
(19) United States
US 2004O268269A1

(12) Patent Application Publication (10) Pub. No.: US 2004/0268269 A1
Breinberg (43) Pub. Date: Dec. 30, 2004

(54) SYSTEM AND METHOD FOR AUTOMATIC
AND DYNAMIC LAYOUT OF RESIZABLE
DIALOG TYPE WINDOWS

(75) Inventor: Steven Adam Breinberg, Mountain
View, CA (US)

Correspondence Address:
LYON & HARR, LLP
300 ESPLANADE DRIVE, SUITE 800
OXNARD, CA 93036 (US)

(73) Assignee: Microsoft Corporation, Redmond, WA

(21) Appl. No.: 10/897,513

(22) Filed: Jul. 23, 2004

Related U.S. Application Data

(63) Continuation of application No. 09/682,185, filed on
Aug. 2, 2001.

Publication Classification

(51) Int. Cl." ... G09G 5/00

900

Apply to

915

925

930

935

Kislider Yx

selected slides:

is fast

inds Horiz... -.

Blinds Wertical
Sox In 920
odify transition

(52) U.S. Cl. .. 715/851; 715/853

(57) ABSTRACT

The present invention involves a new System and process for
automatically and dynamically laying out elements within
an overall window of a graphical user interface by using
dynamically resizable frames, i.e., “FlowFrames' disposed
within the window. FlowFrames are automatically and
dynamically sized and positioned within the window, while
one or more other frames, i.e., “child frames,” representing
one or more conventional controls, nested within the Flow
Frames are also sized and positioned within the window as
the window is generated or resized. In particular, each
FlowFrame arranges its children horizontally in a row, but
dynamically wraps them to one or more additional rows and
positions them in accordance with predefined relationships
between the children, where they cannot all fit into the same
row. Further, the size of each FlowFrame is computed
hierarchically from its children up to the overall window and
then back down to the individual children.

940

945

950

955

Loop until
next

For Yr9.
Automatically :
after

913

RY AutoPreview

US 2004/0268269 A1 Patent Application Publication Dec. 30, 2004 Sheet 1 of 10

- - - - ----- - - - -> = - - - -

Patent Application Publication Dec. 30, 2004 Sheet 2 of 10 US 2004/0268269 A1

250

230

260

240

200

210

300

HORIZONTAL

310
340

GROUPEBOX VERTICAL
315

OK CANCEL
320 HORIZONTAL BUTTON BUTTON

350 360
NUMBER INPUT

VERTICAL WITH TWO LABELS
330

RADIO RADIO RADIO RADIO RADO RADIO RADIO
(FIT) (400%) (200%) (100%) (66%) (50%) (33%)

321

FIG. 3

Patent Application Publication Dec. 30, 2004 Sheet 3 of 10 US 2004/0268269 A1

OPERATING SYSTEM

APPLICATION
PROGRAM

AUTOLAYOUT
MODULE 135

330

DIALOG MANAGER
320 MODULE

134

- N USER INTERFACE
MODULE 340

Patent Application Publication Dec. 30, 2004 Sheet 4 of 10 US 2004/0268269 A1

DIALOG WINDOW

roa as - - - - -
FRAME B - GROUP BOX

500

610 62O

FLOWFRAME
CHILD 600

CONTROL B
630

N
CHILD TEXT

LABEL

a so o so a oooooooo a b () () () b () (b. b - 62O
FLOWFRAME

CHILD TEXT

CHILD
CONTROLB

LABEL
6 1 O

N
600

630

Patent Application Publication Dec. 30, 2004 Sheet 5 of 10 US 2004/0268269 A1

CHILD TEXT CHILD TEXT
LABEL A LABELB

FIG. 7A

720

(N FLOWFRAME
710 CHILD TEXT CHILD

LABEL A CONTROL. A N

CHILD TEXT CHILD
LABELB CONTROL B

7 3 GN

Patent Application Publication Dec. 30, 2004 Sheet 6 of 10 US 2004/0268269 A1

CONSTRUCT
FLOWFRAME(S)

810

820
INSERT CHILDREN INTO

FLOWFRAME(S)

830

PREPARE HERARCHICAL
TREE OF FRAMES

840

PREPARE FLOWFRAME(S)
FORLAYOUT

850 CALCULATE
CONSTRAINTS

FOR FLOWFRAME(S)

CALCULATE POSITION 860
FOR

FLOWFRAME(S)

Patent Application Publication Dec. 30, 2004 Sheet 7 of 10 US 2004/0268269 A1

900

3 slide Transition.
Apply to selected slides:

in Taisitil

Blinds Horizontal
Blinds Wertical
Box In

Box Out

Chedkerboard Across
Checkerboard Down

Comb Horizontal 920
Comb Vertical

Cover Down 930

Cover Left 935
Cover Right
Cover-Up...w.............

910
915 Modify transition

peg. Aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa. .6.xe4: 911
925

912

940
913

950

W. AutoPreview

955 945

FIG. 9

Patent Application Publication Dec. 30, 2004 Sheet 8 of 10 US 2004/0268269 A1

900

Kidside Transition II . .
Apply to selected slides:

Tasii

Blinds Horizontal
Blinds Wertical
Box In

Box Out

Checkerboard Across
Checkerboard Down

Comb Horizontal l 920
Comb Wertical

COver DOWn 930
Cover Left

Cover Right 935
Cover Uo...... .

915 Modify transition 910

925 No Sound 911

Advance slide 912

.9 reissk... w
Automatically after

940 'o -Saaaaaaaaa-

913

950

M. AutoPreview

955 945

Patent Application Publication Dec. 30, 2004 Sheet 9 of 10 US 2004/0268269 A1

900 900

& slide Transition.... K. slide Transition
Apply to selected slides: Apply to selected slides:

J. Tissition
Blinds Horizontal
Blinds Wertical
Box In

Box Out

Checkerboard Across
Checkerboard Down

Cornb Horizontal

Blinds Horizontal
Blinds Wertical
ox

Box Out

Checkerboard Across

Checkerboard Down
Comb Horizontal

Comb Wertical Comb Wertical
920 Cover Down Cover Down

Cover Left Cover Left

Cover Rioht 915
4 as as a sa as as a a 4 as as as a sess as a 910

925NE.............d6. Ned Fast ...t.c. 911
935

940

Speed: Fast
Qid (No.5ound). e.ggent reisgynd. 930

loop until next sound ------------- : 930

912

950

913

955

Patent Application Publication Dec. 30, 2004

915

925

930

935

940

945

950

900

{ 0 slide Transition. Yx

Blinds Horizontal
inds Wertical
Box In

Box Out

Checkerboard Across

Checkerboard Down
Comb Horizontal
Cornbertial

(Nosound) - Y,
... --

Loop until next sound:
's soon sea sa as a mana aa e o a a a on e o ou

Advance side

M. On mouse click

920

910

911

912

955

913

Sheet 10 of 10 US 2004/0268269 A1

900

Kid side Tr Yx
Apply to
selected slides:

Transiting al
Blinds Horiz.,.
Blinds Wertical
Box In t

915

925

930

935 911

912

Automatically :
after 945

950

955

913

gside show :
M. AutoPreview

F.G. 14

US 2004/0268269 A1

SYSTEMAND METHOD FOR AUTOMATIC AND
DYNAMIC LAYOUT OF RESIZABLE DIALOG

TYPE WINDOWS

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a Continuation Application of
U.S. patent application Ser. No. 09/682,185, filed on Aug. 2,
2001 by Steven Breinberg, and entitled “A SYSTEM AND
METHOD FOR AUTOMATIC AND DYNAMIC LAYOUT
OF RESIZABLE DIALOG TYPE WINDOWS.

BACKGROUND

0002) 1. Technical Field
0003. The invention is related to software user interface
windows, and in particular, to a System and method for
automatically and dynamically sizing and positioning con
trols, including buttons, text, and other elements within a
dialog window, or the like, of a computer Software applica
tion.

0004 2. Related Art
0005 Software applications or computer programs are
often run or executed in a windowing environment. Such
windowing environments include, for example, any of the
Windows(R operating systems, or any of a number of other
conventional windowing environments. Most of these con
ventional windowing environments commonly use dialog
windows or the like to present information and receive input
from a user. Dialog windows typically contain one or more
controls, or groups of controls, Such controls often including
text or icons for informing a user as to the function of the
controls.

0006 Examples of typical controls used within a dialog
window include both dynamic and Static controls, Such as,
for example, push buttons, radio buttons, check boxes, edit
boxes, text labels, list boxes, etc. For example, a dynamic
control, Such as a list box, may be placed in any Sort of
dialog window, such as a “File Open,” a “File Save,” or any
other dialog window, to provide for user input or Selection.
Such list boxes typically contain a listing of files or docu
ments available to the user for opening or Saving. Further,
dynamic controls, Such as, for example, a “cancel button”
also often include text on the button, i.e. the word “Cancel”
on the button. Static controls, Such as text labels, display
organized information, Such as, for example, text informa
tion, but do not, by themselves, provide for or receive user
input.
0007 One conventional method for creating dialog win
dows typically involves a labor-intensive process whereby
every dialog box to be used by a particular application or
computer program is laid out by manually Specifying precise
positions and dimensions of each individual control within
a dialog. These positions and dimensions are typically Stored
as a set of resource data that is loaded by the operating
System or application program whenever a particular dialog
window is drawn or rendered.

