCGTCA
 AGGTTCTCCG GGAGCGGTTG GGGGACAGAC TTTACTTTGA CCATTCGTC GCTTCAGCCG
 GAGGACTTCG CCACCTATTAGT CTGTCATCAG TCATGGAACG CACCTCCCAC ATTTGGCCAG
 GGAACGAAAC TCGAAATCAA G

SEQ ID NO: 120 polynucleotide sequence encoding anti-toxin B antibody 1114.g8 VH region

GAAGTACAAC TCGTAGAGTC AGGGGGTGGG CTGGTCCAAC CTGGCGGCTC CCTTCGGCTT
 TCGTGTGCCG CCTCGGGATT CACGTTAGC AATTACGGTA TGGCCTGGGT GAGGCAGGCA
 CCAGGGAAAGG GTCTTGAGTG GGTAGCGATC ATCAACTATG ATGCAAGCAC CACCCACTAC
 AGGGATAGCG TCAAGGGACG CTTTACTATC AGCCGGGATA ATGCGAAATC CTCGCTCTAT
 CTGCAGATGA ACTCCCTCAG AGCCGAGGAC ACCGCAGTGT ACTATTGCAC ACGATACGGA
 CGCTCGCACT ATTTCGACTA TTGGGGACAG GGGACGCTCG TAACTGTCTC G

SEQ ID NO: 128 polynucleotide sequence encoding anti-toxin B antibody 1125.g2 VL region

GATATACAAA TGACTCAGAG CCCTAGCTCA CTGAGCGCTT CTGTGGCGA TCGTGTGACA
 ATCACTTGCA AAGCAAGCCA GAACATCTAT ATGTACCTGA ATTGGTACCA GCAAAACCG
 GGAAAAGCTC CCAAGCGCCT GATTACAAC ACCAATAAGC TGCATACCGG CGTGCCAAGC
 CGTTTAGCG GATCTGGCTC TGGAACCGAA TATACACTGA CCATAAGCTC CCTGCAACCG
 GAAGACTTG CAACTTACTA TTGCCTCCAG CACAAATCCT TCCCCTATAC GTTCGGACAA
 GGGACCAAAC TGGAAATCAA A

SEQ ID NO: 130 polynucleotide sequence encoding anti-toxin B antibody 1125.g2 VH region

GAAGTGCAGC TGGTCGAAAG CGGGGGAGGA TTGGTGCAAC CTGGTGGCTC TCTTCGCTG
 TCTTGCCTG CAAGCGGCTT TACGTTCCGC GATAGCTTA TGGCTTGGGT GCGACAAGCT
 CCTGGAAAG GGCTGGAATG GGTCGCTAGC ATAAGCTACG AAGGCGACAA GACTTACTAT
 GGGGACTCTG TGAAAGGCCG ATTACCACTT AGCCGAGACA ACGCAAAGAA CTCCCTGTAC
 CTGCAGATGA ACTCCCTGCG TGCGAAGAT ACCGCCGTGT ACTATTGCAC TAGGCTGACG
 ATCACTACAA CGGGAGATAG CTGGGGACAA GGGACAATGG TGACCGTCTC GAGC

SEQ ID NO: 138 polynucleotide sequence encoding anti-toxin B antibody 1129.g1 VL region

GACACCCAGA TGACTCAGTC TCCGTCAAGC CTTTCTGCCT CTGTTGGAGA TCGAGTCACA
 ATTACGTGCA AGGCAAGCCA ACACGTGGGT ACCAACGTGG ACTGGTATCA ACAGAAGCCA
 GGGAAAGGTCC CCAAACGTGCT GATCTACGGT GCCAGTATTG GCTATACCGG CGTGCCTGAT
 CGCTTCACCG GAAGCGGGTC AGGGACCGAT TTCACACTGA CAATCAGCTC CCTGCAACCT
 GAAGACGTGG CTACTTACTA CTGCCTGCAG TACAACATA ATCCCTACAC CTTTGGCCAG
 GGCACCAAAC TGGAGATAAA G

SEQ ID NO: 140 polynucleotide sequence encoding anti-toxin B antibody 1129.g1 VH region

GAGGTGCAAC TTGTGGAATC AGGAGGTGGC GTGGTTCAGC CCGTAGATC ACTTCGTCTG
 AGTTGTGCAA CAAGCGGCTT TATCTTCTCC AACTTCGGGA TGTCTTGGGT TAGACAGGCT
 CCTGGTAAGG GCCTCGAATG GGTGGCTAGT ATTAGCCCAA GCGGGGGAAA CGCCTACTAT
 AGGGACAGCG TGAAAGGACG CTTCACTATC AGCCGAGATA ACTCCAAGAC CACGCTGTAT
 CTGCAGATGA ATAGTCTGAG GGCGAGGAT ACCGCAGTGT ACTACTGCAC TCGACGGGCC
 TATTCTTCCC CTTTGCCTT TTGGGGACAG GGGACTCTGG TGACAGTCTC GAGC

Figure 9**SEQ ID NO: 148 polynucleotide sequence encoding anti-toxin B antibody 1134.g5 VL region**

GACGTCCAGC TCACTCAATC TCCCTCCTTT CTGTCGCTT CTGTGGCGA TCGCGTGACA
 ATAACCTGCA AGGCCTCAA ATCAATTAGC AACCATCTGG CATGGTATCA GGAGAACGCT
 GGCAAAGCCA ATAAGCTGCT GATCCACTCC GGCTCAACTC TGCAACCCGG TACCCCAAGC
 CGATTAGCG GATCTGGGAG CGGAACCGAG TTCACACTTA CCATTAGCTC CCTGCAACCG
 GAGGACTTCG CCACCTATTA CTGCCAGCAA TACGACGAAT ACCCCTATAC GTTCGGCAA
 GGGACAAGAT TGGAAATCAA G

SEQ ID NO: 150 polynucleotide sequence encoding anti-toxin B antibody 1134.g5 VH region

GAAGTTCAGC TGCAGGAATC TGGACCTGGC TTGGTGAAAC CAAGCGAGAC ACTTAGTCTC
 ACTTGCACCG TTTCCGGCTT CTCCCTTAAT TCCTACACGA TCACTTGGGT GCGGCAACCA
 CCCGGGAAAG GACTGGAATG GATCGCAGCC ATTAGCGGGG GAGGGAGCAC CTATTCAAC
 TCGGCTCTCA AGAGCCGCGT GACCATAATCC CGTGACACAA GCAAGAGCCA GGTTCCCTG
 AAGCTGAGCT CCGTGAATGC TGCCGATACG GCTGTTACT ATTGCACCCG ACCTCGCTGG
 TATCCCCGTT CCTATTTCGA CTACTGGGAA AGAGGCACAC TGGTTACCGT CTCG

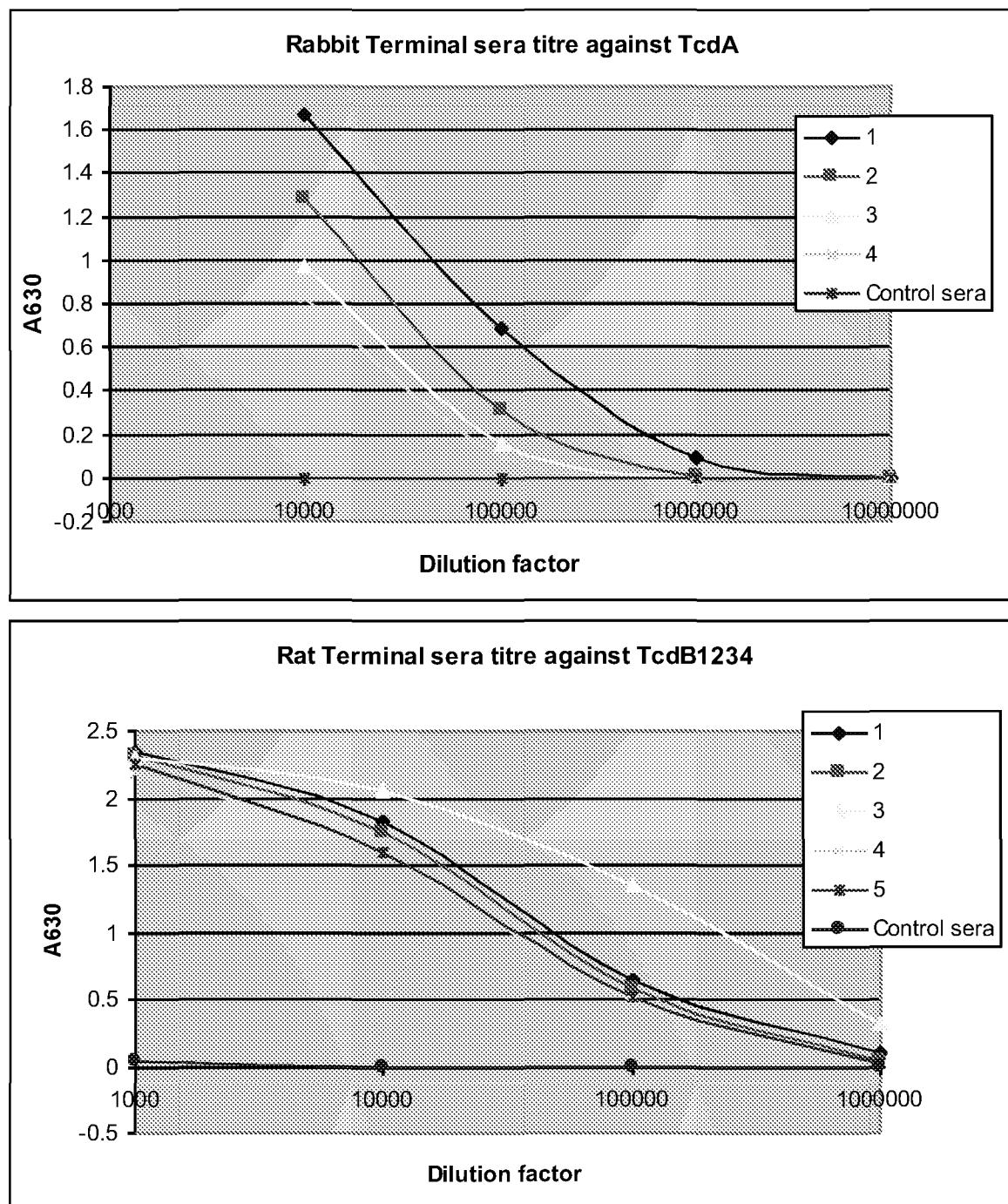
SEQ ID NO: 158 polynucleotide sequence encoding anti-toxin B antibody 1151.g4 VL region

GCGATTCAAA TGACTCAGTC GCCCTCATCG CTTAGCGCGT CCGTCGGAGA TAGAGTGACG
 ATCACGTGCA AAGCATCACA AAATGTCGGG AACAAATGTGG CATGGTATCA GCATAAACCG
 GGGAAAGGCAC CAAAACCTTT GATCTACTAC GCCAGCAACA GGTTTACTGG TGTCCCGTCA
 AGGTTCACGG GAGGGGGTTA CGGGACAGAC TTTACTTTGA CCATTCGTC GCTTCAGCCG
 GAGGACTTCG CCACCTATTA CTGTCAGAGG GTCTACCAAGT CAACGTGGAC ATTTGCCAG
 GGAACGAAAG TGGAAATCAA G

Figure 10**SEQ ID NO: 160 polynucleotide sequence encoding anti-toxin B antibody 1151.g4 VH region**

GAAGTACAAC TCCAAGAGTC GGGGCCTGGT CTGGTCAAGC CGTCCGAAAC ACTTCGCTG
 ACGTGTACGG TATCAGGATT CTCACTTACA TCATACTACG TCCACTGGGT GAGGCAGCCA
 CCCGGGAAAGG GTCTTGAGTG GATGGGCTGC ATTAGAACCG GAGGAATAAC CGAGTACCAAG
 AGCGAATTAA AGAGCCGCGT CACTATCAGC CGGGATACGT CCAAAAACCA GGTGTCGCTC
 AAATTGTCCT CCGTGACGGC CGCTGACACC GCAGTGTACT ATTGCGCGCG AGGAAACTAT
 GGCTTGCCT ATTGGGGACA GGGGACGCTC GTAACGTGTCT CG

SEQ ID NO: 168 polynucleotide sequence encoding anti-toxin B antibody 1153.g8 VL region


GATATACAGA TGACTCAGTC CCCTCTAGC CTTTCAGCTT CCGTGGCGA TAGAGTGACT
 ATCACGTGTA AGGCTAGTCA GAACATTAAC AAGTATCTGG ACTGGTACCA GCAGAAACCC
 GGGAAAGGTTG CCAAGCTGCT GATCTACAAC ATCCAGTCCC TGCATACAGG CATTCCCTAGC
 CGGTTAGCG GATCTGGTTC AGGGACCGAC TTCACCCCTGA CAATCAGCTC TCTGCAACCA
 GAAGACGTGG CCACCTATTA CTGCTTCCAG CACAATAGTG GCTGGACTTT TGGACAAGGT
 ACCAGGCTGG AGATCAA

SEQ ID NO: 170 polynucleotide sequence encoding anti-toxin B antibody 1153.g8 VH region

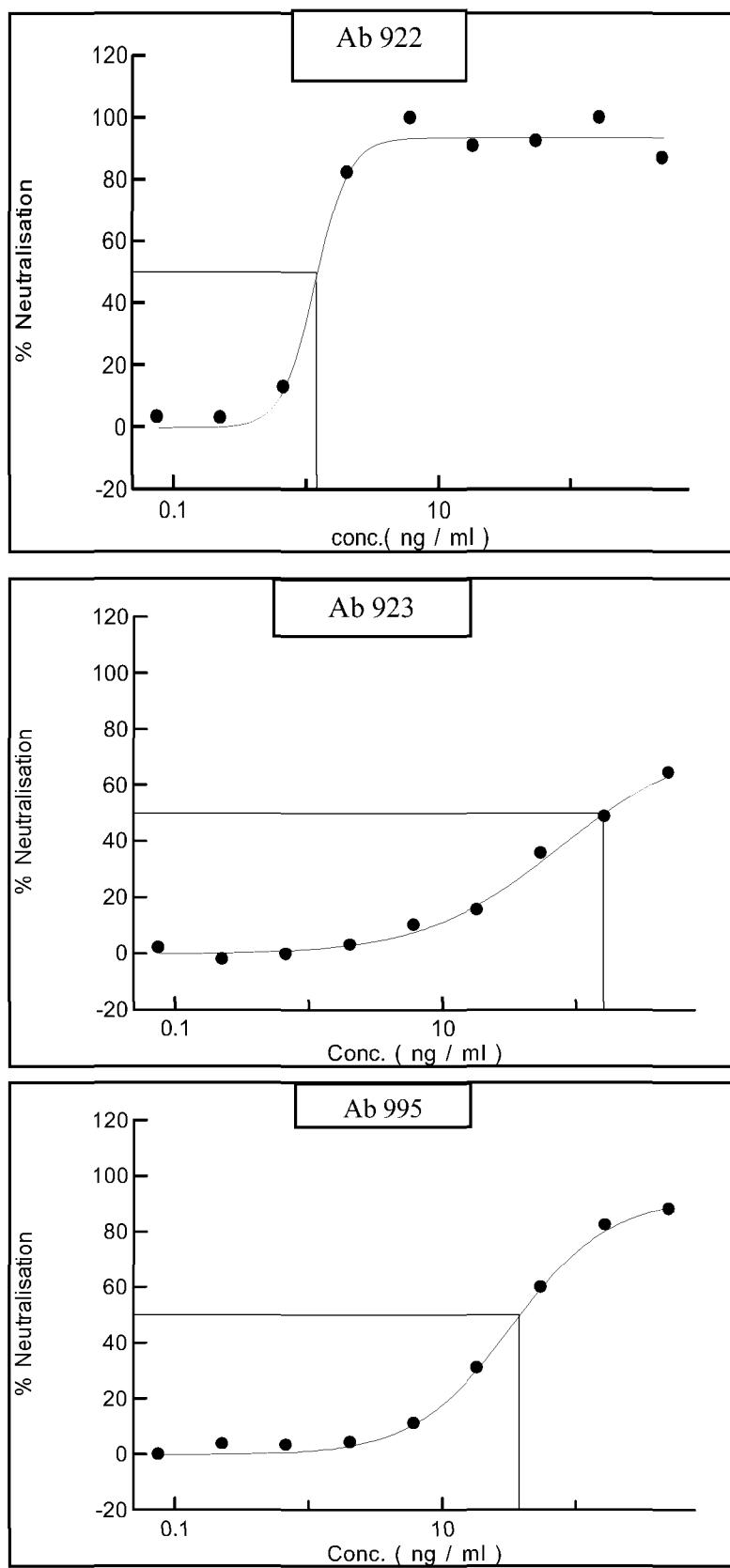
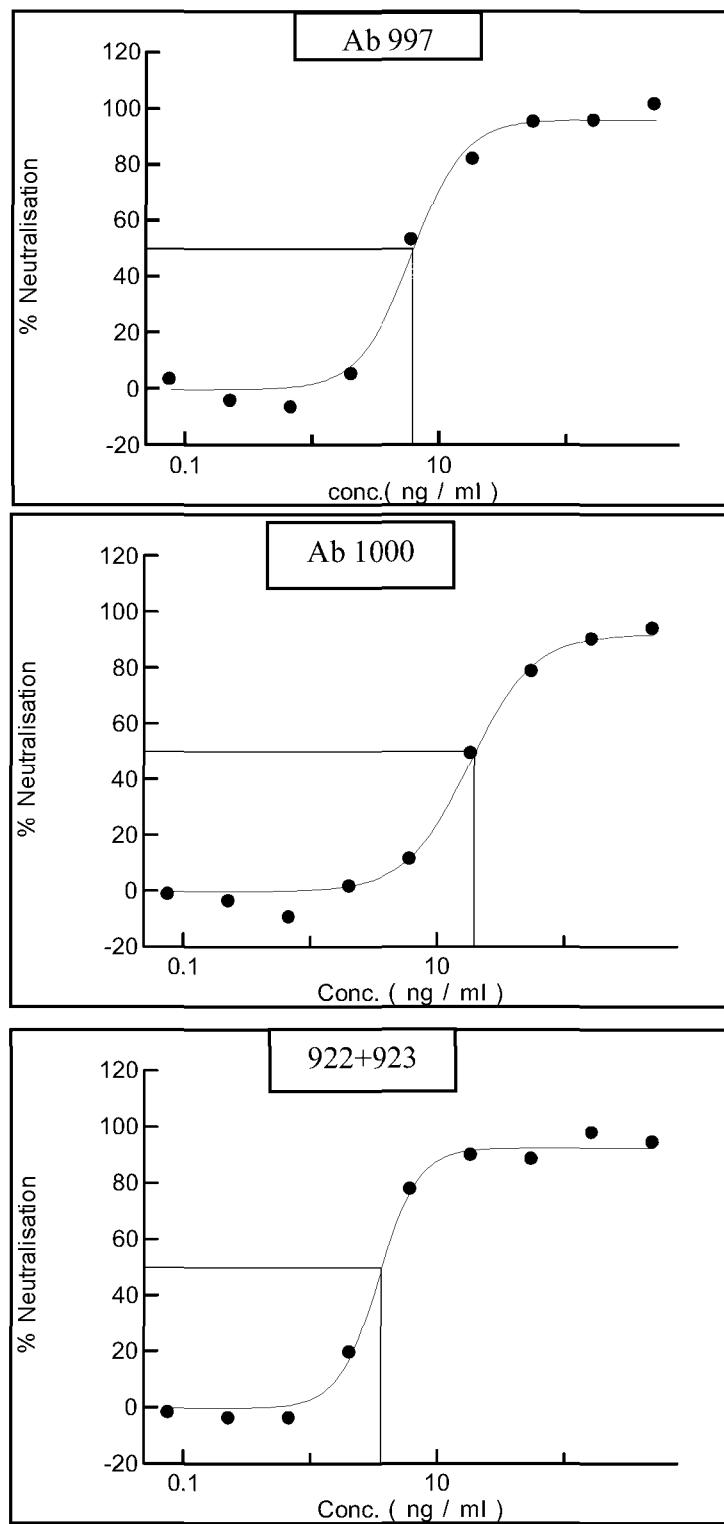
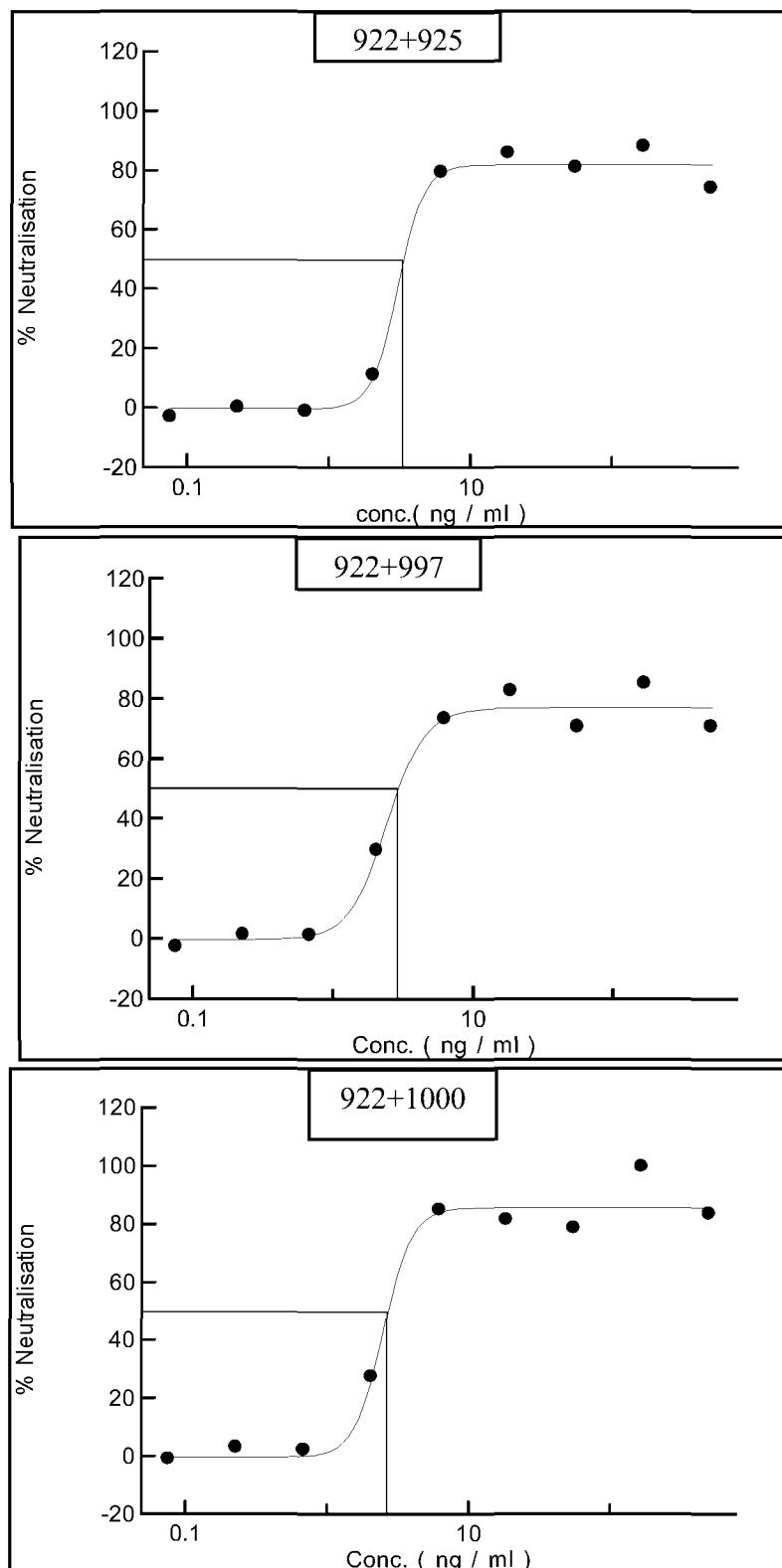
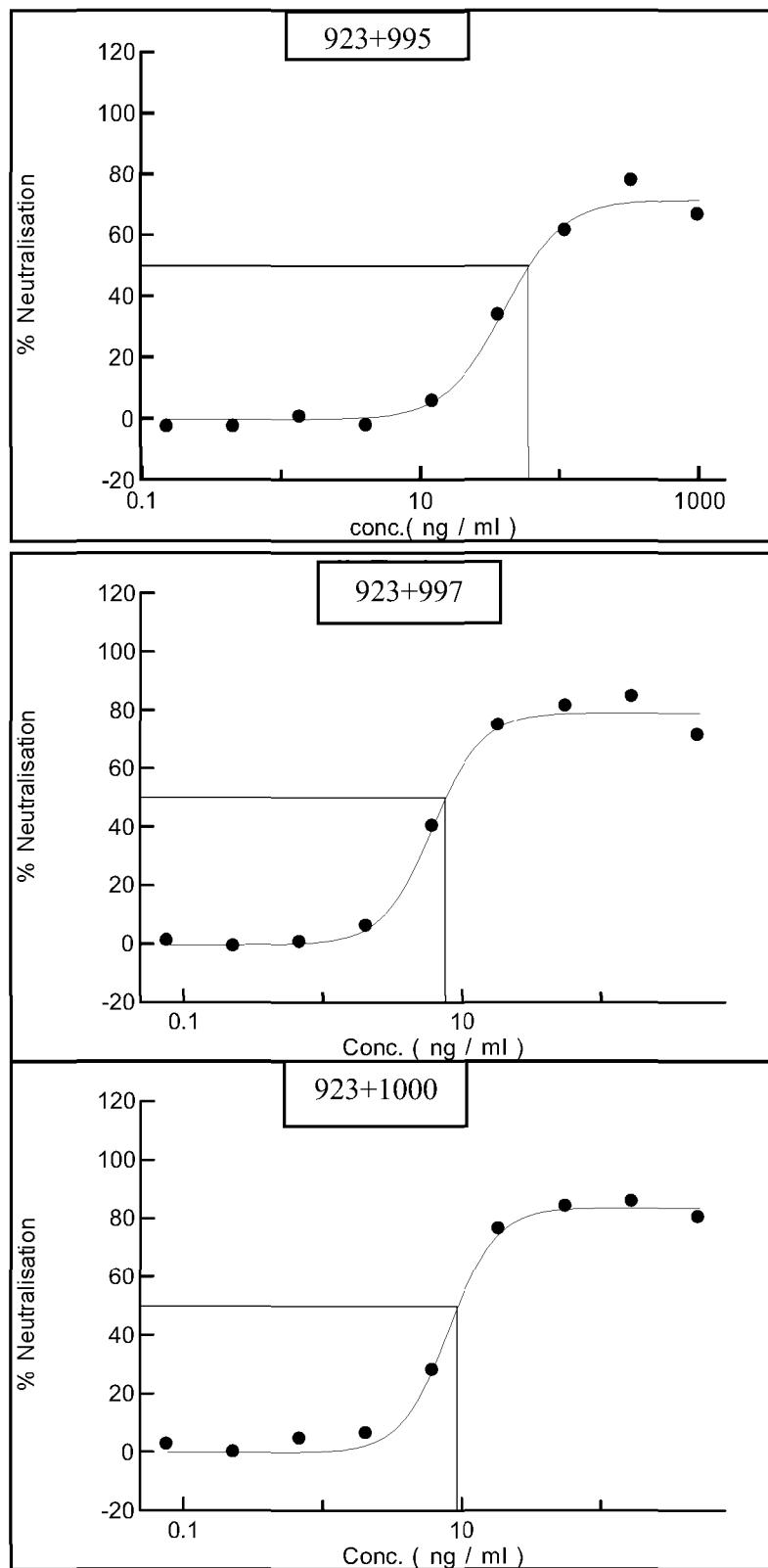
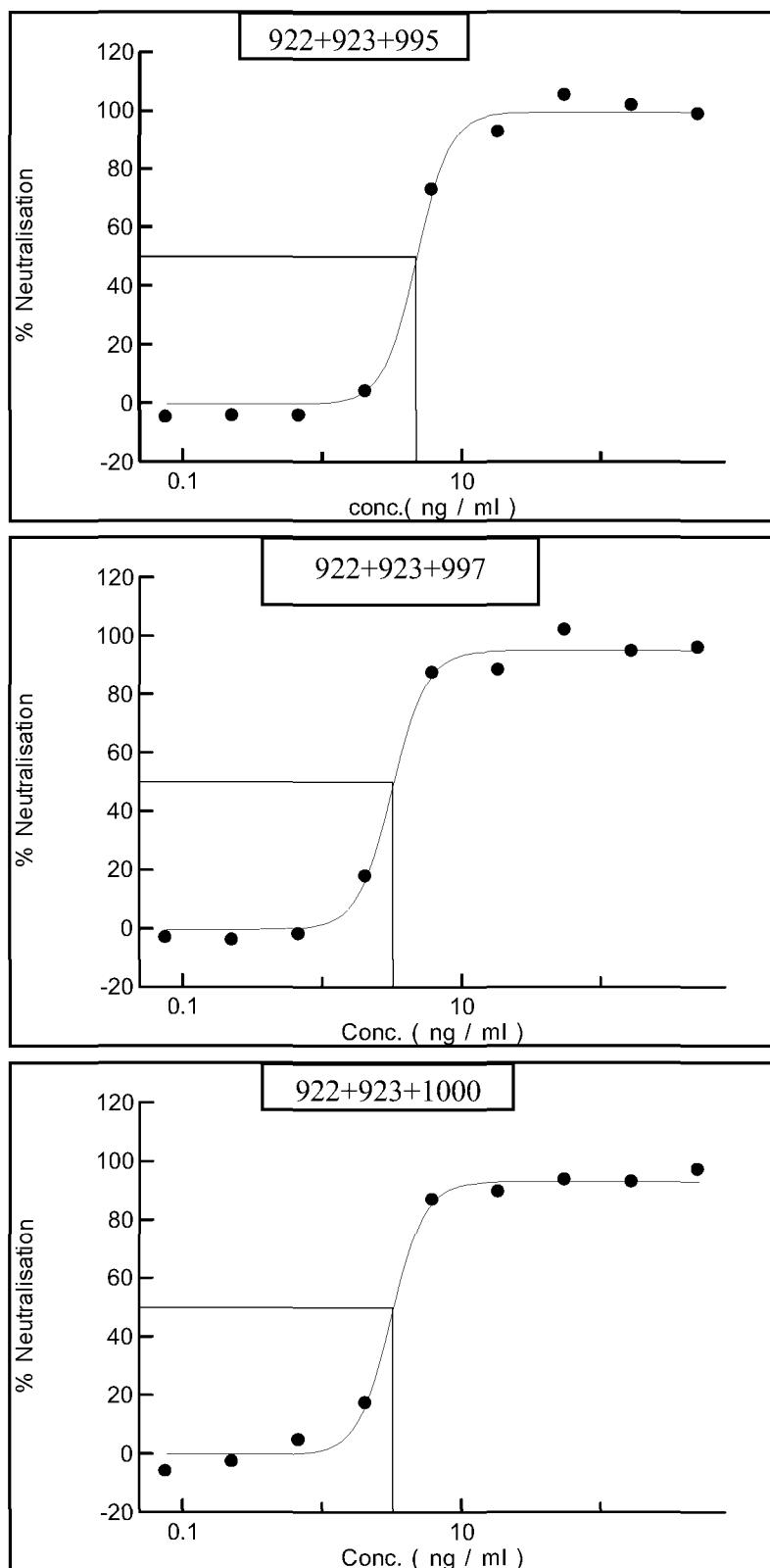

GAGGTTCAGC TGGTGAATC AGGAGGGGGT CTGGTCAAC CAGGAGGCTC CCTGAAACTG
 TCTTGCAGCG CAAGCGGCTT TACGTTTACG CAGGCCGCTA TGTTCTGGGT TAGGCAGGCC
 AGTGGGAAGG GTCTTGAGG CATCGCAAGA ATCAGCACCA AGAGCAACAA TTTCGCTACG
 TACTATCCGG ACTCCGTGAA AGGCCGGTT ACCATTCTC GCGATGACAG CAAGAACACC
 GTGTACCTGC AGATGAACAG TCTCAAGACC GAGGACACAG CCGTGTACTA TTGTACTGCT
 CCCGCCTATT ATTACGATGG CACAGTGCCT TTCGCATACT GGGGACAGGG
 TACTTTGGTG ACTGTCTCG

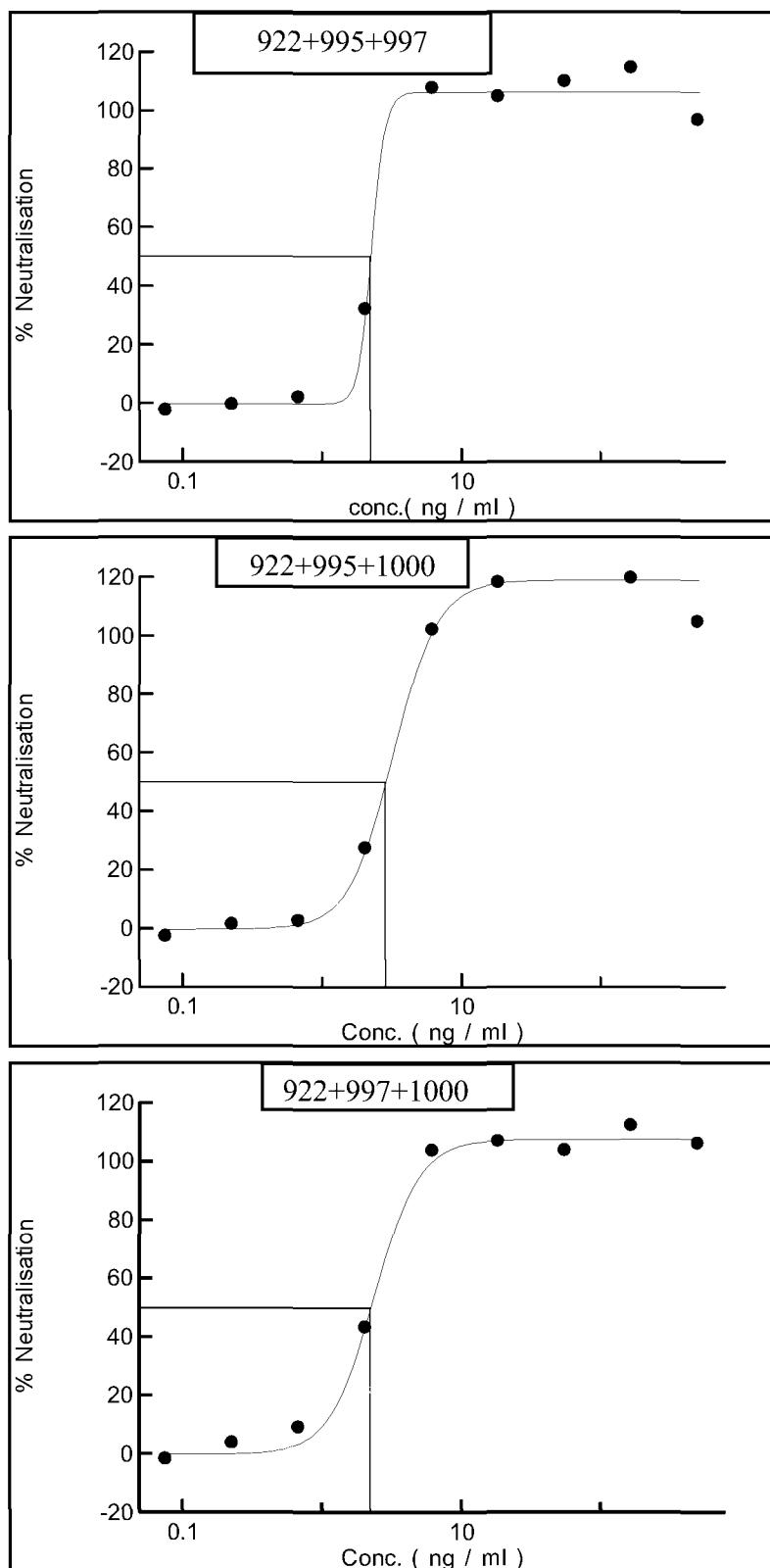
Figure 11

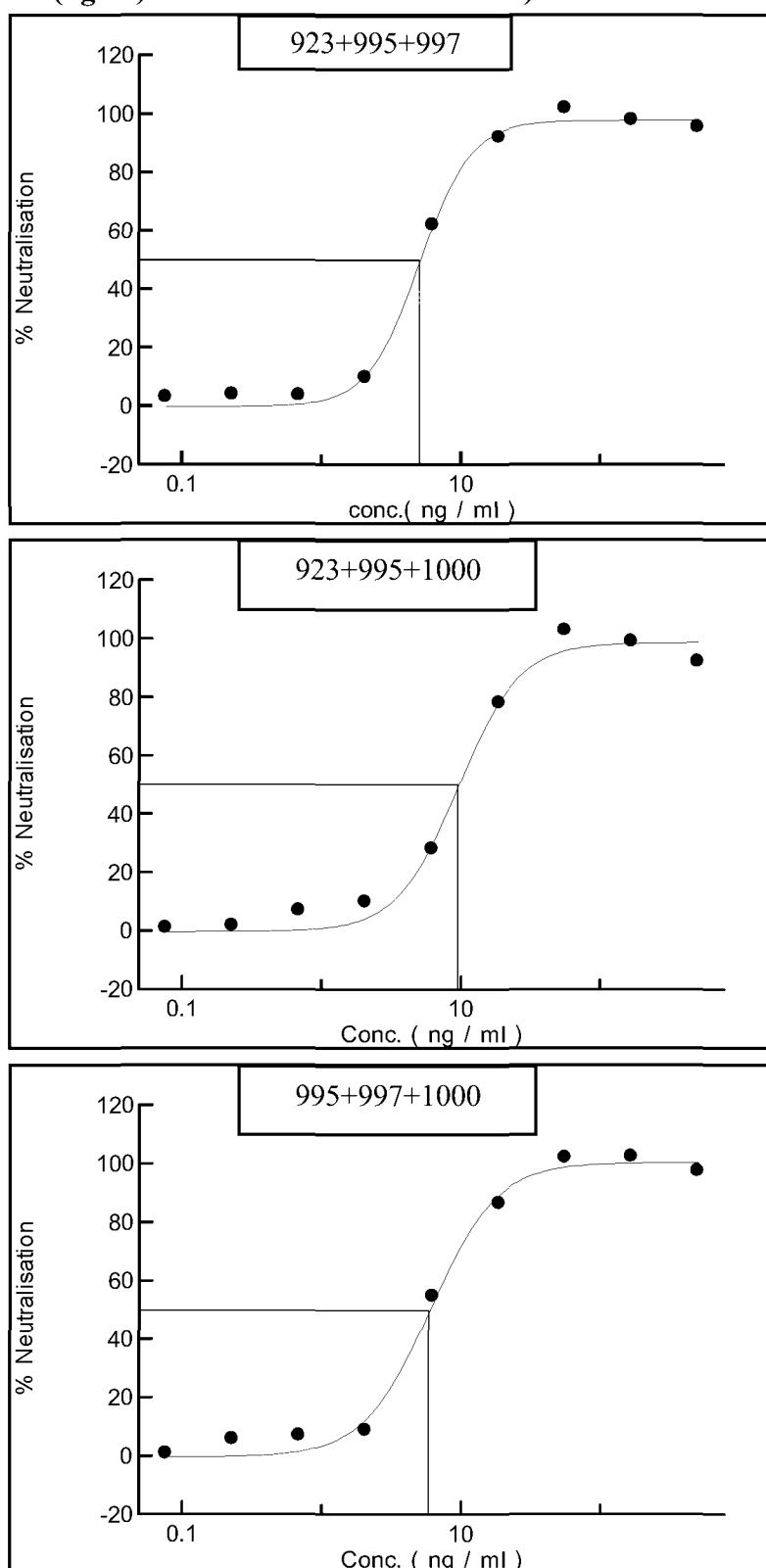

Sera titres from 4 rabbits immunised with TcdA toxoid and 5 rats immunised with TcdB binding domain (TcdB1234). ELISA data generated using TcdA toxin or TcdB binding domain coated on an ELISA plate

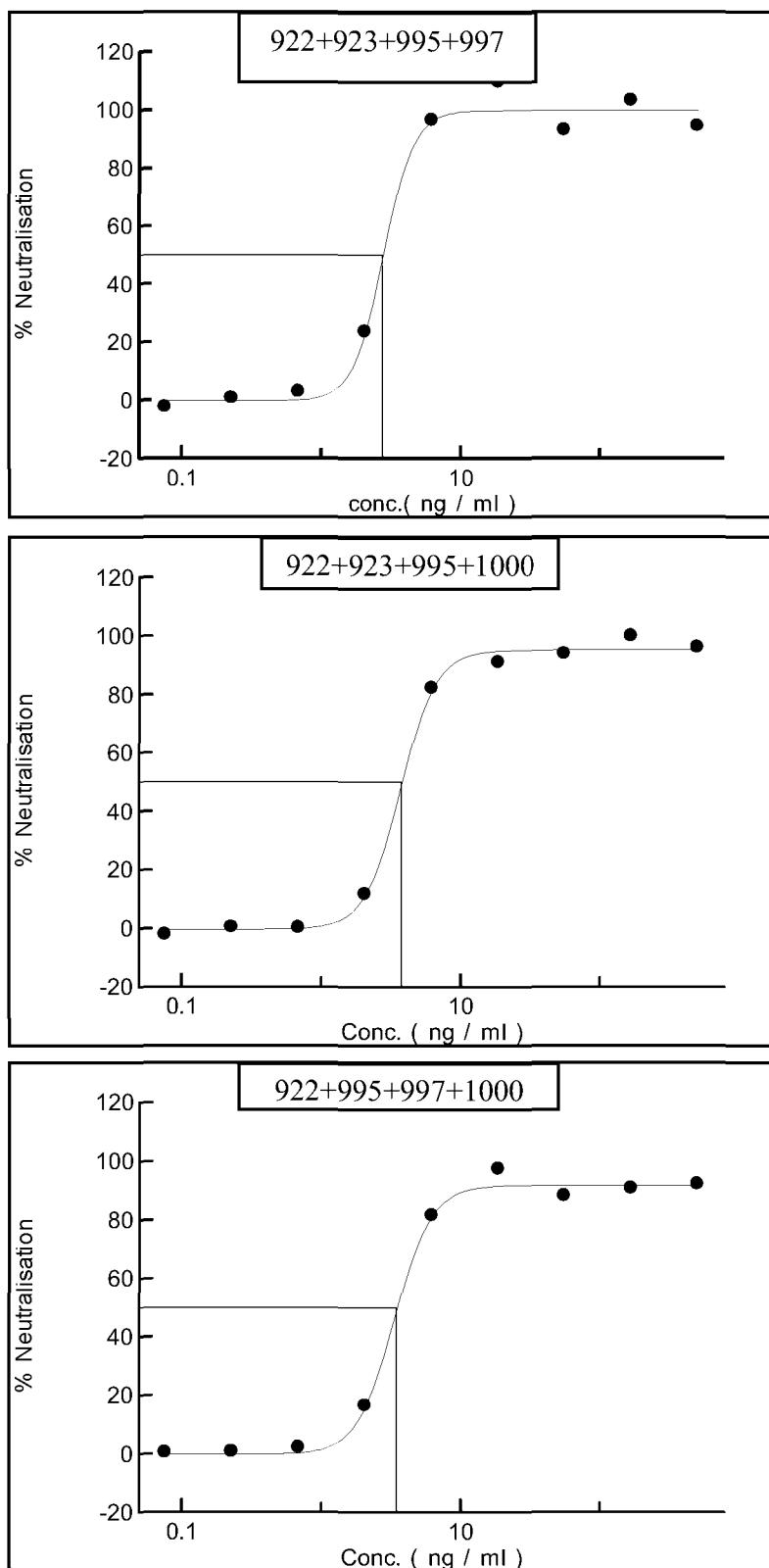

Figure 12 Anti TcdA (Ribotype 003) in-vitro neutralization data for single Mabs (X axis conc. (ng/ml) and Y axis % Neutralization)

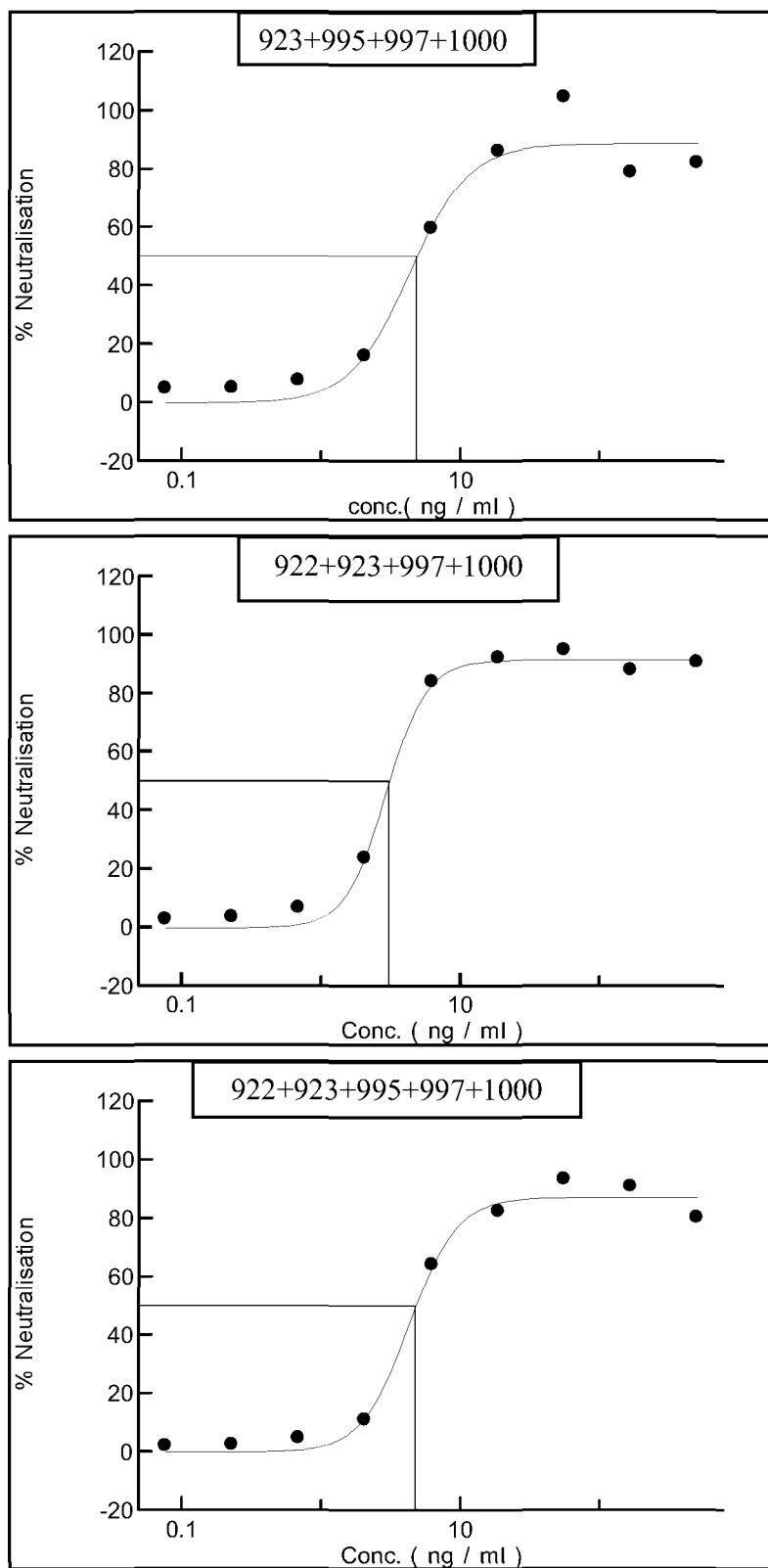

Figure 13 Anti TcdA (Ribotype 003) in-vitro neutralization data for single Mabs (X axis conc. (ng/ml) and Y axis % Neutralization)

