7014742 A2 | IV 00O O O

o

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 February 2006 (09.02.2006)

lﬂb A 00

(10) International Publication Number

WO 2006/014742 A2

(51) International Patent Classification:
HO3M 13/00 (2006.01)

(21) International Application Number:
PCT/US2005/025752

(22) International Filing Date: 20 July 2005 (20.07.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

10/895,547 21 July 2004 (21.07.2004) US

(71) Applicant (for all designated States except US): FLAR-
ION TECHNOLOGIES, INC. [US/US]; Bedminster
One, 135 Route 202/206 South, Bedminster, NJ 07921
(US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RICHARDSON,
Tom [US/US]; 420 Clark Street, South Orange, NJ 07079
(US). JIN, Hui [CN/US]J; 31 Meadowview Drive, Annen-
dale, NJ 08801 (US).

(74) Agent: STRAUB, Michael, P.; Straub & Pokotylo, 620
Tinton Avenue, Bldg. B, 2nd Floor, Tinton Falls, NJ 07724-
3260 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: LDPC ENCODING METHODS AND APPARATUS

(57) Abstract: A flexible and relatively hardware efficient LDPC encoder is described. The encoder can be implemented with a
level of parallelism which is less than the full parallelism of the code structure used to control the encoding process. Each command
& of a relatively simple microcode used to describe the code structure can be stored and executed multiple times to complete the
& encoding of a codeword. Different codeword lengths can be supported using the same set of microcode instructions but with the
code being implemented a different number of times depending on the lifting factor selected to be used. The LDPC encoder can
switch between encoding codewords of different lengths, without the need to change the stored code description information, by
simply changing a code lifting factor used to control the encoding processes. When coding codewords shorter than the maximum
supported codeword length some block storage locations and/or registers may go unused.

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

LDPC ENCODING METHODS AND APPARATUS

FIELD OF THE INVENTION

The present invention is directed to methods and apparatus for encoding data for the
purposes of facilitating the detection and/or correction of errors, e.g., through the use of parity

check codes such as low-density parity-check (LDPC) codes.

BACKGROUND

Error correcting codes are ubiquitous in communications and data storage systems. Error
correcting codes compensate for the intrinsic unreliability of information transfer in these
systems by introducing redundancy into the data stream. Recently considerable interest has
grown in a class of codes known as low-density parity-check (LDPC) codes. LDPC codes are
provably good codes. On various channels, LDPC codes have been demonstrated to be really

close to the channel capacity — the upper limit for transmission established by Claude Shannon.

LDPC codes are often represented by bipartite graphs, called Tanner graphs, in which
one set of nodes, the variable nodes, correspond to bits of the codeword and the other set of
nodes, the constraint nodes, sometimes called check nodes, correspond to the set of parity-check
constraints which define the code. Edges in the graph connect variable nodes to constraint
nodes. A variable node and a constraint node are said to be neighbors if they are connected by

an edge in the graph.

A bit sequence associated one-to-one with the variable nodes is a codeword of the code if
and only if, for each constraint node, the bits neighboring the constraint (via their association

with variable nodes) sum to zero modulo two, i.e., they comprise an even number of ones.

An exemplary bipartite graph 100 determining an exemplary (3,6) regular LDPC code of
length ten and rate one-half is shown in Fig. 1. Length ten indicates that there are ten variable
nodes V-V, each identified with one bit of the codeword X;-X;¢. The set of variable nodes
V-V ois identified in Fig. 1 by reference numeral 102. Rate one half indicates that there are

half as many check nodes as variable nodes, i.e., there are five check nodes C,-Cs identified by

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

reference numeral 106. Rate one half further indicates that the five constraints are linearly
independent. Exemplary bipartite graph 100 includes edges 104, wherein the exemplary (3,6)
regular LDPC code has 3 edges connected to each variable node and 6 edges connected to each

constraint node and at most one edge between any two nodes.

While Fig. 1 illustrates the graph associated with a code of length 10, it can be
appreciated that representing the graph for a codeword of length 1000 would be 100 times more

complicated.

An alternative to the Tanner graph representation of LDPC codes is the parity check
matrix representation such as that shown in drawing 200 of Fig. 2. In this representation of a
code, the matrix H 202, commonly referred to as the parity check matrix, includes the relevant
edge connection, variable node and constraint node information. In the matrix H 202, each
column corresponds to one of the variable nodes while each row corresponds to one of the
constraint nodes. Since there are 10 variable nodes and 5 constraint nodes in the exemplary
code, the matrix H 202 includes 10 columns and 5 rows. The entry of the matrix 202
corresponding to a particular variable node and a particular constraint node is set to 1 if an edge
is present in the graph, i.e., if the two nodes are neighbors, otherwise it is set to 0. For example,
since variable node V is connected to constraint node C; by an edge, a one is located in the
uppermost left-hand corner of the matrix 202. However, variable node Vs is not connected to
constraint node C, so a 0 is positioned in the fifth position of the first row of matrix 202
indicating that the corresponding variable and constraint nodes are not connected. We say that
the constraints are linearly independent if the rows of H 202 are linearly independent vectors

over GF[2], where GF[2] is the binary Galois Field.

In the case of a matrix representation, the codeword X which is to be transmitted can be
represented as a vector 204 which includes the bits X-X, of the codeword to be processed. A
bit sequence X;-X; is a codeword if and only if the product of the matrix 202 and matrix 204 is

equal to zero, that is: HX = 0.

Encoding LDPC codes refers to the procedure that produces a codeword from a set of

information bits. By preprocessing the LDPC graph representation or the matrix representation,

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

the set of variable nodes corresponding information bits can be determined prior to actual

encoding.

To build an encoder for a general LDPC code, the first step is to find a permutation of
the rows and columns of H so that, up to reordering, we can divide the mxn matrix H into the

following sub-matrices

where T is a txt upper triangular sub-matrix, i.e. all entries below the main diagonal are zero, E
is a gxt submatrix, A is txg, C is gxg, B is tx(n-m), D is gx(n-m) and t+g=m. Moreover the gxg

matrix ¢:= ET'A+C is invertible (we assume here that H is full row rank.)

Encoding then proceeds as follows. To encode codeword x = [x"' x st given information

bits x*, we first solve
r a Bl o »[=0
for y using back-substitution. Next we solve
a = c ply o »T
for x”*. For this step the matrix ¢~' is pre-computed. Finally, one solves
T A B] [x"‘ xP x“']T =0

for x” using back substitution. The vector [x”‘ xP xJ]Tconstitutes the codeword.

While encoding efficiency and high data rates are important, for an encoding system to

be practical for use in a wide range of devices, e.g., consumer devices, it is important that an

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

encoder be capable of being implemented at reasonable cost. Accordingly, the ability to
efficiently implement encoding schemes used for error correction and/or detection purposes,

e.g., in terms of hardware costs, can be an important consideration.

In view of the above discussion it should be appreciated that there is a need for encoder
apparatus and methods directed to efficient architecture structures for implementing LDPC
codes. Apparatus and methods that allow the reuse of the same hardware to encode codewords
of different lengths would be beneficial and desirable. This is because it would allow for greater
flexibility during encoder use and allow different sets of data to be encoded using codewords of
different sizes thereby allowing the codeword size to be selected for a particular encoding
application, e.g., communications session or data storage application, without the need for

multiple encoders to support such flexibility.

SUMMARY OF THE INVENTION

The present invention is directed to encoding methods and apparatus, e.g., methods and
apparatus for implementing a low density parity check (LDPC) encoder. Various embodiments
of the invention are directed to particularly flexible encoders which allow a single encoder to be
used to encode codewords of different lengths. This allows an LDPC encoder of the present
invention to switch between encoding codewords of a first length for a first application, e.g., a
first communications application or data storage application, to encoding codewords of a second
length for a second application. In fact, a wide variety of codeword lengths can be supported
using the same hardware allowing for changes in codeword length through simple modifications
in the codeword description used in the encoder. Codeword descriptions may be reflected in

relatively simple microcode which can be executed as needed for a particular application.

The encoder of the present invention can store multiple sets of microcode corresponding
to different codes structures. When a code structure is selected to be used for encoding, the
corresponding microcode is selected and codewords of a particular length corresponding to the
selected code structure are generated. For a given code structure, codewords of different lengths
may be generated by selecting different code lifting factors. Use of a code lifting factor less than
the maximum supported code lifting factor will normally result in some memory locations, e.g.,

block storage locations, going unused in the encoder memory. The number of block storage

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

locations provided in memory is normally determined by the maximum supported codeword

size.

The encoder of the present invention can switch between different lifting factors thereby
allowing the encoder to switch between generating codewords of different lengths. Thus, the
encoder of the present invention can be used to generate codewords of a length which is well
suited for a particular application and is not constrained by hardware to generating codewords of
a single length. However, the maximum supported codeword length in many cases will be a

function of the amount of memory available for storing blocks of bits during encoding.

The maximum supported codeword size may be K x N x L bits with the different size
codewords including integer multiples of (N x L) bits up to the maximum of K multiples, where

K, N and L are positive integers.