0008 If the text, language, or size of controls associated
with Such dialog windows is changed, a new layout for the
dialog window is often required. This new layout again
requires manually Specifying precise positions and dimen

Dec. 30, 2004

Sions of each individual control within a dialog. Conse
quently, when translating a computer application from one
language to another, Such as, for example, from English to
Japanese, it is frequently necessary to completely redesign
many, or all, of the dialog windows associated with the
translated application, as the size of any text associated with
the controls of the translated dialog window is usually
Significantly different than the original text.
0009 Further, because the position and dimensions of the
controls within the dialog window of Such Schemes are
fixed, resizing of Such dialog windows is typically pre
vented. However, in cases where resizing of Such dialog
windows is allowed, resizing of the dialog window typically
Serves little purpose. For example, when the size of Such a
dialog window is decreased, the decrease in window Size
typically Serves only to hide or clip portions of the controls
within the dialog window. Alternatively, when the size of
Such a dialog window is increased, the increase in Window
Size Serves only to waste display Space by creating a larger
window having no information or controls within the
expanded area, as the positions of the controls within the
window remain fixed as noted above.

0010. Other schemes for creating or laying out dialog
windows have been developed that allow a program devel
oper to Specify the relative positions of the controls within
the dialog window without Specifying precise coordinates or
dimensions of each control. Often, Such Schemes use the
concept of "frames' which are disposed within the dialog
window, and wherein each frame contains particular con
trols or other elements. At the time the dialog window is
displayed (during the execution of the program to which the
dialog belongs), these Schemes automatically calculate the
relative coordinates and dimensions of each control and then
position and size the controls based on those coordinates and
dimensions. Such Schemes provide a way to ensure the
efficient Sizing and layout of the controls contained within a
dialog window at the development Stage of the Software
application to which the dialog window belongs. The sizes
and layout of these controls are acted on at run time, as the
dialog window is created on the user's computer. However,
Such Systems do not allow for the dynamic resizing and
repositioning of the controls within a dialog window in
response to a user or System action to increase or decrease
the Size of the dialog window during use of the Software
application to which the dialog window belongs.
0011 Still other schemes for creating or laying out dialog
windows have been developed to allow a user to resize a
dialog window. Such Schemes expand on the aforemen
tioned Schemes to automatically reorganize the controls
within the dialog window to adapt to the new dialog window
size. Again, Such Schemes often use frames for laying out
particular controls, with one or more controls again being
disposed within frames which are themselves positioned
within the dialog window. However, while such schemes are
useful, they are limited by their inability to adapt to cases
where a dialog window is horizontally resized Such that
controls within a particular row within the dialog window or
frame will no longer fit within that row. In Such cases, the
controls within the row may be partially or completely
clipped, So that the user is no longer able to fully view
particular controls within the dialog window. Some Schemes
have attempted to address this issue by providing a Scroll bar
or the like within the dialog window to allow a user to view

US 2004/0268269 A1

clipped or otherwise obscured portions of the dialog win
dow. However, Such Schemes tend to degrade the user
experience by requiring excessive interaction with dialog
windows.

0012 Finally, another scheme has attempted to address
the problem of clipping or hiding controls when reducing the
Size of a dialog window. In particular, as defined by the
JAVATM 2 Platform, Standard Edition, v 1.3.1 API Specifi
cation, a "FlowLayout' class puts components, Such as
controls or buttons, in a row, within a user resizable “con
tainer” or dialog window. AS with Some of the aforemen
tioned schemes, the JAVATM FlowLayout scheme may use
frames nested within the container to allow for relative
layout of groups of controls within particular frames. If the
horizontal space in the container, or frame within the con
tainer, is too small to put all the components in one row,
FlowLayout automatically uses multiple rows to display the
components by automatically wrapping the control or con
trols, as necessary to the next row. Similarly, as the container
is expanded, all objects from lower rows that will fit into
higher rows are automatically moved into the higher rows.
Within each row, components are centered by default, and
may also be either left-aligned, or right-aligned, as Specified
when the FlowLayout is created. However, this “FlowLay
out' Scheme is Subject to Several limitations. For example,
the JAVATM FlowLayout scheme fails to account for poten
tial relationships between components existing within a
Single frame, Such as, for example, text associated with a
particular button or control, or related controls that should be
kept together or in Some Sort of preferred orientation relative
to each other.

0013 Therefore, what is needed is a system and method
for automatically and dynamically sizing and positioning
controls, including buttons, text, and other elements within
frames in a window of a computer Software application as
the window is resized. Further, as the size of individual
controls is changed, Such as when text associated with Such
controls is translated to another language, the System and
method should automatically resize and reposition those
elements within the window. In addition, Such a System and
method should allow for automatic repositioning of Such
elements with respect to predefined relationships between
the elements.

SUMMARY

0.014. The present invention involves a new system and
method which solves the aforementioned problems, as well
as other problems that will become apparent from an under
Standing of the following description by using dynamically
resizable frames, i.e., "FlowPrames,” within a window of a
graphical user interface, Such as a dialog window, to auto
matically lay out elements within that window. In particular,
a System and method according to the present invention
builds on conventional automatic layout Schemes by auto
matically and dynamically sizing and positioning one or
more FlowFrames within a window of a graphical user
interface, as well as one or more other frames, i.e., “child
frames' contained or nested within one or more dynamic
rows within the FlowFrame, as the window is generated or
resized. AS indicated above, each FlowPrame contains one
or more child frames. These child frames in turn contain one
or more elements, including conventional controls, Such as,

Dec. 30, 2004

for example, dynamic and Static controls, including push
buttons, radio buttons, check boxes, edit boxes, text labels,
list boxes, etc.

0015. Further, unlike conventional frame based auto
matic layout Schemes, in order to effectively utilize the area
within the dialog window, the width of each row of children
within a FlowFrame is not computed from the widths of its
children. In particular, in accordance with the present inven
tion, the width of each row of children within a FlowPrame
is automatically computed based, in part, on the width of the
dialog or other window. Further, the width of each row of
children within a Flowframe is also programmatically
adjusted based on its insetting or indenting due to Surround
ing or otherwise related dialog elements. Finally, the relative
positions of its child (i.e., interior or nested) frames and
asSociated controls are dynamically computed based on the
width of the FlowPrame and on the widths of the children,
rather than using explicitly programmed relative positions.

0016. In other words, a FlowFrame uses additional infor
mation, other than just the Size of its children, to determine
its own size. In particular, a FlowPrame partially takes its
own size from the window or dialog size, which as noted
below, may itself be dynamically resized in one embodi
ment, and then computes its height based on that width with
respect to the children within that flow frame. Specifically,
unlike conventional Schemes, the FlowPrame computes its
Size (i.e., height and width) hierarchically from the controls
up to the overall parent or root window, and then back down
to the individual controls. In addition, a FlowPrame arranges
its child frames and any associated controls horizontally in
a row, like a conventional “Horizontal Frame,” but wraps
them to multiple rows if they cannot all fit in the same row.
0017. In general, a system for automatically and dynami
cally laying out elements within a window in accordance
with the present invention begins by first Specifying at least
one dynamically resizable FlowFrame within a conventional
hierarchical tree Structure defining an overall parent win
dow. Next, at least one child frame, is specified or placed
within the FlowPrame. The size of the FlowPrame is then
automatically computed based on the hierarchical tree Struc
ture, beginning with the children within each frame, up to
the overall parent window, and then back down to the
individual children within each frame. Next, a minimum
Sufficient number of horizontal rows are instantiated within
each FlowFrame for displaying each of the children within
each FlowPrame. In addition, the children within each
FlowPrame are automatically arranged within the automati
cally instantiated horizontal rows. This information may
then be used for automatically laying out and drawing a
window Such as a dialog window of a graphical user
interface.

0018. The conventional hierarchical tree structure noted
above can be described as a logical, hierarchical, description
of the window or dialog. This structure is created by dividing
the window into regions, which are in turn divided into
Sub-regions, etc., all the way down to individual controls.
This hierarchy is expressed as a “tree of frames,” wherein
each frame represents a rectangular region of the window.
The root of the tree is a frame encompassing the entire
window. Clearly, progressing down the tree, the frames get
Smaller and Smaller, until the frame leaves are reached, with
the frame leaves representing areas each occupied either by

US 2004/0268269 A1

a Single control, or by a group of two or more controls
functioning as a single unit. Such controls, or control groups,
i.e., “control frames,” can include any of a number of
conventional frame types. Each type of frame that can have
multiple children, or each group of controls, also has a
built-in “relation,” like Vertical or horizontal, Specifying
how its children are arranged within it. While most controls
appear as leaves of the frame tree, a control can also appear
in an internal node, Such as a group-box (label-box) frame;
this kind of frame indicates the rectangle occupied by the
actual label box control, yet it also has one child-com
monly a vertical frame of other controls, which are con
tained inside the group-box. Such hierarchical Structures are
well known to those skilled in the art.