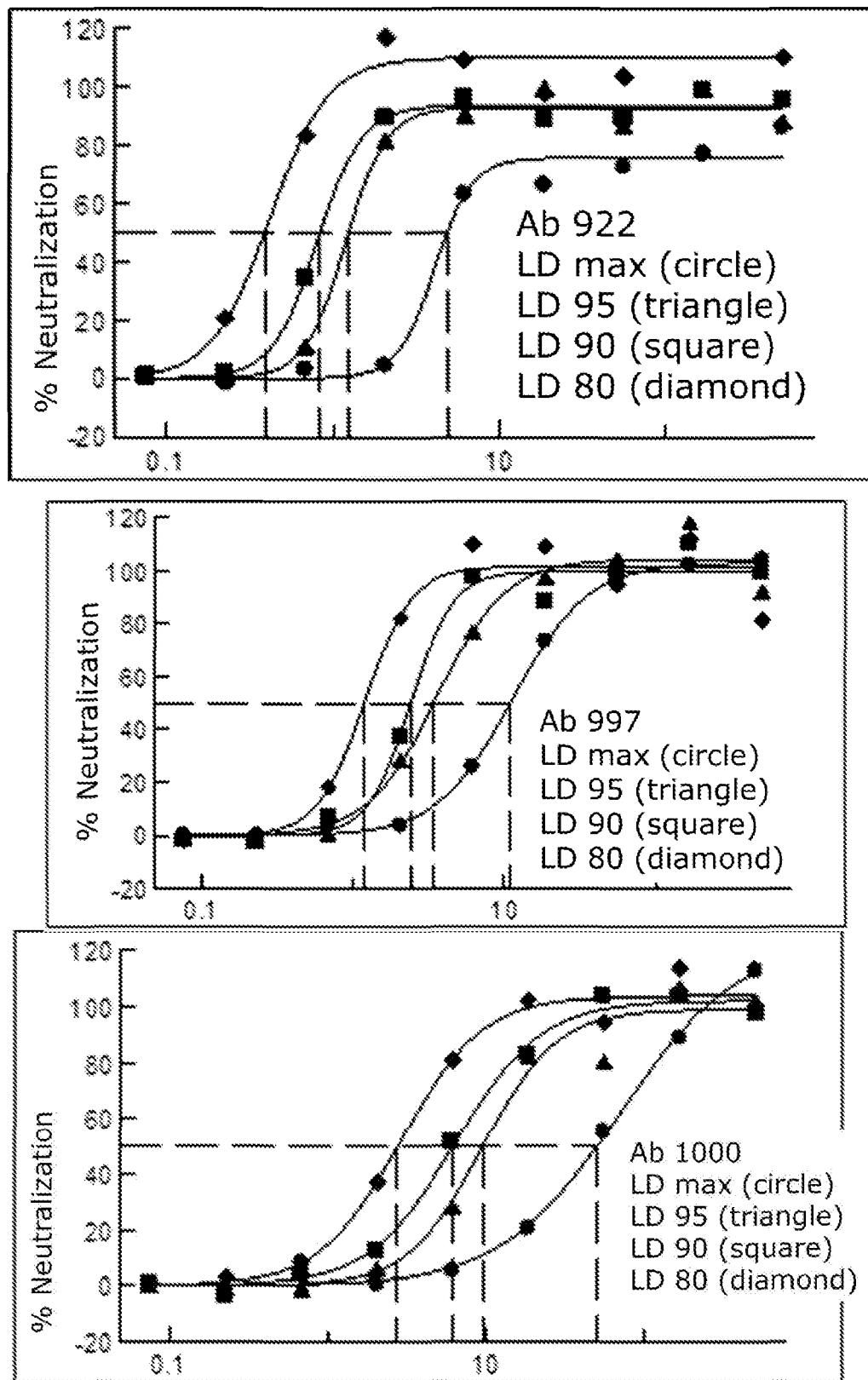

Figure 14 Anti TedA (Ribotype 003) in-vitro neutralization data for paired Mabs (X axis conc. (ng/ml) and Y axis % Neutralization)

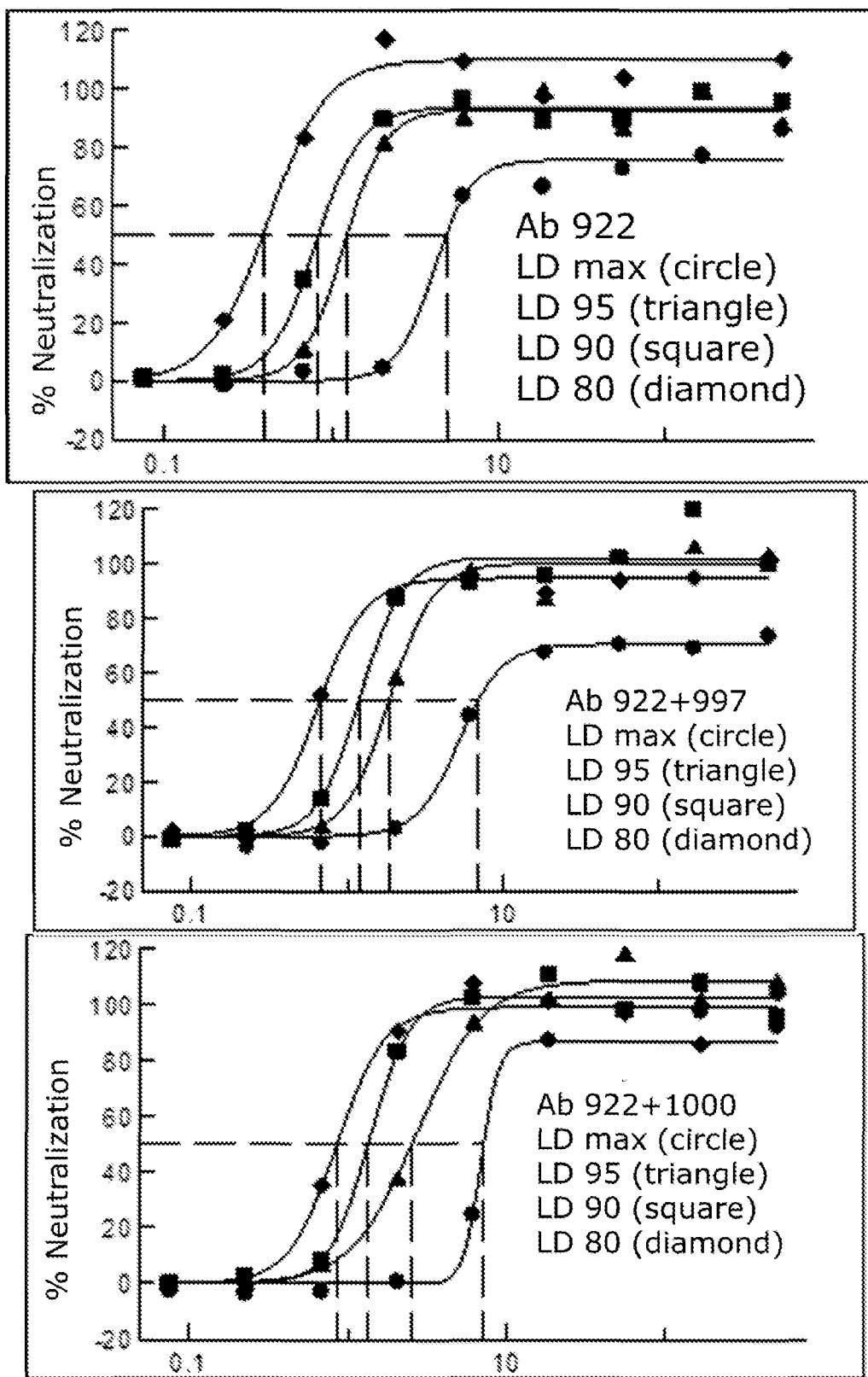

Figure 15 Anti TedA (Ribotype 003) in-vitro neutralization data for paired Mabs (X axis conc. (ng/ml) and Y axis % Neutralization)

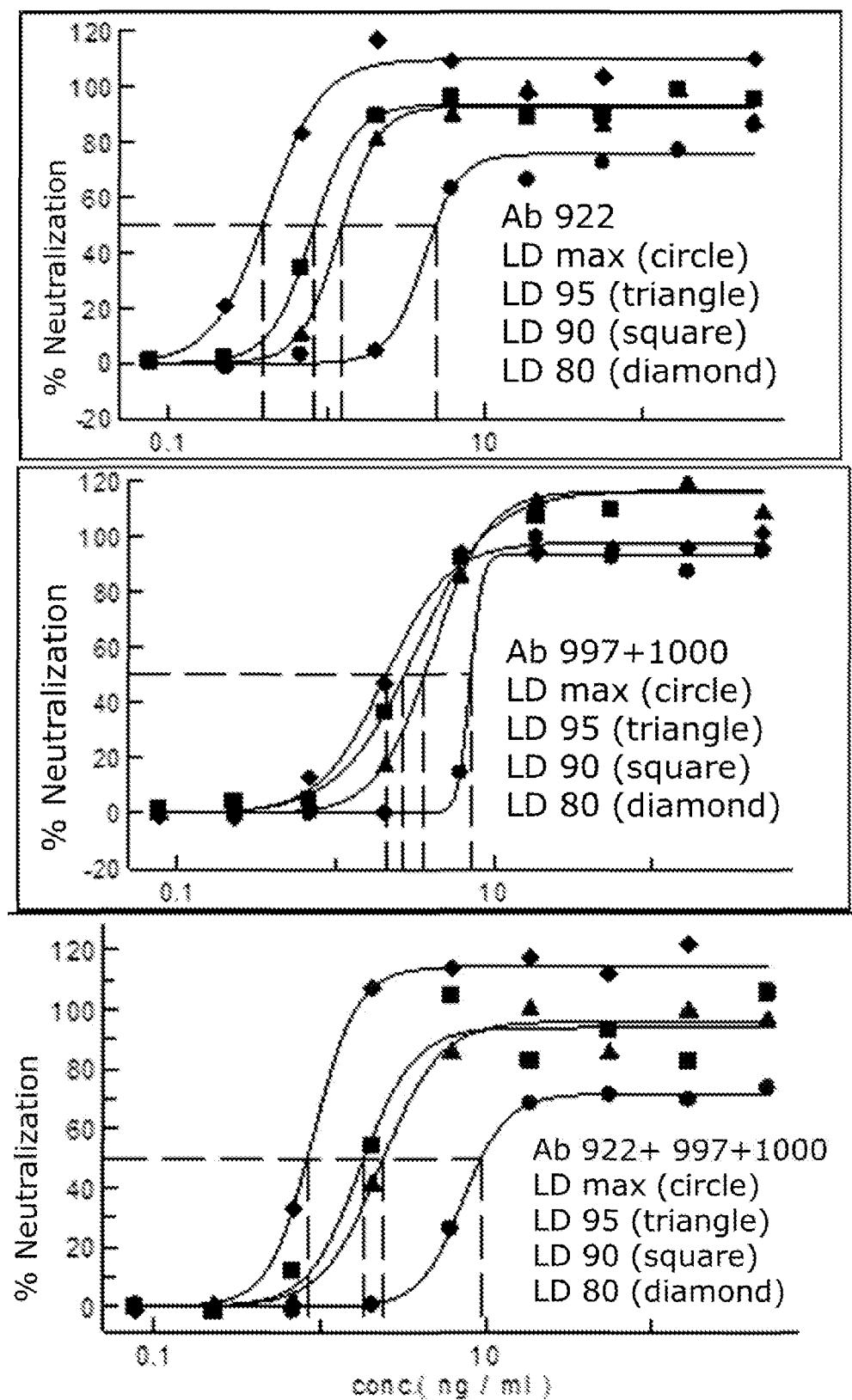

Figure 16 Anti TcdA (Ribotype 003) in-vitro neutralization data for three Mab mixtures (X axis conc. (ng/ml) and Y axis % Neutralization)

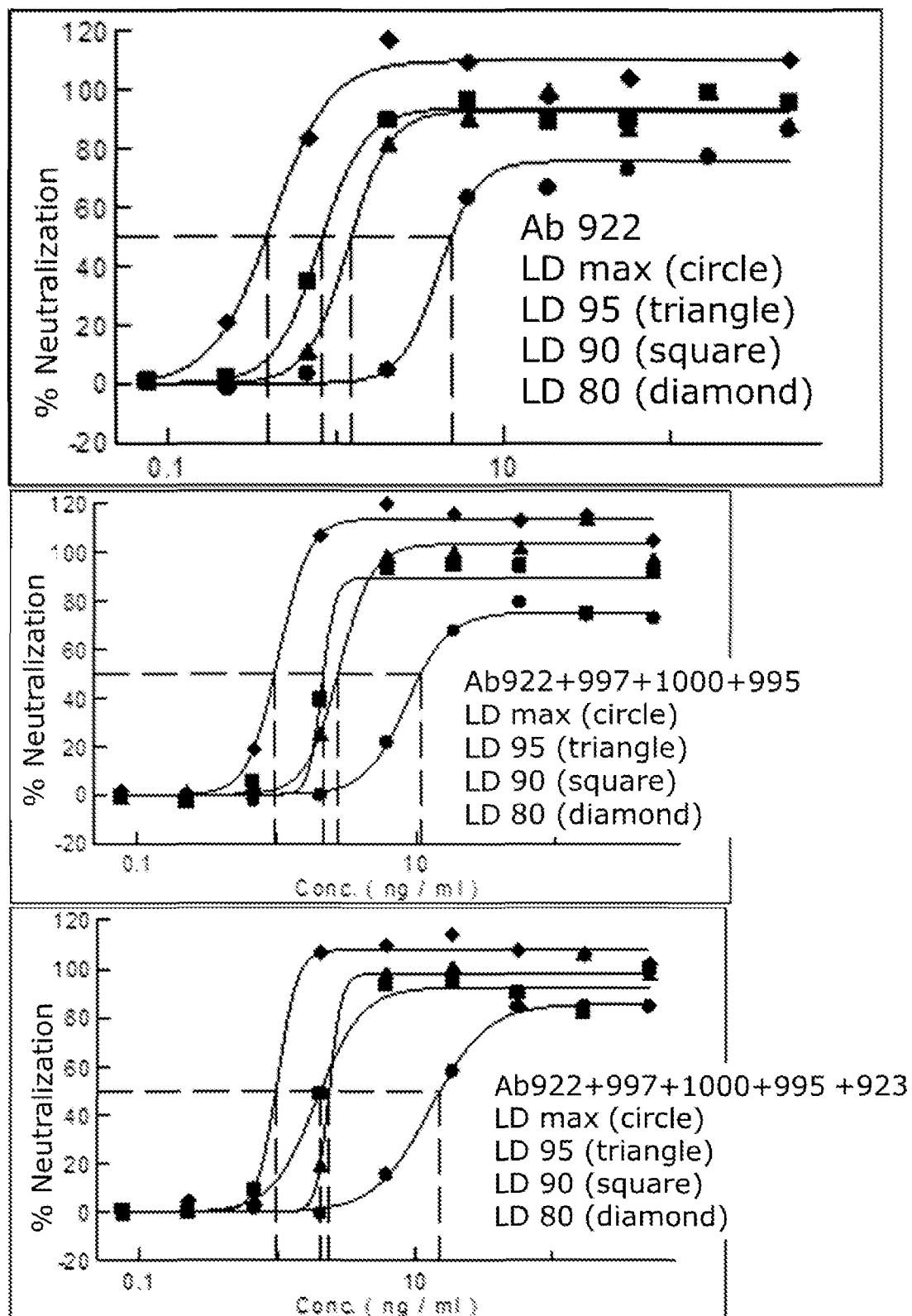

Figure 17 Anti TcdA (Ribotype 003) in-vitro neutralization data for three Mab mixtures (X axis conc. (ng/ml) and Y axis % Neutralization)

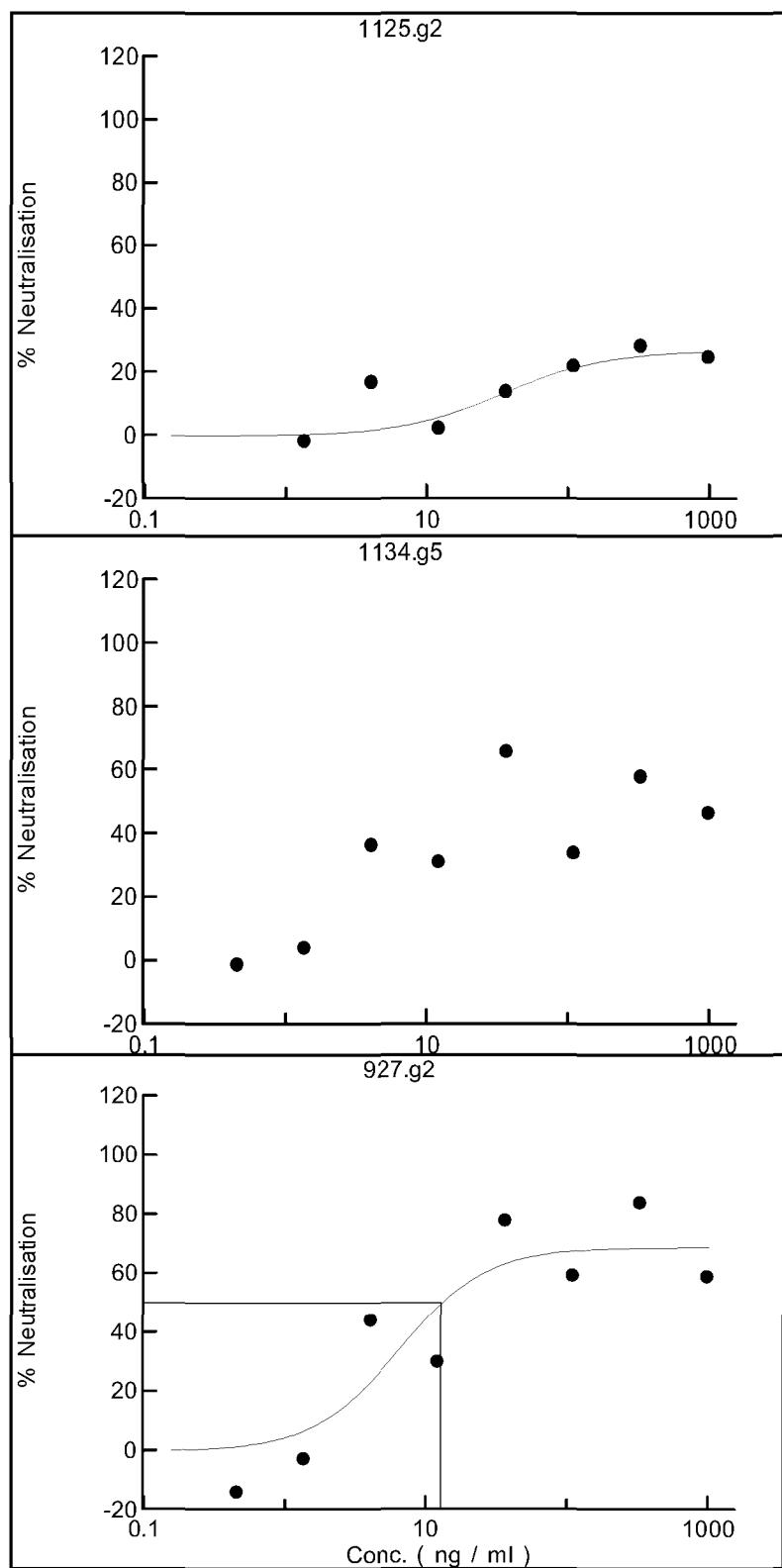

Figure 18 Anti TedA (Ribotype 003) in-vitro neutralization data for three Mab mixtures (X axis conc. (ng/ml) and Y axis % Neutralization)

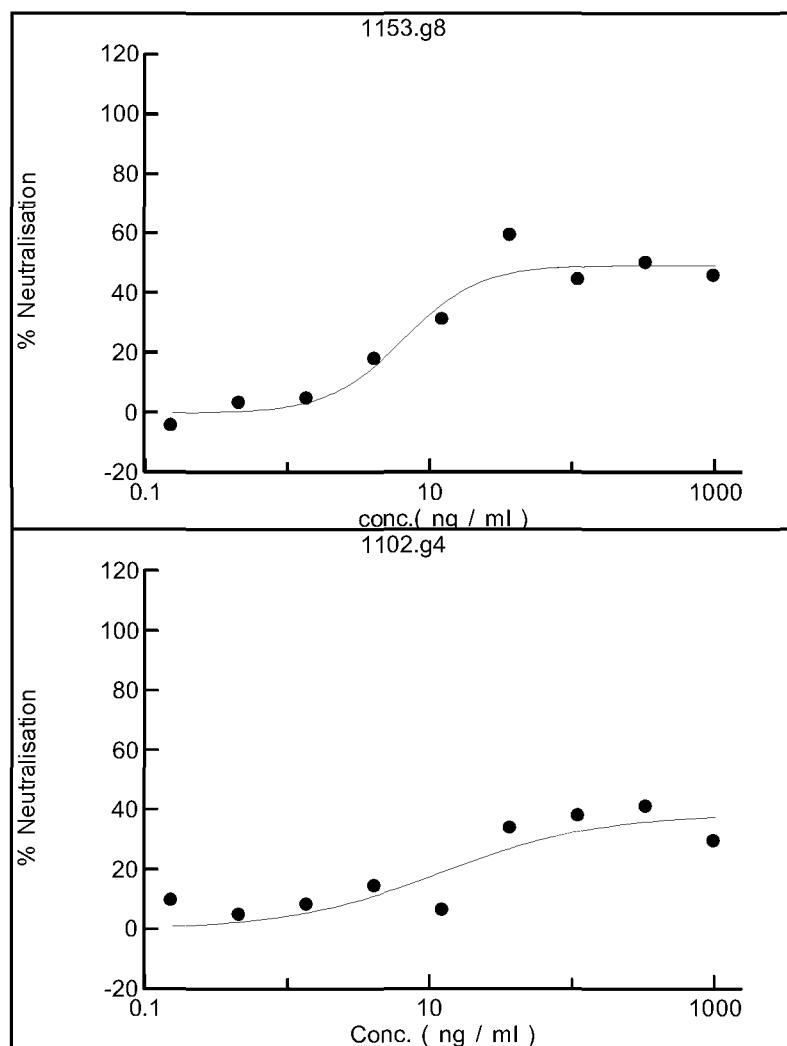

Figure 19 Anti TedA (Ribotype 003) in-vitro neutralization data for four and five Mab mixtures (X axis conc. (ng/ml) and Y axis % Neutralization)

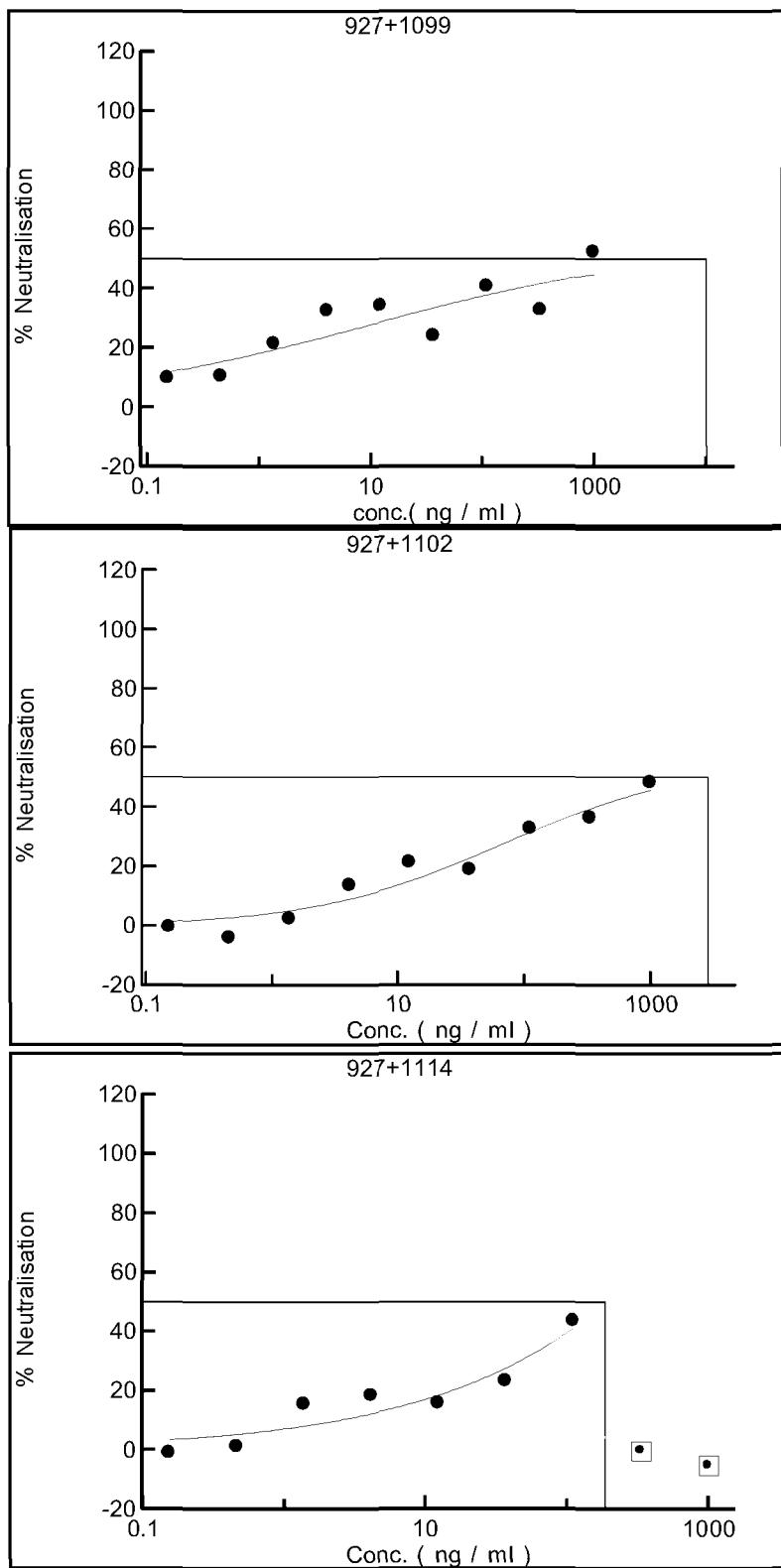

Figure 20 Anti TedA (Ribotype 003) in-vitro neutralization data for four and five Mab mixtures (X axis conc. (ng/ml) and Y axis % Neutralization)

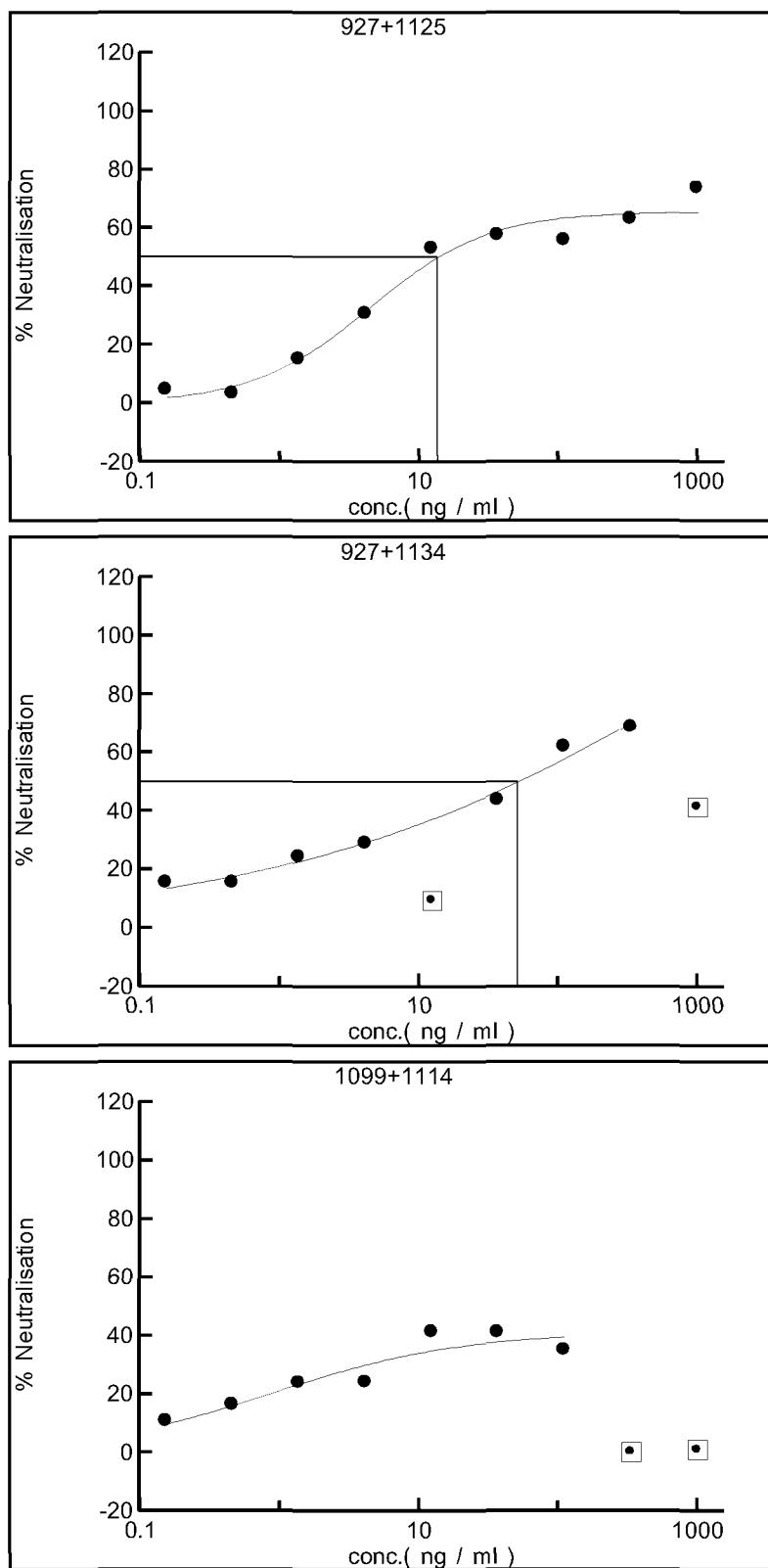

Figure 21 Anti TedA (Ribotype 003) in-vitro neutralization data for single and paired Mabs at different TedA concentrations (X axis is conc ng/ml)

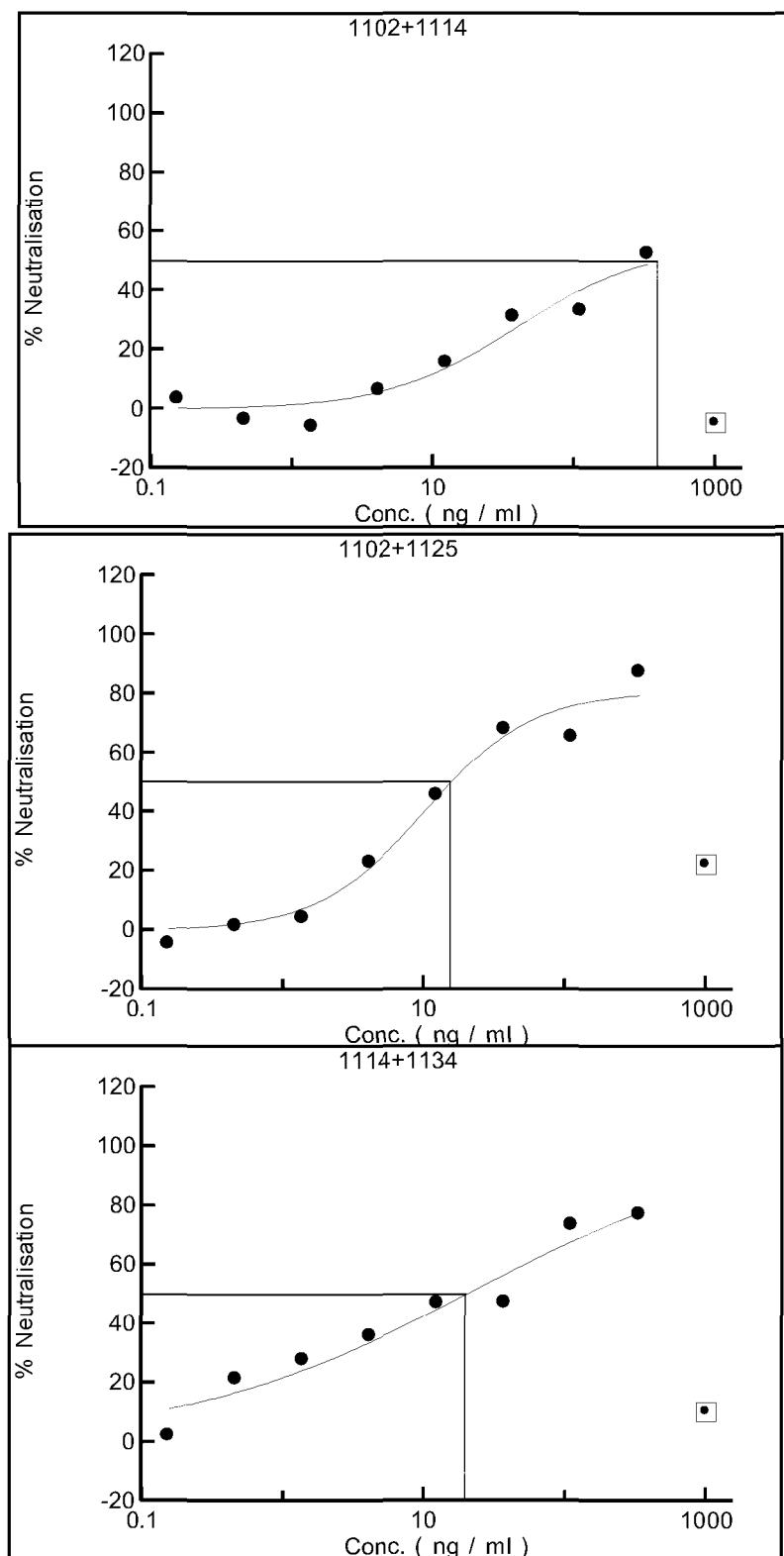

Figure 22 Anti TedA (Ribotype 003) in-vitro neutralization data for single and paired Mabs at different TedA concentrations (X axis is conc. ng/ml)

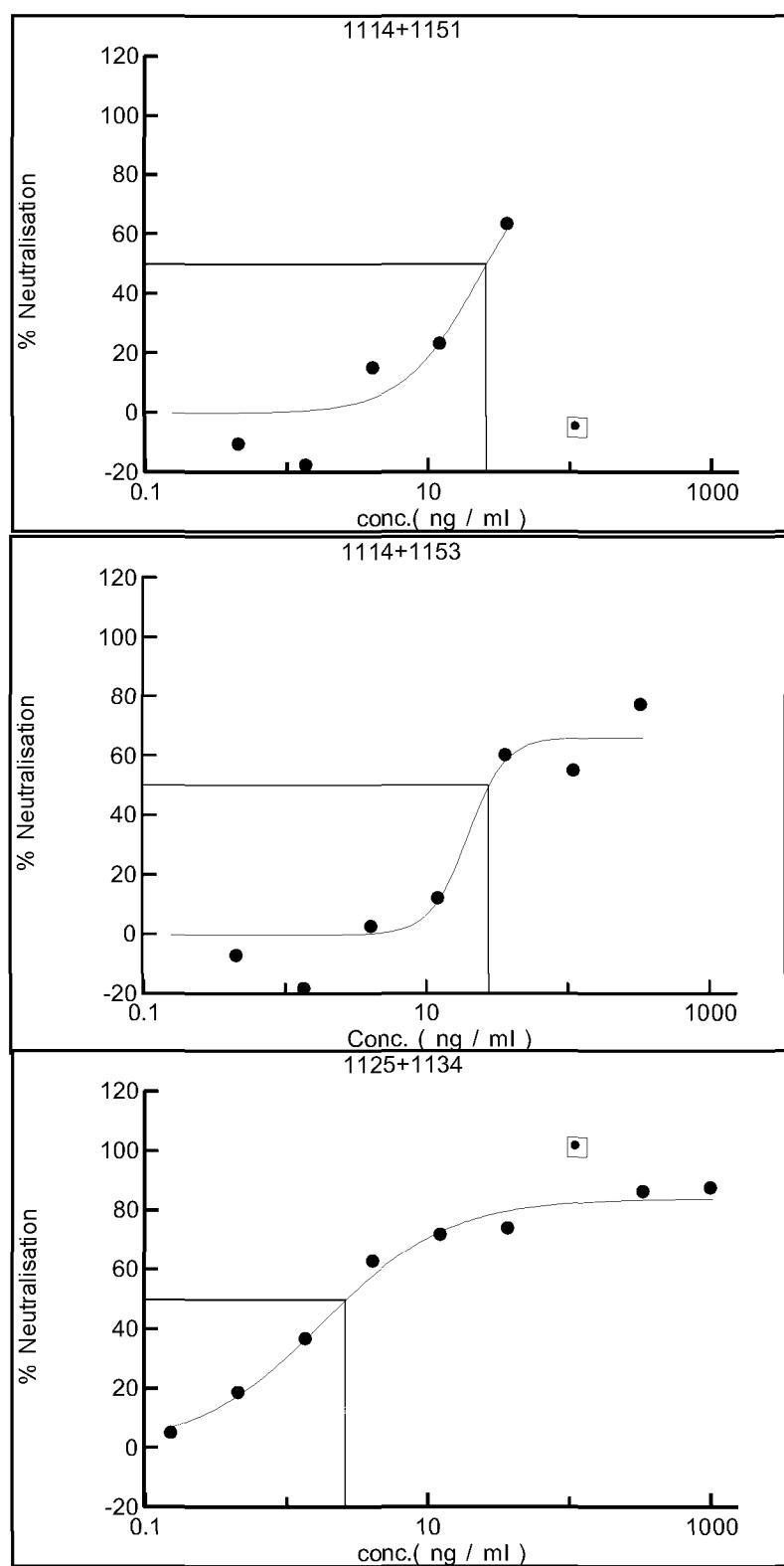

Figure 23 Anti TcdA (Ribotype 003) in-vitro neutralization data for single and to five Mab mixtures at different TcdA concentrations (X axis conc. ng/ml)

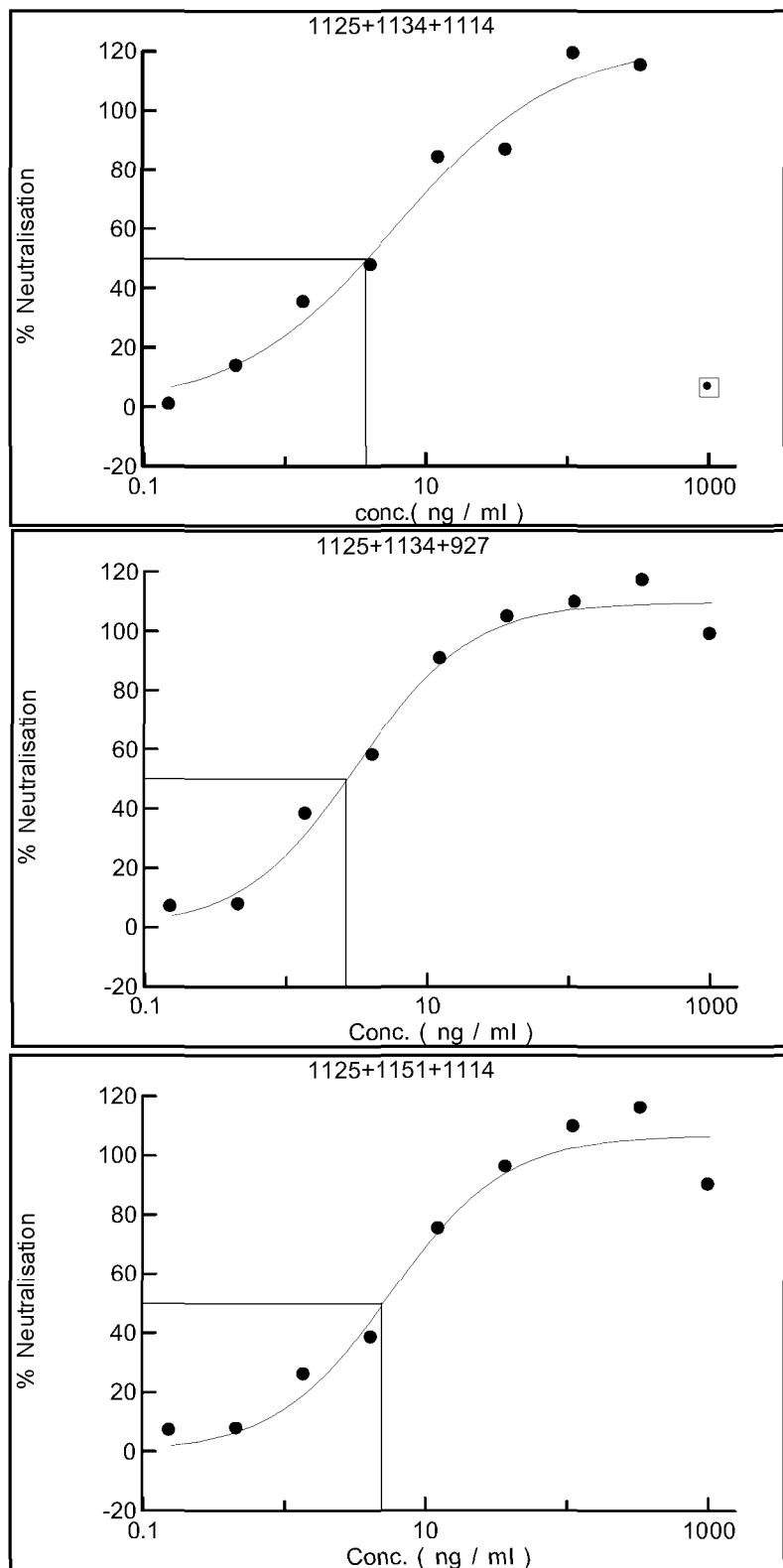

Figure 24 Anti TcdA (Ribotype 003) in-vitro neutralization data for single and to five Mab mixtures at different TcdA concentrations (X axis is conc. ng/ml)

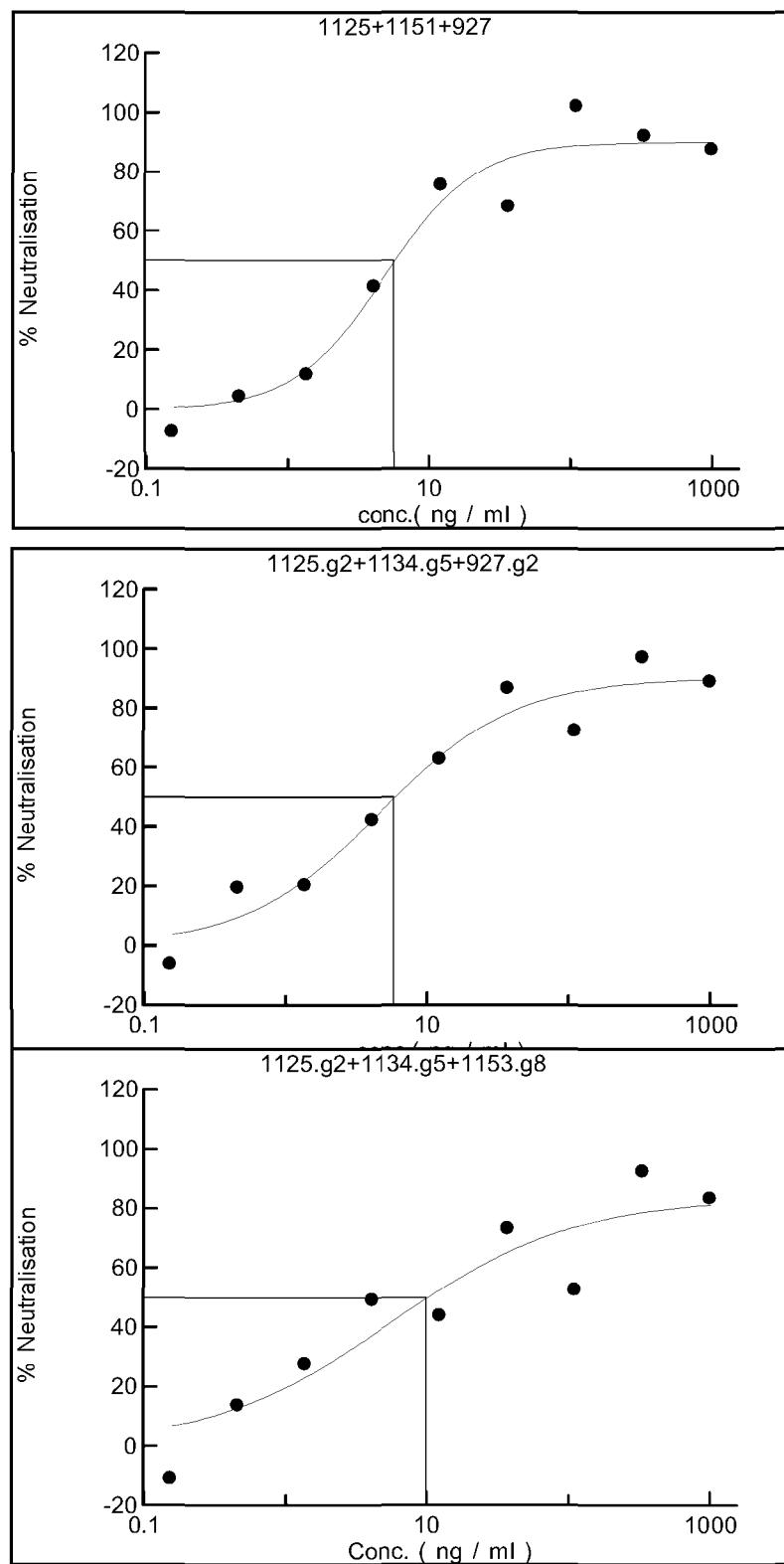

Figure 25 Anti TcdB (Ribotype 003) in-vitro neutralization data for single Mabs (Y axis neutralization X axis conc ng/ml for 1125.g2, 1134.g5 and 927.g2 respectively)


