(54) Title: PROCESS AND PLANT FOR PRODUCING IRON SMELT IN AN ELECTRIC ARC FURNACE BY USING AGGLOMERATED, IRON-CONTAINING STEEL WORK RESIDUES

(54) Bezeichnung: VERFAHREN UND ANLAGE ZUM HERSTELLEN EINER EISENSCHMELZE IM ELEKTRO-LICHTBOGENOFEN UNTER EINSATZ VON AGGLOMERIERTEN EISENHALTIGEN HÜTTENWERKRESTSTOFFEN

In order to recycle iron-containing steel work residues such as dust, sludge and mill scale (1 to 3), which may contain iron in both metallic and oxidic form, in an effective manner, while consuming as little energy as possible, the steel work residues (1 to 3) are transformed into agglomerates (8, 11), the agglomerates (8, 11) are loaded into an electric arc furnace (10) in which they are molten and reduced, and the resulting smelt is refined.
Zusammenfassung

Um eisenhältige Hüttenwerkreststoffe wie Stäube, Schlämmen, Walzzunder (1 bis 3), bei denen Eisen sowohl in metallischer als auch in oxidischer Form vorliegen kann, unter möglichst geringem Energieaufwand wirkungsvoll zu verwerten, werden die Hüttenwerkreststoffe (1 bis 3) zu Agglomeraten (8, 11) verarbeitet, die Agglomerate (8, 11) in einen Elektro-Lichtbogenofen (10) chargiert, dort aufgeschmolzen, reduziert und die daraus resultierende Schmelze gefischt.
VERFAHREN UND ANLAGE ZUM HERSTELLEN EINER EISENSCHMELZE IM ELEKTRO-LICHTBOGENOFEN UNTER EINSATZ VON AGGLOMERIERTEN EISENHALTIGEN HÜTTENWERKSRESTSTOFFEN

Dieses bekannte Verfahren ist insofern energieaufwendig, als auch metallische Abfall- oder Reststoffe den Reduktionsbereich des Schmelzaggeregates durchwandern müssen. Ein besonderes Problem stellt hierbei die Festigkeit der Agglomerate dar, da diese Agglomerate noch im Grünzustand, also nicht fertig getrocknet, eingesetzt werden, was in der Praxis große Schwierigkeiten durch Zerfall, Abrieb etc. verursacht. Beim Durchwandern des Schmelzaggeregates nach dem Gegenstromprinzip kann es bei durch Druck- und Stoßkräfte

Der Erfindung liegt die Aufgabe zugrunde, eisenhaltige Hüttenwerksreststoffe, bei denen Eisen sowohl in metallischer als auch in oxidischer Form vorliegen kann, unter möglichst geringem Energieaufwand und unter einem nur geringe Investitionen erfordern den apparativen Aufwand wirkungsvoll zu verwerten, nämlich unter Rückgewinnung des in diesen Hüttenwerksreststoffen enthaltenen Eisens, wobei nach Möglichkeit in der Praxis bereits bewährte Technologien Verwendung finden können. Insbesondere soll vermieden werden, daß die Stäube bei der Stahlerzeugung hintereinander vorgesehene Prozeßstufen mehrmals durchlaufen und diese zusätzlich belasten.

Diese Aufgabe wird erfindungsgemäß durch die Kombination nachfolgender Merkmale gelöst:

- Hüttenwerksreststoffe werden zu Agglomeraten verarbeitet,
- die Agglomerate werden in einen Elektro-Lichtbogenofen chargiert,
- aufgeschmolzen, reduziert,
- und die daraus resultierende Schmelze frisch.

Mit dem erfindungsgemäßen Verfahren gelingt es, Hüttenwerksreststoffe in großen Mengen zu verarbeiten. Vorteilhaft werden Hüttenwerksreststoffe in einer Menge von vorzugsweise etwa 40 bis 50 % des Gesamteinsatzes chargiert.

Als Metallprodukt kann ein Rohstahl, ein Semistahl oder flüssiges Roheisen hergestellt werden.

Vorteilhaft wird jedoch bei regulärem Betrieb, d.h. bei in normalen Mengen anfallenden Hüttenwerksreststoffen, bis auf einen Kohlenstoffgehalt von maximal 0,1 % frisch, d.h., daß das Metallprodukt ein Rohstahl ist.

Das erfindungsgemäße Verfahren eignet sich auch sehr gut zum Verarbeiten von Walzzunderschlamm, wobei dieser vorteilhaft vorher entölts wird, u.zw. durch Behandeln mit spezifischen Kalkadditiven, wie Branntkalk. Durch diese Maßnahme kann das im Walzzunderschlamm enthaltene Öl durch CaO chemisch dispergiert werden, bevor eine Hydratisierungsreaktion mit Wasser eintritt.

