

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 844 401

(51) Int. CI.:

A61K 31/70 (2006.01) C07H 19/06 (2006.01) C07D 309/12 (2006.01) A61K 31/351 (2006.01) C07D 405/04 (2006.01) C07D 409/04 (2006.01) C07D 409/10 (2006.01) A61P 3/10 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 30.07.2004 E 17173376 (9)
 (97) Fecha y número de publicación de la concesión europea: 16.12.2020 EP 3251679
 - (54) Título: Compuestos novedosos que tienen actividad inhibidora frente a transportador de glucosa dependiente de sodio
 - (30) Prioridad:

01.08.2003 US 491534 P

Fecha de publicación y mención en BOPI de la traducción de la patente: 22.07.2021 (73) Titular/es:

MITSUBISHI TANABE PHARMA CORPORATION (100.0%)
3-2-10, Dosho-machi, Chuo-ku
Osaka-shi, Osaka 541-8505, JP

(72) Inventor/es:

NOMURA, SUMIHIRO; KAWANISHI, EIJI y UETA, KIICHIRO

74 Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Compuestos novedosos que tienen actividad inhibidora frente a transportador de glucosa dependiente de sodio

5 Campo técnico

La presente invención se refiere a un compuesto novedoso que tiene una actividad inhibidora frente a transportador de glucosa dependiente de sodio (SGLT) que está presente en el intestino o el riñón.

10 Técnica anterior

15

20

25

55

Aunque la terapia dietética y la terapia a base de ejercicio son esenciales en el tratamiento de la diabetes mellitus, cuando estas terapias no controlan suficientemente el estado de los pacientes, se usa adicionalmente insulina o un agente antidiabético oral. En la actualidad, se han usado como agentes antidiabéticos, compuestos de biguanida, compuestos de sulfonilurea, agentes que mejoran la resistencia a la insulina e inhibidores de la α-glucosidasa. Sin embargo, estos agentes antidiabéticos tienen diversos efectos secundarios. Por ejemplo, los compuestos de biguanida provocan acidosis láctica, los compuestos de sulfonilurea provocan hipoglucemia significativa, los agentes que mejoran la resistencia a la insulina provocan edema e insuficiencia cardiaca y los inhibidores de la α-glucosidasa provocan distensión abdominal y diarrea. Debido a estas circunstancias, se ha deseado desarrollar fármacos novedosos para el tratamiento de la diabetes mellitus que no tengan tales efectos secundarios.

Recientemente, se ha notificado que la hiperglucemia participa en la aparición y el empeoramiento progresivo de diabetes mellitus, es decir, la teoría de la toxicidad inducida por glucosa. Concretamente, la hiperglucemia crónica conduce a la disminución de la secreción de insulina y, además, a la disminución de la sensibilidad a la insulina y como resultado, aumenta la concentración de glucosa en sangre de modo que la diabetes mellitus se agrava por sí misma [véanse., Diabetologia, vol. 28, pág. 119 (1985); Diabetes Care, vol. 13, pág. 610 (1990), etc.]. Por tanto, al tratarse la hiperglucemia, se interrumpe el ciclo de agravamiento por sí mismo mencionado anteriormente de modo que se hace posible la profilaxis o el tratamiento de la diabetes mellitus.

Como uno de los métodos para tratar la hiperglucemia, se considera excretar una cantidad en exceso de glucosa directamente en la orina de modo que se normaliza la concentración de glucosa en sangre. Por ejemplo, inhibiendo el transportador de glucosa dependiente de sodio que está presente en el túbulo contorneado proximal del riñón, se inhibe la reabsorción de glucosa en el riñón, por lo que se promueve la excreción de glucosa en orina de modo que se disminuye la glucemia. De hecho, está confirmado que mediante la administración subcutánea continua de florizina, que tiene actividad inhibidora de SGLT, a modelos de animales diabéticos, se normaliza la hiperglucemia y la glucemia de los mismos puede mantenerse normal durante mucho tiempo de modo que se mejoran la secreción de insulina y la resistencia a la insulina [véase, Journal of Clinical Investigation, vol. 79, pág. 1510 (1987); ibid., vol. 80, pág. 1037 (1987); ibid., vol. 87, pág. 561 (1991), etc.].

Además, mediante el tratamiento de modelos animales diabéticos con agentes inhibidores de SGLT durante mucho tiempo, se mejoran la respuesta a la secreción de insulina y la sensibilidad a la insulina de los animales sin provocar ningún efecto adverso en el riñón ni desequilibrio en los niveles en sangre de electrolitos y como resultado, se previenen la aparición y el avance de nefropatía diabética y neuropatía diabética [véanse, Journal of Medicinal Chemistry, vol. 42, pág. 5311 (1999); British Journal of Pharmacology, vol. 132, pág. 578 (2001), etc.].

Según lo anterior, puede esperarse que los inhibidores de SGLT mejoren la secreción de insulina y la resistencia a la insulina disminuyendo la glucemia en pacientes diabéticos y previniendo, además, la aparición y el avance de diabetes mellitus y complicaciones diabéticas.

50 El documento WO 01/27128 da a conocer un compuesto de aril-C-glicósido que tiene la siguiente estructura.

$$R^{2a}$$
 R^{1}
 R^{4}
 R^{2a}
 R^{1}
 R^{2a}
 R^{3}

Se da a conocer que este compuesto es útil en la profilaxis o el tratamiento de la diabetes mellitus, etc., como un inhibidor de SGLT.

El documento US 2003/114390 A1 se dirige al uso de C-aril glucósidos en una cantidad inhibitoria de SGLT2 para el tratamiento de diabetes y enfermedades relacionadas.

El documento GB 2 359 554 A desvela C-glucósidos y la preparación de los mismos como agentes antidiabéticos. El documento WO2004/080990 A1, que es la técnica anterior bajo el Art. 54(3) EPC, también desvela C-glucósidos como agentes antidiabéticos.

Descripción de la invención

5

30

45

50

La presente invención se refiere a un compuesto de la siguiente fórmula I, o una sal farmacéuticamente aceptable del mismo, o un profármaco del mismo.

en la que el Anillo A y el Anillo B son uno de los siguientes: (1) el Anillo A es un anillo heterocíclico monocíclico insaturado opcionalmente sustituido y el Anillo B es un anillo heterocíclico monocíclico insaturado opcionalmente sustituido, un anillo heterobicíclico condensado insaturado opcionalmente sustituido o un anillo de benceno opcionalmente sustituido y el Anillo B es un anillo heterocíclico monocíclico insaturado opcionalmente sustituido o un anillo heterobicíclico condensado insaturado opcionalmente sustituido en el que Y está enlazado al anillo heterocíclico del anillo heterobicíclico condensado o (3) el Anillo A es un anillo heterobicíclico condensado insaturado opcionalmente sustituido, en el que el resto de azúcar X-(azúcar) y el resto -Y-(Anillo B) están ambos en el mismo anillo heterocíclico del anillo heterobicíclico condensado, y el Anillo B es un anillo heterocíclico monocíclico insaturado opcionalmente sustituido, un anillo heterobicíclico condensado insaturado opcionalmente sustituido o un anillo de benceno opcionalmente sustituido; X es un átomo de carbono o un átomo de nitrógeno; e Y es -(CH₂)_n- (en el que n es 1 o 2).

El compuesto de fórmula I muestra una actividad inhibidora, frente al transportador de glucosa dependiente de sodio que está presente en el intestino y el riñón de especies de mamíferos y es útil en el tratamiento de la diabetes mellitus o complicaciones diabéticas, tales como retinopatía diabética, neuropatía diabética, nefropatía diabética y cicatrización de heridas retardada.

Mejor modo de llevar a cabo la invención

La invención se define por las reivindicaciones adjuntas 1 - 8. La descripción que sigue está sujeta a esta limitación.

Cualquier divulgación que cae fuera del alcance de dichas reivindicaciones solamente pretende ser para fines ilustrativos así como comparativos.

40 A continuación, se ilustra el presente compuesto (I) en más detalle.

Las definiciones para cada término usadas en la descripción de la presente invención se indican a continuación.

"Átomo de halógeno" o "halo" significa cloro, bromo, flúor y yodo y son preferibles cloro y flúor.

"Grupo alquilo" significa una cadena hidrocarbonada saturada monovalente lineal o ramificada que tiene de 1 a 12 átomos de carbono. Es preferible el grupo alquilo de cadena lineal o de cadena ramificada que tiene de 1 a 6 átomos de carbono y es más preferible el grupo alquilo de cadena lineal o de cadena ramificada que tiene de 1 a 4 átomos de carbono. Ejemplos de los mismos son grupo metilo, grupo etilo, grupo propilo, grupo isopropilo, grupo butilo, grupo butilo, grupo butilo, grupo bexilo, grupo isobexilo, grupo heptilo, grupo 4,4-dimetilpentilo, grupo octilo, grupo 2,2,4-trimetilpentilo, grupo nonilo, grupo decilo y diversos isómeros de cadena ramificada de los mismos. Además, el grupo alquilo puede sustituirse opcional e independientemente con de 1 a 4 sustituyentes, tal como se indica más adelante, si es necesario.

"Grupo alquileno" o el "alquileno" significa una cadena hidrocarbonada saturada divalente lineal o ramificada que tiene
1 a 12 átomos de carbono. El grupo alquileno de cadena lineal o de cadena ramificada que tiene 1 a 6 átomos de
carbono es preferible, y el grupo alquileno de cadena lineal o de cadena ramificada que tiene 1 a 4 átomos de carbono
es más preferible. Ejemplos de los mismos son grupo metileno, grupo etileno, grupo propileno, grupo trimetileno, etc.

ES 2 844 401 T3

Si es necesario, el grupo alquileno puede estar opcionalmente sustituido de la misma manera que el "grupo alquilo" mencionados anteriormente.

Cuando los grupos alquileno como se definen anteriormente se fijan a dos átomos de carbono diferentes del anillo de benceno, forman un carbociclo hibridado de cinco, seis o siete miembros junto con los átomos de carbono a los que están unidos y pueden estar opcionalmente sustituidos con uno o más sustituyentes definidos más adelante.

5

10

15

20

25

30

35

40

45

50

55

60

65

El "grupo alquenilo" significa una cadena hidrocarbonada monovalente lineal o ramificada que tiene 2 a 12 átomos de carbono y que tiene al menos un doble enlace. Preferentemente el grupo alquenilo es un grupo alquenilo de cadena lineal o de cadena ramificada que tiene 1 a 6 átomos de carbono y el grupo alquenilo de cadena lineal o de cadena ramificada que tiene 1 a 4 átomos de carbono es más preferible. Ejemplos de los mismos son grupo vinilo, grupo 2-propenilo, grupo 3-butenilo, grupo 2-butenilo, grupo 4-pentenilo, grupo 3-pentenilo, grupo 2-hexenilo, grupo 3-hexenilo, grupo 3-heptenilo, grupo 4-decenilo, grupo 3-undecenilo, grupo 4-dodecenilo, grupo 4,8,12-tetradecatrienilo, etc. El grupo alquenilo puede sustituirse opcional e independientemente con de 1 a 4 sustituyentes como se menciona a más adelante, si es necesario.

El "grupo alquenileno" significa una cadena hidrocarbonada divalente lineal o ramificada que tiene 2 a 12 átomos de carbono y que tiene al menos un doble enlace. El grupo alquenileno de cadena lineal o de cadena ramificada que tiene 2 a 6 átomos de carbono es preferible y el grupo alquenileno de cadena lineal o de cadena ramificada que tiene 2 a 4 átomos de carbono es más preferible. Ejemplos de los mismos son grupo vinileno, grupo propenileno, grupo butadienileno, etc. Si es necesario el grupo alquileno puede sustituirse opcionalmente con de 1 a 4 sustituyentes como se menciona más adelante, si es necesario.

Cuando los grupos alquenileno como se definen anteriormente se fijan a dos átomos de carbono diferentes del anillo de benceno, forman un carbociclo hibridado de cinco, seis o siete miembros junto con los átomos de carbono a los que están unidos y pueden estar opcionalmente sustituidos con uno o más sustituyentes definidos más adelante.

"Grupo alquinilo" significa una cadena hidrocarbonada monovalente lineal o ramificada que tiene al menos un triple enlace. El grupo alquinilo preferible es un grupo alquinilo de cadena lineal o de cadena ramificada que tiene 1 a 6 átomos de carbono y el grupo alquinilo de cadena lineal o de cadena ramificada que tiene 1 a 4 átomos de carbono es más preferible. Ejemplos de los mismos son grupo 2-propinilo, grupo 3-butinilo, grupo 2-butinilo, grupo 4-pentinilo, grupo 3-pentinilo, grupo 2-hexinilo, grupo 3-hexinilo, grupo 3-hexinilo, grupo 3-noninilo, grupo 4-decinilo, grupo 3-undecinilo, grupo 4-dodecinilo, etc. El grupo alquinilo puede sustituirse opcional e independientemente con de 1 a 4 sustituyentes como se menciona más adelante, si es necesario.

"Grupo cicloalquilo" significa un anillo hidrocarbonado saturado monovalente monocíclico o bicíclico que tiene 3 a 12 átomos de carbono y el grupo hidrocarbonado saturado monocíclico que tiene 3 a 7 átomos es más preferible. Ejemplos de los mismos son un grupo alquilo monocíclico y un grupo alquilo bicíclico tales como grupo ciclopropilo, grupo ciclobutilo, grupo ciclopentilo, grupo ciclohexilo, grupo ciclohexilo, grupo ciclobetilo, grupo ciclooctilo, grupo ciclodecilo, etc. Estos grupos pueden sustituirse opcional e independientemente con de 1 a 4 sustituyentes como se menciona más adelante, si es necesario. El grupo cicloalquilo puede estar opcionalmente condensado con un anillo hidrocarbonado insaturado o un anillo hidrocarbonado insaturado pueden contener opcionalmente un átomo de oxígeno, un átomo de nitrógeno, un átomo de azufre, SO o SO₂ dentro del anillo, si es necesario) y el anillo hidrocarbonado saturado condensado y el anillo hidrocarbonado insaturado pueden sustituirse opcional e independientemente con de 1 a 4 sustituyentes como se menciona más adelante.

"Grupo cicloalquilideno" significa un anillo hidrocarbonado saturado divalente monocíclico o bicíclico que tiene 3 a 12 átomos de carbono y el grupo hidrocarbonado saturado monocíclico que tiene 3 a 6 átomos de carbono es preferible. Ejemplos de los mismos son un grupo alquilideno monocíclico y un grupo alquilideno bicíclico tales como grupo ciclopropilideno, grupo ciclobutilideno, grupo ciclopentilidino, grupo ciclohexilideno, etc. Estos grupos pueden sustituirse opcional e independientemente con de 1 a 4 sustituyentes como se menciona más adelante, si es necesario. Por otro lado, el grupo cicloalquilideno puede estar opcionalmente condensado con un anillo hidrocarbonado saturado o un anillo hidrocarbonado insaturado (dichos anillo hidrocarbonado saturado y anillo hidrocarbonado insaturado pueden contener opcionalmente un átomo de oxígeno, un átomo de nitrógeno, un átomo de azufre, SO o SO₂ dentro del anillo, si es necesario) y el anillo hidrocarbonado saturado condensado y el anillo hidrocarbonado insaturado pueden sustituirse opcional e independientemente con de 1 a 4 sustituyentes como se menciona más adelante.

"Grupo cicloalquenilo" significa un anillo hidrocarbonado insaturado monovalente monocíclico o bicíclico que tiene 4 a 12 átomos de carbono y que tiene al menos un doble enlace. El grupo cicloalquenilo preferible es un grupo hidrocarbonado insaturado monocíclico que tiene 4 a 7 átomos de carbono. Ejemplos de los mismos son grupos alquenilo monocíclicos tales como grupo ciclopentenilo, grupo ciclopentadienilo, grupo ciclohexenilo, etc. Estos grupos pueden sustituirse opcional e independientemente con de 1 a 4 sustituyentes como se menciona más adelante, si es necesario. Por otro lado, el grupo cicloalquenilo puede estar opcionalmente condensado con un anillo hidrocarbonado saturado o un anillo hidrocarbonado insaturado (dichos anillo hidrocarbonado saturado y anillo hidrocarbonado insaturado pueden contener opcionalmente un átomo de oxígeno, un átomo de nitrógeno, un átomo de azufre, SO o SO₂ dentro del anillo, si es necesario) y el anillo hidrocarbonado saturado condensado y el anillo hidrocarbonado

ES 2 844 401 T3

insaturado pueden sustituirse opcional e independientemente con de 1 a 4 sustituyentes como se menciona más adelante.

"Grupo cicloalquinilo" significa un anillo hidrocarbonado insaturado monocíclico o bicíclico que tiene 6 a 12 átomos de carbono y que tiene al menos un triple enlace. El grupo cicloalquinilo preferible es un grupo hidrocarbonado insaturado monocíclico que tiene 6 a 8 átomos de carbono. Ejemplos de los mismos son grupos alquinilo monocíclicos tales como grupo ciclooctinilo, grupo ciclodecinilo. Estos grupos pueden sustituirse opcionalmente con de 1 a 4 sustituyentes como se menciona más adelante, si es necesario. Por otro lado, el grupo cicloalquinilo puede estar opcional e independientemente condensado con un anillo hidrocarbonado saturado o un anillo hidrocarbonado insaturado (dichos anillo hidrocarbonado saturado y anillo hidrocarbonado insaturado pueden contener opcionalmente un átomo de oxígeno, un átomo de nitrógeno, un átomo de azufre, SO o SO₂ dentro del anillo, si es necesario) y el anillo hidrocarbonado saturado condensado y el anillo hidrocarbonado insaturado pueden sustituirse opcional e independientemente con de 1 a 4 sustituyentes como se menciona más adelante.

5

- "Grupo arilo" significa un anillo hidrocarbonado aromático monovalente monocíclico o bicíclico que tiene 6 a 10 átomos de carbono. Ejemplos de los mismos son grupo fenilo, grupo naftilo (incluyendo grupo 1-naftilo y grupo 2-naftilo). Estos grupos pueden sustituirse opcional e independientemente con de 1 a 4 sustituyentes como se menciona más adelante, si es necesario. Por otro lado, el grupo arilo puede estar opcionalmente condensado con un anillo hidrocarbonado saturado o un anillo hidrocarbonado insaturado (dichos anillo hidrocarbonado saturado y anillo hidrocarbonado insaturado pueden contener opcionalmente un átomo de oxígeno, un átomo de nitrógeno, un átomo de azufre, SO o SO₂ dentro del anillo, si es necesario) y el anillo hidrocarbonado saturado condensado y el anillo hidrocarbonado insaturado pueden sustituirse opcional e independientemente con de 1 a 4 sustituyentes como se menciona más adelante.
- "Anillo heterocíclico monocíclico insaturado" significa un anillo hidrocarbonado insaturado que contiene 1-4 heteroátomos seleccionados independientemente de un átomo de nitrógeno, un átomo de oxígeno y un átomo de azufre y el uno preferible es un anillo hidrocarbonado saturado o insaturado de 4 a 7 miembros que contiene 1-4 heteroátomos independientemente seleccionados de un átomo de nitrógeno, un átomo de oxígeno y un átomo de azufre. Ejemplos de los mismos son piridina, pirimidina, pirazina, furano, tiofeno, pirrol, imidazol, pirazol, oxazol, isoxazol, 4,5-dihidrooxazol, tiazol, isotiazol, tiadiazol, tiazol, tetrazol, etc. Entre ellos, pueden usarse preferentemente piridina, pirimidina, pirazina, furano, tiofeno, pirrol, imidazol, oxazol y tiazol. El "anillo heterocíclico monocíclico insaturado" puede sustituirse opcional e independientemente con de 1 a 4 sustituyentes como se menciona más adelante.
- "Anillo heterobicíclico condensado insaturado" significa un anillo hidrocarbonado comprendido por un anillo hidrocarbonado saturado o insaturado condensado con el anillo heterocíclico monocíclico insaturado mencionado anteriormente donde dicho anillo hidrocarbonado saturado y dicho anillo hidrocarbonado insaturado puede contener opcionalmente un átomo de oxígeno, un átomo de nitrógeno, un átomo de azufre, SO o SO₂ dentro del anillo, si es necesario. El "anillo heterobicíclico condensado insaturado" incluye, por ejemplo, benzotiofeno, indol, tetrahidrobenzotiofeno, benzofurano, isoquinolina, tienotiofeno, tienopiridina, quinolina, indolina, isoindolina, benzotiazol, benzoxazol, indazol, dihidroisoquinolina, etc. Además, el "anillo heterocíclico" también incluye posibles No S-óxidos del mismo.
- "Heterociclilo" significa un grupo monovalente del anillo heterocíclico monocíclico insaturado o del anillo heterobicíclico condensado insaturado mencionado anteriormente y un grupo monovalente de la versión saturada del anillo heterocíclico monocíclico insaturado o heterobicíclico condensado insaturado mencionado anteriormente. Si es necesario, el heterociclilo puede sustituirse opcional e independientemente con de 1 a 4 sustituyentes, tal como se menciona más adelante.
- 50 "Grupo alcanoílo" significa un grupo formilo y unos formados uniendo un "grupo alquilo" a un grupo carbonilo.
 - "Grupo alcoxilo" significa los formados mediante la unión de un "grupo alquilo" a un átomo de oxígeno.
- El sustituyente para cada grupo anterior incluye, por ejemplo, un átomo de halógeno (por ejemplo, flúor, cloro, bromo 55 yodo), un grupo nitro, un grupo ciano, un grupo oxo, un grupo hidroxilo, un grupo mercapto, un grupo carboxilo, un grupo sulfo, un grupo alquilo, un grupo alquenilo, un grupo alquinilo, un grupo cicloalquilo, un grupo cicloalquilidenmetilo, un grupo cicloalquenilo, un grupo cicloalquinilo, un grupo arilo, un grupo heterociclilo, un grupo alcoxilo, un grupo alqueniloxilo, un grupo alquiniloxilo, un grupo cicloalquiloxilo, un grupo cicloalqueniloxilo, un grupo cicloalquiniloxilo, un grupo ariloxilo, un grupo heterocicliloxilo, un grupo alcanoílo, un grupo alquenilcarbonilo, un grupo 60 alquinilcarbonilo, un grupo cicloalquilcarbonilo, un grupo cicloalquenilcarbonilo, un grupo cicloalquinilcarbonilo, un grupo arilcarbonilo, un grupo heterociclilcarbonilo, un grupo alcoxicarbonilo, un grupo alqueniloxicarbonilo, un grupo grupo alquiniloxilocarbonilo, un grupo cicloalquiloxicarbonilo, un grupo cicloalqueniloxicarbonilo, cicloalquiniloxilocarbonilo, un grupo ariloxicarbonilo, un grupo heterocicliloxicarbonilo, un grupo alcanoíloxilo, un grupo alquenilcarboniloxilo, alquinilcarboniloxilo, cicloalquilcarboniloxilo, un grupo un grupo grupo un grupo cicloalquinilcarboniloxilo, grupo cicloalquenilcarboniloxilo, 65 un arilcarboniloxilo un grupo heterociclilcarboniloxilo, un grupo alquiltio, un grupo alqueniltio, un grupo alquiniltio, un grupo cicloalquiltio, un grupo

cicloalqueniltio, un grupo cicloalquiniltio, un grupo ariltio, un grupo heterocicliltio, un grupo amino, un grupo mono o dialcanilamino, un grupo mono o dialcanilamino, un grupo mono o diarilcarbonilamino, un grupo alquilsulfinilamino, un grupo alquilsulfinilamino, un grupo arilsulfinilamino, un grupo arilsulfinilamino, un grupo arilsulfinilamino, un grupo arilsulfinilamino, un grupo mono o diarilcarbamoílo, un grupo mono o diarilcarbamoílo, un grupo mono o diarilcarbamoílo, un grupo alquilsulfinilo, un grupo alquinilsulfinilo, un grupo cicloalquinilsulfinilo, un grupo arilsulfinilo, un grupo cicloalquinilsulfinilo, un grupo arilsulfinilo, un grupo heterociclisulfinilo, un grupo alquilsulfonilo, un grupo cicloalquinilsulfonilo, un grupo alquinilsulfonilo, un grupo cicloalquinilsulfonilo, un grupo arilsulfonilo, un grupo cicloalquinilsulfonilo, un grupo arilsulfonilo y un grupo heterociclisulfonilo. Cada grupo, tal como se mencionó anteriormente, puede sustituirse opcionalmente con estos sustituyentes.

10

15

20

25

35

65

5

Además, términos, tales como un grupo haloalquilo, un grupo haloalquilo inferior, un grupo haloalcoxilo, un grupo haloalcoxilo, un grupo haloalcoxilo inferior, un grupo alquilo inferior, un grupo alcoxilo, un grupo alcoxilo inferior, un grupo fenilo o un grupo heterociclilo (a continuación en el presente documento denominado un grupo alquilo, etc.) sustituido con uno o más átomos de halógeno, respectivamente. Los preferibles son un grupo alquilo, etc. sustituido con de 1 a 7 átomos de halógeno y los más preferibles son un grupo alquilo, etc. sustituido con de 1 a 5 átomos de halógeno. De manera similar, términos, tales como un grupo hidroxialquilo, un grupo hidroxialquilo inferior, un grupo hidroxialcoxilo, un grupo hidroxialcoxilo inferior y un grupo alquilo, etc., sustituido con de 1 a 4 grupos hidroxilo y los más preferibles son un grupo alquilo, etc., sustituido con de 1 a 2 grupos hidroxilo. Además, términos, tales como un grupo alcoxialquilo, un grupo alcoxi inferior-alquilo inferior, un grupo alcoxi inferior-alcoxilo, un grupo alcoxifenilo y un grupo alcoxi inferior-fenilo, significan un grupo alquilo, etc., sustituido con uno o más grupos alcoxilo. Los preferibles son un grupo alquilo, etc., sustituido con de 1 a 2 grupos alcoxilo con de 1 a 4 grupos alcoxilo y los más preferibles son un grupo alquilo, etc., sustituido con de 1 a 2 grupos alcoxilo.

Los términos "arilalquilo" y "arilalcoxi" como se usan solos o como parte de otro grupo se refieren a grupos alquilo y alcoxi como se describen anteriormente y que tienen un sustituyente arilo.

30 El término "inferior" usado en las definiciones para las fórmulas en la presente memoria descriptiva significa una cadena carbonada lineal o ramificada que tiene 1 a 6 átomos de carbono, a menos que se defina lo contrario. Más preferentemente, significa una cadena carbonada lineal o ramificada que tiene 1 a 4 átomos de carbono.

El "profármaco" significa un éster o carbonato, que se forma haciendo reaccionar uno o más grupos hidroxi del compuesto de fórmula I con un agente acilante sustituido con un alquilo, un alcoxi o un arilo por un método convencional para producir acetato, pivalato, metilcarbonato, benzoato, etc. Además, el profármaco incluye también un éster o amida, que se forma similarmente haciendo reaccionar uno o más grupos hidroxi del compuesto de fórmula I con un α-aminoácido o un β-aminoácido, etc. usando un agente de condensación mediante un método convencional.

La sal farmacéuticamente aceptable del compuesto de fórmula I incluye, por ejemplo, una sal con un metal alcalino, tal como litio, sodio, potasio, etc.; una sal con un metal alcalinotérreo, tal como calcio, magnesio, etc.; una sal con zinc o aluminio; una sal con una base orgánica, tal como amonio, colina, dietanolamina, lisina, etilendiamina, t-butilamina, t-octilamina, tris(hidroximetil)aminometano, N-metil-glucosamina, trietanolamina y deshidroabietilamina; una sal con un ácido inorgánico, tal como ácido clorhídrico, ácido bromhídrico, ácido yodhídrico, ácido sulfúrico, ácido nítrico, ácido fosfórico, etc.; o una sal con un ácido orgánico, tal como ácido fórmico, ácido acético, ácido propiónico, ácido oxálico, ácido malónico, ácido succínico, ácido fumárico, ácido maleico, ácido láctico, ácido málico, ácido tartárico, ácido cítrico, ácido metanosulfónico, ácido etanosulfónico, ácido bencenosulfónico, etc.; o una sal con un aminoácido ácido, tal como ácido aspártico, ácido glutámico, etc.

El compuesto de la presente invención también incluye una mezcla de estereoisómeros, o cada isómero puro o sustancialmente puro. Por ejemplo, el presente compuesto puede tener opcionalmente uno o más centros asimétricos en un átomo de carbono que contiene uno cualquiera de los sustituyentes. Por tanto, el compuesto de fórmula I puede existir en forma de enantiómero o diastereómero, o una mezcla de los mismos. Cuando el presente compuesto (I) contiene un doble enlace, el presente compuesto puede existir en forma de isomería geométrica (compuesto cis, compuesto trans) y cuando el presente compuesto (I) contiene un enlace insaturado, tal como carbonilo, entonces el presente compuesto puede existir en forma de un tautómero y el presente compuesto también incluye estos isómeros o una mezcla de los mismos. El compuesto de partida puede usarse en forma de una mezcla racémica, enantiómero o diastereómero en el procedimiento para preparar el presente compuesto. Cuando el presente compuesto se obtiene en forma de un diastereómero o enantiómero, éstos pueden separarse mediante un método convencional, tal como cromatografía o cristalización fraccionada.

Además, el presente compuesto (I) incluye una sal intramolecular, hidrato, solvato o polimorfismo del mismo.

