

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2014/207642 A1

(43) International Publication Date
31 December 2014 (31.12.2014)

WIPO | PCT

(51) International Patent Classification:

A61B 8/08 (2006.01) A61B 8/00 (2006.01)
G06T 7/00 (2006.01)

(21) International Application Number:

PCT/IB2014/062523

(22) International Filing Date:

23 June 2014 (23.06.2014)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/840,727 28 June 2013 (28.06.2013) US

(71) Applicant: KONINKLIJKE PHILIPS N.V. [NL/NL];
High Tech Campus 5, NL-5656 AE Eindhoven (NL).

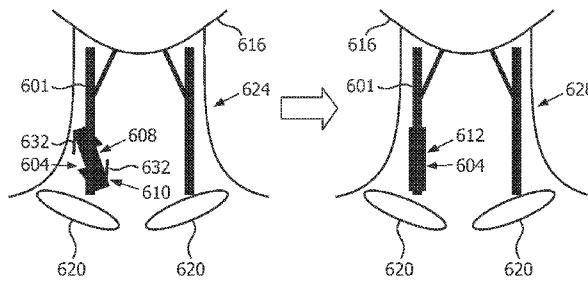
(72) Inventors: VIGNON, Francois Guy Gerard Marie; c/o
High Tech Campus, Building 5, NL-5656 AE Eindhoven
(NL). PARTHASARATHY, Vijay; c/o High Tech Cam-
pus, Building 5, NL-5656 AE Eindhoven (NL). ANAND,
Ajay; c/o High Tech Campus, Building 5, NL-5656AE
Eindhoven (NL). JAIN, Ameet Kumar; c/o High Tech
Campus, Building 5, NL-5656AE Eindhoven (NL).

(74) Agents: STEFFEN, Thomas et al.; High Tech Campus
Building 5, NL-5656 AE Eindhoven (NL).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).


Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))

(54) Title: ULTRASOUND ACQUISITION FEEDBACK GUIDANCE TO A TARGET VIEW

Ultrasound Acquisition Feedback Guidance to a Target View

FIELD OF THE INVENTION

The present invention relates to ultrasound image matching for user guidance and, more particularly, to such matching to a pre-existing image to achieve a target view.

BACKGROUND OF THE INVENTION

Successful ultrasound scanning relies strongly on the training and experience of the user. To avoid artifacts, the user has to place the probe in the right position, i.e., to find a good acoustic window, for imaging. Conventionally, this is done solely based on real-time ultrasound images displayed onscreen. Although experienced users are usually capable of recognizing image degradation, and of improving image quality accordingly by moving the probe to a better position, less experienced users might acquire compromised images because of inferior hand-eye coordination and less awareness of artifacts. Acquisition of a set of standard views of a body organ of interest is a challenging task for healthcare workers having little or no background in radiology.

“Real-Time Scan Assistant for Echocardiography”, Snare, S. R. et al., IEEE Transactions in Ultrasonics, Ferroelectrics, and Frequency Control (2012) (hereinafter “the Snare publication”) describes an image-processing approach applied to two-dimensional (2D) four-chamber cardiac images to output a metric of the quality of the obtained view.

SUMMARY OF THE INVENTION

What is proposed herein below is directed to addressing one or more of the above concerns.

The Snare publication rates the current view, but does not guide the user toward a target view.

A means by which the clinician can be automatically guided along a path to achieving a target view is needed.

In accordance with an aspect of the present invention, guidance in acquiring ultrasound imaging of a subject to achieve a target view includes emitting, via an imaging probe, ultrasound to the subject and, in response, receiving a current ultrasound view;

matching the received image to a pre-existing image; and, via a user assistance module, generating, based on the matching, feedback for the guidance.

In a sub-aspect, the target view is a view of a body organ, or vessel, of the subject.

5 In another sub-aspect, the generating is performed dynamically or continually.

In a different sub-aspect, the probe has a current placement, and at least one of showing and instructing occurs on how to move the probe from its current placement so as to thereby realize the achieving of the target view.

10 In one sub-aspect, a match between the target view and the received view is detected.

As a further sub-aspect, an apparatus automatically, and without need for user intervention, performing either or both a) user notification responsive to the detecting of the match; and by acquiring image data, via the probe, responsive to the detecting of the match.

15 In one other sub-aspect, the target view is a standard anatomical view that, prior to a time of the guidance, has already been set by an authoritative medical entity.

In yet another sub-aspect, the feedback is presented.

As a further sub-aspect of this, the presenting is performed dynamically or continually.

20 In still another sub-aspect, the received view is registered to a three-dimensional reference image.

In a sub-aspect, the registering is performed dynamically or continually.

In one different sub-aspect, the reference image includes an atlas, an image acquired of the subject via medical imaging, or both the atlas and the image.

In a further sub-aspect, the atlas includes a statistical atlas.

25 As a further sub-aspect with regard to the view registering, an image derived from the reference image, and a graphic indication of a plane of the target view, are concurrently visualized.

30 In an additional or complementary sub-aspect of the view registering, there exists concurrent visualization of one or both of the following: the received view fused to an image derived from the reference image; and the received view and an image derived from the reference image, the derived image appearing concurrently and enhanced to spatially indicate where the received view registers to the reference image.

In another variation as a sub-aspect of the view registering, instruction is provided on how to move the probe for the achieving of the target view. A speaker for the

instructing issues audible language instructions, instructions are issued on a display, or both the speaker and the display are provided for these purposes.

In a particular version of the above-mentioned aspect, a location of the received view in a state space is estimated.

5 In a particular sub-version of this, Doppler settings are, automatically by default, initialized according to those that were pre-set for the target view in building a database organized as the state space.

As a sub-version of this, a selection is made, based on the current ultrasound view, of a respective trajectory in the state space toward the target view.