0019. In a further embodiment of the present invention,
as the size of individual controls associated with a child
frame within a FlowPrame is changed, Such as, for example,
when text associated with Such controls is translated to
another language, the System and method automatically
resizes and repositions those controls within the dialog
window, or within one or more FlowPrames within the
dialog window, in accordance with a set of predefined
automatic layout rules.
0020. In another embodiment, the system and method of
the present invention automatically repositions elements
within a dialog window or FlowFrame with respect to
predefined relationships between Such elements Such as by
“binding” those elements. For example, where it is desired
that two or more consecutive children of a particular Flow
Frame maintain adjacent positioning with respect to each
other, Such a relationship will be automatically maintained,
space permitting, within rows of the FlowFrame. This will
hold true even where it would be possible to more efficiently
utilize space within rows instantiated within a flow frame by
wrapping children to Subsequent rows.
0021. In a further embodiment, particular relationships
between children or elements within a FlowPrame are
emphasized or maintained through use of indenting func
tionality. This indenting functionality may be used when
children within one or more rows are automatically wrapped
to one or more Subsequent rows.
0022. In still another embodiment, automatically and
dynamically laying out elements within a window is per
formed dynamically in real-time as a window is automati
cally or manually resized. For example, where a user resizes
a window containing FlowFrames, the elements within the
flow frame are automatically resized and repositioned in
real-time as the user resizes the window. Thus, the user is
able to watch the dynamic layout of the window as the size
of the window changes. It should be noted that resizing of
windows is a technique well known in the art, and can be
accomplished in any number of ways, Such as, for example,
by Selecting and dragging an edge or corner of the window
using a conventional computer pointing device.
0023. In a related embodiment, the automatic and
dynamic layout of the window, and thus the children within
FlowFrames within the window, is not performed until
resizing of the window is completed. In Such cases, an
outline of the window Size may be presented to the user as
the window is resized. Once the resizing is complete, Such
as, for example, when the user releases a Selected edge or
corner of the window, the window is then automatically and
dynamically laid out and drawn to the Screen.

Dec. 30, 2004

0024. In addition to the just described benefits, other
advantages of the present invention will become apparent
from the detailed description which follows hereinafter
when taken in conjunction with the accompanying drawing
figures.

DESCRIPTION OF THE DRAWINGS

0025 The specific features, aspects, and advantages of
the present invention will become better understood with
regard to the following description, appended claims, and
accompanying drawings where:
0026 FIG. 1 is a diagram depicting a general-purpose
computing device constituting an exemplary System for
implementing the present invention.
0027 FIG. 2 is an exemplary screen image showing a
conventional dialog window.
0028 FIG. 3 is an exemplary diagram illustrating a
conventional frame tree for describing the dialog window of
FG, 2.

0029 FIG. 4 illustrates an exemplary architectural flow
diagram for implementing the present invention.

0030 FIG. 5 is an exemplary schematic of a dialog
window containing a FlowFrame having embedded chil
dren.

0031 FIG. 6A is an exemplary schematic of a Flow
Frame having embedded children.
0032 FIG. 6B is an exemplary schematic of the Flow
Frame of FIG. 6A, showing wrapping of children as the
FlowPrame is reduced in width.

0033 FIG. 7A is an exemplary schematic of a Flow
Frame having embedded children.
0034 FIG. 7B is an exemplary schematic of the Flow
Frame of FIG. 7A, showing wrapping of bound children as
the FlowPrame is reduced in width.

0035 FIG. 8 is an exemplary flow diagram for imple
menting a working example of the present invention.

0036 FIG. 9 is an exemplary screen image of a task pane
window having multiple FlowFrames, each with nested or
embedded children.

0037 FIG. 10 is an exemplary screen image of the task
pane window of FIG. 9, showing the effect on the children
within each FlowPrame as the width of the window is
decreased.

0038 FIG. 11 is an exemplary screen image of the task
pane window of FIG. 10, showing the effect on the children
within each FlowPrame as the width of the window is
decreased.

0039 FIG. 12 is an exemplary screen image of the task
pane window of FIG. 11, showing the effect on the children
within each FlowPrame as the width of the window is
decreased.

0040 FIG. 13 is an exemplary screen image of the task
pane window of FIG. 12, showing the effect on the children
within each FlowPrame as the width of the window is
decreased.

US 2004/0268269 A1

0041 FIG. 14 is an exemplary screen image of the task
pane window of FIG. 13, showing the effect on the children
within each FlowPrame as the width of the window is
decreased.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0042. In the following description of the preferred
embodiments of the present invention, reference is made to
the accompanying drawings, which form a part hereof, and
in which is shown by way of illustration specific embodi
ments in which the invention may be practiced. It is under
stood that other embodiments may be utilized and structural
changes may be made without departing from the Scope of
the present invention.

1.0 Exemplary Operating Environment

0.043 FIG. 1 illustrates an example of a suitable com
puting system environment 100 on which the invention may
be implemented. The computing system environment 100 is
only one example of a Suitable computing environment and
is not intended to Suggest any limitation as to the Scope of
use or functionality of the invention. Neither should the
computing environment 100 be interpreted as having any
dependency or requirement relating to any one or combina
tion of components illustrated in the exemplary operating
environment 100.

0044) The invention is operational with numerous other
general purpose or Special purpose computing System envi
ronments or configurations. Examples of well known com
puting Systems, environments, and/or configurations that
may be suitable for use with the invention include, but are
not limited to, personal computers, Server computers, hand
held, laptop or mobile computer or communications devices
Such as cell phones and PDA's, multiprocessor Systems,
microprocessor-based Systems, Set top boxes, programmable
consumer electronics, network PCs, minicomputers, main
frame computers, distributed computing environments that
include any of the above Systems or devices, and the like.
004.5 The invention may be described in the general
context of computer-executable instructions, Such as pro
gram modules, being executed by a computer. Generally,
program modules include routines, programs, objects, com
ponents, data Structures, etc. that perform particular tasks or
implement particular abstract data types. The invention may
also be practiced in distributed computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib
uted computing environment, program modules may be
located in both local and remote computer Storage media
including memory storage devices. With reference to FIG.
1, an exemplary System for implementing the invention
includes a general purpose computing device in the form of
a computer 110.
0.046 Components of computer 110 may include, but are
not limited to, a processing unit 120, a System memory 130,
and a System buS 121 that couples various System compo
nents including the System memory to the processing unit
120. The system bus 121 may be any of several types of bus
Structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. By way of example, and not limitation, Such

Dec. 30, 2004

architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus also known as Mezzanine bus.
0047 Computer 110 typically includes a variety of com
puter readable media. Computer readable media can be any
available media that can be accessed by computer 110 and
includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limita
tion, computer readable media may comprise computer
Storage media and communication media. Computer Storage
media includes both volatile and nonvolatile, removable and
non-removable media implemented in any method or tech
nology for Storage of information Such as computer readable
instructions, data Structures, program modules or other data.
Computer Storage media includes, but is not limited to,
RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical disk Storage, magnetic cassettes, magnetic tape,
magnetic disk Storage or other magnetic Storage devices, or
any other medium which can be used to Store the desired
information and which can be accessed by computer 110.
Communication media typically embodies computer read
able instructions, data Structures, program modules or other
data in a modulated data Signal Such as a carrier wave or
other transport mechanism and includes any information
delivery media. The term "modulated data Signal” means a
signal that has one or more of its characteristics set or
changed in Such a manner as to encode information in the
Signal. By way of example, and not limitation, communi
cation media includes wired media Such as a wired network
or direct-wired connection, and wireleSS media Such as
acoustic, RF, infrared and other wireleSS media. Combina
tions of any of the above should also be included within the
Scope of computer readable media.
0048. The system memory 130 includes computer stor
age media in the form of Volatile and/or nonvolatile memory
such as read only memory (ROM) 131 and random access
memory (RAM) 132. A basic input/output system 133
(BIOS), containing the basic routines that help to transfer
information between elements within computer 110, such as
during start-up, is typically stored in ROM 131. RAM 132
typically contains data and/or program modules that are
immediately accessible to and/or presently being operated
on by processing unit 120. By way of example, and not
limitation, FIG. 1 illustrates operating System 134, applica
tion programs 135, other program modules 136, and pro
gram data 137.
0049. The computer 110 may also include other remov
able/non-removable, Volatile/nonvolatile computer Storage
media. By way of example only, FIG. 1 illustrates a hard
disk drive 141 that reads from or writes to non-removable,
nonvolatile magnetic media, a magnetic disk drive 151 that
reads from or writes to a removable, nonvolatile magnetic
disk 152, and an optical disk drive 155 that reads from or
writes to a removable, nonvolatile optical disk 156 Such as
a CD ROM or other optical media. Other removable/non
removable, Volatile/nonvolatile computer Storage media that
can be used in the exemplary operating environment
include, but are not limited to, magnetic tape cassettes, flash
memory cards, digital versatile disks, digital Video tape,
Solid state RAM, Solid state ROM, and the like. The hard

US 2004/0268269 A1

disk drive 141 is typically connected to the system bus 121
through a non-removable memory interface Such as interface
140, and magnetic disk drive 151 and optical disk drive 155
are typically connected to the System buS 121 by a remov
able memory interface, such as interface 150.