El anillo heterocíclico monocíclico insaturado opcionalmente sustituido de la presente invención es un anillo heterocíclico monocíclico insaturado que puede sustituirse opcionalmente con 1-5 sustituyentes seleccionados del grupo que consiste en un átomo de halógeno, un grupo nitro, un grupo ciano, un grupo oxo, un grupo hidroxilo, un

grupo mercapto, un grupo carboxilo, un grupo sulfo, un grupo alquilo, un grupo alquenilo, un grupo alquinilo, un grupo cicloalquilo, un grupo cicloalquilidenmetilo, un grupo cicloalquenilo, un grupo cicloalquinilo, un grupo arilo, un grupo heterociclilo, un grupo alcoxi, un grupo alqueniloxi, un grupo alquiniloxi, un grupo cicloalquiloxi, un grupo cicloalqueniloxi, un grupo cicloalquiniloxi, un grupo ariloxi, un grupo heterocicliloxi, un grupo alcanoílo, un grupo alquenilcarbonilo, un grupo alquinilcarbonilo, un grupo cicloalquilcarbonilo, un grupo cicloalquenilcarbonilo, un grupo cicloalquinilcarbonilo, un grupo arilcarbonilo, un grupo heterociclilcarbonilo, un grupo alcoxicarbonilo, un grupo alqueniloxicarbonilo, un grupo alquiniloxicarbonilo, un grupo cicloalquiloxicarbonilo, un grupo cicloalqueniloxicarbonilo, un grupo cicloalquiniloxicarbonilo, un grupo ariloxicarbonilo, un grupo heterocicliloxicarbonilo, un grupo alcanoiloxi, un alquinilcarboniloxi, un grupo alquenilcarboniloxi, un grupo cicloalquilcarboniloxi, cicloalquenilcarboniloxi, un grupo cicloalquinilcarboniloxi, un grupo arilcarboniloxi, un grupo heterociclilcarboniloxi, un grupo alquilitio, un grupo alquenilitio, un grupo alquinilitio, un grupo cicloalquilitio, un grupo cicloalquenilitio, un grupo cicloalquiniltio, un grupo ariltio, un grupo heterocicliltio, un grupo amino, un grupo mono- o di-alquilamino, un grupo mono- o di-alcanoilamino, un grupo mono- o di-alcoxicarbonilamino, un grupo mono- o di-arilcarbonilamino, un grupo alquilsulfinilamino, un grupo alquilsulfonilamino, un grupo arilsulfinilamino, un grupo arilsulfinilamino, un grupo arilsulfonilamino, un grupo carbamoílo, un grupo mono- o di-alquilcarbamoílo, un grupo mono- o di-arilcarbamoílo, un grupo alquilsulfinilo, un grupo alquenilsulfinilo, un grupo alquinilsulfinilo, un grupo cicloalquilsulfinilo, un grupo cicloalquenilsulfinilo, un grupo cicloalquinilsulfinilo, un grupo arilsulfinilo, un grupo heterociclilsulfinilo, un grupo alquilsulfonilo, un grupo alquenilsulfonilo, un grupo alquinilsulfonilo, un grupo cicloalquilsulfonilo, un grupo cicloalquenilsulfonilo, un grupo cicloalquinilsulfonilo, un grupo arilsulfonilo y un grupo heterociclilsulfonilo en los que cada sustituyente puede estar sustituido además con estos sustituyentes.

5

10

15

20

25

30

35

40

45

50

55

60

65

El anillo heterobicíclico condensado insaturado opcionalmente sustituido de la presente invención es un anillo heterobicíclico condensado insaturado que puede sustituirse opcionalmente con 1-5 sustituyentes seleccionados del grupo que consiste en un átomo de halógeno, un grupo nitro, un grupo ciano, un grupo oxo, un grupo hidroxi, un grupo mercapto, un grupo carboxilo, un grupo sulfo, un grupo alquilo, un grupo alquenilo, un grupo alquinilo, un grupo cicloalquilo, un grupo cicloalquiliden-metilo, un grupo cicloalquenilo, un grupo cicloalquinilo, un grupo arilo, un grupo heterociclilo, un grupo alcoxi, un grupo alqueniloxi, un grupo alquiniloxi, un grupo cicloalquiloxi, un grupo cicloalqueniloxi, un grupo cicloalquiniloxi, un grupo ariloxi, un grupo heterocicliloxi, un grupo alcanoílo, un grupo alquenilcarbonilo, un grupo alquinilcarbonilo, un grupo cicloalquilcarbonilo, un grupo cicloalquenil-carbonilo, un grupo cicloalquinil-carbonilo, un grupo arilcarbonilo, un grupo heterociclilcarbonilo, un grupo alcoxicarbonilo, un grupo alqueniloxicarbonilo, un grupo cicloalquiniloxicarbonilo, un grupo cicloalqueniloxicarbonilo, un grupo cicloalquiniloxicarbonilo, un grupo ariloxicarbonilo, un grupo heterocicliloxicarbonilo, un grupo alcanoiloxi, un grupo alquenilcarboniloxi, un grupo alquinilcarboniloxi, un grupo cicloalquilcarboniloxi, un grupo cicloalquenilcarboniloxi, un grupo cicloalquinilcarboniloxi, un grupo arilcarboniloxi, un grupo heterociclil-carboniloxi, un grupo alquilitio, un grupo alquenilitio, un grupo alquinilitio, un grupo cicloalquilitio, un grupo cicloalquenilitio, un grupo cicloalquiniltio, un grupo ariltio, un grupo heterocicliltio, un grupo amino, un grupo mono- o di-alquilamino, un grupo mono- o di-alcanoil-amino, un grupo mono- o di-alcoxicarbonilamino, un grupo mono- o di-arilcarbonilamino, un grupo alquilsulfinilamino, un grupo alquil-sulfonilamino, un grupo arilsulfinilamino, un grupo arilsulfonilamino, un grupo carbamoílo, un grupo mono- o di-alquilcarbamoílo, un grupo mono- o di-arilcarbamoílo, un grupo alquilsulfinilo, un grupo alquenilsulfinilo, un grupo alquinilsulfinilo, un grupo cicloalquilsulfinilo, un grupo ciclo-alquenilsulfinilo, un grupo cicloalquinilsulfinilo, un grupo arilsulfinilo, un grupo heterociclilsulfinilo, un grupo alquilsulfonilo, un grupo alquenilsulfonilo, un grupo alquinilsulfonilo, un grupo cicloalquilsulfonilo, un grupo ciclo-alquenilsulfonilo, un grupo cicloalquinilsulfonilo, un grupo arilsulfonilo y un grupo heterociclilsulfonilo, en los que cada sustituyente puede estar sustituido además con estos sustituyentes.

opcionalmente con 1-5 sustituyentes seleccionados del grupo que consiste en un átomo de halógeno, un grupo nitro, un grupo ciano, un grupo hidroxi, un grupo mercapto, un grupo carboxilo, un grupo sulfo, un grupo alquilo, un grupo alquenilo, un grupo alquinilo, un grupo cicloalquilo, un grupo cicloalquilidenmetilo, un grupo cicloalquenilo, un grupo cicloalquinilo, un grupo arilo, un grupo heterociclilo, un grupo alcoxi, un grupo alqueniloxi, un grupo alquiniloxi, un grupo cicloalquiloxi, un grupo cicloalqueniloxi, un grupo cicloalquiniloxi, un grupo ariloxi, un grupo heterocicliloxi, un grupo alcanoílo, un grupo alquenilcarbonilo, un grupo alquinilcarbonilo, un grupo cicloalquilcarbonilo, un grupo cicloalquenilcarbonilo, un grupo cicloalquinilcarbonilo, un grupo arilcarbonilo, un grupo heterociclilcarbonilo, un grupo alcoxicarbonilo, un grupo alqueniloxicarbonilo, un grupo alquiniloxicarbonilo, un grupo cicloalquiloxicarbonilo, un grupo cicloalqueniloxicarbonilo, un grupo cicloalquiniloxicarbonilo, un grupo ariloxicarbonilo, un grupo heterocicliloxicarbonilo, un grupo alcanoiloxi, un grupo alquenilcarboniloxi, un grupo alquinilcarboniloxi, un grupo cicloalquilcarboniloxi, un grupo cicloalquenilcarboniloxi, un grupo cicloalquinilcarboniloxi, un grupo arilcarboniloxi, heterociclilcarboniloxi, un grupo alquiltio, un grupo alqueniltio, un grupo alquiniltio, un grupo cicloalquiltio, un grupo cicloalqueniltio, un grupo cicloalquiniltio, un grupo ariltio, un grupo heterocicliltio, un grupo amino, un grupo mono- o di-alquilamino, un grupo mono- o di-alcanoilamino, un grupo mono- o di-alcoxicarbonilamino, un grupo mono- o diarilcarbonilamino, un grupo alquilsulfinilamino, un grupo alquilsulfonilamino, un grupo arilsulfinilamino, un grupo arilsulfonilamino, un grupo carbamoílo, un grupo mono- o di-alquilcarbamoílo, un grupo mono- o di-arilcarbamoílo, un grupo alquilsulfinilo, un grupo alquenilsulfinilo, un grupo alquinilsulfinilo, un grupo cicloalquilsulfinilo, un grupo

El anillo de benceno opcionalmente sustituido de la presente invención es un anillo de benceno que puede sustituirse

cicloalquenilsulfinilo, un grupo cicloalquinilsulfinilo, un grupo arilsulfinilo, un grupo heterociclisulfinilo, un grupo alquilsulfonilo, un grupo cicloalquilsulfonilo, un grupo cicloalquilsulfonilo, un grupo alquinilsulfonilo, un grupo cicloalquilsulfonilo, un grupo

cicloalquenilsulfonilo, un grupo cicloalquinilsulfonilo, un grupo arilsulfonilo y un grupo heterociclilsulfonilo, un grupo

alquileno, un grupo alquilenoxi, un grupo alquilendioxi y un grupo alquenileno en los que cada sustituyente puede estar sustituido además con estos sustituyentes. Además, el anillo de benceno opcionalmente sustituido incluye un anillo de benceno sustituido con un grupo alquileno para formar un carbociclo hibridado junto con los átomos de carbono a los que están unidos y también incluye un anillo de benceno sustituido con un grupo alquenileno para formar un carbociclo hibridado tales como un anillo de benceno condensado con los átomos de carbono a los que están unidos.

El anillo heterocíclico monocíclico insaturado opcionalmente sustituido es preferentemente un anillo heterocíclico monocíclico insaturado que puede sustituirse opcionalmente con 1-3 sustituyentes seleccionados del grupo que consiste en un átomo de halógeno, un grupo hidroxi, un grupo alcoxi, un grupo alquilo, un grupo haloalquilo, un grupo hidroxialquilo, un grupo alcoxialcoxi, un grupo alquenilo, un grupo alquinilo, un grupo alquinilo, un grupo cicloalquilo, un grupo cicloalquilo, un grupo arilo, un grupo cicloalquiloxi, un grupo arilo, un grupo ariloxi, un grupo arilacoxi, un grupo ciano, un grupo nitro, un grupo amino, un grupo mono- o di-alquilamino, un grupo alcanoilamino, un grupo alcanoilo, un grupo alcanoilo, un grupo alquilsulfonilo, un grupo arilamino, un grupo alquilsulfonilo, un grupo alquilsulfonilo, un grupo arilamino, un grupo alquilsulfonilo, un grupo alquilsulfonilo, un grupo arilamino, un grupo alquilsulfonilo, un grupo alquilsulfonilo, un grupo arilamino, un grupo alquilsulfonilo, un grupo alquilsulfonilo, un grupo arilamino, un grupo alquilsulfonilo, un grupo arilamino, un grupo alquilsulfonilo, un grupo arilamino, un grupo alquilsulfonilo, un grupo alquilsulfonilo, un grupo arilamino, un grupo alquilsulfonilo, un grupo alquilsulfonilo, un grupo arilamino, un grupo alquilsulfonilo, un grupo alquilsulfonilo, un grupo arilamino, un grupo alquilsulfonilo, u

El anillo heterobicíclico condensado insaturado opcionalmente sustituido es preferentemente un anillo heterobicíclico condensado insaturado que puede sustituirse opcionalmente con 1-3 sustituyentes seleccionados del grupo que consiste en un átomo de halógeno, un grupo hidroxi, un grupo alcoxi, un grupo alquilo, un grupo haloalquilo, un grupo hidroxialquilo, un grupo alcoxialquilo, un grupo alcoxialquilo, un grupo alquinilo, un grupo alquinilo, un grupo cicloalquilo, un grupo cicloalquilo, un grupo arilo, un grupo arilo, un grupo ariloxi, un grupo arilalcoxi, un grupo ciano, un grupo nitro, un grupo amino, un grupo mono- o di-alquilamino, un grupo alcanoilamino, un grupo alcoxicarbonilo, un grupo alcoxicarbonilo, un grupo alcanoílo, un grupo alquilsulfonilo, un grupo arilamino, un grupo alquilsulfonilo, un grupo alquilsulfonilo, un grupo arilamino, un grupo alquilsulfonilo, un grupo alquilsulfonilo, un grupo oxo.

El anillo de benceno opcionalmente sustituido es preferentemente un anillo de benceno que puede sustituirse opcionalmente con 1-3 sustituyentes seleccionados del grupo que consiste en un átomo de halógeno, un grupo hidroxi, un grupo alcoxi, un grupo alquilo, un grupo haloalquilo, un grupo haloalcoxi, un grupo hidroxialquilo, un grupo alcoxialquilo, un grupo alquenilo, un grupo alquenilo, un grupo alquenilo, un grupo cicloalquilo, un grupo cicloalquilo, un grupo arilo, un grupo ariloxi, un grupo alcanoilamino, un grupo alcoxicarbonilamino, un grupo alcanoilo, un grupo alcoxicarbonilo, un grupo alcanoilo, un grupo alquilcarbamoílo, un grupo alcanoílo, un grupo alquilsulfonilamino, un grupo alquilsulfonilo, un grupo alquilsulfonilo, un grupo alquileno, un grupo alquilenoxi, un grupo alquilendioxi y un grupo alquenileno.

En otra realización preferible, el anillo heterocíclico monocíclico insaturado opcionalmente sustituido es un anillo heterocíclico monocíclico insaturado que puede sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno, un grupo hidroxi, un grupo ciano, un grupo nitro, un grupo alquilo, un grupo alquenilo, un grupo alquinilo, un grupo cicloalquilo, un grupo cicloalquilidenmetilo, un grupo alcoxi, un grupo alcanoílo, un grupo alquiltio, un grupo alquilsulfonilo, un grupo alquilsulfinilo, un grupo amino, un grupo mono- o di-alquilamino, un grupo alcanoilamino, un grupo alcoxicarbonilamino, un grupo sulfamoílo, un grupo mono- o di-alquilsulfamoílo, un grupo carboxilo, un grupo alcoxicarbonilo, un grupo carbamoílo, un grupo mono- o di-alquilcarbamoílo, un grupo alquilsulfonilamino, un grupo fenilo, un grupo fenilsulfonilo, un grupo heterociclilo y un grupo oxo;

el anillo heterobicíclico condensado insaturado opcionalmente sustituido es un anillo heterobicíclico condensado insaturado que puede sustituirse opcionalmente con 1-3 sustituyentes seleccionados del grupo que consiste en un átomo de halógeno, un grupo hidroxi, un grupo ciano, un grupo nitro, un grupo alquilo, un grupo alquenilo, un grupo alquilo, un grupo alquilo, un grupo alquilidenmetilo, un grupo alcoxi, un grupo alquilito, un grupo alquilsulfonilo, un grupo alquilsulfonilo, un grupo amino, un grupo mono- o di-alquil-sulfamoílo, un grupo carboxilo, un grupo alcoxicarbonilo, un grupo carbamoílo, un grupo mono- o di-alquil-sulfamoílo, un grupo alcanoílo, un grupo alquilsulfonilo, un grupo denilo, un grupo fenilo, un grupo fenilo, un grupo fenilo, un grupo fenilsulfonilamino, grupo fenilsulfonilo, un grupo heterociclilo y un grupo oxo; y

el anillo de benceno opcionalmente sustituido es un anillo de benceno que puede sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno, un grupo hidroxi, un grupo ciano, un grupo nitro, un grupo alquilo, un grupo alquinilo, un grupo alquinilo, un grupo cicloalquilo, un grupo alquilo, un grupo alquilitio, un grupo alquilsulfonilo, un grupo alquilsulfonilo, un grupo alquilsulfinilo, un grupo amino, un grupo mono- o di-alquilamino, un grupo alcanoilamino, un grupo alcoxicarbonilamino, un grupo sulfamoílo, un grupo mono- o di-alquilsulfamoílo, un grupo carboxilo, un grupo fenilo, un grupo fenoxi, un grupo fenilsulfonilamino, un grupo fenilo, un grupo fenilo, un grupo fenilo, un grupo fenilo, un grupo alquileno y un grupo alquenileno;

en los que cada uno de los sustituyentes anteriormente mencionados en el anillo heterocíclico monocíclico insaturado, el anillo heterobicíclico condensado insaturado y el anillo de benceno pueden además sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno, un grupo

hidroxi, un grupo ciano, un grupo alquilo, un grupo haloalquilo, un grupo alcoxi, un grupo haloalcoxi, un grupo alcanoílo, un grupo alquiltio, un grupo alquilsulfonilo, un grupo mono- o di-alquilamino, un grupo carboxilo, un grupo alcoxicarbonilo, un grupo fenilo, un grupo alquilenoxi, un grupo alquilendioxi y un grupo oxo.

- Como una realización preferible, se menciona un compuesto en el que el anillo heterocíclico monocíclico insaturado opcionalmente sustituido es un anillo heterocíclico monocíclico insaturado que puede sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno, un grupo ciano, un grupo alquilo, un grupo alcoxi, un grupo alcanoílo, un grupo mono- o di-alquilamino, un grupo alcanoilamino, un grupo alcoxicarbonilamino, un grupo carboxilo, un grupo alcoxicarbonilo, un grupo carbamoílo, un grupo mono- o di-alquilcarbamoílo, un grupo fenilo, un grupo heterociclilo y un grupo oxo;
 - el anillo heterobicíclico condensado insaturado opcionalmente sustituido es un anillo heterobicíclico condensado insaturado que puede sustituirse opcionalmente con 1-3 sustituyentes independientemente seleccionados del grupo que consiste en un átomo de halógeno, un grupo ciano, un grupo alquilo, un grupo alcoxi, un grupo alcanoílo, un grupo mono- o di-alquilamino, un grupo alcanoílamino, un grupo alcoxicarbonilamino, un grupo carboxi, un grupo alcoxicarbonilo, un grupo carbamoílo, un grupo mono- o di-alquilcarbamoílo, un grupo fenilo, un grupo heterociclilo y un grupo oxo: y
 - el anillo de benceno opcionalmente sustituido es un anillo de benceno que puede sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno, un grupo ciano, un grupo alquilo, un grupo alcoxi, un grupo alcanoílo, un grupo mono- o di-alquilamino, un grupo alcanoilamino, un grupo alcoxicarbonilamino, un grupo carboxilo, un grupo alcoxicarbonilo, un grupo carboxilo, un grupo heterociclilo, un grupo alquileno y un grupo alquenileno;
 - en los que cada uno de los sustituyentes anteriormente mencionados en el anillo heterocíclico monocíclico insaturado, el anillo heterobicíclico condensado insaturado y el anillo de benceno pueden además sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno, un grupo ciano, un grupo alquilo, un grupo haloalquilo, un grupo alcoxi, un grupo haloalcoxi, un grupo alcanoílo, un grupo mono-o di-alquilamino, un grupo carboxilo, un grupo hidroxi, un grupo fenilo, un grupo alquilendioxi, un grupo alquilenoxi y un grupo alcoxicarbonilo.

Como otras realizaciones preferibles, se mencionan

15

20

25

30

35

40

45

50

55

60

- (1) un compuesto en el que el Anillo A es un anillo heterocíclico monocíclico insaturado que puede sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno, un grupo hidroxi, un grupo ciano, un grupo nitro, un grupo alquilo, un grupo alquenilo, un grupo alquinilo, un grupo cicloalquilo, un grupo cicloalquilidenmetilo, un grupo alcoxi, un grupo alcanoílo, un grupo alquilsulfinilo, un grupo amino, un grupo mono- o di-alquilamino, un grupo sulfamoílo, un grupo mono- o di-alquilsulfamoílo, un grupo carboxilo, un grupo alcoxicarbonilo, un grupo carbamoílo, un grupo mono- o di-alquilcarbamoílo, un grupo alquilsulfonilamino, un grupo fenilo, un grupo fenilo, un grupo fenilsulfonilo, un grupo heterociclilo y un grupo oxo y
- el Anillo B es un anillo heterocíclico monocíclico insaturado, un anillo heterobicíclico condensado insaturado o un anillo de benceno, cada uno de los cuales puede sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno, un grupo hidroxi, un grupo ciano, un grupo nitro, un grupo alquilo, un grupo alquenilo, un grupo alquilidenmetilo, un grupo alcoxi, un grupo alcanoílo, un grupo alquilitio, un grupo alquil-sulfonilo, un grupo alquilsulfinilo, un grupo amino, un grupo mono- o di-alquilsulfinilo, un grupo anino, un grupo alcoxicarbonilo, un grupo carbamoílo, un grupo mono- o di-alquilsulfamoílo, un grupo alquilsulfonilamino, un grupo fenilo, un grupo fenilsulfonilamino, un grupo fenilsulfonilo, un grupo heterociclilo, un grupo alquileno y un grupo alquenileno;
- (2) un compuesto en el que el Anillo A es un anillo de benceno que puede sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno, un grupo hidroxi, un grupo ciano, un grupo nitro, un grupo alquilo, un grupo alquenilo, un grupo alquinilo, un grupo alquinilo, un grupo alquilidenmetilo, un grupo alcoxi, un grupo alcanoílo, un grupo alquilitio, un grupo alquilsulfonilo, un grupo alquilsulfinilo, un grupo amino, un grupo mono- o di-alquilsulfamoílo, un grupo alcoxicarbonilo, un grupo carboxilo, un grupo alcoxicarbonilo, un grupo carboxilo, un grupo mono- o di-alquilcarbamoílo, un grupo alquilsulfonilamino, un grupo fenilo, un g
 - el Anillo B es un anillo heterocíclico monocíclico insaturado o un anillo heterobicíclico condensado insaturado, cada uno de los cuales puede sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno, un grupo hidroxi, un grupo ciano, un grupo nitro, un grupo alquilo, un grupo alquilo, un grupo alquilo, un grupo cicloalquilo, un grupo alcoxi, un grupo alcanoílo, un grupo alquiltio, un grupo alquilsulfonilo, un grupo alquilsulfinilo, un grupo amino, un grupo mono- o di-alquilsulfamoílo, un grupo carboxilo, un grupo alcoxicarbonilo, un grupo carbamoílo, un grupo mono- o di-alquilcarbamoílo, un grupo alquilsulfonilamino, un grupo fenilo, un grupo fenilsulfonilamino, un grupo fenilsulfonilo, un grupo heterociclilo, un grupo alquileno y un grupo oxo; y (3) un compuesto en el que el

Anillo A es un anillo heterobicíclico condensado insaturado que puede sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno, un grupo hidroxi, un grupo ciano, un grupo nitro, un grupo alquilo, un grupo alquenilo, un grupo alquinilo, un grupo alquinilo, un grupo alquilidenmetilo, un grupo alcoxi, un grupo alcanoílo, un grupo alquilsulfonilo, un grupo alquilsulfinilo, un grupo amino, un grupo mono- o di-alquilsulfamoílo, un grupo carboxilo, un grupo alcoxicarbonilo, un grupo carbamoílo, un grupo mono- o di-alquilcarbamoílo, un grupo alquilsulfonilamino, un grupo fenilo, un grupo fenilo y un grupo oxo y

el Anillo B es un anillo heterocíclico monocíclico insaturado, un anillo heterobicíclico condensado insaturado o un anillo de benceno, cada uno de los cuales puede sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno, un grupo hidroxi, un grupo ciano, un grupo nitro, un grupo alquilo, un grupo alquenilo, un grupo alquinilo, un grupo cicloalquilo, un grupo cicloalquilo, un grupo alcanoílo, un grupo alquilstio, un grupo alquilsulfonilo, un grupo alquilsulfinilo, un grupo amino, un grupo mono- o di-alquilsulfamoílo, un grupo carboxilo, un grupo alcoxicarbonilo, un grupo carbamoílo, un grupo mono- o di-alquilcarbamoílo, un grupo alquilsulfonilamino, un grupo fenilo, un grupo fenilo, un grupo fenilsulfonilamino, un grupo fenilsulfonilo, un grupo heterociclilo, un grupo alquileno y un grupo oxo;

en los que cada uno de los sustituyentes anteriormente mencionados en el Anillo A y el Anillo B pueden además sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno, un grupo ciano, un grupo alquilo, un grupo haloalquilo, un grupo alcoxi, un grupo haloalcoxi, un grupo alcanoílo, un grupo mono- o di-alquilamino, un grupo carboxilo, un grupo hidroxi, un grupo fenilo, un grupo alquilendioxi, un grupo alquilendioxi alquilendioxi alquilendioxi alquilendioxi alquilendioxi alquilendioxi alquilendioxi alquilend

Como realizaciones más preferibles, se menciona un compuesto en el que el Anillo A y el Anillo B son

5

10

15

20

25

30

35

40

45

50

55

60

65

(1) el Anillo A es un anillo heterocíclico monocíclico insaturado que puede sustituirse opcionalmente con un átomo de halógeno, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior o un grupo oxo y el Anillo B es (a) un anillo de benceno que puede sustituirse opcionalmente con un átomo de halógeno, un grupo ciano; un grupo alquilo inferior; un grupo halo-alquilo inferior; un grupo alcoxi inferior; un grupo halo-alquilo inferior; un grupo alcoxi inferior o un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alquilo inferior, un grupo alquilo inferior, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior o un grupo mono- o di-alquil inferior amino; (b) un anillo heterocíclico monocíclico insaturado que puede sustituirse opcionalmente con un grupo seleccionado de un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior, un grupo halo-alcoxi inferior, un grupo mono- o di-alquil inferior amino, un grupo fenilo que puede estar sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior o un grupo mono- o di-alquil inferior amino; y un grupo heterociclilo que puede estar opcionalmente

sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior o un grupo mono- o di-alquil inferior amino; o (c) un anillo heterobicíclico condensado insaturado que puede sustituirse opcionalmente con un grupo seleccionado de un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior, un grupo halo-alquilo inferior, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior o un grupo mono- o dialquil inferior amino; y un grupo heterociclilo que puede sustituirse opcionalmente con un grupo seleccionado de un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo halo-alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior o un grupo mono- o di-alquil inferior amino;

(2) el Anillo A es un anillo de benceno que puede sustituirse opcionalmente con un átomo de halógeno, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior, un grupo fenilo o un grupo alquenileno inferior y el Anillo B es (a) un anillo heterocíclico monocíclico insaturado que puede sustituirse opcionalmente con un átomo de halógeno; un grupo ciano; un grupo alquilo inferior; un grupo halo-alquilo inferior; un grupo fenil-alquilo inferior; un grupo alcoxi inferior; un grupo halo-alcoxi inferior; un grupo mono- o di-alguil inferior amino; un grupo fenilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alguilo inferior, un grupo halo-alguilo inferior, un grupo alcoxi inferior o un grupo mono- o di-alquil inferior amino; o un grupo heterociclilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior o un grupo mono- o di-alquil inferior amino; (b) un anillo heterobicíclico condensado insaturado que puede sustituirse opcionalmente con un grupo seleccionado de un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo fenil-alquilo inferior, un grupo alcoxi inferior, un grupo halo-alcoxi inferior, un grupo mono- o di-alquil inferior amino, un grupo fenilo que puede sustituirse con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior o un grupo mono- o di-alquil inferior amino; y un grupo heterociclilo que puede sustituirse opcionalmente con un grupo seleccionado de un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior o un grupo mono- o di-alquil inferior amino; o

(3) el Anillo A es un anillo heterobicíclico condensado insaturado que puede sustituirse opcionalmente con un átomo de halógeno, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior o un grupo oxo y el Anillo B es (a) un anillo de benceno que puede sustituirse opcionalmente con un grupo seleccionado de un

átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior, un grupo halo-alcoxi inferior, un grupo mono- o di-alquil inferior amino, un grupo fenilo que puede sustituirse con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior o un grupo mono- o di-alquil inferior amino; y un grupo heterociclilo que puede sustituirse opcionalmente con un grupo seleccionado de un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo haloalquilo inferior, un grupo alcoxi inferior o un grupo mono- o di-alquil inferior amino; (b) un anillo heterocíclico monocíclico insaturado que puede sustituirse opcionalmente con un átomo de halógeno; un grupo ciano; un grupo alquilo inferior; un grupo halo-alquilo inferior; un grupo alcoxi inferior; un grupo halo-alcoxi inferior; un grupo monoo di-alquil inferior amino; un grupo fenilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior, o un grupo mono- o di-alquil inferior amino; o un grupo heterociclilo opcionalmente sustituido con un átomo de halógeno, un grupo a ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior o un grupo mono- o di-alquil inferior amino, o (c) un anillo heterobicíclico condensado insaturado que puede sustituirse opcionalmente con un grupo seleccionado de un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior, un grupo halo-alcoxi inferior, un grupo mono- o di-alguil inferior amino, un grupo fenilo que puede sustituirse con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior o un grupo mono- o di-alquil inferior amino; y un grupo heterociclilo que puede sustituirse opcionalmente con un grupo seleccionado de un átomo de halógeno, un grupo ciano, un grupo alguilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior o un grupo mono- o di-alquil inferior amino.

20

25

30

5

10

15

En otra realización preferible, se menciona un compuesto de fórmula I, en la que Y es -CH₂- y está enlazado en la posición 3 del Anillo A, con respecto a X siendo la posición 1, el Anillo A es un anillo de benceno que está sustituido con 1-3 sustituyentes seleccionados del grupo que consiste en un grupo alquilo inferior, un grupo halo-alquilo inferior, un átomo de halógeno, un grupo alcoxi inferior, un grupo fenilo y un grupo alquenileno inferior y el Anillo B es un anillo heterocíclico monocíclico insaturado o un anillo heterobicíclico condensado insaturado, cada uno de los cuales puede sustituirse con 1-3 sustituyentes seleccionados del grupo que consiste en un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo fenil-alquilo inferior, un átomo de halógeno, un grupo alcoxi inferior, un grupo halo-alcoxi inferior, un grupo fenilo, un grupo halo-alquil inferior fenilo, un grupo alquilo inferior endioxifenilo, un grupo alquilo inferior endioxifenilo, un grupo alquilo inferior enoxi fenilo, un grupo mono- o di-alquil inferior aminofenilo, un grupo alcoxi inferior heterociclilo, un grupo halo-heterociclilo, un grupo alquil inferior aminofenilo, un grupo alcoxi inferior heterociclilo, un grupo mono- o di-alquil inferior aminoheterociclilo.