Figure 26 Anti TcdB (Ribotype 003) in-vitro neutralization data for single Mabs Y axis neutralization X axis conc ng/ml for 1153.g8 and 1102.g4 respectively)


**Figure 27 Anti TcdB (Ribotype 003) in-vitro neutralization data for paired Mabs
Y axis neutralization X axis conc ng/ml for combinations of 927+1099, 927+1102, 927+1114
respectively)**


Figure 28 Anti TcdB (Ribotype 003) in-vitro neutralization data for paired Mabs (Y axis neutralization X axis conc ng/ml for combinations of 927+1125, 927+1134, 1099+1114 respectively)


Figure 29 Anti TcdB (Ribotype 003) in-vitro neutralization data for paired Mabs (Y axis neutralization X axis conc ng/ml for combinations of 1102+1114, 1102+1125, 1114+1134 respectively)


Figure 30 Anti TcdB (Ribotype 003) in-vitro neutralization data for paired Mabs (Y axis neutralization X axis conc ng/ml for combinations of 1114+1151, 1114+1153, 1125+1134 respectively)

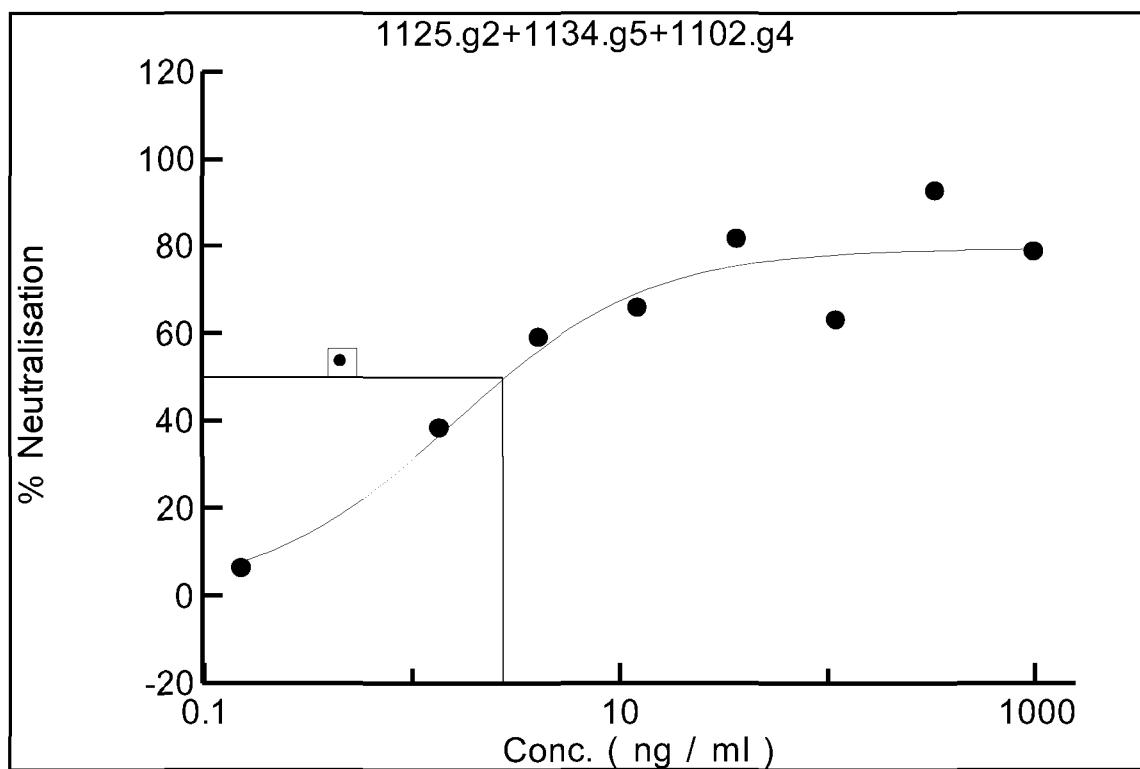


Figure 31 Anti TcdB (Ribotype 003) in-vitro neutralization data for three Mab mixtures (Y axis neutralization X axis conc ng/ml for combinations of 1125+1134+1114, 1125+1134+927, 1125+1151+1114 respectively)

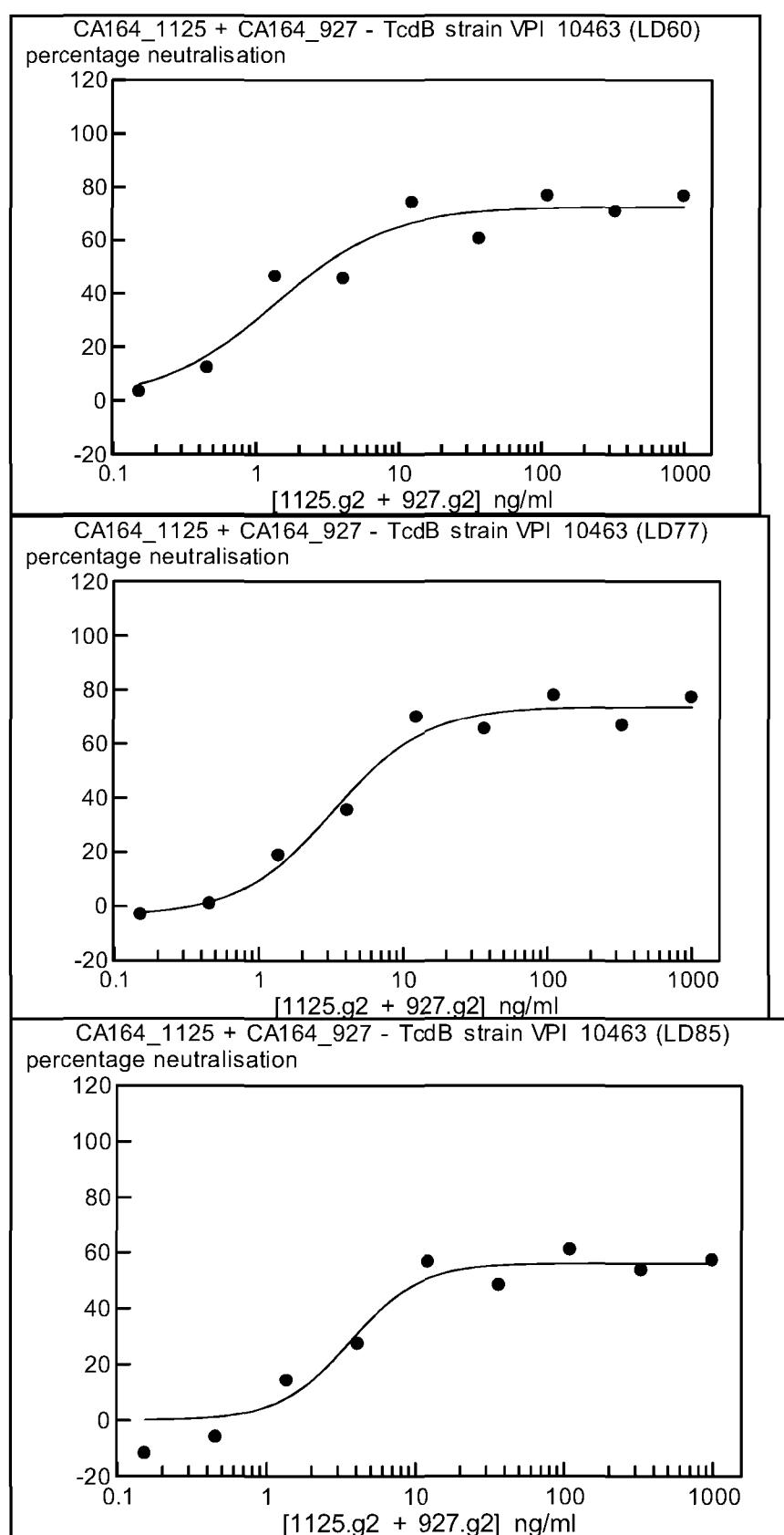


Figure 32 Anti TcdB (Ribotype 003) in-vitro neutralization data for three Mab mixtures (Y axis neutralization X axis conc ng/ml for 1125.+1151+927, 1125.g2+1134.g5+927.g2 respectively)

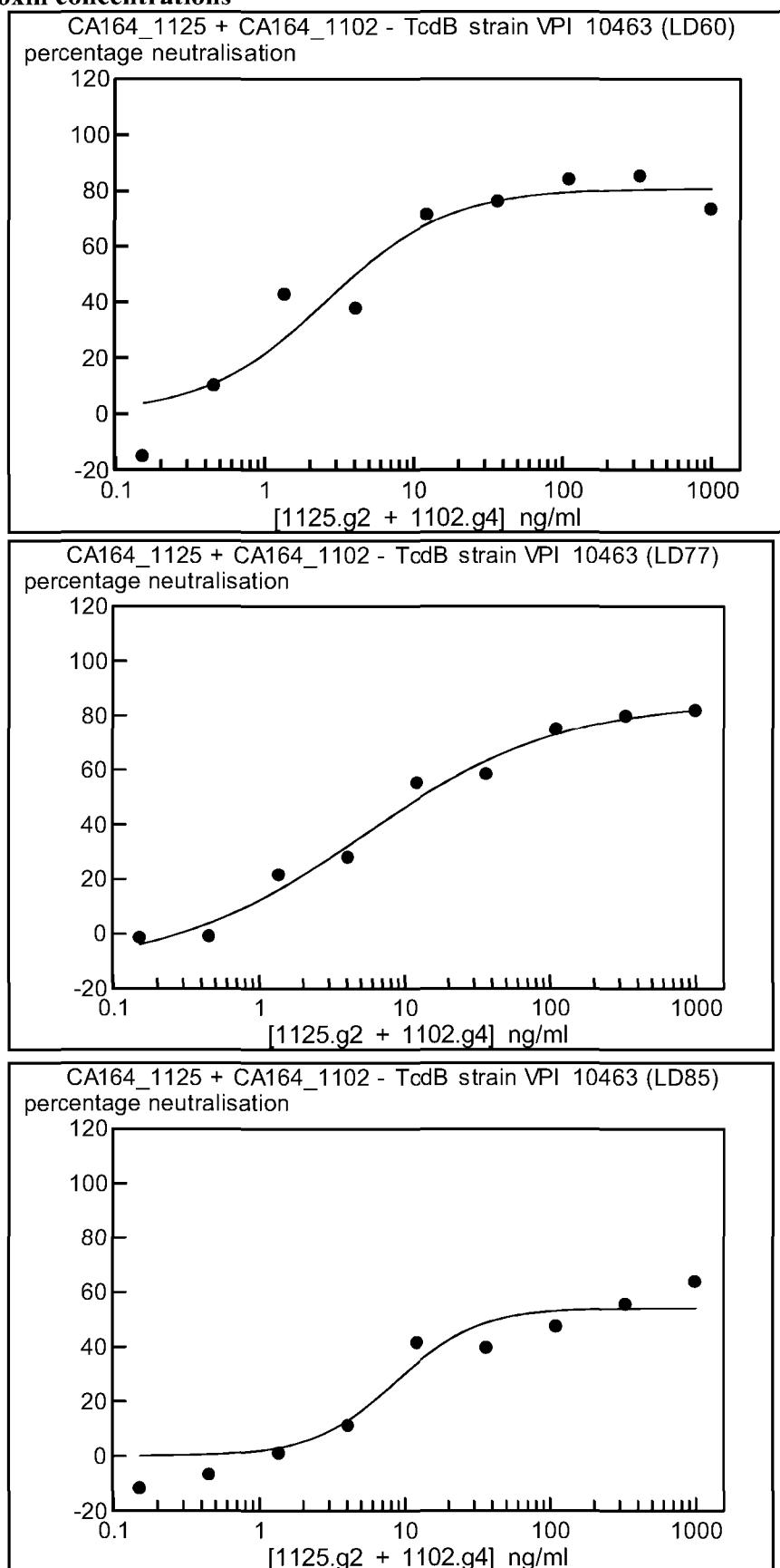
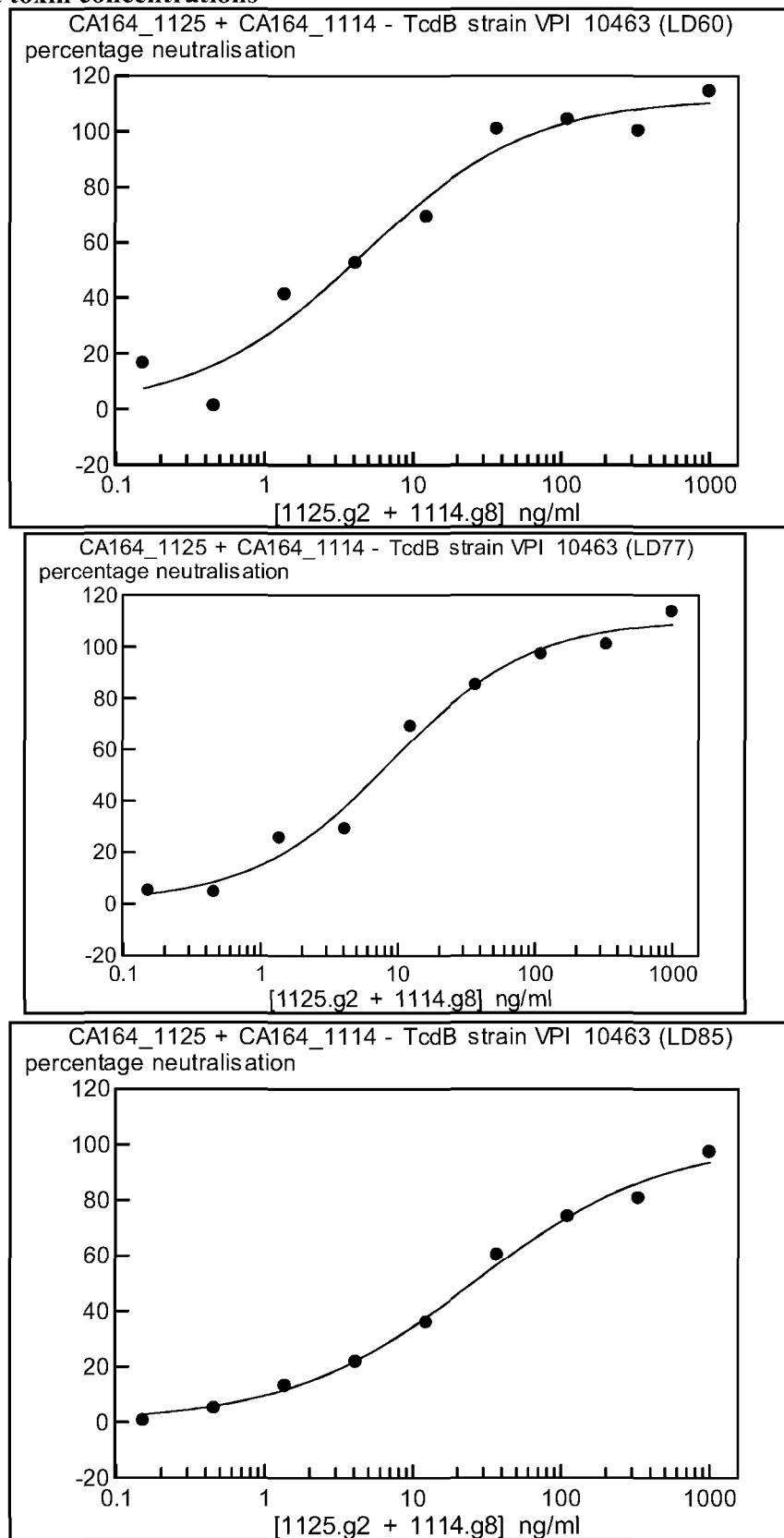
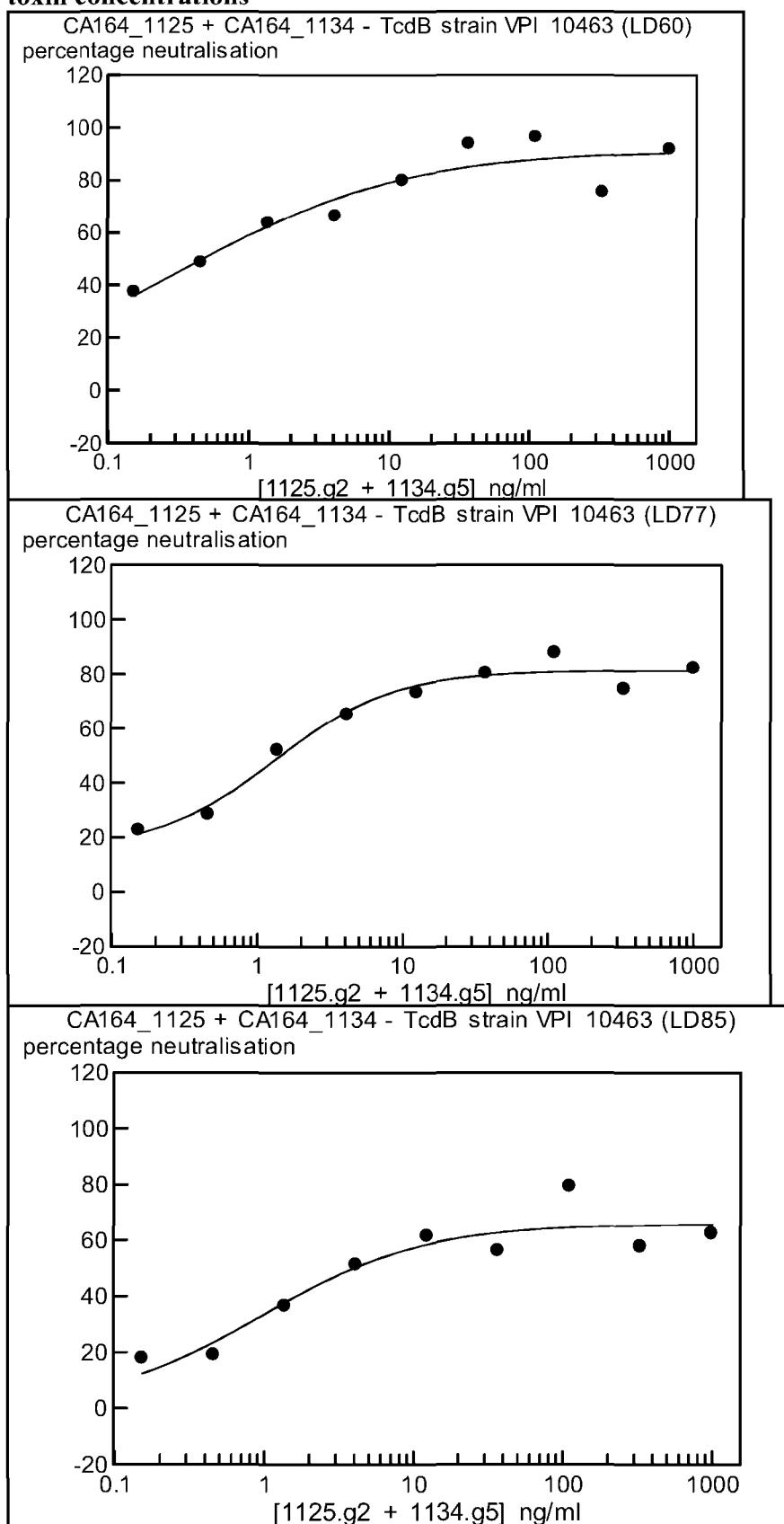
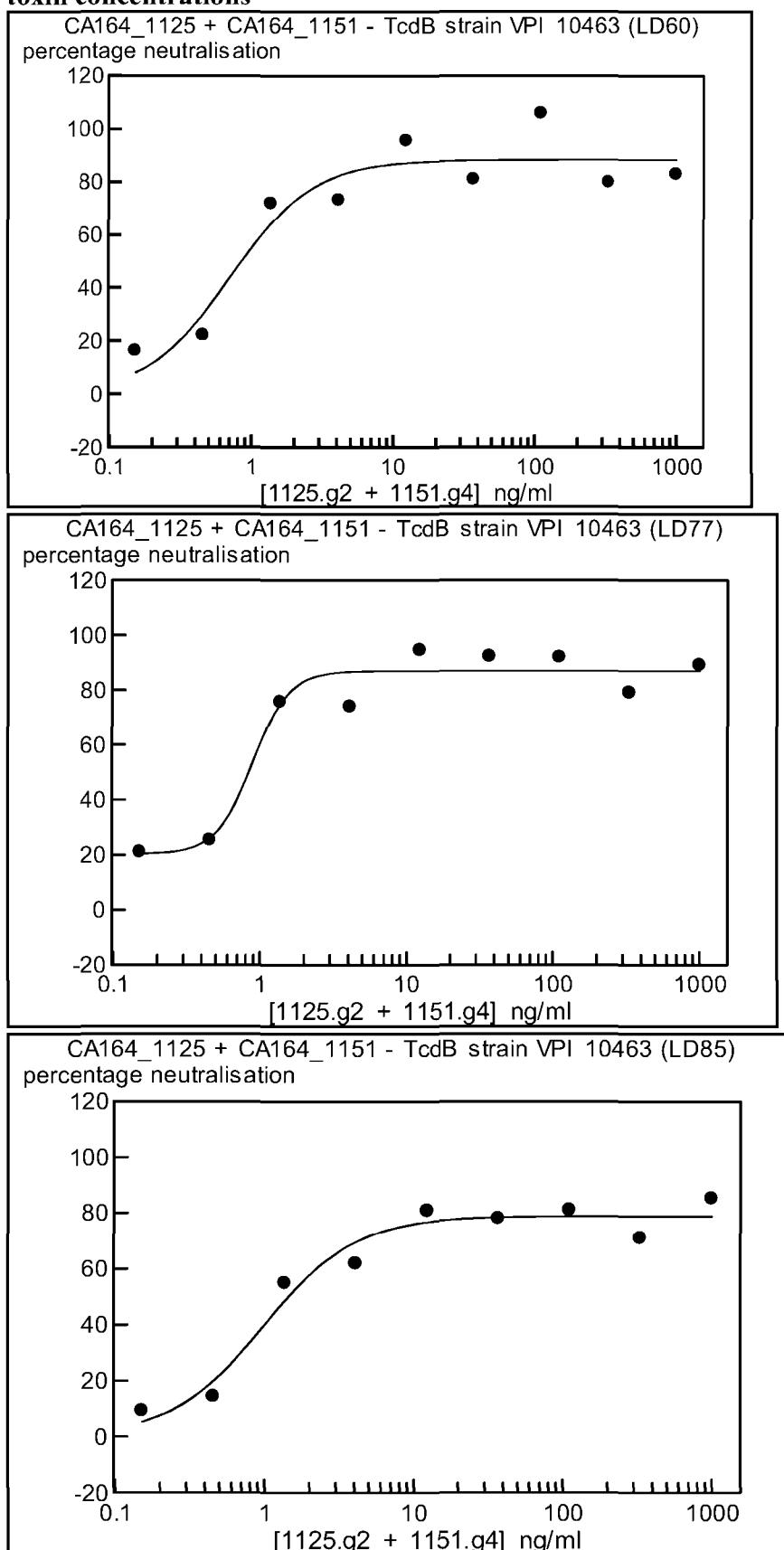
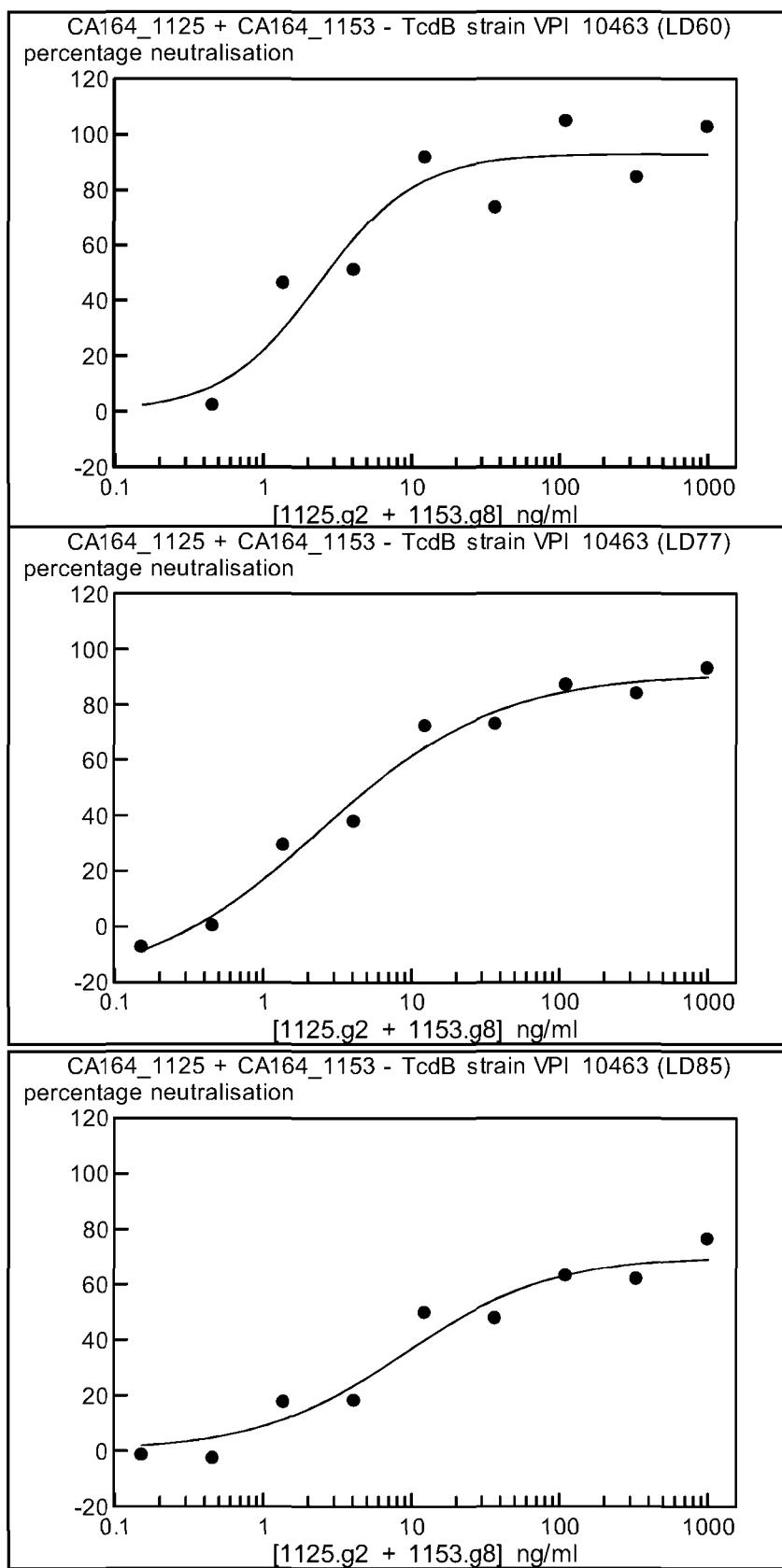


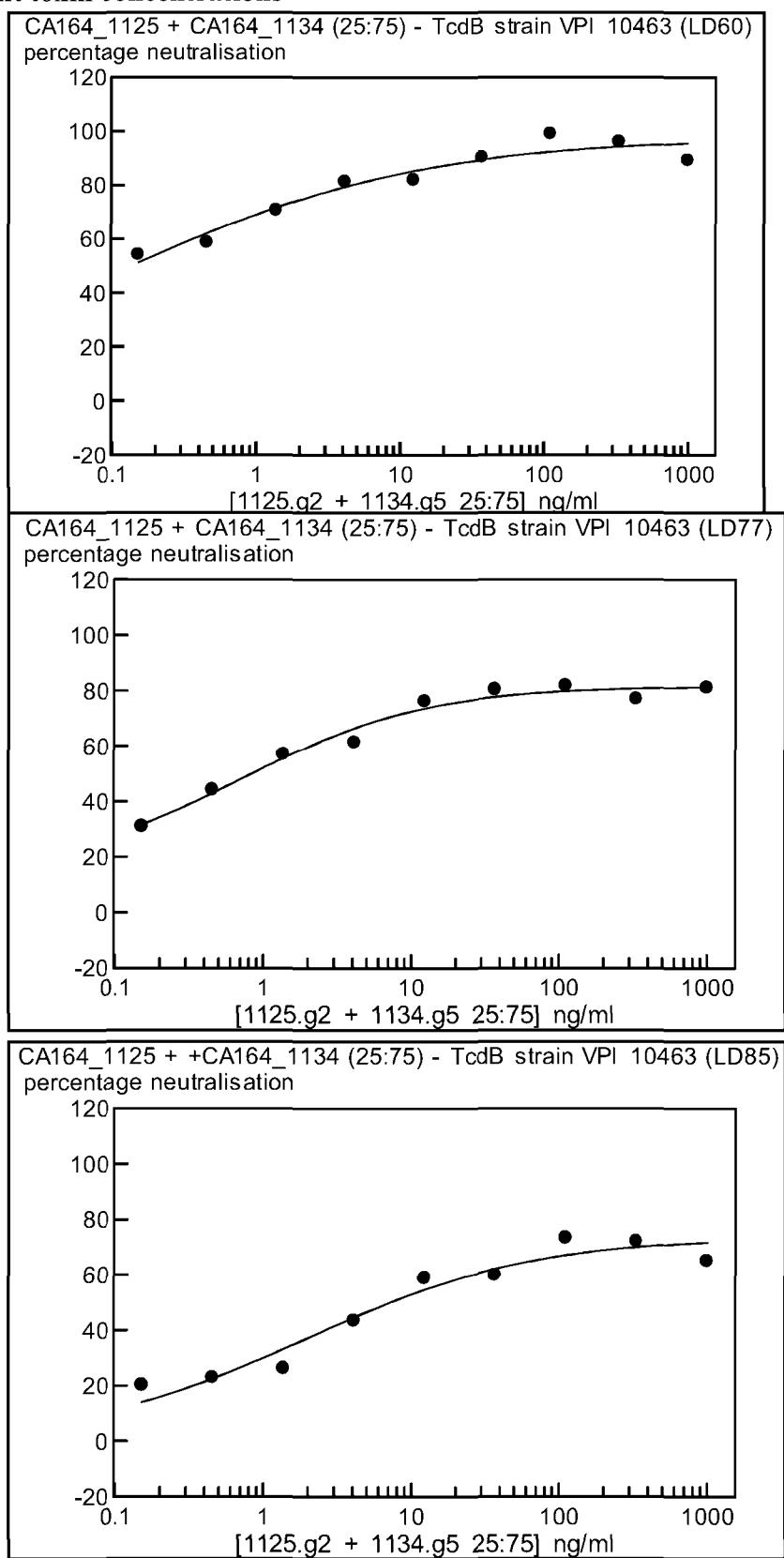
Figure 33 Anti TedB (Ribotype 003) in-vitro neutralization data for three Mab mixtures

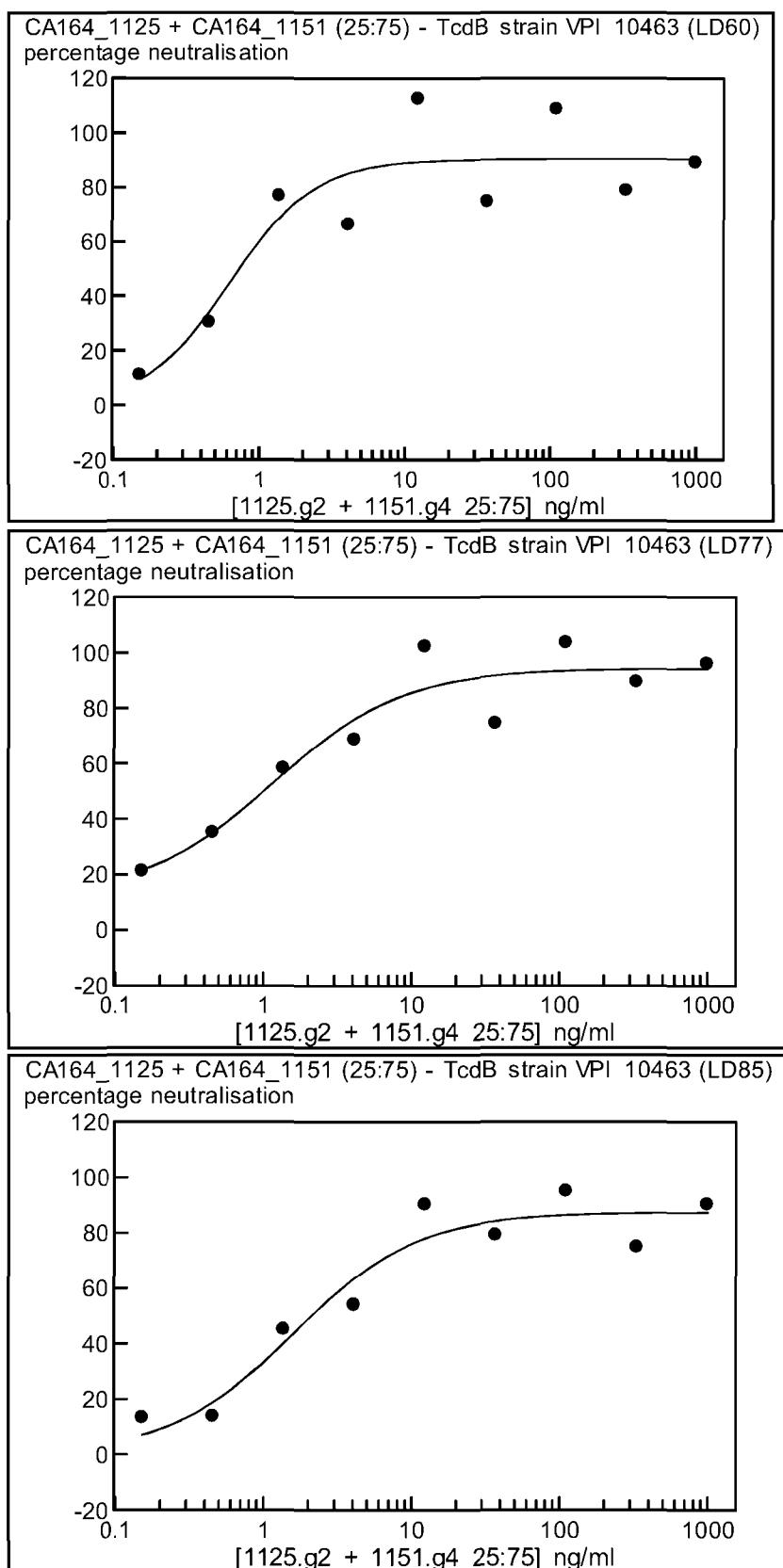

Figure 34 Anti TcdB (Ribotype 003) in-vitro neutralization data for two Mab mixtures at different toxin concentrations

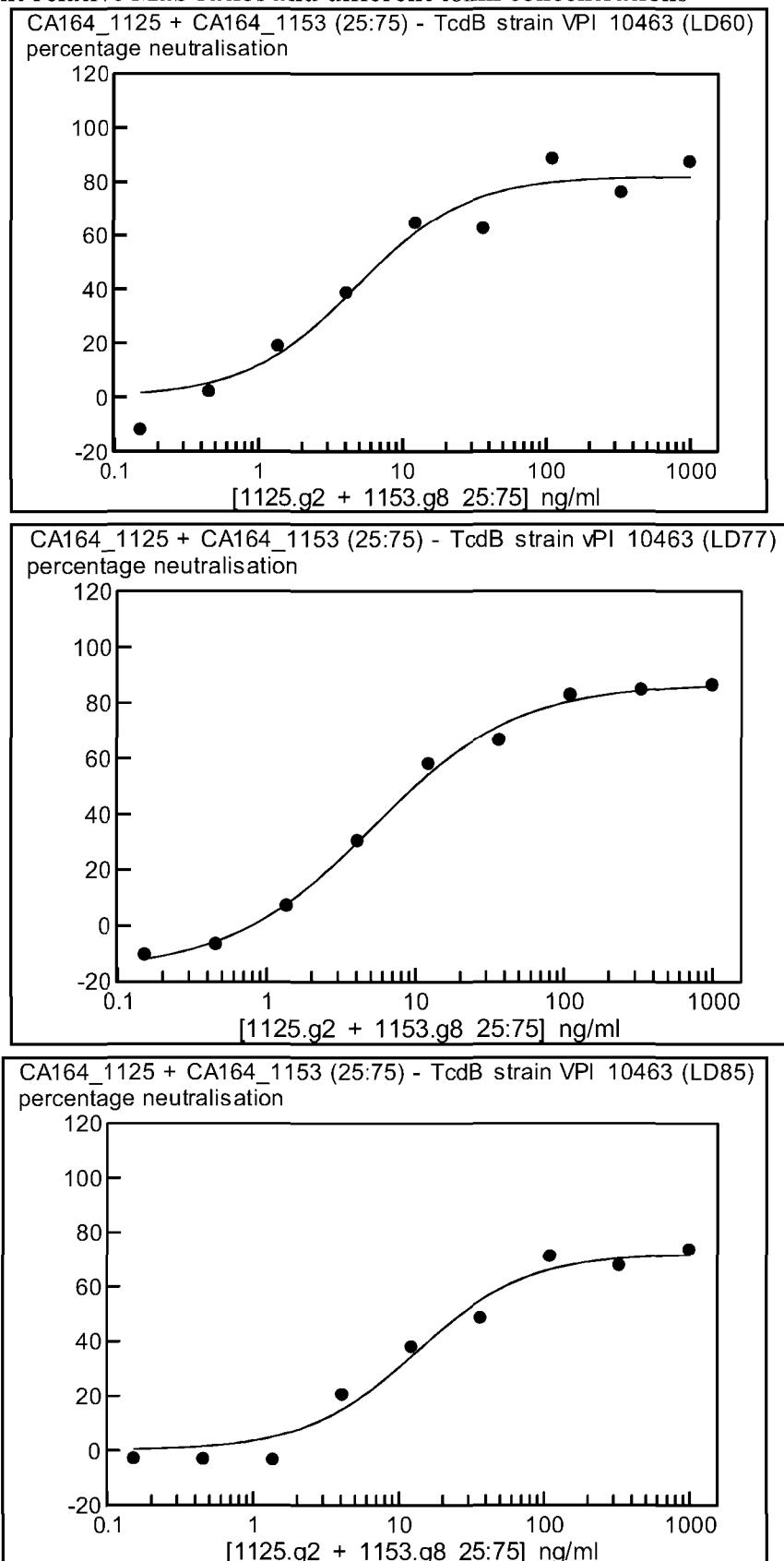

Figure 35 Anti TcdB (Ribotype 003) in-vitro neutralization data for two Mab mixtures at different toxin concentrations


Figure 36 Anti TcdB (Ribotype 003) in-vitro neutralization data for two Mab mixtures at different toxin concentrations


Figure 37 Anti TcdB (Ribotype 003) in-vitro neutralization data for two Mab mixtures at different toxin concentrations


Figure 38 Anti TcdB (Ribotype 003) in-vitro neutralization data for two Mab mixtures at different toxin concentrations


Figure 39 Anti TcdB (Ribotype 003) in-vitro neutralization data for two Mab mixtures at different toxin concentrations


Figure 40 Anti TcdB (Ribotype 003) in-vitro neutralization data for two Mab mixtures at different toxin concentrations