The encoder of the present invention is particularly well suited for encoding codewords
which can be generated according to LDPC graphs which define a code that possess a certain
hierarchical structure in which a full LDPC graph appears to be, in large part, made up of
multiple copies, Z, e.g., of a Z times smaller graph. The Z graph copies may, but need not be, be
identical. For purposes of explaining the invention, we will refer to the smaller graph as the
projected graph, the full graph as the lifted graph, and Z as the lifting factor. Thus, the projected
graph serves as the basis of generating or describing the larger lifted graph which described the

code structure used to control encoding.

Consider indexing the projected LDPC graphs by 1,...,j,...,Z, where j is an integer used
as a projected graph index and z is the total number of projected graphs used to define the lifted
graph. In a strictly parallel graph where the lifted graph is generated by simply copying the
projected graph Z times, variable nodes in graph j are connected only to constraint nodes in
graph j. That is, there will be no interaction between the edges of the projected graphs used to

form the larger lifted graph.

The encoder of the present invention is not so limited. In accordance with the invention,

it is possible to take one vector edge, including one corresponding edge each from each of the Z

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

graph copies, and allow a permutation within the Z edges, €.g., we permit the constraint nodes

corresponding to the edges within the vector edge to be permuted, e.g., re-ordered.

We may restrict the permutations to be in the space of a set (usually a group) of ZxXZ
permutation matrices, denoted as W . Thus, ¥ will be used herein to refer to a set of permuation
matrices which is usually a group of permuation matrixes. We assume that the inverses of the
permutations in ¥ are also in ¥ . The set ¥ can in general be chosen using various criteria.
One of the main motivations for the above structure is to simplify hardware implementation of
decoders and encoders. Therefore, it can be beneficial to restrict ¥ to permutations that can be -

efficiently implemented in hardware, e.g., in a switching network.

In accordance with the present invention, an LDPC encoding procedure can, and in
various embodiments is, laid as an ordered sequence of matrix addition and multiplication
operations may be translated into a sequence of commands. For convenience of description, we
denote this sequence of encoding commands for an exemplary graph G as the encoding
microcode of G. The actual encoding is then accomplished by sequentially executing the
microcode of G, using an encoder of the present invention, which performs various operations in
accordance with the microcode on a physical memory preloaded with information bits, e.g., bits
to be encoded. Each command comprises an operator op and a memory location indicator.
Depending on the operator op, the encoder control logic either reads out a bit location in the
memory determined by the memory location indicator and accumulates it to a register, or, writes
the register value to location a and resets the register value to zero. The size of the microcode,
i.e., the number of commands of within, is at least equal to the number of edges in graph G;

often, they might be roughly the same.

Consider a lifted LDPC graph with lifting factor Z. Given a small, projected, graph
which is to be used to form a larger graph, e.g. a projected graph, we can form a Z -times larger
LDPC graph by replacing each element of H with a ZxZ matrix. The O elements of H are
replaced with the zero matrix, denoted 0. The 1 elements of H are each replaced with a matrix
from ¥ . In this manner we “lift’ an LDPC graph to one Z times larger. The complexity of the
representation comprises, roughly, the number of bits required to specify the permutation

matrices, | E,, | log| ¥ | plus the complexity required to represent H , where | E,, | denotes the

number ones (1s) in H and | ¥ | denotes the number of distinct permutations in ¥'. E.g.,if ¥

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

is the space of cyclic permutations then | ¥ |= Z . In practice we might have, e.g., Z =16 for
n=1000 where n is the codeword block length. An example of lifting a small parity check
matrix H is shown below where each element in H which is a one is replaced with the projected

graph to result in the larger prejected matrix H shown on the right.

1 011100 6 0 o, 6, o, 0 0

H = 1 110 010 H=|% ©+ Oy 0 0 o, O
1101 001 6, 6, 0 6, 0 0 o,
01 0 0 1 1 1

0 66 0 0 o, o, o

In the matrix H the o, i=1,...,16 are elements (matrixes) of ¥ shown here indexed

from the variable node side.

Let us recall a vector x is a codeword if and only if Hx=0. In the lifted matrix
representation, x can be treated as a vector of elements in GF(2*Z), instead of a vector of binary
element, where GF(27Z) is Galois field of 2Z elements. In this light, the encoding process as
matrix-vector multiplication and vector addition laid out in the background section may be
mimicked: every nonzero element 1 in a matrix in the projected graph is replaced by its

corresponding Z X Z permutation matrix; every bit in a vector is replaced by a Z-bit vector.

The encoding procedure of a LDPC graph using G as the projected graph can be largely
specified as a lifting of the above encoding process for the projected graph. That is accomplished
through replacing bit operations in the original algorithm to bit vector operations in the lifted
algorithm. At one or more points in the encoding processing, after being read out of memory, the
Z bit vectors are subject to a permutation operation, e.g., a re-ordering operation. The
re-ordering operation may be a rotation operation, or rotation for short. These rotation
operations generally correspond to the rotations associated to the vector edges that interconnect
the Z copies of the projected graph to form the single large graph. Therefore, in the lifted
microcode, each command comprises an operator op, a rotation number r, and a memory

location indicator.

Lifting the microcode of the projected graph in large part specifies the encoding for the
lifted graph. An exception is if a matrix inversion, for calculating the matrix ¢, exists in the

projected graph. In such a case, the inversion is not lifted directly to a matrix inversion in the

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

lifted graph. Instead, the matrix inversion is done in the ring over Z X Z permutation matrices
and the corresponding encoding commands results in a new set of commands specifying the
matrix inversion. In those commands, the required rotations are apparent after appropriate

preprocessing of the LDPC representation.

The size of the microcode used in accordance with the invention to describe the lifted
graph is thus roughly equal to the number of edges in the projected graph plus the number of
additional commands specifying the inversion, which is often small. Therefore, for identical
block length, increasing the lifting factor generally reduces the size of the encoding microcode.
For large block length, this may save significantly in microcode description memory, e.g., a
relatively small memory may be used to store the information describing the large graph to be

used for encoding.

In a practical communication or data storage systems, the throughput of the encoder is
usually required to match that of the decoder. For a lifted graph with lifting factor Z,
implementing hardware parallelism Z on both the encoder and decoder often results in a higher
throughput for the encoder than is necessary to match the decoder throughput since the decoder

needs a few more iterations to converge, €.g., complete decoding of a codeword.

Based on this inventor supplied insight, it should be appreciated that it may be desirable,
and is possible with the present invention, for an encoder to use a smaller implementation
parallelism than the decoder and achieve the same throughput in terms of the number of

codewords processed in a given period of time.

. For another example, in cases that a large lifting factor Z is used for the above mentioned
benefit of saving memory in describing a large graph, using an implementation parallelism Z

invokes a high number of parallel units in generating an excessive throughput.

Given the fact that hardware complexity is proportional to the implementation
parallelism N but graph description complexity is proportional to the lifting factor Z, it is
desirable that the implementation parallelism is such that the resulting throughput is matching
the requirement without excessiveness while using a lifted graph described using a large lifting

factor Z.

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

Various features of the present invention are directed to methods and apparatus for
implementing a vector LDPC encoder with implementation parallelism N using microcode that
describes a lifted graph with lifting factor Z, where N is a divisor of Z. Implementation
parallelism N may be chosen to match the required throughput, thus using the minimum

hardware complexity.

Moreover, in accordance with the present invention, the vector LDPC encoder with
implementation parallelism N is capable of generating, e.g., encoding data to produce codewords
corresponding to a class of LDPC codes, with the same rate but different block sizes, from the
same microcode describing a lifted graph with lifting factor Z. Specifically, as an exarﬁple,

assume Z can be factored K, x K, x N, and the projected graph has n variable nodes, then the
novel encoder may generate three different codes of different codeword sizes N xn, K, xNxn

and K, x K, xNxn

Thus, a device using the encoder of the present invention can, and often does, switch
between encoding using different graphs described in stored microcode depending on the
application so that the codewords generated can be of a block size which is appropriate for the
particular application. For example, codewords of a first size may be generated for wireless
communications while codewords of a second size may be generated for fiber optic

communication purposes.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 illustrates a bipartite graph representation of an exemplary regular LDPC code

of length ten.
Figure 2 is a matrix representation of the code graphically illustrated in Fig. 1.
Figure 3 illustrates an exemplary encoder implemented in accordance with the present

invention and also illustrated the flow of various signals and messages within the encoder which

are generated in accordance with the encoding methods of the invention.

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

Figure 4 illustrates a device, e.g., mobile node, which uses an exemplary programmable

LDPC encoder implemented in accordance with the present invention.

Figure 5, comprising the combination of Figure 5A and Figure 5B, is a flowchart of an
exemplary method of operating an exemplary communications device implemented in
accordance with the present invention to perform encoding and decoding in accordance with the

present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to methods and apparatus for implementing LDPC
encoders. Various embodiments of the invention are directed to LDPC encoders and encoding
methods which can be implemented in a hardware efficient manner while being relatively
flexible with regard to the code structure that can be used during encoding and the size of

generated codewords.

Fig. 3 illustrates an exemplary LDPC encoder 300 implemented in accordance with the
present invention. The encoder includes a memory module 302, a control module 312, a code
lifting based block selection module 310, an N element controllable permuter 304, an N element
vector accumulator module 306 and a controllable storage device 308 which are coupled
together as shown in Fig. 3. Note that the terms permuter and permutator are used
interchangeable in the present application to refer to the same thing. The various elements of the

LDPC encoder 300 and their function will be described in detail below.