10 As a further sub-version, the feedback is based on the selection.

In one added sub-version, the selection is made of an optimal trajectory in the state space toward the target view.

15 In a specific sub-version, a scanner configured for forming the state space does so by steps that include: acquiring, via the scanner and from multiple imaging subjects, images specialized for a specific body organ or vessel such that the organ or vessel, and/or surrounding tissue, are depicted in all of the plural images; and labeling the images with respective attributes.

20 In a further sub-version, forming the state space includes linking, to particular images such as those other than target, i.e., standard, images, respective instructions on how to navigate the probe from the particular image to another one of the images.

Details of the novel, real-time, interactive visual guidance technology are set forth further below, with the aid of the following drawings, which are not drawn to scale.

BRIEF DESCRIPTION OF THE DRAWINGS

25 FIG. 1 is a schematic diagram of an ultrasound clinician interactive guidance apparatus in accordance with the present invention;

FIG. 2 is a flow chart of overall operation of one implementation of the apparatus of FIG. 1, in accordance with the present invention;

30 FIG. 3 is a flow chart of an example of image matching preparation, in accordance with the present invention;

FIG. 4 is a flow chart of state space preparation, in accordance with the present invention; and

FIG. 5 is a conceptual and screen display diagram of examples of user feedback, in accordance with the present invention; and

FIG. 6 is a conceptual illustration of examples of user feedback and feedback generation, in accordance with the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

5 FIG. 1 depicts, by way of illustrative and non-limitative example, an ultrasound clinician interactive guidance apparatus 100. The apparatus 100 includes, among other component devices, a controller 104, an image matching module 108, a user assistance module 112, a memory 116, a scanner 120, a display 124, a speaker 128 and user controls 132. The image matching module 108 includes an image registering module 136 and/or a 10 state space processing module 140. The scanner includes, among other component devices, an imaging probe 144.

Operationally, an overall procedure 200 for ultrasound clinician interactive guidance is as follows, as shown in FIG. 2. As a preliminary step, an authoritative medical entity such as a physician, medical board, medical standards organization, or hospital sets 15 standard ultrasound views for the body organ, or vessel, of interest (step S204). The set of standard views is specified for use on the apparatus 100 (step S208). One or more image matching references are prepared (step S212) which is explained in more detail below with reference to FIG. 3. The clinician selects a scan type, which may be for a particular body organ such as the heart, or vessel such a particular artery (step S216). The apparatus 100 20 pulls up the corresponding image matching reference (step S218). The apparatus 100 determines which target view from among the standard views is to be acquired next. The apparatus 100 also now loads Doppler settings that have been pre-selected for the target view, as discussed below in connection with FIG. 4. In short, Doppler settings are, automatically by default, initialized according to those that were pre-set for the target view in building a 25 database organized as the state space (step S220). The apparatus 100 indicates to the user how, based on textbook guidelines for example, to place the imaging probe 144 on the superficial anatomy of the imaging subject, such as an animal or human patient (step S224). The user, i.e., clinician, positions the probe 144 (step S228). If the user guidance function apparatus 100 operates based on a state space (step S232), the state space processing module 30 140 is implemented and makes an estimate of the location, in the state space, of the current, or “live”, view acquired via the probe 144 (step S236). If, on the other hand, the state space processing module 140 is not implemented (step S232) but the image registering module 136 is implemented, the current view is registered to a corresponding position, and orientation, in a three-dimensional (3D) reference image (step S240). If it is now determined that the

current view does not match, or sufficiently represent, the target view (step S244), the apparatus 100 gives user feedback that instructs, or shows, how to proceed toward the goal of achieving the target view (step S248), and processing branches back to the user positioning step S228. Description in more detail of the feedback is provided further below in the 5 discussion accompanying FIGs. 5 and 6. If, instead, a match has been attained (step S244) and automatic acquisition is to be performed (step S252), the current view is recorded for further analysis, e.g., by a physician (step S256). If, on the other hand, a match has been attained (step S244) and user-actuated acquisition is to be performed (step S252), a green light is lit on the probe 144 or elsewhere on the scanner, such as on a console that houses the 10 user controls 132 (step S260).

The image matching reference preparation step (S212) is described in more detail in the flow chart of FIG. 3. With reference to FIG. 3, if image matching is to be based on a three-dimensional (3D) anatomical atlas as the image matching reference (step S310), and the atlas is to be a statistical atlas (step S320), a statistical atlas is prepared (step S330). 15 The statistical atlas is built based on the computed tomography (CT) and/or magnetic resonance imaging (MR) scans of a wide variety of subjects to cover anatomical variation. It may be stored on a hard drive which is part of the memory 116. Per voxel, the atlas includes a distribution of image intensities reflective of individual members of the population. Neighboring information is also included for each voxel. Image matching to achieve 20 registration is performed quicker due to the statistical nature of the statistical atlas. If, on the other hand, image matching is to be based on an anatomical atlas that is not a statistical atlas (steps S310, S320), the anatomical atlas is prepared as the 3D image matching reference, typically via CT and/or MR scans from a wide variety of subjects (step S340). If, instead of an atlas (step S310), CT and/or MR scans of the same patient are to be used to build the 3D 25 image matching reference (step S350), the “same-patient” reference is prepared (step S360). If, on the other hand, the same-patient CT/MR scans are not available or are otherwise not to be used (step S350), and a state space is to be used (step S370), a state space is prepared (step S380). Preparation of the state space is described in more detail immediately below in connection with FIG. 4.

30 A state space preparation process 400 involves building a statistical database of a set of hundreds of scans of and around the organ, or vessel, of interest from multiple imaging subjects. The database is organized as a state space. Images to be incorporated into the state space are labeled with attributes such as viewed image anatomy, image quality, and corresponding probe position and orientation on the superficial anatomy. A subset of this set

of images is the set of goal states, corresponding to the standard ultrasound views with good image quality. The images of the database can be described as points within a state space whose dimensions are the image attributes. Within the state space, it is possible to define a spatial relationship between ultrasound images, and in particular a trajectory between any 5 ultrasound image and any of the goal images.