Als Hüttenwerksreststoff werden insbesondere Stäube und/oder Schlämme aus dem Konverter- und/oder Elektro-Lichtbogenofen-Betrieb und/oder der Roheisenerzeugungsanlage und/oder der Direktreduktionsanlage chargiert.

Die Hüttenwerksreststoffe werden vorteilhaft vor dem Chargieren gemischt und mit Branntkalk als Bindemittel versetzt, worauf die Hüttenwerksreststoffe agglomeriert und die Agglomerate auf weniger als 5 % Restfeuchte getrocknet werden.
Vorzugsweise wird zunächst vorzugsweise flüssiges Roheisen in den Elektro-Lichtbogenofen chargiert, worauf die Hüttenwerksreststoffe über eine vorbestimmte Zeitdauer kontinuierlich chargiert werden und währenddessen der Frischvorgang durchgeführt wird, wobei zweckmäßig zum Abdampfen von Zink eine vorbestimmte Restzeit gefrischt, ohne daß ein Chargieren von Hüttenwerksreststoffen durchgeführt wird.

Vorzugsweise weist die Anlage ein Filtersystem auf, zu dem eine vom Lichtbogenofen ausgehende Abgasleitung führt und von welchem Filtersystem eine Leitung für aus dem Abgas abgeschiedene Stäube zum Mischreaktor führt, wobei zweckmäßig von der Trockeneinrichtung eine Brüden ableitende Leitung ausgeht, die zum Filtersystem führt.

Die Erfindung ist nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert, wobei Fig. 1 das erfindungsgemäße Verfahren in schematischer Flow-Sheet-Darstellung veranschaulicht. Fig. 2 gibt für ein Ausführungsbeispiel den Prozeßablauf im Elektro-Lichtbogenofen wieder, Fig. 3 zeigt einen Schnitt durch einen Elektroofen, wie er beim erfindungsgemäßen Verfahren zum Einsatz gelangt, und Fig. 4 ist eine Draufsicht auf diesen Ofen in Richtung des Pfeiles IV der Fig. 3.

Das in Fig. 1 dargestellte Flow-Sheet ist in vier Felder, die mit I bis IV bezeichnet sind, unterteilt. In Feld I sind die Einsatzstoffe für die Durchführung des erfindungsgemäßen Verfahrens aufgelistet. Feld II betrifft die Agglomeration, Feld III die Nachbehandlung nach der Agglomeration vor Einsatz in den Elektro-Lichtbogenofen. Feld IV betrifft die Abgasbehandlung.

Im Mischreaktor 4 erfolgt zusätzlich zur Mischung der Hüttenwerksreststoffe 1 bis 3 auch die Zumischung von Branntkalk 5 als Bindemittel, wobei Branntkalk 5 in einer Größenordnung vorzugsweise zwischen 5 und 10 % zugegeben wird. Der Feuchtegehalt wird über die Wasserzugabe auf etwa 15 Gew.% eingestellt.

Sobald das Gemisch 6 ausreagiert ist, wird es in den Mischgranulator 7 überführt, in dem Grünpellets 8 gebildet werden. Diesem Mischgranulator 7 kann eine in der Zeichnung nicht dargestellte Rolliertrommel nachgeschaltet werden, falls Grünpellets 8 in einer bestimmten Mindestgröße gefordert sind. Die Grünpellets 8 weisen zweckmäßig einen Durchmesser zwischen 5 und 10 mm auf und haben eine Feuchte von etwa 15 %.

Anschließend werden die getrockneten Pellets 11 in zwei Siebfraktionen 11', 11" getrennt, u.zw. zweckmäßig durch eine Schwingsiebung, wobei eine Grobfraction 11" der Pellets mit

Der Elektro-Lichtbogenofen 10 kann sowohl als Gleichstrom- oder als Wechselstrom-Ofen betrieben werden. Beim in den Fig. 3 und 4 dargestellten Ausführungsbeispiel wird er mit Wechselstrom betrieben. Drei Graphitelektroden 14 ragen durch den Deckel 15 in das Innere. Der Ofen 10 ist mit einer Deckelloffnung 12 zur Zuführung der Grobfraktion 11'' der Hüttenwerksreststoffe 1 bis 3 sowie Zusätzen, so wie Kalk, Dolomitt und anderen Schlagzeilenbildern sowie Stükkohle bzw. -koks etc. ausgestattet.

Zur Aufkohlung des Metallbades kann der Elektro-Lichtbogenofen (10) mit mindestens einer Kohleunterbaddüse ausgestattet werden.