As discussed above, the encoder 300 of the present invention can support different codes
with the use of different code descriptions and/or with the use of different codeword lengths, as
indicated by different lifting factors, for the same code description. The memory module 302
includes a set of K x N x L memory locations (318, 320, 322) where K x N x L is the maximum
supported codeword size. An input 301 allows data to be encoded to be written into said
memory. An output 303 allows a codeword stored in the memory 314 to be read out once
encoding has been completed. The memory module 302 also includes a set of K x N x 1 memory
locations (319, 321, 323) used to store temporary values. Other embodiments may not require

and may not use temporary storage values. Codewords of smaller sizes can also be supported

10

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

using the memory 314. The memory locations in memory 314 are arranged, into K NxL blocks
used to store codeword values, Blk 1 318, Blk 2 230, Blk K 322 and K Nx1 blocks used to store
temporary values Blk 1 319, Blk 2 321, Blk K 323. Each of the K x N x L memory locations is
normally 1 bit. Each of the K x N x 1 memory locations is also normally 1 bit. Reading from and
writing to memory locations in the memory 314 is controlled by memory address logic 316
which generates a memory access signal 324 (address and read/write signal) in response to
various inputs generated by other components of memory. N bits are normally read from or
written to memory module 314 at a time. An N bit wide bus 340 couples an N bit wide read
output of memory module 302 to an N bit wide input of the N element controllable permuter 304
which can reorder the bits prior to them being supplied to the N element vector accumulator 306
over an N bit wide bus 342. The N element controllable permuter 304 receives a reordering
control signal r2 373 which is generated as a function of stored code desqription information,
e.g., control code such as microcode. The signal 12 373 controls what, if any, reordering of bits
is to be performed on the N bits obtained from memory prior to the bits being supplied to the N

element vector accumulator module 306.

‘ The N element vector accumulator module 306 includes N accumulator circuits arranged
in parallel. Each of the N accumulator circuits generates a one bit binary sum corresponding to
one of the N input bits from the N element controllable permuter 304 and a corresponding one of
N bi‘ts read out of the controllable storage device 308. This is an efficient way of implementing
an XOR operation. Thus each accumulator circuit performs an XOR operation. In this manner,
the N element vector accumulator 306 generates N accumulated values in parallel. The N values
generated by the accumulator module 306 are supplied in parallel over the N bit wide bus 344 to
the controllable storage device 308. The controllable storage device 308 includes an input MUX
328, an output MUX 308, and a set of K N-bit registers 326. The input MUX 328 is controlled
by a block select control signal 360 to determine which one of K N bit registers 332, 334, 336 an
N bit block is written to when the read/write signal 350 indicates the output of the vector
accumulator module is to be stored in the controllable storage device 308. Output MUX 330 is
coupled to the N bit wide bus 346 and outputs the N bit block indicated by the block select
control signal 360 when the read/write control signal 350 indicates a read operation is to be
performed. Each set of N bits read out from controllable storage device 308 are supplied to both

the memory module 302 and to the second input of the N element vector accumulator module

11

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

306. The N bits are written to memory at the end of a sequence of accumulator operations, e.g.,

as determined by the stored code description.

The control module 312 is responsible for generating a variety of control signals as a
function of the particular code description, e.g., control code such as microcode, stored in
encoder description information module 372, selected to be used at a particular point in time. In
programmable embodiments, the code description information can be loaded into the stored
encoder description information module 372, e.g., from a devices main memory via input 371.
In embodiments where a single code description is preloaded and used, e.g., for codewords of
different length corresponding to the same code structure, input 371 may be omitted. The
generation of the signals produced by the encoder description information module 372 are
driven by a control signal 375 generated by an outer loop counter 374. The outer loop counter
374 is driven by an inner loop control signal 377 generated by an inner loop counter 370. The
inner loop counter 370 generates a second selection module control signal 356 and the inner
loop control signal 377 as a function of a code lifting factor control signal SK 348 which is
supplied to the inner loop counter 370 as a control value. The code lifting factor control signal
can be used to specify the length of the codeword to be generated and may assume values from 1
to K where K indicates the total number of NxL bit blocks in memory 314. Thus, by using
different code lifting factors, codewords of different sizes may be generated where each of the
different supported codeword sizes will be an integer multiple of NxL. In cases where SK<K,
one or more blocks in memory 314 and one or more registers in the set of registers 326 will

normally go unused.

The stored encoder description information module 372 includes control code, e.g.,
microcode. This code, when executed in response to the outer loop control signal 375, generates
a read/write signal 350 specified by an op value included in the executed line of microcode. The
signal 350 is supplied to both the memory module 302 and the controllable storage device 308.
The stored encoder description information module 372 also generates a memory address
control signal 352 which is supplied to the memory module 302 when a read/write operation is
to be performed, a first selection module control signal r1 354 which is supplied to the code
lifting based block selection module 310 and the reordering control signal r2 373 which is
supplied to the controllable permuter 304 to control the reordering of values read from memory

module 302.

12

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

Code lifting based block selection module 310 receives the first selection module control
signal r1 354 from the stored encoder description information module 372 and a second
selection module control signal 356 generated by inner loop counter 370. The code lifting based
block selection module 310 generates a block address select signal 358 which is supplied to
memory address logic 316 to indicate a particular block of memory 314 to be accessed at a
particular point in time. The code lifting based block selection module 310 also generated the
block select control signal 360 which is used to control which block of information, e.g., which
register 332, 334, 336 bits are to be accessed in the controllable storage device 308 at a

particular point in time.

The various components of encoder 300 are driven by a common clock signal so that the
various operations and the incrementing of the counters 370, 374 operate in a synchronized

manncr.

After a number of processing interactions, the set of information bits initially stored in
memory module 314 will be transformed as a result of the encoder processing operations and
memory access operations performed under direction of the stored encoder description
information module 372 into a codeword. This codeword may be read out and, e.g., transmitted

or stored.

In order to obtain a high level of error resiliency, relatively long codewords are often
used. For example, a single codeword generated by performing an encoding operation may
include a total number of bits T, where T may be several hundred or even thousands of bits. For
purposes of explaining the invention it is to be understood that bits to be encoded may be
arranged into K x L X N bit vectors, where N is a positive integer and K is a positive integer
greater than 1. Each N bit vector may be read from memory. The vector read from memory can
then be processed using N processing units in parallel. In contrast to existing systems, which
use implementation parallelism N equal to Z in an encoder that encodes codewords using a
particular lifted LDPC code with a lifting factor Z, the present invention allows for the level of
parallelism in the encoder to be different from the total supported lifting factor Z., More
specifically, Z= K x N, where K is an integer greater than 1. Thus, in accordance with the

present invention, in various implementations, the level of parallelism N is lower than the lifting

13

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

factor Z. Furthermore, in some embodiments, codewords of different sizes can be generated
using the same set of code description information. By selecting a code lifting factor control
value SK which is less than K, the maximum supported lifting factor control value, codewords
less than the maximum codeword size for a given implementation (L x K x N) can be created.

The different size codewords will be multiples of NxL bits.

U.S. Patent Application S.N. 10/788,115 titled "METHOD AND APPARATUS FOR
PERFORMING LOW-DENSITY PARITY-CHECK (LDPC) CODE OPERATIONS USING A
MULTI-LEVEL PERMUTATION", filed on 2/26/2004 and the corresponding PCT Application
PCT/US2004/005783 which has the same title and filing date, are both hereby expressly
incorporated by reference. These patent applications describe a product lifting method of LDPC
codes. Such product liftings restrict the group of Z X Z permutation matrices used in liftings to
groups that can be decomposed into a direct-product of sub-groups. For example, we assume ‘¥

is a direct-product of three sub-groups, i.e., ¥ =¥, x ¥, x¥, . The dimension of ¥ is equal to
the product of the dimensions of ¥;, where ¥, is the group of K; X K, permutation matrices.

Thus, a large lifting may be implemented as multiple smaller sequential liftings. It is assumed

that the dimension of group ¥, equals to the dimension of a matrix inside the group, thus Z =

K, x K, x K; where K, ,K,, K, are dimensions of ¥,,¥,,¥; respectively.

In accordance with the present invention we restrict the lifting group ¥ to be a product-
lifting group. A noted above, a product lifting can equivalently be viewed as a multi- '
dimensional lifting. Accordingly, the present encoder 300 of the present invention uses liftings
which can be implemented as multi-dimensional liftings. Assume the projected code is of size
P, i.e., with P variable nodes. One could choose a cyclic group of size 64 for the lifting. An
alternative, in accordance with the invention would be a product of the cyclic group of size 16
and the cyclic group of size 4 (note 16x4=64). This group can be represented as follows.
Consider indexing L = 0,...63 using pairs (a,b), a=0,...,15 and b=0,...,3 by the invertible map
L =4a+b. An element of this product group is a pair (¢,d) ¢ =0,...,15 and d=0,...,3. The action
of (c,d) on (a,b) is to permute the pair (a,b) to (a+c mod 16, d+b mod 4). This group also has
order 64. The resulting lifted graph, however, can be interpreted as a lifting of a size 4P code by
16 or a size 16P code by 4 or a size P code by 64.

14

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

Various advantages offered by product liftings are realized in the context of the encoder
and hardware implementations of the present invention. The value added by using product
liftings in an encoder is one of the many features of the invention. Liftings by groups which are
not products, e.g., by a cyclic group, allow for liftings of arbitrary size but do not offer the

flexibility of product liftings.