0050. The drives and their associated computer storage
media discussed above and illustrated in FIG. 1, provide
Storage of computer readable instructions, data Structures,
program modules and other data for the computer 110. In
FIG. 1, for example, hard disk drive 141 is illustrated as
Storing operating System 144, application programs 145,
other program modules 146, and program data 147. Note
that these components can either be the same as or different
from operating System 134, application programs 135, other
program modules 136, and program data 137. Operating
System 144, application programs 145, other program mod
ules 146, and program data 147 are given different numbers
here to illustrate that, at a minimum, they are different
copies. A user may enter commands and information into the
computer 110 through input devices such as a keyboard 162
and pointing device 161, commonly referred to as a mouse,
trackball or touch pad. Other input devices (not shown) may
include a microphone, joystick, game pad, Satellite dish,
Scanner, or the like. These and other input devices are often
connected to the processing unit 120 through a user input
interface 160 that is coupled to the system bus 121, but may
be connected by other interface and bus structures, Such as
a parallel port, game port or a universal serial bus (USB). A
monitor 191 or other type of display device is also connected
to the System buS 121 via an interface, Such as a video
interface 190. In addition to the monitor, computers may
also include other peripheral output devices Such as Speakers
197 and printer 196, which may be connected through an
output peripheral interface 195.

0051. The computer 110 may operate in a networked
environment using logical connections to one or more
remote computers, Such as a remote computer 180. The
remote computer 180 may be a personal computer, a Server,
a router, a network PC, a peer device or other common
network node, and typically includes many or all of the
elements described above relative to the computer 110,
although only a memory Storage device 181 has been
illustrated in FIG. 1. The logical connections depicted in
FIG. 1 include a local area network (LAN) 171 and a wide
area network (WAN) 173, but may also include other
networkS. Such networking environments are commonplace
in offices, enterprise-wide computer networks, intranets and
the Internet.

0.052 When used in a LAN networking environment, the
computer 110 is connected to the LAN 171 through a
network interface or adapter 170. When used in a WAN
networking environment, the computer 110 typically
includes a modem 172 or other means for establishing
communications over the WAN 173, Such as the Internet.
The modem 172, which may be internal or external, may be
connected to the System buS 121 via the user input interface
160, or other appropriate mechanism. In a networked envi
ronment, program modules depicted relative to the computer
110, or portions thereof, may be stored in the remote
memory Storage device. By way of example, and not limi
tation, FIG. 1 illustrates remote application programs 185 as
residing on memory device 181. It will be appreciated that

Dec. 30, 2004

the network connections shown are exemplary and other
means of establishing a communications link between the
computerS may be used.
0053. The exemplary operating environment having now
been discussed, the remaining part of this description will be
devoted to a discussion of the program modules and pro
ceSSes embodying the present invention.

2.0 Introduction

0054 The present invention involves a new system and
process for automatically and dynamically laying out ele
ments within a window of a graphical user interface by using
dynamically resizable frames, i.e., “FlowFrames' disposed
within the window. Such windows include, for example, a
dialog window, task pane, or workpane of a computer
Software application. FlowPrames are automatically and
dynamically sized and positioned within the window of a
graphical user interface, along with one or more other
frames, i.e., “child frames' contained or nested within one or
more dynamic rows within the FlowFrame, as the window
is generated or resized. The child frames contained or nested
within each FlowPrame in turn contain one or more ele
ments, including conventional controls or control groups,
Such controls, including, for example, dynamic and Static
controls, including pushbuttons, radio buttons, checkboxes,
edit boxes, text labels, list boxes, etc.
0055. Further, a FlowFrame arranges its children hori
Zontally in a row, like a conventional "Horizontal Frame,”
but dynamically wraps the children to one or more addi
tional rows, as necessary, in accordance with predefined
relationships between the children, where they cannot all fit
into the same row. Further, each FlowFrame computes its
size hierarchically from its children up to the overall win
dow and then back down to the individual children. Thus,
the System and method of the present invention expands on
the conventional concept of dialog "AutoLayout' by the
addition of "FlowPrames' as described herein.

0056. It should be noted that the following discussion
makes reference to wrapping of rows within a FlowPrame
from a right-to-left context. In other words, the following
discussion assumes that the rightmost object or objects will
wrap in a FlowFrame, as described below, where there is
insufficient horizontal space within the FlowFrame to host
all of the objects in a single row. However, it should be
understood that the right-to-left context of wrapping pre
Supposes an English language or similar context wherein
text is read from left to right. Clearly, wrapping may also
occur in a left-to-right fashion wherein the leftmost object or
objects will wrap in a FlowFrame where there is insufficient
horizontal space within the FlowFrame to host all of the
objects in a Single row. Such wrapping is appropriate, for
example with certain foreign language versions of a dialog
window using FlowPrames where the language is read in a
right-to-left fashion, Such as, for example, Arabic and
Hebrew. Therefore, for purposes of clarity, only right-to-left
wrapping is discussed below. However, in the context of the
present invention, wrapping may clearly occur in either a
right-to-left manner, or in a left-to-right manner, as desired.

2.1 AutoLayout Overview
0057 By way of introduction, a conventional AutoLay
out proceSS is briefly Summarized by the following discus

US 2004/0268269 A1

Sion. In particular, to prepare a window, Such as a dialog
window, for automatic layout computation, a developer must
first provide a logical, hierarchical “AutoLayout descrip
tion of the dialog, by dividing it into regions, which are in
turn divided into Sub-regions, etc., all the way down to
individual controls. This hierarchy is expressed as a “tree of
frames, where each frame represents a rectangular region of
the dialog. The root of the tree is the frame encompassing the
entire dialog. Further, progressing down the tree, the frames
get Smaller and Smaller, until the frame leaves are reached.
The frame leaves are those frames representing areas each
occupied by either a Single control, or by a group of two or
more controls functioning as a Single unit. Such frames, i.e.,
“control frames, can include any of a number of conven
tional frame types.
0.058. There are many different kinds of frames, each
engendered by a different C++ class, or other programming
language class which can be contained or nested within a
FlowFrame. Further, each type of frame that can have
multiple children also has a built-in “relation,” like vertical
or horizontal, Specifying how its children are arranged
within it. While most controls appear as leaves of the frame
tree, Sometimes a control appears in an internal node, Such
as a group-box (label-box) frame; this kind of frame indi
cates the rectangle occupied by the actual label box control,
yet it also has one child-commonly a vertical frame of
other controls, which are contained inside the group-box.
0059 By way of example, FIG. 2 and FIG. 3 illustrate
the decomposition of a simple dialog window (FIG. 2) into
its frame hierarchy (FIG. 3). Thus, FIG. 3 provides an
appropriate frame tree for the automatically laid out Zoom
dialog (FIG. 2) based on that tree. In particular, referring
both to FIG. 2 and FIG.3, the Zoom dialog window 200 of
FIG. 2 includes a horizontal frame 300 which contains a
group box 310 having a horizontal frame 315 graphically
delimited by the "Zoom To” area 210 of the Zoom dialog
200. This horizontal frame 315 further comprises a vertical
frame 320 which includes individual sibling leaf frames 321
through 327 holding the controls indicating the Zoom
amount, i.e. “Fit,”“400%,”“200%,”“100%, etc., as illus
trated in FIG. 2. Further, the horizontal frame 315 also
includes a number input frame 330 having both a text label
230, and a “%” label 240. In addition, the horizontal frame
300 includes a vertical frame 340 which further includes leaf
frames having an “OK” control 350 (button 250 of FIG. 2)
and a “Cancel” control 360 (button 260 of FIG. 2). Clearly,
the concepts illustrated by FIG. 2 and FIG. 3 may be
applied to construct a “tree of frames' for a window, Such as
a dialog window, of any desired complexity.
0060. Before invoking the AutoLayout computation via
an "AutoLayout engine,” the minimum that a developer
needs to do is set up the tree of frames, as described above.
Typically, this is accomplished by defining all necessary
frame objects (parent frames before children, and Sibling
frames in the order of their arrangement within their parent)
passing into each child frame's constructor a pointer to its
parent frame. Then, a conventional Layout() method is
called on the root of the tree, i.e., horizontal frame 300 of
FIG. 3, and all controls will automatically resize and
reposition themselves to form a reasonable-looking dialog.
Controls are all assigned default sizes depending on the
control type and/or the length of the control's text, default
margins (the spacing between adjacent controls), and default

Dec. 30, 2004

alignment Schemes (generally top-left aligned). But if a
developer chooses, any of these defaults may be overridden
by Setting preferences for these characteristics on a frame
by-frame basis, before calling Layout().
0061. Other layout options can also be specified. For
example, unequal sizes among children of the same parent
(siblings) will often result in the smaller children having
exceSS “packing area.” The packing area represents a rect
angular area within a parent frame that is reserved exclu
Sively for a particular child frame within that parent frame,
and which no Sibling will ever invade. Consequently, in
order to reduce wasted or unused space within a parent
frame, the AutoLayout functionality includes the capability
of Specifying that any frame at any level in the hierarchy be
expanded, either horizontally, vertically, or both, to fill any
available exceSS space.