Der Rohstahlabstich 20 befindet sich an der der Schlackenabtischöffnung 19 gegenüberliegenden Seite des Elektro-Lichtbogenofens 10. Das im Elektro-Lichtbogenofen gebildete Abgas wird über einen Krümmer 21 in später noch zu beschreibender Weise der im Feld IV der Fig. 1 dargestellten Abgasnachbehandlung zugeführt.

In den Elektro-Lichtbogenofen wird zunächst Roheisen 22, beispielsweise aus einem Hochofen, eingebracht, vorzugsweise in einer Menge zwischen 50 und 60 % des Gesamteinsatzes. Anschließend werden über einen bestimmten Zeitintervall (vorzugsweise etwa 60 min) die Hüttenwerksreststoffe 1 bis 3, also die Fein- und die Grobfraktion 11' und 11'', in den Elektro-Lichtbogenofen 10 chargiert. Währenddessen wird gleichzeitig mit Sauerstoff gefrischt. Anschließend wird über ein bestimmtes Zeitintervall nur gefrischt, u.zw.
ohne Zugabe von Hüttenwerksreststoffen 1 bis 3, um das Zink weitgehend abzudampfen. Die tap-to-tap-Zeit beträgt etwa 90 bis 100 min.

Die Hüttenwerksreststoffe 1 bis 3 weisen in der Regel einen Kohlenstoffgehalt von etwa 7 Gew.\% auf, so daß bei einer Fahrweise mit etwa 60 % Roheisen 22 und 40 % Hüttenwerksreststoffen 1 bis 3 kaum zusätzliche Kohle zur Reduktion benötigt wird. Der Schlackenabstich erfolgt bei Schaumschläckenfahrweise ab der Hälfte der tap-to-tap-Zeit kontinuierlich, wobei pro Tonne Rohstahl 23 etwa 140 kg Schlacke 24 anfallen. Einer Verwertung der Schlacke 24 für Baustoffe stehen aufgrund der chemischen Zusammensetzung der Schlacke keine Bedenken entgegen.

Vorzugsweise wird im Elektro-Lichtbogenofen 10 ein fertig gefrischter Qualitätsrohstahl 23 mit weniger als 0,1 % Kohlenstoff erzeugt.

Typische Eigenschaften des Rohstahles 23:

- 0,05 % C
- 0,08 % Mn
- 0,016 % P
- 0,073 % S

Abstichtemperatur 1650°C

Um die sich aufkonzentrierenden Komponenten (z.B. Zn, Pb etc.) auszuschleusen, kann mittels laseroptischer Messung 28 bei Überschreitung eines Gehaltes an diesen Komponenten im Staub ein Teilstrom 29 ausgeschleust werden. Dieser Teilstrom 29 kann entweder noch weiter aufkonzentriert werden oder direkt an weitere Verarbeiter (z.B. Zinkhütten) übergeben werden.

Das erfindungsgemäße Verfahren weist gegenüber den herkömmlichen Verfahren wesentliche Vorteile auf:
- Durch die Hüttenwerksreststoff-Verarbeitung zu einer eisenhaltigen Schmelze können beträchtliche Erlöse erzielt werden.
- Der eingesetzte Elektro-Lichtbogenofen 10 zeigt große Flexibilität im Einsatzverhältnis Roheisen 24/Hüttenwerksreststoff 1 bis 3; somit kann in einfacher Weise auf schwankende Hüttenwerksreststoffmengen und Zusammensetzungen reagiert werden.
- Je nach Wunsch des Betreibers kann sowohl ein gefrischter Rohstahl 23, ein Semistahlprodukt oder ein flüssiges Roheisen erzeugt werden.
- Der vom Elektro-Lichtbogenofen 10 emittierte Staub 27 wird zur Zinkanreicherung bis zur Erlangung eines bestimmten Zinkgehaltes rezirkuliert. Durch die hohe Zinkanreicherung können die anfallenden Reststoffmengen minimiert werden.
- Bei der Konditionierung der Hüttenwerksreststoffe 1 bis 3 werden keine Organika über die Bindemittel 5 eingebracht.
- Bei optimalem Einsatzverhältnis der Einsatzstoffe kann die Schlacke 24 als Baustoff verwertet werden. Damit entstehen keine zusätzlichen Deponierungskosten.
- Die Investitionskosten des Elektro-Lichtbogenofens 10 sind im Vergleich zu einem Schachtoven geringer.
- Ein schnelles An- und Abfahren des Elektro-Lichtbogenofens 10 stellt kein Problem dar.