U.S. Patent Application S.N. 10/788,115 title "METHOD AND APPARATUS FOR
PERFORMING LOW-DENSITY PARITY-CHECK (LDPC) CODE OPERATIONS USING A
MULTI-LEVEL PERMUTATION" describes product lifting graphs and the potential benefits of
using those graphs.

The present invention expands on some of the basic concepts described in that
application by describing a novel encoder 300 which uses a lifting factor Z= K x N. Various
features of the invention are directed to a method and apparatus for encoding a graph with an
implementation parallelism N in a flexible but relatively hardware efficient manner. K can be
used as a lifting control factor and, when N is fixed, can be indicative of the size of the

codeword to be generated.

We assume we have a lifted LDPC graph with lifting factor Z = K X N. The lifting group
¥ to be a product-lifting group ¥ =¥, x'¥,, where K is the dimension of group ¥,, and N is
the dimension of group ¥, . We can generate the microcode for the lifted graph with lifting
factor Z, which is a sequence of commands each of which carries an operator op, a rotation
number r, and a memory location a. An encoder 300 implemented using parallelism Z executes
each command in the following way: if op indicates a read, the controller reads a Z-bit vector
from the memory at location a, reorders it the amount r, and accumulates the reordered value
into a Z-bit register; if op indicates a write, the controller writes the value of the Z-bit register
into the memory at location a. And the encoding is accomplished by executing the whole

sequence of commands.
The microcode which is executed may be stored in the encoder description information

module 372 which, in addition to storing the microcode to be used is responsible for accessing

and executing the instructions included in the microcode.

15

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

The same result of executing a microcode instruction, e.g., command of the present
invention, can be obtained using parallelism N, i.e. N parallel processing units, instead of
parallelism Z= K x N. However, in our N implementation we execute the same basic command

K times, each time finishing 1/K of the job of processing the Z bits.

To better understand the encoding process of the present invention let us first consider a
command that reads out a Z-bit vector from location a and reorders by amount r and then
accumulates the reordered value to the Z-bit register. We write the original data vector d=(d;, d,,
... dk), each d; is an N-bit vector, where j is an integer value used as indexes. Given the lifting
group is a product lifting ¥ = ¥, x¥,, where ¥, has dimension K and ¥, has dimension N, let
us write the reordering amount r = (r; ,r2), where r, is the reordering amount, e.g., amount of

cyclic rotation, in group ¥, and r is the reordering amount, e.g., amount of cyclic rotation, in
group ¥,. We use the notation W, (d, r) to represent a reordering by amount r on vector d (of K
element) in group ¥, and the notation ¥, (d, r) to represent a reordering by amount r on vector
d (of N elements) in group ¥, . The reordering can be also thought of as a location permutation,
so that the element d; at original location j goes to a new location denoted as ¥, ,(j) inthe
reordered data. Then the reordering can be thought as a 2-stage reordering procedure. The first
stage reorders in group ‘¥, for N (1-bit) elements to generate vector d’=
(Y,d,,n).¥,(d,,r,),.... ¥,(d,,1,)). Then the second stage reorders in group ¥, for K (N-bit)
elements to generate vector d”’= ¥, (d',r;). Then the reordered data d’’ is accumulated to a Z-bit

register. As will be discussed below, in the Fig. 3 implementation, the Z bit register is

implemented as a set of K N-bit registers 332, 334, 336.

We now describe how to decompose the above mentioned a single step reading-ordering-
accumulation using parallelism Z into K steps of reading-ordering-accumulation using
parallelism N to implement an LDPC encoder such as the LDPC encoder 300. It is a sequence
of such K steps that is used by encoder 300. Assume we have K registers 332, 334, 336 and
assume the Z-bit vector d at location a is physically arranged as K N-bit vectors (d;, ds, ... dk),
where N-bit vector d; is stored at location a in the block j. If in step j, we read out data dj, where
the address is determined by both a and j, and reorder the read-out data by the amount of r; in

group ¥, e.g., using the N element controllable permuter 304, we generate W, (d,,r,). Then

16

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

we accumulate the reordered data into the ¥, , (j) th register of those K registers 332, 334, 336.

That completes the jth step. Running through j=1, ..., K, we obtain the same result as executing
the command with a Z-bit vector operation but achieve this result with the lower encoder

parallelism N, where N<Z.

A command that writes Z-bit register to location a and resets the Z-bit register can also
be decomposed into K steps in accordance with the present invention, indeed in a much simpler
way. In step j, we write the jth register of the K N-bit registers 332, 334, 336 to a location
determined by j and location @, and reset that register 332, 334 or 336. Running through j=1, ...,

K, we obtain the same result as executing the command with Z-bit vector operations.

- The above discussion describes in principle how we can use parallelism N to implement
a microcode corresponding to a lifting factor Z, e.g., a microcode which is stored in encoder

description information module 372.

With reference to Fig. 3, we will now describe in greater detail the exemplary encoder
300 used to realize the K-step encoding process which allows for a parallelism of N when a

lifting factor Z is used where Z>N.

In Figure 300, a control module 312 controls the number of steps executing a command
through an inner loop counter 370. Counter 370 increments by 1 at each step and resets upon
reaching a maximum count determined by the code lifting factor control signal 348. Each time
inner loop counter 370 reaches maximum, it triggers the outer loop counter 374 to be
incremented by 1. The outer loop counter 374 determines the current executed encoding
command by accessing stored encoder description information module 372. Stored encoder
description information module 372 outputs the command, in the form of various signals
generated according to the command, to be applied at the location determined by the outer loop
counter 374. A command carries an operator op, a reordering number r, and a memory location
a. Operation op specifies the read/write signal 350 to a memory module 302, the memory
location a determines the memory address control signal 352 coupled to the memory module
302, and reordering number r is separated into two parts (r;, r;) that each specifies the reordering

element in the group ¥, and ¥, respectively. Signal 1; 354 is supplied to code lifting based

block selection module 310 for used in generating a block address select signal 358 used to

17

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

control which block of memory in memory module 302 is accessed while signal r, 373 is
supplied to the permuter 304 to control the permuting of the N elements of a block read from

memory 302.

To receive the signal r1 354, code lifting based block selection module 310 has a first
selection module control signal 354 coupled to part r; of the reordering number r in the
command from the said control module 312. Driven by the second selection control signal 356
generated by inner loop counter 370 of the control module 312, and controlled by the control
signal r; 354, the code lifting based block selection module 310 outputs block address selection

signal 358 which assumes values from 1 to K, and block selection control signal 360 which

assumes values ¥, (1), ¥, (2), ..., ¥, (K).

The memory module 302 has an input for receiving the read/write signal 350 coupled to
the operator op output of the stored encoder description information and another input for
receiving the memory address control signal 352 which corresponds to the memory location a
carried by the microcode instruction stored in module 372 that is being executed at a particular

point in time.

The memory module 302 includes memory 314 arranged into K x (N x L) 1-bit storage
locations 318, 320, 322 and K x (N x 1) 1-bit storage locations 319, 321, 323. For convenience,
we identify the storage locations with K blocks of (N x L) 1-bit locations as block 1, ..., K used
for codeword storage, and we identify the storage locations with K blocks of (N x 1) 1-bit
locations as block 1, ..., K used for temporary storage of values. The memory 314 is accessed at
a location that is a function of the memory address control signal a 352 and block address select
signal k 358. Memory address logic module 316 implements such a function. Given (a, k), the
memory module 302 either reads or writes the N-bit vector on location a in the kth block
depending on whether the read/write signal 350 indicates that a read or a write operation should

be performed.

A read-out of memory module 302 outputs an N-bit vector 340 read from memory 314.
This N bit vector is fed into the N element controllable permuter module 304. Module 304
implements the reordering in group W, ; its reordering control signal is coupled to the r; signal

output of the stored encoder description information module 372. The reordering number r,

18

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

from which the r; signal is derived, used at a particular point in time is obtained from the
microcode command from the information module 372 which is being executed at the particular

point in time.

A reordered N-bit vector output of the permuter module 304 is coupled to the first N-bit
vector input 342 of an N element vector accumulator module 306. The second N-bit vector input
346 of the accumulator module 306 is fed from the controllable storage device module 308
which includes K N bit registers 332, 334, 336. The vector accumulator module 306 generates
an N-bit vector output as the XOR sum of the two N-bit vector inputs. In various embodiments,
the vector accumulator module 306 is implemented using N XOR circuits arranged in parallel
with each XOR circuit being coupled to a different summer for summing the result of the XOR
operation to the most recently generated XOR result produced by the particular one of the N
XOR circuits. The N bit wide output of the Accumulator module is coupled to the input 344 of

the controllable storage device module 308.

The controllable storage device module 308 includes K registers, each register storing N-
bits. A block select control signal 360, coupled to the code lifting based block selection module
310, determines which one of the K registers is to be accessed at a particular point in time. A
read/write control signal 350, coupled to the operator op carried in the command from the
control module 312, determines the accessing mode, e.g., a read or a write accessing mode.
Assume the block selection control signal 360 says j. If the control signal is a read, then the N-
bit output vector from the controllable storage device 308 takes the value of the jth register, and
the accumulated value from the N element vector accumulator module 306 is written into the jth
register. In other words, the reordered value from the N element controllable permuter 304 is
accumulated into the jth register indicated by the block select control signal 360. If the
read/write control signal 350 is a write, the output vector again assumes the value of the jth

register, and we then reset the jth register to zero.