The images to be acquired for incorporation into the state space are specialized for a specific body organ, or vessel, such that the organ or vessel, and/or surrounding tissue, are depicted in each image. The process 400 is initialized to a first imaging subject, a first target view, a first trajectory and a first image (step S404). Thus, the 10 respective pointers or counters are zeroed out. A current image is acquired via the imaging probe 144 (step S408). Attributes of the image are recorded and the current image is labeled with its attributes (step S412). The recording can be done in part automatically and in part via entry by the person building the database. The current image may be labeled according to: the viewed anatomy (e.g., carotid (left, right, common, internal, external, bulb, bifurcation, 15 proximal, medial, distal, longitudinal, transverse, oblique, etc.) such as jugular vein, thyroid gland, vertebral bodies, vertebral artery, vertebral vein, subclavian artery, etc.; the position and orientation of the probe 144 with respect to the superficial anatomy to obtain these images (e.g., anterior, anterior, posterior, cranial, caudal, lateral, medial, neck, clavicle, mandible, Adam's apple, horizontal, vertical, oblique); optionally the current imaging mode 20 and settings (e.g., for B-mode, power, focal depth, harmonics, spatial compounding; for color flow, gain, maximum velocity, color box orientation, sample volume size; and for spectral Doppler, maximum velocity and Doppler angle); and optionally the presence of artifacts and a measure of image quality (e.g., contact artifacts, good ultrasound contact and average image contrast). Labeling of the current imaging mode and settings is done automatically. 25 Since navigation toward a target view ordinarily would proceed B-mode image to B-mode image, modes such as Doppler can ordinarily be, in effect, withdrawn from the navigation process. For example, these settings can be supplied by default automatically at the outset, as in step S220 above. The setting values were created according to control adjustments made by the database builder specifically for the target view during database build up. If, in the 30 course of user navigation, the user inadvertently or for whatever reason, changes these settings, the resulting state space distance would automatically at some point of time, or points of time, during navigation, result in feedback offering user instruction for effectively restoring these settings. Alternatively, the target view Doppler settings need not be supplied by default upon initialization; instead, user feedback due to the resulting state space distance

would, in the course of user navigation or at the outset, instruct the appropriate adjustments to the settings.

The current image acquired may have been acquired via ultrasound contact that is less than good. This would be done intentionally, so that matching to this image, once 5 it is in the database, allows the deficient contact to be detected. If the contact is deficient (step S416), the person building the database applies or reapplies acoustic coupling medium, such as gel, restores the probe 144 to the same position and orientation with respect to the imaging subject for an improved image (step S420). Otherwise, if the contact was not deficient (step S416), the database builder, via probe movement or adjustment of imaging 10 settings, prepares for a next image acquisition (step S422). The movement or adjustment is made so as to navigate toward the target image.

In either event, i.e., whether or not contact was sufficient, processing now points to that next image (step S424). The image is acquired (step S428). The attributes are recorded in part manually and in part automatically (step S432). The most recent probe 15 movement, contact adjustment or imaging setting adjustment, ordinarily for B-mode, made in the corresponding above steps S420, S422 is entered or selected by the database builder, or automatically, and linked to the previous image, i.e., the image acquired just prior to step S428 (step S436). The entry could be, with respect to probe position, "left", "right", "up" or "down." Here, "up" would be mean generally in the head to toe direction. The entry could 20 instead or in addition be, with respect orientation, i.e., tilting, "left", "right", "up", or "down." The entry could additonally or instead be, with respect in place rotation of the probe 144, "clockwise" or "counterclockwise." In each of these options, distance or magnitude need not be recorded, because the updating of the feedback loop in steps S228 to S248 occurs in real 25 time. In particular, the database image having the location closest, according to Euclidean distance for example, to the estimate made in step S236 dynamically keeps the user on a trajectory toward the target view. Even if, during operation, a user wanders into another trajectory, that other trajectory will similary navigate toward the target view. With regard to probe contact, the entry or selection by the database builder may be "reapply gel to probe and return to same position and orientation." For imaging setting changes, the automatic 30 selection may be, for example, "increase imaging depth."

If the current view is not the target view (step S440), processing returns to step S416. Otherwise, if the current view is the target view as evidenced by actuation of the appropriate user control 132 by the database builder (step S440), and another trajectory is to be recorded for the current target view of the current imaging subject (step S444), the

database builder is advised, via an onscreen message, to enter Doppler mode settings (step S446). Interactively, according to a series of screen prompts and responsive actuations by the database builder, the Doppler settings are stored as attributes of the target view (step S448). The trajectory pointer is incremented (step S450) and return is made to step S408. If, on the 5 other hand, no such further trajectory is to be recorded (step S444), but another target view for the current imaging subject is to be used in building up the database (step S452), the view pointer is incremented (step S456) and return is likewise made to step S408. If, however, no target view for the current imaging subject remains in terms of building up the database (step S452), but a next imaging subject is to be used in building the database (step S460), the 10 subject pointer is incremented (step S464) and return is likewise made to step S408.

FIG. 5 provides examples of the user feedback of step S248, which can take the form of onscreen illustrations or messages, or audible language.

An ultrasound image representative of a current view 502 such as a B-mode image can be displayed alongside a cross-sectional image 504 derived from a 3D reference 15 image 503 stored on a hard drive, i.e., from an atlas or from a 3D image constructed from patient-specific CT and/or MR scans. The cross-sectional image 504, here of a body organ 505, i.e., the heart, has been sectioned and enhanced to spatially indicate where the received (or “live”) view registers to the reference image. Thus an enhanced region 506, that is colored for example, corresponds spatially with where the current image would cut into the 20 atlas. To show the clinician how to proceed in navigating toward a current target view, a graphic indication 508 of the plane of the current target view 510 can be added to the onscreen presentation. Also, instead of showing the current view 502 as a separate image, the ultrasound image can be fused 512 to the cross-sectional image 504 such as by a pixel for pixel replacement. Here too, the graphic indication 508 can be added.