2.2 FlowRrames Overview

0062. As noted above, the present invention expands on
the aforementioned concept of AutoLayout by the addition
of FlowFrames. FlowFrames are automatically and dynami
cally sized and positioned within a window using the
AutoLayout functionality described above, while any chil
dren within each FlowPrame are automatically and dynami
cally sized and positioned within automatically and dynami
cally created rows within each Flowframe. In particular, a
FlowPrame arranges its children horizontally in a row, like
a conventional "Horizontal Frame, but dynamically wraps
the children to one or more additional rows, as necessary.
Further, in one embodiment, this wrapping is regulated in
accordance with predefined relationships between the chil
dren, where they cannot all fit into the same row. Finally,
each FlowPrame computes its Size hierarchically from its
children up to the overall window and then back down to the
individual children. The automatic layout of FlowFrames is
described in further detail below in Section 3.0.

0063. Further features of FlowFrames, as discussed in
greater detail below, include, for example, the capabilities of
Setting margins between rows in a FlowPrame, adjusting the
width of rows within a FlowFrame, indenting entire Flow
Frames, or certain rows within a FlowPrame, indenting
and/or justifying wrapped children (left, right, or center
justifying), distributing rows to fill available space within a
FlowFrame, distributing children within rows, binding chil
dren in groups of two or more for controlling how children
wrap, determining which row within a FlowFrame children
are wrapped into, and expanding particular children to fill
particular rows. Additionally, FlowFrames also provide the
capability to Specify the vertical alignment of child frames
within a particular row of a given FlowPrame. For example,
with respect to Such vertical alignment, child frames of
different heights that appear in the same row of a FlowFrame
can be top, center, or bottom aligned with respect to each
other in their row. Section 3.1 below provides exemplary
methods for implementing these features and defining rela
tionships between children within a FlowPrame.

2.3 System Overview

0064 FIG. 4 is a general system diagram illustrating
program modules for implementing the present invention. It
should be noted that the boxes and interconnections between
boxes that are represented by broken or dashed lines in FIG.

US 2004/0268269 A1

4 represent alternate embodiments of the present invention,
and that any or all of these alternate embodiments, as
described below, may be used in combination.
0065. In general, the present invention dynamically and
automatically layS out elements within a window by using
dynamically resizable FlowPrames disposed within a win
dow. In particular, with reference to FIG. 4, in combination
with FIG. 1, and FIG.2, FIG. 4 illustrates interaction
between an exemplary operating system (134 of FIG. 1), an
exemplary Software application program 135, a dialog man
ager module 320 for managing dialog windows and the like,
and an AutoLayout module 330 in accordance with the
present invention. In accordance with the present invention,
when the Software application program 135 is presented
with a window, Such as, for example, a dialog window or
task pane, (see 200 of FIG. 2 for an example) that window
may be resized, either automatically, or by user interaction
with the window via a user interface module 340. Tech
niques for resizing such windows 200 are well known to
those skilled in the art.

0.066 The dialog manager module 320 is a program
module containing computer executable instructions for
managing the display of the window 200 on the user's
computer 100 in connection with the Software application
program 135. The dialog manager module 320 may be a
program module resident in the Software application pro
gram 135, or as is well understood by those skilled in the art,
the dialog manager module may be a dynamic-link library
(DLL) that is a set of computer executable routines that may
be called by any of a number of Software application
programs for execution of its functionality. After the dialog
manager module 320 is notified by the operating system 134
that the window 200 is being resized, the dialog manager
module 320 notifies the Software application program 135,
which then calls the AutoLayout module 330.

0067. The AutoLayout module 330 is a program module
containing the functionality for laying out the placement and
size of all of the controls contained within the window 200,
as discussed in further detail below in Section 3.0. When the
window 200 is created during runtime of the software
application program 135, the AutoLayout module 330 deter
mines the layout of the dialog window 200 in accordance
with rules Set up by the developer of the Software application
program 135. Those rules may include, among other things,
the size of the window 200, including its width and height
in a Standard measuring System Such as pixels. The rules
may also include the size of all controls to be located within
the borders of the window 200. Further, the rules may also
include the relative positions of the FlowFrames, within the
borders of the dialog window 200, as well as any relation
ships between any children within particular FlowFrames.
Such relationships between children may include, as noted
above, grouping or desired relative positions between two or
more controls or groups of controls within particular Flow
Frames.

0068. In general, a set of rules for governing the layout of
the window 200 do not set specific locations of and distances
between controls. In contrast, these rules instruct the Auto
Layout module 330 on the relative locations of those con
trols. For example, referring back to FIG. 2, the rules for a
given window 200 may require that a “Cancel” button 260
be placed in the upper right-hand corner of a FlowPrame

Dec. 30, 2004

within the window, while an “OK” button 250 is to be placed
to the immediate left of the Cancel button with the same row
of the Flowframe, Space permitting. According to those
rules, when the AutoLayout module 330 lays out the window
200, it places the Cancel button 260 in the upper right-hand
corner, with the OK button 250 to its left. If the size of the
window 200 is changed, the AutoLayout module 330 fol
lows the rules Set by the Software application developer and
maintains the Cancel button 260 in the upper right-hand
corner of the window regardless of the size of the dialog
window 200, while the OK button 250 will remain to the left
of the Cancel button so long as they both fit into the same
row of the FlowFrame. When these buttons no longer both
fit into the same row of the FlowPrame, a new row is
instantiated within the FlowPrame below the row in which
the Cancel button 260 currently resides, and the Cancel
button is moved to the right corner of the newly instantiated
row, as is illustrated in FIG. 2.

0069. After the size of the window 200 is changed during
operation of the Software application program 135, the
AutoLayout module 330, in accordance with the rules set by
the program developer, places and sizes the FlowPrames,
and the children within each FlowFrame within the newly
sized dialog window. Similarly, in a related embodiment,
during resizing of the window 200, the AutoLayout module
330 dynamically places and sizes the FlowFrames, and the
children within each FlowFrame while the window is being
resized. As the AutoLayout module 330 determines the
positions and sizes of the FlowFrames, and the children
within each FlowFrame in the window 200, the AutoLayout
module calls each FlowPrame and child to be moved or
resized as necessary. For example, after the AutoLayout
module 330 determines to move the Cancel button 260, as
described above, the AutoLayout module notifies the Cancel
button that it needs to change its State of size and/or position
within the FlowPrame.

0070. In one embodiment, a minimum size is set for the
window 200 by the AutoLayout module 330, and the mini
mum size is Stored by the dialog manager 320. If a user
attempts to resize the window 200 to a size less than the
minimum size, the dialog manager 320 prevents the user
from So doing. Alternately, in a related embodiment, the
FlowPrames and children within the FlowPrame in a win
dow 200 have a minimum size, and they will not be reduced
below that size. However, the window 200 itself may
actually be reduced in size to a point where it is Smaller than
the minimum size of one of the FlowPrames in the window
and the children within a row of that FlowPrame. Conse
quently, in this embodiment, the user is presented with Scroll
bars or the like so that hidden or clipped portions of the
window 200 may be observed and interacted with by the
USC.

0071 Finally, in one embodiment, the dialog manager
module 320 lays out the window 200, including all controls
contained therein, on a bitmap off the Screen of the user's
computer 100. Once the entire window 200 is constructed as
a bitmap, the dialog manager module 320 Sends the bitmap
of the resized window 200 to the display 191 of the user's
computer 100. This process may also be used in the case
where the window 200 is dynamically rendered to the user's
display 191 while the resizing is ongoing.

US 2004/0268269 A1

3.0 Operation Overview

0.072 The above-described program modules are
employed to automatically and dynamically size and posi
tion one or more FlowPrames within a window, Such as, for
example, a dialog window, of a computer Software applica
tion, and any controls, text, nested frames or FlowPrames, or
any other elements, i.e., “children,” within such FlowFrames
as the window is generated. This process is depicted in the
flow diagram of FIG. 8 following a discussion of exemplary
methods for implementing the aforementioned programs
modules.

3.1 Exemplary Methods for Implementing the
Program Modules

0.073 A working example of a system and method in
accordance with the present invention uses a conventional
object-oriented paradigm, in which a “class' defines a Set of
“attributes” and “methods.” However, it should be appreci
ated by those skilled in the art that a non-object-oriented
embodiment may be implemented using the concepts
described herein. With respect to the object-oriented para
digm, an “object' of the class includes the “attributes” and
"methods” of the class. A method comprises program code,
and is analogous to a “function' that can be invoked on a
particular object. A “Subclass” of a class may be defined,
wherein the Subclass “inherits' the attributes and methods of
a “Superclass, i.e., the parent class. The inherited attributes
and methods may be modified, or new attributes and meth
ods may be added to the class. An object of the Subclass
correspondingly obtains the attributes and methods of the
Subclass.