In summary, given the microcode for a lifted graph with lifting factor Z= K x N, various
embodiments of the present invention are directed to an encoder that performs N-bit vector
operations. Each N bit vector operation involves the execution of a command in a microcode

that is descriptive of the code structure to be used for encoding. To implement encoding of a

19

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

codeword including Z bits each N bit command is implemented in K steps in a sequence

controlled by part of the stored microcode command information and one or more counters.

In various embodiments of the present invention, the proposed encoder can generate
different codes that share the same rate as the projected graph, but have different codéword
lengths. That is accomplished by using SK, a selected lifting factor control value which is a
divisor of K instead of K itself, as the number of steps executed for each command. More
specifically, the group ‘¥, in the product lifting may be still a direct-product of two groups
¥, =¥, x¥,; and SK is the dimension of matrix ¥, and J is the dimension of ¥, , thus K =
J x SK. As a special case, ¥, might be a group of single element 1 and ¥,, is ¥,, so SK=K
and J=1. In any event, in the lifted graph, if we ignore the ¥,, component inside the lifting
group, then we have a lifted graph with a lifting factor Z/J = SK x N. A different way to see this
is we take the original graph and project it onto the lifting group ¥, ,, thus in the parity check
matrix, every nonzero entry that indicates a Z x Z permutation matrix is now projected to a
Z/JxZ/J permutation matrix. As such, the same sequence of encoding process as matrix
multiplication in the larger graph still holds for the projected graph, even for the matrix

inversion ¢~ by the first principal of group theory.

Thus, the microcode describing the larger graph with 1ifti»ng factor Z is also a microcode
describing the projected graph with lifting factor Z/J = SK x N. By the same line of reasoning as
presented above in regard to the case for Z, we can use the same encoder with N-bit vector
operation to encode a code with lifting factor SK x N by executing each command within the
microcode in SK steps in a sequence controlled by part of the command information stored in

stored encoder description information module 372.

Other codes of different block lengths sharing the same microcode exist if ¥, can still be
written as a direct-product of two other groups ¥, = ¥,,'x¥,,' which is the case in various
implementations of the present invention. The same encoder, in accordance with the present
invention, with parallelism N can encode such a code with a lifting factor Z/J’, where J’ is the
dimension of ¥,,' by specifying corresponding SK. Further additional structure in ¥, may lead

to more codes of different block lengths encodable on the same encoder hardware. Therefore, by

20

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

controlling SK according to the group structure, the encoder can generate a class of LDPC codes

with different block lengths.

In Figure 300, the selected code lifting factor, which can serve as a codeword length
selection signal since it will control the length of generated codewords, can be specified through
the code lifting factor control signal 348. The signal 348 is supplied to the inner loop counter

370 and determines the maximum count of the inner loop counter 370.

The flexibility of the encoder of the present invention and the ease with which it can be
implemented through the use of control code will be apparent in view of the following control
code example. The following code may serve as code description information which is stored in
stored in the stored encoder description information module 372 and executed, e.g., a line at a .

time, to implement an encoding operation.

Table 1, which follows, comprises the combination of Tables 1A and 1B lists the
instructions of an exemplary control code, e.g., microcode, corresponding to a code structure
having a maximum lifting factor Z=64. In the example, the code was designed for the case
where N=16, K=4 and L=10. Z=KxN and thus Z=64=4x16. The maximum supported
codeword length will be KxNxL which is 640 in this example. The projected graph described by
the code has 4 check nodes and 10 variable nodes. When lifted by the maximum lifting factor Z
this will result in a code structure having 256 (64x4) check nodes and 640 (64x10) variable
nodes. The hardware is designed for operating at a level of parallelism N where N=16. The
lifting factor control signal SK, used to specify the codeword length, in this embodiment can be
any divisor of K, where K as noted above is 4(K=Z/N=64/16), i.e., the maximum supported
lifting factor control value. Thus, by selecting different lifting factor control signals to control
the number of repetitions of the microcode of Table 1, it is possible to encode codewords
corresponding to 3 different lengths, e.g. when SK=1 the codeword length will equal (1x16x10)
160 bits, when SK=2 the codeword length will equal (2x16x10) 320 bits, and when SK=K=4 the
codeword length will equal (4x16x10)=640 bits. In the microcode, shown in Table 1, in the op
column 1 is used to indicate a read while a 0 is used to indicate a write instruction. The control
values r1 and r2 are stored in the value r. rl is determined from the value r as the integer divisor
of r when divided by N. That is, r1=r div N. r2 is determined from the value r by taking the

modulus of r/N. In this example N=16. Consider for example the first instruction 1 43 4. This

21

WO 2006/014742 PCT/US2005/025752

instruction would be interpreted as a read (op=1) instruction, rl= (r div N) = (43 div 16) = 2,
while r2= (r mod N) = (43 mod 16) = 11. The control value a is provided directly from the table
and is, in the case of the first instruction =4. When the control value a is within the range 0..L-
1., e.g. 0..9 for the exemplary microcode, memory accessed is used for codeword storage, €.g.

5 one of the K blocks 318, 320, 322 is accessed. When the control value a is outside the range
0.L-1, e.g., 10 for the exemplary microcode, memory accessed is used for temporary storage of

values, e.g., one of the K blocks 319, 321, 323 is accessed.

(Start)

I

IS

43
5
6

44

36
0
10

30

47
9
17
0

25

32

58

45
16
0

42
17

62
6

38
0
17
19

21

29

31

10 Table 1A

el Dl el el e =1 el e e L e =) Bl) B el D =0 i e e el il K el el e e
N N S S IS I RE I R = DY R = B RS R SN S R IS B S B T RS

22

10

WO 2006/014742 PCT/US2005/025752

(Continued)

op r a
1 49 10
1 50 10
1 51 10
1 52 10
1 53 10
1 54 10
1 55 10
1 56 10
1 58 10
1 63 10
0 0 3
1 43 4
1 5 5
1 6 7
1 44 8
1 36 3
0 0 2
1 10 4
1 30 5
1 47 6
1 9 7
1 17 3
0 0 1
1 25 5
1 32 6
1 58 8
1 45 9
1 16 2
0 0 0

Table 1B

The methods and apparatus of the present invention can be used to implemented a wide
variety of devices including, for example, wireless terminals, base stations, data storage devices
and other types of devices where encoding and/or decoding of data to prevent and/or correct

errors might be useful.

Figure 4 is a drawing of an exemplary wireless terminal (WT) 1000, e.g., mobile node,
implemented in accordance with LDPC encoder/decoder apparatus that use methods of the
present invention. Exemplary WT 1000 includes a receiver 1002, a receiver antenna 1004, a

programmable LDPC decoder 1006, a transmitter 1008, a transmitter antenna 1010, a

23

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

programmable LDPC encoder 1012, a processor 1014, user I/O devices 1015 and a memory
1016. The programmable LDPC decoder 1006, programmable LDPC encoder 1012 (which can
be implemented using the encoder 300 of Fig. 3), processor 1014, user /O devices 1015 and
memory 1016 are coupled together via a bus 1018 over which the various elements may

interchange data and information.

The receiver 1002 is coupled to the receiver antenna 1004 through which the WT 1000
may receive signals from other devices, e.g., encoded downlink signals from a base station. The
receiver 1002 is also coupled to the programmable LDPC decoder 1006 which may decode
received downlink signals in accordance with the invention. Received signals may include, e.g.,
in addition to LDPC coded data, signals, e.g., control information, used to indicate LDPC code
structure used to encode data which is being received and/or the codeword length of codewords
included in received data. The received data may include codewords corresponding to different
applications. In accordance with the invention, the decoder may switch from decoding data
corresponding to a first code structure and codeword length to decoding data corresponding to a
second code structure and a second codeword length. The first and second codeword structures
may be different with the decoder being loaded with the appropriate code structure information,
e.g., control code in the form of microcode, in response to information included in the received
information. The control information is normally not encoded using LDPC codes to facilitate
rapid detection and interpretation of the control information. The first and second codeword
lengths can also be different. In some cases, the first and second code structures are the same
but the codeword lengths of data corresponding to different applications may be different. In
such case the code structure information need not be updated to decode the codewords of
different sizes and merely the codeword length information, e.g., lifting factor information need
be supplied to the decoder as the codeword length of the received data changes. The codeword
length information maybe specified as a code lifting factor for the code structure being used. As
will be discussed below, code structure information, e.g., control code, can be used to control the
programmable LDPC decoder while codeword length information can be used to set the
codeword length for decoding purposes. Such information can be conveyed to the decoder 1006

from memory 1016 via bus 1018.

The transmitter 1008 is coupled to the transmitter antenna 1010 through which the WT

1000 may transmit uplink signals including encoded uplink signals to base stations. The

24

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

transmitter 1008 is coupled to the programmable LDPC encoder 1012 which encodes various
uplink signals, e.g., data signals corresponding to different applications, prior to transmission.
The encoder can be loaded with different sets of code description information, e.g., different sets
of control codes such as microcode, corresponding to different code structures. In addition the
encoder 1012 can be supplied with codeword length information, e.g., in the form of code lifting
factor information, used to control the length of codewords generated by the encoder 1012.
Information selecting the codeword structure and/or codeword length may be obtained from
received information, e.g., the encoder may encode data generated by an application using the
same codeword structure and codeword length as was used to decode received data intended for
the particular application generating data. Thus, the encoder may be programmed to match the
encoding structure and codeword length being used by another device with which the wireless
terminal is interacting. Alternatively, a user of the device may specify use of a particular
codeword structure and/or codeword length or such information may be specified by a

communications routine or other program stored in the wireless terminal.