En todavía otra realización preferible, se menciona un compuesto de fórmula I en la que Y es -CH₂- y está enlazado en la posición 3 del Anillo A, con respecto a X siendo la posición 1, el Anillo A es un anillo heterocíclico monocíclico insaturado que puede sustituirse con 1-3 sustituyentes seleccionados del grupo que consiste en un grupo alquilo inferior, un átomo de halógeno, un grupo alcoxi inferior y un grupo oxo y el Anillo B es un anillo de benceno que puede sustituirse con 1-3 sustituyentes seleccionados del grupo que consiste en un grupo alquilo inferior, un grupo haloalquilo inferior, un átomo de halógeno, un grupo alcoxi inferior, un grupo halo-alcoxi inferior, un grupo fenilo, un grupo halofenilo, un grupo cianofenilo, un grupo alquilo inferior fenilo, un grupo halo-alquil inferior fenilo, un grupo haloalcoxi inferior fenilo inferi

Además, como otra realización preferible, se menciona un compuesto de fórmula I en la que Y es -CH₂- y está enlazado en la posición 3 del Anillo A, con respecto a X siendo la posición 1, el Anillo A es un anillo heterocíclico monocíclico insaturado que puede sustituirse con 1-3 sustituyentes seleccionados del grupo que consiste en un grupo alquilo inferior, un átomo de halógeno, un grupo alcoxi inferior y un grupo oxo y el Anillo B es un anillo heterocíclico monocíclico insaturado o un anillo heterobicíclico condensado insaturado, cada uno de los cuales puede sustituirse con 1-3 sustituyentes seleccionados del grupo que consiste en un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo halo-alquilo inferior, un grupo fenilo, un grupo halofenilo, un grupo cianofenilo, un grupo alcoxi inferior fenilo, un grupo halo-alquil inferior fenilo, un grupo halo-alcoxi inferior fenilo, un grupo halo-alcoxi inferior fenilo, un grupo cianoheterociclilo, un grupo alquil inferior heterociclilo, un grupo alcoxi inferior heterociclilo, un grupo alcoxi inferior heterociclilo.

Ccomo un compuesto más preferible, se menciona un compuesto en el que X es un átomo de carbono e Y es -CH₂-.

55

45

50

Además, como otro compuesto preferible, se menciona un compuesto en el que el Anillo A y el Anillo B son

60

(1) el Anillo A es un anillo de benceno que puede sustituirse con 1-3 sustituyentes, seleccionados independientemente del grupo que consiste en un átomo de halógeno, un grupo alquilo inferior opcionalmente sustituido con un átomo de halógeno o un alcoxi inferior, un grupo alcoxi inferior opcionalmente sustituido con un átomo de halógeno o un grupo alcoxi inferior, un grupo cicloalquilo, un grupo cicloalcoxi, un grupo fenilo, y un grupo alquenileno inferior y

65

el Anillo B es un anillo heterocíclico monocíclico insaturado o un anillo heterobicíclico condensado insaturado, cada uno de los cuales puede sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno; un grupo alquilo inferior opcionalmente sustituido con un átomo de halógeno, un grupo alcoxi inferior o un grupo fenilo; un grupo alcoxi inferior opcionalmente sustituido con un átomo

de halógeno o un grupo alcoxi inferior; un grupo cicloalquilo; un grupo cicloalcoxi; un grupo fenilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo halo-alcoxi inferior; un grupo heterociclilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo halo-alquilo inferior, un grupo halo-alquilo inferior, un grupo halo-alcoxi inferior; y un grupo oxo.

5

10

15

20

25

30

35

40

45

50

55

(2) el Anillo A es un anillo heterocíclico monocíclico insaturado que puede sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno, un grupo alquilo inferior opcionalmente sustituido con un grupo alcoxi inferior, un grupo alcoxi inferior opcionalmente sustituido con un átomo de halógeno o un grupo alcoxi inferior, un grupo cicloalquilo, un grupo cicloalcoxi, y un grupo oxo y

el Anillo B es un anillo de benceno que puede sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno; un grupo alquilo inferior opcionalmente sustituido con un átomo de halógeno, un grupo alcoxi inferior o un grupo fenilo; un grupo alcoxi inferior opcionalmente sustituido con un átomo de halógeno o un grupo alcoxi inferior; un grupo cicloalquilo; un grupo cicloalcoxi; un grupo fenilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo halo-alcoxi inferior; un grupo halo-alcoxi inferior, un grupo halo-alquilo inferior o un grupo halo-a

(3) el Anillo A es un anillo heterocíclico monocíclico insaturado que puede sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno, un grupo alquilo inferior opcionalmente sustituido con un átomo de halógeno o un grupo alcoxi inferior, un grupo cicloalquilo, un grupo cicloalcoxi y un grupo oxo, el Anillo B es un anillo heterocíclico monocíclico insaturado o un anillo heterobicíclico condensado insaturado, cada uno de los cuales puede sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno; un grupo alquilo inferior opcionalmente sustituido con un átomo de halógeno, un grupo alcoxi inferior o un grupo fenilo; un grupo alcoxi inferior opcionalmente sustituido con un átomo de halógeno o un grupo alcoxi inferior; un grupo cicloalquilo; un grupo cicloalcoxi; un grupo fenilo opcionalmente sustituido con un átomo de halógeno, un grupo halo-alcoxi inferior; un grupo halo-alquilo inferior, un grupo alcoxi inferior; y un grupo oxo;

(4) el Anillo A es un anillo heterobicíclico condensado insaturado que puede sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno, un grupo alquilo inferior opcionalmente sustituido con un grupo alcoxi inferior, un grupo alcoxi inferior opcionalmente sustituido con un átomo de halógeno o un grupo alcoxi inferior, un grupo cicloalquilo, un grupo cicloalcoxi y un grupo oxo

el Ánillo B es un anillo de benceno que puede sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno; un grupo alquilo inferior opcionalmente sustituido con un átomo de halógeno, un grupo alcoxi inferior o un grupo fenilo; un grupo alcoxi inferior opcionalmente sustituido con un átomo de halógeno o un grupo alcoxi inferior; un grupo cicloalquilo; un grupo cicloalcoxi; un grupo fenilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior o un grupo halo-alcoxi inferior; un grupo halo-alquilo inferior, un grupo halo-alquilo inferior, un grupo halo-alquilo inferior, un grupo halo-alquilo inferior o un grupo halo-alquilo inferior, un grupo halo-alquilo inferior o un grupo halo-alqui

(5) el Anillo A es un anillo heterocíclico monocíclico insaturado que puede sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno, un grupo alquilo inferior opcionalmente sustituido con un grupo alcoxi inferior, un grupo alcoxi inferior opcionalmente sustituido con un átomo de halógeno o un grupo alcoxi inferior, un grupo cicloalquilo, un grupo cicloalcoxi y un grupo oxo.

el Anillo B es un anillo heterocíclico monocíclico insaturado o un anillo heterobicíclico condensado insaturado, cada uno de los cuales puede sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno; un grupo alquilo inferior opcionalmente sustituido con un átomo de halógeno, un grupo alcoxi inferior o un grupo fenilo; un grupo alcoxi inferior opcionalmente sustituido con un átomo de halógeno o un grupo alcoxi inferior; un grupo cicloalquilo; un grupo cicloalcoxi; un grupo fenilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior o un grupo halo-alcoxi inferior, un grupo halo-alquilo inferior, un grupo halo-alcoxi inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior o un grupo halo-alcoxi inferior; y un grupo oxo.

Se prefiere un compuesto en el que Y está enlazado en la posición 3 del Anillo A, con respecto a X siendo la posición 1, el Anillo A es un anillo de benceno que puede sustituirse opcionalmente con un átomo de halógeno, un grupo alquilo inferior opcionalmente sustituido con un átomo de halógeno, un grupo alcoxi inferior o un grupo fenilo y el Anillo B es un anillo heterocíclico monocíclico insaturado o un anillo heterobicíclico condensado insaturado que puede sustituirse opcionalmente con 1-3 sustituyentes, independientemente seleccionados del grupo que consiste en un átomo de halógeno; un grupo alquilo inferior opcionalmente sustituido con un átomo de halógeno o un grupo fenilo; un grupo alquilo inferior; un grupo fenilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo

inferior, un grupo halo-alquilo inferior o un grupo alcoxi inferior; un grupo heterociclilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior o un grupo alcoxi inferior; y un grupo oxo.

- 5 Se prefiere un compuesto en el que Y está enlazado en la posición 3 del Anillo A, con respecto a X siendo la posición 1, el Anillo A es un anillo heterocíclico monocíclico insaturado que puede sustituirse opcionalmente con un sustituyente seleccionado del grupo que consiste en un átomo de halógeno, un grupo alquilo inferior y un grupo oxo y el Anillo B es un anillo de benceno que puede sustituirse opcionalmente con un sustituyente seleccionado del grupo que consiste en un átomo de halógeno; un grupo alquilo inferior opcionalmente sustituido con un átomo de halógeno o un grupo 10 fenilo; un grupo alcoxi inferior; un grupo fenilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alguilo inferior, un grupo halo-alguilo inferior o un grupo alcoxi inferior; un grupo heterociclilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior o un grupo alcoxi inferior; y un grupo alquileno inferior.
- 15 El anillo heterocíclico monocíclico insaturado preferible incluye un anillo heterocíclico insaturado de 5 o 6 miembros que contiene 1 o 2 heteroátomos independientemente seleccionados de un átomo de nitrógeno, un átomo de oxígeno y un átomo de azufre. Más específicamente, se prefieren furano, tiofeno, oxazol, isoxazol, triazol, tetrazol, pirazol, piridina, pirimidina, pirazina, dihidroisoxazol, dihidropiridina v tetrazol. El anillo heterobicíclico condensado insaturado preferible incluye un anillo heterocíclico condensado insaturado de 9 o 10 miembros que contiene 1 a 4 heteroátomos 20 independientemente seleccionados de un átomo de nitrógeno, un átomo de oxígeno y un átomo de azufre. Más específicamente, se prefieren indolina, isoindolina, benzotiazol, benzoxazol, indol, indazol, quinolina, isoquinolina, benzotiofeno, benzofurano, tienotiofeno y dihidroisoguinolina.
- Los compuestos más preferidos incluyen un compuesto en el que el Anillo A es un anillo de benceno que puede 25 sustituirse opcionalmente con un sustituyente seleccionado del grupo que consiste en un átomo de halógeno, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior y un grupo fenilo y el Anillo B es un anillo heterocíclico seleccionado del grupo que consiste en tiofeno, furano, benzofurano, benzotiofeno y benzotiazol, en los que el anillo heterocíclico puede sustituirse opcionalmente con un sustituyente seleccionado del siguiente grupo: un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo fenil-alquilo 30 inferior, un grupo alcoxi inferior, un grupo halo-alcoxi inferior, un grupo fenilo, un grupo halofenilo, un grupo alguil inferior fenilo, un grupo alcoxi inferior fenilo, un grupo tienilo, un grupo halotienilo, un grupo piridilo, un grupo halopiridilo y grupo tiazolilo.
 - Otros compuestos preferidos incluyen un compuesto en el que Y es -CH2-, el Anillo A es un anillo heterocíclico monocíclico insaturado o un anillo heterobicíclico condensado insaturado seleccionado del grupo que consiste en tiofeno, dihidroisoquinolina, dihidroisoxazol, triazol, pirazol, dihidropiridina, dihidroindol, indazol, piridina, pirimidina, pirazina, quinolina y una isoindolina, en los que el anillo heterocíclico puede sustituirse opcionalmente con un sustituvente seleccionado del siguiente grupo: un átomo de halógeno, un grupo alquilo inferior y un grupo oxo y el Anillo B es un anillo de benceno que puede sustituirse opcionalmente con un sustituyente seleccionado del siguiente grupo: un átomo de halógeno, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior y un grupo halo-alcoxi inferior.

Además, un compuesto preferible de fórmula I incluye un compuesto en el que el Anillo A es

en el que R^{1a}, R^{2a}, R^{3a}, R^{1b}, R^{2b} y R^{3b} son cada uno independientemente un átomo de hidrógeno, a átomo de halógeno,

un grupo hidroxi, un grupo alcoxi, un grupo alquilo, un grupo haloalquilo, un grupo haloalcoxi, un grupo hidroxialquilo, un grupo alcoxialquilo, un grupo alcoxialcoxi, un grupo alquenilo, un grupo alquinilo, un grupo cicloalquilo, un grupo cicloalquilidenmetilo, un grupo cicloalquenilo, un grupo cicloalquiloxi, un grupo fenilo, un grupo fenilalcoxi, un grupo ciano, un grupo nitro, un grupo amino, un grupo mono- o di-alquilamino, un grupo alcanoilamino, un grupo carboxilo, un grupo alcoxicarbonilo, un grupo carbamoílo, un grupo mono- o di-alquilcarbamoílo, un grupo alcanoílo, un grupo alquilsulfonilamino, un grupo fenilsulfonilamino, un grupo alquilsulfinilo, un grupo alquilsulfonilo o un grupo fenilsulfonilo

el Anillo B es

35

40

45

50

$$\mathbb{R}^{5a}$$
, \mathbb{R}^{5b} \mathbb{R}^{5b}

en los que R^{4a} y R^{5a} son cada uno independientemente un átomo de hidrógeno; un átomo de halógeno; un grupo hidroxi; un grupo alcoxialcoxi; un grupo alquilo; un grupo haloalquilo; un grupo haloalcoxi; un grupo hidroxialquilo; un grupo alcoxialquilo; un grupo fenilalquilo; un grupo alcoxialcoxi; un grupo hidroxialcoxi; un grupo alquenilo; un grupo alquinilo; un grupo cicloalquilo; un grupo cicloalquilidenmetilo; un grupo cicloalquenilo; un grupo cicloalquiloxi; un grupo feniloxi; un grupo fenilalcoxi; un grupo ciano; un grupo nitro; un grupo amino; un grupo mono- o di-alquilamino; un grupo alcanoilamino; un grupo carboxilo; un grupo alcoxi-carbonilo; un grupo carbamoílo; un grupo mono- o dialquilcarbamoílo; un grupo alcanoílo; un grupo alquilsulfonilamino; un grupo fenilsulfonilamino; un grupo alquilsulfinilo; un grupo alquilsulfonilo; un grupo fenilsulfonilo; un grupo fenilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo, un grupo haloalquilo, un grupo alcoxi, un grupo haloalcoxi, un grupo alquilendioxi, un grupo alguilenoxi, o un grupo mono- o di-alguilamino: o un grupo heterociclilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo, un grupo haloalquilo, un grupo alcoxi o un grupo haloalcoxi, o R^{4a} y R^{5a} están unidos entre sí en los terminales de los mismos para formar un grupo alquileno; y R^{4b}, R^{5b}, R^{4c} y R^{5c} son cada uno independientemente un átomo de hidrógeno; un átomo de halógeno; un grupo hidroxi; un grupo alcoxi; un grupo alquilo; un grupo haloalquilo; un grupo haloalcoxi; un grupo hidroxialquilo; un grupo alcoxialquilo; un grupo fenilalquilo; un grupo alcoxialcoxi; un grupo hidroxialcoxi; un grupo alquenilo; un grupo alquinilo; un grupo cicloalquilo; un grupo cicloalquilidenmetilo; un grupo cicloalquenilo; un grupo cicloalquiloxi; un grupo feniloxi; un grupo fenilalcoxi; un grupo ciano: un grupo nitro: un grupo amino: un grupo mono- o di-alguilamino: un grupo alcanoilamino: un grupo carboxilo: un grupo alcoxicarbonilo; un grupo carbamoílo; un grupo mono- o di-alguilcarbamoílo; un grupo alcanoílo; un grupo alquilsulfonilamino; un grupo fenilsulfonilamino; un grupo alquilsulfinilo; un grupo alquilsulfonilo; un grupo fenilsulfonilo; un grupo fenilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo, un grupo haloalquilo, un grupo alcoxi, un grupo haloalcoxi, un grupo metilendioxi, un grupo etilenoxi o un grupo mono- o dialquilamino; o un grupo heterociclilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alguilo, un grupo haloalguilo, un grupo alcoxi o un grupo haloalcoxi.

25

30

35

5

10

15

20

Es más preferido un compuesto en el que R¹a, R²a, R³a, R¹b, R²b y R³b son cada uno independientemente un átomo de hidrógeno, un átomo de halógeno, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior o un grupo fenilo;

R^{4a'} y R^{5a} son cada uno independientemente un átomo de hidrógeno, un átomo de halógeno; un grupo alquilo inferior; un grupo halo-alquilo inferior; un grupo fenil-alquilo inferior; un grupo fenilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior, un grupo halo-alquilo inferior, un grupo mono- o di-alquil inferior amino; o un grupo heterociclilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior o un grupo alcoxi inferior, o R^{4a} y R^{5a} se unen entre sí en los terminales de los mismos para formar un grupo alquileno inferior; y R^{4b}, R^{5b}, R^{4c} y R^{5c} son cada uno independientemente un átomo de hidrógeno, un átomo de halógeno, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo halo-alquilo inferior, un grupo halo-alquilo inferior.

Se prefiere además un compuesto en el que el Anillo B es

40

45

en el que R^{4a} es un grupo fenilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior, un grupo halo-alcoxi inferior, un grupo metilendioxi, un grupo etilenoxi o un grupo mono- o di-alquil inferior amino; o un grupo heterociclilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior o un grupo alcoxi inferior y R^{5a} es un átomo de hidrógeno o

R^{4a} y R^{5a} se unen entre si en los terminales de los mismos para formar un grupo alquileno inferior.

50

Es más preferido además un compuesto en el que el anillo A es

R^{2a} R^{1a}

en el que R^{1a} es un átomo de halógeno, un grupo alquilo inferior o un grupo alcoxi y R^{2a} y R^{3a} son átomos de hidrógeno; y el anillo B es

en el que R^{4a} es un grupo fenilo opcionalmente sustituido con un sustituyente seleccionado del grupo que consiste en un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo haloalquilo inferior, un grupo haloalcoxi inferior y un grupo mono- o di-alquil inferior amino; o un grupo heterociclilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior o un grupo alcoxi inferior y R^{5a} es un átomo de hidrógeno e Y es -CH₂-.

En otra realización preferible de la presente invención, un compuesto preferible puede representarse mediante la siguiente fórmula IA:

5

25

30

35

en la que R^A es un átomo de halógeno, un grupo alquilo inferior o un grupo alcoxi inferior; R^B es un grupo fenilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo haloalquilo inferior, un grupo haloalcoxi inferior o un grupo mono- o di-alquil inferior-amino; o un grupo heterociclilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo haloalquilo inferior, un grupo haloalcoxi inferior o un grupo mono- o di-alquil inferior amino; y R^C es un átomo de hidrógeno; o R^B y R^C tomados juntos son un anillo de benceno condensado que puede sustituirse con un átomo de halógeno, un grupo alquilo inferior, un grupo halo-inferior alquilo, un grupo alcoxi inferior o un grupo halo-alcoxi inferior.

Entre ellos, se prefiere un compuesto en el que R^B es un grupo fenilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior o un grupo halo-alcoxi inferior; o un grupo heterociclilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior o un grupo alcoxi inferior.

Un grupo heterociclilo preferido incluye un grupo heterociclilo de 5 o 6 miembros que contiene 1 o 2 heteroátomos independientemente seleccionados del grupo que consiste en un átomo de nitrógeno, un átomo de oxígeno y un átomo de azufre o un grupo heterociclilo de 9 o 10 miembros que contiene 1 a 4 heteroátomos independientemente seleccionados del grupo que consiste en un átomo de nitrógeno, un átomo de oxígeno y un átomo de azufre. Específicamente, se prefieren un grupo tienilo, un grupo piridilo, un grupo pirazinilo, un grupo pirazolilo, un grupo tiazolilo, un grupo quinolilo y un grupo tetrazolilo.

En otra realización preferible de la presente invención, se prefiere un compuesto en el que el Anillo A es

en el que R¹a es un átomo de halógeno, un grupo alquilo inferior o un grupo alcoxi inferior y R²a y R³a son átomos de hidrógeno; y el Anillo B es

en el que R^{4b} y R^{5b} son cada uno independientemente un átomo de hidrógeno, un átomo de halógeno, un grupo alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior, o un grupo halo-alcoxi inferior.

5 Otra realización preferible incluye un compuesto representado por la siguiente fórmula IB:

$$R^{6}$$
 R^{7}
 R^{8}
 R^{10}
 R^{1

en el que R⁸, R⁹ y R¹⁰ son cada uno independientemente un átomo de hidrógeno, un átomo de halógeno, un grupo hidroxi, un grupo alcoxi, un grupo alquilo, un grupo haloalquilo, un grupo haloalcoxi, un grupo hidroxialquilo, un grupo alcoxialquilo, un grupo alcoxialquilo, un grupo cicloalquilidenmetilo, un grupo cicloalquenilo, un grupo cicloalquiloxi, un grupo ariloxi, un grupo arilalcoxi, un grupo ciano, un grupo nitro, un grupo amino, un grupo mono- o di-alquilamino, un grupo alquilcarbonilamino, un grupo carboxilo, un grupo alcoxicarbonilo, un grupo carboxilo, un grupo alquilsulfonilo, un grupo arilsulfonilamino, un grupo alquilsulfinilo, un grupo alquilsulfonilo, o un grupo arilsulfonilo; y un grupo representado por:

$$\mathbb{R}^{6}$$
 \mathbb{R}^{7}
 \mathbb{R}^{8}

20 es

25

30

$$R^{6a}$$
 R^{7a}
 R^{8}
 R^{7b}
 R^{8}

R^{6a} y R^{7a} son cada uno independientemente un átomo de hidrógeno, un átomo de halógeno, un grupo hidroxi, un grupo alcoxi, un grupo alquilo, un grupo haloalquilo, un grupo haloalquilo, un grupo hidroxialquilo, un grupo alcoxialquilo, un grupo alcoxialquilo, un grupo alcoxialquilo, un grupo cicloalquilidenmetilo, un grupo cicloalquenilo, un grupo cicloalquiloxi, un grupo arilalcoxi, un grupo ciano, un grupo nitro, un grupo amino, un grupo mono- o di-alquilamino, un grupo alquilcarbonilamino, un grupo carboxilo, un grupo alcoxicarbonilo, un grupo carbamoílo, un grupo mono- o di-alquilcarbamoílo, un grupo alcanoílo, un grupo alquilsulfonilamino, un grupo arilsulfonilo y R^{6b} y R^{7b} son cada uno independientemente un átomo de hidrógeno, un átomo de halógeno, un grupo alquilo, un grupo haloalquilo, o un grupo alcoxi.

Entre los compuestos representados por la fórmula IB, es más preferido un compuesto en el que R⁸, R⁹ y R¹⁰ son cada uno independientemente un átomo de hidrógeno, un átomo de halógeno, un grupo alquilo inferior, un grupo cicloalquilo, un grupo hidroxi-alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior-alquilo inferior, un grupo alcoxi inferior-alcoxi inferior y un grupo representado por:

es

5

10

en el que R^{6a}, R^{7a} son cada uno independientemente un átomo de hidrógeno, un átomo de halógeno, un grupo alquilo inferior, un grupo cicloalquilo, un grupo hidroxi-alquilo inferior, un grupo halo-alquilo inferior, un grupo alcoxi inferior, un grupo cicloalcoxi, un grupo halo-alcoxi inferior, o un grupo alcoxi inferior-alcoxi inferior o un grupo representado por:

$$\mathbb{R}^{6}$$
 \mathbb{R}^{7}
 \mathbb{R}^{8}

es

15

en el que R^{6b} y R^{7b} son cada uno independientemente un átomo de hidrógeno, un átomo de halógeno, un grupo alquilo inferior, un grupo halo-alquilo inferior o un grupo alcoxi inferior.

20

Otra realización preferible incluye un compuesto representado por la siguiente fórmula IC:

25 E

En el que el Anillo B' es un anillo de benceno opcionalmente sustituido, un anillo heterocíclico monocíclico insaturado opcionalmente sustituido o un anillo heterobicíclico condenado insaturado opcionalmente sustituido.

30

35

Los ejemplos preferibles del Anillo B' incluyen un anillo de benceno y un anillo heterocíclico, ambos de los cuales pueden tener un sustituyente o sustituyentes seleccionados del grupo que consiste en un átomo de halógeno; un grupo ciano; un grupo alquilo inferior opcionalmente sustituido con un átomo de halógeno; un grupo alcanoílo inferior; un grupo mono- o di-alquil inferior amino; un alcoxi grupo inferior carbonilo; un grupo carbamoílo; un grupo mono- o di-alquil inferior carbamoílo; un grupo fenilo opcionalmente sustituido con un sustituyente o sustituyentes seleccionados del grupo que consiste en un átomo de halógeno, un grupo ciano, un grupo alquilo inferior opcionalmente sustituido con un átomo de halógeno, un grupo alcoxi inferior opcionalmente sustituido con un átomo de halógeno, un grupo alcoxi inferior, un grupo mono- o di-alquil inferior amino, un grupo alcoxi inferior carbonilo, un grupo carbamoílo o un grupo mono- o di-alquil inferior carbonilo; un grupo heterociclilo opcionalmente sustituido con un sustituyente o sustituyentes seleccionados del

ES 2 844 401 T3

grupo que consiste en un átomo de halógeno, un grupo ciano, un grupo alquilo inferior opcionalmente sustituido con un átomo de halógeno, un grupo alcoxi inferior opcionalmente sustituido con un átomo de halógeno, un grupo alcanoílo inferior, un grupo mono- o di-alquil inferior amino, un grupo alcoxi inferior carbonilo, un grupo carbamoílo o un grupo mono- o di-alquil inferior carbamoílo; un grupo alquileno grupo; y un grupo oxo.

Los ejemplos más preferibles del Anillo B' incluyen un anillo de benceno que puede sustituirse con un sustituyente seleccionado del grupo que consiste en un átomo de halógeno; un grupo ciano; un grupo alquilo inferior opcionalmente sustituido con un átomo de halógeno; un grupo alcoxi inferior opcionalmente sustituido con un átomo de halógeno; un grupo mono- o di-alquil inferior amino; un grupo fenilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior opcionalmente sustituido con un átomo de halógeno, un grupo alcoxi inferior opcionalmente sustituido con un átomo de halógeno; un grupo heterociclilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo inferior opcionalmente sustituido con un átomo de halógeno, un grupo alcoxi inferior opcionalmente sustituido con un átomo de halógeno.

15 El compuesto preferido de la presente invención puede seleccionarse del siguiente grupo:

```
1-(β-D-glucopiranosil)-4-cloro-3-(6-etilbenzo[b]tiofen-2-ilmetil)benceno;
```

- 1-(β-D-glucopiranosil)-4-cloro-3-[5-(5-tiazolil)-2-tienilmetil]benceno;
- 1-(β-D-glucopiranosil)-4-cloro-3-(5-fenil-2-tienil-metil)benceno;
- 1-(β-D-glucopiranosil)-4-metil-3-[5-(4-fluorofenil)-2-tienilmetil]benceno; 20

5

10

25

35

40

- 1-(β-D-glucopiranosil)-4-cloro-3-[5-(2-pirimidinil)-2-tienilmetil]benceno;
 - 1-(β-D-glucopiranosil)-4-metil-3-[5-(2-pirimidinil)-2-tienilmetil]benceno;
 - 1-(β-D-glucopiranosil)-4-cloro-3-[5-(3-cianofenil)-2-tienilmetil]benceno;
 - 1-(β-D-glucopiranosil)-4-cloro-3-[5-(4-cianofenil)-2-tienilmetil]benceno;
 - 1-(β-D-glucopiranosil)-4-metil-3-[5-(6-fluoro-2-piridil)-2-tienilmetil]benceno;

 - 1-(β-D-glucopiranosil)-4-cloro-3-[5-(6-fluoro-2-piridil)-2-tienilmetil]benceno;
- 1-(β-D-qlucopiranosil)-4-metil-3-[5-(3-difluorometil-fenil)-2-tienilmetil]benceno; la sal farmacéuticamente aceptable del mismo; y el profármaco del mismo.
- 30 El compuesto (I) de la presente invención muestra una excelente actividad inhibidora frente a transportador de glucosa dependiente de sodio y un excelente efecto de disminución de la glucemia. Por tanto, el compuesto de la presente invención es útil en el tratamiento o la profilaxis de la diabetes mellitus (diabetes mellitus tipo 1 y tipo 2, etc.) o de complicaciones diabéticas (tales como retinopatía diabética, neuropatía diabética, nefropatía diabética) o es útil en el tratamiento de la hiperglucemia posprandial.
 - El compuesto (I) de la presente invención o una sal farmacéuticamente aceptable del mismo puede administrarse o bien por vía oral o bien por vía parenteral y puede usarse en forma de una preparación farmacéutica adecuada. Una preparación farmacéutica adecuada para la administración oral incluye, por ejemplo, una preparación sólida, tal como comprimidos, gránulos, cápsulas, polvos, etc., o preparaciones en disolución, preparaciones en suspensión o preparaciones en emulsión, etc. Una preparación farmacéutica adecuada para la administración parenteral incluye, por ejemplo, supositorios; preparaciones para inyección y preparaciones para infusión intravenosa usando agua destilada para inyección, solución salina fisiológica o disolución de glucosa acuosa; o preparaciones para inhalación.
- La dosificación del presente compuesto (I) o una sal farmacéuticamente aceptable del mismo puede variar según la 45 vía de administración, edad, peso corporal, estado de un paciente, o tipo y gravedad de una enfermedad que va a tratarse y habitualmente está en el intervalo de aproximadamente 0,1 a 50 mg/kg/día, preferiblemente en el intervalo de aproximadamente 0,1 a 30 mg/kg/día.
- El compuesto de fórmula I puede usarse, si es necesario, en combinación con uno o más de otros agentes 50 antidiabéticos y/o uno o más agentes para el tratamiento de otras enfermedades. El presente compuesto y estos otros agentes pueden administrarse en la misma forma farmacéutica, o en una forma farmacéutica oral separada o mediante invección.
- Los otros agentes antidiabéticos incluyen, por ejemplo, agentes antidiabéticos o antihiperglucémicos que incluyen 55 insulina, secretagogos de insulina o sensibilizadores a la insulina, u otros agentes antidiabéticos que tienen un mecanismo de acción diferente de la inhibición de SGLT y pueden usarse preferiblemente 1, 2, 3 o 4 de estos otros agentes antidiabéticos. Ejemplos concretos de los mismos son compuestos de biguanida, compuestos de sulfonilurea, inhibidores de la α-glucosidasa, agonistas de PPARγ (por ejemplo, compuestos de tiazolidindiona), agonistas dobles de PPARα/γ, inhibidores de la dipeptidil peptidasa IV (DPP4), compuestos de mitiglinida y/o compuestos de 60 nateglinida, e insulina, péptido similar a glucagón tipo 1 (GLP-1), inhibidores de PTP1B, inhibidores de la glucógeno fosforilasa, moduladores de RXR y/o inhibidores de la glucosa 6-fosfatasa.
 - Los agentes para el tratamiento de otras enfermedades incluyen, por ejemplo, un agente antiobesidad, un agente antihipertensor, un agente antiagregante plaquetario, un agente antiateroesclerótico y/o un agente hipolipemiante.
 - Los inhibidores de SGLT de fórmula I pueden usarse en combinación con agentes para el tratamiento de

complicaciones diabéticas, si es necesario. Estos agentes incluyen, por ejemplo, inhibidores de PKC y/o inhibidores de ACE.