0.074. In accordance with this brief discussion of the
relationship between objects, methods, attributes, and
classes, it should be noted that in a working embodiment of
the present invention, FlowPrames, as described herein, can
be considered as a Subclass of a “CompositeFrame’ class
which is in turn a Subclass of a “Frame’ class, each as
defined and described with respect to conventional C and
C++ programming languages and the like. Consequently, the
methods of the conventional CompositeFrame and Frame
classes, which are inherited by Sub-classes, Such as, for
example, “HorizFrame,”“VertFrame,” and “TableFrame”
classes, will also apply to the FlowPrameS class as a
Sub-class of the CompositeFrame class. Classes Such as
CompositeFrame, Frame, HorizFrame, VertFrame, Table
Frame, etc., are well known to those skilled in the art.
Therefore, as Such classes are well known to those skilled in
the art, particular methods belonging to Such classes are
introduced below to illustrate exemplary FlowFrame func
tionality without fully defining the particular methods of the
known, conventional, classes. Further, it is clear that the
methods embodied in the FlowFrames class may be imple
mented with programming languages other than C and C++.
0075 Exemplary FlowFrame class definitions for imple
menting a System and method according to the present
invention are provided in the following Sections which
contain comments explaining exemplary FlowPrame class
methods. The FlowFrame class represents an internal node
in a tree of frames in which the root node represents the
entire window or dialog, the leaf nodes represent individual
controls, and the internal nodes represent rectangular
regions or Sub-regions of the window or dialog. It should be

Dec. 30, 2004

appreciated by those skilled in the art that, in operation, Such
FlowFrame methods can be called by client programmers to
customize the behavior of individual FlowPrames. Further,
it should be appreciated that Such methods may be used in
numerous combinations with the methods of the FlowPrame
class, as well as with the methods of parent classes Such as
CompositeFrame and Frame. As such, the methods of the
FlowPrames class are clearly not limited to the examples
provided herein. Further, while the methods described below
are discussed with reference to dialog windows, it should be
appreciated that Such methods are applicable to any type of
window that can be displayed in a windowing environment.

0.076 3.1.1 Set Vertical Margin Method: This method,
i.e., “SetVertMargin' is used for setting the vertical margin
between rows within a FlowPrame. All rows within a
particular FlowPrame share the same margin, Since it is
initially unknown which children will end up in which row
within the FlowFrame. This method is useful for allowing a
program developer or user to Set Vertical margins between
the rows to other than a default Separation. Further, in one
embodiment, this method may be used to Specify the vertical
margin between rows as a proportion of the height of a main
font used in the dialog window. This way, if the dialog
window is modified to use a larger or Smaller font, the
spacing between rows is automatically adjusted accordingly.
Additionally, in a working example of the present invention,
horizontal margins between children within a particular
FlowFrame are set by calling a conventional Frame::Set
Margin() method on the individual children.
0.077 3.1.2 Shrink Width Method: This method, i.e.,
“ShrinkWidth By” is used to reduce a “flow width” of the
rows of a particular FlowFrame by a specified amount. By
default, when a FlowPrame is constructed, the width, i.e.,
the “flow width” of that FlowFrame is set equal to the dialog
window's visible client width, i.e., the size of the visible
window, minus any left and right border margins. However,
if the FlowPrame is positioned using an additional indenta
tion from the left side of the dialog window, then the default
flow width will be too great, and the FlowFrame may extend
past the right Side of the visible window. In Such a case,
clipping of the children or controls within the FlowFrame
may occur. Among other things, this function is useful for
correcting Such discrepancies.

0078. One example of using the “Shrink WidthBy”
method in combination with conventional methods of the
aforementioned classes, i.e., CompositeFrame, Frame,
HorizFrame, VertFrame, TableFrame, etc., is provided by
the following text. For example, a FlowFrame may be
placed inside a conventional GroupBoxFrame, which is used
to place a conventional group box or Similar control around
a group of other controls, insetting them within the Sur
rounding control by certain Standard left, right, top, and
bottom margins. In this case, Shrink Width By(GROUPBOX
LEFT MARGIN+GROUPBOX RIGHT MARGIN) may

be called to account for the extra insetting of the FlowFrame
from the left and right borders of the dialog window, so that
the right side of the Flow Erame doesn't extend beyond the
right Side of the dialog, nor far enough to push the right Side
of the group box control beyond the right Side of the dialog.

007.9 For example, as illustrated by FIG. 5, an exem
plary schematic of a dialog window 500 contains two group
box frames, Frame A and Frame B, 510 and 520, respec

US 2004/0268269 A1

tively. The Frame B group box 520 includes a FlowFrame
530 having children 540, 550 and 560. Because the default
or specified interior margins for the Frame B group box 520
will be known, use of the Shrink WidthBy method on the
FlowFrame 530 included within the Frame B group box will
serve to resize the FlowPrame to fit within the margins of the
Frame B group box. Consequently, there is no need for the
user or developer to manually compute and Specify the final
size of the FlowFrame 530 when insetting or nesting the
FlowFrame within the Frame B group box. The user or
developer can instead take advantage of the automatically
computed initial width of the FlowFrame 530 and simply
reduce the width by the necessary amount.
0080 Alternatively, to discard the automatically com
puted default initial flow width altogether, and Set a custom
width that may or may not even be related to the width of the
dialog window, the SetWidth() method (inherited from the
Frame class) may be called on the FlowFrame. Further, in
one embodiment, if a Flow Frame is indented explicitly by
calling a conventional Indent() or IndentBy() method
(inherited from the Frame class), rather than implicitly by
inserting it into a parent frame that automatically insets or
indents it Such as a GroupBoxFrame, then a corresponding
call to Shrink WidthBy() is not necessary, as the flow width
will shrink automatically by the amount of the indent.
0081) 3.1.3 Indent Latter Rows Method: This method,

i.e., “IndentLatterRows,” indents all rows after the first, by
a standard indent width. In other words, this method will
automatically align elements using a Standard indent as they
wrap into new rows as the window shrinkS.
0082) 3.1.4 Specify Indent Latter Rows Method: This
method, i.e., “IndentLatterRowsBy,' indents all rows after
the first row, by a specified indent width. In other words, this
method will automatically align elements using a Specified
indent as they wrap into new rows as the window ShrinkS.
0083) 3.1.5 Indent Latter Rows by First Child Method:
This method, i.e., “IndentLatterRowsByFirstChild,” indents
all rows after the first row, such that the left edge of the first
child in each of the Subsequent rows aligns with the left edge
of the second child of the first row. If any latter row child is
too wide to fit (even in its own row) after being indented by
that amount, then all of the latter rows are indented only by
the Standard indent width, assuming that the Standard width
is less than the specified width, and the FlowFrame's second
child moves down to Start on a new row, also indented by the
standard indent width.

0084. For example, as illustrated by FIG. 6A and FIG.
6B, the IndentLatterRowsByFirstChild method is useful
where two or more children have a relationship which it is
desired to maintain. In particular, FIG. 6A shows a Flow
Frame 600 having three child frames with associated con
trols, “Child Text Label'610, “Child Control A'620, and
“Child Control B"630. Child Control A 620 is separated
from Child Text Label 610 by either a standard or specified
margin from the right edge of Child Text Label. In this case,
it is desired to keep Child Text Label 610 in association with
both Child Control A 620 and Child Control B 630. Con
sequently, as the width of the FlowFrame is reduced as
illustrated by FIG. 6B, using the IndentLatterRowsByFirst
Child method on the FlowRrame of FIG. 6A Serves to
automatically cause Child Control B 630 to be left aligned
with Child Control A 620 as Child Control B wraps to the

Dec. 30, 2004

next row and is indented by the size of the first child, i.e.
Child Text Label 610, plus the margin following it.
0085 3.1.6 Distribute Rows Method: This method, i.e.,
“DistributeRows,' Makes the rows repel each other, and
Spread throughout the available Space with equal distances
between each of the rows.

0.086 3.1.7 Distribute Children Method: This method,
i.e., “DistributeChildren Horizontal, makes the children in a
row repel each other, and Spread throughout the available
Space with equal horizontal margins between the children in
the row.

0087 3.1.8 Bind Child Pair Method: This method, i.e.,
“BindChild Pair,” binds a first child with the child immedi
ately following it. In addition, this method, called in Suc
cession, is useful for binding a set of more than two children.
The bound set of children will all be kept in the same row
whenever the flow width is great enough to make that
possible, even if that results in less efficient use of the
preceding and Succeeding rows. But if the flow width is too
narrow to hold them all in the same row, then the bound set
will be broken up into multiple rows, without any Special
indentation of the latter rows of the bound set aside from
existing indentation due to any of the IndentLatterRows()
methods, i.e., IndentLatterRows, IndentLatterRowsBy, or
IndentLatterRowsByFirstChild. Further, if a bound set of
children must be broken into multiple rows, then no child
from outside of that bound Set will appear on the same row
as any child from that bound set.
0088 For example, as illustrated by FIG. 7A and FIG.
7B, the BindChildPair method ensures that a desired spatial
or Visual relationship between children can be maintained,
Space permitting, regardless of how many rows are created
by the FlowFrame. In particular, as illustrated in the Flow
Frame 700 of FIG. 7A, the FlowFrame includes four child
frames with associated controls, “Child Text Label A'710,
“Child Control A'720, “Child Text Label B'730, and “Child
Control B’740. The BindChild Pair method has been used in
this example to bind the first control, “Child Text Label
A'710, to the second control, “Child Control A'720. Fur
ther, the BindChild Pair method has also been used in this
example to bind the third control, “Child Text Label B'730,
to the fourth control, “Child Control B'740. When the width
of the FlowFrame is reduced from its initial size to the point
where the dashed line 750 crosses the dialog window, the
FlowFrame is automatically vertically resized, and both the
third and fourth controls, “Child Text Label B'730, and
“Child Control B'740, respectively, wrap to a newly instan
tiated row below the top row, as illustrated by FIG. 7B. It
can be seen by FIG. 7A that the dashed line 750 actually
crosses the position of the fourth control, “Child Control
B'740. Consequently, there is still sufficient room within the
resized row of the FlowPrame to hold the third control,
“Child Text Label B'730. However, because the third con
trol, “Child Text Label B'730, has been bound to the fourth
control, “Child Text Label B' wraps with the fourth control
as described above and as illustrated by FIG. 7A and FIG.
7B.