Code structure information and/or codeword length information can be conveyed from
memory 1016 to the programmable LDPC encoder 1012 over bus 1018. User /O devices 1015,
e.g., keypads, speakers, microphones, displays, etc. provide interfaces for the user to input data
and information, e.g., data and information to be encoded and communicated to another WT and
for the user to output and/or display received data/information, e.g., received data and
information from a peer node which has been decoded. User /O devices 1015 provide an
interface allowing a user to select and/or specify the code associated with a set of data, code
length indicator, and/or sets of code description information to be used by the programmable

LDPC decoder 1006 and/or programmable LDPC encoder 1012.

The processor 1014, e.g., a CPU, executes the routines and uses the data/information in
memory 1016 to control the operation of the wireless terminal 1000 and implement the methods

of the present invention.

Memory 1016 includes a group 1025 of encoder code description information sets 1026,
1028 and a group 1029 of decoder code description information sets 1030, 1032. Each encoder
code description information set 1026, 1028 includes control codes, e.g., microcode, which

reflects the code structure of the code to be used for encoding data. Each set of information

25

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

1026, 1028 corresponds to a different code structure. The encoder code description information
can be loaded into the encoder control module of the programmable LDPC encoder 1012 and
used, e.g., as stored encoder description information, to control encoding of data. Similarly,
each of the decoder code description information sets 1030, 1032 includes control codes, e.g.,
microcode, which reflects the code structure of the code to be used for decoding data. Each set
of decoder code description information 1030, 1032 corresponds to a different code structure.
The decoder code description information can be loaded into the control module of the
programmable LDPC decoder 1006 and used, e.g., as stored decoder description information, to

control decoding of data.

Memory 1016 includes communications routines 1020, encoder code and codeword
length selection routine 1022, and decoder code and codeword length selection routine 1024.
Communications routines 1020 may control general communications and interactions with other
wireless devices. The communications routine being implemented for given application may
specify the code structure and/or codeword length to be used for a particular communications
application when encoding and/or decoding data using LDPC codes. Encoder code and
codeword selection routine 1022 is responsible for selecting the code structure and thus
corresponding encoder code description information 1026, 1028 to be used for a particular
application. This selection may be made based on information received from a communications
routine 1020, information received via receiver 1002 or from user input. The encoder code and
codeword length selection routine 1022 is responsible for loading the programmable LDPC
encoder 1012 with the selected code description information and for supplying information, e.g.,
a selected code lifting factor, to the programmable encoder 1012 if it has not already been
configured to perform encoding in accordance with the selected code and codeword length. The
decoder code and codeword length selection routine 1024 is responsible for loading the
programmable LDPC decoder 1006 with the selected code description information and for
supplying information, e.g., a selected code lifting factor, to the programmable decoder 1006 if
it has not already been configured to perform decoding in accordance with the selected code and

codeword length.
In addition to the above discussed routines and information relating to encoding and

decoding, the memory 1016 may be used to store received decoder information 1038, e.g.,

received information used by the decoder code and codeword length selection routine 1024

26

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

_ which indicates a code structure and codeword length to be used for decoding. In addition

received encoder information 1044, e.g., received information used by the encoder code and
codeword length selection routine 1022 which indicates a code structure and codeword length to
be used for encoding may be stored in memory 1016. User input information 1036 relating to
decoding and user input information relating to encoding 1042 can also be stored in memory
1016. Such information may be the same as or similar to decoder information 1038 and encoder
information 1044 but is obtained from a user via a user I/O device 1015 rather than via receiver

1002.

For a detailed discussion of an exemplary programmable LDPC decoder which can, and
in some embodiments is used, as the programmable LDPC decoder 1006, see U.S. Patent
Application S.N. 10/895,645, titled "LDPC DECODING METHODS AND APPARATUS",
having a July 21, 2005 filing date, which names as inventors Tom Richardson, Hui Jin and
Vladimir Novichkov, and which is hereby expressly incorporated by reference. Also expressly
incorporated by reference for purposes of providing background information is U.S. Patent No.

6,633,856.

Using the above discussed routines and stored encoder/decoder information, the wireless
terminal can, and does, switch between using different code structures and codeword lengths for
both encoding and decoding purposes as a function of received information, e.g., user
information or information received via receiver 1002. Encoder/decoder changes may also be
triggered by the particular communications routine 1020 executed at a particular point in time.
Accordingly, the present invention allows for a great deal of flexibility in encoding and
decoding of LDPC codes with a single set of hardware which can be easily modified through the
use of code updates corresponding to different code structures and/or changes in a codeword

length control parameter.

Various concepts relating to LDPC code structures upon which the present invention
builds are described and discussed in U.S. Patent Application S.N. 10/618,325 titled
"METHODS AND APPARATUS FOR ENCODING LDPC CODES", filed July 11, 2003, and
which is hereby expressly incorporated by reference. A better appreciation for the techniques
and benefits of the methods and apparatus of the present invention can be obtained when viewed

in the light of the discussion found in the incorporated patent application.

27

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

Figure 5, comprising the combination of Figure 5A and Figure 5B, is a flowchart 1100 of
an exemplary method of operating an exemplary communications device implemented in
accordance with the present invention, e.g., WT 1000, to perform encoding and decoding in
accordance with the present invention. Operation starts in step 1102, in which the WT 1000 is
powered on and initialized. Operation proceeds from step 1102 to steps 1104, 1106, and steps
1108.

In step 1104, the WT 1000 is operated to receive encoding/decoding information and/or
generate control information from received data. The encoding/decoding information, e.g.,
control information for the programmable LDPC encoder 1012 and/or programmable LDPC
decoder, may be received via a received signal processed through receiver 1002 and/or as user
input received via user /O devices 1015. In addition, received encoded data may be processed
to generate control information. For example, multiple attempts at decoding can be performed
using different code structure information and/or different codeword lengths. Upon successful
decoding control information is generated in some embodiments indicating the code structure
and/or codeword length which is to be used to decode incoming data and, in some embodiments
encode outgoing data as well. Operation proceeds from step 1104 via connecting node A 1110 to
step 1112. In step 1112, the WT 1000 is operated to determine the type of received
encoding/decoding control information. Based upon the determination of step 1112, operation

proceeds to step 1114, 1116, 1118, or 1120.

If it is determined in step 1112, that the type of control information is encoder code
structure information, then operation proceeds to step 1114. In step 1114, the WT 1000 is
operated to load the encoder 1012 with a set of code description information, e.g., control code
corresponding to the code structure information indicated by the control information. Operation

proceeds from step 1114 to connecting node B 1122.

If it is determined in step 1112, that the type of information is encoder codeword length
information, then operation proceeds to step 1116. In step 1116, the WT 1000 is operated to
supply the encoder 1012 with codeword length indicator, e.g., selected lifting factor,
corresponding to the codeword length indicated by the control information. Operation proceeds

from step 1116 to connecting node B 1122.

28

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

If it is determined in step 11 12, that the type of control information is decoder code
structure information, then operation proceeds to step 1118. In step 1118, the WT 1000 is
operated to load the decoder 1006 with a set of code description information, e.g., control code
corresponding to the code structure indicated by the control information. Operation proceeds

from step 1118 to connecting node B 1122.

If it is determined in step 1112, that the type of information is decoder codeword length
information, then operation proceeds to step 1120. In step 1120, the WT 1000 is operated to
supply the decoder 1006 with codeword length indicator, e.g., selected lifting factor,
corresponding to indicate codeword length. Operation proceeds from step 1120 to connecting

node B 1122.

From connecting node B 1122 operation returns to step 1104, where WT 1104 waits to
receive other encoding/decoding information, e.g., information to complete the configuration of
the programmable decoder 1006 and/or programmable encoder 1012, and/or information to
change selected settings, e.g., codeword length settings, of the decoder 1006 and/or encoder

1012.

In step 1106, the WT 1000 including a previously configured programmable decoder
1006 is operated to receive through receiver 1002 data to be decoded, e.g., encoded user data
from a peer node of WT 1000. The received data is forwarded to the decoder 1006. Operation
proceeds from step 1106 to step 1124. In step 1124, the decoder 1006 is operated to decode data
according to stored code description information in decoder 1006 and codeword length indicator
information that has been supplied to the decoder. Operation proceeds from step 1124 to step

1106, where additional data to be decoded is received.

In step 1108, the WT 1000 including a previously configured programmable encoder
1012 is operated to receive through user I/O devices 1015 data to be encoded, e.g., input data
from the user of WT 1000 intended to be encoded and communicated to a peer node of WT
1000. The received data is forwarded to the encoder 1012. Operation proceeds from step 1108 to
step 1126. In step 1126, the encoder 1012 is operated to encode data according to stored code

description information and codeword length indicator information supplied to the encoder.

29

10

15

20

25

30

WO 2006/014742 PCT/US2005/025752

Operation proceeds from step 1126 to step 1108, where additional data to be encoded is

received.