La dosificación de estos agentes puede variar según la edad, el peso corporal y el estado de los pacientes y de las vías de administración, formas farmacéuticas, etc.

Estas composiciones farmacéuticas pueden administrarse por vía oral a especies de mamíferos que incluyen seres humanos, simios, perros, etc., por ejemplo, en la forma farmacéutica de comprimido, cápsula, gránulo o polvo, o pueden administrarse por vía parenteral en forma de preparación para inyección, o por vía intranasal o en forma de parche transdérmico.

El presente compuesto de fórmula I puede prepararse mediante los siguientes procedimientos.

Procedimiento 1

5

10

15

Los compuestos de fórmula I puede prepararse mediante un método, tal como se muestra en el siguiente esquema:

$$\begin{array}{c} A \\ Y \\ B \\ \hline \\ R^{11dO} \\ \hline \\ OR^{11b} \\ \hline \\ OR^{11b} \\ \hline \\ OH \\ \hline \end{array}$$

en el que R^{11a} es un átomo de hidrógeno o un grupo protector para un grupo hidroxilo y R^{11b}, R^{11c} y R^{11d} son cada uno independientemente un grupo protector para un grupo hidroxilo y otros símbolos son tal como se definieron anteriormente.

El compuesto de fórmula I puede prepararse desprotegiendo el compuesto de fórmula II.

En el compuesto de fórmula II, el grupo protector para el grupo hidroxilo puede ser cualquier grupo protector convencional y puede usarse un grupo bencilo, un grupo acetilo y un grupo alquilsililo, tal como un grupo trimetilsililo. Además, el grupo protector para el grupo hidroxilo puede formar acetal o sililacetal junto con grupos hidroxilo adyacentes. Los ejemplos de tales grupos protectores incluyen un grupo alquilideno, tal como un grupo isopropilideno, un grupo sec-butilideno, etc., un grupo bencilideno o un grupo dialquilsilileno, tal como grupo di-terc-butilsilileno, etc., que pueden formarse, por ejemplo, combinando R^{11c} y R^{11d} en el extremo terminal de los mismos.

La desprotección puede llevarse a cabo según el tipo de grupo protector que va a eliminarse, por ejemplo, mediante procedimientos convencionales, tales como reducción, hidrólisis, tratamiento con ácido, tratamiento con fluoruro, etc.

Por ejemplo, cuando va a eliminarse un grupo bencilo, la desprotección puede llevarse a cabo mediante (1) reducción catalítica usando un catalizador de paladio (por ejemplo, paladio-carbono, hidróxido de paladio) bajo atmósfera de hidrógeno en un disolvente adecuado (por ejemplo, metanol, etanol, acetato de etilo); (2) tratamiento con un agente desalquilante, tal como tribromuro de boro, tricloruro de boro, complejo de tricloruro de boro · sulfuro de dimetilo o yodotrimetilsilano en un disolvente adecuado (por ejemplo, diclorometano); o (3) tratamiento con un alquiltiol inferior, tal como etanotiol en presencia de un ácido de Lewis (por ejemplo, complejo de trifluoruro de boro · dietil éter) en un disolvente adecuado (por ejemplo, diclorometano).

Cuando se elimina un grupo protector mediante hidrólisis, la hidrólisis puede llevarse a cabo tratando el compuesto de fórmula II con una base (por ejemplo, hidróxido de sodio, hidróxido de potasio, hidróxido de litio, metóxido de sodio, etóxido de sodio, etc.) en un disolvente adecuado (por ejemplo, tetrahidrofurano, dioxano, metanol, etanol, agua, etc.).

El tratamiento ácido puede llevarse a cabo tratando el compuesto de fórmula II con un ácido (por ejemplo, ácido clorhídrico, ácido p-toluenosulfónico, ácido metanosulfónico, ácido trifluoroacético, etc.) en un disolvente adecuado (por ejemplo, metanol, etanol, etc.).

En caso de tratamiento con fluoruro, este puede llevarse a cabo tratando el compuesto de fórmula II con un fluoruro (por ejemplo, fluoruro de hidrógeno, fluoruro de hidrógeno-piridina, fluoruro de tetrabutilamonio, etc.) en un disolvente adecuado (por ejemplo, ácido acético, un alcohol inferior (metanol, etanol, etc.), acetonitrilo, tetrahidrofurano, etc.).

La reacción de desprotección puede llevarse a cabo preferiblemente con enfriamiento o con calentamiento, por

19

35

40

45

50

55

25

ejemplo, a una temperatura de desde 0 °C hasta 50 °C, más preferiblemente a una temperatura de desde 0 °C hasta temperatura ambiente.

Procedimiento 2

5

10

20

El compuesto de fórmula I en la que X es un átomo de carbono puede prepararse mediante un método, tal como se muestra en el siguiente esquema:

en el que R¹² es un grupo alquilo inferior y otros símbolos son tal como se definieron anteriormente.

El compuesto de fórmula I-a puede prepararse reduciendo el compuesto de fórmula III.

La reducción puede llevarse a cabo mediante el tratamiento con un reactivo de silano, en presencia de un ácido, en un disolvente adecuado o en ausencia de un disolvente.

Como ácido puede usarse preferiblemente, por ejemplo, un ácido de Lewis, tal como complejo de trifluoruro de boro dietil éter, tetracloruro de titanio, etc. y un ácido orgánico fuerte, tal como ácido trifluoroacético, ácido metanosulfónico, etc.

Como reactivo de silano puede usarse preferiblemente, por ejemplo, un trialquilsilano, tal como trietilsilano, triisopropilsilano, etc.

Como disolvente, puede usarse cualquier tipo de disolvente siempre que no afecte a la reacción y puede usarse preferiblemente, por ejemplo, acetonitrilo, diclorometano, o una mezcla de acetonitrilo/diclorometano.

Procedimiento 3

30 El compuesto de fórmula I en la que X es un átomo de carbono puede prepararse mediante un método, tal como se muestra en el siguiente esquema:

HO

OH

$$A \rightarrow CH$$
 CH_2
 $A \rightarrow CH_2$
 A

35 en el que los símbolos son tal como se definieron anteriormente.

Concretamente, el compuesto de fórmula I-b puede prepararse reduciendo el compuesto de fórmula IV.

La reducción puede llevarse a cabo de manera similar al procedimiento 2. En otras palabras, puede llevarse a cabo mediante el tratamiento con un reactivo de silano (por ejemplo, trietilsilano, etc.), en presencia de un ácido de Lewis (por ejemplo, complejo de trifluoruro de boro · dietil éter, etc.), en un disolvente adecuado (por ejemplo, acetonitrilo, diclorometano, etc.).

El compuesto de la presente invención así obtenido puede aislarse y purificarse mediante un método convencional bien conocido en la química sintética orgánica, tal como recristalización, cromatografía en columna, etc. El compuesto de partida representado por la fórmula (II), (III) o (IV) puede prepararse mediante cualquiera de las siguientes etapas (a) - (j).

Etapas (a) y (b):

5

(a) Cuando X es un átomo de carbono

(b) Cuando X es un átomo de nitrógeno

(vI)

Sililación

A Y B

Reducción

(VI)

A Y B

Reducción

(VIII)

A Y B

Reducción

(VIIII)

A Y B

Reducción

(VIIII)

En el esquema anterior, R^{13} es (1) un átomo de bromo o un átomo de yodo cuando X es un átomo de carbono; o (2) un átomo de hidrógeno cuando X es un átomo de nitrógeno, R^{11e} es un grupo protector para el grupo hidroxilo y los otros símbolos son tal como se definieron anteriormente.

Etapa (a):

10

15

20

25

30

Entre los compuestos de fórmula II, el compuesto en el que X es un átomo de carbono puede prepararse acoplando el compuesto de fórmula VII con el compuesto de fórmula VI para dar el compuesto de fórmula V, seguido por la reducción del compuesto de fórmula V.

La reacción de acoplamiento puede llevarse a cabo sometiendo a litiación el compuesto de fórmula VII, seguido por hacer reaccionar el producto resultante con el compuesto de fórmula VI.

En particular, el compuesto de fórmula VII puede tratarse con un alquil-litio, seguido por hacer reaccionar el producto resultante con el compuesto de fórmula VI. Como alquil-litio, se usan preferiblemente metil-litio, n-butil-litio, t-butil-litio, etc. El disolvente puede ser cualquier disolvente que no altere la reacción y se usan preferiblemente éteres, tales como tetrahidrofurano, dietil éter, etc. Esta reacción puede llevarse a cabo desde con enfriamiento (por ejemplo, a -78 °C) hasta temperatura ambiente.

La reducción puede llevarse a cabo de manera similar al procedimiento 2. Concretamente, puede llevarse a cabo tratando el compuesto de fórmula V con un reactivo de silano (por ejemplo, trietilsilano, etc.) en presencia de un ácido de Lewis (por ejemplo, complejo de trifluoruro de boro · dietil éter, etc.) en un disolvente adecuado (por ejemplo, acetonitrilo, diclorometano, etc.).

Etapa (b)

5

10

20

25

35

40

Entre los compuestos de fórmula II, el compuesto en el que X es un átomo de nitrógeno puede prepararse sometiendo a sililación el compuesto de fórmula VII en un disolvente, seguido por hacer reaccionar el producto resultante con el compuesto de fórmula VIII (por ejemplo, un pentaacetato de α- o β-D-glucosa, etc.) en presencia de un ácido de Lewis.

La reacción de sililación puede llevarse a cabo tratando el compuesto de fórmula VII con un agente de sililación en un disolvente. El agente de sililación incluye, por ejemplo, N,O-bis(trimetilsilil)acetamida, 1,1,1,3,3,3-hexametildisilazano, etc.

El disolvente puede ser, por ejemplo, hidrocarburos halogenados, tales como diclorometano, dicloroetano, cloroformo, etc., éteres, tales como dietil éter, tetrahidrofurano, 1,2-dimetoxietano, etc., acetonitrilo, etc.

Esta reacción se lleva a cabo preferiblemente con enfriamiento o con calentamiento, por ejemplo, a una temperatura de desde 0 °C hasta 60 °C, preferiblemente a una temperatura de desde temperatura ambiente hasta 60 °C.

La reacción con el compuesto de fórmula VIII puede llevarse a cabo en un disolvente en presencia de un ácido de Lewis.

El ácido de Lewis incluye, por ejemplo, trifluorometanosulfonato de trimetilsililo, tetracloruro de titanio, tetracloruro de estaño, complejo de trifluoruro de boro · dietil éter.

El disolvente puede ser, por ejemplo, hidrocarburos halogenados, tales como diclorometano, dicloroetano, cloroformo, etc., acetonitrilo, etc.

Esta reacción puede llevarse a cabo con enfriamiento o con calentamiento, por ejemplo, a una temperatura de desde 0 °C hasta 100 °C, preferiblemente a una temperatura de desde temperatura ambiente hasta 60 °C.

30 Etapa (c):

Entre los compuestos de fórmula II, el compuesto en el que X es un átomo de carbono y R^{11a} es un átomo de hidrógeno puede prepararse mediante un método, tal como se muestra en el siguiente esquema:

en el que R^{13a} es un átomo de bromo o un átomo de yodo y los otros símbolos son tal como se definieron anteriormente.

Concretamente, los compuestos de fórmula II-a pueden prepararse acoplando el compuesto de fórmula VII-a con el compuesto de fórmula X o un éster del mismo para dar el compuesto de fórmula IX, seguido por la hidratación del compuesto de fórmula IX.

El éster del compuesto de fórmula X incluye, por ejemplo, un éster de alquilo inferior del mismo y un compuesto representado por la fórmula XI:

$$R^{14}$$
 R^{14}
 R

5

en la que R¹⁴ es un grupo alquilo inferior, m es 0 o 1 y los otros símbolos son tal como se definieron anteriormente.

La reacción de acoplamiento del compuesto de fórmula VII-a con el compuesto de fórmula X o un éster del mismo puede llevarse a cabo en presencia de una base y un catalizador de paladio en un disolvente adecuado.

10

La base incluye una base inorgánica, tal como un carbonato de metal alcalino (por ejemplo, carbonato de sodio, carbonato de potasio, etc.), un hidrogenocarbonato de metal alcalino (por ejemplo, hidrogenocarbonato de sodio, hidrogenocarbonato de potasio, etc.), un hidróxido de metal alcalino (por ejemplo, hidróxido de sodio, hidróxido de potasio, etc.), fluoruro de potasio, fosfato de potasio, etc. y una base orgánica, tal como una tri(alquil inferior)amina (por ejemplo, trietilamina, diisopropiletilamina, etc.), una amina terciaria cíclica (por ejemplo, 1,4-diazabiciclo[2.2.2]octano, 1,5-diazabiciclo[4.3.0]-nona-5-eno, 1,8-diazabiciclo[5.4.0]undeca-7-eno, etc.).

15

El catalizador de paladio puede ser un catalizador convencional, tal como tetraquis(trifenil)fosfinapaladio (0), acetato de paladio (II), cloruro de paladio (II), cloruro de bis(trifenil)fosfinapaladio (II), complejo de cloruro de paladio (II)-1,1-bis(difenilfosfino)ferroceno, etc.

20

El disolvente puede ser cualquier disolvente inerte que no altere la reacción, por ejemplo, éteres, tales como tetrahidrofurano, dioxano, etc., disolventes de amida, tales como N,N-dimetilformamida, 1,3-dimetil-2-imidazolidinona, etc., hidrocarburos aromáticos, tales como tolueno, xileno, etc., dimetilsulfóxido, agua y, si se desea, una mezcla de dos o más de estos disolventes.

25

Esta reacción se lleva a cabo preferiblemente con calentamiento, por ejemplo, a una temperatura de desde 50 °C hasta el punto de ebullición de la mezcla de reacción y más preferiblemente a una temperatura de desde 50 °C hasta 100 °C.

30

La reacción de hidratación del compuesto de fórmula IX puede llevarse a cabo, por ejemplo, mediante hidroboración, más específicamente, haciéndolo reaccionar con diborano, complejo de borano-tetrahidrofurano o 9-borabiciclononano, etc. en un disolvente adecuado, seguido por tratar con disolución de peróxido de hidrógeno en presencia de una base (por ejemplo, un hidróxido de metal alcalino, tal como hidróxido de sodio, etc.), o por tratar con un reactivo oxidante, tal como perborato de sodio y oxodiperoximolibdeno (piridina) (triamida hexametilfosfórica) en un disolvente adecuado.

35

El disolvente puede ser cualquier disolvente inerte que no altere la reacción, por ejemplo, éteres, tales como dietil éter, diisopropil éter, tetrahidrofurano, dioxano, 1,2-dimetoxietano, etc., hidrocarburos aromáticos, tales como benceno, tolueno, xileno, etc., agua y si se desea una mezcla de dos o más de estos disolventes. Esta reacción puede llevarse

40

tolueno, xileno, etc., agua y si se desea, una mezcla de dos o más de estos disolventes. Esta reacción puede llevarse a cabo a una temperatura de un intervalo amplio, tal como con enfriamiento o con calentamiento, y llevarse a cabo preferiblemente a una temperatura de desde -10 °C hasta el punto de ebullición de la mezcla de reacción.

Etapa (d):

45

Entre los compuestos de fórmula II, el compuesto en el que el anillo A es un anillo de benceno puede prepararse mediante un método, tal como se muestra en el siguiente esquema:

$$R^{11dO} \longrightarrow \mathbb{R}^{11dO} \longrightarrow \mathbb{R$$

en el que los símbolos son tal como se definieron anteriormente.

- Concretamente, los compuestos de fórmula II-b pueden prepararse acoplando el compuesto de fórmula XIV con el compuesto de fórmula XIII, para dar el compuesto de fórmula XII, seguido por la reducción del compuesto de fórmula XII.
- La reacción de acoplamiento puede llevarse a cabo de manera similar a la etapa (a). Concretamente, puede llevarse a cabo sometiendo a litiación el compuesto de fórmula XIV con un alquil-litio (por ejemplo, n-butil-litio, terc-butil-litio, etc.) en un disolvente adecuado (por ejemplo, dietil éter, tetrahidrofurano, etc.), seguido por hacer reaccionar el producto resultante con el compuesto (XIII).
- La reacción de reducción puede llevarse a cabo mediante (1) tratamiento con un reactivo de silano (por ejemplo, trialquilsilano, tal como trietilsilano, etc.) en un disolvente adecuado (por ejemplo, acetonitrilo, diclorometano, etc.), a de -30 °C a 60 °C, en presencia de un ácido de Lewis, tal como complejo de trifluoruro de boro · dietil éter o ácido trifluoroacético, (2) tratamiento con yodotrimetilsilano o (3) tratamiento con un agente reductor (por ejemplo, borohidruros, tales como borohidruro de sodio, triacetoxiborohidruro de sodio, etc., hidruros de aluminio, tales como hidruro de litio y aluminio, etc.) en presencia de un ácido (por ejemplo, un ácido fuerte, tal como ácido trifluoroacético, etc. y un ácido de Lewis, tal como cloruro de aluminio, etc.).

Etapa (e):

25

El compuesto de fórmula III puede prepararse mediante un método, tal como se muestra en el siguiente esquema:

en el que los símbolos son tal como se definieron anteriormente.

- 30 Concretamente, puede prepararse el compuesto de fórmula III desprotegiendo el compuesto de fórmula V que es un producto intermedio sintético de la etapa (a), seguido por tratar del compuesto resultante con un ácido en un disolvente de alcohol.
- La reacción de desprotección puede llevarse a cabo de manera similar al procedimiento 1. Concretamente, puede 35 llevarse a cabo sometiendo el compuesto V a un tratamiento con ácido, reducción o un tratamiento con fluoruro, etc.

Después de la reacción de desprotección, se trata el compuesto resultante con un ácido en un alcohol adecuado. El ácido incluye, por ejemplo, un ácido inorgánico, tal como ácido clorhídrico, ácido nítrico, ácido sulfúrico, etc., un ácido orgánico, tal como ácido p-toluenosulfónico, ácido metanosulfónico, ácido trifluoroacético, etc. El alcohol incluye un alcohol alquílico convencional que no altere la reacción, por ejemplo, metanol, etanol, n-propanol, i-propanol, n-butanol, etc.

Adicionalmente, la reacción de desprotección y el tratamiento con ácido pueden llevarse a cabo en la misma etapa, dependiendo del tipo de grupo protector.

Etapa (f):

5

10

15

25

30

El compuesto de fórmula IV puede prepararse mediante un método, tal como se muestra en el siguiente esquema:

$$\begin{array}{c} OH \\ CH-(CH_2)_{n-1} \\ R^{11dO} \\ \hline \\ R^{11d$$

en el que los símbolos son tal como se definieron anteriormente.

En primer lugar, se acopla el compuesto de fórmula XVI con el compuesto de fórmula VI para dar el compuesto de fórmula XV. Entonces, tras eliminar los grupos protectores del compuesto de fórmula XV, se trata el producto resultante con un ácido en un alcohol para dar el compuesto de fórmula IV.

La reacción de acoplamiento puede llevarse a cabo de manera similar a la etapa (a). Concretamente, el compuesto XVI se trata con un alquil-litio (por ejemplo, n-butil-litio, terc-butil-litio, etc.) en un disolvente adecuado (por ejemplo, dietil éter, tetrahidrofurano, etc.), seguido por hacer reaccionar el producto resultante con el compuesto VI.

La eliminación de grupos protectores y el tratamiento con ácido se llevan a cabo de manera similar a la etapa (e). Concretamente, pueden llevarse a cabo sometiendo el compuesto XV a reducción, tratamiento con ácido o tratamiento con fluoruro, dependiendo del tipo de grupo protector que va a eliminarse, seguido por tratar el producto resultante con un ácido (por ejemplo, ácido clorhídrico, ácido p-toluenosulfónico, ácido metanosulfónico, ácido trifluoroacético, etc.) en un disolvente adecuado (por ejemplo, metanol, etanol, etc.).

Etapa (g):

35 El compuesto de fórmula II puede prepararse mediante un método, tal como se muestra en el siguiente esquema:

en el que R²⁰ es un grupo trialquilestanilo o un grupo dihidroxiborilo o un éster de los mismos y los otros símbolos son tal como se definieron anteriormente.

5 Concretamente, el compuesto de fórmula II puede prepararse acoplando el compuesto XVII con el compuesto XVIII en un disolvente adecuado, en presencia de un catalizador de paladio y en presencia o en ausencia de una base.

La reacción de acoplamiento puede llevarse a cabo de manera similar a la etapa (c).

10 Etapa (h):

Entre el compuesto de fórmula IV, el compuesto en el que n es 1 puede prepararse mediante un método, tal como se muestra en el siguiente esquema:

en el que los símbolos son tal como se definieron anteriormente.

Concretamente, el compuesto de fórmula IV puede prepararse mediante las siguientes etapas: (1) tratar el compuesto de fórmula XXII con un agente halogenante en un disolvente adecuado o en ausencia de un disolvente, seguido por la condensación del producto resultante con el compuesto de fórmula XXI en presencia de un ácido de Lewis para dar el compuesto de fórmula XX, (2) reducir el compuesto de fórmula XX y (3) eliminar los grupos protectores del compuesto de fórmula XIX.

25 El agente halogenante incluye un agente halogenante convencional, tal como cloruro de tionilo, oxicloruro de fósforo, cloruro de oxalilo, etc.

El disolvente puede ser cualquier disolvente que no altere la reacción y por ejemplo, pueden mencionarse diclorometano, tetracloruro de carbono, tetrahidrofurano, tolueno, etc.

Además, en la presente reacción, la reacción avanzará adecuadamente añadiendo un catalizador, tal como dimetilformamida, etc.

La condensación reacción del compuesto (XXII) y el compuesto (XXI) puede llevarse a cabo según un método convencional tan conocido como la reacción de Friedel-Crafts, en presencia de un ácido de Lewis y en un disolvente adecuado.

El ácido de Lewis incluye cloruro de aluminio, complejo de trifluoruro de boro · dietil éter, cloruro de estaño(IV), tetracloruro de titanio, etc. que se usan convencionalmente en la reacción de Friedel-Crafts.

El disolvente incluye hidrocarburos halogenados, tales como diclorometano, tetracloruro de carbono, dicloroetano, etc.

La reacción de reducción puede llevarse a cabo tratando el compuesto de fórmula XX con un reactivo de silano (por

40

35

30

ejemplo, trialquilsilano, etc.) en un disolvente adecuado (por ejemplo, acetonitrilo, diclorometano, etc.), en presencia de un ácido (por ejemplo, un ácido de Lewis, tal como complejo de trifluoruro de boro · dietil éter, etc.) y un ácido orgánico fuerte (tal como ácido trifluoroacético, ácido metanosulfónico, etc.), o tratando con una hidrazina en un disolvente adecuado (por ejemplo, etilenglicol, etc.) en presencia de una base (por ejemplo, hidróxido de potasio, etc.).

La presente reacción puede llevarse a cabo con enfriamiento o con calentamiento, por ejemplo, a una temperatura de desde -30 °C hasta 60 °C.

La eliminación de los grupos protectores del compuesto de fórmula XIX puede llevarse a cabo de manera similar al procedimiento 1.

Etapa (i):

5

10

15

20

25

30

35

Entre los compuestos de fórmula II, el compuesto en el que X es un átomo de nitrógeno puede prepararse mediante un procedimiento como se muestra en el siguiente esquema:

en el que R²¹ es un grupo saliente y los otros símbolos son como se ha definido anteriormente.

Ejemplos del grupo saliente incluyen un átomo de halógeno tales como un átomo de cloro y un átomo de bromo.

Concretamente, el compuesto de fórmula II-d puede prepararse por condensación del compuesto de fórmula XXIII con el compuesto de fórmula XXIV.

La reacción de condensación puede llevarse a cabo en un disolvente adecuado tales como acetonitrilo, etc., en presencia de una base (por ejemplo, un hidróxido metálico alcalino, tales como hidróxido de potasio, etc.).

Etapa (j):

Entre el compuesto de fórmula II, el compuesto en el que el Anillo A es un pirazol sustituido con un grupo alquilo inferior, X es un átomo de nitrógeno e Y es -CH₂- puede prepararse mediante un método como se muestra en el siguiente esquema:

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

en el que R²² y R²³ son cada uno independientemente un grupo alquilo inferior y los otros símbolos son como se define anteriormente.

40 Concretamente, el compuesto II-e puede prepararse por condensación del compuesto de fórmula XXVI con el compuesto de fórmula XXVI en un disolvente adecuado (por ejemplo, éteres tales como tetrahidrofurano, etc., un hidrocarburo aromático tal como tolueno, etc.).

Además, el compuesto de la presente invención puede convertirse en cada uno de los otros compuestos dentro de los

compuestos objetivo de la presente invención. Tal reacción de conversión puede llevarse a cabo según un método convencional, dependiendo del tipo de los sustituyentes objetivo.

Por ejemplo, un compuesto que tiene como un sustituyente de anillo B, un grupo arilo, tal como un grupo fenilo, o un grupo heterociclilo puede prepararse acoplando el compuesto en el que el sustituyente del anillo B es un átomo de halógeno, tal como un átomo de bromo, con un ácido fenilborónico, fenil-estaño, ácido heterociclilborónico o heterociclilestaño adecuado.

5

25

30

35

40

La reacción de acoplamiento puede llevarse a cabo de manera similar a la etapa (c) o la etapa (g), o mediante un método, tal como se describe en los siguientes ejemplos.

En el presente compuesto, el compuesto en el que el heteroátomo está oxidado (por ejemplo, compuestos de S-óxido, S,S-óxido o N-óxido) puede prepararse oxidando una S-forma o una N-forma correspondiente.

La reacción de oxidación puede llevarse a cabo mediante un método convencional, por ejemplo, mediante el tratamiento con un agente oxidante (por ejemplo, perácidos, tales como peróxido de hidrógeno, ácido m-cloroperbenzoico, ácido peracético, etc.) en un disolvente adecuado (por ejemplo, hidrocarburos halogenados, tales como diclorometano, etc.).

Los compuestos de partida de las respectivas etapas descritas anteriormente pueden prepararse mediante los métodos, tal como se dan a conocer en los ejemplos de referencia, o mediante un procedimiento, tal como se menciona a continuación.

(1) Entre los compuestos de fórmula VII, el compuesto en el que Y es -CH₂- puede prepararse mediante un método, tal como se muestra en el siguiente esquema:

en el que R¹⁵ es un átomo de hidrógeno o un átomo de halógeno y los otros símbolos son tal como se definieron anteriormente.

Concretamente, el compuesto de fórmula VII-b puede prepararse acoplando el compuesto de fórmula XXVIII con el compuesto de fórmula XXIX para dar el compuesto de fórmula XXVII, seguido por reducir el compuesto obtenido de fórmula XXVII.

La reacción de acoplamiento de la presente etapa puede llevarse a cabo de manera similar a la etapa (a). Concretamente, se trata el compuesto de fórmula XXVIII con un alquil-litio (por ejemplo, n-butil-litio, terc-butil-litio, etc.) en un disolvente adecuado (por ejemplo, dietil éter, tetrahidrofurano, etc.), seguido por hacer reaccionar el producto resultante con el compuesto de fórmula XXIX.

La reacción de reducción puede llevarse a cabo de manera similar a la etapa (d), más específicamente, mediante (1) el tratamiento con un reactivo de silano, tal como trietilsilano, etc., en un disolvente adecuado (por ejemplo, acetonitrilo, diclorometano, etc.), a de -30 °C a 60 °C, en presencia de un ácido de Lewis, tal como complejo de trifluoruro de boro · dietil éter o ácido trifluoroacético, (2) tratamiento con yodotrimetilsilano o (3) tratamiento con un agente reductor (por ejemplo, borohidruros, tales como borohidruro de sodio, triacetoxiborohidruro de sodio, etc., hidruros de aluminio, tales como hidruro de litio y aluminio, etc.) en presencia de un ácido (por ejemplo, un ácido fuerte, tal como ácido trifluoroacético, etc., un ácido de Lewis, tal como cloruro de aluminio, etc.).

45 (2) Entre el compuesto de fórmula VII, el compuesto en el que X es un átomo de carbono e Y es -CH₂- puede prepararse mediante un método, tal como se muestra en el siguiente esquema:

en el que R¹⁶ es un átomo de halógeno y los otros símbolos son tal como se definieron anteriormente.

5

10

15

20

25

30

35

El presente procedimiento puede llevarse a cabo de manera similar a la etapa (h), tal como se mencionó anteriormente.

Concretamente, el compuesto de fórmula VII-c puede prepararse tratando el compuesto de fórmula XXXIII con un reactivo halogenante (por ejemplo, cloruro de tionilo, oxicloruro de fósforo, cloruro de oxalilo, etc.) en un disolvente adecuado (por ejemplo, diclorometano, tetracloruro de carbono, tetrahidrofurano, tolueno, etc.) o en ausencia de un disolvente, para dar el compuesto de fórmula XXXII, condensando posteriormente este compuesto con el compuesto de fórmula XXXII en un disolvente adecuado (por ejemplo, diclorometano, tetracloruro de carbono, dicloroetano, etc.) en presencia de un ácido de Lewis (por ejemplo, cloruro de aluminio, cloruro de zinc, tetracloruro de titanio, etc.), para dar el compuesto de fórmula XXX y adicionalmente reduciendo el compuesto obtenido.

La reacción de reducción puede llevarse a cabo tratando con un reactivo de silano (por ejemplo, trietilsilano, etc.) en un disolvente adecuado (por ejemplo, acetonitrilo, diclorometano, etc.), en presencia de un ácido (por ejemplo, un ácido de Lewis, tal como complejo de trifluoruro de boro · dietil éter, etc. y un ácido orgánico fuerte, tal como ácido trifluoroacético, ácido metanosulfónico, etc.), o tratando con una hidrazina en un disolvente adecuado (por ejemplo, etilenglicol, etc.) en presencia de una base (por ejemplo, hidróxido de potasio, etc.).

(3) Entre los compuestos de fórmula VII, el compuesto en el que X es un átomo de carbono e Y es -CH₂- puede prepararse mediante un método, tal como se muestra en el siguiente esquema:

en el que R¹⁷ es un grupo alquilo inferior y los otros símbolos son tal como se definieron anteriormente.

El compuesto de fórmula VII-c puede prepararse acoplando el compuesto de fórmula XXXV con el compuesto de fórmula XXXIV para dar el compuesto de fórmula XXXIV posteriormente reduciendo el compuesto obtenido.

La reacción de acoplamiento puede llevarse a cabo de manera similar a la etapa (a). Concretamente, el compuesto de fórmula (XXV) se somete a litiación con un alquil-litio (por ejemplo, terc-butil-litio, n-butil-litio, etc.) en un disolvente adecuado (por ejemplo, dietil éter, tetrahidrofurano, etc.) y posteriormente, haciendo reaccionar el producto resultante con el compuesto (XXIV).