0089) 3.1.9 Get Row Method: This method, i.e., “GetRo
wOccupiedBy Child,” returns the row number that the child
is in. This method can only be called after Layout.(), Since
the child frames are not yet assigned to rows prior to Layout.(
). There is no convenient way to tell in advance which row

US 2004/0268269 A1

any of the children will end up in after resizing a Flow
Frame. Consequently, this method is very useful in that it
allows for further customization of children within a Flow
Frame depending upon their orientation and their neighbors
in any given row. For example, a simple example of a
FlowPrame includes three child frames with associated
controls in a Single row of a FlowPrame, i.e., a text label
followed to the right by an edit box, followed to the right by
a drop-down box, respectively. Given this simple example,
one exemplary utility of the GetRowoccupiedBy Child
method is to provide a simple “If type logic test within the
code describing the FlowFrame such that if the edit box
winds up in the same row as the text label then, in a Second
AutoLayout iteration, expand the edit box vertically or
horizontally to fill the available space within the row or
frame. Clearly, the utility of this method is not limited by
this simple example, which is provided merely as example
of one of a number of uses for the GetRowoccupiedBy Child
method.

0090 3.1.10 Expand Child to Fill Row Method: This
method, i.e., “Expand ChildToFillRowVert,” expands the
child to fill the vertical Space in the row, without expanding
the row height. To also expand the row to fill all available
vertical space in the FlowFrame, the method ExpandTo
FillVert(), which is defined for the Frame class and can
therefore be called on any frame, is called on the child.

3.2 Process Operation

0.091 As noted above, the program modules described in
Section 2.0 with reference to FIG. 4 are employed to
automatically and dynamically size and position one or more
FlowFrames within a window of a graphical user interface
as the window is generated or resized. Further, child frames,
representing one or more controls, as described above, are
sized and positioned within one or more dynamic rows
within the FlowFrames as the window is generated or
resized. This process is depicted in the flow diagram of FIG.
8. It should be noted that the boxes and interconnections
between boxes that are represented by broken or dashed
lines in FIG. 8 represent alternate embodiments of the
present invention, and that any or all of these alternate
embodiments, as described below, may be used in combi
nation.

0092 Referring now to FIG. 8 in combination with FIG.
4, the process is started by constructing one or more Flow
Frames (Box 810) within a parent or root frame representing
an overall widow, dialog window, or task pane. Next, any
number of child frames representing controls, labels, text,
etc., are inserted into the FlowFrame (Box 820) in a manner
Similar to inserting Such objects into a conventional frame.
Once the FlowFrames have been populated with children, a
hierarchical tree of frames is generated (Box 830) which
illustrates the relationships between all of the frames and
children within and up to the root frame. See Section 2.1 and
FIG. 3 for a discussion of a hierarchical tree of frames.

0093. Next, an automatic recursive preparation for Flow
Frame layout (Box 840) begins for the FlowFrames within
the overall window. This recursive preparation begins by
setting the flow width of each FlowFrame equal to the width
of the overall window, leSS any margins or indenting for
particular Flowframes, as described above. Further, during
this step, if all children of a particular FlowFrame are control

Dec. 30, 2004

frames representing controls of the same type, then the
vertical margins between the rows of the FlowFrame may be
automatically changed from the default vertical margin size
to the Standard margin size for vertically Separating controls
of that specific type. The preparation for FlowFrame layout
(Box 840) is recursive in the sense that the preparation
recurses down the hierarchical frame tree until the frame
leaves are reached.

0094. Once the flow widths and vertical margins have
been set (Box 840), constraints are calculated for each
FlowFrame (Box 850). These constraints represent the mini
mum space requirements of each FlowPrame. In particular,
the constraints calculate the minimum area required by each
frame by traversing the tree in postfix (bottom-up) order.
Each leaf control frame knows its own Space requirements,
based either on the default size or a size explicitly Set by the
developer. Going up the tree, each parent frame automati
cally figures out how large a rectangle it needs in order to fit
all of its children and the margins between them. For
example, during this Step, each FlowPrame arranges its
children into rows, So that it can use the number and heights
of its rows in computing its own minimum size. After the
root frame has determined its size requirements, the total
Size of the window or dialog is known. Further, as described
below, in one embodiment, the window is resizable using
conventional techniques for resizing windows in a window
ing environment, either automatically, or by user action via
a user interface. Thus, in Such an embodiment, the size of the
root frame is determined via resizing of the window.
0095 Once the size constraints for each FlowFrame have
been calculated (Box 850), a final position of each Flow
Frame within the overall window is calculated (Box 860). In
particular, a recursive procedure is used to calculate the final
positions for the flow frames which includes adjusting the
final sizes of all frames and Setting frame positions within
the overall window or dialog. This is done by traversing the
hierarchical tree in prefix (top-down) order. The root Sets the
position of each of its children within the dialog. Each child,
now knowing where its own rectangle is positioned, Sets the
position of its children, and So on, until the position of every
control is Set. Sizes (width and height) of frames are not
usually changed in this Second phase of the algorithm, unless
an expand-to-fill-available-space option or the like was
Specified using a method inherited from one of the conven
tional classes discussed above.

0096. The calculated final positions for all FlowFrames
(Box 860), are then used to create a final layout for the
overall window. In particular, the final size and position of
each flow frame is known from the step described with
respect to Box 860, while the minimum size and margins for
each of the children within each FlowPrame is known from
the steps described with respect to Box 840 and 850.
0097 Finally, once the steps described above have been
completed, the layout of the window may be saved for later
use, or alternately, the layout information may be used to
render the window to a display device having a graphical
user interface (Box 870 of FIG. 8) using conventional
techniques. For example, as discussed herein, the Step of
drawing the window to the Screen can be done off-screen,
then rendered to the display, or may be done on-screen in
real time as a window containing FlowPrames is resized.
0098. In addition, it should be noted that in one embodi
ment, text type controls, i.e., a Static text label, or a checkbox

US 2004/0268269 A1

or radio button control containing an included text label, or
the like, within a FlowFrame will automatically wrap where
there is insufficient horizontal Space available. In particular,
a FlowFrame will automatically wrap text controls that are
too wide to fit within the flow width of a given row of the
FlowPrame as a single unwrapped text line. Further, it
should be noted that Such wrapping does not occur in a new
FlowPrame row, but rather, within the same FlowPrame row.
In particular, a text control is made to wrap Simply by
reshaping it to be narrower and taller Such that more than
one row of text, as needed, will fit within the text control,
which is itself contained within a single FlowFrame row. In
other words, the text control remains a single, rectangular
control in a single row of the FlowFrame.

4.0 Working Example

0099. In a simple working example of the present inven
tion, a series of screen images, illustrated by FIG. 9 through
FIG. 14, is used to demonstrate the concept of FlowFrames
in accordance with the present invention by showing the
incremental effect of continuing to narrow a dialog window.
In particular, this sequence of Screen images illustrates how
a Slide Transition task pane window automatically adjusts
its layout as it is made increasingly narrow by the user.
0100 FIG. 9 illustrates a relatively wide task pane, i.e. a
dialog window, in which there is Sufficient room So controls
that “prefer to appear in the same row all do. There are four
such rows, 910, 911, 912, and 913, with each row being
represented by a Separate FlowPrame, indicated by the
boxes drawn with dashed lines Superimposed on the Screen
images. Further, as illustrated by FIG. 9 through FIG. 14,
each of FlowFrames 910,911, and 912 are indented relative
to the fourth FlowFrame 913. This indenting can be seen be
comparing the leftmost edge of each of the FlowPrames,
910, 911, 912 and 913. As discussed above, the amount of
indent for FlowPrames, such as FlowPrames 910, 911, and
912, can be either implicitly determined from their nesting
within other frames, or explicitly Specified by a user or
program developer.