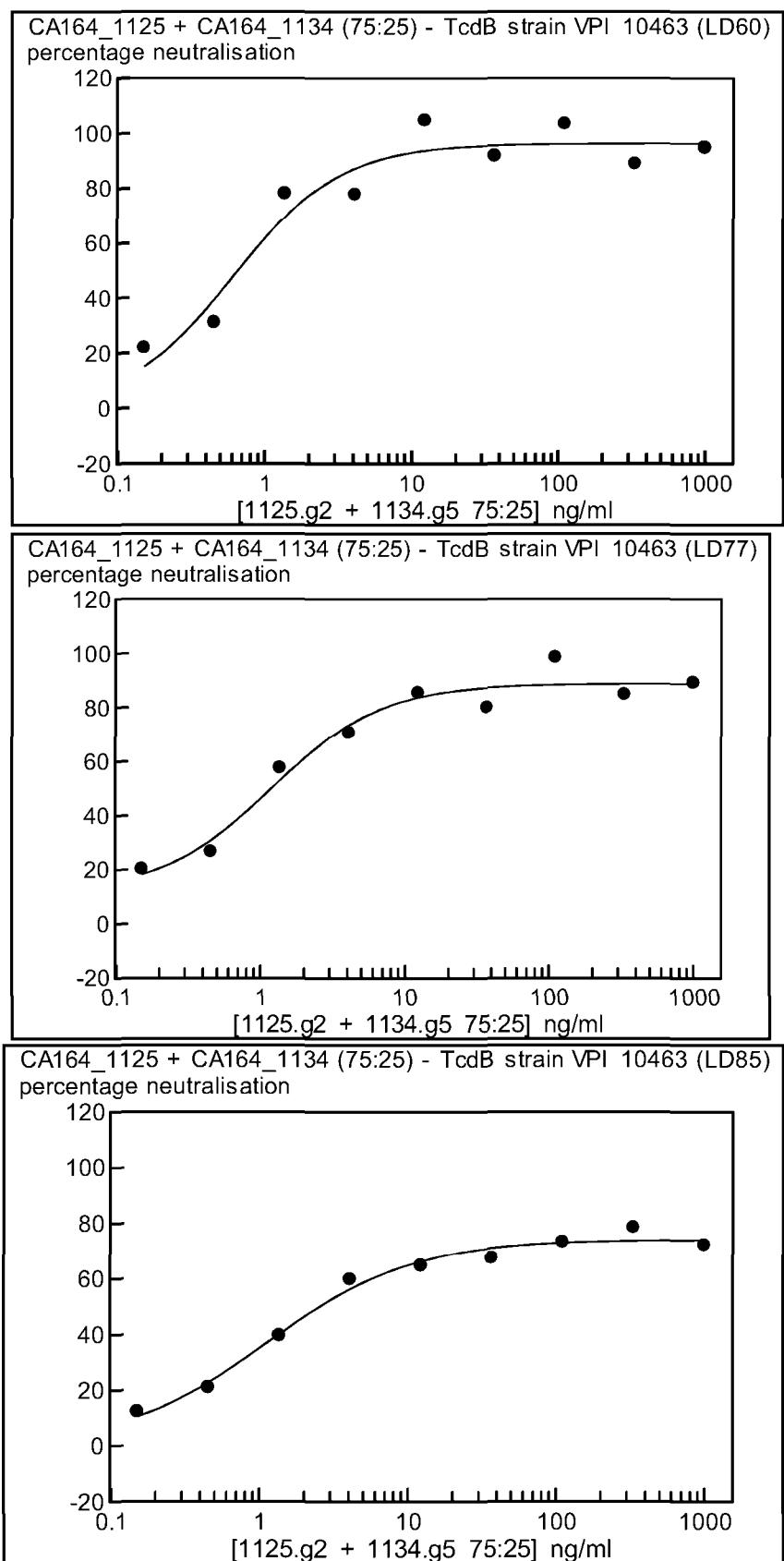
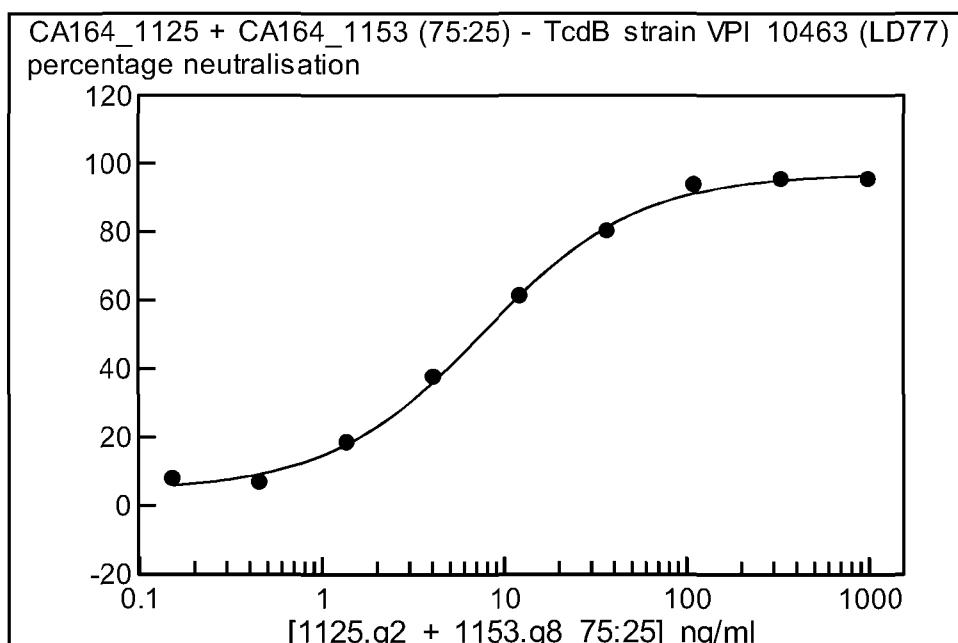
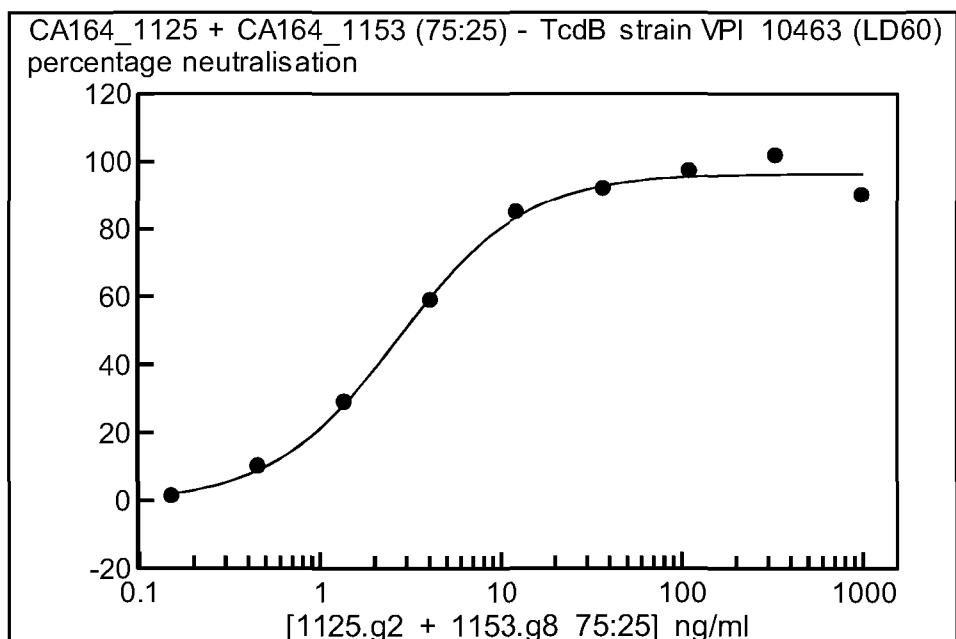
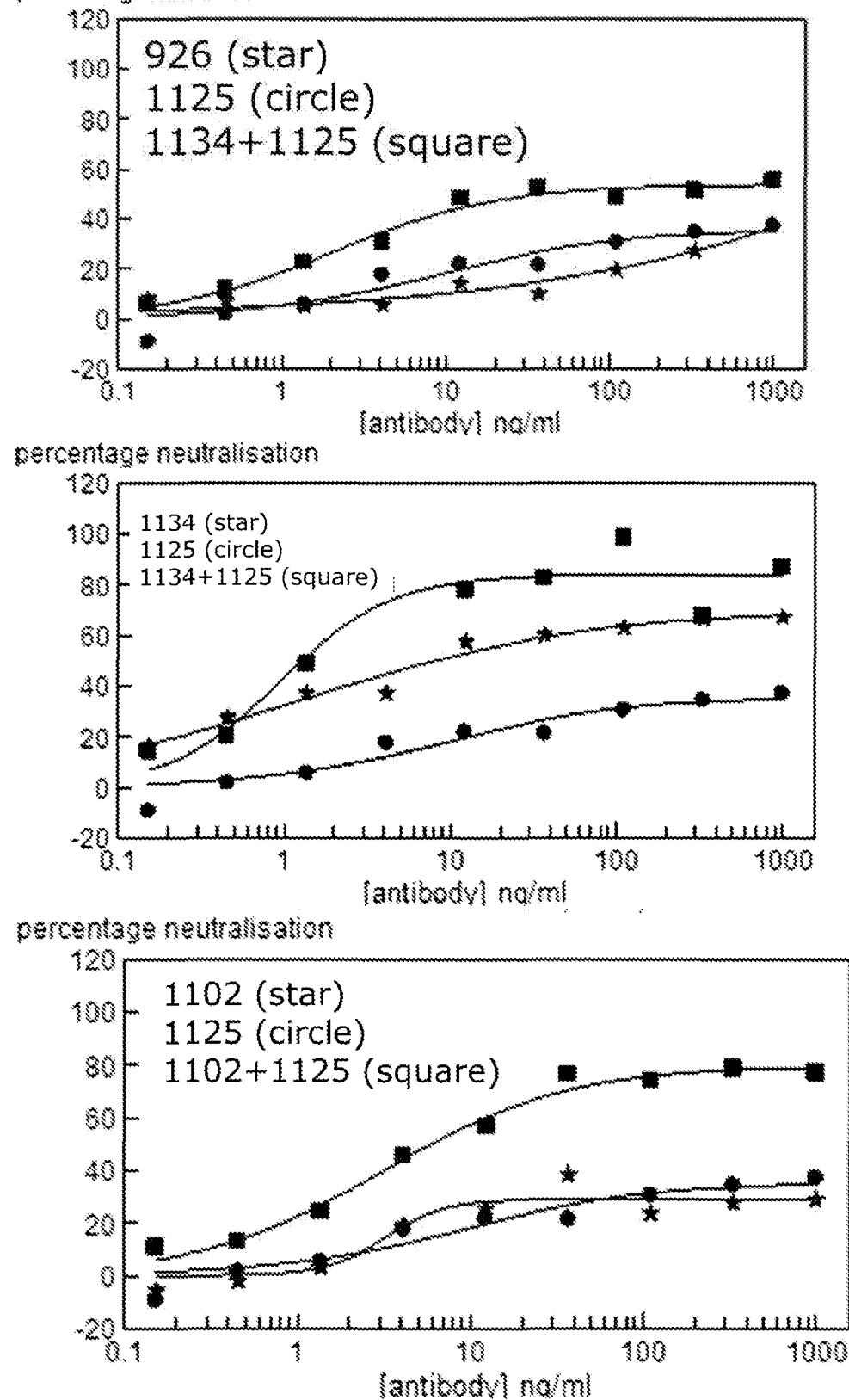
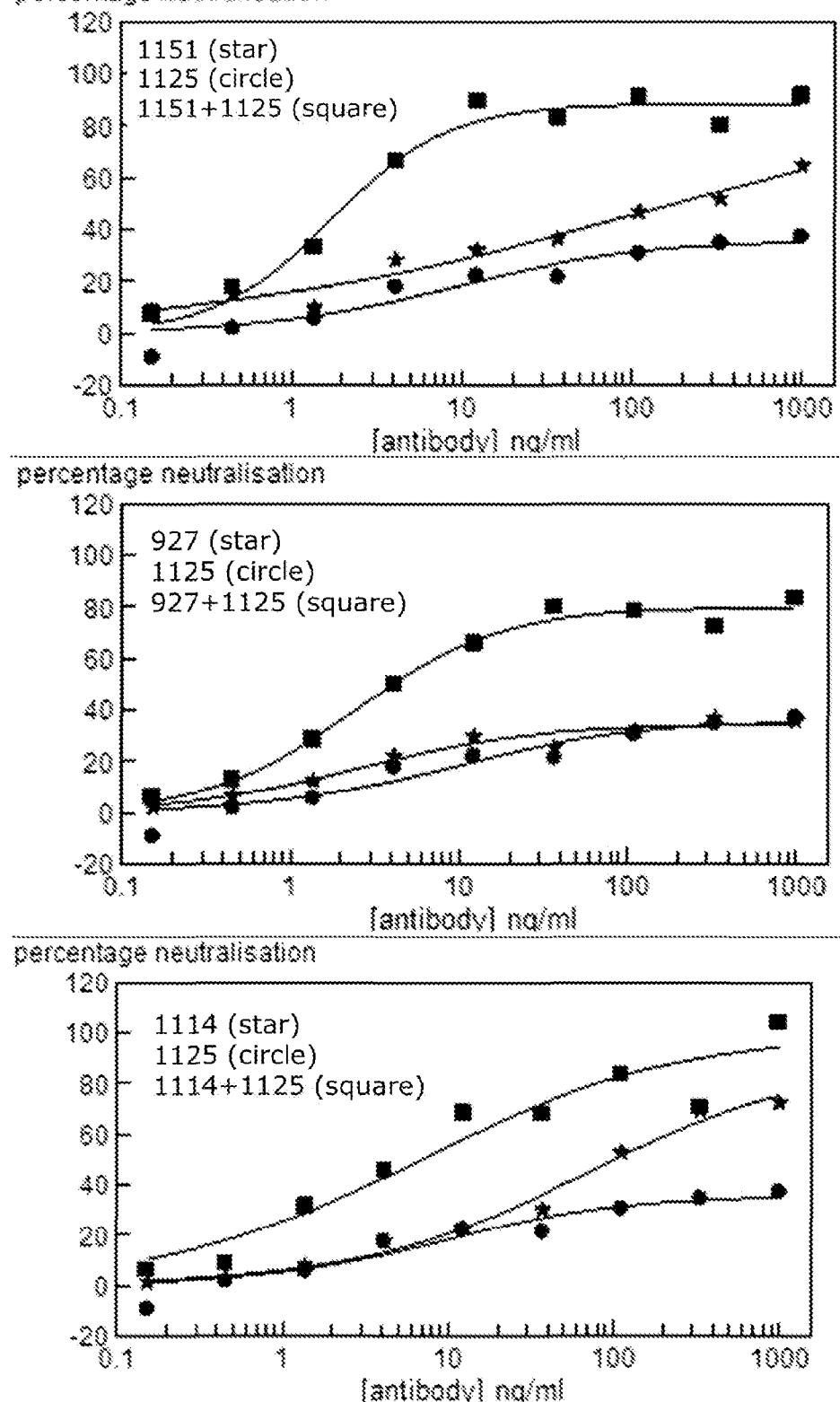
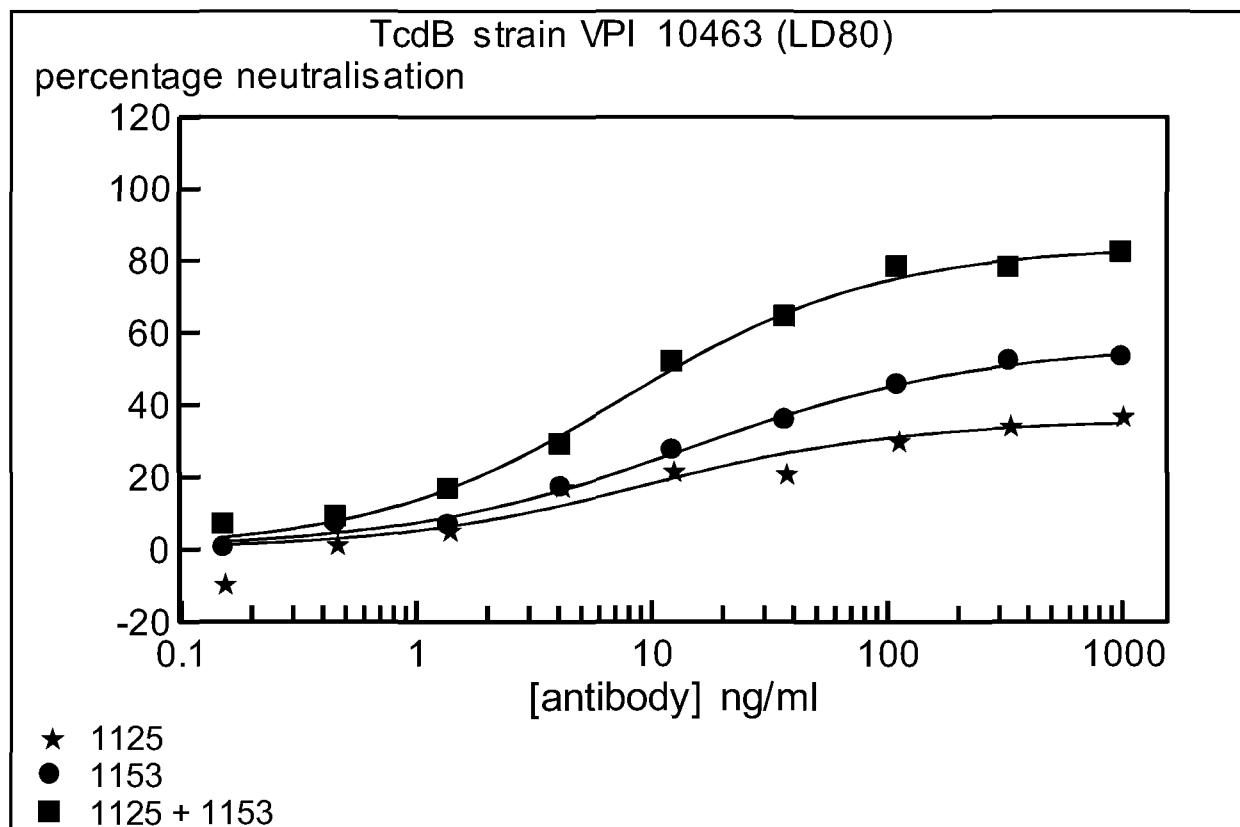

Figure 41 Anti TcdB (Ribotype 003) in-vitro neutralisation data for two Mab mixtures at different relative Mab ratios and different toxin concentrations

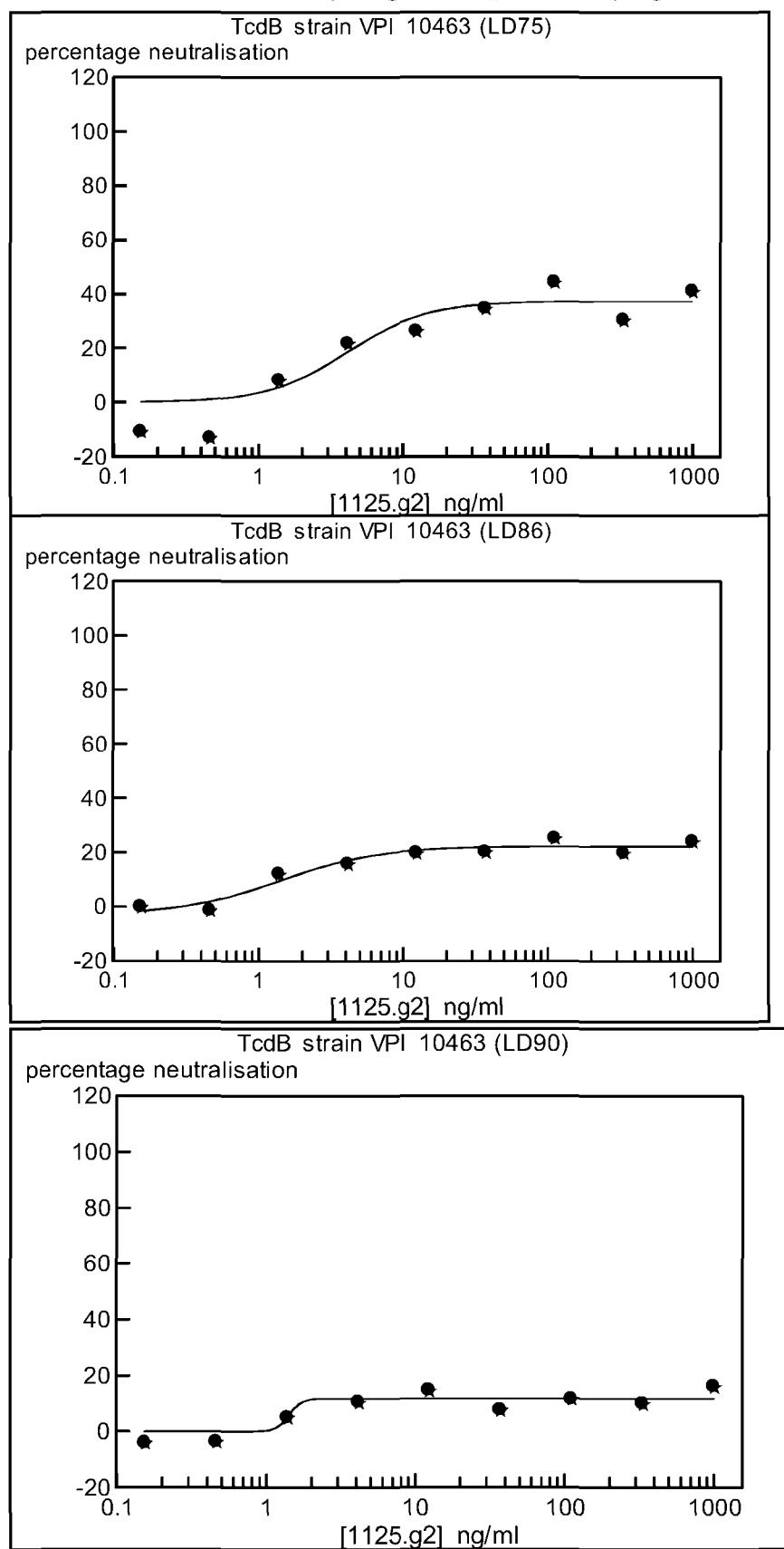
Figure 42 Anti TcdB (Ribotype 003) in-vitro neutralization data for two Mab mixtures at different relative Mab ratios and different toxin concentrations

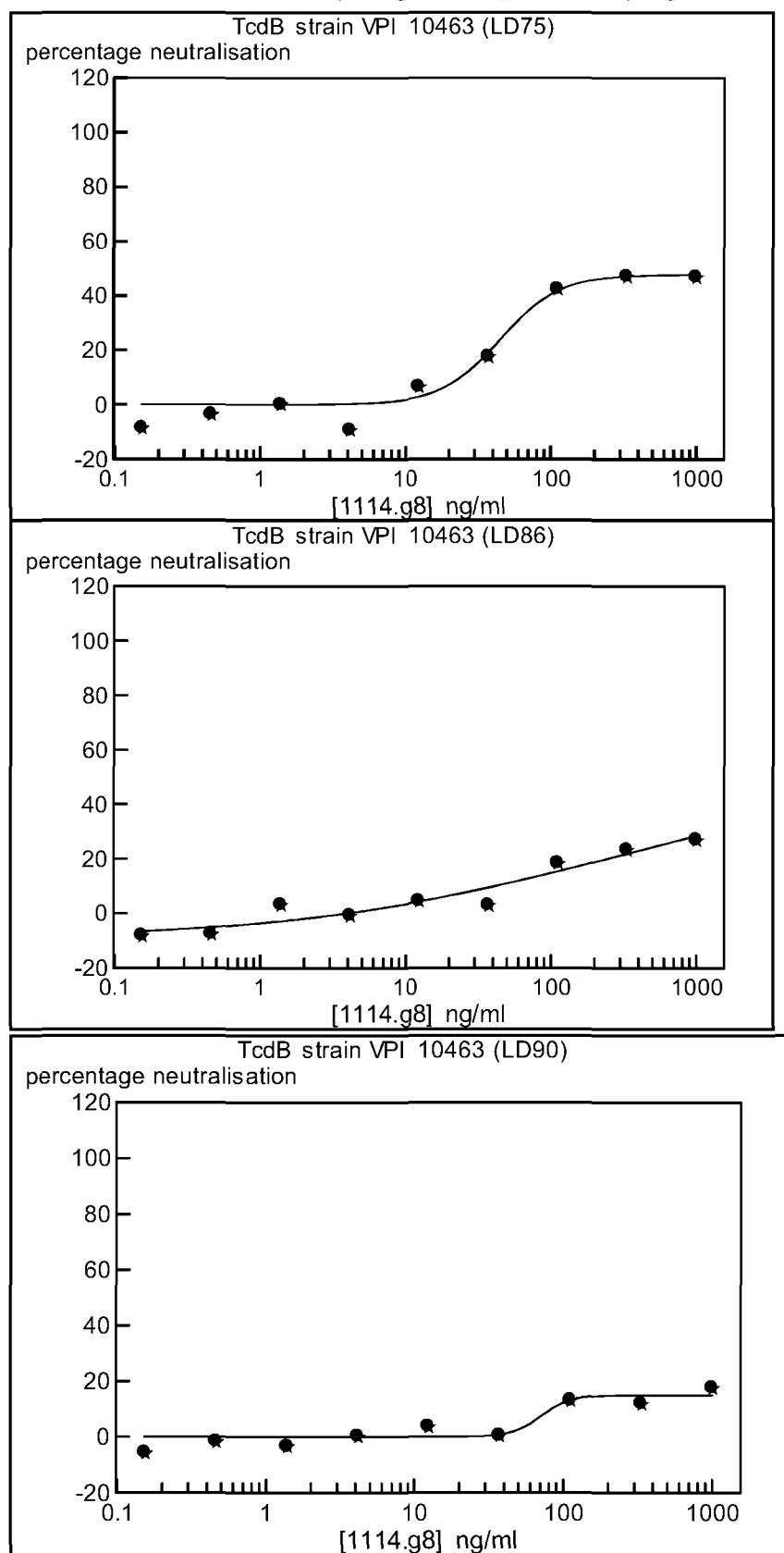


Figure 43 Anti TcdB (Ribotype 003) in-vitro neutralization data for two Mab mixtures at different relative Mab ratios and different toxin concentrations

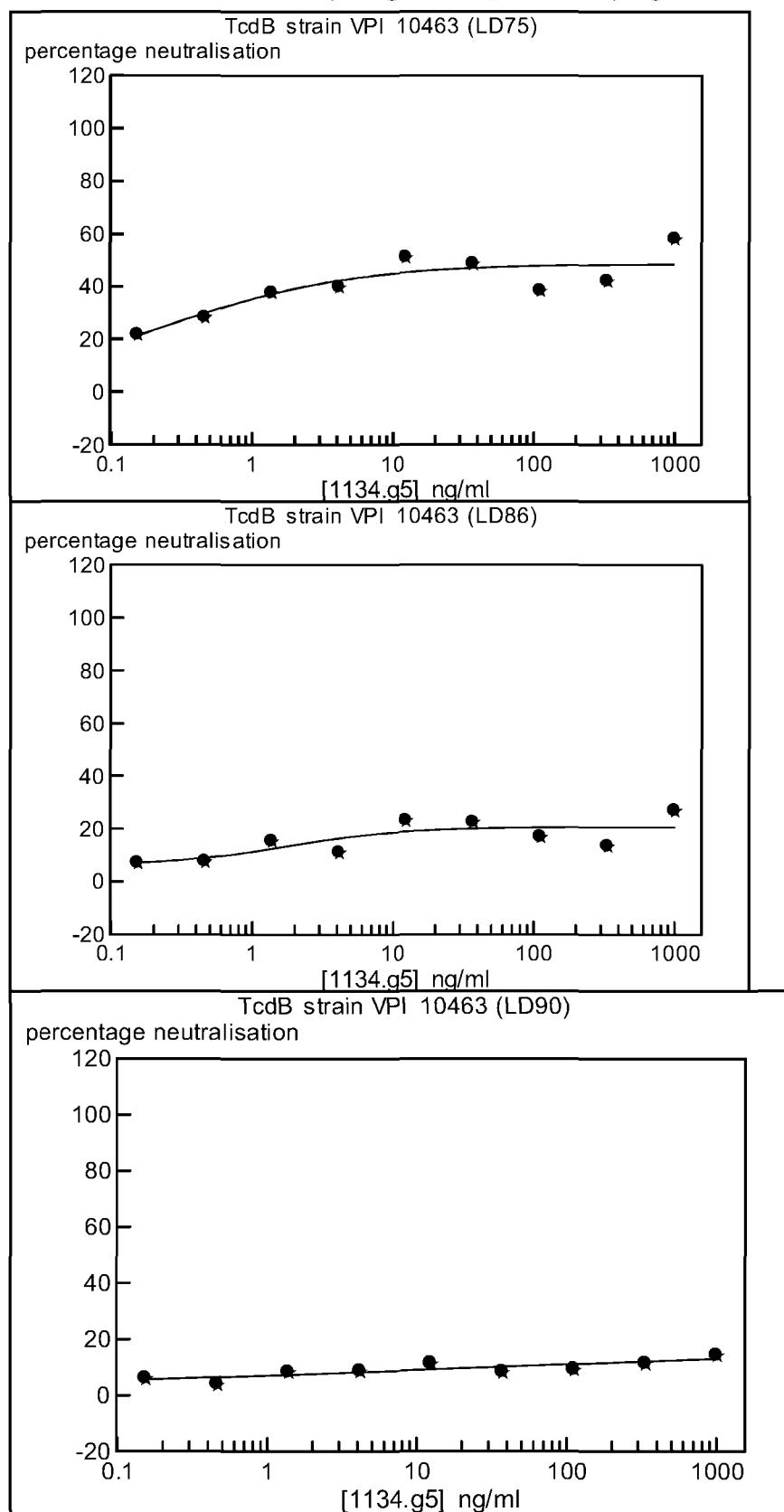

Figure 44 Anti TcdB (Ribotype 003) in-vitro neutralization data for two Mab mixtures at different relative Mab ratios and different toxin concentrations

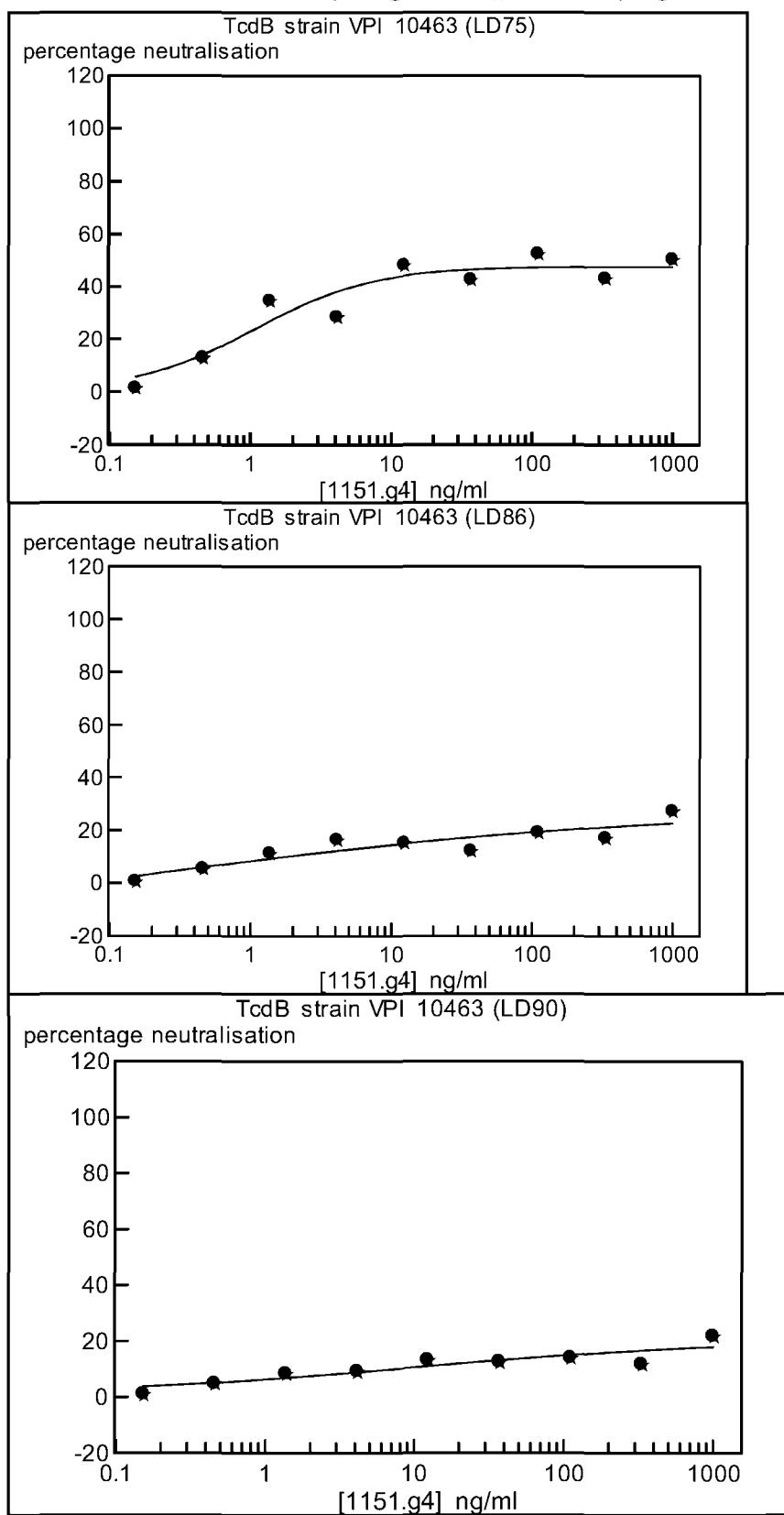

Figure 45 Anti TcdB (Ribotype 003) in-vitro neutralization data for two Mab mixtures at different relative Mab ratios and different toxin concentrations

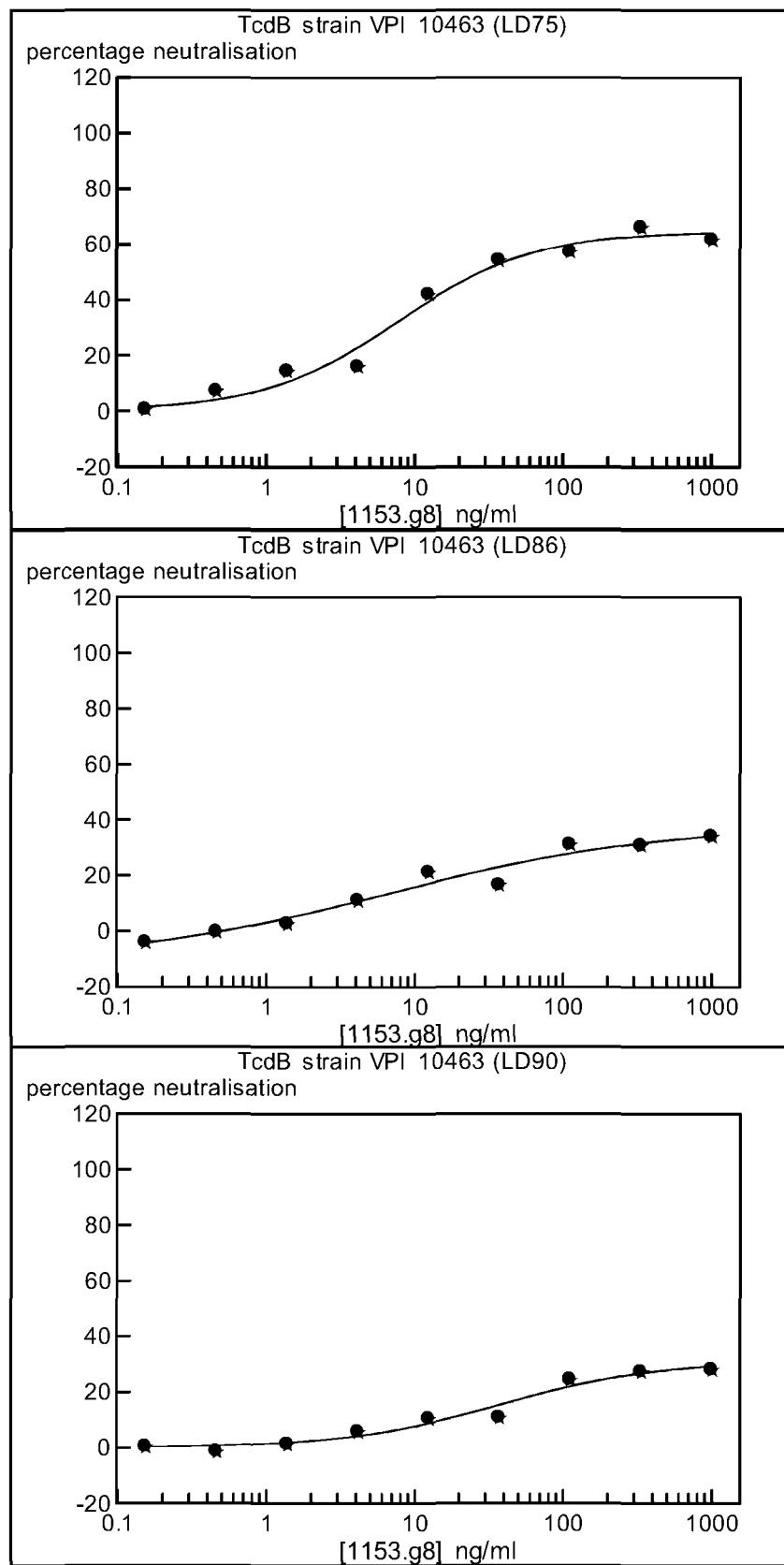


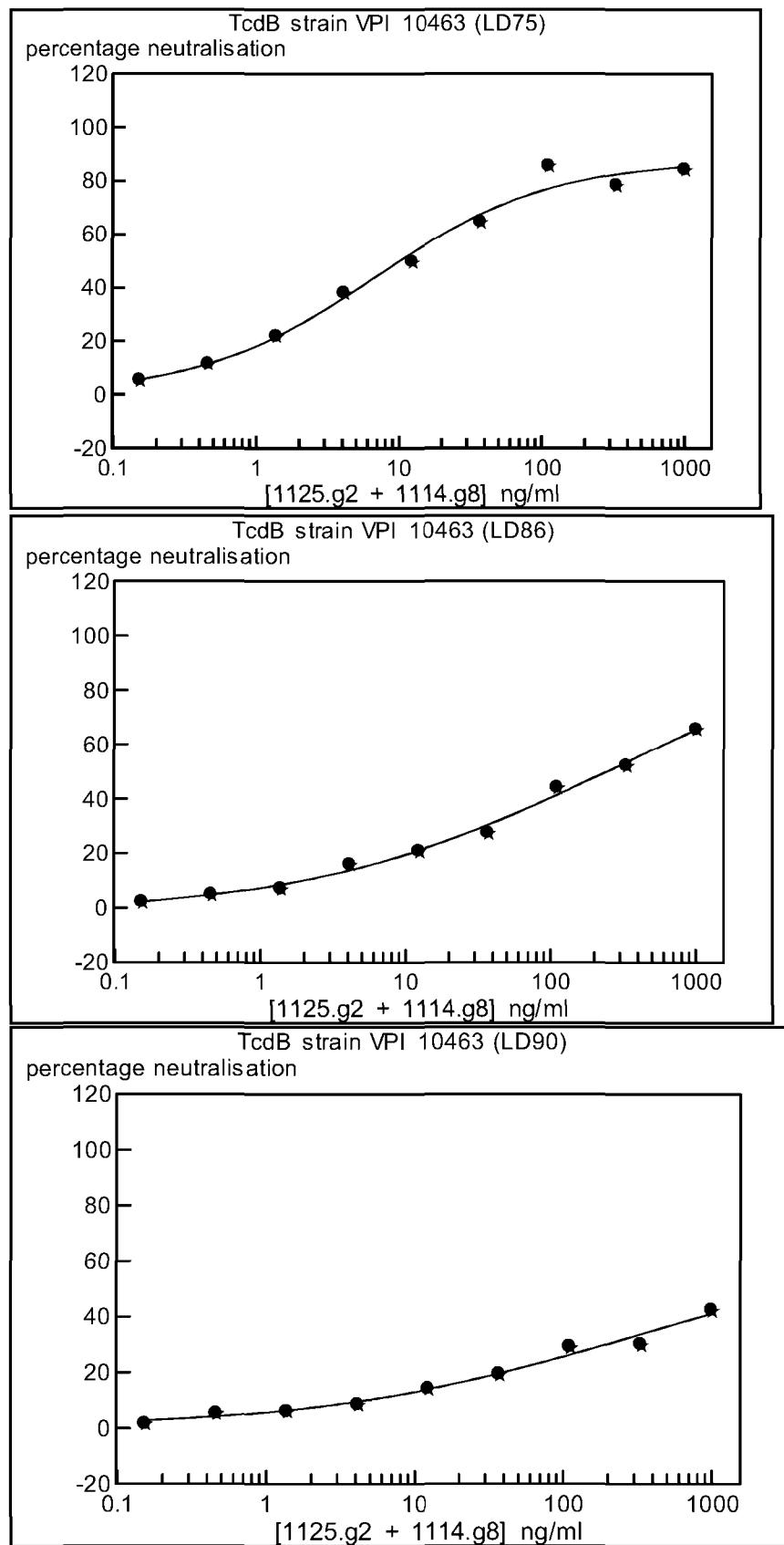

Figure 46 TcdB strain VPI 10463 neutralisation, Antibody singles and pairs, Constant toxin dose (LD80) percentage neutralisation

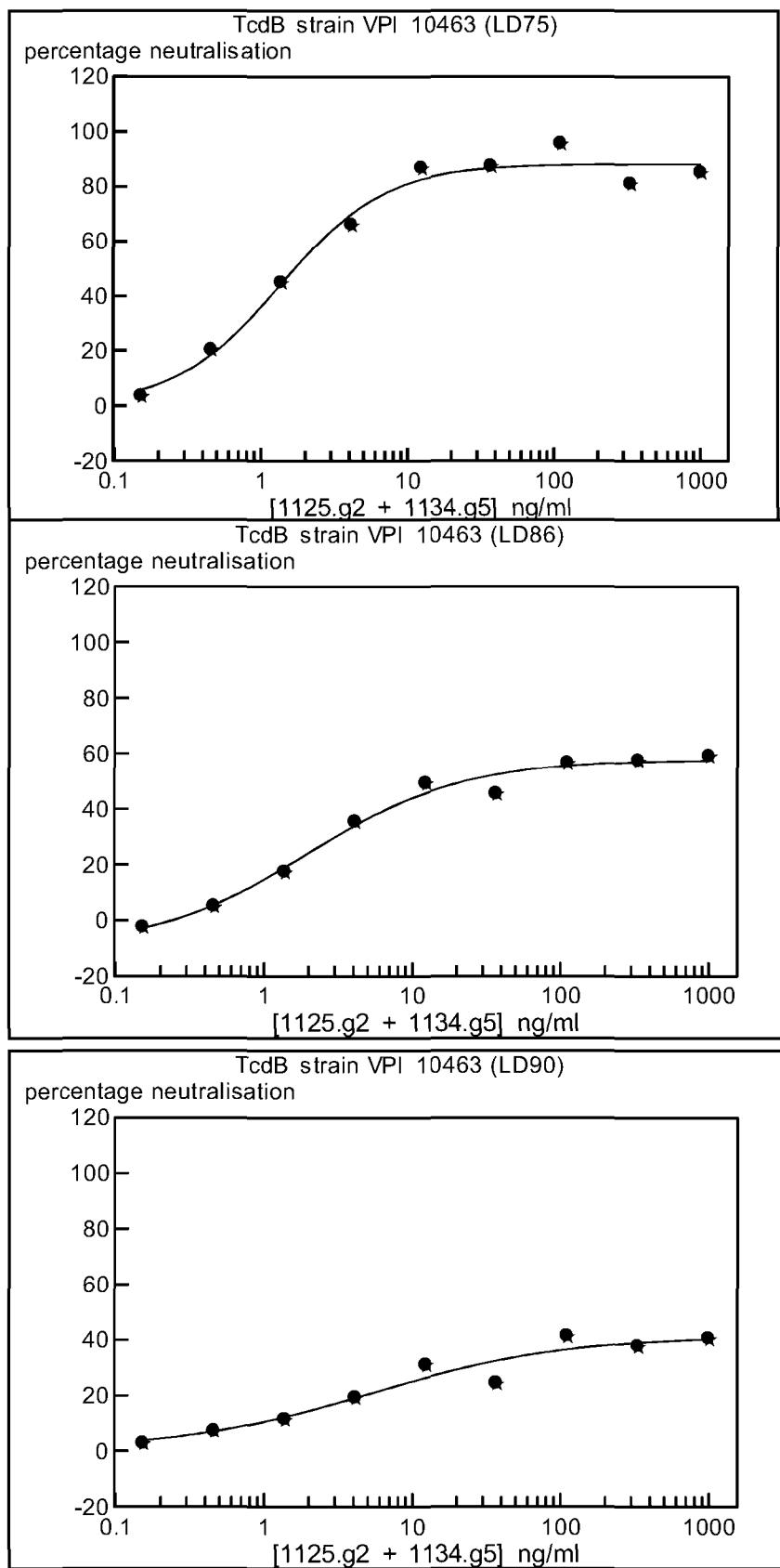


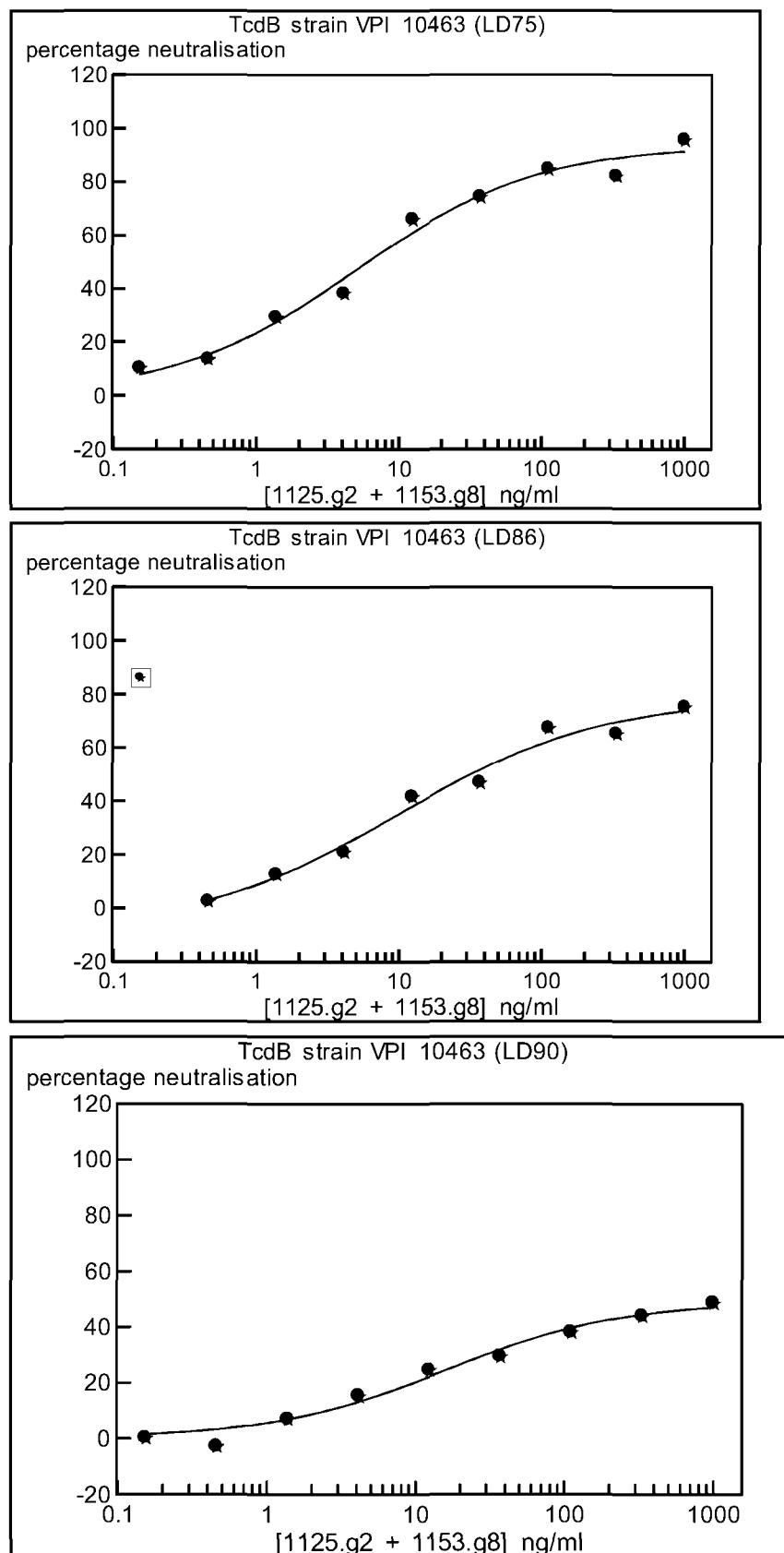

Figure 47 TcdB neutralisation, Antibody singles and pairs, Constant toxin dose (LD80) percentage neutralisation