La reacción de reducción puede llevarse a cabo de manera similar a la etapa (a). Concretamente, puede llevarse a cabo tratando el compuesto de fórmula XXX con un reactivo de silano (por ejemplo, trietilsilano, etc.) en un disolvente adecuado (por ejemplo, acetonitrilo, diclorometano, etc.), en presencia de un ácido (por ejemplo, complejo de trifluoruro de boro · dietil éter, etc.).

(4) Entre el compuesto de fórmula VII, el compuesto en el que X es un átomo de carbono e Y es -CH₂- puede prepararse mediante un método, tal como se muestra en el siguiente esquema:

en el que R¹⁸ es un grupo alquilo inferior y los otros símbolos son tal como se definieron anteriormente.

- 5 Concretamente, el compuesto de fórmula VII-c puede prepararse acoplando el compuesto de fórmula XXVII con el compuesto de fórmula XXXVI para dar el compuesto de fórmula XXX y posteriormente reduciendo el compuesto.
- El presente procedimiento puede llevarse a cabo de manera similar a la etapa (3). Concretamente, el compuesto de fórmula (XXVIII) se somete a litiación con un alquil-litio (por ejemplo, terc-butil-litio, n-butil-litio, etc.) en un disolvente adecuado (por ejemplo, dietil éter, tetrahidrofurano, etc.) y posteriormente, haciendo reaccionar el producto resultante con el compuesto (XXXVI) para dar el compuesto de fórmula (XXX). Posteriormente, se trata el compuesto de fórmula XXX con un reactivo de silano (por ejemplo, trietilsilano, etc.) en un disolvente adecuado (por ejemplo, acetonitrilo, diclorometano, etc.) en presencia de un ácido (por ejemplo, complejo de trifluoruro de boro · dietil éter, etc.), para dar el compuesto de fórmula (VII-c).
 - El compuesto de fórmula XIV en el que el anillo A es un anillo de benceno se da a conocer en el documento WO 01/27128.
- El compuesto de fórmula VI se da a conocer en el documento WO 01/27128 o en Benhaddu, S. Czernecki *et al.*, Carbohydr. Res., vol. 260, págs. 243-250, 1994.
 - El compuesto de fórmula VIII puede prepararse a partir de D-(+)-glucono-1,5-lactona según el método dado a conocer en el documento USP 6515117.
- 25 El compuesto de fórmula X y el compuesto de fórmula XI pueden prepararse mediante el siguiente esquema de reacción:

$$R^{11dO} \xrightarrow{\tilde{O}R^{11b}} R^{11dO} \xrightarrow{\tilde{O}R^{11b}} R^{11dO} \xrightarrow{\tilde{O}R^{11b}} R^{11dO} \xrightarrow{\tilde{O}R^{11b}} R^{11dO} \xrightarrow{\tilde{O}R^{11b}} (XXXVII) (XI)$$

30 en el que los símbolos son tal como se definieron anteriormente.

- En primer lugar, el compuesto de fórmula XXXVII se somete a litiación con t-butil-litio en un disolvente adecuado (por ejemplo, tetrahidrofurano, etc.) con enfriamiento (por ejemplo, -78 °C), seguido por hacerlo reaccionar con borato de trimetilo para dar el compuesto de fórmula X.
- Entonces, se hace reaccionar el compuesto de fórmula X con un 1,2-diol (por ejemplo, pinacol, etc.) o 1,3-diol (por ejemplo, 2,4-dimetil-2,4-pentanodiol, etc.) para dar el compuesto de fórmula XI.
- Los otros compuestos de partida están disponibles comercialmente o pueden prepararse fácilmente mediante un método habitual bien conocido para el experto habitual en este campo.

A continuación en el presente documento, se ilustrará la presente invención mediante ejemplos y ejemplos de referencia, pero no debe interpretarse que la presente invención se limita a los mismos.

Ejemplo 1: 1-(β-D-glucopiranosil)-3-(5-etil-2-tienil-metil)benceno

5

10

15

20

25

30

En el esquema anterior, Me es un grupo metilo, Et es un grupo etilo, TMSO y OTMS son un grupo trimetilsililoxilo.

(1) Se disolvió 3-bromo-(5-etil-2-tienilmetil)benceno 1 (211 mg) en tetrahidrofurano (2 ml)-tolueno (4 ml) y se enfrió la mezcla hasta -78 °C bajo atmósfera de argón. A la mezcla se le añadió gota a gota n-butil-litio (disolución en hexano 2,44 M, 0,29 ml) y se agitó la mezcla a la misma temperatura durante 30 minutos. Entonces se añadió gota a gota una disolución de 2,3,4,6-tetraquis-O-trimetilsilil-D-glucono-1,5-lactona 2 (véase el documento USP 6.515.117) (233 mg) en tolueno (5 ml) y se agitó la mezcla adicionalmente a la misma temperatura durante una hora para dar el compuesto de lactol 3. Sin aislar este compuesto, se añadió una disolución de ácido metanosulfónico (0,1 ml) en metanol (5 ml) a la disolución de reacción y se agitó la mezcla a temperatura ambiente durante la noche. Con enfriamiento con hielo, a la mezcla se le añadió una disolución de hidrogenocarbonato de sodio acuosa saturada y se extrajo la mezcla con acetato de etilo. Se lavó el extracto con salmuera, se secó sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (cloroformo:metanol = 19:1) para dar el compuesto de metil éter 4 (136 mg) del lactol. APCI-masas m/Z 412 (M+NH₄).

(2) Se enfrió una disolución del compuesto de metil éter 4 anterior (100 mg) en diclorometano (5 ml) hasta -78 °C bajo atmósfera de argón y a la misma se le añadieron gota a gota sucesivamente triisopropilsilano (0,16 ml) y complejo de trifluoruro de boro · dietil éter (0,10 ml). Se agitó la mezcla a la misma temperatura durante 10 minutos y se calentó. Se agitó la mezcla a 0 °C durante 1 hora y 20 minutos y entonces se agitó adicionalmente a temperatura ambiente durante 2 horas. Con enfriamiento con hielo, se añadió una disolución de hidrogenocarbonato de sodio acuosa saturada y se extrajo la mezcla con acetato de etilo. Se lavó el extracto con salmuera, se secó sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (cloroformo:metanol = 19:1) para dar el 1-(β-D-glucopiranosil)-3-(5-etil-2-tienilmetil)benceno 5 deseado (59 mg). APCI-masas m/Z 382 (M+NH₄).

Ejemplo 2: 5-(β-D-glucopiranosil)-1-(4-etilfenil-metil)-1H-piridin-2-ona

En el esquema anterior, tBu es un grupo terc-butilo, OTIPS es un grupo triisopropilsililoxilo y los otros símbolos son tal como se definieron anteriormente.

10

5

20

15

25

30

(1) Se disolvieron 5-bromo-1-(4-etilfenilmetil)-1H-piridin-2-ona 6 (293 mg) y éster del ácido borónico de glucal 7 (1,0 g) en dimetoxietano (5 ml). A la mezcla se le añadieron dicloruro de bis(trifenil)fosfina-paladio (II) (35 mg) y carbonato de sodio 2 M (2,5 ml) y se calentó la mezcla con agitación a reflujo bajo atmósfera de argón durante 5 horas. Se enfrió la mezcla hasta temperatura ambiente y se diluyó la disolución de reacción con acetato de etilo y se lavó con aqua. Se recogió la fase orgánica, se secó sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 95:5 -70:30) para dar derivado de glucal 8 (276 mg) como un polvo incoloro. APCI-masas m/Z 654 (M+H). (2) Se enfrió una disolución de derivado de glucal 8 (260 mg) en tetrahidrofurano (5 ml) hasta 0 °C bajo atmósfera de argón y a la misma se le añadió gota a gota una disolución de complejo de borano tetrahidrofurano (disolución en tetrahidrofurano 1,13 M, 1,06 ml) y se agitó la disolución de reacción a la misma temperatura durante la noche. Se añadió una mezcla de una disolución de peróxido de hidrógeno acuosa (31 %, 5,0 ml) y disolución de hidróxido de sodio acuosa 3 N (5,0 ml) a la disolución de reacción y se calentó la mezcla hasta temperatura ambiente y se agitó durante 30 minutos. A la mezcla se le añadió disolución de tiosulfato de sodio acuosa al 20 % (30 ml) y se extrajo la mezcla con éter. Se lavó el extracto con salmuera, se secó sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 96:4-66,34) para dar compuesto C-glucósido 9 (59 mg) como un polvo incoloro. APCImasas m/Z 672 (M+H).

(3) Se disolvió el compuesto C-glucósido 9 anterior (55 mg) en tetrahidrofurano (2 ml) y al mismo se le añadió fluoruro de tetrabutilamonio (disolución en tetrahidrofurano 1,0 M, 0,41 ml). Se calentó la mezcla con agitación a reflujo durante 3 horas bajo atmósfera de argón y se enfrió la disolución de reacción hasta temperatura ambiente. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (cloroformo:metanol = 100:0-88:12) para dar la 5-(β-D-glucopiranosil)-1-(4-etilfenilmetil)-1H-piridin-2-ona 10 deseada (10 mg) como un polvo incoloro. APCI-masas m/Z 376 (M+H).

Ejemplo 3: 1-(β-D-glucopiranosil)-3-(benzo[b]tiofen-2-ilmetil)benceno

En el esquema anterior, Bn es un grupo bencilo.

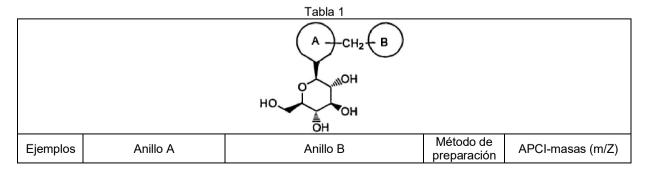
15

20

- (1) Se disolvió β-m-bromofenil-tetra-O-bencil-C-glucósido 11 (véase el documento WO 01/27128) (1,00 g) en dietil éter (60 ml) y se enfrió la mezcla hasta -78 °C bajo atmósfera de argón. A la mezcla se le añadió gota a gota t-butil-litio (disolución en pentano 1,49 M, 0,99 ml) y se agitó la mezcla a la misma temperatura durante 10 minutos. Entonces se añadió gota a gota una disolución de 2-formilbenzo[b]tiofeno (286 mg) en dietil éter (2 ml) y se agitó la mezcla adicionalmente a la misma temperatura durante 30 minutos. A la mezcla de reacción se le añadió una disolución de cloruro de amonio acuosa saturada y se calentó la mezcla hasta temperatura ambiente. Se extrajo la mezcla con dietil éter, se secó el extracto sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 90:10-50:50) para dar el compuesto de alcohol 12 (835 mg). APCI-masas m/Z 780 (M+NH₄).
 - (2) Se enfrió una disolución del compuesto de alcohol 12 (asta mg). APCI-masas m/2 760 (M+NH₄).

 (2) Se enfrió una disolución del compuesto de alcohol 12 anterior (820 mg) en diclorometano (15 ml) hasta -78 °C bajo atmósfera de argón y a la misma se le añadieron gota a gota sucesivamente trietilsilano (0,52 ml) y complejo de trifluoruro de boro · dietil éter (0,20 ml). Se calentó la mezcla de reacción hasta temperatura ambiente y se agitó a la misma temperatura durante 30 minutos. A la misma se le añadió una disolución de hidrogenocarbonato de sodio acuosa saturada y se extrajo la mezcla con diclorometano. Se secó el extracto sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 94:6-75:25) para dar el compuesto 13 (703 mg). APCI-masas m/Z 764 (M+NH₄). (3) Se enfrió una disolución del compuesto 13 anterior (690 mg) en diclorometano (20 ml) hasta 0 °C y se añadió yodotrimetilsilano (0,66 ml) a la misma y se agitó la mezcla a temperatura ambiente durante una hora. Se repitieron la adición de yodotrimetilsilano y la agitación a temperatura ambiente de la misma manera 3 veces. Se sumó la cantidad total del yodotrimetilsilano hasta 2,64 ml. Con enfriamiento con hielo, se añadió agua a la mezcla de reacción y se extrajo la mezcla con dietil éter dos veces y se lavó con una disolución de tiosulfato de sodio acuosa. Se secó el extracto sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (cloroformo:metanol = 100:0-89:11) para dar el 1-(β-D-glucopiranosil)-3-(benzo[b]tiofen-2-ilmetil)benceno 14 deseado (180 mg). APCI-masas m/Z 404 (M+NH₄).
- 30 Ejemplo 4: 1-(β-D-glucopiranosil)-3-(5-cloro-2-tienilmetil)-4-metilbenceno

En el esquema anterior, los símbolos son tal como se definieron anteriormente.


20

25

30

- 5 (1) Se enfrió una disolución de 2-clorotiofeno (447 mg) en tetrahidrofurano (10 ml) hasta -78 °C bajo atmósfera de argón y a la misma se le añadió gota a gota n-butil-litio (disolución en hexano 1,59 M, 2,61 ml). Se agitó la mezcla a la misma temperatura durante una hora y a la misma se le añadió gota a gota una disolúción de 5-bromo-2metilbenzaldehído 15 (750 mg) en tetrahidrofurano (5 ml). Se agitó la mezcla a la misma temperatura durante 30 minutos para dar el compuesto 16. Se añadió tolueno (30 ml) y a la misma se le añadió gota a gota, además, 10 n-butil-litio (disolución en hexano 1,59 M, 2,37 ml). Se agitó la mezcla adicionalmente a la misma temperatura durante 30 minutos y se añadió gota a gota una disolución de 2,3,4,6-tetraquis-O-trimetilsilil-D-glucono-1,5-lactona 2 (véase el documento USP 6.515.117) (1,76 g) en tolueno (5 ml) y se agitó la mezcla adicionalmente a la misma temperatura durante una hora y media para dar el compuesto de lactol 17. Posteriormente, se añadió una disolución de ácido metanosulfónico (1,22 ml) en metanol (25 ml) a la disolución de reacción y se agitó la mezcla 15 a temperatura ambiente durante la noche. A la mezcla se le añadió una disolución de hidrogenocarbonato de sodio acuosa saturada y se extrajo la mezcla con acetato de etilo. Se lavó el extracto con salmuera, se secó sobre sulfato de sodio y se evaporó el disolvente a presión reducida para dar el compuesto de metil éter 18 en bruto, que se usó en la etapa posterior sin purificación adicional.
 - (2) Se enfrió una disolución del compuesto de metil éter 18 en bruto anterior en diclorometano (25 ml) hasta -78 °C bajo atmósfera de argón y a la misma se le añadieron gota a gota sucesivamente trietilsilano (3,01 ml) y complejo de trifluoruro de boro dietil éter (2,39 ml). Se calentó la mezcla de reacción hasta 0 °C y se agitó a la misma temperatura durante 3 horas. A la misma se le añadió una disolución de hidrogenocarbonato de sodio acuosa saturada y se extrajo la mezcla con acetato de etilo. Se lavó el extracto con salmuera, se secó sobre sulfato de sodio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (cloroformo:metanol = 100:0-92:8) para dar el 1-(β-D-glucopiranosil)-3-(5-cloro-2-tienilmetil)-4-metilbenceno 19 deseado (183 mg). APCI-masas m/Z 402/404 (M+NH₄).

De manera similar al método dado a conocer en cualquiera de los ejemplos 1 a 4 anteriores, se prepararon los compuestos mostrados en la tabla 1 a continuación a partir de los materiales de partida correspondientes. Los números mostrados en la columna de "método de preparación" en la tabla indican el número del ejemplo, según el cual se llevó a cabo la preparación.

(continuación)

Fiamples	Anillo A	(continuación)	Método de	ADCI massa (m/7)
Ejemplos		Anillo B	preparación	APCI-masas (m/Z)
5	<u>-</u>	Sy Et	1	416/418 (M+NH ₄)
6		Syn-Pr	1	396 (M+NH ₄)
7	OMe	S Et	1	412 (M+NH ₄)
8	MeO	S Et	1	412 (M+NH ₄)
9		\s\s\	3	354 (M+NH₄)
10		S	3	388/390 (M+NH ₄)
11		S n-Pr	1	396 (M+NH ₄)
12	ō	Syn-Pr	1	430/432 (M+NH ₄)
13	OMe	Syn-Pr	1	426 (M+NH₄)

(continuación)

(continuación)							
Ejemplos	Anillo A	Anillo B	Método de preparación	APCI-masas (m/Z)			
14		S EE	1	382 (M+NH ₄)			
15		S C	1	416/418 (M+NH ₄)			
16	ō	s N	1	442/444 (M+NH ₄)			
17	ō	S Et Me	1	430/432 (M+NH ₄)			
18	ō		2	444/446 (M+NH ₄)			
19	CI	SycI	1	422/424 (M+NH ₄)			
20	CI	S	1	478/480 (M+NH ₄)			
21	CI	~S ~S	2	470/472 (M+NH ₄)			

(continuación)					
Ejemplos	Anillo A	Anillo B	Método de preparación	APCI-masas (m/Z)	
22	Me	SCI	1	484/486 (M+NH ₄)	
23	ō	SEt	1	450/452 (M+NH ₄)	
24	C	S CI Me	4	436/438 (M+NH ₄)	
25	ō	S	1	504/506 (M+NH ₄)	
26	ō-	S CF $_3$	2	456/458 (M+NH ₄)	
27	<u>-</u>	S	1	448/450 (M+NH ₄)	
28		SycI	1	464/466 (M+NH ₄)	

	Anillo A	(continuación) Anillo B	Método de	
Ejemplos	Aniilo A	Affilio B	preparación	APCI-masas (m/Z)
29	CI	TS CI	4	478/480 (M+NH ₄)
30	OMe		1	434 (M+NH ₄)
31	CI		1	438/440 (M+NH ₄)
32	₩ T	Me	1	418 (M+NH ₄)
33		SS F	1	422 (M+NH ₄)
34	F	SS	1	422 (M+NH ₄)
35	OEt	→ S	1	448 (M+NH ₄)
36	F	→S	1	422 (M+NH ₄)
37	OMe	→S	1	484 (M+NH ₄)

Ejemplos	Anillo A	(continuacion) Anillo B	Método de preparación	APCI-masas (m/Z)
38		S _{CF3}	1	472 (M+NH ₄)
39		S Me	1	418 (M+NH₄)
40		S F	1	422 (M+NH₄)
41	Me	-S	2	418 (M+NH ₄)
42*	Me	~\$\tag{\$}	1	418 (M+NH ₄)
43	C C	→ S → Me	1	452/454 (M+NH ₄)
44	\overline{c}	Me	1	452/454 (M+NH ₄)
45	CI	S	1	472/474 (M+NH ₄)
46	CI	Me Me	1	466/468 (M+NH ₄)

(continuación)				
Ejemplos	Anillo A	Anillo B	Método de preparación	APCI-masas (m/Z)
47	Me	→S S	1	418 (M+NH ₄)
48	<u>-</u>	SOMe	1	468/470 (M+NH ₄)
49	<u></u>	S	1	472/474 (M+NH ₄)
50	<u>-</u>	SCF ₃	2	506/508 (M+NH ₄)
51*	CI	SS	2	438/440 (M+NH ₄)
52		-S-F	2	456/458 (M+NH ₄)
53	F	-STF	2	440 (M+NH ₄)
54*	CI	~\$\tag{}	2	438/440 (M+NH ₄)

Ejemplos	Anillo A	(continuacion) Anillo B	Método de preparación	APCI-masas (m/Z)
55	CT CT	OMe	1	468/470 (M+NH ₄)
56	ō	-STOMe	1	468/470 (M+NH ₄)
57	ō	S F	2	456/458 (M+NH ₄)
58		S Me	1	470/472 (M+NH ₄)
59	C	→ST)	2	456/458 (M+NH ₄)
60	□ C□	S	2	456/458 (M+NH ₄)
61		S	2	472/474 (M+NH ₄)
62	F.	→ STO	2	440 (M+NH₄)

(continuación)					
Ejemplos	Anillo A	Anillo B	Método de preparación	APCI-masas (m/Z)	
63	Me	S C C	4	452/454 (M+NH ₄)	
64*	₩ Ö	S S	2	438/440 (M+NH ₄)	
65	The state of the s		1	432 (M+NH₄)	
66	CF ₃	~S	2	472 (M+NH ₄)	
67		S	1	464/466 (M+NH ₄)	
68	CI	S Me	1	478/480 (M+NH ₄)	
69	CI CI	S	1	482/484 (M+NH ₄)	
70	CI	S F	1	482/484 (M+NH ₄)	

(continuación)				
Ejemplos	Anillo A	Anillo B	Método de preparación	APCI-masas (m/Z)
71	ō	OEt	1	508/510 (M+NH ₄)
72	ō	SOEt	1	508/510 (M+NH ₄)
73		SOEt	1	508/510 (M+NH ₄)
74	F	\s\s\	1	448 (M+NH ₄)
75	F.	SOEt	1	492 (M+NH₄)
76	F	S Et	1	492 (M+NH ₄)
77	F	S	1	466 (M+NH₄)
78	CI	S F	1	482/484 (M+NH ₄)

Fiamples	Anillo A	(continuación) Anillo B	Método de	ADCI massa (m/7)
Ejemplos	,		preparación	APCI-masas (m/Z)
79		SOEt	1	492 (M+NH ₄)
80	E	S F	1	466 (M+NH₄)
81	F	S	1	466 (M+NH₄)
82	Me	S	1	444 (M+NH ₄)
83	Me	S F	1	462 (M+NH ₄)
84	Me	S F	1	462 (M+NH ₄)
85	OMe	s	2	460 (M+NH₄)
86	Me	S Me	1	458 (M+NH₄)

		(continuación)		
Ejemplos	Anillo A	Anillo B	Método de preparación	APCI-masas (m/Z)
87	ÇI	S Me	1	478/480 (M+NH ₄)
88	CI	S	1	498/500 (M+NH ₄)
89	Me	S CI	1	478/480 (M+NH ₄)
90	Me	SOMe	1	474 (M+NH ₄)
91		Et	2	426 (M+H)
92	Me O N	Et	2	440 (M+H)
93	s d	Et	2	382 (M+NH ₄)
94	S	Et	2	382 (M+NH ₄)
95	√s √	Et	2	382 (M+NH ₄)

Ejemplos	Anillo A	(continuacion) Anillo B	Método de	APCI-masas (m/Z)
96	S S	Et	preparación 2	382 (M+NH ₄)
97	CI	Et	2	416/418 (M+NH ₄)
98	CI	Et	2	416/418 (M+NH ₄)
99			1	404 (M+NH ₄)
100		O Et	1	366 (M+NH₄)
101			1	388 (M+NH ₄)
102	CI		1	422/424 (M+NH ₄)

Ejemplo 103: 1-(β-D-glucopiranosil)-3-(benzotiazol-2-ilmetil)-4-metilbenceno

En el esquema anterior, los símbolos son tal como se definieron anteriormente.

20

25

30

(1) Se disolvió 1-(benzotiazol-2-ilmetil)-5-bromo-2-metilbenceno 20 (495 mg) en tetrahidrofurano (5 ml)-tolueno (10 ml) y se enfrió la mezcla hasta -78 °C bajo atmósfera de argón. A la mezcla se le añadió gota a gota n-butillitio (disolución en hexano 2,44 M, 0,67 ml) y sucesivamente se añadió gota a gota t-butil-litio (disolución en pentano 2,44 M, 1,57 ml). Se agitó la mezcla a la misma temperatura durante 10 minutos y entonces se añadió gota a gota una disolución de 2,3,4,6-tetraquis-O-trimetilsilil-D-glucono-1,5-lactona 2 (véase el documento USP 6.515.117) (2,17 g) en tolueno (5 ml) y se agitó la mezcla adicionalmente a la misma temperatura durante 15 minutos para dar el compuesto de lactol 21. Sin aislar este compuesto, se añadió una disolución de ácido metanosulfónico (1,5 ml) en metanol (25 ml) a la disolución de reacción y se agitó la mezcla a temperatura ambiente durante la noche. Con enfriamiento con hielo, a la mezcla se le añadió una disolución de hidrogenocarbonato de sodio acuosa saturada y se extrajo la mezcla con acetato de etilo. Se lavó el extracto con salmuera, se secó sobre sulfato de magnesio y se evaporó el disolvente a presión reducida para dar el compuesto de metil éter 22, que se usó en la etapa posterior sin purificación adicional.

(2) Se enfrió una disolución del compuesto de metil éter 22 anterior en diclorometano (20 ml)-acetonitrilo (10 ml) hasta -78 °C bajo atmósfera de argón y a la misma se le añadieron gota a gota sucesivamente trietilsilano (1,24 ml) y complejo de trifluoruro de boro dietil éter (0,99 ml). Se calentó la mezcla hasta temperatura ambiente y se agitó a la misma temperatura durante 30 minutos. Con enfriamiento con hielo, se añadió una disolución de hidrogenocarbonato de sodio acuosa saturada y se evaporó el disolvente a presión reducida. Se extrajo el residuo con acetato de etilo. Se lavó el extracto con salmuera, se secó sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (cloroformo:metanol = 100:0-85:15) para dar $1-(\beta-D-glucopiranosil)-3-(benzotiazol-2-ilmetil)-4-metilbenceno 23 (200 mg) como un polvo incoloro. APCI-masas m/Z 402 (M+H).$

De manera similar al ejemplo 103, se prepararon los compuestos mostrados en la tabla 2 a continuación a partir de los materiales de partida correspondientes.

Tabla 2

A CH₂ B

HO OH
OH
OH

Ejemplos Anillo A Anillo B APCI-masas (m/Z)

104

422/424 (M+H)

		(continuación)	
Ejemplos	Anillo A	Anillo B	APCI-masas (m/Z)
105	$= \bigvee_{\underline{0}}$	~S	480/482 (M+NH ₄)

Ejemplo de referencia 106: 1-(β-D-glucopiranosil)-4-cloro-3-(1-oxibenzo[b]tiofen-2-ilmetil)benceno

En el esquema anterior, AcO y OAc son un grupo acetiloxilo.

- (1) Se disolvió el compuesto 24 (9,61 g) obtenido en el ejemplo 31 en cloroformo (100 ml) y a la mezcla se le añadieron anhídrido acético (21,6 ml), piridina (18,5 ml) y 4-dimetilaminopiridina (128 mg) y se agitó la mezcla a temperatura ambiente durante 3,5 días. Entonces se evaporó el cloroformo a presión reducida y se disolvió el residuo en acetato de etilo (200 ml). Se lavó la disolución sucesivamente con disolución de ácido clorhídrico acuosa al 10 %, agua, una disolución de hidrogenocarbonato de sodio acuosa saturada y salmuera, se secó sobre sulfato de magnesio y se trató con carbón activado. Se evaporó el disolvente a presión reducida y se cristalizó el residuo en etanol para dar el compuesto de tetraacetato 25 (6,14 g). APCI-masas m/Z 606/608 (M+NH₄).
- (2) Se disolvió el compuesto de tetraacetato 25 anterior (1,00 g) en diclorometano (20 ml) y, con enfriamiento con hielo, se añadió ácido m-cloroperbenzoico (439 mg) al mismo y se agitó la mezcla a temperatura ambiente durante la noche. Se añadió adicionalmente ácido m-cloroperbenzoico a la misma y se agitó la mezcla otra vez a temperatura ambiente durante la noche. Se lavó la mezcla de reacción sucesivamente con disolución de tiosulfato de sodio acuosa al 10 %, una disolución de hidrogenocarbonato de sodio acuosa saturada y salmuera. Se secó la mezcla sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano: acetato de etilo = 2:1-1:2) para dar el compuesto de sulfóxido 26 (295 mg). APCI-masas m/Z 622/624 (M+NH₄).
- (3) Se disolvió el compuesto de sulfóxido 26 anterior (293 mg) en una mezcla de metanol (10 ml)-tetrahidrofurano (5 ml) y se añadió metóxido de sodio (disolución en metanol al 28 %, 2 gotas) al mismo y se agitó la mezcla a temperatura ambiente durante una hora. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (cloroformo:metanol = 9:1) para dar 1-(β-D-glucopiranosil)-4-cloro-3-(1-oxibenzo[b]tiofen-2-ilmetil)benceno como un polvo de color amarillo pálido. APCI-masas m/Z 454/456 (M+NH₄).

Ejemplo 107: 1-(β-D-glucopiranosil)-4-cloro-3-(1,1-dioxibenzo[b]tiofen-2-ilmetil)benceno

Se preparó el compuesto objetivo de manera similar al ejemplo 106. APCI-masas m/Z 470/472 (M+NH₄).

Ejemplo 108: 3,5-dimetil-4-(4-etilfenilmetil)-1-(β-D-glucopiranosil)pirazol

10

15

20

25

35

En el esquema anterior, los símbolos son tal como se definieron anteriormente.

5 (1) Se disolvieron 3-(4-etilfenilmetil)-2,4-pentanodiona 28 (700 mg) y 2,3,4,6-tetra-O-bencil-α,β-D-glucosahidrazona 29 (1,70 g) (véase Schmidt, R. R. et al., Liebigs Ann. Chem. 1981, 2309) en tetrahidrofurano (20 ml) y se agitó la mezcla a temperatura ambiente durante 18 horas bajo atmósfera de argón. Se evaporó el disolvente a presión reducida y se disolvió el residuo en tolueno (20 ml) y se calentó la mezcla con agitación a reflujo durante 2 horas. Se dejó la mezcla hasta que se enfrió y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 90:10-65:35) para dar 3,5-dimetil-4-(4-etilfenilmetil)-1-(2,3,4,6-tetra-O-bencil-β-D-glucopiranosil)pirazol 30 (299 mg) como un semisólido de color amarillo pálido. APCI-masas m/Z 737 (M+H).

(2) Se disolvió el compuesto de tetrabencilo 30 anterior (294 mg) en una mezcla de etanol (5 ml) y tetrahidrofurano (4 ml) y a la misma se le añadió hidróxido de paladio (100 mg) y se agitó la mezcla a temperatura ambiente durante 16 horas bajo atmósfera de hidrógeno a presión normal. Se eliminaron por filtración los materiales insolubles y se evaporó el disolvente a presión reducida. Se cristalizó el residuo en dietil éter para dar el 3,5-dimetil-4-(4-etilfenilmetil)-1-(β-D-glucopiranosil)pirazol 31 deseado (118 mg) como un polvo incoloro. APCI-masas m/Z 377 (M+H).

20 <u>Ejemplo 109</u>

15

4-(4-etilfenilmetil)-1-(β-D-glucopiranosil)-1,2,3-triazol

En el esquema anterior, n-Bu es un grupo n-butilo y los otros símbolos son tal como se definieron anteriormente.