0101 The first FlowFrame 910 includes a “Speed” label
915 and dropdown 920 in a single row. The second Flow
Frame 911 includes a “Sound” label925, dropdown control
930, and a “Loop until next sound” checkbox 935 in a single
row. The third FlowFrame 912 includes an “Automatically
after checkbox 940, and a number-input control 945 in a
single row. The fourth FlowFrame 913 includes a “Play”
button 950, and a “Slide Show” button 955 in a single row.
Note that in the first and second rows, 910 and 911, i.e., the
“Speed” and “Sound” rows, the dropdown controls 920 and
930, respectively, expand to fill available width, so that the
“Loop until next sound” checkbox 935 always reaches the
right side of the task pane 900.
0102) Next, as illustrated by FIG. 10, the dropdown
controls 920 and 930 are the first things to shrink as the task
pane 900 is made narrower. These dropdown controls 920
and 930 will continue to shrink as the task pane is narrowed
until they reach their minimum specified sizes.
0103) Next, as illustrated by FIG. 11, as the task pane is
made narrower still, the “Loop until next sound” checkbox
935 can no longer fit in the same row, since the “Sound”
dropdown 930 to its left must maintain its minimum width.
Consequently, the “Loop until next Sound” checkbox 935

Dec. 30, 2004

drops to form a second row within the second FlowFrame
911. The “Loop until next sound” checkbox 935 is indented
to be aligned with the dropdown 930 above it, emphasizing
that the checkbox and the dropdown above it are both
members of the “Sound” group. Note that as illustrated by
FIG. 11, the “Automatically after checkbox 940 and num
ber-input 945 don't have too much horizontal room to spare.

0.104) Next, as illustrated by FIG. 12, as the task pane
900 is narrowed still further, the “Automatically after
number-input 945 is the next control to be lowered into its
own row by its FlowFrame 912. It is automatically indented
by the “standard” indent width (the width of a square
checkbox bitmap plus the gap between the checkbox bitmap
and the associated text) to emphasize that it is logically
associated with the checkbox above it. Further, it can be seen
that the “Speed” and “Sound” dropdowns, 920 and 930,
respectively, have been Squeezed almost to their minimum
width. If the task pane is made narrower they may not fit in
the same row as their left-side text labels, 915 and 925,
respectively.

0105) Next, as illustrated by FIG. 13, as the task pane
900 is narrowed again, it can be seen that the “Speed” and
“Sound” dropdowns, 920 and 930, respectively, drop to form
their own rows within their respective FlowFrames, 910 and
911. They remain indented by just the small, “standard”
indent width, to emphasize their grouping within the
“Speed” and “Sound” control groups, 915 and 925, respec
tively. The “Loop until next sound” checkbox 935 also shifts
leftward, to retain its alignment with the dropdown 930
above it.

0106 Finally, as illustrated by FIG. 14, as the task pane
900 is made even narrower, the “Play” and “Slide Show”
buttons, 950 and 955, respectively, no longer fit in the same
row, so their FlowFrame 913 splits them into two rows. This
time the control on the second row (the “Slide Show”
button) does not get indented, because the designer of this
task pane has determined that there is no logical need for it
to be. Also note that various text Strings throughout the task
pane no longer fit in a Single line, So they wrap to multiple
lines. Also, as discussed above, it should be noted that Such
wrapping does not occur in a new FlowPrame row, but
rather, within the same FlowPrame row. In particular, a text
control is made to wrap Simply by reshaping it to be
narrower and taller Such that more than one row of text, as
needed, will fit within the text control, which is itself
contained within a single FlowFrame row. The vertical size
of a FlowPrame row containing Such a text control is
automatically increased to accommodate the increased
height of the text control. Furthermore, as the narrowing of
the task pane causes the controls to occupy more and more
rows, and the text to occupy more and more lines, the
depletion of vertical Space causes the list control near the top
to get Shorter and shorter (but still taller than its minimum
required height, which is two list items tall).

5.0 Additional Embodiments

0107 Because windows may be resizable, as discussed
above, Such resizable windowS can be resized below a
minimum width for fully displaying one or more of the
controls within one or more of the rows of one or more
FlowPrames. Consequently, where a window is resized in
Such a manner, in one embodiment, a Scroll bar or the like

US 2004/0268269 A1

is automatically instantiated within the window to allow a
user to Scroll the window for viewing obscured or clipped
portions of the window. However, in a related embodiment,
the user is prevented from reducing the size of the window
below a minimum threshold size in order to prevent the
clipping of controls or children within any of the Flow
Frames in that window. One method for determining this
threshold size is to simply set the minimum width of a
window to the largest minimum size of any children within
the window.

0108. The foregoing description of the invention has been
presented for the purposes of illustration and description. It
is not intended to be exhaustive or to limit the invention to
the precise form disclosed. Many modifications and varia
tions are possible in light of the above teaching. It is
intended that the scope of the invention be limited not by this
detailed description, but rather by the claims appended
hereto.

1. A System for automatically and dynamically laying out
elements within a window, comprising:

Specifying at least one dynamically resizable frame in a
hierarchical tree Structure within a parent window;

Specifying at least one child element within at least one of
the dynamically resizable frames,

automatically hierarchically computing a size of each
dynamically resizable frame based on the hierarchical
tree structure, beginning with any child elements within
each frame, up to the parent window, and then back
down to the individual child elements within each
frame,

automatically creating a minimum Sufficient number of
horizontal rows within at least one dynamically resiZ
able frame for displaying each of the child elements
within each dynamically resizable frame; and

automatically arranging child elements within the auto
matically created horizontal rows.

2. The System of claim 1 wherein at least one dynamically
resizable frame includes any number of nested frames, with
at least one of the nested frames further including any
number of child elements.

3. The system of claim 1 wherein the window is resizable,
and wherein elements within at least one frame are auto
matically arranged as the window is resized.

4. The system of claim 3 wherein the window is user
resizable.

5. The system of claim 3 wherein the window is auto
matically resized.

6. The System of claim 1 further comprising Specifying
preferred vertical margins between the automatically created
horizontal rows within at least one dynamically resizable
frame.

7. The System of claim 1 further comprising automatically
adjusting a width of at least one of the dynamically resizable
frames by a specified amount.

8. The System of claim 1 further comprising automatically
indenting at least one of the automatically created horizontal
rows within at least one dynamically resizable frame.

9. The system of claim 1 further comprising automatically
aligning at least one child element within at least one of the
automatically created horizontal rows within at least one of
the dynamically resizable frames.

Dec. 30, 2004

10. The system of claim 9 wherein automatically aligning
at least one child element comprises vertically aligning the
at least one child element within at least one row of at least
one dynamically resizable frame.

11. The System of claim 9 wherein automatically aligning
at least one child element comprises horizontally aligning
the at least one child element within at least one row of at
least one dynamically resizable frame.

12. The System of claim 9 wherein automatically aligning
at least one child element comprises vertically and horizon
tally aligning the at least one child element within at least
one row of at least one dynamically resizable frame.

13. The System of claim 1 further comprising automati
cally vertically distributing the automatically created hori
Zontal rows within at least one dynamically resizable frame
to fill an available vertical Space within the at least one
dynamically resizable frame.

14. The System of claim 1 further comprising automati
cally equally distributing at least one child element within at
least one of the automatically created horizontal rows.

15 (Cancelled).
16. The System of claim 1 further comprising automati

cally determining and reporting on which automatically
created horizontal rows within at least one dynamically
resizable frame holds particular child elements.

17. The system of claim 1 further comprising automati
cally expanding particular child elements to fill particular
automatically created horizontal rows.

18. The system of claim 1 wherein at least one of the child
elements includes at least one associated control.

19. The system of claim 18 wherein at least one of the
controls is a text control.

20. The system of claim 19 wherein any text contained
within the text control is automatically wrapped to at least
two lines within the text control without using an additional
automatically created horizontal row where the text is too
wide to fit as a Single unwrapped text line within a particular
automatically created horizontal row.

21. A computer-implemented process for automatically
arranging controls within a window of a graphical user
interface, comprising:

constructing at least one dynamically resizable frame
within a parent window;

inserting at least one control frame having at least one
asSociated control into at least one dynamically resiZ
able frame;

defining a preferred interrelationship between at least two
controls in at least one of the dynamically resizable
frames,

automatically creating a minimum Sufficient number of
horizontal rows within at least one dynamically resiZ
able frame for displaying the controls within any of the
dynamically resizable frames, and

automatically arranging the controls within the automati
cally created horizontal rows in accordance with any
preferred interrelationships between the controls.

22. The computer-implemented process of claim 21 fur
ther comprising automatically computing a size of each
dynamically resizable frame based on a hierarchical tree
Structure which defines a structural relationship between
each dynamically resizable frame and each control within
each dynamically resizable frame within the parent window.

US 2004/0268269 A1

23. The computer-implemented process of claim 21
wherein the window is resizable, and wherein controls
within at least one dynamically resizable frame are auto
matically arranged as the window is resized.

24. The computer-implemented process of claim 21 fur
ther comprising an ability to customize the automatic
arrangement of elements within at least one of the automati
cally created horizontal rows of at least one of the dynami
cally resizable frames by Specifying any of:

a preferred vertical margin between the horizontal rows,
a preferred width of at least one of the dynamically

resizable frames,
a preferred indenting of at least one of the horizontal

rOWS,

a preferred horizontal alignment of at least one control
within at least one of the horizontal rows;

Dec. 30, 2004

a preferred vertical alignment of at least one control
within at least one of the horizontal rows;

a preferred vertical distribution of horizontal rows within
at least one dynamically resizable frame;

a preferred horizontal distribution of controls within at
least one of the horizontal rows, and

a preferred expansion of at least one control within at least
one of the horizontal rows.

25. The computer-implemented process of claim 21 fur
ther comprising automatically determining and reporting on
which automatically created horizontal rows within at least
one dynamically resizable frame holds particular child ele
mentS.

26 (Cancelled).
27-40 (Cancelled).