Over time, as the control information corresponding to the codeword length information,
e.g., selected lifting factor, loaded into the encoder 1012 and decoder 1006 changes, the
codeword length will change. Thus, the codeword length can, and in various implementations
will, change as the wireless terminal switches from receiving data corresponding to a first device
and/or application to processing data corresponding to second device and/or application. In
addition, the code structure information used by the encoder 1012 and/or decoder 1006 can be
changed over time as the wireless terminal interacts with a different device and/or implements a
different application. Thus, at a first point in time the encoder and decoder may process
codewords corresponding to a first length and/or code structure and at another time processes
codewords corresponding to a second length and/or code structure. At still other points in time
the programmable LDPC encoders 1012 and decoders 1006 of the present invention may use
other code structures and/or codeword lengths. The various supported codeword lengths will
normally be up to a maximum size determined by the amount of memory available and/or

number and size of available registers in the encoder 1012 and decoder 1006.

The following patent applications and patent provide information on encoding and/or
decoding LDPC codes and are hereby expressly incorporated by reference. U.S. Patent
Application S.N. 10/788,115 filed February 26, 2004; U.S. Patent Application S.N. 10/117,264
filed April 4, 2002; U.S. Patent Application S.N. 10/618,325 and U. S. Patent 6,633,856.

Numerous variations on the method and apparatus of the present invention are possible.
Thus, the modules used to implement the present invention may be implemented as software,
hardware, or as a combination of software and hardware. For example, various features of the
present invention may be implemented in hardware and/or software. For example, some aspects
of the invention may be implemented as processor executed program instructions. Alternatively,
or in addition, some aspects of the present invention may be implemented as integrated circuits,
such as ASICs for example. The apparatus of the present invention are directed to software,
hardware and/or a combination of software and hardware. Machine readable medium including

instructions used to control a machine to implement one or more method steps in accordance

30

WO 2006/014742 PCT/US2005/025752

with the invention are contemplated and to be considered within the scope of some embodiments

of the invention.

The present invention is directed to, among other things, software which can be used to
control a processor to perform encoding and/or decoding in accordance with the present
invention. The methods and apparatus of the present invention may be used with OFDM
communications systems as well as with other types of communications systems including

CDMA systems.

31

O 0 NN N B W e

L e S T e
N AN AW N = O

AW N =

wn W N

WO 2006/014742 PCT/US2005/025752

WHAT IS CLAIMED IS:

1. A Low Density Parity Check (LDPC) encoder comprising:

a memory module including at least N x L x K storage locations, where N and L are
positive integers and K is an integer >1;

a controllable permuter for performing element re-ordering operations on at least N
elements coupled to said memory module;

a vector accumulator module including N accumulators arranged in parallel, said vector
accumulator module including:

i) a first input at least N bits wide corresponding to an output of said controllable
permuter,

ii) a second input at least N bits wide, and

iii) a vector accumulator output at least N bits wide;

a controllable storage device including N x K storage locations, said controllable storage
device including a block select control signal input for receiving a signal indicating a block of at
least N storage locations to be accessed and a storage device output at least N bits wide for
outputting values read from said storage devices; and

a block selection module coupled to said controllable storage device for supplying a

block selection control signal to said controllable storage device.

2. The encoder of claim 1, the encoder further comprising:
a control module for generating a first selection module control signal as a function of
the encoding operation to be performed, said first selection module control signal being supplied

as a first control signal input to said block selection module.

3. The encoder of claim 2,

wherein said block selection module generates said block selection control signal as a
function of a code lifting factor; and
wherein said control module further generates a re-ordering control signal supplied to a

reordering control input of said permuter module.

4. The encoder of claim 2, further comprising:

32

SN =

[

WO 2006/014742 PCT/US2005/025752

a bus, at least N bits wide, for coupling said memory module to said controllable

permuter.

5. The encoder of claim 3, wherein said block selection module further includes a block

address select output coupled to a corresponding input of said memory module.

6. The encoder of claim 3, wherein said block selection module further includes a second

selection module control input for receiving a signal indicating a code lifting factor to be used.

7. The encoder of claim 6, wherein said control module further generates a memory address

control signal which is supplied to said memory module.

8. The encoder of claim 7, wherein said memory module includes addressing logic for
generating a memory access signal from said memory address control signal and said block

address select signal.

9, The encoder of claim 8,
wherein said controllable storage device further includes a read/write control input; and
wherein the control module further comprises a read/write control signal output coupled

to the read/write control input of said controllable storage device.

10. The encoder of claim 1, wherein the storage device output of said controllable storage
device is coupled to said second input of said vector accumulator module and an input of said

memory module.

11. The encoder of claim 9, wherein said read/write control signal output is further coupled

to a corresponding input of said memory module.
12. The encoder of claim 7, wherein the memory address control signal is an integer value

greater than 0 and less than L+1 and cycles through each represented integer value 1 through L

during an encoding operation, where L is a positive integer.

33

O 00 ~J &N W H W N e B O T O W A WN

_— =
No= O

WO 2006/014742 PCT/US2005/025752

13. The encoder of claim 6, wherein the code lifting factor to be used is a user selected

control value SK which is a factor of K.

14. The encoder of claim 13, wherein when the code lifting factor SK is less than K, N x L x

(K-SK)(storage locations in said memory module are left unused during the encoding.

15. The encoder of claim 13, wherein when the code lifting factor SK is less than K, a
portion of said N x K storage locations in said controllable storage device are left unused during

the encoding.

16. The encoder of claim 1,

wherein each of the N x L x K storage locations in said memory module is a one bit
storage location; and

wherein each of the N x K storage locations in said controllable storage device is a one

bit storage location.

17. The encoder of claim 1, wherein said control module includes a set of microcode
instructions which are descriptive of the code structure to be used for encoding data, each
microcode instruction corresponding to a code structure being executed K times to encode a

codeword having a total length of K x N x L bits.

18. A method of performing Low Density Parity Check (LDPC) encoding processing
comprising:
providing an encoder including:
a memory module including N x L x K storage locations, where N and L are
positive integers and K is an integer >1;
a controllable permuter for performing element re-ordering operations on at least
N elements coupled to said memory module;
a vector accumulator module including N accumulators arranged in parallel, said
vector accumulator module including:
i) a first input at least N bits wide corresponding to an output of said
controllable permuter,

ii) a second input at least N bits wide, and

34

13
14
15
16
17
18
19
20
21
22
23
24
25
26

— wv AW

wn A W N

WO 2006/014742 PCT/US2005/025752

iii) a vector accumulator output at least N bits wide;

a controllable storage device including N x K storage locations, said controllable storage
device including a block select control signal input for receiving a signal indicating a block of at
least N storage locations to be accessed and a storage device output at least N bits wide for
outputting values read from said storage devices;

a code lifting based block selection module coupled to said controllable storage device
for supplying a block selection control signal to said controllable storage device;

generating a first selection module control signal as a function of a stored code
description and a clock signal used to control the timing of encoding operations;

supplying said first selection module control signal to said code lifting based block select
module; and

operating the code lifting based block selection module to select a block of memory
locations to be accessed in said controllable storage device as a function for said first selection

module control signal.

19. The method of claim 18, further comprising:
generating a re-ordering control signal;
supplying the reordering control signal to said permuter module; and
operating the permuter module to perform a message reordering operation in accordance

with said supplied reordering control signal.

20. The method of claim 19, further comprising:

operating said code lifting based block selection module to generate a block address
select signal as a function stored code description information; and

supplying said block address select signal to said memory module for use in determining

a set of memory locations to be accessed.
21. The method of claim 19, further comprising:
operating said code lifting based block selection module to receive a signal indicating a

code lifting factor to be used.

22. The method of claim 21, further comprising:

35

W AW N

BN

WO 2006/014742 PCT/US2005/025752

operating said control module to generate a memory address control signal to be used in
determining the set of memory locations to be accessed; and

supplying said memory address control signal to said memory module.

23. The method of claim 22, wherein said memory module includes an addressing module,
the method further comprising:

operating said addressing module to generate a memory access signal from said memory
address control signal and said block address select signal, the memory access signal control

which particular block of memory locations is accessed at a point in time.

24. The method of claim 23, further comprising:
operating the control module to generate a read/write control signal used to control
whether a controllable storage access operation is to be a read or a write access operation; and

supplying the generated read/write control signal to the controllable storage device.

25. The encoder of claim 22, wherein the memory address control signal is an integer value
greater than 0 and less than L+1, the method further comprising:

cycling through each represented integer value 1 through L while encoding a set of bits.

26. The method of claim 21, wherein the code lifting factor to be used is a user selected

value SK which is a factor of K.

27. The method of claim 26, further comprising:
leavihg some of said N x L x K storage locations in said memory module unused during

encoding when the code lifting factor SK is an integer less than K.

28. The method of claim 27, wherein each of the N x L x K storage locations in said memory
module is a one bit storage location, and wherein leaving some of said NxLxK storage locations

unused includes leaving K-SK storage locations unused.
29. The method of claim 26, further comprising:

leaving some of said N x K storage locations in said controllable storage device are left

unused during the encoding when the code lifting factor SK is less than K.