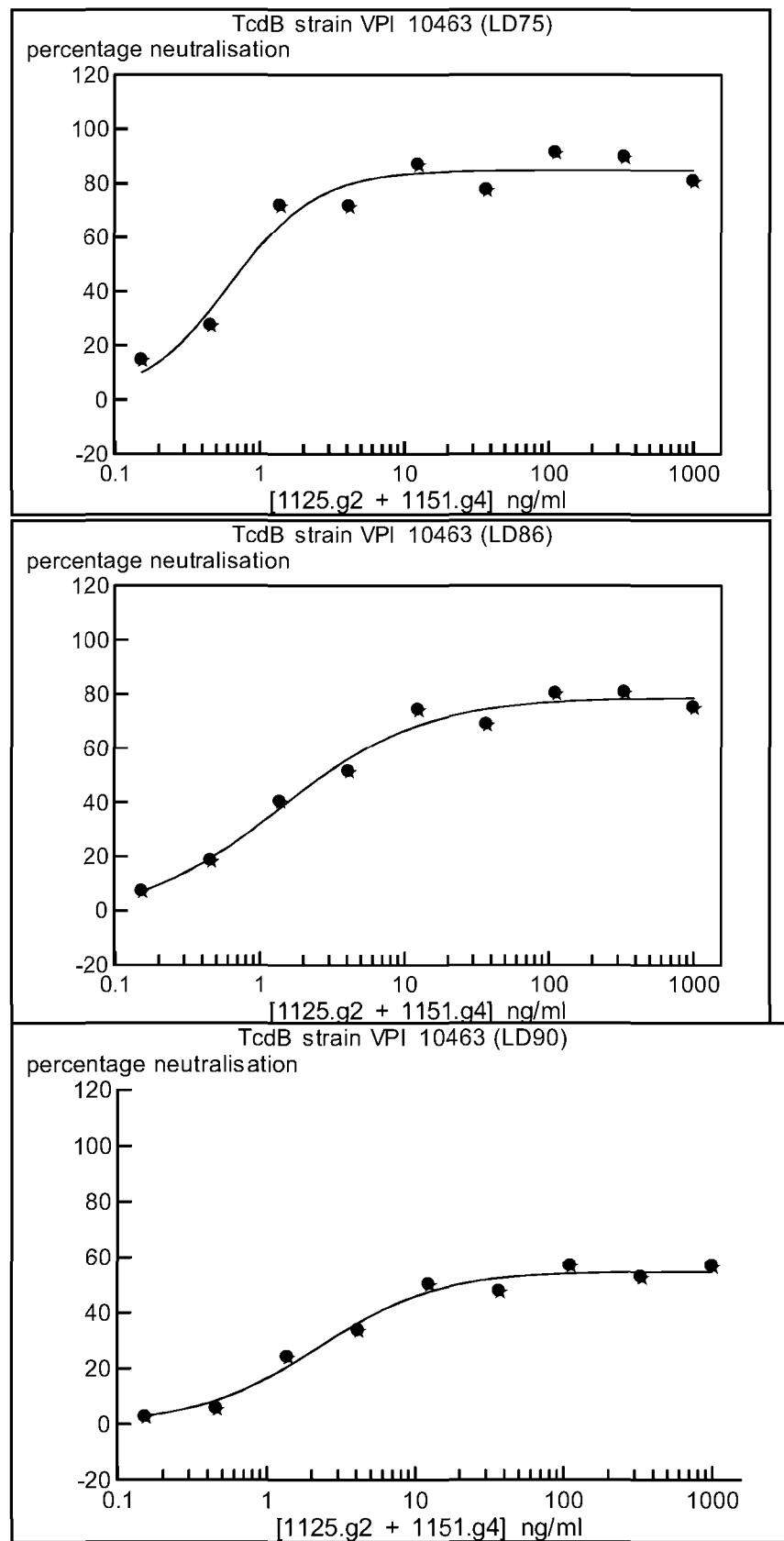


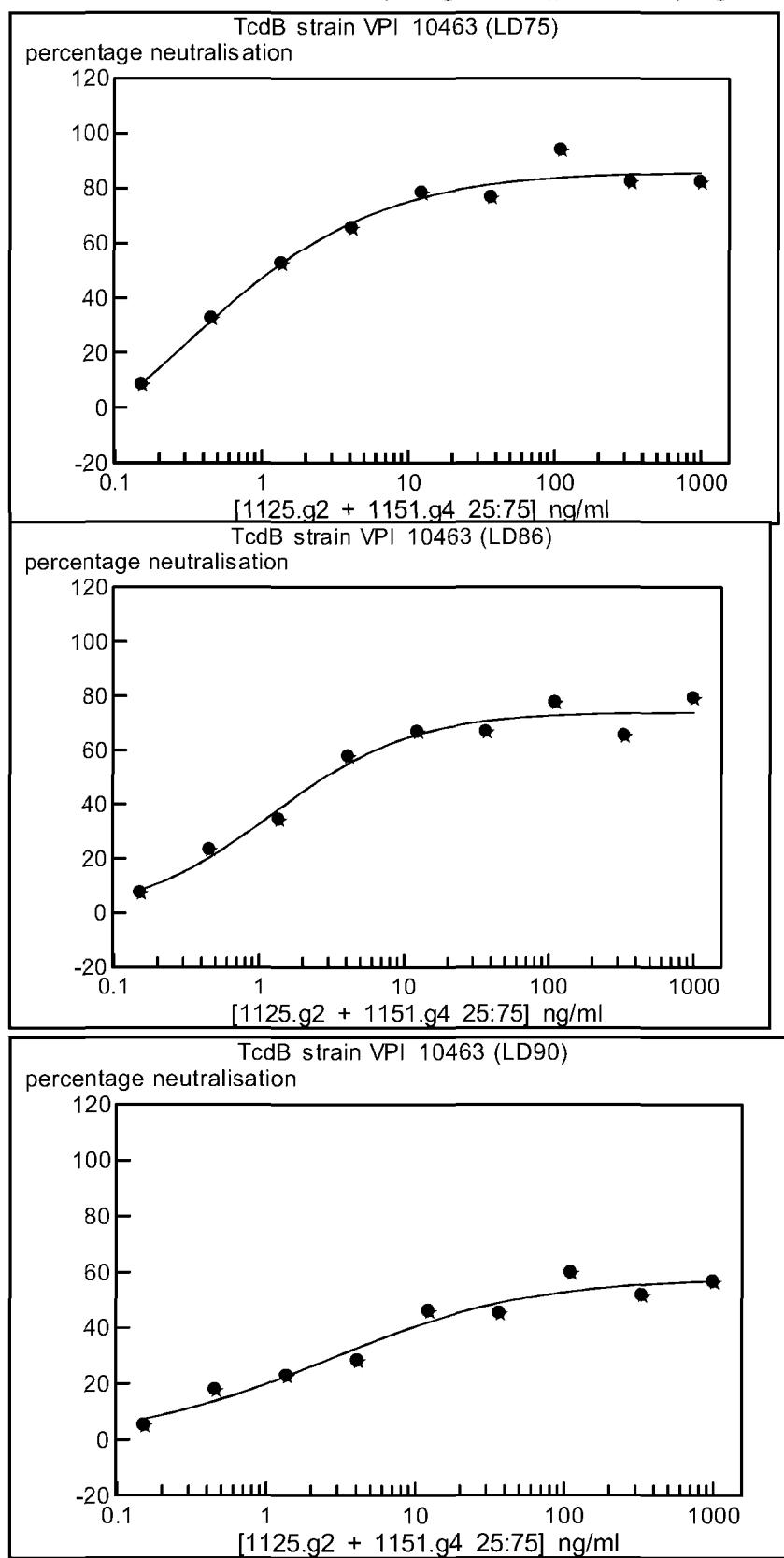

Figure 48 TcdB neutralisation, Antibody singles and pairs, Constant toxin dose (LD80)


Figure 49 TcdB neutralisation, Antibody singles and pairs, Varying toxin dose (straddling)


Figure 50 TcdB neutralisation, Antibody singles and pairs, Varying toxin dose (straddling)


Figure 51 TcdB neutralisation, Antibody singles and pairs, Varying toxin dose (straddling)


Figure 52 TcdB neutralisation, Antibody singles and pairs, Varying toxin dose (straddling)


Figure 53 TcdB neutralisation, Antibody singles and pairs, Varying toxin dose (straddling)

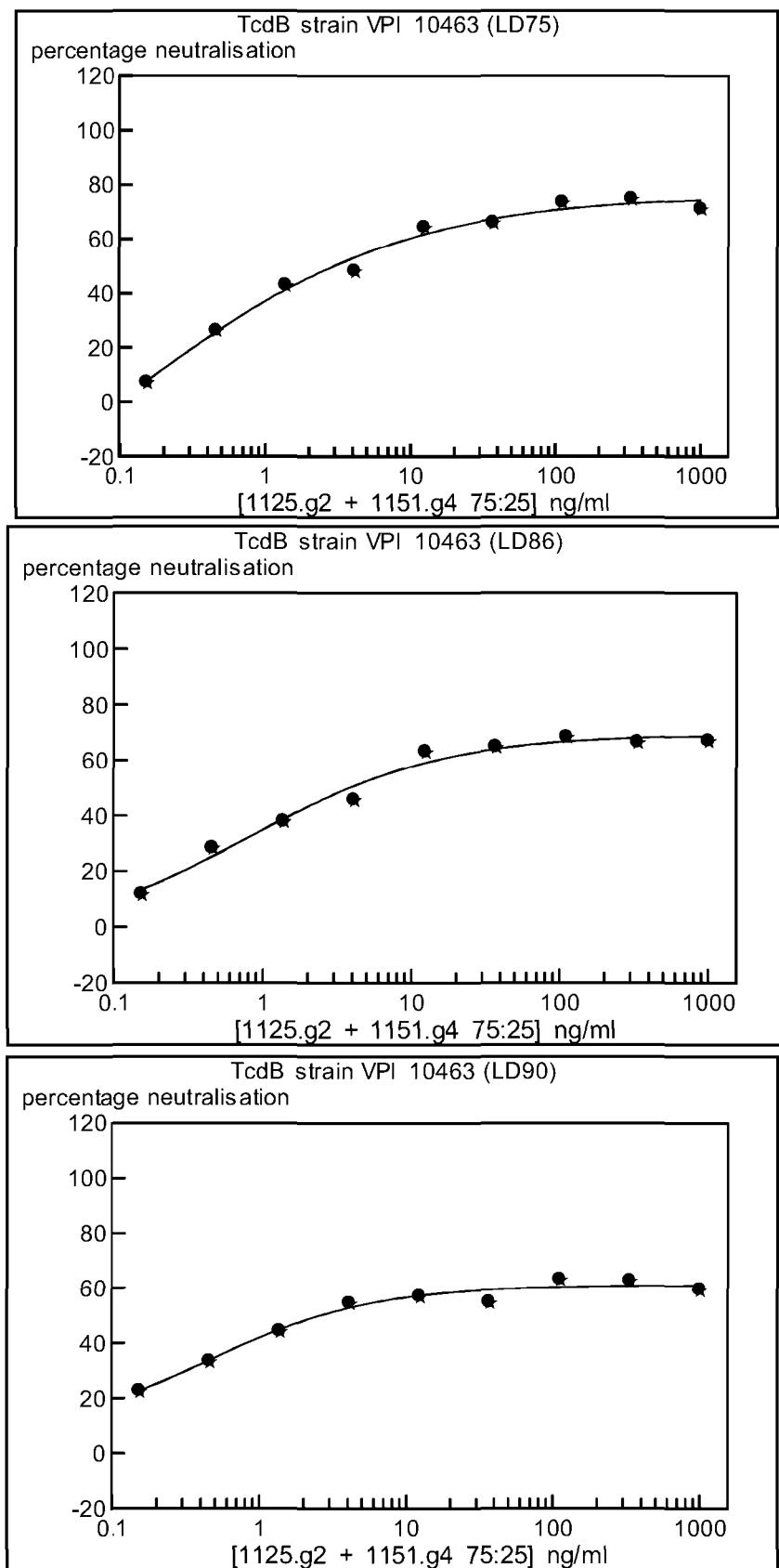

Figure 54 TcdB neutralisation, Antibody singles and pairs, Varying toxin dose (straddling)

Figure 55 TcdB neutralisation, Antibody singles and pairs, Varying toxin dose (straddling)

Figure 56 TcdB neutralisation, Antibody singles and pairs, Varying toxin dose (straddling)

Figure 57 TcdB neutralisation, Antibody singles and pairs, Varying toxin dose (straddling)

Figure 58 TcdB neutralisation, Antibody singles and pairs, Varying toxin dose (straddling)

Figure 59 TcdB neutralisation, Antibody singles and pairs, Varying toxin dose (straddling)

Figure 60 Amino Acid sequence for TcdA SEQ ID NO: 171

MSLISKEELI KLAY SIRPRE NEYKTILTNL DEYNKLTTNN NENKYLQLKK LNESIDVFMN
 KYKTSSRNRA LSNLKKDILK EVILIKNSNT SPVEKNLHFV WIGGEVSDIA LEYIKQWADI
 NAEYNIKLWY DSEAFLVNTL KKAIVESSTT EALQLEEEI QNPQFDNMKF YKKRMEFIYD
 RQKRFINYKK SQINKPTVPT IDDIIKSHLV SEYNRDETVL ESYRTNSLRK INSNHGDIDR
 ANSLFTEQEL INIYSQELLN RGNLAAASDI VRLLALKNFG GYVLDVDMLP GIHSDLFKTI
 SRPSSIGLDR WEMIKLEAIM KYKKYINNYT SENFDKLDQQ LKDNFKLIIE SKSEKSEIFS
 KLENLNVSDL EIKIAFALGS VINQALISKQ GSYLTNLVIE QVKNRYQFLN QHLPNAIESD
 NNFTDTTKIF HDSLFSATA ENSMFLTKIA PYLQVGFMP ARSTISLSGP GAYASAYYDF
 INLQENTIEK TLKASDLIEF KFPENNLSQL TEQEINSLWS FDQASAKYQF EKYVRDYTGG
 SLSEDNGVDF NKNTALDKNY LLNNKIPSNN VEEAGSKNYV HYIIQLQGDD ISYEATCNLF
 SKNPKNIII QRNMNESAKS YFLSDDGESI LELNKYRIPE RLKNKEKVKV TFIGHGKDEF
 NTSEFARLSV DSLSNEISSL DDTIKLDISP KNVEVNLLGC NMFSYDFNVE ETYPGKLLS
 IMDKITSTLP DVNKNSITIG ANQYEVRIINS EGRKELLAHS GKWINKEEAI MSDLSSKEYI
 FFDSIDNKLK AKSKNIPGLA SISEDIKTLL LDASVSPDTK FILNNKLNI ESSIGDYIYY
 EKLEPVKNII HNSIDDLIDE FNLLENVSDE LYELKKLNNI DEKYLISFED ISKNNSTYSV
 RFINKSNGES VYVETEKEIF SKYSEHITKE ISTIKNSIIT DVNGNLLDNI QLDHTSQVNT
 LNAAFFIQSL IDYSSNKDVL NDLSTSVKVQ LYAQLFSTGL NTIYDSIQLV NLISNAVNDT

INVLPITIEG IPIVSTILDG INLGAAIKEL LDEHDPLLKK ELEAKVGVL A INMSLSIAAT
 VASIVGIGAE VTIFLPPIAG ISAGIPSLVN NELILHDKAT SVVNYFNHLS ESKKYGPLKT
 EDDKILVPID DLVISEIDFN NNSIKLGTCTN ILAMEGGSGH TVTGNIDHFF SSPSISSHIP
 SLSIYSAIGI ETENLDFSKK IMMLPNAPSR VFWWETCAVP GLRSLENDGT RLLDSIRDLY
 PGKFYWRFYA FFDYAITTLK PVYEDTNKI KLDKDTRNFI MPTITTNEIR NKLSYSFDGA
 GGTYSLLLSS YPISTNINLS KDDLWIFNID NEVREISIEN GTIKKGKLIK DVLSKIDINK
 NKLIICNQTI DFSGDIDNKD RYIFLTCELD DKISLIIIEIN LVAKSYSLLL SGDKNYLISN
 LSNTIEKINT LG LDSKNIAY NYTDESNNKY FGAISKTSQK SIIHYKKDSK NILEFYNDST
 LEFNSKDFIA EDINVFMKDD INTITGKYYV DNNTDKSIDF SISLVSKNQV KVNGLYLINES
 VYSSYLDVFVK NSDGHHNTSN FMNLFLDNIS FWKLFGFENI NFVIDKYFTL VGKTNLGYVE
 FICDNNKNID IYFGEWKTSS SKSTIFSGNG RNVVVEPIYN PDTGEDISTS LDFSYEPLYG
 IDRYINKVLI APDLYTSLIN INTNYYNSNEY YPEIIVLNPN TFHKKVNINL DSSSEFEYKWS
 TEGSDFILVR YLEESNKKIL QKIRIKGILS NTQSFNKMSI DFKDIKKLSL GYIMSNFKSF
 NSENELDRDH LGFKIIDNKT YYDEDASKLV KGLININNSL FYFDPIEFNL VTGWQTINGK
 KYYFDINTGA ALTSYKIING KHFYFNNDGV MQLGVFKGPD GFEYFAPANT QNNNIEGQAI
 VYQSKFLTLN GKKYYFDNNNS KAVTGWRIIN NEKYYFNPNN AIAAVGLQVI DNNKYYFNPD
 TAIISKGWQT VNGSRYYYFDT DTAIAFNGYK TIDGKHFYFD SDCVVKIGVF STSNGFEYFA
 PANTYNNNNIE GQAIVYQSKF LTNGKKYYF DNNSKAVTGL QTIDSKKYYF NTNTAEAATG

WQTIDGKKYY FNTNTAEAAT GWQTIDGKKY YFNTNTAIAS TGYTIINGKH FYFNTDGIMQ
 IGVFKGPNGF EYFAPANTDA NNIEGQAILY QNEFLTNGK KYYFGSDSKA VTGWRRIINNK
 KYYFNPNNAI AAIHLCTINN DKYYFSYDGI LQNGYITIER NNFYFDANNE SKMVTGVFKG
 PNGFEYFAPA NTHNNNIEGO AIVYQNKEIT LNGKKYYFDN DSKAVTGWQT IDGKKYYFNL
 NTAEEATGWQ TIDGKKYYFN LNTAEAATGW QTIDGKKYYF NTNTFIASTG YTSINGKHFY
 FNTDGIMQIG VFKGPNGFEY FAPANTDANN IEGQAILYQN KFLTLNGKKY YFGSDSKAVT
 GLRTIDGKKY YFNTNTAVAV TGWQTINGKK YYFNTNTSIA STGYTIISGK HFYFNTDGIM
 QIGVFKGPDG FEYFAPANTD ANNIEGQAIR YQNRFYLHD NIYYFGNNSK AATGWVTIDG
 NRYYFEPNTA MGANGYKTID NKNFYFRNGL PQIGVFKGSN GFEYFAPANT DANNIEGQAI

RYQNRLFHLL GKIYYFGNNS KAVTGWQTIN GKVYYFMPDT AMAAAGGLFE IDGVIYFFGV
 DGVKAPGIYG

Figure 61 Amino Acid sequence for TcdB SEQ ID NO: 172

MSLVNRKQLE KMANVRFRTQ EDEYVAILDA LEEYHNMSEN TVVEKYLKLK DINSLTDIYI
 DTYKKSCRNK ALKKFKEYLV TEVLELKNNN LTPVEKNLHF VWICCGQINDT AINYINQWKD
 VNSDYNVNPF YDSNAFLINT LKKTVVESAI NDTLESFREN LNDPRFDYNK FFRKRMEIIY
 DKQKNFINYY KAQREENPEL IIDDIVKTYL SNEYSKEIDE LNTYIEESLN KITQNSGNDV
 RNFEFKNGE SFNLYEQELV ERWNLAAASD ILRISALKEI GGMYLDVMDL PGIQPDLFES
 IEKPSSVTVD FWEMTKLEAI MKYKEYIPEY TSEHFDMLE EVQSSFESVL ASKSDKSEIF
 SSLGDMEASP LEVKIAFNSK GIINQGLISV KDSYCSNLIV KQIENRYKIL NNSLNPaise
 DNDFTTTNT FIDSIMAEAN ADNGRFMMEL GKYLRVGFFP DVKTTINLSG PEAYAAAYQD
 LLMFKEGSMN IHLIEADLRN FEISKTNISQ STEQEMASLW SFDDARAKAQ FEEYKRNYFE
 GSLGEDDNLD FSQNIVVDKE YLLEKISSLA RSSERGYIHY IVQLQGDKIS YEACNLFAK
 TPYDSVLFQK NIEDSEIAYY YNPGDGEIQE IDKYKIPSII SDRPKIKLTF IGHGKDEFNT
 DIFAGFDVDS LSTEIEAAID LAKEDISPKS IEINLLGCNM FSYSINVEET YPGKLLLKVK

DKISELMPSI SQDSIIVSAN QYEVRINSEG RRELLDHSGE WINKEESIICK DISSKEYISF
 NPKENKITVK SKNLPTELSTL LQEIRNNNSNS SDIELEEKVM LTECEINVIS NIDTQIVEER
 IEEAKNLTS defense SINYIKDEFK LIESISDALC DLKQOQELED SHFISFEDIS ETDEGFSIRF
 INKETGESIF VETEKTIIFSE YANHITEEIS KIKGTIFDTV NGKLVKKVNL DTTTHEVNTLN
 AAFFIQSLIE YNSSKESLSN LSVAMKVQVY AQLFSTGLNT ITDAAKVVEL VSTALDETID
 LLPTLSEGLP IIATIIDGVS LGAAIKELSE TSDPLLRQEI EAKIGIMAVN LTTATTAIIT
 SSLGIASGFS ILLVPLAGIS AGIPSLVNNE LVLRDKATKV VDYFKHVSLV ETEGVFTLLD

DKIMMPQDDL VISEIDFNNN SIVLGKCEIW RMEGGSGHTV TDDIDHFFSA PSITYREPHL
SIYDVLEVQK EELDLISKDLM VLPNAPNDRV AWETGWTPL RSLENDGTL LDRIRDNYEG
EFYWRYFAFI ADALITTLKP RYEDTNIRIN LDSNTRSFIV PIITTEYIRE KLSYSFYGSG
GTYALSLSQY NMGINIELSE SDVWIIDVDN VVRDVTIESD KIKKGDLIEG ILSTLSIEEN
KIIILNSHEIN FSGEVNGSNG FVSLTFSILE GINAIIEVDL LSKSYKLLIS GELKILMLNS

NHIQQKIDYI GFNSELQKNI PYSFVDSECK ENGFINGSTK EGLFVSELPD VVLISKVYMD
DSKPSFGYYS NNLKDVKVIT KDNVNILTGY YLKDDIKISL SLTLQDEKTI KLNSVHLDES
GVAEILKFMN RKGNTNTSDS LMSFLESMMI KSIFVNFLQS NIKFILDANF IISGTTSIGQ
FEFICDENDN IQPYFIKFNT LETNYTLYVG NRQNMIVEPN YDLDDSGDIS STVINFSQKY
LYGIDSCVNK VVISPNIYTD EINITPVEYET NNTYPEVIVL DANYINEKIN VNINDLSIRY
VWSNDGNDFI LMSTSEENKV SQVKIRFVNV FKDKTLANKL SFNFSDKQDV PVSEIILSFT
PSYYEDGLIG YDLGLVSLYN EKFYINNFGM MVSGLIYIND SLYYFKPPVN NLITGFVTVG
DDKYYFNPIN GGAASIGETI IDDKNYYFNQ SGVLQTVFVFS TEDGFKYFAP ANTLDENLEG
EAIDFTGKLI IDENIYYFDD NYRGAVEWKE LDGEMHYFSP ETGKAFKGLN QIGDYKYYFN
SDGVMQKGTV SINDNKHYFD DSGVMKVGYT EIDGKHFYFA ENGEOMQIGVF NTEDGFKYFA
HHNEDLGNEE GEEISYSGIL NFNNKIIYFD DSFTAVVGWK DLEDGSKYYF DEDTAEAYIG
LSLINDGQYY FNDDGIMQVG FVTINDKVFY FSDSGIIESG VQNIDDDNYFY IDDNGIVQIG
VFDTSDGYKY FAPANTVNDN IYQQAVEYSG LVRVGEDVYY FGETYTIETG WIYDMENESD
KYYFNPETKK ACKGINLIDD IKYYFDEKGI MRTGLISFEN NNYYFNENGE MQFGYINIED
KMFYFGEDGV MQIGVFNTPD GFKYFAHQNT LDENFEGESI NYTGWLDD KRYYFTDEYI
AATGSVIIDG EEYYFDPDTA QLVISE

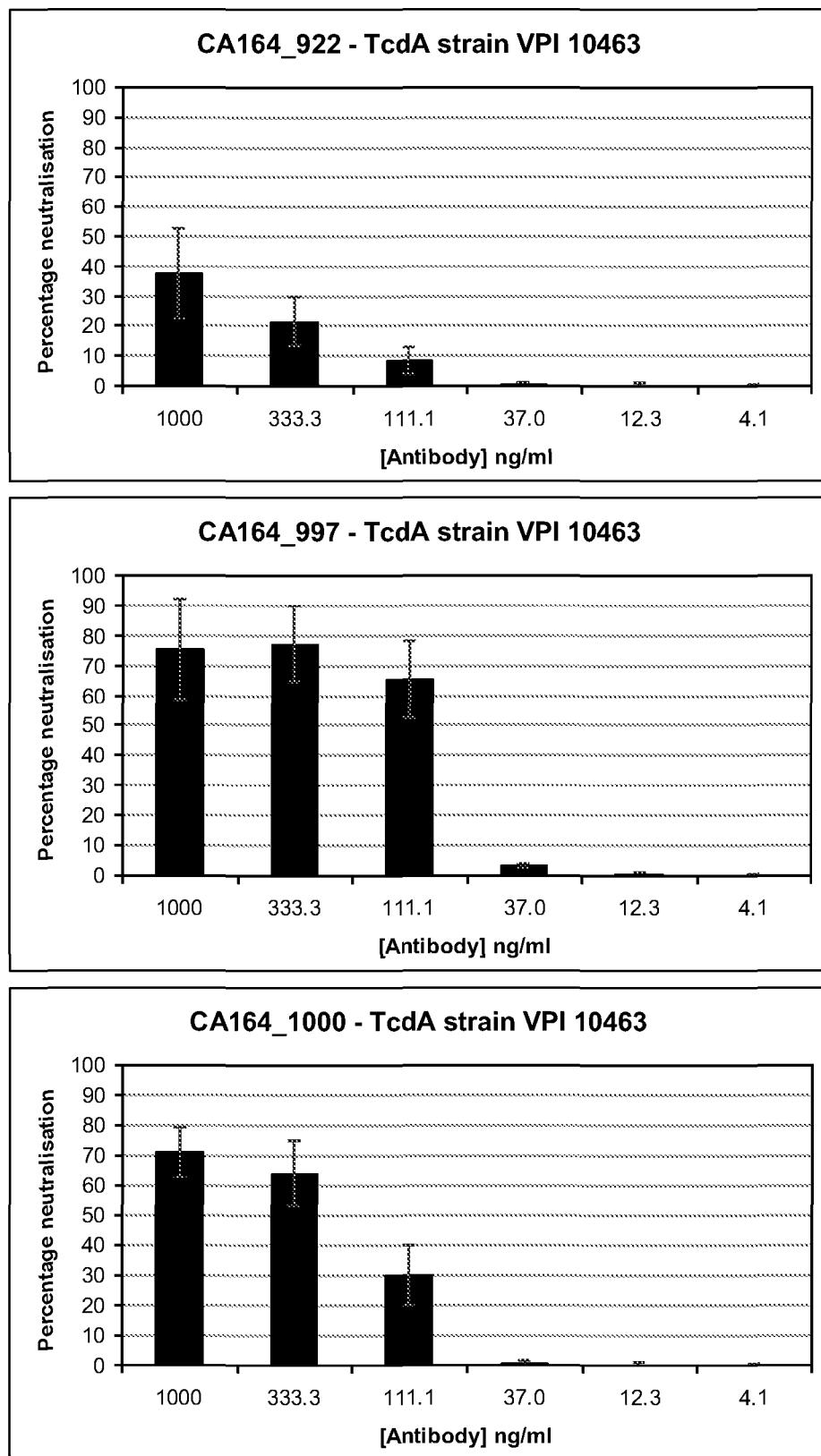
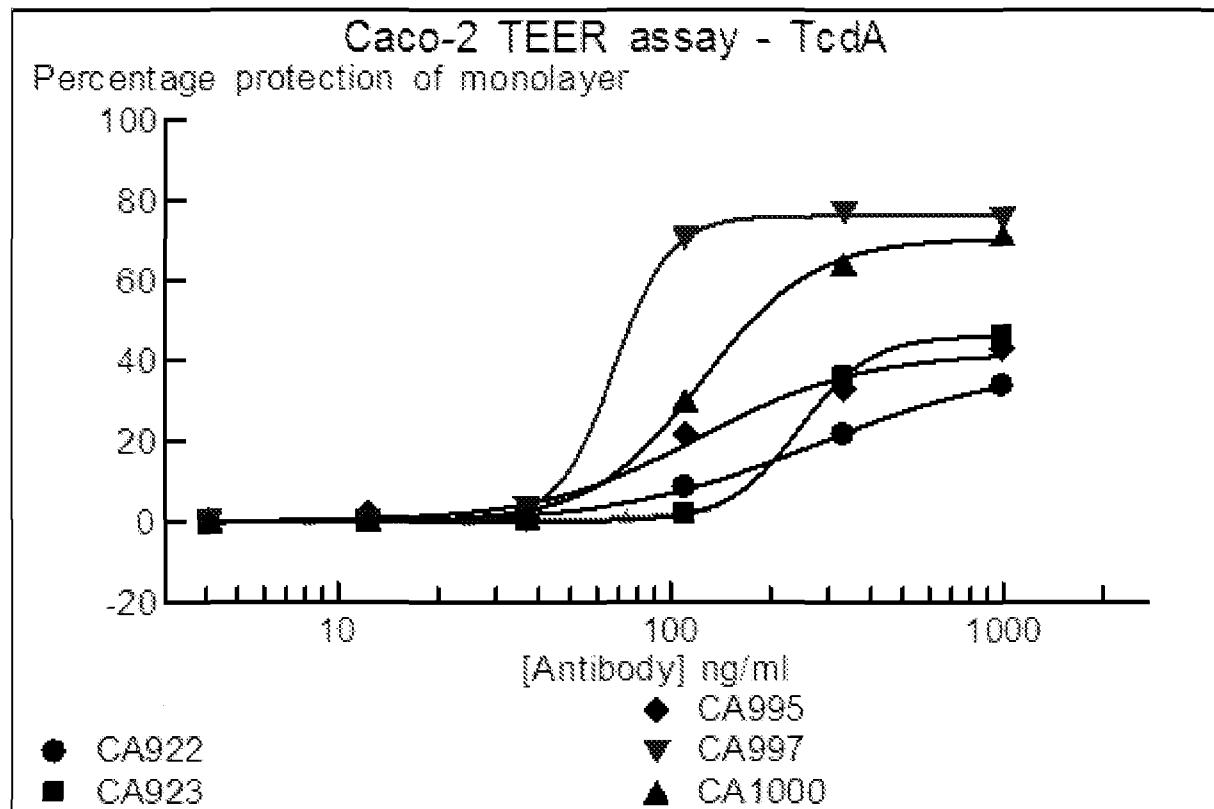
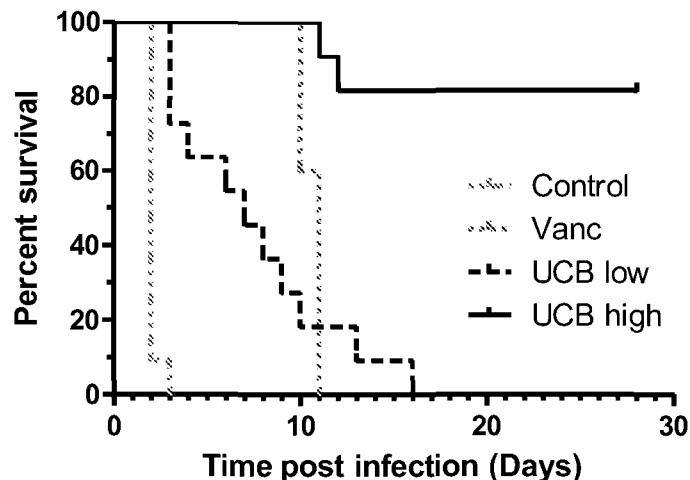



Figure 62 Caco-2 monolayer (Trans-Epithelial Electrical Resistance) data – TcdA

Figure 62A

Figure 63

**Survival of hamsters after challenge with *Clostridium difficile*.
UCB high and low dose 3 Mab mixture: CA997.g1 (50%),
CA1125.g2 (25%) and CA1151.g4 (25%) vs controls**

$P = 0.0001$ between both Mab groups and between Mabs and vehicle control.

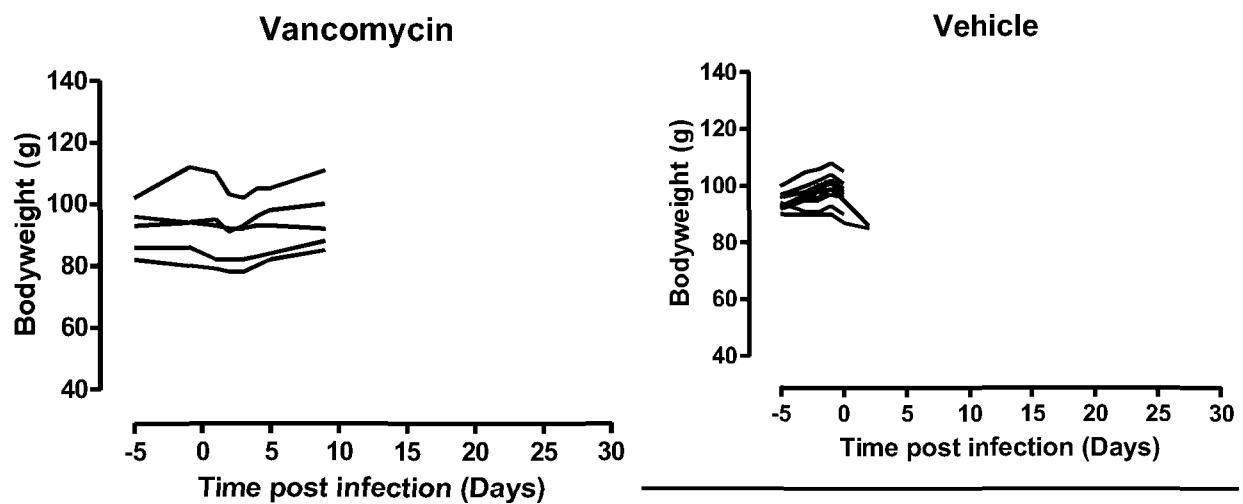
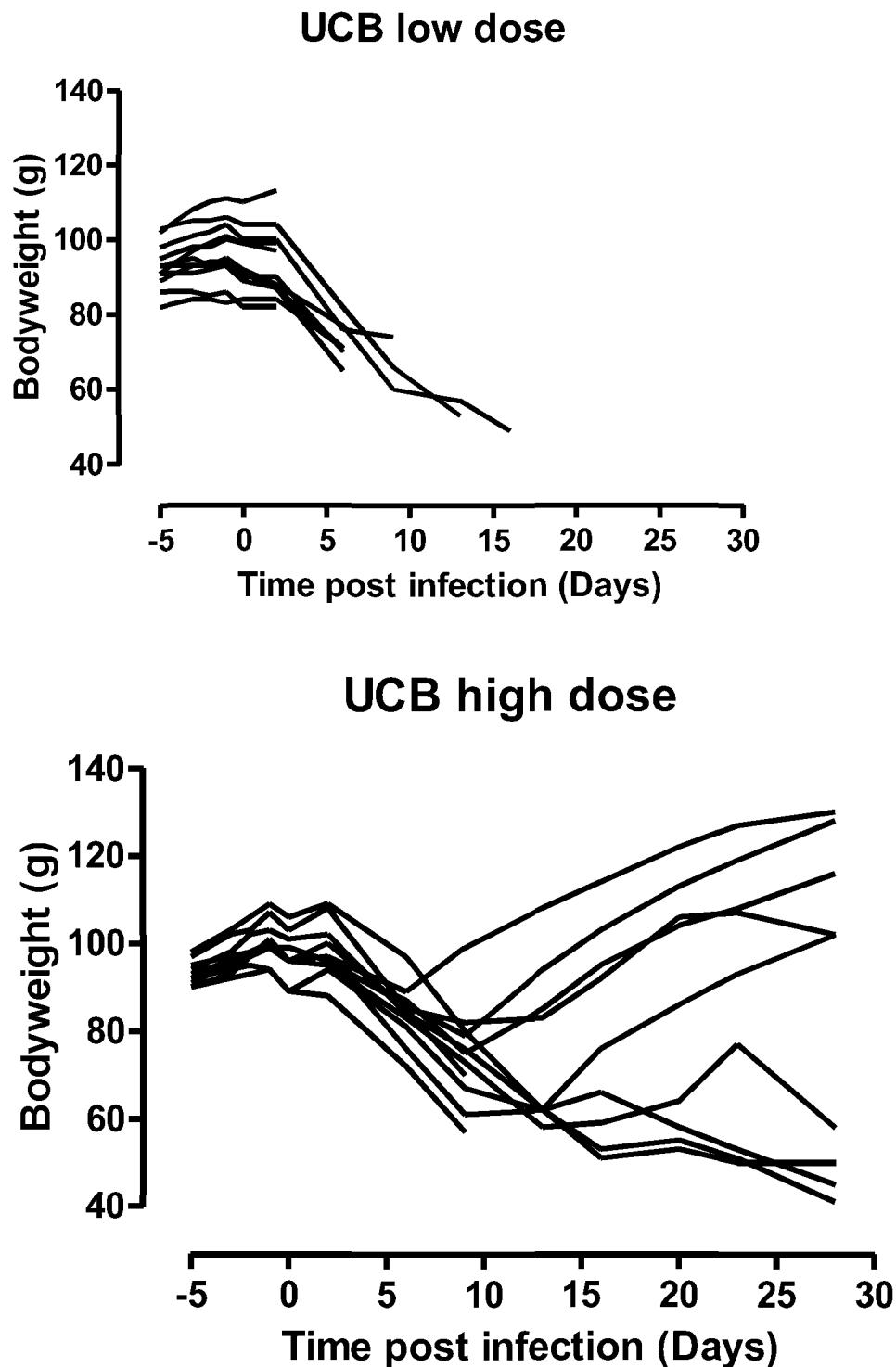


Figure 64 Hamster body weight changes

Figure 65

Figure 66

PBS control

UCB high dose

64/69

Figure 67 Serum pharmacokinetics of a human IgG1 in mice and hamsters

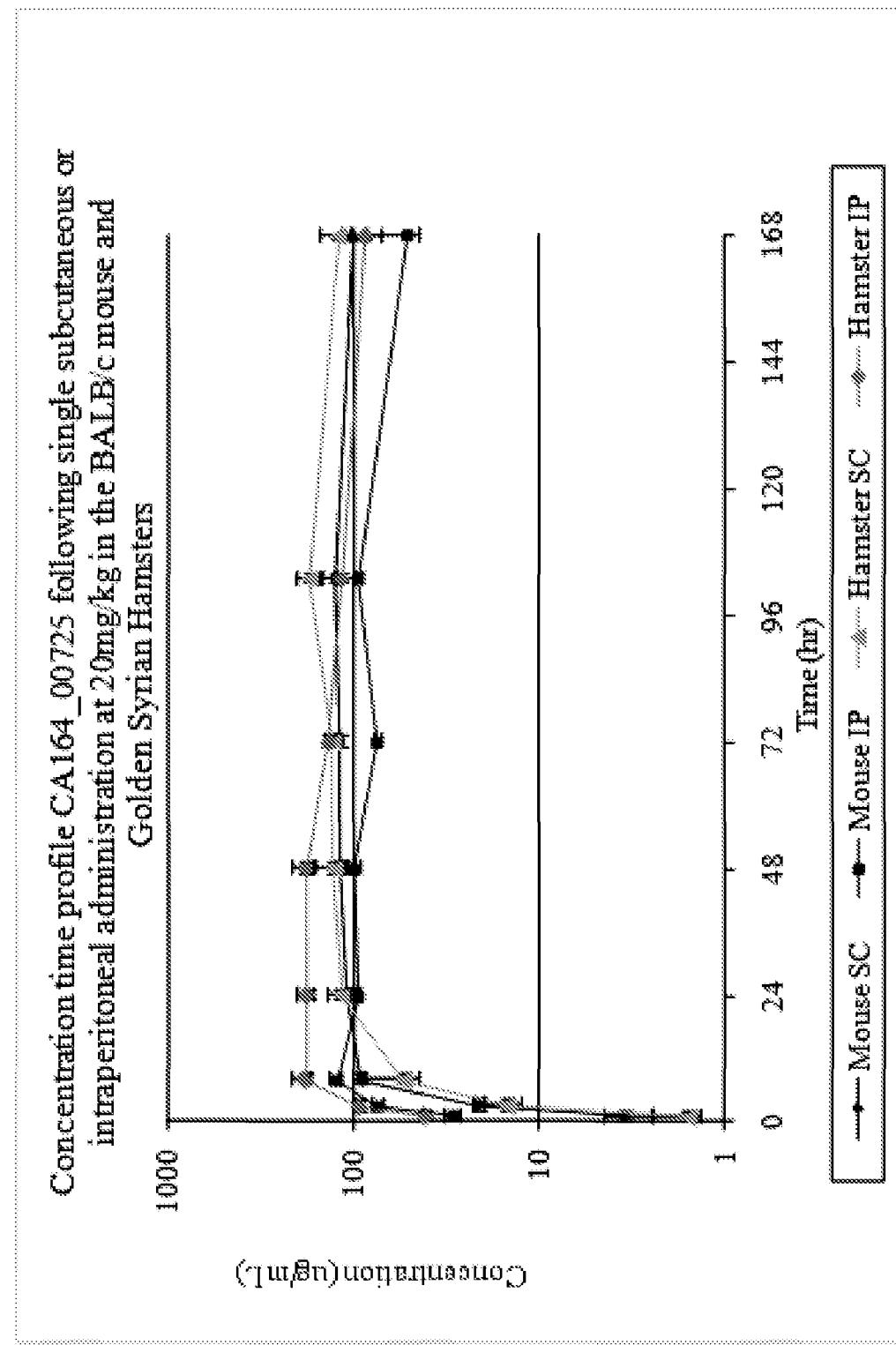


Figure 68 Effect of Agitation via Vortexing on anti-TcdB IgG1 Molecules in PBS, pH 7.4(n=3)

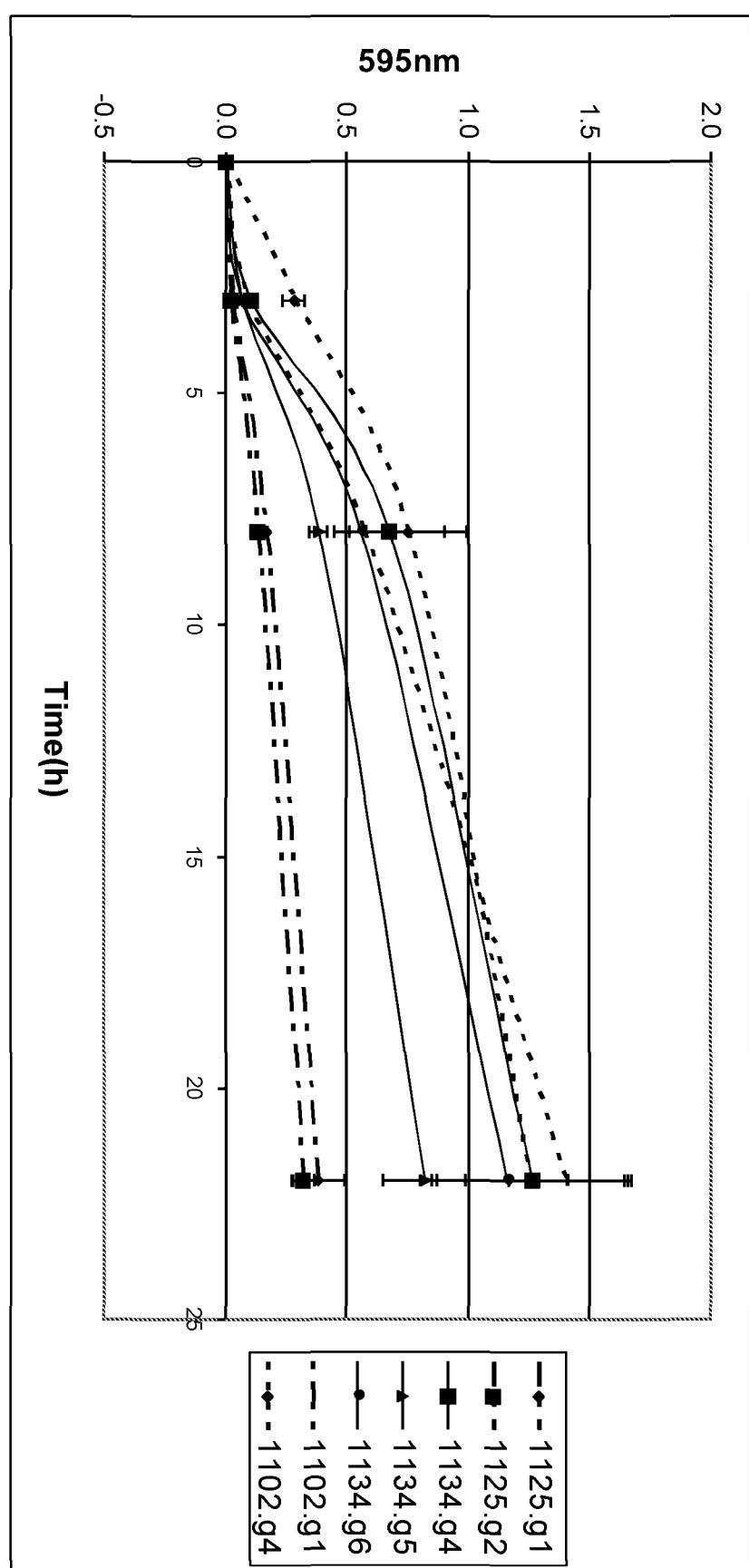
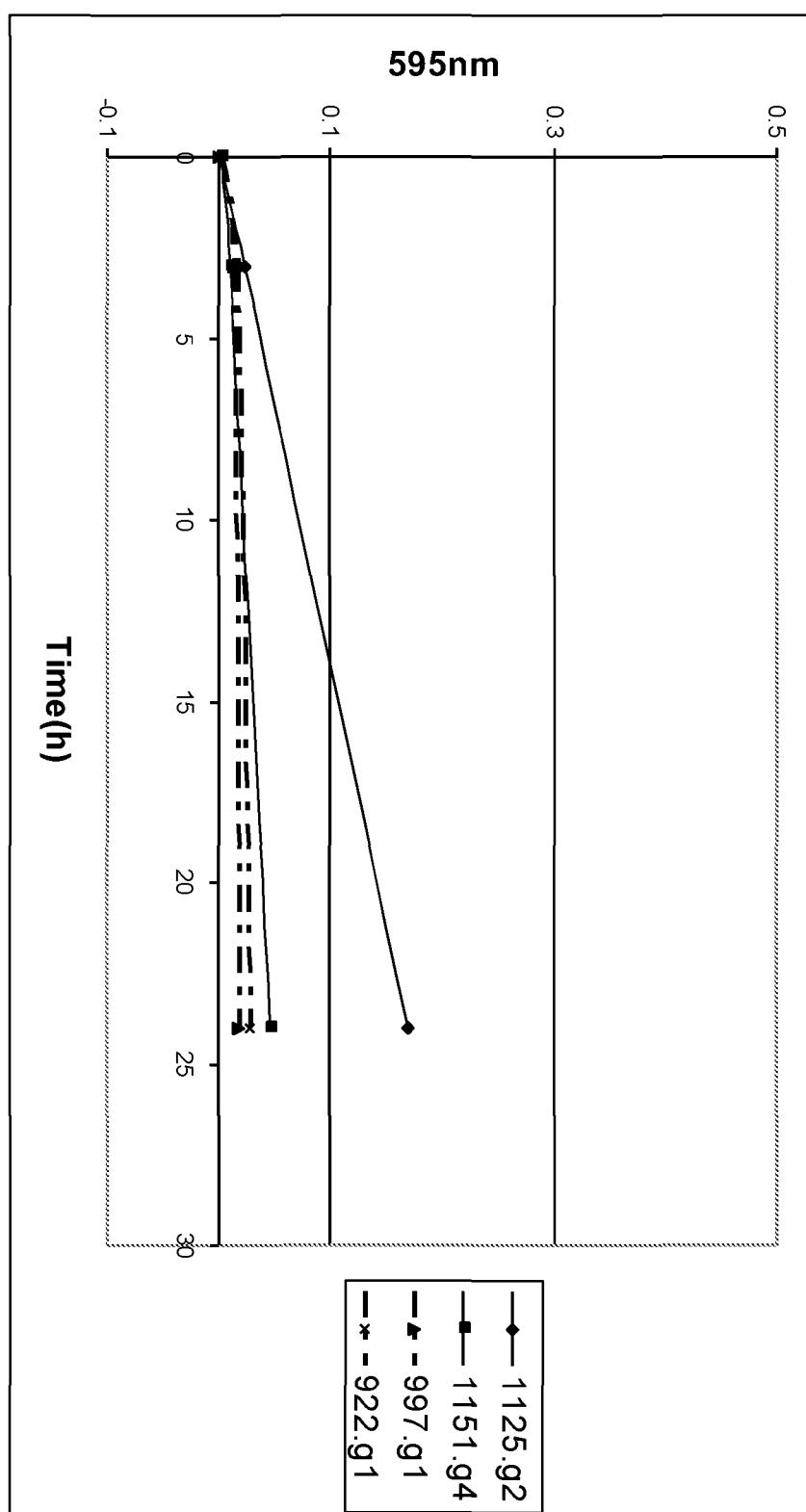



Figure 69 : Comparison of Aggregation Stability of anti-TcdA and anti-TcdB IgG1 Molecules in PBS pH 7.4