(1) Se agitó una disolución de 4-(bromometil)-1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-1,2,3-triazol 32 (500 mg) (véase Federico G. H. *et al.*, J. Med. Chem. (1979) 29, 496), tri-n-butil(4-etilfenil)estaño 33 (604 mg) y tetraquis(trifenilfosfina)paladio (0) (59 mg) en tetrahidrofurano (10 ml) con calentamiento a 70 °C durante 12 horas bajo atmósfera de argón. Se enfrió la mezcla de reacción hasta temperatura ambiente, se diluyó con acetato de etilo y entonces se añadió una disolución de fluoruro de potasio acuosa a la misma y se agitó la mezcla a temperatura ambiente durante una hora. Se eliminaron por filtración los materiales insolubles y se lavó el filtrado con agua y se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 90:10-50:50) para dar 4-(4-etilfenilmetil)-1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-1,2,3-triazol 34 (90 mg) como un sólido incoloro. APCI-masas m/Z 518 (M+H).

(2) A partir del compuesto de tetraacetato 34 anterior, se preparó el 4-(4-etilfenilmetil)-1-(β-D-glucopiranosil)-1,2,3-triazol 35 deseado de manera similar al ejemplo 106-(3) como un sólido incoloro. APCI-masas m/Z 350 (M+H).

Ejemplo 110

5

10

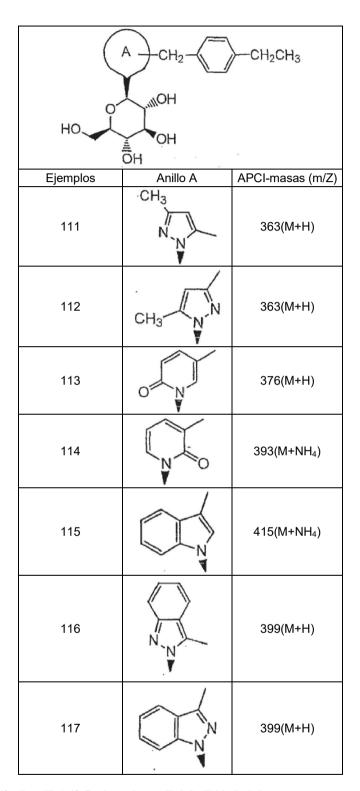
15

20

30

35

40


4-(4-etilfenilmetil)-1-(β-D-glucopiranosil)pirazol

En el esquema anterior, TMS es un grupo trimetilsililo y los otros símbolos son tal como se definieron anteriormente.

- 25 (1) A una disolución de 4-(4-etilfenilmetil)pirazol 36 (495 mg) en acetonitrilo (2,0 ml) se le añadió N,O-bis(trimetilsilil)acetamida (1,05 ml) y se agitó la mezcla con calentamiento a 60 °C durante 2,5 horas bajo atmósfera de argón. Se enfrió la mezcla de reacción hasta temperatura ambiente y se evaporó el disolvente a presión reducida para dar 4-(4-etilfenilmetil)-1-trimetilsililpirazol 37 en bruto, que se usó en la reacción posterior sin purificación adicional.
 - (2) Se disolvió el compuesto de N-sililo 37 anterior en dicloroetano (7,0 ml) y al mismo se le añadieron polvo de tamiz molecular 4A (500 mg), 1,2,3,4,6-penta-O-acetil-β-D-glucopiranosa 38 (1,04 g) y trifluorometanosulfonato de trimetilsililo (0,51 ml). Se agitó la mezcla con calentamiento a 80 °C durante 3 horas bajo atmósfera de argón. Se enfrió la mezcla de reacción hasta temperatura ambiente y se eliminaron por filtración los materiales insolubles. Posteriormente, se vertió el filtrado en una disolución de hidrogenocarbonato de sodio acuosa saturada. Se extrajo la mezcla dos veces con diclorometano y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 80:20-50:50) para dar 4-(4-etilfenilmetil)-1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)pirazol 39 (610 mg) como un semisólido incoloro. APCI-masas m/Z 517 (M+H).
 - (3) A partir del compuesto de tetraacetato 39 anterior, se preparó el 4-(4-etilfenilmetil)-1-(β-D-glucopiranosil)pirazol 40 deseado de manera similar al ejemplo 106-(3) como un aceite incoloro. APCI-masas m/Z 349 (M+H).

De manera similar al Ejemplo 110, los compuestos mostrados en la Tabla 3 a continuación se prepararon a partir de materiales de partida correspondientes.

45 Tabla 3

 $\underline{\text{Ejemplo 118: 3-RS-(4-etilfenilmetil)-1-(\beta-D-glucopiranosil)-2,3-dihidroindol}}$

ES 2 844 401 T3

En el esquema anterior, los símbolos son tal como se definieron anteriormente.

(1) A una suspensión de hidróxido de potasio en polvo (953 mg) y sulfato de sodio (6,0 g) en acetonitrilo (50 ml) se le añadió 3-(4-etilfenilmetil)-1H-indol 41 (500 mg) y se agitó la mezcla a temperatura ambiente durante una hora bajo atmósfera de argón. A la mezcla de reacción se le añadió una disolución de bencilcloro-α-D-glucosa 42 (3,0 g) (véase Cicchillo R. M. et al., Carbohydrate Research (2000) 328, 431) en acetonitrilo (20 ml) y se agitó la mezcla a temperatura ambiente durante la noche. Se vertió la mezcla de reacción en disolución de ácido clorhídrico acuosa 2 N y se extrajo la mezcla con dietil éter. Se lavó el extracto con salmuera, se secó sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 100:0-85:15) para dar 3-(4-etilfenilmetil)-1-(2,3,4,6-tetra-O-bencil-αβ-D-glucopiranosil)-1H-indol 43 (1,04 g) como un jarabe de color amarillo pálido. APCI-masas m/Z 758 (M+H).
(3) A partir del compuesto de tetrabencilo 43 anterior, se preparó el 3-RS-(4-etilfenilmetil)-1-(β-D-glucopiranosil)-2,3-dihidroindol 44 deseado de manera similar al ejemplo 108-(2) como un polvo de color rosa pálido. APCI-masas

Ejemplo 119

m/Z 400 (M+H).

20 <u>1-(β-D-glucopiranosil)-4-cloro-3-(5-(2-pirimidinil)-2-tienilmetil)benceno</u>

En el esquema anterior, los símbolos son tal como se definieron anteriormente.

15

20

25

30

35

- (1) A una disolución de ácido 5-bromo-2-clorobenzoico 45 (1,22 g) en una mezcla de tetrahidrofurano (20 ml)-tolueno (20 ml) se le añadió gota a gota n-butil-litio (disolución en hexano 2,44 M, 4,26 ml) a -78 °C bajo atmósfera de argón. Se agitó la mezcla a -78 °C durante 30 minutos y a la misma se le añadió gota a gota una disolución de 2,3,4,6-tetra-O-bencil-β-D-glucolactona 46 (2,16 g) en tolueno (10 ml) y se agitó la mezcla adicionalmente a la misma temperatura durante 2 horas. A la mezcla se le añadió una disolución de cloruro de amonio acuosa saturada y se calentó la mezcla hasta temperatura ambiente. Se acidificó la mezcla de reacción mediante la adición de disolución de ácido clorhídrico acuosa al 10 % y se extrajo con acetato de etilo. Se lavó el extracto con salmuera y se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida para dar el compuesto 47 en bruto como un aceite, que se usó en la etapa posterior sin purificación adicional.
 - (2) Se disolvió el compuesto 47 en bruto anterior en diclorometano (30 ml) y al mismo se le añadieron gota a gota triisopropilsilano (2,46 ml) y complejo de trifluoruro de boro · dietil éter (1,52 ml) a -78 °C. Posteriormente, se agitó la mezcla a 0 °C durante una hora y a la misma se le añadió una disolución de hidrogenocarbonato de sodio acuosa saturada y se agitó la mezcla adicionalmente durante 20 minutos. Se acidificó la mezcla de reacción mediante la adición de disolución de ácido clorhídrico acuosa al 10 % y se extrajo con acetato de etilo. Se lavó el extracto con salmuera y se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía de gel de sílice (cloroformo:metanol = 100:1-50:1) para dar el compuesto 48 (1,41 g) como un aceite.
 - (3) Se disolvió el compuesto 48 (1,41 g) en diclorometano (10 ml) y al mismo se le añadió cloruro de oxalilo (2 ml). Se agitó la mezcla a temperatura ambiente durante 3 horas. Se evaporó el disolvente a presión reducida para dar el cloruro de ácido correspondiente. Se disolvió el compuesto en cloroformo (10 ml) y se añadió gota a gota a una disolución de clorhidrato de N,O-dimetilhidroxiamina (390 mg) y trietilamina (1,12 ml) en cloroformo (10 ml) a 0 °C. Se agitó la mezcla a temperatura ambiente durante la noche y se lavó la mezcla de reacción sucesivamente con disolución de ácido clorhídrico acuosa al 10 %, agua, una disolución de hidrogenocarbonato de sodio acuosa saturada y salmuera. Se secó la mezcla sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 4:1-2:1) para dar el compuesto 49 (784 mg) como un aceite de color amarillo pálido. APCI-masas m/Z 739/741 (M+NH₄).
 - (4) Se disolvió el compuesto 49 (1,22 g) en tetrahidrofurano (20 ml) y se enfrió la mezcla hasta -78 °C bajo atmósfera de argón. A la mezcla se le añadió gota a gota hidruro de diisobutilaluminio (disolución en tolueno 1,0 M, 4,2 ml) y se agitó la mezcla a la misma temperatura durante 3 horas. A la misma se le añadió disolución de ácido clorhídrico acuosa al 10 % y se extrajo la mezcla con acetato de etilo. Se lavó el extracto sucesivamente con una disolución de hidrogenocarbonato de sodio acuosa saturada y salmuera. Se secó el extracto sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 9:1) para dar el compuesto 50 (771 mg) como un aceite de color amarillo pálido. APCI-masas m/Z 680/682 (M+NH₄).
 - (5) Se disolvió 2,5-dibromotiofeno 51 (1,31 g) en tetrahidrofurano (30 ml) y se enfrió la mezcla hasta -78 °C bajo

atmósfera de argón. A la mezcla se le añadió gota a gota n-butil-litio (disolución en hexano 2,59 M, 2,01 ml) y se agitó la mezcla a la misma temperatura durante 30 minutos. A la misma se le añadió gota a gota una disolución del compuesto 50 anterior (2,40 g) en tetrahidrofurano (15 ml) y se agitó la mezcla a -78 °C durante 2 horas. A la misma se le añadió una disolución de cloruro de amonio acuosa saturada y se extrajo la mezcla con acetato de etilo y se lavó con salmuera. Se secó el extracto sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 9:1-4:1) para dar el compuesto 52 (2,62 mg) como un aceite de color marrón pálido. APCI-masas m/Z 842/844 (M+NH₄).

- (6) Se trató el compuesto 52 de manera similar al ejemplo 3-(2) para dar 1-(2,3,4,6-tetra-O-bencil-β-D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-clorobenceno 53 como un sólido de color amarillo pálido. APCI-masas m/Z 826/828 (M+NH₄).
- (7) Se agitó un disolución mezclada del 1-(2,3,4,6-tetra-O-bencil-β-D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-clorobenceno 53 anterior (200 mg), tri-n-butil(2-pirimidinil)estaño 54 (137 mg) y dicloruro de bis(trifenilfosfina)paladio (II) (9 mg) en N-metil-2-pirrolidinona (5 ml) a 100 °C durante 7 horas bajo atmósfera de argón. Se enfrió la mezcla hasta temperatura ambiente y se añadió agua a la misma y se extrajo la mezcla con acetato de etilo. Se lavó el extracto con agua y posteriormente con salmuera y se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 4:1-2:1) para dar 1-(2,3,4,6-tetra-O-bencil-β-D-glucopiranosil)-4-cloro-3-(5-(2-pirimidinil)-2-tienilmetil)benceno 55 (93 mg) como un aceite de color marrón pálido. APCI-masas m/Z 826/828 (M+NH₄).
- (8) A una disolución del 1-(2,3,4,6-tetra-O-bencil- β -D-glucopiranosil)-4-cloro-3-(5-(2-pirimidinil)-2-tienilmetil)benceno 55 anterior (90 mg) en etanotiol (1,5 ml) se le añadió complejo de trifluoruro de boro · éter (0,42 ml) a 0 °C y se agitó la mezcla a temperatura ambiente durante la noche. Se enfrió la mezcla otra vez hasta 0 °C y a la misma se le añadieron una disolución de hidrogenocarbonato de sodio acuosa saturada y una disolución de tiosulfato de sodio acuosa. Se extrajo la mezcla con acetato de etilo y tetrahidrofurano y se secó el extracto sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (cloroformo:metanol = 19:1-9:1) para dar el 1-(β -D-glucopiranosil)-4-cloro-3-(5-(2-pirimidinil)-2-tienilmetil)benceno 56 deseado (27 mg) como un polvo de color amarillo pálido. APCI-masas m/Z 449/451 (M+H).

Ejemplo 120

5

10

15

20

25

30

35

40

45

1-(β-D-glucopiranosil)-3-(6-(2-fluoro-3-piridil)-2-tienilmetil)-4-metilbenceno

En el esquema anterior, los símbolos son tal como se definieron anteriormente.

- (1) Se trató el compuesto 19 obtenido en el ejemplo 4 de manera similar al ejemplo 106-(1) para dar 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-cloro-2-tienilmetil)-4-metilbenceno 57 como cristales incoloros. APCI-masas m/Z 570/572 (M+NH₄).
- (2) Se agitó una disolución del 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-cloro-2-tienilmetil)-4-metilbenceno 57 anterior (200 mg), ácido 6-fluoropiridin-3-borónico 58 (117 mg), aducto de tri-terc-butilfosfina · ácido tetrafluorobórico (24 mg), fluoruro de potasio (80 mg) y tris(dibencilidenacetona)dipaladio (0) (27 mg) en tetrahidrofurano (8 ml) a temperatura ambiente durante 2 días bajo atmósfera de argón. A la misma se le añadió una disolución de cloruro de amonio acuosa saturada y se extrajo la mezcla con acetato de etilo. Se secó el extracto sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 90:10-70:30) para dar 1-(2,3,4,6-tetra-O-

acetil-β-D-glucopiranosil)-3-(5-(6-fluoro-3-piridil)-2-tienilmetil)-4-metilbenceno 59 (44 mg) como cristales incoloros. APCI-masas m/Z 631 (M+NH₄).

(3) Se disolvió el 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-(6-fluoro-3-piridil)-2-tienilmetil)-4-metilbenceno 59 anterior (39 mg) en 1,4-dioxano (4 ml)-tetrahidrofurano (4 ml) y al mismo se le añadió hidróxido de sodio 2 N (2 ml). Se agitó la mezcla a temperatura ambiente durante una hora. Se acidificó la mezcla mediante la adición de una disolución de ácido cítrico acuosa y se extrajo la mezcla con acetato de etilo. Se lavó el extracto sucesivamente con una disolución de hidrogenocarbonato de sodio acuosa saturada y salmuera y entonces se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida para dar el 1-(β-D-glucopiranosil)-3-(5-(6-fluoro-3-piridil)-2-tienilmetil)-4-metilbenceno 60 deseado (34 mg) como un polvo incoloro. APCI-masas m/Z 463 (M+NH₄).

Ejemplo 121

5

10

25

30

35

40

60

1-(β-D-glucopiranosil)-4-cloro-3-(2-(5-fenil-2-tienil)etil)benceno

15 Se obtuvo el compuesto objetivo de manera similar al ejemplo 1, a partir de 5-bromo-2-cloro-1-(2-(5-fenil-2-tienil)etil)benceno. APCI-masas m/Z 478/480 (M+NH₄).

Eiemplo 122

- 20 <u>1-(β-D-glucopiranosil)-3-(5-(3-dimetilaminofenil)-2-tienilmetil)-4-metilbenceno</u>
 - (1) Se usaron 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-cloro-2-tienilmetil)-4-metilbenceno 57 obtenido en el ejemplo 120 (1) y ácido 3-dimetilaminofenilborónico y se trataron de manera similar al ejemplo 120-(2) para dar 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-(3-dimetilaminofenil)-2-tienilmetil)-4-metilbenceno. APCI-masas m/Z 638 (M+H).
 - (2) Se trató el 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-(3-dimetilaminofenil)-2-tienilmetil)-4-metilbenceno anterior de manera similar al ejemplo 106-(3) para dar el compuesto objetivo. APCI-masas m/Z 470 (M+H).

Ejemplo 123:

1-(β-D-glucopiranosil)-4-cloro-3-(5-(3-cianofenil)-2-tienilmetil)benceno

- (1) Se calentó una disolución mezclada de 1-(2,3,4,6-tetra-O-bencil-β-D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-clorobenceno 53 (1,24 g) obtenido en el ejemplo 119-(6), ácido 3-cianofenilborónico (270 ml), dicloruro de bis(trifenilfosfina)paladio (II) (54 mg) y disolución de carbonato de sodio acuosa 2 M (2,3 ml) en 1,2-dimetoxietano (12 ml) a reflujo durante 4 horas. Se diluyó la mezcla con acetato de etilo y se lavó sucesivamente con una disolución de hidrogenocarbonato de sodio acuosa saturada y salmuera. Se secó la mezcla sobre sulfato de sodio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo =7:1-5:1) para dar 1-(2,3,4,6-tetra-O-bencil-β-D-glucopiranosil)-4-cloro-3-(5-(3-cianofenil)-2-tienilmetil)benceno (1,12 g) como un aceite incoloro. APCI-masas m/Z 849/851 (M+NH₄).
 - (2) Se usó el 1-(2,3,4,6-tetra-O-bencil-β-D-glucopiranosil)-4-cloro-3-(5-(3-cianofenil)-2-tienilmetil)benceno anterior y se trató de manera similar al ejemplo 3-(3) para dar el compuesto objetivo como un polvo incoloro. APCI-masas m/Z 489/491 (M+NH₄).
- 45 <u>Ejemplo 124</u>
 - 1-(β-D-glucopiranosil)-4-metil-3-(5-(5-pirimidinil)-2-tienilmetil)benceno
- (1) Se calentó una disolución mezclada de 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-cloro-2-tienilmetil)-4-metilbenceno 57 (600 mg) obtenido en el ejemplo 120-(1), tri-n-butil(5-pirimidinil)estaño (600 mg), aducto de tri-terc-butilfosfina · ácido tetrafluorobórico (116 mg), fluoruro de cesio (414 mg) y tris(dibencilidenacetona)dipaladio (0) (91 mg) en 1,4-dioxano (18 ml) a reflujo a 100 °C durante 3 horas bajo atmósfera de argón. Se eliminaron por filtración los materiales insolubles y se diluyó el filtrado con acetato de etilo y se lavó con salmuera. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 75:25-40:60) para dar 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-4-metil-3-(5-(5-pirimidinil)-2-tienilmetil)benceno (266 mg) como cristales incoloros. APCI-masas m/Z 597 (M+H).
 - (2) Se usó el 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-4-metil-3-(5-(5-pirimidinil)-2-tienilmetil)benceno anterior y se trató de manera similar al ejemplo 106-(3) para dar el compuesto objetivo como un polvo incoloro. APCI-masas m/Z 429 (M+H).

Ejemplo 125

1-(β-D-glucopiranosil)-4-cloro-3-(2-fenil-5-tiazolilmetil)benceno

65 Se preparó el compuesto objetivo de manera similar al ejemplo 1, partiendo de 5-bromo-2-cloro-1-(2-fenil-5-tiazolilmetil)benceno. APCI-masas m/Z 448/450 (M+H).

Ejemplo 126

5

10

20

25

1-(β-D-glucopiranosil)-4-cloro-3-(5-(3-piridil)-2-tienilmetil)benceno

(1) Se usó 1-(β -D-glucopiranosil)-4-cloro-3-(5-cloro-2-tienilmetil)benceno obtenido en el ejemplo 19 y se trató de manera similar al ejemplo 106-(1) para dar 1-(2,3,4,6-tetra-O-acetil- β -D-glucopiranosil)-4-cloro-3-(5-cloro-2-tienilmetil)benceno como cristales incoloros. APCI-masas m/Z 590/592 (M+NH₄).

(2) Se usaron el 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-4-cloro-3-(5-cloro-2-tienilmetil)benceno anterior y trin-butil(3-piridil)estaño y se trataron de manera similar al ejemplo 124 para dar el compuesto objetivo como un polvo incoloro. APCI-masas m/Z 448/450 (M+H).

Ejemplo 127: 1-(β-D-glucopiranosil)-3-(5-(3-cianofenil)-2-tienilmetil)-4-metilbenceno

15 (1) Se usaron 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-cloro-2-tienilmetil)-4-metilbenceno 57 obtenido en el ejemplo 120-(1) y ácido 3-cianofenilborónico y se trataron de manera similar al ejemplo 120-(2) para dar 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-(3-cianofenil)-2-tienilmetil)-4-metilbenceno. APCI-masas m/Z 637 (M+NH₄).

(2) Se usó el 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-(3-cianofenil)-2-tienilmetil)-4-metilbenceno anterior y se trató de manera similar al ejemplo 106-(3) para dar el compuesto objetivo como un polvo incoloro. APCI-masas m/Z 469 (M+NH₄).

Ejemplo 128

1-(β-D-glucopiranosil)-4-cloro-3-(5-pirazinil-2-tienilmetil)benceno

En el esquema anterior, los símbolos son tal como se definieron anteriormente.

- (1) Se enfrió una disolución de bromuro de mesitilo (4,74 g) en tetrahidrofurano (100 ml) hasta -78 °C bajo atmósfera de argón y a la misma se le añadió gota a gota t-butil-litio (disolución en pentano de 1,43 M, 33 ml). Se agitó la mezcla a de -30 a -20 °C durante una hora y entonces se añadió gota a gota una disolución mezclada de 5-bromo-2-clorobenzoato de t-butilo 61 (4,94 g) y 2,3,4,6-tetraquis-O-trimetilsilil-D-glucono-1,5-lactona 2 (véase el documento USP 6.515.117) (11,10 g) en tetrahidrofurano (70 ml) a la misma a -78 °C. Se agitó la mezcla a la misma temperatura durante una hora para dar el compuesto 62. Sin aislar este compuesto, se añadió una disolución de ácido metanosulfónico (3,75 ml) en metanol (50 ml) a la disolución de reacción y se agitó la mezcla a temperatura ambiente durante 18 horas. A la mezcla se le añadió una disolución de hidrogenocarbonato de sodio acuosa saturada a 0 °C y se extrajo la mezcla con acetato de etilo dos veces. Se lavó el extracto con salmuera, se secó sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (cloroformo:metanol = 19:1) para dar un compuesto de metil éter 63 (4,55 g) del lactol como un polvo de color amarillo pálido. APCI-masas m/Z 422/424 (M+NH₄).
- (2) Se trató el compuesto 63 de manera similar al ejemplo 106-(1) para dar el compuesto 64. APCI-masas m/Z 590/592 (M+NH₄).
- (3) Se agitó una disolución del compuesto 64 anterior (7,10 g) en ácido fórmico (50 ml) a 50 °C durante 30 minutos. 15 Se evaporó el disolvente a presión reducida y se sometió el residuo a destilación azeotrópica con tolueno, dos veces, para dar el compuesto 65 como un polvo incoloro. Sin purificación adicional, se disolvió este compuesto en diclorometano (50 ml). Al mismo se le añadieron cloruro de oxalilo (1.3 ml) v N.N-dimetilformamida (una gota) v se agitó la mezcla a temperatura ambiente durante la noche. Se evaporó el disolvente a presión reducida para dar el 20 cloruro de ácido correspondiente, que se disolvió en dicloroetano (50 ml), sin purificación adicional. A la disolución se le añadió 2-bromotiofeno 66 (2,63 g) y se enfrió la mezcla hasta 0 °C. A la misma se le añadió gradualmente cloruro de aluminio (8,26 g) y posteriormente se agitó la mezcla a la misma temperatura durante 30 minutos. Se vertió la mezcla de reacción en agua helada y se extrajo la mezcla con acetato de etilo. Se lavó el extracto sucesivamente con agua, una disolución de hidrogenocarbonato de sodio acuosa saturada y salmuera, se secó 25 sobre sulfato de sodio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo =10:1-5:1) para dar el compuesto 67 (7,01 g) como un polvo de color amarillento pálido. APCI-masas m/Z 678/680 (M+NH₄).
 - (4) Se disolvió el compuesto de cetona 67 anterior (7,01 g) en etanol (50 ml) y al mismo se le añadió borohidruro de sodio (401 mg) y se agitó la mezcla a temperatura ambiente durante 30 minutos. Se evaporó el disolvente a presión reducida y se disolvió el residuo en acetato de etilo. Se lavó la disolución sucesivamente con agua, disolución de ácido clorhídrico acuosa 2 N, una disolución de hidrogenocarbonato de sodio acuosa saturada y salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida para dar el compuesto 68 como un polvo de color amarillo pálido, que se disolvió en metanol (50 ml) sin purificación adicional. A la disolución, se le añadió metóxido de sodio (disolución en metanol al 28 %, 5 gotas) y entonces se agitó la mezcla a temperatura ambiente durante 2,5 horas. Se evaporó el disolvente a presión reducida para dar un compuesto desacetilado 69 como un polvo de color amarillo pálido. Sin purificación adicional, se disolvió en diclorometano (170 ml) - acetonitrilo (70 ml) y al mismo se le añadió trietilsilano (10,2 ml) y se enfrió la mezcla hasta 0 °C. Al mismo se le añadió gota a gota complejo de trifluoruro de boro · dietil éter (8,1 ml) y se agitó la mezcla a temperatura ambiente durante 5 horas. A la mezcla se le añadió una disolución de hidrogenocarbonato de sodio acuosa saturada y se extrajo la mezcla con acetato de etilo y se secó el extracto sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida para dar 1-(β-D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-clorobenceno 70 en bruto como un polvo de color marrón pálido. Sin purificación adicional, se disolvió en diclorometano (30 ml) y al mismo se le añadieron anhídrido acético (10,0 ml), piridina (8,57 ml) y 4-dimetilaminopiridina (258 mg) y se agitó la mezcla a temperatura ambiente durante una hora. Se evaporó el disolvente a presión reducida y se disolvió el residuo en acetato de etilo y se lavó la disolución sucesivamente con agua, disolución de ácido clorhídrico acuosa 1 N, una disolución de hidrogenocarbonato de sodio acuosa saturada y salmuera. Se secó la disolución sobre sulfato de sodio y se evaporó el disolvente a presión reducida. Se cristalizó el residuo en metanol para dar 1-(2,3,4,6-tetra-O-acetil-β-Dglucopiranosil)-3-(5-bromo-2-tienilmetil)-4-clorobenceno 71 (3,17 g) como cristales incoloros. APCI-masas m/Z 634/636 (M+NH₄).
- (5) Se disolvió el 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-clorobenceno 71 anterior (600 mg) en 1,4-dioxano (11 ml). Al mismo se le añadieron tri-n-butil(pirazinil)estaño 72 (720 mg), tetraquis(trifenilfosfina)paladio (0) (206 mg) y yoduro de cobre (I) (51 mg) y se agitó la mezcla con calentamiento a 100 °C durante 1,5 horas, con irradiación mediante microondas (500 W). Se diluyó la mezcla con acetato de etilo, se eliminaron por filtración los materiales insolubles y se lavó el filtrado con agua. Se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo =75:25-30:70) y se cristalizó en hexano-dietil éter para dar 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-4-cloro-3-(5-pirazinil-2-tienilmetil)benceno 73 (263 mg) como cristales de color amarillo pálido. APCI-masas m/Z 617/619 (M+H).
- (6) Se usó el 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-4-cloro-3-(5-pirazinil-2-tienilmetil)benceno 73 anterior y se trató de manera similar al ejemplo 106-(3) para dar el 1-(β-D-glucopiranosil)-4-cloro-3-(5-pirazinil-2-tienilmetil)benceno 74 deseado como un polvo incoloro. APCI-masas m/Z 449/451 (M+H).

Ejemplo 129

5

10

30

35

40

45

65

1-(β-D-glucopiranosil)-4-cloro-3-(6-etoxibenzo[b]tiofen-2-ilmetil)benceno

Se usó 5-bromo-2-cloro-1-(6-etoxibenzo[b]tiofen-2-ilmetil)benceno y se trató de manera similar al ejemplo 1 para dar el compuesto objetivo. APCI-masas m/Z 482/484 (M+NH₄).

Ejemplo 130: 1-(β-D-glucopiranosil)-3-(5-(3-difluorometilfenil)-2-tienilmetil)-4-metilbenceno

5

10

15

20

25

30

(1) Se usaron 1-(2,3,4,-6-tetra-O-acetil- β -D-glucopiranosil)-3-(5-cloro-2-tienilmetil)-4-metilbenceno 57 obtenido en el ejemplo 120-(1) y ácido 3-formilfenilborónico y se trataron de manera similar al ejemplo 120-(2) para dar 1-(2,3,4,6-tetra-O-acetil- β -D-glucopiranosil)-3-(5-(3-formilfenil)-2-tienilmetil)-4-metilbenceno. APCI-masas m/Z 640 (M+NH₄).

(2) Se disolvió el 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-(3-formilfenil)-2-tienilmetil)-4-metilbenceno anterior (100 mg) en diclorometano (2 ml) y al mismo se le añadió trifluoruro de (dietilamino)azufre (0,30 ml). Se agitó la mezcla a temperatura ambiente durante la noche. Se añadió agua a la mezcla y se extrajo la mezcla con cloroformo. Se lavó el extracto con salmuera y se secó sobre sulfato de magnesio y entonces se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo =9:1-1:1) para dar 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-(3-difluorometilfenil)-2-tienilmetil)-4-metilbenceno (82 mg). APCI-masas m/Z 662 (M+NH₄).

(3) Se usó el 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-(3-difluorometilfenil)-2-tienilmetil)-4-metilbenceno obtenido anteriormente y se trató de manera similar al ejemplo 120-(3) para dar el 1-(β-D-glucopiranosil)-3-(5-(3-difluorometilfenil)-2-tienilmetil)-4-metilbenceno deseado como un polvo incoloro. APCI-masas m/Z 494 (M+NH₄).

Ejemplo 131: 1-(β-D-glucopiranosil)-4-cloro-3-(6-fenil-3-piridilmetil)benceno

Se usó 5-bromo-2-cloro-1-(6-fenil-3-piridilmetil)benceno y se trató de manera similar al ejemplo 1 para dar el compuesto objetivo. APCI-masas m/Z 442/444 (M+H).