36

B A W N - wm AW N - EN e N T LY S B WS E- VS I S]

v AW N =

WO 2006/014742 PCT/US2005/025752

30. The method of claim 29, wherein each of the N x K storage locations in said controllable
storage device is a one bit storage location and where leaving some of said NxK storage
locations in said controllable storage device unused during the encoding includes leaving K-SK

storage locations unused.

31. A method of encoding information using a LDPC encoder, the method comprising:
receiving first codeword length information indicative of the length of codewords to be
generated;
supplying said codeword length information to a control input of an LDPC encoder;
operating the LDPC encoder to receive data to be encoded; and
operating the LDPC encoder to generate codewords from received data of the indicated

length of codewords to be generated.

32. The method of claim 31, further comprising:

receiving second codeword length information indicative of the length of additional
codewords to be generated, said length of additional codewords being a second number of bits
which is different form a first number of bits corresponding to said first codeword length

information.

33. The method of claim 32, wherein said first codeword length information is a first

selected code lifting factor signal.

34. The method of claim 31, further comprising:

storing a first set of code structure description information in a module in said encoder;
and

using the stored first set of code description information to perform an LDPC encoding

operation.

35. The method of claim 34, further comprising:

storing a second set of code structure description information in said module in said
encoder, the second set of code structure description information corresponding to a LDPC code
having a different structure than a code structure to which the the first set of code structure

information corresponds.

37

“»n AW N =

WO 2006/014742 PCT/US2005/025752

36. The method of claim 35, further comprising:

encoding data using the first set of code structure information when communicating with
a first device; and

encoding data using the second set of code structure information when communicating

with a second device.

37. The method of claim 36, wherein the first set of code structure information is used at a

different point in time from when the second set of code structure information is used.

38. The method of claim 34, wherein said step of storing a first set of code description
information is in response to receiving a signal indicating that codewords corresponding to said

first set of code description information are to be used.
39. The method of claim 34, wherein said step of storing a first set of code description
information is in response to receiving a signal including codewords encoded according to a

code structure corresponding to said first set of code description information.

40. The method of claim 34, wherein said first set of code description information includes

encoder control instructions.

41. The method of claim 40, wherein each encoder control instruction includes one of a read

and a write operation indicator.

42. The method of claim 41, where each encoder control instruction further includes rotation

control information.

43, The method of claim 41, where each encoder control instruction further includes memory

address information.

44. A method of implementing a programmable LDPC encoder system, the method

comprising the steps of:

38

O 00 0 N W B~ W

10

12

WO 2006/014742 PCT/US2005/025752

storing, during a first period of time, a first set of code structure description information
in a module in an LDPC encoder, said first set of code structure description information
corresponding to a first LDPC code structure;

operating the LDPC encoder to perform an LDPC encoding operation using the stored
first set of code description information;

storing, during a second period of time, a second set of code structure description
information in the module in an LDPC encoder, said second set of code structure description
information corresponding to a second LDPC code structure; and

operating the encoder to perform an LDPC encoding operation using the stored second

set of code description information.

45. The method of claim 44, wherein the first and second sets of stored code structure
description information are used during different periods of time to perform encoding

operations.

46. The method of claim 44, wherein said step of storing the first set of code description
information is in response to receiving a signal indicating that codewords corresponding to said

first set of code description information are to be used.
47. The method of claim 44, wherein said step of storing a first set of code description
information is in response to receiving a signal including codewords encoded according to a

code structure corresponding to said first set of code description information.

48. The method of claim 44, wherein said first set of code description information includes

encoder control instructions.

49, The method of claim 48, wherein each encoder control instruction includes one of a read

and a write operation indicator.

50. The method of claim 49, where each encoder control instruction further includes rotation

control information.

39

WO 2006/014742 PCT/US2005/025752

1 51. The method of claim 50, where each encoder control instruction further includes memory

2 address information.

40

WO 2006/014742 PCT/US2005/025752

" e SN
Vi ’/?M > 100
Vv, C, Y
v3
C
V4 2
V. Cq
Vs
C
V7 4
Vg Cs
V9
V

Figure 1

1/6

PCT/US2005/025752

WO 2006/014742

<
o
mrz

| o

rWX

N
al

7 202

X =

cnm—

1111011000
0011101110
0101010111
1010110101
1100101011

H=

Figure 2

2/6

303

WO 2006/014742 PCT/US2005/025752
300
MEMORY MODULE ., LDPC ENCODER
M oI 321 3
Ne-—»1/ 320 322323
-’J> N$ BLK 1 BLK 2 BLK K ouT
P‘ K X (NxL) 1 BIT MEMORY LOCATIONS (CODEWORD 302
+ STORAGE)
K X (N'x 1) 1 BIT MEMORY LOCATIONS (TEMP STORAGE)
324 A memory
laccesé signal 3;16
MENORY ADDRESS |/ 316 3 N
LOGIC - 308
A
NG 352 Block address U
Memory - select signal (k) 340
address A 304
control signal 358 N ELEMENT 342 N ELEMENT
@ :0 I CONTROLLABLE N’ VECTOR
- PERMUTER |—/——3 ACCUMULATOR
{
write 4 +
Ség:)al Reordering 326
o CODE control signal (r,)} REGISTER
350 LIFTING CONTROLLABLE
. BASED 373 STORAGE DEVICE
BLOCK 360\ block select
SELECTION control signal
MODULE
TR SETTY WD
First]
selection
module second selection
control module control
signal (r,) signal
read/write
signal
371 (op)
STORED ENCODER
DESCRIPTION INFO
MODULE
312 A a5 INNER
outer loop LOOP 370 312
[—
control - COUNTER
S] CONTROL
OUTER i MODULE
inner loop)
LOOP control 348
COUNTER signal 377 |

code lifting factor

control signa
I

I (SK)

Fig.

3

3/6

PCT/US2005/025752

WO 2006/014742

7 34N

O4NI ¥3aQ0ON3

S e EEEN

O4NI ¥30023a

geol 1 @3A30TY

(43009N3)
z07 | O4NI LNdNI ¥3sn

(4300030)
ae0r 1 O4NI LNdNI ¥3sN

N NOILVYWHOANI
NOILd40S3a
3000 ¥30003a
o’
| NOLLYWHOINI 3INILNOY NOILDI T3S
NOILIOS3q
300 1300034 HLONI1 a¥OM3A0D
7 aNY 3009 ¥30093a
080} 7
N NOLLYWHOSNI INILNOY NOILDZT3S y
NOILdI40S3a HLONIT a¥OM3A0D
3000 ¥3000N3 NV 3000 ¥3000Na 810}
o zor
I NOILYIWJOANI
NOLLdINDS3a SINILNOY
3000 ¥3A0ON3 SNOILYDINNWWOD
7/ P
9201 oo
5201~ AHONIN
<<
910}

(300N ITGOW) TYNINYAL SSTTIMIM

S30IA30
O/ d3sn
7
1203
d0SS3004d
4
viol
¥300ON3
3da1 Y3LLIWSNYYL
A71BVWNVHOONA
~ -~
¢lob 8001
0L0)
430023a
odai H3AIZ03Y
J19VNAVEOONd
7 —
9001 200}
y00l

4/6

FIGURE 5

5/6

WO 2006/014742 PCT/US2005/025752
1100 START
«—
1104 1106 y 1108
- -)
ggggg’,ﬁg%%%gg‘gﬁ RECEIVE DATA TO RECEIVE DATA TO
BE DECODED BE ENCODED
INFORMATION AND/OR
GENERATE ENCODING/
DECODING CONTROL
INFORMATION FROM)
RECEIVED DATA y y 1%
OPERATE DECODER OPERATE ENCODER
1110 TO DECODE DATA TO ENCODE DATA
ACCORDING TO ACCORDING TO
STORED CODE STORED CODE
DESCRIPTION DESCRIPTION
" INFORMATION IN INFORMATION IN
DECODER AND ENCODER AND
CODEWORD LENGTH CODEWORD LENGTH
INDICATOR INDICATOR
INFORMATION INFORMATION
SUPPLIED TO SUPPLIED TO
DECODER ENCODER
FIGURE 5A
FIGURE 5A
- FIGURE 5B

WO 2006/014742

1110

PCT/US2005/025752

1112
-

DETERMINE TYPE OF RECEIVED/GENERATED ENCODING/DECODING CONTROL INFORMATION

ENCODER
CODE
STRUCTURE
INFORMATION

% 1114
LOAD ENCODER
WITH SET OF

CODE
DESCRIPTION
INFORMATION,
E.G., CONTROL
CODE
CORRESPONDING
TO CODE
STRUCTURE
INFORMATION
INDICATED BY
CONTROL -

INFROMATION

0 1122

ENCODER DECODER DECODER
CODEWORD CODE CODEWORD
LENGTH STRUCTURE LENGTH
INFORMATION INFORMATION INFORMATION
¢ 1116 v 1 v i1
SUPPLY ENCODER LoAD DO SUPPLY DECODER
WITH CODEWORD . CODE WITH CODEWORD
INDICATOR, E.G,, INFORMATION, INDICATOR, E.G,,
SELECTED EG. CONTROL. SELECTED
LIFTING FACTOR, CODE LIFTING FACTOR,
CORRESPONDING CORRESPONDING CORRESPONDING
TO CODEWORD TO CODE TO CODEWORD
INDICATED BY NFORMATION INDICATED BY
INFORMATION CONTROL INFORMATION
INFORMATION

1122

FIGURE 5B

6/6

e 1122

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