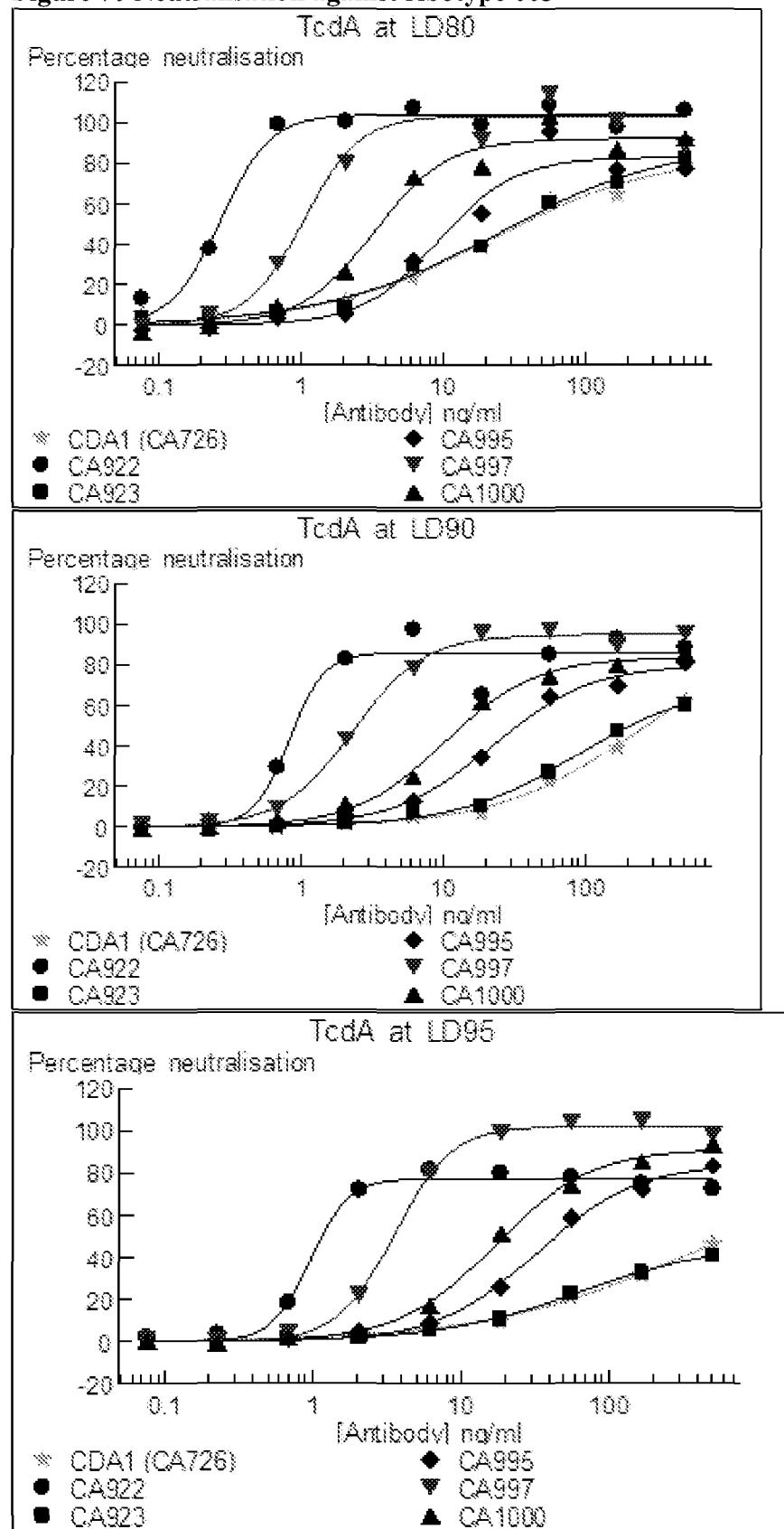

Figure 70 Neutralisation against ribotype 003

Figure 71 Neutralisation against ribotype 003

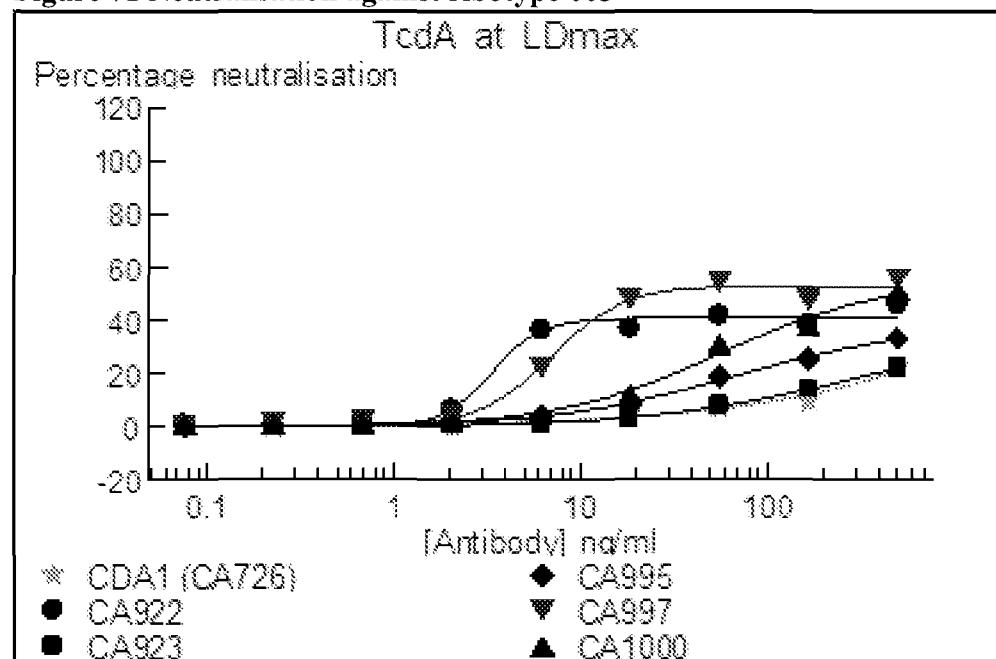
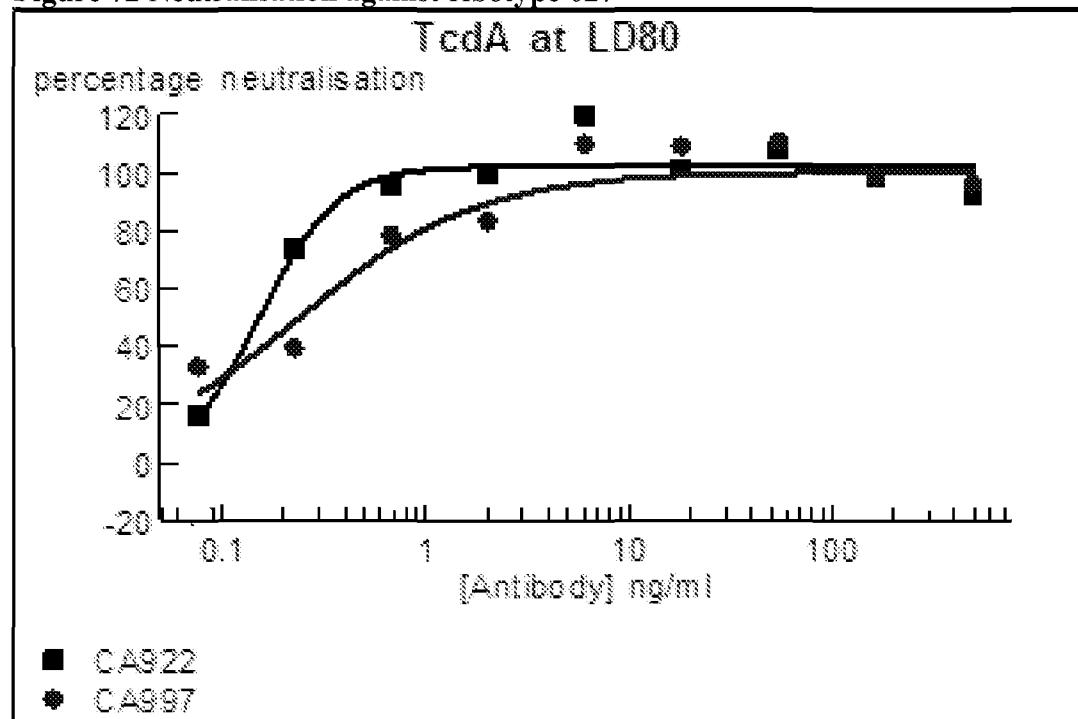
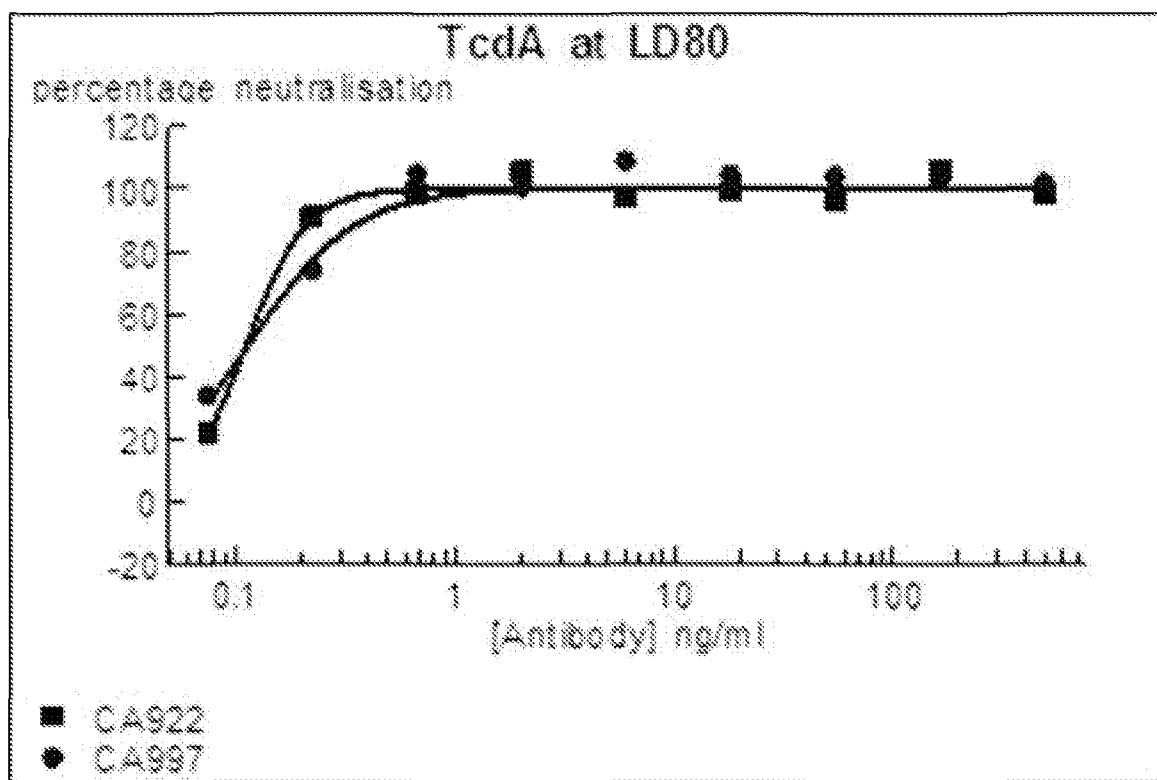




Figure 72 Neutralisation against ribotype 027

Figure 73 Neutralisation against ribotype 078

pctgb2012052222-seq1 . txt
SEQUENCE LISTING

<110> UCB Pharma S. A.

<120> Antibodies capable of neutralising the major exotoxin TcdA and TcdB of Clostridium difficile

<130> G0159-W0

<150> US 61/535, 532

<151> 2011-09-16

<150> US 61/638, 731

<151> 2012-04-26

<160> 194

<170> PatentIn version 3.5

<210> 1

<211> 11

<212> PRT

<213> Artificial

<220>

<223> Anti body CDR

<400> 1

Gln Ala Ser Gln Ser Ile Ser Asn Ala Leu Ala
1 5 10

<210> 2

<211> 7

<212> PRT

<213> Artificial

<220>

<223> Anti body CDR

<400> 2

Ser Ala Ser Ser Leu Ala Ser
1 5

<210> 3

<211> 12

<212> PRT

<213> Artificial

<220>

<223> Anti body CDR

<400> 3

Gln Tyr Thr His Tyr Ser His Thr Ser Lys Asn Pro
1 5 10

<210> 4

<211> 10

<212> PRT

<213> Artificial

<220>

<223> Anti body CDR

pctgb2012052222-seql . txt

<400> 4

Gly Phe Thr Ile Ser Ser Tyr Tyr Met Ser
1 5 10

<210> 5
<211> 17
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 5

Ile Ile Ser Ser Gly Gly His Phe Thr Trp Tyr Ala Asn Trp Ala Lys
1 5 10 15

Gly

<210> 6
<211> 13
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 6

Ala Tyr Val Ser Gly Ser Ser Phe Asn Gly Tyr Ala Leu
1 5 10

<210> 7
<211> 110
<212> PRT
<213> Artificial

<220>
<223> Anti body variable region

<400> 7

Asp Pro Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Ser Ile Ser Asn Ala
20 25 30

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45

Tyr Ser Ala Ser Ser Leu Ala Ser Gly Val Pro Ser Arg Phe Lys Gly
50 55 60

Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80

pctgb2012052222-seql . txt

Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Tyr Thr His Tyr Ser His Thr
85 90 95

Ser Lys Asn Pro Phe Gly Gly Thr Lys Val Glu Ile Lys
100 105 110

<210> 8

<211> 330

<212> DNA

<213> Artificial

<220>

<223> Polynucleotide encoding variable region of anti-TcdA antibody
922. g1

<400> 8

gaccctgtga tgacccagag tccgagcact ctttctgcct ccgtggaga ccgcgtgacc 60

attacatgtc aggcttcaca aagtatctcc aatgctctgg cctggtatca gcagaaaccc 120

ggcaaagccc ctaagctgct catctactct gcatcaagcc tggctagcgg cgtgccaagc 180

cgattcaagg ggagcggttc tggactgag tttacgctga ccatcagtag cttgcagcct 240

gacgattttg caacctatta ctgccagtag acacactact cccatacatc taaaaaccca 300

ttcggagggg gtactaaggt cgaaataaaag 330

<210> 9

<211> 119

<212> PRT

<213> Artificial

<220>

<223> Antibody variable region for anti-TcdA antibody 922

<400> 9

Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Ile Ser Ser Tyr
20 25 30

Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile
35 40 45

Gly Ile Ile Ser Ser Gly Gly His Phe Thr Trp Tyr Ala Asn Trp Ala
50 55 60

Lys Glu Arg Phe Thr Ile Ser Ser Asp Ser Thr Thr Val Tyr Leu Gln
65 70 75 80

Met Asn Ser Leu Arg Asp Glu Asp Thr Ala Thr Tyr Phe Cys Ala Arg
85 90 95

Ala Tyr Val Ser Gly Ser Ser Phe Asn Gly Tyr Ala Leu Trp Gly Gln
100 105 110

pctgb2012052222-seql . txt

Gly Thr Leu Val Thr Val Ser
115

<210> 10
<211> 357
<212> DNA
<213> Artificial

<220>
<223> Polynucleotide encoding variable region of anti-TcdA antibody
922 (heavy chain variable region)

<400> 10
gaagtgcata ttggggaaat tggcgaggat ctgggtcaac ccgggggtat tctgcgactg 60
agctgtgctt cctccggctt taccatttgc tcctactata tgagctgggt tcgacaggcc 120
cctggaaaat gactcgaatg gatcgcatc atatcttccg gtggcattt cacctggatc 180
gcaaaactggg ctaaggggatg attcacgatt agcagcgact ccacaaccgt gtacctgcaa 240
atgaacagcc tgagggatga ggacactgatcc acatatttctt ggcacgcgc ttacgtgagc 300
ggaaagctcat ttaatggctt tgcaactgtgg gggcaaggaa cactcgtgac tgtctcg 357

<210> 11
<211> 11
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 11

Gln Ala Ser Gln Ser Ile Ser Asn Tyr Leu Ala
1 5 10

<210> 12
<211> 7
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 12

Ser Ala Ser Thr Leu Ala Ser
1 5

<210> 13
<211> 12
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 13

Gln Tyr Ser His Tyr Gly Thr Gly Val Phe Gly Ala
Page 4

pctgb2012052222-seql . txt
1 5 10

<210> 14
<211> 10
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 14

Ala Phe Ser Leu Ser Asn Tyr Tyr Met Ser
1 5 10

<210> 15
<211> 18
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 15

Ile Ile Ser Ser Gly Ser Asn Ala Leu Lys Trp Tyr Ala Ser Trp Pro
1 5 10 15

Lys Gly

<210> 16
<211> 13
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 16

Asn Tyr Val Gly Ser Gly Ser Tyr Tyr Gly Met Asp Leu
1 5 10

<210> 17
<211> 110
<212> PRT
<213> Artificial

<220>
<223> Antibody variable region of anti -TcdA antibody 923

<400> 17

Asp Val Val Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Ser Ile Ser Asn Tyr
20 25 30

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Val Pro Lys Leu Leu Ile
Page 5

pctgb2012052222-seql .txt
35 40 45

Tyr Ser Al a Ser Thr Leu Al a Ser Gl y Val Pro Ser Arg Phe Lys Gl y
50 55 60

Ser Gl y Ser Gl y Thr Gl n Phe Thr Leu Thr Ile Ser Ser Leu Gl n Pro
65 70 75 80

Gl u Asp Val Al a Thr Tyr Tyr Cys Gl n Tyr Ser His Tyr Gl y Thr Gl y
85 90 95

Val Phe Gl y Al a Phe Gl y Gl y Thr Lys Val Gl u Ile Lys
100 105 110

<210> 18

<211> 330

<212> DNA

<213> Artifi cial

<220>

<223> Pol ynucl eotide encodi ng anti body vari able region for anti -TcdA
anti body 923. g1

<400> 18

gacgtcgtga tgactcagag cccatctagt ctgagcgcta gcgtcggaga ccgagtcaca 60

attacctgtc aagcctccca gagcatctcc aactacctgg cctggtagcca acagaaacct 120

ggcaaggtgc ccaagctgct gatctatagt gcttccacac tcgcaagcgg cgttccgtca 180

cgctttaagg gatctggctc tggcactcag ttcaccttga ccatctcaag cctgcagcca 240

gaagatgtgg ccacctatta ctgccagtagt tcccactacg ggactggggt gttcggtgcc 300

tttggaggtg ggaccaaagt ggagataaag 330

<210> 19

<211> 120

<212> PRT

<213> Artifi cial

<220>

<223> Anti body vari able region for anti -TcdA anti body 923

<400> 19

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Leu Val Gl n Pro Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Ser Cys Al a Al a Ser Al a Phe Ser Leu Ser Asn Tyr
20 25 30

Tyr Met Ser Trp Val Arg Gl n Al a Pro Gl y Lys Gl y Leu Gl u Trp Ile
35 40 45

Gl y Ile Ile Ser Ser Gl y Ser Asn Al a Leu Lys Trp Tyr Al a Ser Trp
50 55 60

Pro Lys Gl y Arg Phe Thr Ile Ser Lys Asp Ser Thr Thr Val Tyr Leu
65 70 75 80

Gl n Met Asn Ser Leu Arg Al a Gl u Asp Thr Al a Thr Tyr Phe Cys Al a
85 90 95

Arg Asn Tyr Val Gl y Ser Gl y Ser Tyr Tyr Gl y Met Asp Leu Trp Gl y
100 105 110

Gl n Gl y Thr Leu Val Thr Val Ser
115 120

<210> 20

<211> 360

<212> DNA

<213> Arti fi ci al

<220>

<223> Pol ynucl eot i de encodi ng anti body vari abl e regi on for anti -TcdA
anti body 923. g1

<400> 20

gaagttaaac ttgtggaatc tggaggcggg ctcgtgcagc ctggtggaag ccttagactg 60

agctgcgctg catccgcatt ttccctgtcc aactactaca tgagctgggt gcgacaagca 120

ccaggcaagg gactggaatg gatggcattc ataagctccg gttccaatgc cctgaaatgg 180

tacgcatcat ggccgaaagg ccgcattacc ataagcaagg actccaccac cgtctatctg 240

cagatgaact cattgcgtgc cgaggacact gcaacgtact tctgtgctcg caactacgtg 300

ggaagcggat cttattatgg catggatctg tggggacaag gtacactcgt gaccgtctcg 360

<210> 21

<211> 11

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 21

Gl n Al a Ser Gl n Ser Ile Ser Ser Tyr Phe Ser
1 5 10

<210> 22

<211> 7

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 22

Gl y Al a Ser Thr Leu Al a Ser
1 5

<210> 23

pctgb2012052222-seql . txt

<211> 12
<212> PRT
<213> Arti fi ci al

<220>
<223> Anti body CDR

<400> 23

Gl n Cys Thr Asp Tyr Ser Gly Ile Tyr Phe Gly Gly
1 5 10

<210> 24
<211> 10
<212> PRT
<213> Arti fi ci al

<220>
<223> Anti body CDR

<400> 24

Gl y Phe Ser Leu Ser Ser Tyr Tyr Met Ser
1 5 10

<210> 25
<211> 19
<212> PRT
<213> Arti fi ci al

<220>
<223> Anti body CDR

<400> 25

Ile Ile Ser Ser Gly Ser Ser Thr Thr Phe Thr Trp Tyr Ala Ser Trp
1 5 10 15

Al a Lys Gl y

<210> 26
<211> 13
<212> PRT
<213> Arti fi ci al

<220>
<223> Anti body CDR

<400> 26

Al a Tyr Val Gl y Ser Ser Ser Tyr Tyr Gl y Phe Asp Pro
1 5 10

<210> 27
<211> 110
<212> PRT
<213> Arti fi ci al

<220>
<223> Anti body vari able region for anti -TcdA anti body 993

<400> 27

pctgb2012052222-seql . txt

Asp Val Val Met Thr Glu Ser Pro Ser Thr Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Glu Ala Ser Glu Ser Ile Ser Ser Tyr
20 25 30

Phe Ser Trp Tyr Glu Glu Lys Pro Glu Lys Ala Pro Glu Leu Leu Ile
35 40 45

Tyr Glu Ala Ser Thr Leu Ala Ser Glu Val Pro Ser Arg Phe Lys Glu
50 55 60

Ser Glu Ser Glu Thr Glu Leu Thr Leu Thr Ile Ser Ser Leu Glu Pro
65 70 75 80

Asp Asp Phe Ala Thr Tyr Tyr Cys Glu Cys Thr Asp Tyr Ser Glu Ile
85 90 95

Tyr Phe Glu Glu Phe Glu Glu Thr Lys Val Glu Ile Lys
100 105 110

<210> 28

<211> 330

<212> DNA

<213> Artificial

<220>

<223> Polynucleotide encoding antibody variable region for anti-TcdA antibody 933. g1

<400> 28

gatgtcgtga tgactcagtc cccctctaca ttgagtgccct ctgtcggtga tcgagttacc 60

atcacctgtc aagcaagcca gagcatcagc tcctacttct cttggtagcca gcaaaagccg 120

ggaaaaagccc ctcaactgct gatttatggg gcctcaacac tggcttctgg cgtgccatca 180

agattcaagg gatctggctc cggcactgag cttacactga ccattagctc cctgcaacct 240

gacgattttg ctacctacta ctgccagtgc accgactata gtggatata tttcggcgg 300

tttgggggag ggacgaaagt gaaatcaag 330

<210> 29

<211> 121

<212> PRT

<213> Artificial

<220>

<223> Anti body variable region for anti-TcdA antibody 993 (heavy chain)

<400> 29

Gl u Val Gl u Leu Val Gl u Ser Gl u Gl y Gl y Leu Val Gl u Pro Gl u Gl y
1 5 10 15

Ser Leu Lys Leu Ser Cys Thr Ala Ser Gl y Phe Ser Leu Ser Ser Tyr
20 25 30

pctgb2012052222-seql . txt

Tyr Met Ser Trp Val Arg Glu Ala Pro Gly Lys Gly Leu Glu Trp Ile
35 40 45

Gly Ile Ile Ser Ser Gly Ser Ser Thr Thr Phe Thr Trp Tyr Ala Ser
50 55 60

Trp Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Tyr
65 70 75 80

Leu Glu Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Thr Tyr Phe Cys
85 90 95

Ala Arg Ala Tyr Val Gly Ser Ser Ser Tyr Tyr Gly Phe Asp Pro Trp
100 105 110

Gly Glu Gly Thr Leu Val Thr Val Ser
115 120

<210> 30

<211> 363

<212> DNA

<213> Artificial

<220>

<223> Polynucleotide encoding antibody variable region for anti-TcdA
anti body 993. g1

<400> 30

gaagttcagc tggtcgagag cggaggcgga ctgggtcaac ctgggtggtag cctgaaactc 60

tcttgactg cctccgggtt ttccctgagc tcttactata tgtcatgggt gagacaggct 120

cccgaaaaag gattggaaatg gatcgggatt atctcctccg gctttccac cacttcaca 180

tggtacgcct catgggcaaa ggggagggtt accataagca agacaagcac gaccgtgtat 240

cttcagatga actccctgaa gacggaggat actgccacct actttgcgc tcgggcstat 300

gtgggctcaa gctctacta tggcttcgac ccatggggac agggcacact tgtgaccgtc 360

tcg 363

<210> 31

<211> 11

<212> PRT

<213> Artificial

<220>

<223> Anti body CDR

<400> 31

Glu Ala Ser Glu Ser Ile Asn Asn Tyr Phe Ser
1 5 10

<210> 32

<211> 7

<212> PRT

pctgb2012052222-seql . txt

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 32

Gly Ala Ala Asn Leu Ala Ser
1 5

<210> 33

<211> 12

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 33

Gln Asn Asn Tyr Gly Val His Ile Tyr Gly Ala Ala
1 5 10

<210> 34

<211> 10

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 34

Gly Phe Ser Leu Ser Asn Tyr Asp Met Ile
1 5 10

<210> 35

<211> 16

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 35

Phe Ile Asn Thr Gly Gly Ile Thr Tyr Tyr Ala Ser Trp Ala Lys Gly
1 5 10 15

<210> 36

<211> 12

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 36

Val Asp Asp Tyr Ile Gly Ala Trp Gly Ala Gly Leu
1 5 10

<210> 37

pctgb2012052222-seql . txt

<211> 110
<212> PRT
<213> Artifi ci al

<220>
<223> Anti body vari abl e regi on for anti -TcdA anti body 995

<400> 37

Asp Val Val Met Thr Gl n Ser Pro Ser Thr Leu Ser Ala Ser Val Gl y
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Gl n Ala Ser Gl n Ser Ile Asn Asn Tyr
20 25 30

Phe Ser Trp Tyr Gl n Gl n Lys Pro Gl y Lys Ala Pro Lys Leu Leu Ile
35 40 45

Tyr Gl y Ala Ala Asn Leu Ala Ser Gl y Val Pro Ser Arg Phe Lys Gl y
50 55 60

Ser Gl y Ser Gl y Thr Gl u Tyr Thr Leu Thr Ile Ser Ser Leu Gl n Pro
65 70 75 80

Asp Asp Phe Ala Thr Tyr Ser Cys Gl n Asn Asn Tyr Gl y Val His Ile
85 90 95

Tyr Gl y Ala Ala Phe Gl y Gl y Gl y Thr Lys Val Gl u Ile Lys
100 105 110

<210> 38
<211> 330
<212> DNA
<213> Artifi ci al

<220>
<223> Poly nucl eotide encodi ng anti body vari abl e regi on for anti -TcdA
anti body 995. g1

<400> 38
gacgtcgtga tgacacagag cccttcaaca ctgtctgaa gcgtggcgta tagggtcacc 60
ataacgtgcc aggcctctca atccatcaac aactat tta gctggtagca gcagaagcca 120
ggcaaggctc c gaaacttct gatctacgga gctgccaacc tggcaagtgg cgtgccatca 180
cggttcaagg gatccggag cggta ctag tataccctga ccatttcatc tctccaaccc 240
gacgatttcg ccacctactc ctgccagaat aattacggcg tgcacatcta tggagctgcc 300
tttggcggtg ggacaaaagt ggaat taag 330

<210> 39
<211> 117
<212> PRT
<213> Artifi ci al

<220>
<223> Anti body vari abl e regi on for anti -TcdA anti body 995 (heavy chain)

pctgb2012052222-seql . txt

<400> 39

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Leu Val Gl n Pro Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Ser Cys Thr Al a Ser Gl y Phe Ser Leu Ser Asn Tyr
20 25 30

Asp Met Ile Trp Val Arg Gl n Al a Pro Gl y Lys Gl y Leu Gl u Tyr Ile
35 40 45

Gl y Phe Ile Asn Thr Gl y Gl y Ile Thr Tyr Tyr Al a Ser Trp Al a Lys
50 55 60

Gl y Arg Phe Thr Ile Ser Arg Asp Ser Ser Thr Val Tyr Leu Gl n Met
65 70 75 80

Asn Ser Leu Arg Al a Gl u Asp Thr Al a Thr Tyr Phe Cys Al a Arg Val
85 90 95

Asp Asp Tyr Ile Gl y Al a Trp Gl y Al a Gl y Leu Trp Gl y Gl n Gl y Thr
100 105 110

Leu Val Thr Val Ser
115

<210> 40

<211> 351

<212> DNA

<213> Artifi cial

<220>

<223> Pol ynucl eotide encodi ng anti body vari able region for anti -TcdA
anti body

<400> 40

gaagttcagc tggtcgagag tgggggaggg cttgtcaac ctggtggtctc cctccgtctg 60

agctgtactg cttctggatt ctcactgagc aattacgaca tggatctgggt gcgacaggca 120

cccgccaaag gactggagta cattggcttc atcaacaccg ggggtataac gtactatgcc 180

tcatggctta aggggcgtt tacaattagt agggattcct ctaccgtgta cctgcagatg 240

aactcactga gagccgagga cactgccaca tatttctgcg ctcgggtgga tgactatatc 300

ggggcctggg gcgccggatt gtggggccaa ggaacactgg tcaccgtctc g 351

<210> 41

<211> 11

<212> PRT

<213> Artifi cial

<220>

<223> Anti body CDR

<400> 41

Gl n Al a Ser Gl n Ser Ile Ser Ser Tyr Leu Ser

pctgb2012052222-seql . txt

1 5

10

<210> 42
<211> 7
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 42

Arg Ala Ser Thr Leu Ala Ser
1 5

<210> 43
<211> 13
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 43

Leu Gly Val Tyr Gly Tyr Ser Asn Asp Asp Gly Ile Ala
1 5 10

<210> 44
<211> 10
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 44

Gly Ile Asp Leu Ser Ser His His Met Cys
1 5 10

<210> 45
<211> 16
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 45

Val Ile Tyr His Phe Gly Ser Thr Tyr Tyr Ala Asn Trp Ala Thr Gly
1 5 10 15

<210> 46
<211> 11
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 46

pctgb2012052222-seql . txt

Ala Ser Ile Ala Gly Tyr Ser Ala Phe Asp Pro
1 5 10

<210> 47
<211> 111
<212> PRT
<213> Artificial

<220>
<223> Anti body variable region for anti -TcdA antibody 997

<400> 47

Ala Leu Val Met Thr Gln Ser Pro Ser Ser Phe Ser Ala Ser Thr Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Ser Ile Ser Ser Tyr
20 25 30

Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45

Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Glu Tyr Thr Leu Thr Ile Ser Cys Leu Gln Ser
65 70 75 80

Gl u Asp Phe Ala Thr Tyr Tyr Cys Leu Gly Val Tyr Gly Tyr Ser Asn
85 90 95

Asp Asp Gly Ile Ala Phe Gly Gly Thr Lys Val Glu Ile Lys
100 105 110

<210> 48
<211> 333
<212> DNA
<213> Artifical

<220>
<223> Polynucleotide sequence encoding antibody variable region for anti -TcdA antibody 997. g1

<400> 48
gcactcgtga tgacacagag cccgagtagc ttttagtgctt caaccggta tagggtaact 60
attacttgcc aagcctctca gaggatatct agctatctga gctggtagcca gcaaaagccc 120
ggaaaggctc ctaaactgct gatctaccgg gcttccacat tggcctccgg cgttccctca 180
cgctttagcg gctccggatc cggaaccgag tacaccctga ctatctttg cctgcaatct 240
gaggacttcg caacctacta ttgtctgggc gtctacggat atagcaacga tgacggatc 300
gccttcggcg gcggtagcaa agtggaaatt aag 333

<210> 49
<211> 116

pctgb2012052222-seql . txt

<212> PRT
<213> Artificial

<220>
<223> Anti body variable region for anti -TcdA antibody 997 (heavy chain)

<400> 49

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Leu Val Gl n Pro Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Ser Cys Thr Val Ser Gl y Ile Asp Leu Ser Ser His
20 25 30

His Met Cys Trp Val Arg Gl n Al a Pro Gl y Lys Gl y Leu Gl u Tyr Ile
35 40 45

Gl y Val Ile Tyr His Phe Gl y Ser Thr Tyr Tyr Al a Asn Trp Al a Thr
50 55 60

Gl y Arg Phe Thr Ile Ser Lys Asp Ser Thr Thr Val Tyr Leu Gl n Met
65 70 75 80

Asn Ser Leu Arg Al a Gl u Asp Thr Al a Thr Tyr Phe Cys Al a Arg Al a
85 90 95

Ser Ile Al a Gl y Tyr Ser Al a Phe Asp Pro Trp Gl y Gl n Gl y Thr Leu
100 105 110

Val Thr Val Ser
115

<210> 50
<211> 348
<212> DNA
<213> Artificial

<220>
<223> Polynucleotide sequence encoding antibody variable region for anti -TcdA antibody 997. g1 (heavy chain)

<400> 50
gaggtgcaac ttgtggaaag cgggggagga ctgggtcagc ctgggggctc attgagactg 60
agctgcaccg tttctggat tgacctgagc tcccatcata tgtgctgggt gcgccaggca
cccgaaaaag gactggaata catcggcgtc atataccact ttggctctac atactatgcc 120
aactggcaa ctgggcatt cacaattagc aaggactcaa ctaccgtta cctgcaaatg 180
aatagcctga gggctgagga tactgccacc tatttctgtg cccgggcttc aatcgccggc 240
tattctgcct ttgatccatg gggcaagga acactcgtga ccgtctcg 300
348

<210> 51
<211> 11
<212> PRT
<213> Artificial

pctgb2012052222-seql . txt

<220>

<223> Anti body CDR

<400> 51

Gl n Al a Ser Gl n Ser Ile Tyr Ser Tyr Leu Al a
1 5 10

<210> 52

<211> 7

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 52

Asp Al a Ser Thr Leu Al a Ser
1 5

<210> 53

<211> 13

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 53

Gl n Gl y Asn Al a Tyr Thr Ser Asn Ser His Asp Asn Al a
1 5 10

<210> 54

<211> 10

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 54

Gl y Ile Asp Leu Ser Ser Asp Al a Val Gl y
1 5 10

<210> 55

<211> 16

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 55

Ile Ile Al a Thr Phe Asp Ser Thr Tyr Tyr Al a Ser Trp Al a Lys Gl y
1 5 10 15

<210> 56

<211> 19

<212> PRT

pctgb2012052222-seql . txt

<213> Artificial

<220>

<223> Anti body CDR

<400> 56

Thr Gly Ser Trp Tyr Tyr Ile Ser Gly Trp Gly Ser Tyr Tyr Tyr Gly
1 5 10 15

Met Asp Leu

<210> 57

<211> 111

<212> PRT

<213> Artificial

<220>

<223> Anti body variable region for anti -TcdA anti body 1000

<400> 57

Glu Ile Val Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Ser Ile Tyr Ser Tyr
20 25 30

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45

Tyr Asp Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Lys Gly
50 55 60

Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80

Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gly Asn Ala Tyr Thr Ser Asn
85 90 95

Ser His Asp Asn Ala Phe Gly Gly Glu Thr Lys Val Glu Ile Lys
100 105 110

<210> 58

<211> 333

<212> DNA

<213> Artificial

<220>

<223> Polynucleotide encoding anti body variable region for anti -TcdA
anti body 1000. g1

<400> 58

gaaatcgtga tgacgcagtc accaaggcaca ctgagcgctt ctgtgggaga tcgggtcaca 60

ataacctgtc aggccctcca gagcatctac tcttatctgg catggatcca gcagaagcca 120

gggaaagctc ccaagctgct gatttatgac gccagcactt tggcttccgg tgttcctagt 180

pctgb2012052222-seql . txt

agggtcaaa gctccggaag cggtaccgag tttaccctga ccatctcatc tctgcaaccc 240
gatgactttg ccacatacta ttgccagggg aatgcctaca cttccaactc acacgacaac 300
gcattcgggg gaggcaccaa agtcgaaatt aag 333

<210> 59
<211> 125
<212> PRT
<213> Artificial

<220>
<223> Anti body variable region for anti -TcdA anti body 1000 (heavy chain)

<400> 59

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Leu Ile Gl n Pro Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Ser Cys Thr Val Ser Gl y Ile Asp Leu Ser Ser Asp
20 25 30

Al a Val Gl y Trp Val Arg Gl n Al a Pro Gl y Lys Gl y Leu Gl u Tyr Ile
35 40 45

Gl y Ile Ile Al a Thr Phe Asp Ser Thr Tyr Tyr Al a Ser Trp Al a Lys
50 55 60

Gl y Arg Phe Thr Ile Ser Lys Al a Ser Ser Thr Thr Val Tyr Leu Gl n
65 70 75 80

Met Asn Ser Leu Arg Al a Gl u Asp Thr Al a Thr Tyr Phe Cys Al a Arg
85 90 95

Thr Gl y Ser Trp Tyr Tyr Ile Ser Gl y Trp Gl y Ser Tyr Tyr Tyr Gl y
100 105 110

Met Asp Leu Trp Gl y Gl n Gl y Thr Leu Val Thr Val Ser
115 120 125

<210> 60
<211> 375
<212> DNA
<213> Artificial

<220>
<223> Polynucleotide encoding antibody variable region for anti -TcdA anti body 1000. g1 (heavy chain)

<400> 60
gaagttcagc tggtcgagag cggaggggt ttgattcagc ccgggtggctc acttagattg 60
agctgcaccg tgtccgaaat cgatctgtca tctgatgccg tgggctgggt gcgacaggca 120
cctgggaaag gactggagta tatagggatc atgcacacct tcgactccac atactacgct 180
agctgggcaa aaggcgcctt tacgattagc aaggcctcct ctactaccgt gtacctccaa 240

pctgb2012052222-seql . txt

atgaactcac	tgagggccga	ggacactgcc	acttatttct	gtgctcggac	cggtagctgg	300
tactacatct	ctggctgggg	ctcctactat	tatggcatgg	acctgtgggg	acaggggaca	360
ctcgtgaccg	tctcg					375

<210> 61
<211> 11
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 61

Arg	Ala	Ser	Lys	Ser	Val	Ser	Thr	Leu	Met	His	
1				5					10		

<210> 62
<211> 7
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 62

Leu	Ala	Ser	Asn	Leu	Gl u	Ser	
1				5			

<210> 63
<211> 9
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 63

Gl n	Gl n	Thr	Trp	Asn	Asp	Pro	Trp	Thr	
1				5					

<210> 64
<211> 10
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 64

Gl y	Phe	Thr	Phe	Ser	Asn	Tyr	Gl y	Met	Al a	
1				5				10		

<210> 65
<211> 17
<212> PRT
<213> Artificial

pctgb2012052222-seql . txt

<220>
<223> Anti body CDR

<400> 65

Ser Ile Ser Ser Ser Gly Gly Ser Thr Tyr Tyr Arg Asp Ser Val Lys
1 5 10 15

Gly

<210> 66
<211> 9
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 66

Val Ile Arg Gly Tyr Val Met Asp Ala
1 5

<210> 67
<211> 107
<212> PRT
<213> Artificial

<220>
<223> Antibody variable region for anti -TcdB antibody 926

<400> 67

Asp Thr Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Lys Ser Val Ser Thr Leu
20 25 30

Met His Trp Phe Gln Gln Lys Pro Gly Gln Ala Pro Lys Leu Leu Ile
35 40 45

Tyr Leu Ala Ser Asn Leu Glu Ser Gly Val Pro Ala Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu Pro
65 70 75 80

Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Thr Trp Asn Asp Pro Trp
85 90 95

Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys
100 105

<210> 68
<211> 321

pctgb2012052222-seql . txt

<212> DNA
<213> Artificial

<220>

<223> Polynucleotide encoding antibody variable region for anti-TcdB antibody 926. g1

<400> 68
gataccgtgc tgacccagag ccctgctaca ttgtcactga gccccgggga gagggccaca 60
ttgagctgcc gggcttcaaa atccgtgtcc accctcatgc actggttca gcaaaagccc 120
gggcaggccc caaaactgct gatctacctc gcatctaacc ttgaatctgg cgtgccggcc 180
cgcttagtg gctccggaag cgaaaccgac ttcacactga cgattagctc cctggagcct 240
gaggattcg ccgtgtacta ttgccagcaa acttggaatg acccttggac tttcgggggc 300
ggtactaagg tcgaaataaa g 321

<210> 69

<211> 117

<212> PRT

<213> Artificial

<220>

<223> Antibody variable region for anti-TcdB antibody 926 (heavy chain)

<400> 69

Gl u Val Gl u Leu Leu Gl u Ser Gl y Gl y Gl y Leu Val Gl n Pro Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Ser Cys Gl u Al a Ser Gl y Phe Thr Phe Ser Asn Tyr
20 25 30

Gl y Met Al a Trp Val Arg Gl n Al a Pro Thr Lys Gl y Leu Gl u Trp Val
35 40 45

Thr Ser Ile Ser Ser Ser Gl y Gl y Ser Thr Tyr Tyr Arg Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Ser Ser Leu Tyr
65 70 75 80

Leu Gl n Met Asn Ser Leu Arg Al a Gl u Asp Thr Al a Thr Tyr Tyr Cys
85 90 95

Thr Thr Val Ile Arg Gl y Tyr Val Met Asp Al a Trp Gl y Gl n Gl y Thr
100 105 110

Leu Val Thr Val Ser
115

<210> 70

<211> 351

<212> DNA

<213> Artificial

pctgb2012052222-seq1 . txt

<220>
<223> Polynucleotide encoding antibody variable region for
anti-TcdB antibody 926. g1 (heavy chain)

<400> 70
gagggtggAAC tgctcgAAtc tgggtggTgg ctgggtgcAGC ccgggtggATC tctgagATTg 60
tcatgcgagg catccggCTT tacctttcc aactacggAA tggcctgggt gagacaggCC 120
ccaacgaagg ggctcgAAtg ggttacaAGC atcagctctt ctgggggATC tacttactat 180
cgcgatagCG tcaaaggCCG gtttaccatt agccgagata atgccaatAC aagcctgtat 240
ctgcaaATGA acagcctgAG ggctgaggAC accgcccACat actattgtAC aaccgtgata 300
aggggctacG tGatggacgC atggggacag gggacattgg ttaccgtctc g 351

<210> 71
<211> 11
<212> PRT
<213> Artificial

<220>
<223> Antibody CDR

<400> 71

Arg Ala Ser Gly Ser Val Ser Thr Leu Met His
1 5 10

<210> 72
<211> 7
<212> PRT
<213> Artificial

<220>
<223> Antibody CDR

<400> 72

Lys Ala Ser Asn Leu Ala Ser
1 5

<210> 73
<211> 8
<212> PRT
<213> Artificial

<220>
<223> Antibody CDR

<400> 73

His Gln Ser Trp Asn Ser Asp Thr
1 5

<210> 74
<211> 10
<212> PRT
<213> Artificial

<220>
<223> Antibody CDR

pctgb2012052222-seql . txt

<400> 74

Gl y Phe Thr Phe Ser Asn Tyr Gl y Met Al a
1 5 10

<210> 75

<211> 17

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 75

Thr Ile Asn Tyr Asp Gl y Arg Thr Thr His Tyr Arg Asp Ser Val Lys
1 5 10 15

Gl y

<210> 76

<211> 9

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 76

Ile Ser Arg Ser His Tyr Phe Asp Cys
1 5

<210> 77

<211> 106

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body variable region for anti -TcdB antibody 927

<400> 77

Asp Thr Gl n Met Thr Gl n Ser Pro Ser Thr Leu Ser Al a Ser Val Gl y
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Al a Ser Gl y Ser Val Ser Thr Leu
20 25 30

Met His Trp Tyr Gl n Gl n Lys Pro Gl y Lys Al a Pro Lys Leu Leu Ile
35 40 45

Tyr Lys Al a Ser Asn Leu Al a Ser Gl y Val Pro Ser Arg Phe Ser Gl y
50 55 60

Ser Gl y Ser Gl y Thr Gl u Phe Thr Leu Thr Ile Ser Ser Leu Gl n Pro
65 70 75 80

Asp Asp Phe Ala Thr Tyr Tyr Cys His Glu Ser Trp Asn Ser Asp Thr
85 90 95

Phe Glu Glu Gly Thr Arg Leu Glu Ile Lys
100 105

<210> 78

<211> 318

<212> DNA

<213> Artificial

<220>

<223> Polynucleotide sequence encoding antibody variable region for anti-TcdB antibody 927.g2

<400> 78

gacacacaga tgacccagag cccatccact ttgtctgcat ccgtgggcga ccgagtgaca 60

atcacctgta gagcaagcgg ttccgtgagc acactgatgc attggtagcca gcagaagcct 120

ggaaaggctc ccaagctgct gatctacaaa gccagcaacc ttgcctccgg cgttccaagc 180

cggtagcg gttccggatc tggaccgag ttcaccctga ccatatcaag cctgcaaccc 240

gacgacttcg ccacctacta ttgccaccag agctggata gcgacacggt cggcaaggc 300

acaaggctgg aaatcaaa 318

<210> 79

<211> 117

<212> PRT

<213> Artificial

<220>

<223> Antibody variable region for anti-TcdB antibody 927 (heavy chain)

<400> 79

Glu Val Glu Leu Val Glu Ser Glu Glu Val Val Glu Pro Glu Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Glu Phe Thr Phe Ser Asn Tyr
20 25 30

Gly Met Ala Trp Val Arg Glu Ala Pro Glu Lys Glu Leu Glu Trp Val
35 40 45

Ala Thr Ile Asn Tyr Asp Glu Arg Thr Thr His Tyr Arg Asp Ser Val
50 55 60

Lys Glu Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Ser Thr Leu Tyr
65 70 75 80