Demgegenüber weist eine Verfahrensroute über einen Schachtoven die Nachteile auf, daß ein schnelles An- und Abfahren eines Schachtovens nicht möglich ist, daß eine weit höhere Festigkeit der Granulate, d.h. der Pellets erforderlich ist, die mitunter gar nicht erreicht werden kann, und daß Temperaturen über 950°C erforderlich werden, um das Zinkkondensat-Problem in den Schacht austrittz-Zonen in den Griff zu bekommen.

Ausführungsbeispiel:
In den Mischreaktor werden ölhaltiger Walzzunder 1, der mit einem Additiv vorbehandelt wurde, sowie Gichtschlamm 2, Konverterstaub 3 und Kalk eingebracht. Als Additiv für den ölhaltigen Walzzunder 1 ist Branntkalk vorgesehen. Die Mengenverhältnisse sind in nachfolgender Tabelle I wiedergegeben.
Tabelle I

<table>
<thead>
<tr>
<th>Ölhaltiger Walzzunder 1</th>
<th>6,9 t/h</th>
<th>8,3 t/h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50.000 t/a</td>
<td>60.000 t/a</td>
</tr>
<tr>
<td>Additiv Branntkalk</td>
<td>1,4 t/h</td>
<td>6,9 t/h</td>
</tr>
<tr>
<td></td>
<td>10.000 t/a</td>
<td>50.000 t/a</td>
</tr>
<tr>
<td>Gitschlamm 2</td>
<td></td>
<td>25,0 t/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180.000 t/a</td>
</tr>
<tr>
<td>Konverterstaub 3</td>
<td></td>
<td>3,0 t/h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.000 t/a</td>
</tr>
<tr>
<td>Kalk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Insgesamt werden in den Mischreaktor 4.44,1 t/h bzw. 317.200 t/a eingebracht. Es ist eine Zugabe von Wasser in der Menge von 1 t/h bzw. 7.200 t/a erforderlich. Nach Bildung der Granulate bzw. Pellets 8 und Überführung derselben in den Trockner 9 erfolgt die Siebung, wobei 40 t/h, d.h. 288.000 t/a, an Pellets 11 anfallen, u.zw. 19 t/h mit Feinfraktion 11" und 21 t/h Grobfraktion 11". Das sind 136.800 t/a Feinfraktion 11" und 151.200 t/a Grobfraktion 11". 4,1 t/h Brüden 30 werden im Trockner gebildet, das sind 29.200 t/a. Die Brüden 30 werden ebenfalls dem Filtersystem 26 zugeleitet.

Diese Fein- und Grobfraktion 11", 11" wird in den Elektro-Lichtbogengenofen 10 chargiert, der mit einem Einsatzmix von 60 % flüssigem Roheisen 22 und 40 % Hüttenwerksreststoffen 1, 2, 3 betrieben wird. Je Tonne im Elektro-Lichtbogengenofen 10 erzeugten Rohstahls 23 werden 278 kg Pellets größer als 5 mm (Grobfraktion 11") über den Deckel 15 zusammen mit 14,3 kg Stückkalk und 14,2 kg Stückdolomit sowie 250 kg Feinfraktion 11", also Pellets kleiner als 5 mm, mit Hilfe von 25 Nm³ Druckluft über zwei Lansen 13 zugeführt. Über den Manipulator 18 werden 26,4 Nm³ Sauerstoff und 1,7 kg Blasenkohle in den Elektro-Lichtbogengenofen 10 eingebracht. Das flüssige Roheisen 22 wird zu Beginn des Prozesses in den Elektro-Lichtbogengenofen in einer Menge von 791 kg im flüssigen Zustand chargiert, wobei das Roheisen 22

4,3 % Kohlenstoff,
0,6 % Silizium,
0,5 % Mangan,
0,09 % Phosphor und
0,005 % Schwefel,
Rest Eisen,

enthält. Das Roheisen 22 weist eine Temperatur von 1320°C auf. Über die Bodendüsen 17 werden 0,5 Nm³ N₂ und 0,5 Nm³ CH₄ zur Baddurchmischung eingebracht. Über drei
enthält. Das Roheisen 22 weist eine Temperatur von 1320°C auf. Über die Bodendüsen 17 werden 0,5 Nm³ N₂ und 0,5 Nm³ CH₄ zur Baddurchmischung eingebracht. Über drei Nachverbrennungslanzen wird 14,7 Nm³ O₂ knapp unterhalb der Schlackenoberfläche zugeführt, so daß eine teilweise CO+H₂-Nachverbrennung aus dem primär entstehenden Ofenabgas erfolgt und die daraus entstehende Energie effizient an das Metallbad übertragen wird.