25 Alternatively or in addition, screen messages or audible language instructions can guide the clinician. Thus, for the position/tilt 514 of the probe 144, four possible indications 516-522 are “right”, “left”, “up” and “down”, just as in the state space based embodiment. Likewise, as in the state space based embodiment, in-place rotation 524 can be “clockwise” 526 or “counterclockwise” 528.

30 The registration in step S240 involves image-based pattern matching of the current view 502 to the 3D reference image and a coordinate transformation on the current view to bring it into registration with the 3D image in accordance with the matching. The feedback instructions, based on the transformation, can be representative of a single kind, or more than one kind, of suggested probe movement 514, 524.

For the state space based embodiment, the estimate in step S236 is made as a result of pattern recognition from comparisons between the current view 502 and the database images acquired in the acquisition steps S408, S428. The one or more types of feedback instructions (i.e., probe movement, probe contact and imaging settings) linked to 5 the current database image are presented.

FIG. 6 is a specific example of user feedback and feedback generation. This example relates to the left medial common carotid artery 601 and acquiring a standard view of the artery. A transducer array face graphic 604 is shown in an oblique position 608, representative of a current placement 610 of the probe 144, and in a non-oblique position 612. 10 The transducer array may be a linear array or a matrix array. Mandible graphics 616 and clavicle graphics 620 are also shown in FIG. 6. A current graphic 624 corresponds conceptually to the current view 502, and a target graphic 628 corresponds conceptually to the target view 510. In addition, both graphics 624, 628 may be displayed onscreen in addition to, or in place of, any other graphic or ultrasound image representative of the current 15 view 502.

In the state space embodiment, the viewed anatomy label for a matched database image is “left medial common carotid artery, oblique view.” The probe position label is “midway between clavicle and mandible.” The clavicle and mandible graphics 616, 620 represent surrounding tissue. The probe orientation label is “oblique.” The imaging 20 mode label is “B-mode.” An imaging setting label is “spatial compounding.” An artifact label is “artifact-free.” An image quality label is “good image contrast”, based for example on average pixel intensity. All of the labels can be displayed, on the display 124, upon matching to the database image 604.

If an image quality attribute of the matched database image indicated lack of 25 good probe contact, rather than the actual indication here of “good” probe contact by virtue of good image quality, this current imaging condition could interfere with further matching to database images in navigating a trajectory toward a standard view. Accordingly, improvement of the contact would predominate over other navigational considerations. This would then constitute an example of selecting an optimal trajectory in the state space, and is 30 evidenced by the issuance of a user feedback message like “reapply gel and restore probe to the same location and orientation” that was linked to the current database image in the linking step S436.

However, since the image quality label indicates that contact is good, a different instruction, that was stored during database building in step S436, is sent for

viewing on the display 124. The instruction here would be the instruction 526 to “rotate in-place clockwise.” This is indicated by illustrative arrows 632. The resulting movement of the probe 144 by the clinician is, as mentioned herein above, monitored in real time via the feedback loop in steps S228 to S248. The instruction is resent for display repeatedly, but will 5 change in the event of the current view 502 matching to a new database image, such as that corresponding to the target view 510.

In the case of the 3D image embodiment, the instruction 526 “rotate clockwise” is derivable almost by definition, since the only transformation involved in registering the current view 502 to the 3D reference image is, in fact, the clockwise rotation. In a less 10 clearcut case, where reaching the target view 510 entails, for instance, probe in-place rotation and translation, whether rotation or translation predominates is decided by the apparatus 100. The criteria can involve thresholds selected based on empirical experience, although, for example, location will ordinarily dominate over tilting until the probe location is close to that needed for a target view 510.

15 Guidance in acquiring ultrasound imaging of a subject to achieve a target view, such as a standard view, entails emitting ultrasound to the subject and receiving, in response, a current ultrasound view; matching the received image to a pre-existing image, such as a three-dimensional reference image; and, for user assistance, generating, based on the matching, feedback for the guidance. The reference image may be a statistical atlas or it may 20 be derived from patient-specific CT or MR scans. The pre-existing image may instead be a database image corresponding to a state in a state space. The feedback can be an image derived from the reference image; a graphic indication of a plane of the target view; the received view fused to an image derived from the reference image; or the received view and an image derived from said reference image, the derived image appearing concurrently and 25 enhanced to spatially indicate where the received view registers to the reference image. The target view may be a view of a body organ, or vessel, of the subject. Both the atlas and database can be specialized for imaging of a user selected organ, or vessel, and its surrounding tissue.

30 In addition to making diagnostic cardiac examination performable by nurses or other clinicians who may be untrained specifically in sonography, the interactive visual guidance apparatus 100 can guide novice sonographers. Alternatively, the novel visual feedback of the apparatus 100 can speed up the work flow of trained or experienced sonographers.

While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive; the invention is not limited to the disclosed embodiments.

5 For example, the probe 144 may alternatively or additionally use tactile feedback on the appropriate probe movement toward a standard view.

Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. In the claims, the word "comprising" does not 10 exclude other elements or steps, and the indefinite article "a" or "an" does not exclude a plurality. Any reference signs in the claims should not be construed as limiting the scope.

A computer program can be stored momentarily, temporarily or for a longer period of time on a suitable computer-readable medium, such as an optical storage medium or a solid-state medium. Such a medium is non-transitory only in the sense of not being a 15 transitory, propagating signal, but includes other forms of computer-readable media such as register memory, processor cache, RAM and other volatile memory.