Leu Glu Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Thr Ser Ile Ser Arg Ser His Tyr Phe Asp Cys Trp Glu Glu Thr
100 105 110

pctgb2012052222-seql . txt

Leu Val Thr Val Ser
115

<210> 80
<211> 351
<212> DNA
<213> Artificial

<220>
<223> Polynucleotide encoding antibody variable region for anti-TcdB antibody 927.g2 (heavy chain)

<400> 80
gaggtgcaac ttgtggaaag cgagggggc gtggccaac ccgagaag tctccgtctt 60
tcttcgccc caagtggctt cacccttcc aactacggaa tggcctgggt tcgacaagct 120
cctggaaag gattggagtg ggtggccact atcaactatg acggacgcac gacacactac 180
cgagactctg ttaagggcg ctttacgatt tcccgacata gacatgttccatctac 240
ctgcaaatga atagcctccg ggccgaggat actgctgtgt actattgtac ctccatctca 300
cgagccact acttcgattt ctggggacaa ggcacactcg tgactgtctc g 351

<210> 81
<211> 11
<212> PRT
<213> Artificial

<220>
<223> Antibody CDR

<400> 81

Lys Ala Ser Lys Ser Ile Ser Asn His Leu Ala
1 5 10

<210> 82
<211> 7
<212> PRT
<213> Artificial

<220>
<223> Antibody CDR

<400> 82

Ser Gly Ser Thr Leu Gln Ser
1 5

<210> 83
<211> 9
<212> PRT
<213> Artificial

<220>
<223> Antibody CDR

<400> 83

Gln Gln Tyr Asp Glu Tyr Pro Tyr Thr
1 5

pctgb2012052222-seql . txt

<210> 84
<211> 10
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 84

Gly Phe Ser Leu Gln Ser Tyr Thr Ile Ser
1 5 10

<210> 85
<211> 16
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 85

Ala Ile Ser Gly Gly Ser Thr Tyr Tyr Asn Leu Pro Leu Lys Ser
1 5 10 15

<210> 86
<211> 11
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 86

Pro Arg Trp Tyr Pro Arg Ser Tyr Phe Asp Tyr
1 5 10

<210> 87
<211> 109
<212> PRT
<213> Artificial

<220>
<223> Anti body variable region for anti -TcdB anti body 1099

<400> 87

Asp Val Gln Leu Thr Gln Ser Pro Ser Phe Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Lys Ser Ile Ser Asn His
20 25 30

Leu Ala Trp Tyr Gln Glu Lys Pro Gly Lys Ala Asn Lys Leu Leu Ile
35 40 45

His Ser Gly Ser Thr Leu Gln Ser Gly Thr Pro Ser Arg Phe Ser Gly
50 55 60

pctgb2012052222-seql . txt

Ser Gl y Ser Gl y Thr Gl u Phe Thr Leu Thr Ile Ser Ser Leu Gl n Pro
65 70 75 80

Gl u Asp Phe Al a Thr Tyr Tyr Cys Gl n Gl n Tyr Asp Gl u Tyr Pro Tyr
85 90 95

Thr Phe Gl y Gl n Gl y Thr Arg Leu Gl u Ile Lys Arg Thr
100 105

<210> 88

<211> 327

<212> DNA

<213> Arti fi ci al

<220>

<223> Pol ynucl eot i de encodi ng anti body vari able region for anti -TcdB
anti body 1099. g2

<400> 88

gacgtccagc tcactcaatc tccctccttt ctgtctgctt ctgtgggcga tcgcgtgaca 60

ataaacctgca aggcctccaa atcaattagc aaccatctgg catggtatca ggagaagcct 120

ggcaaagcca ataagctgct gatccactcc ggctcaactc tgcaatccgg taccccaagc 180

cgatttagcg gatctggag cggaaccgag ttcacactta ccattagctc cctgcaaccg 240

gaggacttcg ccacctatta ctgccagcaa tacgacgaat acccctatac gttcgccaa 300

gggacaagat tggaaatcaa gcgtacg 327

<210> 89

<211> 118

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body vari able region for anti -TcdB anti body 1099 (heavy
chai n)

<400> 89

Gl u Val Gl n Leu Gl n Gl u Ser Gl y Pro Gl y Leu Val Lys Pro Ser Gl u
1 5 10 15

Thr Leu Ser Leu Thr Cys Thr Val Ser Gl y Phe Ser Leu Gl n Ser Tyr
20 25 30

Thr Ile Ser Trp Val Arg Gl n Pro Pro Gl y Lys Gl y Leu Gl u Trp Ile
35 40 45

Al a Al a Ile Ser Gl y Gl y Ser Thr Tyr Tyr Asn Leu Pro Leu Lys
50 55 60

Ser Arg Val Thr Ile Ser Arg Asp Thr Ser Lys Ser Gl n Val Ser Leu
65 70 75 80

Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys Thr
85 90 95
pctgb2012052222-seql.txt

Arg Pro Arg Trp Tyr Pro Arg Ser Tyr Phe Asp Tyr Trp Gly Arg Gly
100 105 110

Thr Leu Val Thr Val Ser
115

<210> 90
<211> 354
<212> DNA
<213> Artificial

<220>
<223> Polynucleotide encoding antibody variable region for anti-TcdB antibody 1099.g2 (heavy chain)

<400> 90
gaagttcagc tgcaggaatc tggacctggc ttgggtgaaac caagcgagac acttagtctc 60
acttgcaccg tttccggctt ctcccttcaa tcctacacga tctcttgggt gcggcaacca 120
cccgaaaaag gactggaatg gatcgagcc attagccccg gaggagcac ctattacaac 180
ttgcctctca agagccgcgt gaccatatcc cgtgacacaa gcaagagcca ggtttccctg 240
aagctgagct ccgtgactgc tgccgatacg gctgttact attgcacccg acctcgctgg 300
tatccccgtt cctatttcga ctactggga agaggcacac tggttaccgt ctcg 354

<210> 91
<211> 11
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 91

Arg Ala Ser Gln Arg Ile Ser Thr Ser Ile His
1 5 10

<210> 92
<211> 7
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 92

Tyr Ala Ser Gln Ser Ile Ser
1 5

<210> 93
<211> 9
<212> PRT
<213> Artificial

pctgb2012052222-seql . txt

<220>
<223> Anti body CDR

<400> 93

Gl n Gl n Ser Tyr Ser Ser Leu Tyr Thr
1 5

<210> 94
<211> 10
<212> PRT
<213> Arti fi ci al

<220>
<223> Anti body CDRs

<400> 94

Gl y Phe Thr Phe Ser Asp Ser Tyr Met Al a
1 5 10

<210> 95
<211> 17
<212> PRT
<213> Arti fi ci al

<220>
<223> Anti body CDR

<400> 95

Ser Ile Ser Tyr Gl y Gl y Thr Ile Ile Gl n Tyr Gl y Asp Ser Val Lys
1 5 10 15

Gl y

<210> 96
<211> 11
<212> PRT
<213> Arti fi ci al

<220>
<223> Anti body CDR

<400> 96

Arg Gl n Gl y Thr Tyr Al a Arg Tyr Leu Asp Phe
1 5 10

<210> 97
<211> 107
<212> PRT
<213> Arti fi ci al

<220>
<223> Anti body vari able regi on for anti -TcdB anti body 1102

<400> 97

Asn Ile Val Leu Thr Gl n Ser Pro Al a Thr Leu Ser Leu Ser Pro Gl y
1 5 10 15

pctgb2012052222-seql . txt

Gl u Arg Al a Thr Leu Ser Cys Arg Al a Ser Gl n Arg Ile Ser Thr Ser
20 25 30

Ile His Trp Tyr Gl n Gl n Lys Pro Gl y Gl n Al a Pro Arg Leu Leu Ile
35 40 45

Lys Tyr Al a Ser Gl n Ser Ile Ser Gl y Ile Pro Al a Arg Phe Ser Gl y
50 55 60

Ser Gl y Ser Gl y Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gl u Pro
65 70 75 80

Gl u Asp Phe Al a Val Tyr Tyr Cys Gl n Gl n Ser Tyr Ser Ser Leu Tyr
85 90 95

Thr Phe Gl y Gl n Gl y Thr Lys Leu Gl u Ile Lys
100 105

<210> 98

<211> 321

<212> DNA

<213> Arti fi ci al

<220>

<223> Pol ynucl eoti de encodi ng anti body vari able regi on for anti -TcdB
anti body 1102. g4

<400> 98

aacatcgtgc tgacacagtc tcctgcaacc ctttcactgt ctccaggtga acgagcaacc 60

ctgagttgta gagccagtca gaggatctcc acgagcattc actggtatca gcaaaagcct 120

gggcaagctc ccagactctt gatcaagtac gcctctcaga gcataagtgg cattccagct 180

aggtttagcg gctcaggctc aggaacagac ttcaactctga ccatcagctc cctggaaccg 240

gaggactttg ccgtctatta ctgccagcaa tcctactcca gtctgtacac cttcggcag 300

ggtactaaac tggagataaa g 321

<210> 99

<211> 119

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body vari abl regi on for anti -TcdB anti body 1102 (heavy chain)

<400> 99

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Leu Val Gl n Pro Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Ser Cys Al a Val Ser Gl y Phe Thr Phe Ser Asp Ser
20 25 30

Tyr Met Al a Trp Val Arg Gl n Al a Pro Gl y Lys Gl y Leu Gl u Trp Ile
35 40 45

pctgb2012052222-seql . txt

Ala Ser Ile Ser Tyr Gly Gly Thr Ile Ile Glu Tyr Gly Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Ser Ser Leu Tyr
65 70 75 80

Leu Glu Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Arg Glu Gly Thr Tyr Ala Arg Tyr Leu Asp Phe Trp Gly Glu
100 105 110

Gly Thr Leu Val Thr Val Ser
115

<210> 100

<211> 357

<212> DNA

<213> Artificial

<220>

<223> Polynucleotide encoding antibody variable region for anti-TcdB antibody 1002.g4 (heavy chain)

<400> 100

gaagtgcagc tggtcgaatc cgggggaggt ttgggtcaac caggtggctc actgagactg 60

agctgtgccg tttccggctt tacttctca gacagtata tggcctgggt gcgtcaagca 120

cctggaaaag ggctggagtg gattgccagt atcagctatg gtgggaccat aatccagtag 180

ggcgatagcg tcaagggcag gtttactatc tccagggaca acgccaagtc aagcctttac 240

ctgcagatga attctctccg cgccaggat accgctgtgt attactgcgc tagacggcag 300

ggaacctacg ctcgataacct ggacttctgg ggtcaggaa cactcggtac agtctcg 357

<210> 101

<211> 11

<212> PRT

<213> Artificial

<220>

<223> Anti body CDR

<400> 101

Arg Ala Ser Glu Ser Val Ser Thr Leu Leu His
1 5 10

<210> 102

<211> 7

<212> PRT

<213> Artificial

<220>

<223> Anti body CDR

<400> 102

pctgb2012052222-seql . txt

Lys Al a Ser Asn Leu Al a Ser
1 5

<210> 103
<211> 9
<212> PRT
<213> Arti fi ci al

<220>
<223> Anti body CDR

<400> 103

Hi s Gl n Ser Trp Asn Ser Pro Pro Thr
1 5

<210> 104
<211> 10
<212> PRT
<213> Arti fi ci al

<220>
<223> Ani tbody CDR

<400> 104

Gl y Phe Thr Phe Ser Asn Tyr Gl y Met Al a
1 5 10

<210> 105
<211> 17
<212> PRT
<213> Arti fi ci al

<220>
<223> Anti body CDR

<400> 105

Ile Ile Asn Tyr Asp Al a Ser Thr Thr His Tyr Arg Asp Ser Val Lys
1 5 10 15

Gl y

<210> 106
<211> 9
<212> PRT
<213> Arti fi ci al

<220>
<223> Anti body CDR

<400> 106

Tyr Gl y Arg Ser Hi s Tyr Phe Asp Tyr
1 5

<210> 107
<211> 107
<212> PRT

pctgb2012052222-seql . txt

<213> Artificial

<220>

<223> Anti body variable region for anti -TcdB antibody 1114

<400> 107

Ala Thr Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Glu Ser Val Ser Thr Leu
20 25 30

Leu His Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45

Tyr Lys Ala Ser Asn Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80

Glu Asp Phe Ala Thr Tyr Tyr Cys His Gln Ser Trp Asn Ser Pro Pro
85 90 95

Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
100 105

<210> 108

<211> 321

<212> DNA

<213> Artificial

<220>

<223> Polynucleotide sequence encoding antibody variable region for anti -TcdB antibody 1114. g2

<400> 108

gcgacgcaaa tgactcagtc gccctcatcg cttagcgcgt ccgtcggaga tagagtgacg 60

atcacctgcc gcgcatacaga gtcgggtgtcc acactcctcc actggtatca gcagaaaccg 120

ggaaaggcac caaaactctt gatctacaaa gccagcaacc ttgcgtccgg tgtccgtca 180

aggttctccg ggagcgggttc gggacagac tttacttga ccatttcgtc gcttcagccg 240

gaggacttcg ccacctatta ctgtcatcag tcatggaact cacctccac atttgccag 300

ggaacgaaac tcgaaatcaa g 321

<210> 109

<211> 117

<212> PRT

<213> Artificial

<220>

<223> Anti body variable region for anti -TcdB antibody 1114 (heavy chain)

<400> 109

pctgb2012052222-seql . txt

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Leu Val Gl n Pro Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Phe Thr Phe Ser Asn Tyr
20 25 30

Gl y Met Al a Trp Val Arg Gl n Al a Pro Gl y Lys Gl y Leu Gl u Trp Val
35 40 45

Al a Ile Ile Asn Tyr Asp Al a Ser Thr Thr His Tyr Arg Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Ser Ser Leu Tyr
65 70 75 80

Leu Gl n Met Asn Ser Leu Arg Al a Gl u Asp Thr Al a Val Tyr Tyr Cys
85 90 95

Thr Arg Tyr Gl y Arg Ser His Tyr Phe Asp Tyr Trp Gl y Gl n Gl y Thr
100 105 110

Leu Val Thr Val Ser
115

<210> 110

<211> 351

<212> DNA

<213> Arti fi ci al

<220>

<223> Pol ynucl eot i de encodi ng ani tbody vari able region for anti -TcdB
anti body 1114. g2 (heavy chain)

<400> 110

gaagtacaac tcgttagagtc aggggtggg ctggtccaac ctggcggctc ccttcggctt 60

tcgtgtgccg cctcggatt cacgttagc aattacggta tggcctgggt gaggcaggca 120

ccagggagg gtcttgagtg ggtagcgatc atcaactatg atgcaagcac cacccactac 180

aggatagcg tcaagggacg ctttactatc agccggata atgcgaaatc ctcgctctat 240

ctgcagatga actccctcag agccgaggac accgcagtgt actattgcac acgatacgga 300

cgctcgact attcgacta ttggggacag gggacgctcg taactgtctc g 351

<210> 111

<211> 11

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 111

Arg Al a Ser Gl u Ser Val Ser Thr Leu Leu His
1 5 10

pctgb2012052222-seql . txt

<210> 112
<211> 7
<212> PRT
<213> Arti fi ci al

<220>
<223> Ani tbody CDR

<400> 112

Lys Al a Ser Asn Leu Al a Ser
1 5

<210> 113
<211> 9
<212> PRT
<213> Arti fi ci al

<220>
<223> Anti body CDR

<400> 113

Hi s Gl n Ser Trp Asn Ser Pro Pro Thr
1 5

<210> 114
<211> 10
<212> PRT
<213> Arti fi ci al

<220>
<223> Anti body CDR

<400> 114

Gl y Phe Thr Phe Ser Asn Tyr Gl y Met Al a
1 5 10

<210> 115
<211> 16
<212> PRT
<213> Arti fi ci al

<220>
<223> Anti body CDR

<400> 115

Ile Ile Asn Tyr Asp Al a Ser Thr Thr His Tyr Arg Asp Ser Val Lys
1 5 10 15

<210> 116
<211> 9
<212> PRT
<213> Arti fi ci al

<220>
<223> Anti body CDR

<400> 116

Tyr Gl y Arg Ser His Tyr Phe Asp Tyr
 1 5

<210> 117

<211> 107

<212> PRT

<213> Arti fici al

<220>

<223> Anti body vari able region for anti -TcdB anti body 1114 graft 8

<400> 117

Asp Thr Val Leu Thr Gl n Ser Pro Ser Ser Leu Ser Ala Ser Val Gl y
 1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gl u Ser Val Ser Thr Leu
 20 25 30

Leu His Trp Tyr Gl n Gl n Lys Pro Gl y Lys Ala Pro Lys Leu Leu Ile
 35 40 45

Tyr Lys Ala Ser Asn Leu Ala Ser Gl y Val Pro Ser Arg Phe Ser Gl y
 50 55 60

Ser Gl y Ser Gl y Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gl n Pro
 65 70 75 80

Gl u Asp Phe Ala Thr Tyr Tyr Cys His Gl n Ser Trp Asn Ser Pro Pro
 85 90 95

Thr Phe Gl y Gl n Gl y Thr Lys Leu Gl u Ile Lys
 100 105

<210> 118

<211> 321

<212> DNA

<213> Arti fici al

<220>

<223> Pol ynucl eotide encodi ng anti body vari able region for anti -TcdB
 anti body 1114. g8

<400> 118

gacacggtcc tgactcagtc gccctcatcg cttagcgcgt ccgtcggaga tagagtgacg 60

atcacctgcc gcgcatcaga gtcgggtgcc acactcctcc actggtatca gcagaaaccg 120

gggaaggcac caaaactctt gatctacaaa gccagcaacc ttgcgtccgg tgtcccgta 180

aggttctccg ggagcggttc gggacagac tttacttga ccatttcgtc gcttcagccg 240

gaggacttcg ccacctatta ctgtcatcag tcatggaact cacctcccac atttgccag 300

ggaacgaaac tcgaaatcaa g 321

<210> 119

<211> 117

<212> PRT

pctgb2012052222-seql . txt

<213> Artificial

<220>

<223> Anti body variable region for anti -TcdB anti body 1114 graft 8
(heavy chain)

<400> 119

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Leu Val Gl n Pro Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Phe Thr Phe Ser Asn Tyr
20 25 30

Gl y Met Al a Trp Val Arg Gl n Al a Pro Gl y Lys Gl y Leu Gl u Trp Val
35 40 45

Al a Ile Ile Asn Tyr Asp Al a Ser Thr Thr His Tyr Arg Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Ser Ser Leu Tyr
65 70 75 80

Leu Gl n Met Asn Ser Leu Arg Al a Gl u Asp Thr Al a Val Tyr Tyr Cys
85 90 95

Thr Arg Tyr Gl y Arg Ser His Tyr Phe Asp Tyr Trp Gl y Gl n Gl y Thr
100 105 110

Leu Val Thr Val Ser
115

<210> 120

<211> 351

<212> DNA

<213> Artificial

<220>

<223> Polynucleotide encoding anti body variable region for anti -TcdB
anti body 1114. g8

<400> 120

gaagtacaac tcgttagatc aggggtggg ctggtccaaac ctggcggctc cttcggtt 60
tcgtgtgccg cctcgggatt cacgttagc aattacgta tggcctgggt gaggcaggca
ccagggaaagg gtcttgagtg gtagcgatc atcaactatg atgcaagcac cacccactac
agggatagcg tcaaggacg ctttactatc agccggata atgcgaaatc ctcgctctat
ctgcagatga actccctcag agccgaggac accgcagtgt actattgcac acgatacgg
cgctcgcact atttcgacta ttggggacag gggacgctcg taactgtctc g 351

<210> 121

<211> 11

<212> PRT

<213> Artificial

pctgb2012052222-seql . txt

<220>

<223> Anti body CDR

<400> 121

Lys Ala Ser Gln Asn Ile Tyr Met Tyr Leu Asn
1 5 10

<210> 122

<211> 7

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 122

Asn Thr Asn Lys Leu His Thr
1 5

<210> 123

<211> 9

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 123

Leu Gln His Lys Ser Phe Pro Tyr Thr
1 5

<210> 124

<211> 10

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 124

Gly Phe Thr Phe Arg Asp Ser Phe Met Ala
1 5 10

<210> 125

<211> 17

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 125

Ser Ile Ser Tyr Glu Gly Asp Lys Thr Tyr Tyr Gly Asp Ser Val Lys
1 5 10 15

Gly

pctgb2012052222-seql . txt

<210> 126
<211> 9
<212> PRT
<213> Artificial

<220>
<223> Antibody CDR

<400> 126

Leu Thr Ile Thr Thr Ser Gly Asp Ser
1 5

<210> 127
<211> 107
<212> PRT
<213> Artificial

<220>
<223> Antibody variable region for anti -TcdB antibody 1125

<400> 127

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asn Ile Tyr Met Tyr
20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Arg Leu Ile
35 40 45

Tyr Asn Thr Asn Lys Leu His Thr Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Glu Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80

Gl u Asp Phe Ala Thr Tyr Cys Leu Gln His Lys Ser Phe Pro Tyr
85 90 95

Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
100 105

<210> 128
<211> 321
<212> DNA
<213> Artificial

<220>
<223> Polynucleotide sequence encoding antibody variable region for anti -TcdB antibody 1125. g2

<400> 128
gatatacaa tgactcagag ccctagctca ctgagcgctt ctgtggcgaa tcgttgaca 60
atcacttgca aagcaagcca gaacatctat atgtacctga attggtacca gcaaaaaccg 120
ggaaaaagctc ccaagcgctt gatttacaac accaataagc tgcataccgg cgtgccaagc 180

pctgb2012052222-seql . txt

cgtttagcg gatctggctc tggaaaccgaa tatacactga ccataagctc cctgcaaccg	240
gaagactttg caacttacta ttgcctccag cacaatcct tcccctatac gttcggacaa	300
gggaccaaac tggaaatcaa a	321

<210> 129
 <211> 118
 <212> PRT
 <213> Artificial

<220>
 <223> Anti body variable region for anti -TcdB anti body 1125 (heavy chain)

<400> 129

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Leu Val Gl n Pro Gl y Gl y	
1 5 10 15	

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Phe Thr Phe Arg Asp Ser	
20 25 30	

Phe Met Al a Trp Val Arg Gl n Al a Pro Gl y Lys Gl y Leu Gl u Trp Val	
35 40 45	

Al a Ser Ile Ser Tyr Gl u Gl y Asp Lys Thr Tyr Tyr Gl y Asp Ser Val	
50 55 60	

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn Ser Leu Tyr	
65 70 75 80	

Leu Gl n Met Asn Ser Leu Arg Al a Gl u Asp Thr Al a Val Tyr Tyr Cys	
85 90 95	

Al a Arg Leu Thr Ile Thr Thr Ser Gl y Asp Ser Trp Gl y Gl n Gl y Thr	
100 105 110	

Met Val Thr Val Ser Ser	
115	

<210> 130
 <211> 354
 <212> DNA
 <213> Artificial

<220>
 <223> Polynucleotide encoding anti body variable region for anti -TcdB anti body 1125. g2 (heavy chain)

<400> 130 gaagtgcagc tggtcgaaag cggcgagga ttgggtcaac ctggtggtc tcttcgcctg	60
tcttcgcctg caagcggctt tacgttccgc gatagctta tggcttgggt gcgacaagct	120
cctgggaaag ggctgaaatg ggtcgctagc ataagctacg aaggcgacaa gacttactat	180
ggggactctg taaaaggccg attcaccatt agccgagaca acgcaaagaa ctccctgtac	240

pctgb2012052222-seql . txt

ctgcagatga actccctgcg tgccgaagat accgccgtgt actattgcgc taggctgacg 300
atcactacaa gcggagatag ctggggacaa gggacaatgg tgaccgtctc gagc 354

<210> 131
<211> 11
<212> PRT
<213> Arti fi ci al

<220>
<223> Anti body CDR

<400> 131

Lys Ala Ser Glu His Val Gly Thr Asn Val Asp
1 5 10

<210> 132
<211> 7
<212> PRT
<213> Arti fi ci al

<220>
<223> Anti body CDR

<400> 132

Gly Ala Ser Ile Arg Tyr Thr
1 5

<210> 133
<211> 9
<212> PRT
<213> Arti fi ci al

<220>
<223> Anti body CDR

<400> 133

Leu Glu Tyr Asn Tyr Asn Pro Tyr Thr
1 5

<210> 134
<211> 10
<212> PRT
<213> Arti fi ci al

<220>
<223> Anti body CDR

<400> 134

Gly Phe Ile Phe Ser Asn Phe Gly Met Ser
1 5 10

<210> 135
<211> 17
<212> PRT
<213> Arti fi ci al

<220>

pctgb2012052222-seql . txt

<223> Anti body CDR

<400> 135

Ser Ile Ser Pro Ser Gly Gly Asn Ala Tyr Tyr Arg Asp Ser Val Lys
1 5 10 15

Gly

<210> 136

<211> 9

<212> PRT

<213> Artificial

<220>

<223> Anti body CDR

<400> 136

Arg Ala Tyr Ser Ser Pro Phe Ala Phe
1 5

<210> 137

<211> 107

<212> PRT

<213> Artificial

<220>

<223> Anti body variable region for anti -TcdB anti body 1129

<400> 137

Asp Thr Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln His Val Gly Thr Asn
20 25 30

Val Asp Trp Tyr Gln Gln Lys Pro Gly Lys Val Pro Lys Leu Leu Ile
35 40 45

Tyr Gly Ala Ser Ile Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly
50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80

Gl u Asp Val Ala Thr Tyr Tyr Cys Leu Gln Tyr Asn Tyr Asn Pro Tyr
85 90 95

Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
100 105

<210> 138

<211> 321

<212> DNA

<213> Artificial

pctgb2012052222-seq1 . txt

<220>

<223> Polynucleotide sequence encoding antibody variable region for anti-TcdB antibody 1129. g1

<400> 138

gacaccaga	tgactcagtc	tccgtcaagc	ctttctgcct	ctgttgaga	tcgagtcaca	60
attacgtgca	aggcaagcca	acacgtgggt	accaacgtgg	actggtatca	acagaagcca	120
gsgaagggtcc	ccaaactgct	gatctacggt	gccagtattc	gctataccgg	cgtgcctgat	180
cgcttcaccg	gaagcgggtc	agggaccgat	ttcacactga	caatcagctc	cctgcaacct	240
gaagacgtgg	ctacttacta	ctgcctgcag	tacaactata	atccctacac	ctttggccag	300
ggcaccaaac	tggagataaa	g				321

<210> 139

<211> 118

<212> PRT

<213> Artificial

<220>

<223> Antibody variable region for anti-TcdB antibody 1129 (heavy chain)

<400> 139

Gl u	Val	Gl n	Leu	Val	Gl u	Ser	Gl y	Gl y	Gl y	Val	Val	Gl n	Pro	Gl y	Arg
1				5				10					15		

Ser	Leu	Arg	Leu	Ser	Cys	Al a	Thr	Ser	Gl y	Phe	Ile	Phe	Ser	Asn	Phe
				20				25					30		

Gl y	Met	Ser	Trp	Val	Arg	Gl n	Al a	Pro	Gl y	Lys	Gl y	Leu	Gl u	Trp	Val
	35					40					45				

Al a	Ser	Ile	Ser	Pro	Ser	Gl y	Gl y	Asn	Al a	Tyr	Tyr	Arg	Asp	Ser	Val
	50				55					60					

Lys	Gl y	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ser	Lys	Thr	Thr	Leu	Tyr
65					70				75					80	

Leu	Gl n	Met	Asn	Ser	Leu	Arg	Al a	Gl u	Asp	Thr	Al a	Val	Tyr	Tyr	Cys
		85						90					95		

Thr	Arg	Arg	Al a	Tyr	Ser	Ser	Pro	Phe	Al a	Phe	Trp	Gl y	Gl n	Gl y	Thr
			100					105					110		

Leu	Val	Thr	Val	Ser	Ser
		115			

<210> 140

<211> 354

<212> DNA

<213> Artificial

<220>

pctgb2012052222-seql . txt

<223> Pol ynucl eoti de sequence encoding anti body vari abl e regi on for anti -TcdB anti body 1129. g1(heavy chain)

<400> 140
gaggtgcaac ttgtggaatc aggagggtggc gtggttcagc ccggtagatc acttcgtctg 60
agtttgcaa caagcggctt tatcttctcc aacttcggga tgtcttgggt tagacaggct 120
cctggtaagg gcctcgaatg ggtggctagt attagccaa gcggggaaa cgcctactat 180
aggcacagcg taaaaggacg cttcactatc agccgagata actccaagac cacgctgtat 240
ctgcagatga atagtctgag ggccgaggat accgcagtgt actactgcac tcgacggcc 300
tattttccc ctttgcctt ttggggacag gggactctgg tgacagtctc gagc 354

<210> 141

<211> 11

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 141

Lys Ala Ser Lys Ser Ile Ser Asn His Leu Ala
1 5 10

<210> 142

<211> 7

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 142

Ser Gly Ser Thr Leu Gln Pro
1 5

<210> 143

<211> 9

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 143

Gln Gln Tyr Asp Glu Tyr Pro Tyr Thr
1 5

<210> 144

<211> 10

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body CDR

<400> 144

pctgb2012052222-seql . txt

Gly Phe Ser Leu Asn Ser Tyr Thr Ile Thr
1 5 10

<210> 145
<211> 16
<212> PRT
<213> Artifical

<220>
<223> Anti body CDR

<400> 145

Ala Ile Ser Gly Gly Ser Thr Tyr Phe Asn Ser Ala Leu Lys Ser
1 5 10 15

<210> 146
<211> 11
<212> PRT
<213> Artifical

<220>
<223> Anti body CDR
<400> 146

Pro Arg Trp Tyr Pro Arg Ser Tyr Phe Asp Tyr
1 5 10

<210> 147
<211> 107
<212> PRT
<213> Artifical

<220>
<223> Anti body variable region for anti -TcdB antibody 1134

<400> 147

Asp Val Gln Leu Thr Gln Ser Pro Ser Phe Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Lys Ser Ile Ser Asn His
20 25 30

Leu Ala Trp Tyr Gln Glu Lys Pro Gly Lys Ala Asn Lys Leu Leu Ile
35 40 45

His Ser Gly Ser Thr Leu Gln Pro Gly Thr Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80

Gl u Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asp Glu Tyr Pro Tyr
85 90 95

Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile Lys
Page 46

<210> 148
<211> 321
<212> DNA
<213> Artificial

<220>
<223> Polynucleotide encoding antibody variable region for anti-TcdB antibody 1134. g5

<400> 148	60
gacgtccagc tcactcaatc tccctccttt ctgtctgctt ctgtggcga tcgcgtgaca	120
ataacctgca aggcctccaa atcaattagc aaccatctgg catggtatca ggagaagcct	180
ggcaaagcca ataagctgct gatccactcc ggctcaactc tgcaacccgg taccccaagc	240
cgatttagcg gatctggag cgaaaccgag ttcacactta ccattagctc cctgcaaccg	300
gaggacttcg ccacctatta ctgccagcaa tacgacgaat acccctatac gttcggccaa	
gggacaagat tggaaatcaa g	321

<210> 149
<211> 118
<212> PRT
<213> Artificial

<220>
<223> Antibody variable region for anti-TcdB antibody 1134 (heavy chain)

<400> 149

Gl u Val Gl n Leu Gl n Gl u Ser Gl y Pro Gl y Leu Val Lys Pro Ser Gl u
1 5 10 15

Thr Leu Ser Leu Thr Cys Thr Val Ser Gl y Phe Ser Leu Asn Ser Tyr
20 25 30

Thr Ile Thr Trp Val Arg Gl n Pro Pro Gl y Lys Gl y Leu Gl u Trp Ile
35 40 45

Al a Al a Ile Ser Gl y Gl y Ser Thr Tyr Phe Asn Ser Al a Leu Lys
50 55 60

Ser Arg Val Thr Ile Ser Arg Asp Thr Ser Lys Ser Gl n Val Ser Leu
65 70 75 80

Lys Leu Ser Ser Val Thr Al a Al a Asp Thr Al a Val Tyr Tyr Cys Thr
85 90 95

Arg Pro Arg Trp Tyr Pro Arg Ser Tyr Phe Asp Tyr Trp Gl y Arg Gl y
100 105 110

Thr Leu Val Thr Val Ser
115

pctgb2012052222-seql . txt

<210> 150
<211> 354
<212> DNA
<213> Artificial

<220>
<223> Polynucleotide encoding antibody variable region for anti-TcdB antibody 1134. g5 (heavy chain)

<400> 150
gaagttcagc tgcaggaatc tggacctggc ttgggtgaaac caagcgagac acttagtctc 60
acttgcaccg tttccggctt ctcccttaat tcctacacga tcacttgggt gcgcaacca 120
cccggaaag gactggaatg gatgcagcc attagcgggg gagggagcac ctatttcaac 180
tcggctctca agagccgcgt gaccatatcc cgtgacacaa gcaagagcca ggtttccctg 240
aagctgagct ccgtgactgc tgccgatacg gctgttact attgcacccg acctcgctgg 300
tatccccgtt cctatttcga ctactgggaa agaggcacac tggttaccgt ctcg 354

<210> 151
<211> 11
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 151

Lys Ala Ser Gln Asn Val Gly Asn Asn Val Ala
1 5 10

<210> 152
<211> 7
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 152

Tyr Ala Ser Asn Arg Phe Thr
1 5

<210> 153
<211> 9
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 153

Gln Arg Val Tyr Gln Ser Thr Trp Thr
1 5

<210> 154
<211> 10

pctgb2012052222-seql . txt

<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 154

Gly Phe Ser Leu Thr Ser Tyr Tyr Val His
1 5 10

<210> 155
<211> 16
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 155

Cys Ile Arg Thr Gly Gly Asn Thr Glu Tyr Gln Ser Glu Phe Lys Ser
1 5 10 15

<210> 156
<211> 7
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 156

Gly Asn Tyr Gly Phe Ala Tyr
1 5

<210> 157
<211> 107
<212> PRT
<213> Artificial

<220>
<223> Anti body variable region for anti -TcdB anti body 1151

<400> 157

Ala Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asn Val Gly Asn Asn
20 25 30

Val Ala Trp Tyr Gln His Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45

Tyr Tyr Ala Ser Asn Arg Phe Thr Gly Val Pro Ser Arg Phe Thr Gly
50 55 60

Gly Gly Tyr Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80

pctgb2012052222-seql . txt

Gl u Asp Phe Al a Thr Tyr Tyr Cys Gl n Arg Val Tyr Gl n Ser Thr Trp
85 90 95

Thr Phe Gl y Gl n Gl y Thr Lys Val Gl u Ile Lys
100 105

<210> 158

<211> 321

<212> DNA

<213> Arti fi ci al

<220>

<223> Pol ynucl eot i de encodi ng anti body vari abl e region for anti -TcdB
anti body 1151. g1

<400> 158

gcgattcaa tgactcagtc gccctcatcg cttagcgcgt ccgtcggaga tagagtgacg 60

atcacgtgca aagcatcaca aaatgtcggg aacaatgtgg catggtatca gcataaaccg 120

ggaaggcac caaaactctt gatctactac gccagcaaca ggtttactgg tgtcccgta 180

agtttcacgg gagggggta cggacagac tttacttga ccatttcgtc gcttcagccg 240

gaggacttcg ccacctatta ctgtcagagg gtctaccagt caacgtggac atttggccag 300

ggaacgaaag tggaaatcaa g 321

<210> 159

<211> 114

<212> PRT

<213> Arti fi ci al

<220>

<223> Anti body vari abl e region for anti -TcdB anti body 1151 (heavy
chain)

<400> 159

Gl u Val Gl n Leu Gl n Gl u Ser Gl y Pro Gl y Leu Val Lys Pro Ser Gl u
1 5 10 15

Thr Leu Ser Leu Thr Cys Thr Val Ser Gl y Phe Ser Leu Thr Ser Tyr
20 25 30

Tyr Val His Trp Val Arg Gl n Pro Pro Gl y Lys Gl y Leu Gl u Trp Met
35 40 45

Gl y Cys Ile Arg Thr Gl y Gl y Asn Thr Gl u Tyr Gl n Ser Gl u Phe Lys
50 55 60

Ser Arg Val Thr Ile Ser Arg Asp Thr Ser Lys Asn Gl n Val Ser Leu
65 70 75 80

Lys Leu Ser Ser Val Thr Al a Al a Asp Thr Al a Val Tyr Tyr Cys Al a
85 90 95

Arg	Gly	Asn	Tyr	Gly	Phe	Ala	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val	Thr
100							105						110		

Val Ser

<210> 160
<211> 342
<212> DNA
<213> Artificial

<220>
<223> Polynucleotide sequence encoding antibody variable region for anti-TcdB antibody 1151. g4 (heavy chain)

<400> 160	60
gaagtacaac tccaagagtc gggcctggc ctggtaagc cgtccgaaac acttcgctg	
acgtgtacgg tattcaggatt ctcacttaca tcatactacg tccactgggt gaggcagcca	120
cccgaaaaagg gtcttgagtg gatgggctgc attagaaccg gagggaaatac cgagtaccag	180
agcgaattta agagccgcgt cactatcagc cggatacgt ccaaaaacca ggtgtcgctc	240
aaattgtcct ccgtgacggc cgctgacacc gcagtgtact attgcgcgag aggaaactat	300
ggcttgcgt attggggaca gggacgctc gtaactgtct cg	342

<210> 161
<211> 11
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 161

Lys	Ala	Ser	Gln	Asn	Ile	Asn	Lys	Tyr	Leu	Asp	
1							10				

<210> 162
<211> 7
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 162

Asn	Ile	Gln	Ser	Leu	His	Thr	
1				5			

<210> 163
<211> 7
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 163

pctgb2012052222-seql . txt

Phe Glu His Asn Ser Glu Trp
1 5

<210> 164
<211> 10
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 164

Glu Phe Thr Phe Thr Glu Ala Ala Met Phe
1 5 10

<210> 165
<211> 19
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 165

Arg Ile Ser Thr Lys Ser Asn Asn Phe Ala Thr Tyr Tyr Pro Asp Ser
1 5 10 15

Val Lys Glu

<210> 166
<211> 13
<212> PRT
<213> Artificial

<220>
<223> Anti body CDR

<400> 166

Pro Ala Tyr Tyr Tyr Asp Glu Thr Val Pro Phe Ala Tyr
1 5 10

<210> 167
<211> 106
<212> PRT
<213> Artificial

<220>
<223> Anti body variable region for anti -TcdB antibody 1153. g8

<400> 167

Asp Ile Glu Met Thr Glu Ser Pro Ser Ser Leu Ser Ala Ser Val Glu
1 5 10 15

Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Glu Asn Ile Asn Lys Tyr
20 25 30

pctgb2012052222-seq1 . txt

Leu Asp Trp Tyr Glu Glu Lys Pro Gly Lys Val Pro Lys Leu Leu Ile
35 40 45

Tyr Asn Ile Glu Ser Leu His Thr Gly Ile Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu Pro
65 70 75 80

Glu Asp Val Ala Thr Tyr Tyr Cys Phe Glu His Asn Ser Gly Trp Thr
85 90 95

Phe Gly Glu Gly Thr Arg Leu Glu Ile Lys
100 105

<210> 168

<211> 318

<212> DNA

<213> Artificial

<220>

<223> Polynucleotide sequence encoding antibody variable region for
anti-TcdB antibody 1153. g8

<400> 168

gatatacaga tgactcagtc cccttctagc ctttcagctt ccgtggcgta tagagtgact 60

atcacgtgta aggctagtca gaacattaac aagtatctgg actggtagcca gcagaaaccc 120

ggaaagggttc ccaagctgct gatctacaac atccagtc tgcatacagg cattccatgc 180

cggtagctcg gatctgggttc agggaccgac ttcaccctga caatcagctc tctgcaacca 240

gaagacgtgg ccacctatta ctgcttccag cacaatagtg gctggacttt tggacaaggt 300

accaggctgg agatcaaa 318

<210> 169

<211> 123

<212> PRT

<213> Artificial

<220>

<223> Anti body variable region for anti-TcdB antibody 1153 (graft 8
heavy chain)

<400> 169

Glu Val Glu Leu Val Glu Ser Gly Gly Leu Val Glu Pro Gly Gly
1 5 10 15

Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Thr Glu Ala
20 25 30

Ala Met Phe Trp Val Arg Glu Ala Ser Gly Lys Gly Leu Glu Gly Ile
35 40 45

Ala Arg Ile Ser Thr Lys Ser Asn Asn Phe Ala Thr Tyr Tyr Pro Asp

pctgb2012052222-seql . txt

50

55

60

Ser Val Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr
65 70 75 80

Val Tyr Leu Gl n Met Asn Ser Leu Lys Thr Gl u Asp Thr Al a Val Tyr
85 90 95

Tyr Cys Thr Al a Pro Al a Tyr Tyr Asp Gl y Thr Val Pro Phe Al a
100 105 110

Tyr Trp Gl y Gl n Gl y Thr Leu Val Thr Val Ser
115 120

<210> 170

<211> 369

<212> DNA

<213> Artifi cial

<220>

<223> Polynucleotide sequence encoding antibody variable region for
anti -TcdB antibody 1153. g8 (heavy chain)