Ca. 83 Nm³ Falschluft gelangen ebenfalls in den Elektro-Lichtbogenofen 10. In diesem bilden sich unter Zuführung von 500 kWh elektrische Energie 143 kg Schlacke 24 mit der in Tabelle II angegebenen Zusammensetzung.

Tabelle II

<table>
<thead>
<tr>
<th>Prozent</th>
<th>Komponente</th>
</tr>
</thead>
<tbody>
<tr>
<td>27,9 %</td>
<td>FeO₀</td>
</tr>
<tr>
<td>ca. 5 %</td>
<td>Fe₉₀</td>
</tr>
<tr>
<td>CaO/SiO₂ = 2,2</td>
<td></td>
</tr>
<tr>
<td>7,1 %</td>
<td>MgO</td>
</tr>
<tr>
<td>< 5,4 %</td>
<td>Na₂O</td>
</tr>
<tr>
<td>1,27 %</td>
<td>P₂O₅</td>
</tr>
<tr>
<td>0,42 %</td>
<td>S</td>
</tr>
</tbody>
</table>

Abgestoßen werden 1000 kg Rohstahl 23 mit der in Tabelle III angegebenen chemischen Zusammensetzung. Die Temperatur des Rohstahles beträgt 1650°C.

Tabelle III

<table>
<thead>
<tr>
<th>Prozent</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,05 %</td>
<td>C</td>
</tr>
<tr>
<td>0,08 %</td>
<td>Mn</td>
</tr>
<tr>
<td>0,016 %</td>
<td>P</td>
</tr>
<tr>
<td>0,073 %</td>
<td>S</td>
</tr>
<tr>
<td>120 ppm</td>
<td>Zn</td>
</tr>
<tr>
<td>30 ppm</td>
<td>Pb</td>
</tr>
<tr>
<td>40 ppm</td>
<td>N</td>
</tr>
</tbody>
</table>

Der Prozeßablauf für das oben beschriebene Ausführungsbeispiel ist der Fig. 2 zu entnehmen.
Patentansprüche:

1. Verfahren zum Herstellen einer Eisenschmelze, insbesondere einer Rohstahlschmelze (23), unter Einsatz von eisenhältigen Hüttenwerksreststoffen (1 bis 3), gekennzeichnet durch die Kombination folgender Merkmale:
 - Hüttenwerksreststoffe (1 bis 3) werden zu Agglomeraten (8, 11) verarbeitet,
 - die Agglomerate (8, 11) werden in einen Elektro-Lichtbogenofen (10) chargiert,
 - aufgeschmolzen, reduziert,
 - und die daraus resultierende Schmelze gefrischt.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in den Elektro-Lichtbogenofen (10) zusätzlich flüssiges und/oder festes Roheisen (22) chargiert wird, das ebenfalls geschnitten wird.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Roheisen (22) mindestens teilweise vor den Hüttenwerksreststoffen (1 bis 3) chargiert wird.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das Roheisen (22) teilweise oder zur Gänze durch einen aufgekohlten Restumpf ersetzt wird.

5. Verfahren nach einem oder mehreren der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß Hüttenwerksreststoffe (1 bis 3) in einer Menge von mindestens 5 %, vorzugsweise in einer Menge von etwa 40 bis 50 %, des Gesamteinsatzes chargiert werden.

6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß als Metallprodukt Rohstahl, Semistahl oder flüssiges Roheisen erzeugt wird.

7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß ein Rohstahl mit einem Kohlenstoffgehalt von maximal 0,1 % erzeugt wird.

8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß als Hüttenwerksreststoff Walzquerschlamm (1) chargiert wird, der vorzugsweise mit Branntkalk behandelt wird, insbesondere vor dem Agglomerieren.

9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß als Hüttenwerksreststoff Stäube und/oder Schlämme (3) aus dem Konverter- und/oder
Elektro-Lichtbogenofen-Betrieb und/oder Roheisenerzeugungsanlage und/oder Direktreduzierungsanlage (2) charniert werden.

10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Hüttenwerksröststoffe (1 bis 3) vor dem Chargieren gemischt und mit Branntkalk (CaO) (5) als Bindemittel versetzt werden, worauf die Hüttenwerksröststoffe (1 bis 3) agglomeriert und die so gebildeten Agglomerate (8) auf weniger als 5 % Restfeuchte getrocknet werden.

11. Verfahren nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß zunächst Roheisen (22) in den Elektro-Lichtbogenofen (10) charniert wird, worauf die Hüttenwerksröststoffe (1 bis 3) über eine vorbestimmte Zeitdauer kontinuierlich charniert werden und währenddessen der Frischvorgang durchgeführt wird.