De manera similar al método dado a conocer en cualquiera de los ejemplos anteriores, se prepararon los compuestos mostrados en la tabla 4 a continuación a partir de los materiales de partida correspondientes. Los números mostrados en la columna de "método de preparación" en la tabla indican el número de ejemplo según el cual se llevó a cabo la preparación de manera similar.

Tabla 4

A CH₂ S R^{4a}

HO OH
OH

	OH				
Ejemplo	Anillo A	R ^{4a}	Método de preparación	APCI-masas (m/Z)	
132	CH ₃	——CF ₃	1	512 (M+NH₄)	
133	CH ₃	→ CF ₃	1	512 (M+NH ₄)	
134	CH ₃	—CH₂CH₃	4	472 (M+NH ₄)	

Ejemplo	Anillo A	(continuación) R ^{4a}	Método de preparación	APCI-masas (m/Z)
135	CH ₃	— СН₃	4	458(M+NH₄)
136	CH ₃		4	486(M+NH ₄)
137	F	CI	1	456/458(M+NH₄)
138	CH ₃	-	2	458(M+NH ₄)
139	CF ₃	-	2	498(M+NH₄)
140	CH ₃	CH ₂ CH ₃	1	472(M+NH₄)
141	CH ₃	——————————————————————————————————————	1	428(M+H)
142	CI	√ _S 1 _F	4	488/490(M+NH ₄)

Ciamania.	A = :II = A	(continuación) R ^{4a}	Método de	A D.C.I. manage (mg/Z)
Ejemplo	Anillo A	K™	preparación	APCI-masas (m/Z)
143	CH ₃	~~~~	1	428(M+H)
144	CH ₃	————осн ₃	1	474(M+NH₄)
145	CH ₃		1	488(M+NH₄)
146	CH ₃	- $N=$ F	1	463(M+NH₄)
147	CH ₃	CF ₃	1	436(M+NH ₄)
148	CH ₃	-⟨s] _F	1	468(M+NH₄)
149	CH ₃	-	1	462(M+NH₄)
150	CH ₃	\sim	103	484(M+H)

Ejemplo	Anillo A	R ^{4a}	Método de preparación	APCI-masas (m/Z)
151	CH ₃	—CN	124	469(M+NH₄)
152	<u>c</u>		122	498/500(M+H)
153	ō	~ s	128	454/456(M+H)
154	CI		2	470/472(M+NH ₄)
155		—CN	122	489/491(M+NH ₄)
156	□ □ □	→N= N= F	122	466/468(M+H)

Ejemplo 157: 1-(β-D-glucopiranosil)-4-cloro-3-(6-isopropiloxibenzo[b]tiofen-2-ilmetil)benceno

Se trató 5-bromo-2-cloro-1-(6-isopropiloxibenzo[b]tiofen-2-ilmetil)benceno de manera similar al ejemplo 1 para dar el compuesto objetivo. APCI-masas m/Z 496/498 (M+NH₄).

Ejemplo 158: 1-(β-D-glucopiranosil)-4-metil-3-(2-tienilmetil)benceno

5

10

15

(1) Se disolvió 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-cloro-2-tienilmetil)-4-metilbenceno 57 (12,0 g) obtenido en el ejemplo 120-(1) en tetrahidrofurano (120 ml) y metanol (360 ml) y al mismo se le añadieron trietilamina (24,2 ml) y catalizador de paladio al 10 % sobre carbono (húmedo, 3,6 g) y se agitó la mezcla a temperatura ambiente durante 18 horas bajo atmósfera de hidrógeno a presión normal. Se eliminaron por filtración los materiales insolubles, se lavaron con tetrahidrofurano y se evaporó el filtrado a presión reducida. Se disolvió el residuo en cloroformo, se lavó sucesivamente con una disolución de ácido cítrico acuosa al 5 %, una disolución de hidrogenocarbonato de sodio acuosa saturada y agua y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se recristalizó el residuo en etanol para dar 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-4-metil-3-(2-tienilmetil)benceno (7,79 g) como cristales incoloros. APCI-masas m/Z 536 (M+NH₄).

(2) Se trató el 1-(2,3,4,6-tetra-O-acetil- β -D-glucopiranosil)-4-metil-3-(2-tienilmetil)benceno anterior de manera similar al ejemplo 106-(3) para dar el 1-(β -D-glucopiranosil)-4-metil-3-(2-tienilmetil)benceno deseado como un polvo incoloro. APCI-masas m/Z 368 (M+NH₄).

5 Ejemplo 159: 1-(β-D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-metilbenceno

- (1) Se disolvió 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-4-metil-3-(2-tienilmetil)benceno (11,08 g) obtenido en el ejemplo de referencia 158-(1) en cloroformo (100 ml) y al mismo se le añadió gota a gota a 0 °C una disolución de bromo (3,71 g) en cloroformo (13 ml). Se agitó la mezcla a 0 °C durante 1,5 horas y entonces a temperatura ambiente durante 1 hora y se vertió la mezcla en una disolución de tiosulfato de sodio acuosa al 10 % y una disolución de hidrogenocarbonato de sodio acuosa saturada. Se extrajo la mezcla dos veces con cloroformo, se lavó con salmuera y se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 80:20-67:33) para dar 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-metilbenceno (7,13 g) como un sólido incoloro. APCI-masas m/Z 614/616 (M+NH₄).
- (2) Se trató el 1-(2,3,4,6-tetra-O-acetil-β-Ď-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-metilbenceno anterior de manera similar al ejemplo 106-(3) para dar el 1-(β-D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-metilbenceno deseado como un polvo incoloro. APCI-masas m/Z 446/448 (M+NH₄).

20 <u>Ejemplo 160: 1-(β-D-glucopiranosil)-3-(5-fenil-2-tienilmetil)benceno</u>

10

15

30

35

50

Se trataron 2-feniltiofeno y 3-bromobenzaldehído de manera similar al ejemplo 4 para dar el compuesto objetivo. APCI-masas m/Z 430 (M+NH₄).

25 Ejemplo 161: 1-(β-D-glucopiranosil)-3-(5-ciano-2-tienilmetil)-4-metilbenceno

- (1) Se disolvió 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-metilbenceno (500 mg) obtenido en el ejemplo 159-(1) en N,N-dimetilacetamida (10 ml) y al mismo se le añadieron cianuro de zinc (98 mg), tris(dibencilidenacetona)dipaladio (0) (77 mg), 1,1'-bis(difenilfosfino)ferroceno (47 mg) y polvo de zinc (14 mg). Se calentó la mezcla con agitación a 120 °C durante la noche. Se enfrió la disolución de reacción, se diluyó con acetato de etilo y agua y se eliminaron por filtración los materiales insolubles. Se lavó la fase orgánica del filtrado dos veces con agua y sucesivamente se lavó con salmuera. Tras secar la misma sobre sulfato de sodio, se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 100:0-50:50) para dar 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-ciano-2-tienilmetil)-4-metilbenceno (207 mg) como cristales incoloros. APCI-masas m/Z 561 (M+NH₄).
- (2) Se trató el 1-(2,3,4,6-tetra-O-acetil- β -D-glucopiranosil)-3-(5-ciano-2-tienilmetil)-4-metilbenceno anterior de manera similar al ejemplo 106-(3) para dar el 1- $(\beta$ -D-glucopiranosil)-3-(5-ciano-2-tienilmetil)-4-metilbenceno deseado como un polvo incoloro. APCI-masas m/Z 393 (M+NH₄).

40 Ejemplo 162: 1-(β-D-glucopiranosil)-4-fluoro-3-(5-(2-piridil)-2-tienilmetil)naftaleno

Se trató 4-bromo-1-fluoro-2-(5-(2-piridil)-2-tienilmetil)naftaleno de manera similar al ejemplo 1 para dar el compuesto objetivo. APCI-masas m/Z 482 (M+H).

45 <u>Ejemplo 163: 1-(β-D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-clorobenceno</u>

Se trató $1-(2,3,4,6-tetra-O-acetil-\beta-D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-clorobenceno 71 obtenido en el ejemplo 128-(4) de manera similar al ejemplo 106-(3) para dar el compuesto objetivo. APCI-masas m/Z 466/468 (M+NH₄).$

Ejemplo 164: 1-(β-D-glucopiranosil)-4-metil-3-(5-(2-pirimidinil)-2-tienilmetil)benceno

Se trataron 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-metilbenceno obtenido en el ejemplo 159-(1) y tri-n-butil-(2-pirimidinil)estaño 54 de manera similar al ejemplo 128-(5) y (6) para dar el compuesto objetivo. APCI-masas m/Z 429 (M+H).

Ejemplo 165: 1-(β-D-glucopiranosil)-4-metil-3-(5-(2-tiazolil)-2-tienilmetil)benceno

Se trataron 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-metilbenceno obtenido en el ejemplo 159-(1) y tri-n-butil(2-tiazolil)estaño de manera similar al ejemplo 128-(5) y (6) para dar el compuesto objetivo. APCI-masas m/Z 434 (M+H).

Ejemplo 166: 1-(β-D-glucopiranosil)-4-cloro-3-(6-etil-3-piridilmetil)benceno

65 Se trató 5-bromo-2-cloro-1-(6-etil-3-piridilmetil)benceno de manera similar al ejemplo 1 para dar el compuesto objetivo. APCI-masas m/Z 394/396 (M+H).

Ejemplo 167: 1-(β-D-glucopiranosil)-4-cloro-3-(6-etilbenzo[b]tiofen-2-ilmetil)benceno

5

35

40

45

65

Se trataron 6-etilbenzo[b]tiofeno y 5-bromo-2-clorobenzaldehído obtenido en el ejemplo de referencia 16-(1) de manera similar al ejemplo 4 para dar el compuesto objetivo. APCI-masas m/Z 466/468 (M+H).

Ejemplo 168: 1-(β-D-glucopiranosil)-4-cloro-3-(5-(6-fluoro-3-piridil)-2-tienilmetil)benceno

- (1) Se disolvió 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-clorobenceno 71 (500 mg) obtenido en el ejemplo 128-(4) en 1,2-dimetoxietano (15 ml) y al mismo se le añadieron ácido 6-fluoropiridin-3-borónico 58 (228 mg), tetraquis(trifenilfosfina)paladio (0) (94 mg) y fluoruro de cesio (738 mg). Se calentó la mezcla a reflujo durante 30 minutos. Se vertió la disolución de reacción en una disolución de hidrogenocarbonato de sodio acuosa saturada y se extrajo la mezcla con acetato de etilo. Se lavó el extracto con salmuera y se secó sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 75:25-60:40) para dar 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-4-cloro-3-(5-(6-fluoro-3-piridil)-2-tienilmetil)benceno (454 mg) como un sólido incoloro. APCI-masas m/7 634/636 (M+H).
- (2) Se trató el 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-4-cloro-3-(5-(6-fluoro-3-piridil)-2-tienilmetil)benceno anterior de manera similar al ejemplo 106-(3) para dar el 1-(β-D-glucopiranosil)-4-cloro-3-(5-(6-fluoro-3-piridil)-2-tienilmetil)benceno deseado como un polvo incoloro. APCI-masas m/Z 483 (M+NH₄), 466 (M+H).

Ejemplo 169: 1-(β-D-glucopiranosil)-4-cloro-3-(5-(6-metoxi-3-piridil)-2-tienilmetil)benceno

Se trataron 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-clorobenceno 71 obtenido en el ejemplo 128-(4) y ácido 6-metoxipiridin-3-borónico de manera similar al ejemplo 168 para dar el compuesto objetivo. APCI-masas m/Z 478/480 (M+H).

Ejemplo 170: 1-(β-D-glucopiranosil)-4-cloro-3-(5-(6-metoxi-2-piridil)-2-tienilmetil)benceno

30 Se trataron 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-clorobenceno 71 obtenido en el ejemplo 128-(4) y tri-n-butil(6-metoxi-2-piridil)estaño (véase Gros, Philippe; Fort, Yves. Synthesis (1999), 754-756) de manera similar al ejemplo 128-(5) y (6) para dar el compuesto objetivo. APCI-masas m/Z 478/480 (M+H).

Ejemplo 171: 1-(β-D-glucopiranosil)-4-cloro-3-(1-oxo-2-isoindolinilmetil)benceno

Se trató 5-bromo-2-cloro-1-(1-oxo-2-isoindolinilmetil)benceno de manera similar al ejemplo 2 para dar el compuesto objetivo. APCI-masas m/Z 437/439 (M+NH₄).

Ejemplo 172: 1-(β-D-glucopiranosil)-4-cloro-3-(1-fenil-4-pirazolilmetil)benceno

Se trató 5-bromo-2-cloro-1-(1-fenil-4-pirazolilmetil)benceno de manera similar al ejemplo 1 para dar el compuesto objetivo. APCI-masas m/Z 431/433 (M+H).

Ejemplo 173: 1-(β-D-glucopiranosil)-4-cloro-3-(5-(6-etoxi-2-piridil)-2-tienilmetil)benceno

- (1) Se trataron 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-clorobenceno 71 obtenido en el ejemplo 128-(4) y tri-n-butil(6-etoxi-2-piridil)estaño (véase el documento WO 00/74681) de manera similar al ejemplo 128-(5) para dar 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-4-cloro-3-(5-(6-etoxi-2-piridil)-2-tienilmetil)benceno como cristales incoloros. APCI-masas m/Z 660/662 (M+H).
- (2) Se disolvió el 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-4-cloro-3-(5-(6-etoxi-2-piridil)-2-tienilmetil)benceno anterior (245 mg) en tetrahidrofurano (5 ml), al mismo se le añadió una disolución de hidruro de sodio (aceite, 9 mg) en etanol (5 ml) y se agitó la mezcla a temperatura ambiente durante 2 horas. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (cloroformo:metanol = 100:0 -90:10) para dar el 1-(β-D-glucopiranosil)-4-cloro-3-(5-(6-etoxi-2-piridil)-2-tienilmetil)benceno deseado (145 mg) como un polvo incoloro. APCI-masas m/Z 429/494 (M+H).

Ejemplo 174: 1-(β-D-glucopiranosil)-4-cloro-3-(6-n-propiloxibenzo[b]tiofen-2-ilmetil)benceno

Se trató 5-bromo-2-cloro-1-(6-n-propiloxibenzo[b]tiofen-2-ilmetil)benceno de manera similar al ejemplo 1 para dar el compuesto objetivo. APCI-masas m/Z 496/498 (M+NH₄).

Ejemplo 175: 1-(β-D-glucopiranosil)-4-cloro-3-(6-(2-fluoroetiloxi)benzo[b]tiofen-2-ilmetil)benceno

Se trató 5-bromo-2-cloro-1-(6-(2-fluoroetiloxi)benzo[b]tiofen-2-ilmetil)benceno de manera similar al ejemplo 1 para dar el compuesto objetivo. APCI-masas m/Z 500/502 (M+NH₄).

Ejemplo 176: 1-(β-D-glucopiranosil)-3-(5-(4-difluorometilfenil)-2-tienilmetil)-4-metilbenceno

5

10

15

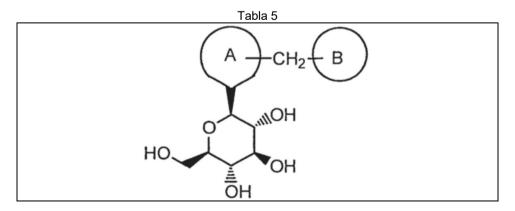
25

35

45

- (1) Se trataron 1-(2,3,4,6-tetra-O-acetil- β -D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-metilbenceno del ejemplo 159-(1) y ácido 4-formilfenilborónico de manera similar al ejemplo 168-(1) para dar 1-(2,3,4,6-tetra-O-acetil- β -D-glucopiranosil)-3-(5-(4-formilfenil)-2-tienilmetil)-4-metilbenceno como un sólido incoloro. APCI-masas m/Z 640 (M+NH₄).
- (2) Se trató el 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-(4-formilfenil)-2-tienilmetil)-4-metilbenceno anterior de manera similar al ejemplo 130-(2) para dar el 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-(4-difluorometilfenil)-2-tienilmetil)-4-metilbenceno deseado como cristales incoloros. APCI-masas m/Z 662 (M+NH₄).
- (3) Se trató el 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-(4-difluorometilfenil)-2-tienilmetil)-4-metilbenceno anterior de manera similar al ejemplo 106-(3) para dar el 1-(β-D-glucopiranosil)-3-(5-(4-difluorometilfenil)-2-tienilmetil)-4-metilbenceno deseado como un polvo incoloro. APCI-masas m/Z 494 (M+NH₄).

Ejemplo 177: 1-(β-D-glucopiranosil)-3-(5-(3,4-difluorofenil)-2-tienilmetil)-4-metilbenceno


- (1) Se trataron 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-metilbenceno obtenido en el ejemplo 159-(1) y ácido 3,4-difluorofenilborónico de manera similar al ejemplo 168-(1) para dar 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-(3,4-difluorofenil)-2-tienilmetil)-4-metilbenceno como cristales incoloros. APCI-masas m/Z 648 (M+NH₄).
- 20 (2) Se trató el 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-(3,4-difluorofenil)-2-tienilmetil)-4-metilbenceno anterior de manera similar al ejemplo 106-(3) para dar el 1-(β-D-glucopiranosil)-3-(5-(3,4-difluorofenil)-2-tienilmetil)-4-metilbenceno deseado como un polvo incoloro. APCI-masas m/Z 480 (M+NH₄).

Ejemplo 178: 1-(β-D-glucopiranosil)-4-cloro-3-(5-(3-difluorometilfenil)-2-tienilmetil)benceno

- (1) Se trataron 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-clorobenceno 71 obtenido en el ejemplo 128-(4) y ácido 3-formilfenilborónico de manera similar al ejemplo 168-(1) para dar 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-4-cloro-3-(5-(3-formilfenil)-2-tienilmetil)benceno como un sólido incoloro. APCI-masas m/Z 660/662 (M+NH₄).
- 30 (2) Se trató el 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-4-cloro-3-(5-(3-formilfenil)-2-tienilmetil)benceno anterior de manera similar al ejemplo 130-(2) para dar 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-4-cloro-3-(5-(3-difluorometilfenil)-2-tienilmetil)benceno como cristales incoloros. APCI-masas m/Z 682/684 (M+NH₄).
 - (3) Se trató el 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-4-cloro-3-(5-(3-difluorometilfenil)-2-tienilmetil)benceno anterior de manera similar al ejemplo 120-(3) para dar el 1-(β-D-glucopiranosil)-4-cloro-3-(5-(3-difluorometilfenil)-2-tienilmetil)benceno deseado como un polvo incoloro. APCI-masas m/Z 514/516 (M+NH₄).

Ejemplo 179: 1-(β-D-glucopiranosil)-4-cloro-3-(5-(4-difluorometilfenil)-2-tienilmetil)benceno

- (1) Se trataron 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-3-(5-bromo-2-tienilmetil)-4-clorobenceno 71 obtenido en el ejemplo 128-(4) y ácido 4-formilfenilborónico de manera similar al ejemplo 168-(1) para dar 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-4-cloro-3-(5-(4-formilfenil)-2-tienilmetil)benceno como un sólido incoloro. APCI-masas m/Z 660/662 (M+NH₄).
 - (2) Se trató el 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-4-cloro-3-(5-(4-formilfenil)-2-tienilmetil)benceno anterior de manera similar al ejemplo 130-(2) para dar 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-4-cloro-3-(5-(4-difluorometilfenil)-2-tienilmetil)benceno como cristales incoloros. APCI-masas m/Z 682/684 (M+NH₄).
 - (3) Se trató el 1-(2,3,4,6-tetra-O-acetil-β-D-glucopiranosil)-4-cloro-3-(5-(4-difluorometilfenil)-2-tienilmetil)benceno anterior de manera similar al ejemplo 120-(3) para dar el 1-(β-D-glucopiranosil)-4-cloro-3-(5-(4-difluorometilfenil)-2-tienilmetil)benceno deseado como un polvo incoloro. APCI-masas m/Z 514/516 (M+NH₄).
- 50 Se prepararon los compuestos mostrados en la tabla 5, a continuación, de manera similar a una de los ejemplos anteriores a partir de los materiales de partida correspondientes.

(continuación)				
Ejemplos	A CH ₂ B	APCI-masas (m/Z)		
180	Me SS F	480 (M+NH ₄)		
181	CT S F	500/502 (M+NH ₄)		
182	CI S CHF ₂	532/534 (M+NH₄)		
183	CI NEW N	437/439* (M-H) (*ESI- masas)		
184	Me CI	496/498 (M+NH ₄)		
185	CI	454/456 (M+H)		
186	CI S N=N Me	470/472 (M+NH ₄)		
187	CI S F	500/502 (M+NH ₄)		

	(continuación)	
Ejemplos	A CH ₂ B	APCI-masas (m/Z)
188	CI S CI	516/518 (M+NH₄)
189	CI S N S	454/456 (M+H)
190	Me S N OMe	458 (M+H)
191	Me S OMe	458 (M+H)
192	Me S N S	434 (M+H)
193	Me S S	450 (M+NH₄)
194	CI S E	507/509 (M+NH₄)
195	Me S OEt	488 (M+NH ₄)

	(COTILITUACION)	
Ejemplos	A CH ₂ B	APCI-masas (m/Z)
196	CI	482/484 (M+NH ₄)
197	CI S-NN	437/439 (M+H)
198	CI S CN	507/509 (M+NH ₄)
199	CI	406/408 (M+H)
200	CI S N F	466/468 (M+H)
201	Me S N F	446 (M+H)
202	Me S S	434 (M+H)
203	Me S CN	487 (M+NH ₄)

	(continuacion)	T
Ejemplos	A -CH ₂ B	APCI-masas (m/Z)
204	Me S CN F	487 (M+NH ₄)
205	Me S CHF ₂	512 (M+NH ₄)
206	CI S OCHF ₂	530/532 (M+NH ₄)
207	Me OCHF ₂	510 (M+NH₄)
208	Me S CN	470 (M+NH₄)
209	CI S CN	490/492 (M+NH₄)
210	CI S OCHF ₂	504/506 (M+NH₄)
211	Me S OCHF ₂	484 (M+NH ₄)

(con	tinu	ıac	ión)	
					ī

Ejemplos	A CH ₂ B	APCI-masas (m/Z)
212	Me S N CN	470 (M+NH₄)
213	CI S CN	490/492 (M+NH ₄)
214	Me S N	417 (M+H)

Ejemplo de referencia 1

3-bromo-1-(5-etil-2-tienilmetil)benceno

10

5

(1) Se enfrió una disolución de 1,3-dibromobenceno (3,7 g) en tetrahidrofurano (25 ml) hasta -78 °C bajo atmósfera de argón y a la misma se le añadió gota a gota n-butil-litio (disolución en hexano 2,44 M, 5,55 ml). Se agitó la mezcla de reacción a la misma temperatura durante 10 minutos y a la misma se le añadió gota a gota una disolución de 5-etil-2-tiofencarboxaldehído (2,0 g) en tetrahidrofurano (10 ml). Se agitó la mezcla a la misma temperatura durante 30 minutos y a la misma se le añadió una disolución de cloruro de amonio saturada y se calentó la mezcla de reacción hasta temperatura ambiente. Se extrajo la mezcla con acetato de etilo y se secó el extracto sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 97:3-85:15) para dar 3-bromofenil-5-etil-2-tienilmetanol (2,97 g) como un jarabe de color amarillo pálido. APCI-masas m/Z 279/281 (M+H-H₂O).

15

20

(2) Se disolvió el 3-bromofenil-5-etil-2-tienilmetanol anterior (2,90 g) en diclorometano (38 ml) y se enfrió la mezcla hasta -78 °C bajo atmósfera de argón. A la mezcla se le añadieron trietilsilano (6,18 ml) y complejo de trifluoruro de boro · dietil éter (2,45 ml) y se calentó gradualmente la mezcla hasta temperatura ambiente a lo largo de un periodo de una hora. Se basificó la mezcla con una disolución de hidrogenocarbonato de sodio acuosa saturada y se recogió la fase de diclorometano, se secó sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano) para dar el 3-bromo-1-(5-etil-2-tienilmetil)benceno deseado (2,57 g) como un jarabe incoloro. APCI-masas m/Z 281/283 (M+H).

Ejemplo de referencia 2

25 <u>5-bromo-1-(4-etilfenilmetil)-1H-piridin-2-ona</u>

Se disolvieron 5-bromo-1H-piridin-2-ona (1,04 g) y bromuro de 4-etilbencilo (1,43 g) en N,N-dimetilformamida (15 ml) y a los mismos se les añadió carbonato de potasio (1,66 g). Se agitó la mezcla a temperatura ambiente durante la noche, se diluyó con acetato de etilo y se lavó sucesivamente con agua y salmuera. Se secó el extracto sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 10:1-3:1) para dar 5-bromo-1-(4-etilfenilmetil)-1H-piridin-2-ona (1,58 g) como cristales incoloros. APCI-masas m/Z 292/294 (M+H).

Ejemplo de referencia 3:

35

30

En el esquema anterior, los símbolos son tal como se definieron anteriormente.

- (1) Se enfrió una disolución de glucal sililado 75 (véase Parker et al., Org. Lett. 2000, 2, 497-499) (7,00 g) en tetrahidrofurano (70 ml) hasta -78 °C bajo atmósfera de argón. A la misma se le añadió gota a gota t-butil-litio (disolución en pentano 1,45 M, 49,0 ml) a lo largo de un periodo de 10 minutos. Se agitó la mezcla a la misma temperatura durante 15 minutos y entonces se calentó hasta temperatura ambiente y se agitó adicionalmente durante 30 minutos. Se enfrió la mezcla otra vez hasta -78 °C y a la misma se le añadió borato de trimetilo (8,90 ml) en una porción. Tras 15 minutos, se calentó la disolución de reacción hasta temperatura ambiente a lo largo de un periodo de una hora y a la misma se le añadió agua (100 ml) a 0 °C. Se agitó la mezcla durante 30 minutos y se extrajo dos veces con dietil éter. Se lavó el extracto con agua y entonces se lavó con salmuera. Se secó el producto resultante sobre sulfato de magnesio y se evaporó el disolvente a presión reducida para dar el compuesto 76, que se usó en la reacción posterior sin purificación adicional.
- (2) Se disolvió la cantidad total del compuesto 76 anterior en tolueno (65 ml) y al mismo se le añadió pinacol (2,24 g). Se agitó la mezcla a temperatura ambiente bajo atmósfera de argón durante 17 horas. Se vertió la disolución de reacción en agua y se extrajo la mezcla con acetato de etilo y se lavó el extracto con salmuera, se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida para dar el compuesto 7 (10,4 g) como un semisólido de color amarillo, que se usó en la reacción posterior sin purificación adicional. APCI-masas m/Z 569 (M+H).

Ejemplo de referencia 4 5-bromo-2-metilbenzaldehído

- (1) Se disolvió 5-bromo-2-metilbenzoato de metilo (véase la publicación de patente no examinada japonesa n.º 9-263549) (16,12 g) en metanol (100 ml) y al mismo se le añadió disolución de hidróxido de sodio acuosa al 10 % (50 ml). Se agitó la mezcla a 50 °C durante 40 minutos. Con enfriamiento con hielo, se ajustó la mezcla a pH 1 mediante la adición de disolución de ácido clorhídrico acuosa al 10 % y se diluyó con agua. Se recogió el polvo precipitado mediante filtración y se secó para dar ácido 5-bromo-2-metilbenzoico (14,1 g). ESI-masas m/Z 213/215 (M-H).
- (2) Se suspendió el ácido 5-bromo-2-metilbenzoico anterior (10,0 g) en diclorometano (100 ml) y al mismo se le añadieron cloruro de oxalilo (8,1 ml) y N,N-dimetilformamida (2 gotas). Se agitó la mezcla a temperatura ambiente durante 4 horas. Se evaporó el disolvente a presión reducida para dar cloruro de 5-bromo-2-metilbenzoílo. Se disolvió este cloruro de benzoílo en diclorometano (200 ml) y al mismo se le añadió clorhidrato de N,O-dimetilhidroxilamina (12,3 g). A la mezcla se le añadió gota a gota trietilamina (20 ml) a 0 °C y se agitó la mezcla a temperatura ambiente durante la noche. Se evaporó el disolvente a presión reducida y se extrajo el residuo con acetato de etilo y se lavó sucesivamente con agua, disolución de ácido clorhídrico acuosa al 10 %, agua, una disolución de hidrogenocarbonato de sodio acuosa saturada y salmuera. Se secó el extracto sobre sulfato de sodio y se evaporó el disolvente a presión reducida para dar N-metoxi-N-metil-5-bromo-2-metilbenzamida (12,25 g) como un aceite. APCI-masas m/Z 258/260 (M+H).
- 40 (3) Se enfrió una disolución de la N-metoxi-N-metil-5-bromo-2-metilbenzamida anterior (12,2 g) en tetrahidrofurano (100 ml) hasta -78 °C bajo atmósfera de argón. A la mezcla se le añadió gota a gota hidruro de diisobutil-aluminio (disolución en tolueno 1,0 M, 75 ml) y se agitó la mezcla a la misma temperatura durante una hora. Se añadió disolución de ácido clorhídrico acuosa al 10 % (50 ml) a la misma y se calentó la mezcla hasta temperatura ambiente. Se extrajo la mezcla con acetato de etilo dos veces y se lavó sucesivamente con una disolución de hidrogenocarbonato de sodio acuosa saturada y salmuera. Se secó el extracto sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se solidificó el residuo para dar 5-bromo-2-metilbenzaldehído (8,73 g). APCI-masas m/Z 213/215 (M+H+MeOH-H₂O).

Ejemplo de referencia 5

50

55

5-bromo-2-cloro-1-(5-etil-2-tienilmetil)benceno

(1) Se suspendió ácido 5-bromo-2-clorobenzoico (5,00 g) en diclorometano (10 ml) y al mismo se le añadieron cloruro de oxalilo (2,2 ml) y N,N-dimetilformamida (2 gotas). Se agitó la mezcla a temperatura ambiente durante 6 horas. Se evaporó el disolvente a presión reducida para dar cloruro de 5-bromo-2-clorobenzoílo. Se disolvieron este compuesto y 2-etiltiofeno (2,38 g) en diclorometano (20 ml) y a los mismos se les añadió cloruro de aluminio (3,11 g) a 0 °C. Se agitó la mezcla a la misma temperatura durante una hora. Se vertió la mezcla de reacción en una disolución de ácido clorhídrico acuosa al 10 % fría y se extrajo la mezcla con acetato de etilo. Se lavó el

extracto sucesivamente con disolución de ácido clorhídrico acuosa al 10 %, agua, una disolución de hidrogenocarbonato de sodio acuosa saturada y salmuera y se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida, se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 100:1) para dar 5-bromo-2-clorofenil 5-etil-2-tienil cetona (5,29 g) como un aceite. APCI-masas m/Z 329/331 (M+H).