<400> 170

gaggttcagc tgggtggaaatc aggagggggt ctgggtgcaac caggaggctc cctgaaactg 60

tcttgcgccg caagcggctt tacgtttacc caggccgcta tggctgggt taggcaggcc 120

agtggaaagg gtcttgaagg catcgcaaga atcagcacca agagcaacaa tttcgctacg 180

tactatccgg actccgtgaa agccggttt accatttctc gcgtatgacag caagaacacc 240

gtgtacctgc agatgaacag tctcaagacc gaggacacag ccgtgtacta ttgtactgct 300

ccgcctatt attacgtatgg cacagtgcct ttcgcatact gggacaggg tactttggtg 360

actgtctcg 369

<210> 171

<211> 2710

<212> PRT

<213> Clostridia

<400> 171

Met Ser Leu Ile Ser Lys Gl u Gl u Leu Ile Lys Leu Al a Tyr Ser Ile
1 5 10 15

Arg Pro Arg Gl u Asn Gl u Tyr Lys Thr Ile Leu Thr Asn Leu Asp Gl u
20 25 30

Tyr Asn Lys Leu Thr Thr Asn Asn Gl u Asn Lys Tyr Leu Gl n Leu
35 40 45

Lys Lys Leu Asn Gl u Ser Ile Asp Val Phe Met Asn Lys Tyr Lys Thr
50 55 60

Ser Ser Arg Asn Arg Al a Leu Ser Asn Leu Lys Lys Asp Ile Leu Lys
Page 54

pctgb2012052222-seql . txt

65	70	75	80
Gl u Val Ile Leu Ile Lys Asn Ser Asn Thr Ser Pro Val Gl u Lys Asn			
85	90	95	
Leu His Phe Val Trp Ile Gly Gly Gl u Val Ser Asp Ile Ala Leu Gl u			
100	105	110	
Tyr Ile Lys Gl n Trp Ala Asp Ile Asn Ala Gl u Tyr Asn Ile Lys Leu			
115	120	125	
Trp Tyr Asp Ser Gl u Ala Phe Leu Val Asn Thr Leu Lys Lys Ala Ile			
130	135	140	
Val Gl u Ser Ser Thr Thr Gl u Ala Leu Gl n Leu Leu Gl u Gl u Gl u Ile			
145	150	155	160
Gl n Asn Pro Gl n Phe Asp Asn Met Lys Phe Tyr Lys Lys Arg Met Gl u			
165	170	175	
Phe Ile Tyr Asp Arg Gl n Lys Arg Phe Ile Asn Tyr Tyr Lys Ser Gl n			
180	185	190	
Ile Asn Lys Pro Thr Val Pro Thr Ile Asp Asp Ile Ile Lys Ser His			
195	200	205	
Leu Val Ser Gl u Tyr Asn Arg Asp Gl u Thr Val Leu Gl u Ser Tyr Arg			
210	215	220	
Thr Asn Ser Leu Arg Lys Ile Asn Ser Asn His Gl y Ile Asp Ile Arg			
225	230	235	240
Al a Asn Ser Leu Phe Thr Gl u Gl n Gl u Leu Leu Asn Ile Tyr Ser Gl n			
245	250	255	
Gl u Leu Leu Asn Arg Gl y Asn Leu Al a Al a Al a Ser Asp Ile Val Arg			
260	265	270	
Leu Leu Al a Leu Lys Asn Phe Gl y Gl y Val Tyr Leu Asp Val Asp Met			
275	280	285	
Leu Pro Gl y Ile His Ser Asp Leu Phe Lys Thr Ile Ser Arg Pro Ser			
290	295	300	
Ser Ile Gl y Leu Asp Arg Trp Gl u Met Ile Lys Leu Gl u Ala Ile Met			
305	310	315	320
Lys Tyr Lys Lys Tyr Ile Asn Asn Tyr Thr Ser Gl u Asn Phe Asp Lys			
325	330	335	
Leu Asp Gl n Gl n Leu Lys Asp Asn Phe Lys Leu Ile Ile Gl u Ser Lys			

pctgb2012052222-seql . txt
340 345 350

Ser Glu Lys Ser Glu Ile Phe Ser Lys Leu Glu Asn Leu Asn Val Ser
355 360 365

Asp Leu Glu Ile Lys Ile Ala Phe Ala Leu Gly Ser Val Ile Asn Glu
370 375 380

Ala Leu Ile Ser Lys Glu Gly Ser Tyr Leu Thr Asn Leu Val Ile Glu
385 390 395 400

Glu Val Lys Asn Arg Tyr Glu Phe Leu Asn Glu His Leu Asn Pro Ala
405 410 415

Ile Glu Ser Asp Asn Asn Phe Thr Asp Thr Thr Lys Ile Phe His Asp
420 425 430

Ser Leu Phe Asn Ser Ala Thr Ala Glu Asn Ser Met Phe Leu Thr Lys
435 440 445

Ile Ala Pro Tyr Leu Glu Val Glu Phe Met Pro Glu Ala Arg Ser Thr
450 455 460

Ile Ser Leu Ser Gly Pro Glu Ala Tyr Ala Ser Ala Tyr Tyr Asp Phe
465 470 475 480

Ile Asn Leu Glu Glu Asn Thr Ile Glu Lys Thr Leu Lys Ala Ser Asp
485 490 495

Leu Ile Glu Phe Lys Phe Pro Glu Asn Asn Leu Ser Glu Leu Thr Glu
500 505 510

Glu Glu Ile Asn Ser Leu Trp Ser Phe Asp Glu Ala Ser Ala Lys Tyr
515 520 525

Glu Phe Glu Lys Tyr Val Arg Asp Tyr Thr Glu Glu Ser Leu Ser Glu
530 535 540

Asp Asn Glu Val Asp Phe Asn Lys Asn Thr Ala Leu Asp Lys Asn Tyr
545 550 555 560

Leu Leu Asn Asn Lys Ile Pro Ser Asn Asn Val Glu Glu Ala Glu Ser
565 570 575

Lys Asn Tyr Val His Tyr Ile Ile Glu Leu Glu Glu Asp Asp Ile Ser
580 585 590

Tyr Glu Ala Thr Cys Asn Leu Phe Ser Lys Asn Pro Lys Asn Ser Ile
595 600 605

Ile Ile Glu Arg Asn Met Asn Glu Ser Ala Lys Ser Tyr Phe Leu Ser
Page 56

610 615 pctgb2012052222-seq1 . txt
620

Asp Asp Gly Glu Ser Ile Leu Glu Leu Asn Lys Tyr Arg Ile Pro Glu
625 630 635 640

Arg Leu Lys Asn Lys Glu Lys Val Lys Val Thr Phe Ile Gly His Glu
645 650 655

Lys Asp Glu Phe Asn Thr Ser Glu Phe Ala Arg Leu Ser Val Asp Ser
660 665 670

Leu Ser Asn Glu Ile Ser Ser Phe Leu Asp Thr Ile Lys Leu Asp Ile
675 680 685

Ser Pro Lys Asn Val Glu Val Asn Leu Leu Gly Cys Asn Met Phe Ser
690 695 700

Tyr Asp Phe Asn Val Glu Glu Thr Tyr Pro Glu Lys Leu Leu Leu Ser
705 710 715 720

Ile Met Asp Lys Ile Thr Ser Thr Leu Pro Asp Val Asn Lys Asn Ser
725 730 735

Ile Thr Ile Gly Ala Asn Gln Tyr Glu Val Arg Ile Asn Ser Glu Glu
740 745 750

Arg Lys Glu Leu Leu Ala His Ser Glu Lys Trp Ile Asn Lys Glu Glu
755 760 765

Ala Ile Met Ser Asp Leu Ser Ser Lys Glu Tyr Ile Phe Phe Asp Ser
770 775 780

Ile Asp Asn Lys Leu Lys Ala Lys Ser Lys Asn Ile Pro Glu Leu Ala
785 790 795 800

Ser Ile Ser Glu Asp Ile Lys Thr Leu Leu Leu Asp Ala Ser Val Ser
805 810 815

Pro Asp Thr Lys Phe Ile Leu Asn Asn Leu Lys Leu Asn Ile Glu Ser
820 825 830

Ser Ile Gly Asp Tyr Ile Tyr Tyr Glu Lys Leu Glu Pro Val Lys Asn
835 840 845

Ile Ile His Asn Ser Ile Asp Asp Leu Ile Asp Glu Phe Asn Leu Leu
850 855 860

Glu Asn Val Ser Asp Glu Leu Tyr Glu Leu Lys Lys Leu Asn Asn Leu
865 870 875 880

Asp Glu Lys Tyr Leu Ile Ser Phe Glu Asp Ile Ser Lys Asn Asn Ser
Page 57

pctgb2012052222-seql . txt

885

890

895

Thr Tyr Ser Val Arg Phe Ile Asn Lys Ser Asn Gly Glu Ser Val Tyr
 900 905 910

Val Glu Thr Glu Lys Glu Ile Phe Ser Lys Tyr Ser Glu His Ile Thr
 915 920 925

Lys Glu Ile Ser Thr Ile Lys Asn Ser Ile Ile Thr Asp Val Asn Gly
 930 935 940

Asn Leu Leu Asp Asn Ile Gln Leu Asp His Thr Ser Gln Val Asn Thr
 945 950 955 960

Leu Asn Ala Ala Phe Phe Ile Gln Ser Leu Ile Asp Tyr Ser Ser Asn
 965 970 975

Lys Asp Val Leu Asn Asp Leu Ser Thr Ser Val Lys Val Gln Leu Tyr
 980 985 990

Ala Gln Leu Phe Ser Thr Gly Leu Asn Thr Ile Tyr Asp Ser Ile Gln
 995 1000 1005

Leu Val Asn Leu Ile Ser Asn Ala Val Asn Asp Thr Ile Asn Val
 1010 1015 1020

Leu Pro Thr Ile Thr Glu Gly Ile Pro Ile Val Ser Thr Ile Leu
 1025 1030 1035

Asp Gly Ile Asn Leu Gly Ala Ala Ile Lys Glu Leu Leu Asp Glu
 1040 1045 1050

His Asp Pro Leu Leu Lys Lys Glu Leu Glu Ala Lys Val Gly Val
 1055 1060 1065

Leu Ala Ile Asn Met Ser Leu Ser Ile Ala Ala Thr Val Ala Ser
 1070 1075 1080

Ile Val Gly Ile Gly Ala Glu Val Thr Ile Phe Leu Leu Pro Ile
 1085 1090 1095

Ala Gly Ile Ser Ala Gly Ile Pro Ser Leu Val Asn Asn Glu Leu
 1100 1105 1110

Ile Leu His Asp Lys Ala Thr Ser Val Val Asn Tyr Phe Asn His
 1115 1120 1125

Leu Ser Glu Ser Lys Lys Tyr Gly Pro Leu Lys Thr Glu Asp Asp
 1130 1135 1140

Lys Ile Leu Val Pro Ile Asp Asp Leu Val Ile Ser Glu Ile Asp
 Page 58

pctgb2012052222-seql .txt
1145 1150 1155

Phe Asn Asn Asn Ser Ile Lys Leu Gly Thr Cys Asn Ile Leu Ala
1160 1165 1170

Met Glu Gly Gly Ser Gly His Thr Val Thr Gly Asn Ile Asp His
1175 1180 1185

Phe Phe Ser Ser Pro Ser Ile Ser Ser His Ile Pro Ser Leu Ser
1190 1195 1200

Ile Tyr Ser Ala Ile Gly Ile Glu Thr Glu Asn Leu Asp Phe Ser
1205 1210 1215

Lys Lys Ile Met Met Leu Pro Asn Ala Pro Ser Arg Val Phe Trp
1220 1225 1230

Trp Glu Thr Gly Ala Val Pro Gly Leu Arg Ser Leu Glu Asn Asp
1235 1240 1245

Gly Thr Arg Leu Leu Asp Ser Ile Arg Asp Leu Tyr Pro Gly Lys
1250 1255 1260

Phe Tyr Trp Arg Phe Tyr Ala Phe Phe Asp Tyr Ala Ile Thr Thr
1265 1270 1275

Leu Lys Pro Val Tyr Glu Asp Thr Asn Ile Lys Ile Lys Leu Asp
1280 1285 1290

Lys Asp Thr Arg Asn Phe Ile Met Pro Thr Ile Thr Thr Asn Glu
1295 1300 1305

Ile Arg Asn Lys Leu Ser Tyr Ser Phe Asp Gly Ala Gly Gly Thr
1310 1315 1320

Tyr Ser Leu Leu Leu Ser Ser Tyr Pro Ile Ser Thr Asn Ile Asn
1325 1330 1335

Leu Ser Lys Asp Asp Leu Trp Ile Phe Asn Ile Asp Asn Glu Val
1340 1345 1350

Arg Glu Ile Ser Ile Glu Asn Gly Thr Ile Lys Lys Gly Lys Leu
1355 1360 1365

Ile Lys Asp Val Leu Ser Lys Ile Asp Ile Asn Lys Asn Lys Leu
1370 1375 1380

Ile Ile Gly Asn Gln Thr Ile Asp Phe Ser Gly Asp Ile Asp Asn
1385 1390 1395

Lys Asp Arg Tyr Ile Phe Leu Thr Cys Glu Leu Asp Asp Lys Ile
Page 59

pctgb2012052222-seql .txt
1400 1405 1410

Ser Leu Ile Ile Glu Ile Asn 1415 1420 Leu Val Ala Lys Ser 1425 Tyr Ser Leu
Leu Leu Ser Gly Asp Lys Asn 1430 1435 Tyr Leu Ile Ser Asn 1440 Leu Ser Asn
Thr Ile Glu Lys Ile Asn 1445 1450 Leu Gly Leu Asp Ser 1455 Lys Asn Ile
Ala Tyr Asn Tyr Thr Asp Glu 1460 1465 Ser Asn Asn Lys Tyr 1470 Phe Gly Ala
Ile Ser Lys Thr Ser Gln 1475 Lys 1480 Ser Ile Ile His Tyr 1485 Lys Lys Asp
Ser Lys Asn Ile Leu Glu 1490 1495 Phe Tyr Asn Asp Ser Thr 1500 Leu Glu Phe
Asn Ser Lys Asp Phe Ile 1505 1510 Ala Glu Asp Ile Asn Val 1515 Phe Met Lys
Asp Asp Ile Asn Thr Ile 1520 1525 Thr Gly Lys Tyr Tyr Val 1530 Asp Asn Asn
Thr Asp Lys Ser Ile Asp Phe 1535 1540 Ser Ile Ser Leu Val 1545 Ser Lys Asn
Gln Val Lys Val Asn Gly 1550 1555 Leu Tyr Leu Asn Glu Ser 1560 Val Tyr Ser
Ser Tyr Leu Asp Phe Val Lys 1565 1570 Asn Ser Asp Gly His 1575 His Asn Thr
Ser Asn Phe Met Asn Leu Phe 1580 1585 Leu Asp Asn Ile Ser 1590 Phe Trp Lys
Leu Phe Gly Phe Glu Asn Ile 1595 1600 Asn Phe Val Ile Asp 1605 Lys Tyr Phe
Thr Leu Val Gly Lys Thr Asn 1610 1615 Leu Gly Tyr Val Glu 1620 Phe Ile Cys
Asp Asn Asn Lys Asn Ile Asp 1625 1630 Ile Tyr Phe Gly Glu 1635 Trp Lys Thr
Ser Ser Ser Lys Ser Thr Ile 1640 1645 Phe Ser Gly Asn Gly 1650 Arg Asn Val
Val Val Glu Pro Ile Tyr Asn Pro Asp Thr Gly Glu Asp Ile Ser

pctgb2012052222-seql .txt
1655 1660 1665

Thr Ser Leu Asp Phe Ser Tyr Glu Pro Leu Tyr Glu Ile Asp Arg
1670 1675 1680

Tyr Ile Asn Lys Val Leu Ile Ala Pro Asp Leu Tyr Thr Ser Leu
1685 1690 1695

Ile Asn Ile Asn Thr Asn Tyr Tyr Ser Asn Glu Tyr Tyr Pro Glu
1700 1705 1710

Ile Ile Val Leu Asn Pro Asn Thr Phe His Lys Lys Val Asn Ile
1715 1720 1725

Asn Leu Asp Ser Ser Ser Phe Glu Tyr Lys Trp Ser Thr Glu Glu
1730 1735 1740

Ser Asp Phe Ile Leu Val Arg Tyr Leu Glu Glu Ser Asn Lys Lys
1745 1750 1755

Ile Leu Gln Lys Ile Arg Ile Lys Glu Ile Leu Ser Asn Thr Gln
1760 1765 1770

Ser Phe Asn Lys Met Ser Ile Asp Phe Lys Asp Ile Lys Lys Leu
1775 1780 1785

Ser Leu Glu Tyr Ile Met Ser Asn Phe Lys Ser Phe Asn Ser Glu
1790 1795 1800

Asn Glu Leu Asp Arg Asp His Leu Glu Phe Lys Ile Ile Asp Asn
1805 1810 1815

Lys Thr Tyr Tyr Tyr Asp Glu Asp Ser Lys Leu Val Lys Glu Leu
1820 1825 1830

Ile Asn Ile Asn Asn Ser Leu Phe Tyr Phe Asp Pro Ile Glu Phe
1835 1840 1845

Asn Leu Val Thr Glu Trp Gln Thr Ile Asn Glu Lys Lys Tyr Tyr
1850 1855 1860

Phe Asp Ile Asn Thr Glu Ala Ala Leu Thr Ser Tyr Lys Ile Ile
1865 1870 1875

Asn Glu Lys His Phe Tyr Phe Asn Asn Asp Glu Val Met Gln Leu
1880 1885 1890

Glu Val Phe Lys Glu Pro Asp Glu Phe Glu Tyr Phe Ala Pro Ala
1895 1900 1905

Asn Thr Gln Asn Asn Asn Ile Glu Glu Gln Ala Ile Val Tyr Gln

pctgb2012052222-seql .txt
1910 1915 1920

Ser Lys Phe Leu Thr Leu Asn Gly Lys Lys Tyr Tyr Phe Asp Asn
1925 1930 1935

Asn Ser Lys Ala Val Thr Gly Trp Arg Ile Ile Asn Asn Glu Lys
1940 1945 1950

Tyr Tyr Phe Asn Pro Asn Asn Ala Ile Ala Ala Val Gly Leu Glu
1955 1960 1965

Val Ile Asp Asn Asn Lys Tyr Tyr Phe Asn Pro Asp Thr Ala Ile
1970 1975 1980

Ile Ser Lys Gly Trp Glu Thr Val Asn Gly Ser Arg Tyr Tyr Phe
1985 1990 1995

Asp Thr Asp Thr Ala Ile Ala Phe Asn Gly Tyr Lys Thr Ile Asp
2000 2005 2010

Gly Lys His Phe Tyr Phe Asp Ser Asp Cys Val Val Lys Ile Gly
2015 2020 2025

Val Phe Ser Thr Ser Asn Gly Phe Glu Tyr Phe Ala Pro Ala Asn
2030 2035 2040

Thr Tyr Asn Asn Asn Ile Glu Gly Glu Ala Ile Val Tyr Glu Ser
2045 2050 2055

Lys Phe Leu Thr Leu Asn Gly Lys Lys Tyr Tyr Phe Asp Asn Asn
2060 2065 2070

Ser Lys Ala Val Thr Gly Leu Glu Thr Ile Asp Ser Lys Lys Tyr
2075 2080 2085

Tyr Phe Asn Thr Asn Thr Ala Glu Ala Ala Thr Gly Trp Glu Thr
2090 2095 2100

Ile Asp Gly Lys Lys Tyr Tyr Phe Asn Thr Asn Thr Ala Glu Ala
2105 2110 2115

Ala Thr Gly Trp Glu Thr Ile Asp Gly Lys Lys Tyr Tyr Phe Asn
2120 2125 2130

Thr Asn Thr Ala Ile Ala Ser Thr Gly Tyr Thr Ile Ile Asn Gly
2135 2140 2145

Lys His Phe Tyr Phe Asn Thr Asp Gly Ile Met Glu Ile Gly Val
2150 2155 2160

Phe Lys Gly Pro Asn Gly Phe Glu Tyr Phe Ala Pro Ala Asn Thr
Page 62

pctgb2012052222-seql .txt
2165 2170 2175

Asp Ala Asn Asn Ile Glu Gly Glu Ala Ile Leu Tyr Glu Asn Glu
2180 2185 2190

Phe Leu Thr Leu Asn Gly Lys Lys Tyr Tyr Phe Gly Ser Asp Ser
2195 2200 2205

Lys Ala Val Thr Gly Trp Arg Ile Ile Asn Asn Lys Lys Tyr Tyr
2210 2215 2220

Phe Asn Pro Asn Asn Ala Ile Ala Ala Ile His Leu Cys Thr Ile
2225 2230 2235

Asn Asn Asp Lys Tyr Tyr Phe Ser Tyr Asp Gly Ile Leu Glu Asn
2240 2245 2250

Gly Tyr Ile Thr Ile Glu Arg Asn Asn Phe Tyr Phe Asp Ala Asn
2255 2260 2265

Asn Glu Ser Lys Met Val Thr Gly Val Phe Lys Gly Pro Asn Glu
2270 2275 2280

Phe Glu Tyr Phe Ala Pro Ala Asn Thr His Asn Asn Ile Glu
2285 2290 2295

Gly Glu Ala Ile Val Tyr Glu Asn Lys Phe Leu Thr Leu Asn Glu
2300 2305 2310

Lys Lys Tyr Tyr Phe Asp Asn Asp Ser Lys Ala Val Thr Glu Trp
2315 2320 2325

Glu Thr Ile Asp Glu Lys Tyr Tyr Phe Asn Leu Asn Thr Ala
2330 2335 2340

Glu Ala Ala Thr Glu Trp Glu Thr Ile Asp Glu Lys Lys Tyr Tyr
2345 2350 2355

Phe Asn Leu Asn Thr Ala Glu Ala Ala Thr Glu Trp Glu Thr Ile
2360 2365 2370

Asp Glu Lys Lys Tyr Tyr Phe Asn Thr Asn Thr Phe Ile Ala Ser
2375 2380 2385

Thr Glu Tyr Thr Ser Ile Asn Glu Lys His Phe Tyr Phe Asn Thr
2390 2395 2400

Asp Glu Ile Met Glu Ile Glu Val Phe Lys Glu Pro Asn Glu Phe
2405 2410 2415

Glu Tyr Phe Ala Pro Ala Asn Thr Asp Ala Asn Asn Ile Glu Glu
Page 63

pctgb2012052222-seql .txt
2420 2425 2430

Gl n Al a Ile Leu Tyr Gl n Asn Lys Phe Leu Thr Leu Asn Gl y Lys
2435 2440 2445

Lys Tyr Tyr Phe Gl y Ser Asp Ser Lys Al a Val Thr Gl y Leu Arg
2450 2455 2460

Thr Ile Asp Gl y Lys Lys Tyr Tyr Phe Asn Thr Asn Thr Al a Val
2465 2470 2475

Al a Val Thr Gl y Trp Gl n Thr Ile Asn Gl y Lys Lys Tyr Tyr Phe
2480 2485 2490

Asn Thr Asn Thr Ser Ile Al a Ser Thr Gl y Tyr Thr Ile Ile Ser
2495 2500 2505

Gl y Lys His Phe Tyr Phe Asn Thr Asp Gl y Ile Met Gl n Ile Gl y
2510 2515 2520

Val Phe Lys Gl y Pro Asp Gl y Phe Gl u Tyr Phe Al a Pro Al a Asn
2525 2530 2535

Thr Asp Al a Asn Asn Ile Gl u Gl y Gl n Al a Ile Arg Tyr Gl n Asn
2540 2545 2550

Arg Phe Leu Tyr Leu His Asp Asn Ile Tyr Tyr Phe Gl y Asn Asn
2555 2560 2565

Ser Lys Al a Al a Thr Gl y Trp Val Thr Ile Asp Gl y Asn Arg Tyr
2570 2575 2580

Tyr Phe Gl u Pro Asn Thr Al a Met Gl y Al a Asn Gl y Tyr Lys Thr
2585 2590 2595

Ile Asp Asn Lys Asn Phe Tyr Phe Arg Asn Gl y Leu Pro Gl n Ile
2600 2605 2610

Gl y Val Phe Lys Gl y Ser Asn Gl y Phe Gl u Tyr Phe Al a Pro Al a
2615 2620 2625

Asn Thr Asp Al a Asn Asn Ile Gl u Gl y Gl n Al a Ile Arg Tyr Gl n
2630 2635 2640

Asn Arg Phe Leu His Leu Leu Gl y Lys Ile Tyr Tyr Phe Gl y Asn
2645 2650 2655

Asn Ser Lys Al a Val Thr Gl y Trp Gl n Thr Ile Asn Gl y Lys Val
2660 2665 2670

Tyr Tyr Phe Met Pro Asp Thr Al a Met Al a Al a Al a Gl y Gl y Leu

2675 2680 2685 pcfgb2012052222-seq1.txt

Phe Glu Ile Asp Glu Val Ile Tyr Phe Phe Glu Val Asp Glu Val
2690 2695 2700

Lys Ala Pro Gly Ile Tyr Gly
2705 2710

<210> 172
<211> 2366
<212> PRT
<213> Cl ostri di a

<400> 172

Met Ser Leu Val Asn Arg Lys Glu Leu Glu Lys Met Ala Asn Val Arg
1 5 10 15

Phe Arg Thr Glu Glu Asp Glu Tyr Val Ala Ile Leu Asp Ala Leu Glu
20 25 30

Gl u Tyr His Asn Met Ser Gl u Asn Thr Val Val Gl u Lys Tyr Leu Lys
35 40 45

Leu Lys Asp Ile Asn Ser Leu Thr Asp Ile Tyr Ile Asp Thr Tyr Lys
50 55 60

Lys Ser Gly Arg Asn Lys Ala Leu Lys Lys Phe Lys Glu Tyr Leu Val
65 70 75 80

Thr Glu Val Leu Glu Leu Lys Asn Asn Asn Leu Thr Pro Val Glu Lys
85 90 95

Asn Leu His Phe Val Trp Ile Gly Gly Gln Ile Asn Asp Thr Ala Ile
100 105 110

Asn Tyr Ile Asn Gln Trp Lys Asp Val Asn Ser Asp Tyr Asn Val Asn
 115 120 125

Val Phe Tyr Asp Ser Asn Ala Phe Leu Ile Asn Thr Leu Lys Lys Thr
130 135 140

Val Val Glu Ser Ala Ile Asn Asp Thr Leu Glu Ser Phe Arg Glu Asn
145 150 155 160

Leu Asn Asp Pro Arg Phe Asp Tyr Asn Lys Phe Phe Arg Lys Arg Met
165 170 175

Gl u Ile Ile Tyr Asp Lys Gl n Lys Asn Phe Ile Asn Tyr Tyr Lys Al a
180 185 190

Gln Arg Glu Glu Asn Pro Glu Leu Ile Ile Asp Asp Ile Val Lys Thr
 195 200 205

pctgb2012052222-seql . txt

Tyr Leu Ser Asn Glu Tyr Ser Lys Glu Ile Asp Glu Leu Asn Thr Tyr
210 215 220

Ile Glu Glu Ser Leu Asn Lys Ile Thr Glu Asn Ser Gly Asn Asp Val
225 230 235 240

Arg Asn Phe Glu Glu Phe Lys Asn Gly Glu Ser Phe Asn Leu Tyr Glu
245 250 255

Gl n Gl u Leu Val Gl u Arg Trp Asn Leu Ala Ala Ala Ser Asp Ile Leu
260 265 270

Arg Ile Ser Ala Leu Lys Glu Ile Gly Gly Met Tyr Leu Asp Val Asp
275 280 285

Met Leu Pro Gl y Ile Gl n Pro Asp Leu Phe Gl u Ser Ile Gl u Lys Pro
290 295 300

Ser Ser Val Thr Val Asp Phe Trp Gl u Met Thr Lys Leu Gl u Ala Ile
305 310 315 320

Met Lys Tyr Lys Gl u Tyr Ile Pro Gl u Tyr Thr Ser Gl u His Phe Asp
325 330 335

Met Leu Asp Gl u Gl u Val Gl n Ser Ser Phe Gl u Ser Val Leu Ala Ser
340 345 350

Lys Ser Asp Lys Ser Gl u Ile Phe Ser Ser Leu Gl y Asp Met Gl u Ala
355 360 365

Ser Pro Leu Gl u Val Lys Ile Ala Phe Asn Ser Lys Gl y Ile Ile Asn
370 375 380

Gl n Gl y Leu Ile Ser Val Lys Asp Ser Tyr Cys Ser Asn Leu Ile Val
385 390 395 400

Lys Gl n Ile Gl u Asn Arg Tyr Lys Ile Leu Asn Asn Ser Leu Asn Pro
405 410 415

Al a Ile Ser Gl u Asp Asn Asp Phe Asn Thr Thr Thr Asn Thr Phe Ile
420 425 430

Asp Ser Ile Met Al a Gl u Al a Asn Al a Asp Asn Gl y Arg Phe Met Met
435 440 445

Gl u Leu Gl y Lys Tyr Leu Arg Val Gl y Phe Phe Pro Asp Val Lys Thr
450 455 460

Thr Ile Asn Leu Ser Gl y Pro Gl u Al a Tyr Al a Al a Al a Tyr Gl n Asp
465 470 475 480

pctgb2012052222-seql . txt

Leu Leu Met Phe Lys Glu Gly Ser Met Asn Ile His Leu Ile Glu Ala
485 490 495

Asp Leu Arg Asn Phe Glu Ile Ser Lys Thr Asn Ile Ser Glu Ser Thr
500 505 510

Gl u Gl n Gl u Met Ala Ser Leu Trp Ser Phe Asp Asp Ala Arg Ala Lys
515 520 525

Al a Gl n Phe Gl u Gl u Tyr Lys Arg Asn Tyr Phe Gl u Gl y Ser Leu Gl y
530 535 540

Gl u Asp Asp Asn Leu Asp Phe Ser Gl n Asn Ile Val Val Asp Lys Gl u
545 550 555 560

Tyr Leu Leu Gl u Lys Ile Ser Ser Leu Ala Arg Ser Ser Gl u Arg Gl y
565 570 575

Tyr Ile His Tyr Ile Val Gl n Leu Gl n Gl y Asp Lys Ile Ser Tyr Gl u
580 585 590

Al a Al a Cys Asn Leu Phe Ala Lys Thr Pro Tyr Asp Ser Val Leu Phe
595 600 605

Gl n Lys Asn Ile Gl u Asp Ser Gl u Ile Ala Tyr Tyr Tyr Asn Pro Gl y
610 615 620

Asp Gl y Gl u Ile Gl n Gl u Ile Asp Lys Tyr Lys Ile Pro Ser Ile Ile
625 630 635 640

Ser Asp Arg Pro Lys Ile Lys Leu Thr Phe Ile Gl y His Gl y Lys Asp
645 650 655

Gl u Phe Asn Thr Asp Ile Phe Ala Gl y Phe Asp Val Asp Ser Leu Ser
660 665 670

Thr Gl u Ile Gl u Ala Ala Ile Asp Leu Ala Lys Gl u Asp Ile Ser Pro
675 680 685

Lys Ser Ile Gl u Ile Asn Leu Leu Gl y Cys Asn Met Phe Ser Tyr Ser
690 695 700

Ile Asn Val Gl u Gl u Thr Tyr Pro Gl y Lys Leu Leu Leu Lys Val Lys
705 710 715 720

Asp Lys Ile Ser Gl u Leu Met Pro Ser Ile Ser Gl n Asp Ser Ile Ile
725 730 735

Val Ser Ala Asn Gl n Tyr Gl u Val Arg Ile Asn Ser Gl u Gl y Arg Arg
740 745 750

pctgb2012052222-seql . txt

Gl u Leu Leu Asp His Ser Gl y Gl u Trp Ile Asn Lys Gl u Gl u Ser Ile
755 760 765

Ile Lys Asp Ile Ser Ser Lys Gl u Tyr Ile Ser Phe Asn Pro Lys Gl u
770 775 780

Asn Lys Ile Thr Val Lys Ser Lys Asn Leu Pro Gl u Leu Ser Thr Leu
785 790 795 800

Leu Gl n Gl u Ile Arg Asn Asn Ser Asn Ser Ser Asp Ile Gl u Leu Gl u
805 810 815

Gl u Lys Val Met Leu Thr Gl u Cys Gl u Ile Asn Val Ile Ser Asn Ile
820 825 830

Asp Thr Gl n Ile Val Gl u Gl u Arg Ile Gl u Gl u Ala Lys Asn Leu Thr
835 840 845

Ser Asp Ser Ile Asn Tyr Ile Lys Asp Gl u Phe Lys Leu Ile Gl u Ser
850 855 860

Ile Ser Asp Ala Leu Cys Asp Leu Lys Gl n Gl n Asn Gl u Leu Gl u Asp
865 870 875 880

Ser His Phe Ile Ser Phe Gl u Asp Ile Ser Gl u Thr Asp Gl u Gl y Phe
885 890 895

Ser Ile Arg Phe Ile Asn Lys Gl u Thr Gl y Gl u Ser Ile Phe Val Gl u
900 905 910

Thr Gl u Lys Thr Ile Phe Ser Gl u Tyr Ala Asn His Ile Thr Gl u Gl u
915 920 925

Ile Ser Lys Ile Lys Gl y Thr Ile Phe Asp Thr Val Asn Gl y Lys Leu
930 935 940

Val Lys Lys Val Asn Leu Asp Thr Thr His Gl u Val Asn Thr Leu Asn
945 950 955 960

Al a Al a Phe Phe Ile Gl n Ser Leu Ile Gl u Tyr Asn Ser Ser Lys Gl u
965 970 975

Ser Leu Ser Asn Leu Ser Val Al a Met Lys Val Gl n Val Tyr Al a Gl n
980 985 990

Leu Phe Ser Thr Gl y Leu Asn Thr Ile Thr Asp Al a Al a Lys Val Val
995 1000 1005

Gl u Leu Val Ser Thr Al a Leu Asp Gl u Thr Ile Asp Leu Leu Pro
1010 1015 1020

pctgb2012052222-seql . txt

Thr Leu Ser Glu Gly Leu Pro Ile Ile Ala Thr Ile Ile Asp Gly
1025 1030 1035

Val Ser Leu Gly Ala Ala Ile Lys Glu Leu Ser Glu Thr Ser Asp
1040 1045 1050

Pro Leu Leu Arg Gln Glu Ile Glu Ala Lys Ile Gly Ile Met Ala
1055 1060 1065

Val Asn Leu Thr Thr Ala Thr Thr Ala Ile Ile Thr Ser Ser Leu
1070 1075 1080

Gly Ile Ala Ser Gly Phe Ser Ile Leu Leu Val Pro Leu Ala Gly
1085 1090 1095

Ile Ser Ala Gly Ile Pro Ser Leu Val Asn Asn Glu Leu Val Leu
1100 1105 1110

Arg Asp Lys Ala Thr Lys Val Val Asp Tyr Phe Lys His Val Ser
1115 1120 1125

Leu Val Glu Thr Glu Gly Val Phe Thr Leu Leu Asp Asp Lys Ile
1130 1135 1140

Met Met Pro Gln Asp Asp Leu Val Ile Ser Glu Ile Asp Phe Asn
1145 1150 1155

Asn Asn Ser Ile Val Leu Gly Lys Cys Glu Ile Trp Arg Met Glu
1160 1165 1170

Gly Gly Ser Gly His Thr Val Thr Asp Asp Ile Asp His Phe Phe
1175 1180 1185

Ser Ala Pro Ser Ile Thr Tyr Arg Glu Pro His Leu Ser Ile Tyr
1190 1195 1200

Asp Val Leu Glu Val Gln Lys Glu Glu Leu Asp Leu Ser Lys Asp
1205 1210 1215

Leu Met Val Leu Pro Asn Ala Pro Asn Arg Val Phe Ala Trp Glu
1220 1225 1230

Thr Gly Trp Thr Pro Gly Leu Arg Ser Leu Glu Asn Asp Gly Thr
1235 1240 1245

Lys Leu Leu Asp Arg Ile Arg Asp Asn Tyr Glu Gly Glu Phe Tyr
1250 1255 1260

Trp Arg Tyr Phe Ala Phe Ile Ala Asp Ala Leu Ile Thr Thr Leu
1265 1270 1275

pctgb2012052222-seql . txt

Lys Pro Arg Tyr Glu Asp Thr Asn Ile Arg Ile Asn Leu Asp Ser
1280 1285 1290

Asn Thr Arg Ser Phe Ile Val Pro Ile Ile Thr Thr Glu Tyr Ile
1295 1300 1305

Arg Glu Lys Leu Ser Tyr Ser Phe Tyr Gly Ser Gly Gly Thr Tyr
1310 1315 1320

Ala Leu Ser Leu Ser Gln Tyr Asn Met Gly Ile Asn Ile Glu Leu
1325 1330 1335

Ser Glu Ser Asp Val Trp Ile Ile Asp Val Asp Asn Val Val Arg
1340 1345 1350

Asp Val Thr Ile Glu Ser Asp Lys Ile Lys Lys Gly Asp Leu Ile
1355 1360 1365

Gl u Gly Ile Leu Ser Thr Leu Ser Ile Glu Glu Asn Lys Ile Ile
1370 1375 1380

Leu Asn Ser His Glu Ile Asn Phe Ser Gly Glu Val Asn Gly Ser
1385 1390 1395

Asn Gly Phe Val Ser Leu Thr Phe Ser Ile Leu Glu Gly Ile Asn
1400 1405 1410

Ala Ile Ile Glu Val Asp Leu Leu Ser Lys Ser Tyr Lys Leu Leu
1415 1420 1425

Ile Ser Gly Glu Leu Lys Ile Leu Met Leu Asn Ser Asn His Ile
1430 1435 1440

Gln Gln Lys Ile Asp Tyr Ile Gly Phe Asn Ser Glu Leu Gln Lys
1445 1450 1455

Asn Ile Pro Tyr Ser Phe Val Asp Ser Glu Gly Lys Glu Asn Gly
1460 1465 1470

Phe Ile Asn Gly Ser Thr Lys Glu Gly Leu Phe Val Ser Glu Leu
1475 1480 1485

Pro Asp Val Val Leu Ile Ser Lys Val Tyr Met Asp Asp Ser Lys
1490 1495 1500

Pro Ser Phe Gly Tyr Tyr Ser Asn Asn Leu Lys Asp Val Lys Val
1505 1510 1515

Ile Thr Lys Asp Asn Val Asn Ile Leu Thr Gly Tyr Tyr Leu Lys
1520 1525 1530

pctgb2012052222-seql . txt

Asp Asp Ile Lys Ile Ser Leu Ser Leu Thr Leu Glu Asp Glu Lys
1535 1540 1545

Thr Ile Lys Leu Asn Ser Val His Leu Asp Glu Ser Gly Val Ala
1550 1555 1560

Gl u Ile Leu Lys Phe Met Asn Arg Lys Gl y Asn Thr Asn Thr Ser
1565 1570 1575

Asp Ser Leu Met Ser Phe Leu Gl u Ser Met Asn Ile Lys Ser Ile
1580 1585 1590

Phe Val Asn Phe Leu Gl n Ser Asn Ile Lys Phe Ile Leu Asp Ala
1595 1600 1605

Asn Phe Ile Ile Ser Gl y Thr Thr Ser Ile Gl y Gl n Phe Gl u Phe
1610 1615 1620

Ile Cys Asp Gl u Asn Asp Asn Ile Gl n Pro Tyr Phe Ile Lys Phe
1625 1630 1635

Asn Thr Leu Gl u Thr Asn Tyr Thr Leu Tyr Val Gl y Asn Arg Gl n
1640 1645 1650

Asn Met Ile Val Gl u Pro Asn Tyr Asp Leu Asp Asp Ser Gl y Asp
1655 1660 1665

Ile Ser Ser Thr Val Ile Asn Phe Ser Gl n Lys Tyr Leu Tyr Gl y
1670 1675 1680

Ile Asp Ser Cys Val Asn Lys Val Val Ile Ser Pro Asn Ile Tyr
1685 1690 1695

Thr Asp Gl u Ile Asn Ile Thr Pro Val Tyr Gl u Thr Asn Asn Thr
1700 1705 1710

Tyr Pro Gl u Val Ile Val Leu Asp Ala Asn Tyr Ile Asn Gl u Lys
1715 1720 1725

Ile Asn Val Asn Ile Asn Asp Leu Ser Ile Arg Tyr Val Trp Ser
1730 1735 1740

Asn Asp Gl y Asn Asp Phe Ile Leu Met Ser Thr Ser Gl u Gl u Asn
1745 1750 1755

Lys Val Ser Gl n Val Lys Ile Arg Phe Val Asn Val Phe Lys Asp
1760 1765 1770

Lys Thr Leu Ala Asn Lys Leu Ser Phe Asn Phe Ser Asp Lys Gl n
1775 1780 1785

pctgb2012052222-seql . txt

Asp Val Pro Val Ser Glu Ile Ile Leu Ser Phe Thr Pro Ser Tyr
1790 1795 1800

Tyr Glu Asp Glu Leu Ile Glu Tyr Asp Leu Glu Leu Val Ser Leu
1805 1810 1815

Tyr Asn Glu Lys Phe Tyr Ile Asn Asn Phe Glu Met Met Val Ser
1820 1825 1830

Gl y Leu Ile Tyr Ile Asn Asp Ser Leu Tyr Tyr Phe Lys Pro Pro
1835 1840 1845

Val Asn Asn Leu Ile Thr Glu Phe Val Thr Val Glu Asp Asp Lys
1850 1855 1860

Tyr Tyr Phe Asn Pro Ile Asn Glu Glu Ala Ala Ser Ile Glu Glu
1865 1870 1875

Thr Ile Ile Asp Asp Lys Asn Tyr Tyr Phe Asn Glu Ser Glu Val
1880 1885 1890

Leu Glu Thr Glu Val Phe Ser Thr Glu Asp Glu Phe Lys Tyr Phe
1895 1900 1905

Ala Pro Ala Asn Thr Leu Asp Glu Asn Leu Glu Glu Glu Ala Ile
1910 1915 1920

Asp Phe Thr Glu Lys Leu Ile Ile Asp Glu Asn Ile Tyr Tyr Phe
1925 1930 1935

Asp Asp Asn Tyr Arg Glu Ala Val Glu Trp Lys Glu Leu Asp Glu
1940 1945 1950

Gl u Met His Tyr Phe Ser Pro Glu Thr Glu Lys Ala Phe Lys Glu
1955 1960 1965

Leu Asn Glu Ile Glu Asp Tyr Lys Tyr Tyr Phe Asn Ser Asp Glu
1970 1975 1980

Val Met Glu Lys Glu Phe Val Ser Ile Asn Asp Asn Lys His Tyr
1985 1990 1995

Phe Asp Asp Ser Glu Val Met Lys Val Glu Tyr Thr Glu Ile Asp
2000 2005 2010

Gl y Lys His Phe Tyr Phe Ala Glu Asn Glu Glu Met Glu Ile Glu
2015 2020 2025

Val Phe Asn Thr Glu Asp Glu Phe Lys Tyr Phe Ala His His Asn
2030 2035 2040

pctgb2012052222-seql . txt

Gl u Asp Leu Gl y Asn Gl u Gl u Gl y Gl u Gl u Ile Ser Tyr Ser Gl y
2045 2050 2055

Ile Leu Asn Phe Asn Asn Lys Ile Tyr Tyr Phe Asp Asp Ser Phe
2060 2065 2070

Thr Ala Val Val Gl y Trp Lys Asp Leu Gl u Asp Gl y Ser Lys Tyr
2075 2080 2085

Tyr Phe Asp Gl u Asp Thr Ala Gl u Ala Tyr Ile Gl y Leu Ser Leu
2090 2095 2100

Ile Asn Asp Gl y Gl n Tyr Tyr Phe Asn Asp Asp Gl y Ile Met Gl n
2105 2110 2115

Val Gl y Phe Val Thr Ile Asn Asp Lys Val Phe Tyr Phe Ser Asp
2120 2125 2130

Ser Gl y Ile Ile Gl u Ser Gl y Val Gl n Asn Ile Asp Asp Asn Tyr
2135 2140 2145

Phe Tyr Ile Asp Asp Asn Gl y Ile Val Gl n Ile Gl y Val Phe Asp
2150 2155 2160

Thr Ser Asp Gl y Tyr Lys Tyr Phe Ala Pro Ala Asn Thr Val Asn
2165 2170 2175

Asp Asn Ile Tyr Gl y Gl n Ala Val Gl u Tyr Ser Gl y Leu Val Arg
2180 2185 2190

Val Gl y Gl u Asp Val Tyr Tyr Phe Gl y Gl u Thr Tyr Thr Ile Gl u
2195 2200 2205

Thr Gl y Trp Ile Tyr Asp Met Gl u Asn Gl u Ser Asp Lys Tyr Tyr
2210 2215 2220

Phe Asn Pro Gl u Thr Lys Lys Ala Cys Lys Gl y Ile Asn Leu Ile
2225 2230 2235

Asp Asp Ile Lys Tyr Tyr Phe Asp Gl u Lys Gl y Ile Met Arg Thr
2240 2245 2250

Gl y Leu Ile Ser Phe Gl u Asn Asn Asn Tyr Tyr Phe Asn Gl u Asn
2255 2260 2265

Gl y Gl u Met Gl n Phe Gl y Tyr Ile Asn Ile Gl u Asp Lys Met Phe
2270 2275 2280

Tyr Phe Gl y Gl u Asp Gl y Val Met Gl n Ile Gl y Val Phe Asn Thr
2285 2290 2295

pctgb2012052222-seql . txt

Pro Asp Gly Phe Lys Tyr Phe Ala His Glu Asn Thr Leu Asp Glu
2300 2305 2310

Asn Phe Glu Gly Glu Ser Ile Asn Tyr Thr Gly Trp Leu Asp Leu
2315 2320 2325

Asp Glu Lys Arg Tyr Tyr Phe Thr Asp Glu Tyr Ile Ala Ala Thr
2330 2335 2340

Gly Ser Val Ile Ile Asp Gly Glu Glu Tyr Tyr Phe Asp Pro Asp
2345 2350 2355

Thr Ala Glu Leu Val Ile Ser Glu
2360 2365

<210> 173

<211> 18

<212> PRT

<213> Artificial

<220>

<223> Fragment from C. difficile toxin TcdB

<400> 173

Ser Pro Val Glu Lys Asn Leu His Phe Val Trp Ile Gly Gly Glu Val
1 5 10 15

Ser Asp

<210> 174

<211> 11

<212> PRT

<213> Artificial

<220>

<223> Fragment from C. difficile toxin TcdB

<400> 174

Asn Leu Ala Ala Ala Ser Asp Ile Val Arg Leu
1 5 10

<210> 175

<211> 15

<212> PRT

<213> Artificial

<220>

<223> Fragment of C. difficile toxin TcdB

<400> 175

Cys Gly Gly Val Tyr Leu Asp Val Asp Met Leu Pro Gly Ile His
1 5 10 15

pctgb2012052222-seql . txt

<210> 176
<211> 20
<212> PRT
<213> Artificial

<220>
<223> Fragment from C. difficile toxin TcdB

<400> 176

Cys Gly Gly Val Tyr Leu Asp Val Asp Met Leu Pro Gly Ile His Ser
1 5 10 15

Asp Leu Phe Lys
20

<210> 177
<211> 14
<212> PRT
<213> Artificial

<220>
<223> Fragment of C. difficile toxin TcdB

<400> 177

Cys Trp Glu Met Ile Lys Leu Glu Ala Ile Met Lys Tyr Lys
1 5 10

<210> 178
<211> 12
<212> PRT
<213> Artificial

<220>
<223> Fragment of C. difficile toxin TcdB

<400> 178

Cys Thr Asn Leu Val Ile Glu Glu Val Lys Asn Arg
1 5 10

<210> 179
<211> 12
<212> PRT
<213> Artificial

<220>
<223> Fragment of C. difficile toxin TcdB

<400> 179

Pro Glu Ala Arg Ser Thr Ile Ser Leu Ser Gly Pro
1 5 10

<210> 180
<211> 12
<212> PRT
<213> Artificial

<220>
<223> Fragment of C. difficile toxin TcdB

pctgb2012052222-seql . txt

<400> 180

Cys Ser Asn Leu Ile Val Lys Glu Ile Glu Asn Arg
1 5 10

<210> 181

<211> 14

<212> PRT

<213> Artificial

<220>

<223> Fragment of C. difficile toxin TcdB

<400> 181

Thr Glu Gln Glu Ile Asn Ser Leu Trp Ser Phe Asp Gln Ala
1 5 10

<210> 182

<211> 25

<212> PRT

<213> Artificial

<220>

<223> Fragment of C. difficile toxin TcdB

<400> 182

Thr Glu Gln Glu Ile Asn Ser Leu Trp Ser Phe Asp Pro Glu Ala Arg
1 5 10 15

Ser Thr Ile Ser Leu Ser Gly Pro Cys
20 25

<210> 183

<211> 13

<212> PRT

<213> Artificial

<220>

<223> Fragment of C. difficile toxin TcdB

<400> 183

Asn Val Glu Gln Thr Tyr Pro Gly Lys Leu Leu Leu Cys
1 5 10

<210> 184

<211> 14

<212> PRT

<213> Artificial

<220>

<223> Fragment of C. difficile toxin TcdB

<400> 184

Cys Ala Asn Gln Tyr Glu Val Arg Ile Asn Ser Glu Gly Arg
1 5 10

<210> 185

<211> 15

pctgb2012052222-seql . txt

<212> PRT
<213> Artificial

<220>
<223> Fragment of C. difficile toxin TcdB

<400> 185

Val Asn Thr Leu Asn Ala Ala Phe Phe Ile Gln Ser Leu Ile Cys
1 5 10 15

<210> 186
<211> 13
<212> PRT
<213> Artificial

<220>
<223> Fragment of C. difficile toxin TcdB

<400> 186

Tyr Ala Gln Leu Phe Ser Thr Gly Leu Asn Thr Ile Cys
1 5 10

<210> 187
<211> 16
<212> PRT
<213> Artificial

<220>
<223> Fragment of C. difficile toxin TcdB

<400> 187

Cys Ala Gly Ile Ser Ala Gly Ile Pro Ser Leu Val Asn Asn Glu Leu
1 5 10 15

<210> 188
<211> 16
<212> PRT
<213> Artificial

<220>
<223> Fragment of C. difficile toxin TcdB

<400> 188

Asp Asp Leu Val Ile Ser Glu Ile Asp Phe Asn Asn Asn Ser Ile Cys
1 5 10 15

<210> 189
<211> 10
<212> PRT
<213> Artificial

<220>
<223> Fragment of C. difficile toxin TcdB

<400> 189

Met Glu Gly Gly Ser Gly His Thr Val Thr
1 5 10

pctgb2012052222-seql . txt

<210> 190
<211> 35
<212> PRT
<213> Artificial

<220>
<223> Fragment of C. difficile toxin TcdB

<400> 190

Ala Val Asn Asp Thr Ile Asn Val Leu Pro Thr Ile Thr Glu Gly Ile
1 5 10 15

Pro Ile Val Ser Thr Ile Leu Asp Gly Ile Asn Leu Gly Ala Ala Ile
20 25 30

Lys Glu Leu
35

<210> 191
<211> 20
<212> PRT
<213> Artificial

<220>
<223> Fragment of C. difficile toxin TcdB

<400> 191

Cys Gly Phe Glu Tyr Phe Ala Pro Ala Asn Thr Asp Ala Asn Asn Ile
1 5 10 15

Glu Gly Gln Ala
20

<210> 192
<211> 20
<212> PRT
<213> Artificial

<220>
<223> Fragment of C. difficile toxin TcdB

<400> 192

Cys Gly Tyr Lys Tyr Phe Ala Pro Ala Asn Thr Val Asn Asp Asn Ile
1 5 10 15

Tyr Gly Gln Ala
20

<210> 193
<211> 12
<212> PRT
<213> Artificial

<220>
<223> Fragment of C. difficile toxin TcdB

<400> 193

pctgb2012052222-seq1 . txt

Cys Lys Tyr Tyr Phe Asn Thr Asn Thr Ala Glu Ala
1 5 10

<210> 194

<211> 12

<212> PRT

<213> Artificial

<220>

<223> Fragment of C. difficile toxin TcdB

<400> 194

Cys Lys Tyr Tyr Phe Asp Glu Asp Thr Ala Glu Ala
1 5 10