12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß eine vorbestimmte Restzeit geprüft wird, ohne daß ein Chargieren von Hüttenwerksröststoffen (1 bis 3) erfolgt.

13. Anlage zur Durchführung des Verfahrens nach einem oder mehreren der Ansprüche 1 bis 12,
 - mit einem Mischreaktor (4), in den mindestens eine Hüttenwerksröststoffe (1 bis 3) zuführende Leitung sowie eine H₂O-Zuführungsleitung und eine Bindevielte (5) zuführende Leitung münden,
 - mit einer Agglomeriereinrichtung (7),
 - bevorzugt mit einer Trockeneinrichtung, von der die getrockneten Agglomerate (11) zu einer bevorzugt vorgesehenen Siebeinrichtung geführt werden können,
 - mit einem Elektro-Lichtbogenofen (10), in den mindestens eine Agglomerate (11) zuführende Leitung mündet,
 - bevorzugt mit einer von der Siebeinrichtung die Grobfraktion (11") in den Elektro-Lichtbogenofen (10) durch mindestens eine Deckelöffnung (12) führenden Leitung und/oder einer der Feinfraktion (11') zu mindestens einer in den Elektro-Lichtbogenofen (10) ragenden Lanze (13) führenden Leitung,
 - mit einer in den Elektro-Lichtbogenofen mündenden Zuführung für Roheisen (22), einer Abstichöffnung für die Schlacke (24) und einer Abstichöffnung für die erzeugte Eisenschmelze (23).

15. Anlage nach Anspruch 13 oder 14, gekennzeichnet durch ein Filtersystem (26), zu dem eine vom Lichtbogenofen (10) ausgehende Abgasleitung (21) führt und von welchem Filtersystem (26) eine Leitung für aus dem Abgas abgeschiedene Stäube (27) zum Mischreaktor (4) führt.

16. Anlage nach Anspruch 15, dadurch gekennzeichnet, daß von der Trockeneinrichtung (9) eine Brüden (30) ableitende Leitung ausgeht, die zum Filtersystem (26) führt.
FIG. 2

<table>
<thead>
<tr>
<th>Prozeßschritt</th>
<th>Chargieren vom flüss. Roheisen</th>
<th>Kontin. Zuführung von HWR (Granulat + fines) Schmelzen und Frischen unter Schaumschlacke</th>
<th>Frischen unter Schaumschlacke</th>
<th>RMF - Pflege + Wartezeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schrittdauer Power-on/off</td>
<td>4' Power-off</td>
<td>60' Power-on 60 MW</td>
<td>22' Power-off</td>
<td>4' Power-off</td>
</tr>
<tr>
<td>Gesamtdauer</td>
<td></td>
<td>95' Chargenfolgezeit</td>
<td>5' Power-off</td>
<td></td>
</tr>
</tbody>
</table>

HWR-Zuführung

HWR-Granulat: 555 kg/min über Deckelloch

HWR-fines: 500 kg/min über 2 Lanzen (ca. 250 kg/min je Lanze)

Medien Blasekohle

HWR-Trägerluft (2 Lanzen)

Manipulator O₂ (1Lanze)

Manipulator Blasekohle (1 Lanze)

Nachverbrennungslanzen (3 Lanzen)

Baddurchmischung N₂ + CH₄ (6 Unterbaddüsen)

RE = Flüssiges Roheisen
HWR = Hüttenwerkreststoffe
A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC 6</th>
<th>C22B7/02</th>
<th>C22B1/24</th>
<th>C21B13/00</th>
<th>C21B13/12</th>
<th>C21B11/10</th>
</tr>
</thead>
</table>

According to international Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>IPC 6</th>
<th>C22B</th>
<th>C21B</th>
<th>C21C</th>
</tr>
</thead>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 4 407 672 A (DEUSCHE R. ET AL.) 4 October 1983 see column 1, line 52 - column 2, line 10; claims 1-6; figures 1,2 see column 5, line 38 - column 6, line 51</td>
<td>1,5-7</td>
</tr>
<tr>
<td>Y</td>
<td>EP 0 657 549 A (VOEST-ALPINE INDUSTRIEANLAGENBAU) 14 June 1995 see page 4 - page 8; figure 1</td>
<td>2-4, 11-14</td>
</tr>
<tr>
<td>Y</td>
<td>WO 96 34120 A (VOEST-ALPINE INDUSTRIEANLAGENBAU) 31 October 1996 see page 4 - page 5; claims 1,3-8,13,14; figure 1</td>
<td>8-10,13, 15</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

 - "A" document defining the general state of the art which is not considered to be of particular relevance.
 - "E" earlier document published on or after the international filing date.
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified).
 - "O" document referring to an oral disclosure, use, exhibition or other means.
 - "P" document published prior to the international filing date but later than the priority date claimed.