A single processor or other unit may fulfill the functions of several items recited in the claims. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to 20 advantage.

CLAIMS:

What is claimed is:

1. An apparatus configured for guidance in acquiring ultrasound imaging of a subject to achieve a target view, said apparatus comprising:
 - an imaging probe (144) for emitting ultrasound to said subject and for, in response, receiving a current ultrasound view;
 - an image matching module configured for matching the received view to a pre-existing image; and
 - a user assistance module configured for, based on said matching, generating feedback for said guidance.
2. The apparatus of claim 1, said target view being a view of a body organ (505), or vessel, of said subject.
3. The apparatus of claim 1, configured for performing said generating dynamically or continually (S228-S248).
4. The apparatus of claim 1, said probe having a current placement, said apparatus configured for at least one of showing and instructing how to move said probe from its current placement so as to thereby realize the achieving of said target view (510).
5. The apparatus of claim 1, said user assistance module being further configured for detecting a match (S244) between said target view and the received view.
6. The apparatus of claim 5, configured for automatically, and without need for user intervention, either or both of: a) performing user notification responsive to said detecting of said match; and b) acquiring image data (S252), via said probe, responsive to said detecting of said match.
7. The apparatus of claim 1, said target view being a standard anatomical view that, prior to a time of said guidance, has already been set by an authoritative medical entity (S204).
8. The apparatus of claim 1, further configured for presenting said feedback (S248).
9. The apparatus of claim 8, configured for performing said presenting dynamically or continually.
10. The apparatus of claim 1, said image matching module being configured for registering the received view to a three-dimensional reference image (S240).
11. The apparatus of claim 10, configured for performing said registering, dynamically or continually.

12. The apparatus of claim 10, said reference image comprising an atlas (S310), an image acquired of said subject via medical imaging, or both said atlas and said image.
13. The apparatus of claim 12, said reference image comprising said atlas, said atlas comprising a statistical atlas (S320).
14. The apparatus of claim 10, configured for concurrently visualizing a) an image derived from said reference image; and b) a graphic indication (508) of a plane of said target view.
15. The apparatus of claim 10, configured for one or more of visualizing: said received view fused (512) to an image derived from said reference image; and said received view and an image derived from said reference image, the derived image appearing concurrently and enhanced to spatially indicate where said received view registers to said reference image.
16. The apparatus of claim 10, configured for instructing how to move the probe for the achieving of said target view (514-528), said apparatus further comprising a speaker for said instructing by issuing audible language instructions, a display for said instructing by issuing instructions on said display, or both said speaker and said display.
17. The apparatus of claim 1, said image matching module (108) being configured for estimating a location of said received view in a state space.
18. The apparatus of claim 17, further configured for, automatically by default, initializing Doppler settings according to those that were pre-set for said target view in building a database organized as said state space (S404-S464).
19. The apparatus of claim 17, said user assistance module (112) being configured for selecting, based on said current ultrasound view, a respective trajectory in said state space toward said target view.
20. The apparatus of claim 19, said feedback being based on the selection.
21. The apparatus of claim 19, further configured for said selecting of an optimal trajectory in said state space toward said target view.
22. The apparatus of claim 17, further comprising a scanner (120), configured for forming said state space, said forming comprising:
 - acquiring, via said scanner and from multiple imaging subjects, a plurality of images specialized for a specific body organ, or vessel, such that said organ or vessel, and/or surrounding tissue, are depicted in all of the plural images; and
 - labeling the plural images with respective attributes.
23. The apparatus of claim 22, said forming further comprising linking (S436), to particular images from among said plural images, respective instructions on how to navigate said probe from said particular image to another one of said plural images.

24. A computer readable medium embodying a computer program for guidance in acquiring ultrasound imaging of a subject to achieve a target view, said program having instructions executable by a processor for performing a plurality of acts, from among said acts being the acts of:

emitting ultrasound to said subject;
in response, receiving, via an imaging probe, a current ultrasound view;
matching the received view to a pre-existing image (503); and,
based on said matching, generating feedback for said guidance.