 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.

 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone.

 "Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

 "S" document member of the same patent family.

Date of the actual completion of the international search

30 September 1998

Date of mailing of the international search report

12/10/1998

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 apq nl, Fax (+31-70) 340-3016

Authorized officer

Bombake, M
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5 186 742 A (HOFFMAN D. ET AL.) 16 February 1993 see column 1, line 59 - column 32, line 39; figure 1 see column 6, line 31 - line 44</td>
<td>1,6</td>
</tr>
<tr>
<td>Y</td>
<td>FR 2 497 235 A (USINOR) 2 July 1982 see claims 1,2,4-6; figure 1</td>
<td>13,15</td>
</tr>
<tr>
<td>Y</td>
<td>EP 0 657 552 A (NKK CORPORATION) 14 June 1995 see page 5, line 27 - line 56; claims 1,6-8,16; figure 1</td>
<td>1,2,6,7,13</td>
</tr>
<tr>
<td>Y</td>
<td>DATABASE WPI Section Ch, Week 7907 Derwent Publications Ltd., London, GB; Class M24, AN 79-12681b XP002079088 & JP 54 001216 A (DAIDO TOKUSHU KK) , 8 January 1979 see abstract</td>
<td>1,2,6,7,13</td>
</tr>
<tr>
<td>Y</td>
<td>KAAS W. ET AL. : "Erzeugung und Verarbeitung armierter Filterstaubbriketts aus der Edelstahlerzeugung " STAHL UND EISEN, vol. 104, no. 7, 2 April 1984, pages 357-362; XP002079087 Düsseldorf, DE see page 361; figures 6,9</td>
<td>1,2,6,7,13</td>
</tr>
<tr>
<td>Y</td>
<td>US 4 940 487 A (LUGSCHIEIDER W. ET AL.) 10 July 1990 see column 1, line 42 - line 64</td>
<td>1,2,6,7</td>
</tr>
<tr>
<td>Y</td>
<td>DE 31 50 291 A (BETRIEBSFORSCHUNGSINSTITUT VDEH) 30 June 1983 see page 3, line 24 - page 4, line 1; claims 1-9 see page 4, line 32 - line 37</td>
<td>1,2,6,7</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 4407672 A</td>
<td>04-10-1983</td>
<td>CA 1195123 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 249593 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2137766 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5611838 A</td>
</tr>
<tr>
<td>WO 9634120 A</td>
<td>31-10-1996</td>
<td>BR 9606333 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9603823 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0766750 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 317963 A</td>
</tr>
<tr>
<td>US 5186742 A</td>
<td>16-02-1993</td>
<td>MX 9206861 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9311269 A</td>
</tr>
<tr>
<td>FR 2497235 A</td>
<td>02-07-1982</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1107184 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5540751 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR 240339 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 92588 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1036798 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DD 283843 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0336923 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN 171525 A</td>
</tr>
<tr>
<td>DE 3150291 A</td>
<td>30-06-1983</td>
<td>NONE</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

<table>
<thead>
<tr>
<th>IPK 6</th>
<th>C22B7/02</th>
<th>C22B1/24</th>
<th>C21B13/00</th>
<th>C21B13/12</th>
<th>C21B11/10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C21G5/52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCIERTE GEBIETE

Recherchiert Mindeststoff (Klassifikationssystem und Klassifikationssymbole)

<table>
<thead>
<tr>
<th>IPK 6</th>
<th>C22B</th>
<th>C21B</th>
<th>C21C</th>
</tr>
</thead>
</table>

Recherchierte aber nicht zum Mindeststoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGEGENEN UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>siehe Spalte 1, Zeile 52 - Spalte 2, Zeile 10: Ansprüche 1-6; Abbildungen 1,2 siehe Spalte 5, Zeile 38 - Spalte 6, Zeile 51</td>
<td>2-4,8-15</td>
</tr>
<tr>
<td>Y</td>
<td>EP 0 657 549 A (VOEST-ALPINE INDUSTRIEANLAGENBAU) 14. Juni 1995 siehe Seite 4 - Seite 8; Abbildung 1</td>
<td>2-4,11-14</td>
</tr>
<tr>
<td>Y</td>
<td>WO 06 34120 A (VOEST-ALPINE INDUSTRIEANLAGENBAU) 31. Oktober 1996 siehe Seite 4 - Seite 5; Ansprüche 1,3-8,13,14; Abbildung 1</td>
<td>8-10,13,15</td>
</tr>
</tbody>
</table>

X Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

X Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu auf der erfinderischer Tätigkeit beruhend betrachtet werden

Y Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

X Veröffentlichung, die Mitglied derselben Patentfamilie ist

X Siehe Anhang Patentfamilie

Datum des Abschlusses der internationalen Recherche

30. September 1998

Absendetermin des internationalen Recherchenberichts

12/10/1998

Name und Postanschrift der internationalen Recherchebehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx: 31 651 apc nl, Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Bombeke, M
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5 186 742 A (HOFFMAN D. ET AL.)</td>
<td>1,6</td>
</tr>
<tr>
<td></td>
<td>16. Februar 1993</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>siehe Spalte 1, Zeile 59 - Spalte 32, Zeile 39; Abbildung 1</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>siehe Spalte 6, Zeile 31 - Zeile 44</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>FR 2 497 235 A (USINOR) 2. Juli 1982</td>
<td>1,7</td>
</tr>
<tr>
<td>Y</td>
<td>siehe Ansprüche 1,2,4-6; Abbildung 1</td>
<td>13,15</td>
</tr>
<tr>
<td>Y</td>
<td>EP 0 657 552 A (NKK CORPORATION)</td>
<td>1,2,6,7</td>
</tr>
<tr>
<td></td>
<td>siehe Seite 5, Zeile 27 - Zeile 56; Ansprüche 1,6-8,16; Abbildung 1</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>DATABASE WPI</td>
<td>1,2,6,7</td>
</tr>
<tr>
<td></td>
<td>Section Ch, Week 7907</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Derwent Publications Ltd., London, GB; Class M24, AN 79-12681b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XP002079088</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& JP 54 001216 A (DAIDO TOKUSHUKU KK)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>, 8. Januar 1979</td>
<td></td>
</tr>
<tr>
<td></td>
<td>siehe Zusammenfassung</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>KAAS W. ET AL.: "Erzeugung und Verarbeitung armierter Filterstubbriketts aus der Edelstahlerzeugung"</td>
<td>1,2,6,7</td>
</tr>
<tr>
<td></td>
<td>STAHL UND EISEN, Bd. 104, Nr. 7, 2. April 1984, Seiten 357-362, XP002079087</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Düsseldorf, DE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>siehe Seite 361; Abbildungen 6,9</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>US 4 940 487 A (LUGSCHEIDER W. ET AL.)</td>
<td>1,2,6,7</td>
</tr>
<tr>
<td></td>
<td>10. Juli 1990</td>
<td></td>
</tr>
<tr>
<td></td>
<td>siehe Spalte 1, Zeile 42 - Zeile 64</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>DE 31 50 291 A (BETRIEBSFORSCHUNGSINSTITUT VDEH) 30. Juni 1983</td>
<td>1,2,6,7</td>
</tr>
<tr>
<td></td>
<td>siehe Seite 3, Zeile 24 - Seite 4, Zeile 1; Ansprüche 1-9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>siehe Seite 4, Zeile 32 - Zeile 37</td>
<td></td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

<table>
<thead>
<tr>
<th>Patentantrag</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(er) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 4407672 A</td>
<td>04-10-1983</td>
<td>CA 1195123 A</td>
<td>15-10-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 249593 A</td>
<td>15-03-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2137766 A</td>
<td>11-06-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5611838 A</td>
<td>18-03-1997</td>
</tr>
<tr>
<td>WO 9634120 A</td>
<td>31-10-1996</td>
<td>BR 9606333 A</td>
<td>12-08-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9603823 A</td>
<td>14-05-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0766750 A</td>
<td>09-04-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 317963 A</td>
<td>12-05-1997</td>
</tr>
<tr>
<td>US 5186742 A</td>
<td>16-02-1993</td>
<td>MX 9206861 A</td>
<td>01-05-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9311269 A</td>
<td>10-06-1993</td>
</tr>
<tr>
<td>FR 2497235 A</td>
<td>02-07-1982</td>
<td>KEINE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1107184 A</td>
<td>23-08-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5540751 A</td>
<td>30-07-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR 240339 A</td>
<td>30-03-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 92588 A</td>
<td>15-08-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1036798 A</td>
<td>01-11-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DD 283843 A</td>
<td>24-10-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0336923 A</td>
<td>11-10-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN 171525 A</td>
<td>07-11-1992</td>
</tr>
<tr>
<td>DE 3150291 A</td>
<td>30-06-1983</td>
<td>KEINE</td>
<td></td>
</tr>
</tbody>
</table>