1/6

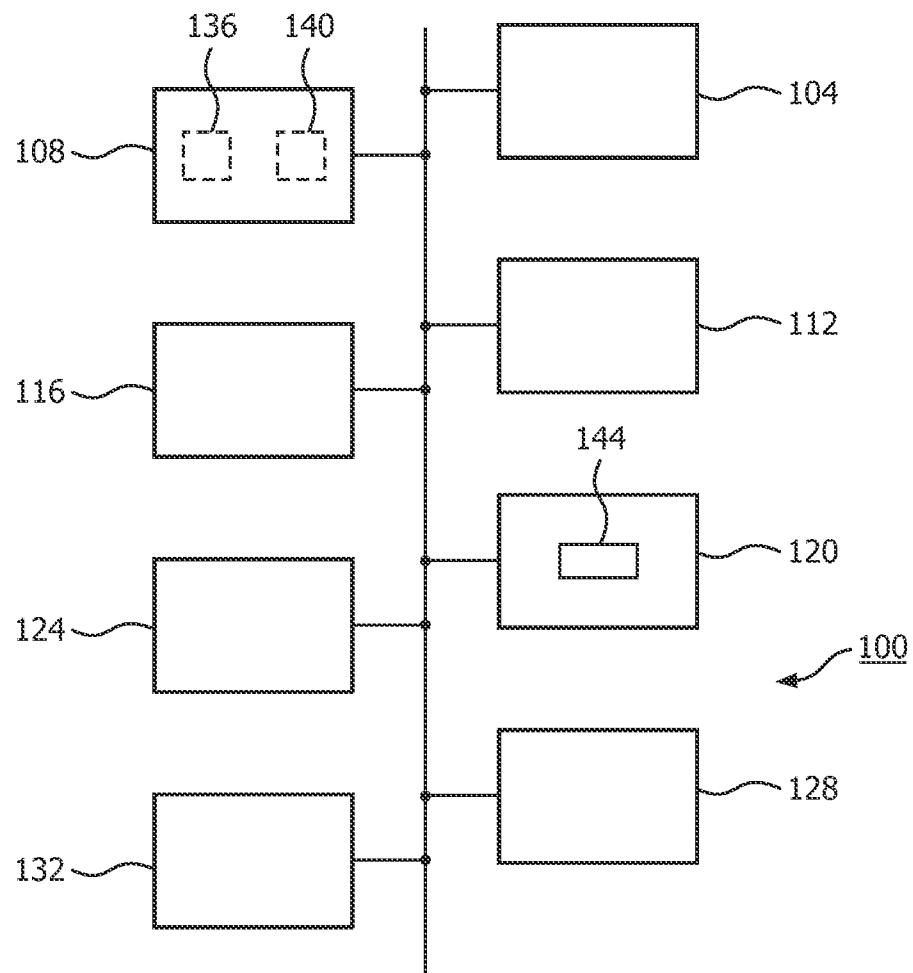


FIG. 1

2/6

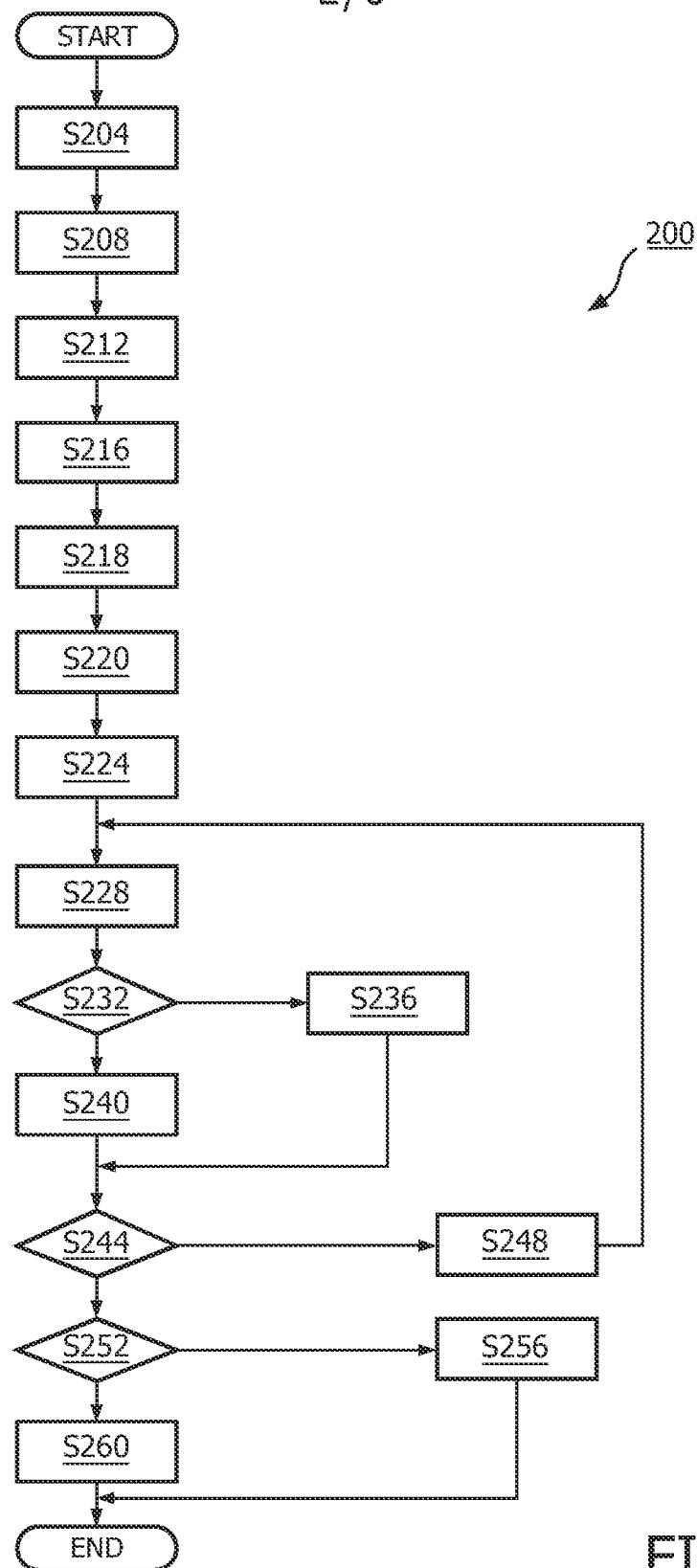


FIG. 2

3/6

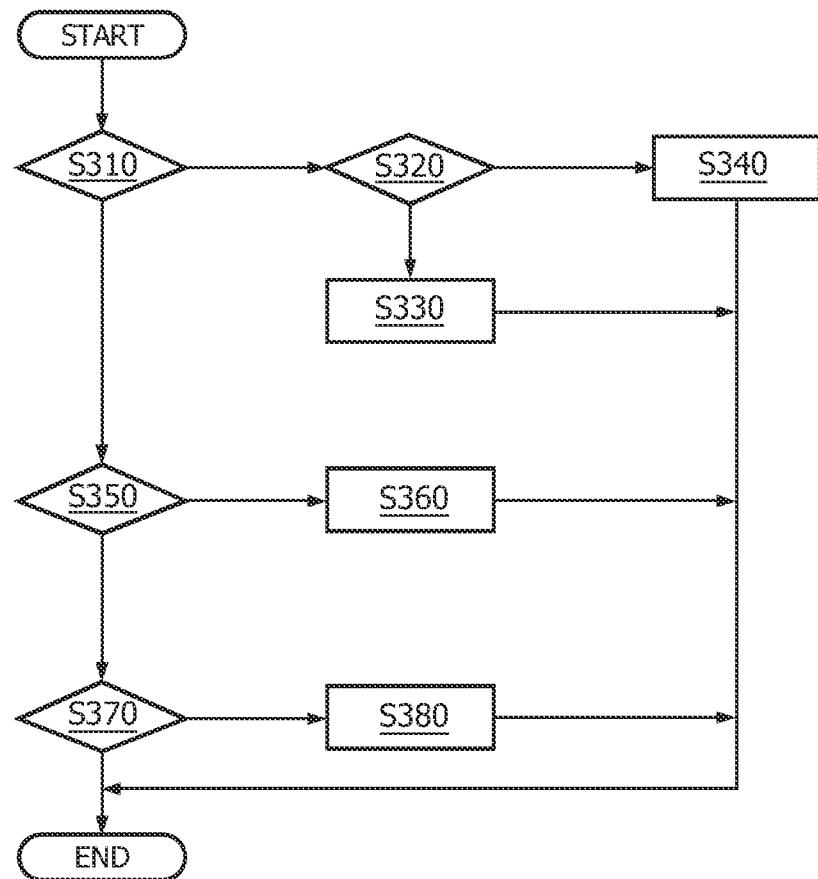


FIG. 3

4/6

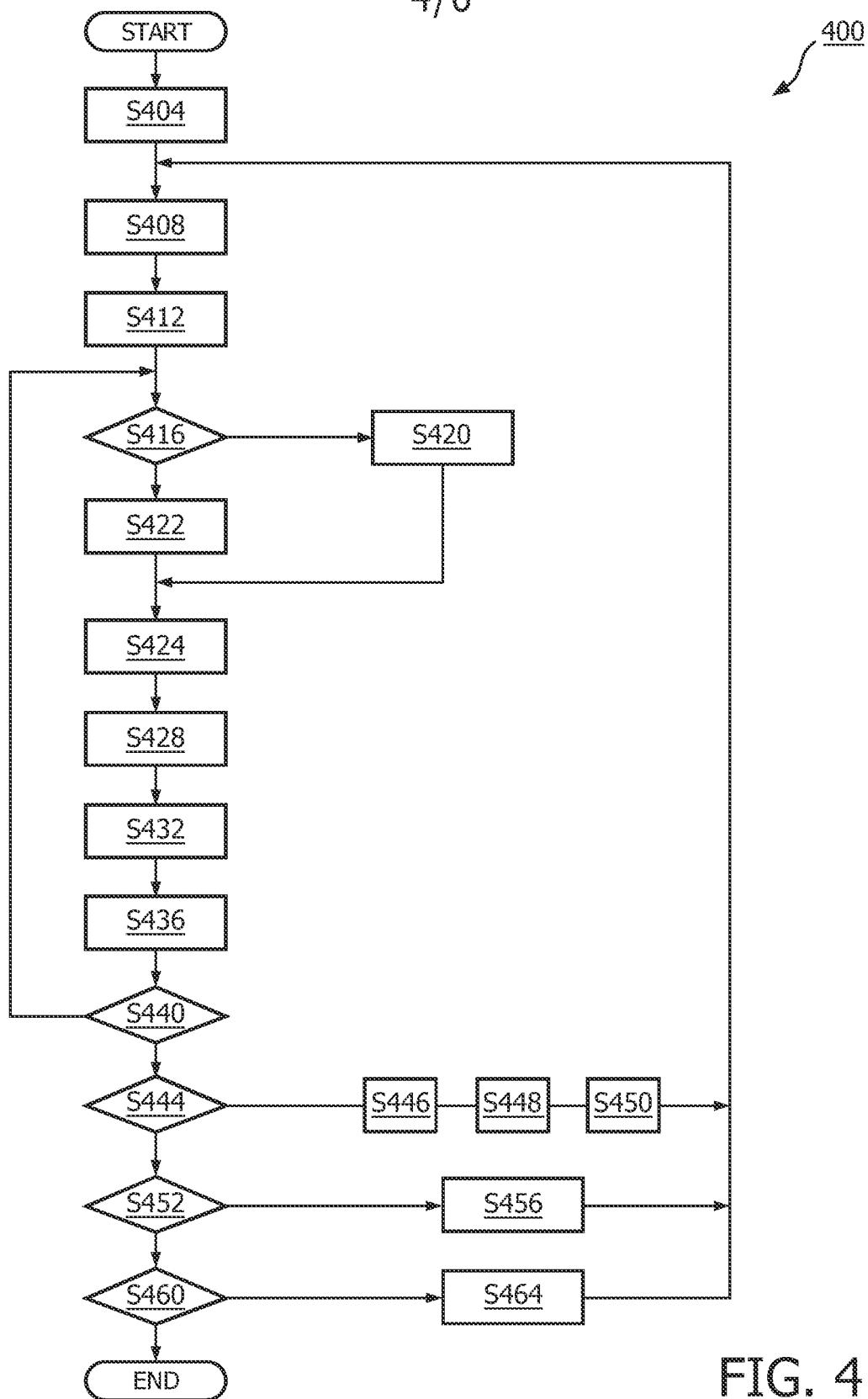


FIG. 4

5/6

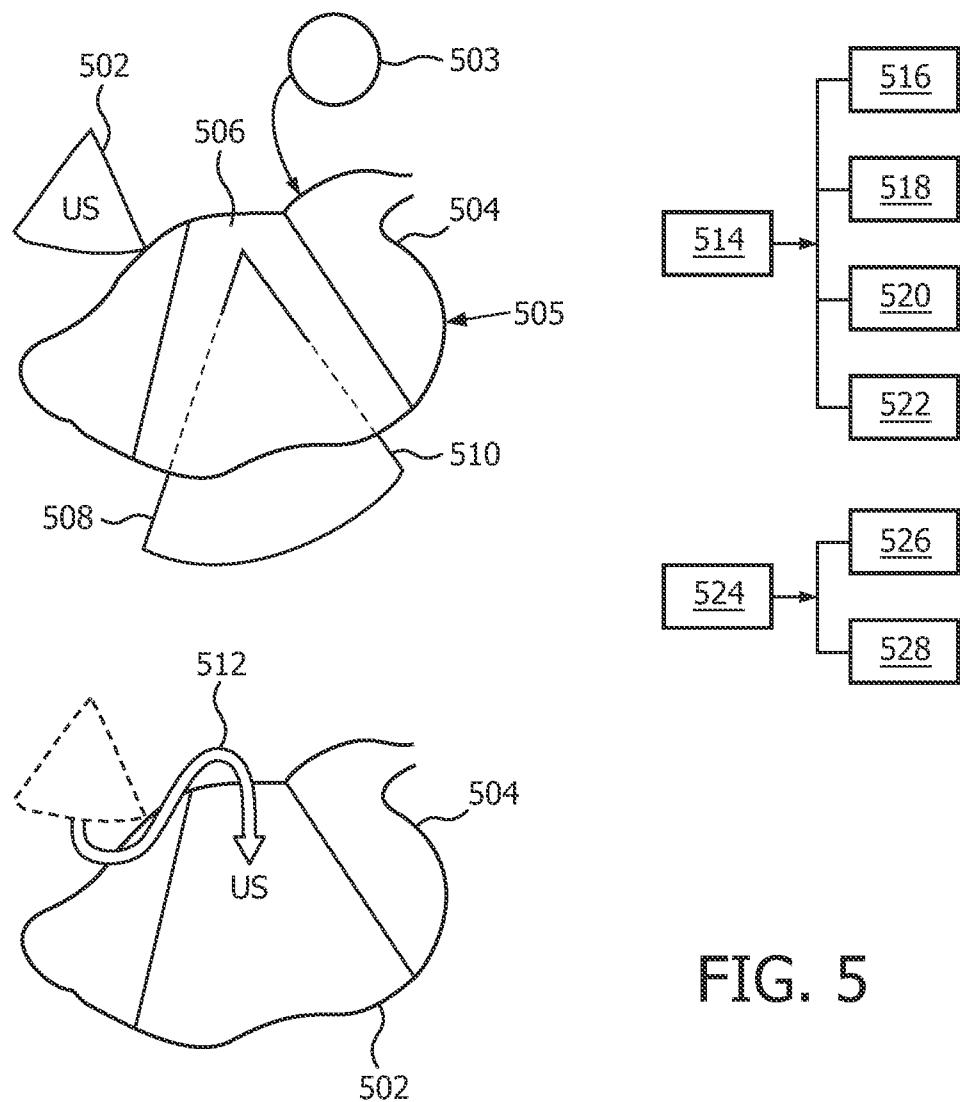


FIG. 5

6/6

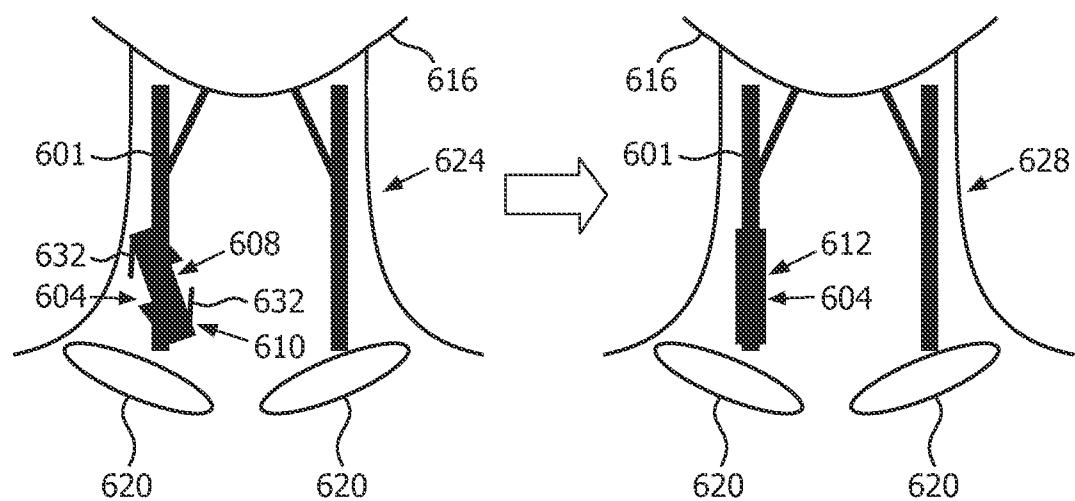


FIG. 6

INTERNATIONAL SEARCH REPORT

International application No
PCT/IB2014/062523

A. CLASSIFICATION OF SUBJECT MATTER
INV. A61B8/08 G06T7/00
ADD. A61B8/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61B G06T

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2012/065510 A1 (SNARE STEN ROAR [NO] ET AL) 15 March 2012 (2012-03-15) paragraph [0002] - paragraph [0008]; figures 1-7 paragraph [0026] - paragraph [0038] paragraph [0058] - paragraph [0059] -----	1-22,24
A	US 2010/010348 A1 (HALMANN MENACHEM [US]) 14 January 2010 (2010-01-14) paragraph [0051] - paragraph [0057]; figures 12-16 -----	1-24

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
27 August 2014	03/09/2014
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Martinez Möller, A

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/IB2014/062523

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2012065510	A1 15-03-2012	NONE	
<hr/>			
US 2010010348	A1 14-01-2010	CN 101658431 A DE 102009026110 A1 JP 2010017556 A US 2010010348 A1	03-03-2010 04-02-2010 28-01-2010 14-01-2010
<hr/>			