(2) Se enfrió una disolución de la 5-bromo-2-clorofenil 5-etil-2-tienil cetona anterior (5,29 g) en diclorometano (50 ml)-acetonitrilo (50 ml) con enfriamiento con hielo y a la misma se le añadieron gota a gota trietilsilano (7,69 ml) y complejo de trifluoruro de boro · dietil éter (6,1 ml). Posteriormente, se agitó la mezcla a temperatura ambiente durante 3,5 horas y se enfrió otra vez con enfriamiento con hielo. A la mezcla se le añadió una disolución de hidrogenocarbonato de sodio acuosa saturada y se extrajo la mezcla con cloroformo, se lavó con salmuera y se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano) para dar 5-bromo-2-cloro-1-(5-etil-2-tienilmetil)benceno (4,52 g) como un líquido incoloro.

15 Ejemplo de referencia 6

5

10

35

3-bromo-1-(5-n-propil-2-tienilmetil)benceno

Se usaron ácido 3-bromobenzoico y 2-n-propiltiofeno y se trataron de manera similar al ejemplo de referencia 5 para dar el compuesto objetivo.

Ejemplo de referencia 7

5-bromo-(5-etil-2-tienilmetil)-2-metoxibenceno

(1) Se enfrió una disolución de 2-etiltiofeno (3,00 g) en tetrahidrofurano (36 ml) hasta 0 °C bajo atmósfera de argón y a la misma se le añadió gota a gota n-butil-litio (disolución en hexano 1,56 M, 17,1 ml). Se agitó la mezcla a la misma temperatura durante 30 minutos y se enfrió hasta -78 °C y a la misma se le añadió gota a gota una suspensión de 5-bromo-2-metoxibenzaldehído (5,74 g) en tetrahidrofurano (60 ml). Se agitó la mezcla a la misma temperatura durante 2 horas, se calentó hasta 0 °C y a la misma se le añadió una disolución de cloruro de amonio acuosa saturada. Se extrajo la mezcla con acetato de etilo y se lavó el extracto con salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 100:0-85:15) para dar 5-bromo-2-metoxifenil-5-etil-2-tienilmetanol (5,99 g) como un jarabe de color amarillo pálido. APCI-masas m/Z 309/311 (M+H-H₂O).

(2) Se trató el 5-bromo-2-metoxifenil-5-etil-2-tienilmetanol anterior de manera similar al ejemplo de referencia 1-(2) para dar 5-bromo-(5-etil-2-tienilmetil)-2-metoxibenceno como un aceite. APCI-masas m/Z 311/313 (M+H).

Ejemplo de referencia 8: 3-bromo-1-(5-etil-2-tienilmetil)-4-metoxibenceno

40 Se usaron 2-etiltiofeno y 3-bromo-4-metoxibenzaldehído y se trataron de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo.

Ejemplo de referencia 9

45 <u>3-bromo-1-(4-n-propil-2-tienilmetil)benceno</u>

- (1) Se usaron 3-n-propiltiofeno y 3-bromobenzaldehído y se trataron de manera similar al ejemplo de referencia 7-(1) para dar 3-bromofenil-4-n-propil-2-tienilmetanol. APCI-masas m/Z 293/295 (M+H-H₂O).
- (2) Se añadió gota a gota una disolución del 3-bromofenil-4-n-propil-2-tienilmetanol anterior (2,4 g) en acetonitrilo (10 ml) a una disolución mezclada de clorotrimetilsilano (4,54 ml) y yoduro de sodio (5,36 g) en acetonitrilo (10 ml) a 0 °C, a lo largo de un periodo de 2 horas. Se agitó la mezcla adicionalmente a temperatura ambiente durante 5 minutos y se enfrió otra vez hasta 0 °C. Se añadió una disolución acuosa (10 ml) de hidróxido de sodio (1,0 g) a la misma y se agitó la mezcla a 0 °C durante 0,5 horas. Se extrajo la mezcla con acetato de etilo, se lavó sucesivamente con una disolución de tiosulfato de sodio acuosa, agua y salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano) para dar 3-bromo-1-(4-n-propil-2-tienil)benceno (1,97 g) como un aceite incoloro.

Ejemplo de referencia 10

60 <u>5-bromo-2-cloro-1-(5-n-propil-2-tienilmetil)benceno</u>

Se usaron ácido 5-bromo-2-clorobenozoico y 2-n-propiltiofeno y se trataron de manera similar al ejemplo de referencia 5 para dar el compuesto objetivo.

65 Ejemplo de referencia 11

5-bromo-2-metoxi-1-(5-n-propil-2-tienilmetil)benceno

Se usaron 2-n-propiltiofeno y 5-bromo-2-metoxibenzaldehído y se trataron de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo. APCI-masas m/Z 325/327 (M+H).

Ejemplo de referencia 12

5

20

25

35

40

45

50

60

3-bromo-1-(4-etil-2-tienilmetil)benceno

Se usaron 3-etiltiofeno y 3-bromobenzaldehído y se trataron de manera similar al ejemplo de referencia 9 para dar el compuesto objetivo. APCI-masas m/Z 281/283 (M+H).

Ejemplo de referencia 13

15 3-bromo-1-(4-cloro-5-etil-2-tienilmetil)benceno

(1) A una disolución de 5-etil-2-tiofencarboxaldehído (6,0 g) en N,N-dimetilformamida (60 ml) se le añadió N-clorosuccinimida (8,57 g) y se agitó la mezcla a temperatura ambiente durante 2 horas y se agitó posteriormente con calentamiento a 60 °C durante 2 horas. Se añadió N-clorosuccinimida (4,00 g) adicionalmente a la misma y se agitó la mezcla adicionalmente con calentamiento a 60 °C durante 2 horas. Se vertió la mezcla de reacción en agua y se extrajo la mezcla con acetato de etilo, se lavó con salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 33:1) para dar 4-cloro-5-etil-2-tiofencarboxaldehído (3,1 g) como un aceite incoloro.

(2) Se trató el 4-cloro-5-etil-2-tiofencarboxaldehído anterior de manera similar al ejemplo de referencia 1 para dar 3-bromo-1-(4-cloro-5-etil-2-tienilmetil)benceno como un aceite de color amarillo. APCI-masas m/Z 347/349 (M+H+MeOH).

Ejemplo de referencia 14

30 5-bromo-2-cloro-1-(4,5,6,7-tetrahidrobenzo[b]tiofen-2-ilmetil)benceno

(1) A una disolución de 4-ceto-4,5,6,7-tetrahidrotianafteno (9,83 g) en etilenglicol (100 ml) se le añadieron hidrato de hidrazina (10,4 ml) e hidróxido de potasio (13,0 g) y se agitó la mezcla bajo atmósfera de argón a 190 °C durante 4 horas. Se enfrió la mezcla de reacción hasta temperatura ambiente y se vertió en agua y se extrajo la mezcla con acetato de etilo. Se lavó el extracto con agua y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano) para dar 4,5,6,7-tetrahidrotianafteno (2,75 g) como un aceite incoloro.

(2) Se trató el 4,5,6,7-tetrahidrotianafteno anterior de manera similar al ejemplo de referencia 5 para dar 5-bromo-2-cloro-1-(4,5,6,7-tetrahidrobenzo[b]tiofen-2-ilmetil)benceno como un sólido incoloro. APCI-masas m/Z 341/343 (M+H).

Ejemplo de referencia 15

5-bromo-2-cloro-1-(5-etil-4-metil-2-tienilmetil)benceno

(3) Se trató 2-acetil-3-metiltiofeno de manera similar al ejemplo de referencia 14 para dar el compuesto objetivo. APCI-masas m/Z 329/331 (M+H).

Ejemplo de referencia 16

5-bromo-2-cloro-1-(2-tieno[3,2-b]tienilmetil)benceno

- (1) Se trató ácido 5-bromo-2-clorobenzoico de manera similar al ejemplo de referencia 4-(2) y (3) para dar 5-bromo-2-clorobenzaldehído. APCI-masas m/Z 233/235 (M+H+MeOH-H₂O).
- 55 (2) Se trataron el 5-bromo-2-clorobenzaldehído anterior y tieno[3,2-b]tiofeno (véase Fuller, L.; Iddon, B.; Smith, K. A. J. Chem. Soc. Perkin Trans 1 1997, 3465 -3470) de manera similar al ejemplo de referencia 9 para dar 5-bromo-2-cloro-1-(2-tieno[3,2-b]tienilmetil)benceno como un aceite incoloro. APCI-masas m/Z 343/345 (M+H).

Ejemplo de referencia 17

5-bromo-2-cloro-1-(5-cloro-2-tienilmetil)benceno

Se trató 2-clorotiofeno de manera similar al ejemplo de referencia 5 para dar el compuesto objetivo.

65 Ejemplo de referencia 18

5-bromo-2-cloro-1-(5-fenilmetil-2-tienilmetil)benceno

Se trató 2-benzoiltiofeno de manera similar al ejemplo de referencia 14 para dar el compuesto objetivo. APCI-masas m/Z 377/379 (M+H).

Ejemplo de referencia 19

5

40

45

50

55

5-bromo-2-cloro-1-(5-(2-tienil)-2-tienilmetil)benceno

Se usaron 2,2'-bitiofeno y 5-bromo-2-clorobenzaldehído obtenido en el ejemplo de referencia 16-(1) y se trataron de manera similar a la síntesis 9 para dar el compuesto objetivo. APCI-masas m/Z 369/371 (M+H).

Ejemplo de referencia 20: 5-bromo-1-(5-(5-cloro-2-tienil)-2-tienilmetil)-2-metilbenceno

- 15 (1) Se calentó una disolución de 2-bromo-5-clorotiofeno (4,11 g), ácido tiofen-2-borónico (4,00 g), tetraquis(trifenilfosfina)paladio (0) (1,20 g) y disolución de carbonato de sodio acuosa 2 M (31,3 ml) en dimetoxietano (100 ml) a reflujo bajo atmósfera de argón durante 2,5 horas. Se enfrió la mezcla de reacción y se extrajo con acetato de etilo. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano) para dar 2-(5-cloro-2-tienil)tiofeno (3,37 g) como un aceite de color amarillo pálido.
 - (2) Se usaron el 2-(5-cloro-2-tienil)tiofeno anterior y ácido 5-bromo-2-metilbenzoico obtenido en el ejemplo de referencia 4-(1) y se trataron de manera similar al ejemplo de referencia 5 para dar 5-bromo-1-(5-(5-cloro-2-tienil)-2-tienilmetil)-2-metilbenceno como un sólido incoloro. APCI-masas m/Z 383/385 (M+H).

25 <u>Ejemplo de referencia 21</u>

5-bromo-2-cloro-1-(4-cloro-5-etil-2-tienilmetil)benceno

Se trató 2-acetil-3-clorotiofeno (véase la publicación de patente no examinada japonesa n.º 2000-34230) de manera similar al ejemplo de referencia 14 para dar el compuesto objetivo. APCI-masas m/Z 347/349 (M+H).

Ejemplo de referencia 22 5-cloro-4-metiltiofeno

Se preparó el compuesto objetivo según un método descrito en la publicación de patente no examinada japonesa n.º 10-324632.

Ejemplo de referencia 23

5-bromo-2-cloro-1-(5-(5-cloro-2-tienil)-2-tienilmetil)benceno

Se trataron 2-(5-cloro-2-tienil)tiofeno y ácido 5-bromo-2-clorobenzoico de manera similar al ejemplo de referencia 5 para dar el compuesto objetivo.

Ejemplo de referencia 24

5-bromo-2-cloro-1-(5-trifluorometil-2-tienilmetil)benceno

Se trataron 2-trifluorometiltiofeno (véase la publicación de patente no examinada japonesa n.º 2000-34239) y 5-bromo-2-clorobenzaldehído obtenido en el ejemplo de referencia 16-(1) de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo.

Ejemplo de referencia 25

5-bromo-2-cloro-1-(5-(2-piridil)-2-tienilmetil)benceno

- (1) Se trataron 2-(2-piridil)tiofeno y 5-bromo-2-clorobenzaldehído obtenido en el ejemplo de referencia 16-(1) de manera similar al ejemplo de referencia 7-(1) para dar 5-bromo-2-clorofenil-5-(2-piridil)-2-tienilmetanol como un polvo incoloro. APCI-masas m/Z 380/382 (M+H).
- (2) Se añadió una disolución del 5-bromo-2-clorofenil-5-(2-piridil)-2-tienilmetanol anterior (3,52 g) en ácido trifluoroacético (45 ml) a una disolución de borohidruro de sodio (1,75 g) en ácido trifluoroacético (45 ml) y se agitó la mezcla a temperatura ambiente durante 4 horas. Se evaporó ácido trifluoroacético a presión reducida.

Se basificó el residuo con una disolución de hidróxido de potasio acuosa y se extrajo con dietil éter. Se secó el extracto sobre sulfato de sodio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 9:1-4:1) para dar 5-bromo-2-cloro-1-(5-(2-piridil)-2-tienilmetil)benceno (2,42 g) como un sólido incoloro. APCI-masas m/Z 364/366 (M+H).

5

10

15

45

50

55

60

65

5-bromo-1-(5-cloro-2-tienilmetil)-2-fenilbenceno

(1) Se trataron ácido 5-bromo-2-yodobenzoico (véase Jorg Frahn, A.-Dieter Schluter Synthesis 1997, 1301-1304) y 2-clorotiofeno de manera similar al ejemplo de referencia 5 para dar 5-bromo-1-(5-cloro-2-tienilmetil)-2-yodobenceno como un aceite incoloro.

(2) A una disolución del 5-bromo-1-(5-cloro-2-tienilmetil)-2-yodobenceno anterior (1,0 g) en dimetoxietano (10 ml) se le añadieron ácido fenilborónico (310 mg), dicloruro de bis(trifenilfosfina)paladio (II) (85 mg) y disolución de carbonato de sodio acuosa 2 M (3,8 ml) y se agitó la mezcla a 50 °C durante la noche. A la misma se le añadió una disolución de hidrogenocarbonato de sodio acuosa saturada y se extrajo la mezcla con acetato de etilo y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano) para dar

5-bromo-1-(5-cloro-2-tienilmetil)-2-fenilbenceno (683 mg) como un aceite.

Ejemplo de referencia 27 2-clorotieno[3,2-b]tiofeno

(1) Se enfrió una disolución de tieno[3,2-b]tiofeno (véase Fuller, L.; Iddon, B.; Smith, K. A. J. Chem. Soc. Perkin Trans 1 1997, 3465 -3470) (1,27 g) en tetrahidrofurano (30 ml) hasta -78 °C bajo atmósfera de argón y a la misma se le añadió gota a gota n-butil-litio (disolución en hexano 1,59 M, 5,70 ml). Se agitó la mezcla a 0 °C durante 30 minutos y se enfrió otra vez hasta -78 °C. A la misma se le añadió una disolución de hexacloroetano (2,14 g) en tetrahidrofurano (5 ml). Se agitó la mezcla a la misma temperatura durante una hora y se calentó hasta 0 °C. A la misma se le añadió una disolución de cloruro de amonio acuosa saturada y se extrajo la mezcla con acetato de etilo. Se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano) para dar 2-clorotieno[3,2-b]tiofeno (1,19 g) como un sólido.

Ejemplo de referencia 28

30 1-(benzo[b]tiofen-2-ilmetil)-5-bromo-2-metoxibenceno

Se trató tianafteno de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo. ESI-masas m/Z 331/333 (M-H).

35 <u>Ejemplo de referencia 29</u>

1-(benzo[b]tiofen-2-ilmetil)-5-bromo-2-clorobenceno

Se trataron tianafteno y 5-bromo-2-clorobenzaldehído obtenido en el ejemplo de referencia 16-(1) de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo.

Ejemplo de referencia 30

3-bromo-1-(5-metilbenzo[b]tiofen-2-ilmetil)benceno

Se trataron 5-metilbenzo[b]tiofeno y 3-bromobenzaldehído de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo.

Ejemplo de referencia 31: 3-bromo-1-(6-fluorobenzo[b]tiofen-2-ilmetil)benceno

(1) A una disolución de 2,4-difluorobenzaldehído (5,0 g) en dimetilsulfóxido (100 ml) se le añadieron tioglicolato de metilo (3,45 ml) y trietilamina (10 ml) y se agitó la mezcla a 80 °C durante la noche. Se vertió la mezcla de reacción en agua helada. Se extrajo la mezcla con acetato de etilo, se lavó con agua y salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 7:1) para dar 6-fluoro-2-metoxicarbonilbenzo[b]tiofeno (1,32 g) como un polvo incoloro. CG-El-masas m/Z 210 (M).

- (2) Se trató el 6-fluoro-2-metoxicarbonilbenzo[b]tiofeno anterior de manera similar al ejemplo de referencia 4-(1) para dar ácido 6-fluorobenzo[b]tiofen-2-ilcarboxílico como un polvo incoloro. ESI-masas m/Z 195 (M-H).
- (3) Se trató el ácido 6-fluorobenzo[b]tiofen-2-ilcarboxílico anterior de manera similar al ejemplo de referencia 4-(2) para dar 6-fluoro-2-(N-metoxi-N-metilcarbamoil)benzo[b]tiofeno como un polvo incoloro. APCI-masas m/Z 240 (M+H).
- (4) Se enfrió una disolución de 1,3-dibromobenceno (493 mg) en tetrahidrofurano (10 ml) hasta -78 °C bajo atmósfera de argón y a la misma se le añadió gota a gota n-butil-litio (disolución en hexano 2,44 M, 0,86 ml). Se agitó la mezcla de reacción a la misma temperatura durante 30 minutos y a la misma se le añadió gota a gota una disolución del 6-fluoro-2-(N-metoxi-N-metilcarbamoil)benzo[b]tiofeno anterior (500 mg) en tetrahidrofurano (3 ml). Se calentó la mezcla hasta temperatura ambiente y a la misma se le añadió una disolución de cloruro de amonio

acuosa saturada. Se extrajo la mezcla con acetato de etilo y se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 95:5-85:15) para dar 3-bromofenil 6-fluorobenzo[b]tiofen-2-il cetona (479 mg) como un sólido de color amarillo pálido. APCI-masas m/Z 335/337 (M+NH₄).

(5) Se trató la 3-bromofenil 6-fluorobenzo[b]tiofen-2-il cetona anterior de manera similar al ejemplo de referencia 5-(2) para dar

3-bromo-1-(6-fluorobenzo[b]tiofen-2-ilmetil)benceno como un sólido incoloro.

Ejemplo de referencia 32

10

5

1-(benzo[b]tiofen-2-ilmetil)-3-bromo-4-fluorobenceno

Se trataron tianafteno y 3-bromo-4-fluorobenzaldehído de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo.

15

Ejemplo de referencia 33

1-(benzo[b]tiofen-2-ilmetil)-5-bromo-2-etoxibenceno

20 Se trataron tianafteno y 5-bromo-2-etoxibenzaldehído de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo.

Ejemplo de referencia 34

25 1-(benzo[b]tiofen-2-ilmetil)-5-bromo-2-fluorobenceno

Se trataron tianafteno y 5-bromo-2-fluorobenzaldehído de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo.

30 Ejemplo de referencia 35

2-(benzo[b]tiofen-2-ilmetil)-4-bromo-1-metoxinaftaleno

Se trataron 2,4-dibromo-1-metoxinaftaleno (véase J. Clayden, *et al.* Org. Lett., 5, (2003) 831) y benzo[b]tiofen-2-carboxaldehído de manera similar al ejemplo de referencia 1 para dar el compuesto objetivo.

Ejemplo de referencia 36

3-bromo-1-(5-trifluorometilbenzo[b]tiofen-2-ilmetil)benceno

40

Se trató ácido 5-trifluorometilbenzo[b]tiofen-2-ilcarboxílico de manera similar al ejemplo de referencia 31-(3), (4) y (5) para dar el compuesto objetivo.

Ejemplo de referencia 37

45

3-bromo-1-(3-metilbenzo[b]tiofen-2-ilmetil)benceno

Se trató 3-metilbenzo[b]tiofen-2-carboxaldehído de manera similar al ejemplo de referencia 1 para dar el compuesto objetivo.

50

Ejemplo de referencia 38

3-bromo-1-(5-fluorobenzo[b]tiofen-2-ilmetil)benceno

55 Se trató 2,5-difluorobenzaldehído de manera similar al ejemplo de referencia 31 para dar el compuesto objetivo.

Ejemplo de referencia 39

1-(benzo[b]tiofen-2-ilmetil)-3-bromo-4-metilbenceno

60

- (1) Se trató ácido 3-bromo-4-metilbenzoico de manera similar al ejemplo de referencia 4-(2) y (3) para dar 3-bromo-4-metilbenzaldehído como cristales incoloros. APCI-masas m/Z 213/215 (M+H+MeOH).
- (2) Se trataron el 3-bromo-4-metilbenzaldehído anterior y tianafteno de manera similar al ejemplo de referencia 7 para dar (benzo[b]tiofen-2-ilmetil)-3-bromo-4-metilbenceno como un sólido incoloro.

65

Ejemplo de referencia 40

1-(benzo[b]tiofen-2-ilmetil)-3-bromo-5-metilbenceno

Se trataron 3,5-dibromotolueno y benzo[b]tiofen-2-carboxaldehído de manera similar al ejemplo de referencia 1 para dar el compuesto objetivo.

Ejemplo de referencia 41

5-bromo-2-cloro-1-(5-metilbenzo[b]tiofen-2-ilmetil)benceno

Se trataron 5-metilbenzo[b]tiofeno y 5-bromo-2-clorobenzaldehído obtenido en la síntesis 16-(1) de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo.

Ejemplo de referencia 42

15

10

5-bromo-2-cloro-1-(7-metilbenzo[b]tiofen-2-ilmetil)benceno

Se trataron 7-metilbenzo[b]tiofeno (véase Tilak, B. D. Tetrahedron 9 (1960) 76-95) y 5-bromo-2-clorobenzaldehído obtenido en el ejemplo de referencia 16-(1) de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo.

Ejemplo de referencia 43

5-bromo-2-cloro-1-(5-clorobenzo[b]tiofen-2-ilmetil)benceno

25

Se trataron 5-clorobenzo[b]tiofeno (véase Tilak, B. D. Tetrahedron 9 (1960) 76-95) y 5-bromo-2-clorobenzaldehído obtenido en el ejemplo de referencia 16-(1) de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo.

30 Ejemplo de referencia 44

5-bromo-2-cloro-1-(5,7-dimetilbenzo[b]tiofen-2-ilmetil)benceno

Se trataron 5,7-dimetilbenzo[b]tiofeno (véase Yoshimura, Y. *et al.*, J. Med. Chem. 43 (2000) 2929-2937) y 5-bromo-2clorobenzaldehído obtenido en el ejemplo de referencia 16-(1) de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo.

Ejemplo de referencia 45

40 <u>1-(benzo[b]tiofen-2-ilmetil)-5-bromo-2-metilbenezeno</u>

- (1) Se enfrió una disolución de tianafteno (543 mg) en dietil éter (20 ml) hasta 0 °C bajo atmósfera de argón y a la misma se le añadió gota a gota n-butil-litio (disolución en hexano 2,44 M, 1,74 ml). Se agitó la mezcla de reacción a la misma temperatura durante 3 horas. Se añadió gota a gota la mezcla de reacción a una disolución de N-metoxi-N-metil-5-bromo-2-metilbenzamida (1,15 g) obtenida en el ejemplo de referencia 4-(2) en dietil éter (10 ml) enfriado hasta -78 °C. Se calentó la mezcla hasta temperatura ambiente y se agitó durante una hora. A la misma se le añadió una disolución de cloruro de amonio acuosa saturada. Se extrajo la mezcla con acetato de etilo, se lavó con salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 100:0-95:5) para dar 5-bromo-2-metilfenil benzo[b]tiofen-2-il cetona (995 mg) como un jarabe de color amarillo pálido. APCI-masas m/Z 331/333 (M+H).
- (2) Se trató la 5-bromo-2-metilfenil benzo[b]tiofen-2-il cetona anterior de manera similar al ejemplo de referencia 5-(2) para dar 1-(benzo[b]tiofen-2-ilmetil)-5-bromo-2-metilbenceno como un aceite incoloro.

55 <u>Ejemplo de referencia 46</u>

5-bromo-2-cloro-1-(6-metoxibenzo[b]tiofen-2-ilmetil)benceno

Se trataron 6-metoxibenzo[b]tiofeno (véase el documento WO 97/25033) y 5-bromo-2-clorobenzaldehído obtenido en el ejemplo de referencia 16-(1) de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo.

Ejemplo de referencia 47

5-bromo-2-cloro-1-(6-clorobenzo[b]tiofen-2-ilmetil)benceno

65

45

50

(1) Se trató 4-cloro-2-fluorobenzaldehído de manera similar al ejemplo de referencia 31-(1) y (2) para dar ácido 6-

clorobenzo[b]tiofen-2-ilcarboxílico como cristales incoloros. ESI-masas m/Z 211/213 (M-H).

- (2) Se agitó una disolución del ácido 6-clorobenzo[b]tiofen-2-ilcarboxílico anterior (3,0 g) y polvo de cobre (1,2 g) en quinolina (20 ml) a 210 °C durante 40 minutos. Se enfrió la mezcla hasta temperatura ambiente y se diluyó con dietil éter y se eliminaron por filtración los materiales insolubles. Se lavó el filtrado sucesivamente con disolución de ácido clorhídrico acuosa al 10 % y salmuera y se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano) para dar 6-clorobenzo[b]tiofeno (1,79 g) como cristales incoloros.
- (3) Se trataron el 6-clorobenzo[b]tiofeno anterior y 5-bromo-2-clorobenzaldehído obtenido en el ejemplo de referencia 16-(1) de manera similar al ejemplo de referencia 7 para dar 5-bromo-2-cloro-1-(6-clorobenzo[b]tiofen-2-ilmetil)benceno como cristales incoloros.

Ejemplo de referencia 48

5-bromo-2-cloro-1-(6-trifluorometilbenzo[b]tiofen-2-ilmetil)benceno

Se trató 2-fluoro-4-trifluorometilbenzaldehído de manera similar al ejemplo de referencia 47 para dar el compuesto objetivo.

Ejemplo de referencia 49

20

5

10

15

30

60

1-(benzo[b]tiofen-2-ilmetil)-3-bromo-4-clorobenceno

Se trató ácido 3-bromo-4-clorobenzoico de manera similar al ejemplo de referencia 39 para dar el compuesto objetivo.

25 <u>Ejemplo de referencia 50</u>

5-bromo-2-cloro-1-(6-fluorobenzo[b]tiofen-2-ilmetil)benceno

Se trató 2,4-difluorobenzaldehído de manera similar al ejemplo de referencia 47 para dar el compuesto objetivo.

Ejemplo de referencia 51

5-bromo-2-fluoro-1-(6-fluorobenzo[b]tiofen-2-ilmetil)benceno

35 Se trataron 6-fluorobenzo[b]tiofeno producido en el procedimiento de preparación del ejemplo de referencia 50 y 5-bromo-2-fluorobenzaldehído de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo.

Ejemplo de referencia 52

40 <u>1-(benzo[b]tiofen-2-ilmetil)-3-bromo-5-clorobenceno</u>

Se trataron 1-cloro-3,5-dibromobenceno y benzo[b]tiofen-2-carboxaldehído de manera similar al ejemplo de referencia 1 para dar el compuesto objetivo.

45 Ejemplo de referencia 53

5-bromo-2-cloro-1-(7-metoxibenzo[b]tiofen-2-ilmetil)benceno

Se trataron 7-metoxibenzo[b]tiofeno (véase el documento WO 02/094262) y 5-bromo-2-clorobenzaldehído obtenido en el ejemplo de referencia 16-(1) de manera similar al ejemplo de referencia 9 para dar el compuesto objetivo. APCI-masas m/Z 367/369 (M+H).

Ejemplo de referencia 54

55 <u>5-bromo-2-cloro-1-(5-metoxibenzo[b]tiofen-2-ilmetil)benceno</u>

Se trataron 5-metoxibenzo[b]tiofeno (véase el documento WO 97/25033) y 5-bromo-2-clorobenzaldehído obtenido en el ejemplo de referencia 16-(1) de manera similar al ejemplo de referencia 9 para dar el compuesto objetivo. APCI-masas m/Z 367/369 (M+H).

Ejemplo de referencia 55

5-bromo-2-cloro-1-(5-fluorobenzo[b]tiofen-2-ilmetil)benceno

65 Se trató 2,5-difluorobenzaldehído de manera similar al ejemplo de referencia 47 para dar el compuesto objetivo.

5-bromo-2-cloro-1-(7-fluoro-6-metilbenzo[b]tiofen-2-ilmetil)benceno

5 Se trató 2,3-difluoro-4-metilbenzaldehído de manera similar al ejemplo de referencia 47 para dar el compuesto objetivo. APCI-masas m/Z 369/371 (M+H).

Ejemplo de referencia 57

10 <u>5-bromo-2-cloro-1-(4-fluorobenzo[b]tiofen-2-ilmetil)benceno</u>

Se trató 2,6-difluorobenzaldehído de manera similar al ejemplo de referencia 47 para dar el compuesto objetivo.

Ejemplo de referencia 58

15

25

50

5-bromo-2-cloro-1-(7-fluorobenzo[b]tiofen-2-ilmetil)benceno

Se trató 2,3-difluorobenzaldehído de manera similar al ejemplo de referencia 47 para dar el compuesto objetivo.

20 Ejemplo de referencia 59

5-bromo-2-cloro-1-(4-clorobenzo[b]tiofen-2-ilmetil)benceno

Se trató 2-cloro-6-flluorobenzaldehído de manera similar al ejemplo de referencia 47 para dar el compuesto objetivo.

Ejemplo de referencia 60

5-bromo-2-fluoro-1-(5-fluorobenzo[b]tiofen-2-ilmetil)benceno

30 Se trataron 5-fluorobenzo[b]tiofeno producido en el procedimiento de preparación del ejemplo de referencia 55 y 5-bromo-2-fluorobenzaldehído de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo.

Ejemplo de referencia 61

35 <u>3-bromo-2-cloro-1-(benzo[b]tiofen-2-ilmetil)benceno</u>

- (1) Se trató ácido 3-bromo-2-clorobenzoico (véase Frederic Gohier *et al.*, J. Org. Chem. (2003) 68 2030-2033) de manera similar al ejemplo de referencia 4-(2) para dar N-metoxi-N-metil-3-bromo-2-clorobenzamida como un aceite. APCI-masas m/Z 278/280/282 (M+H).
- 40 (2) Se trató la N-metoxi-N-metil-3-bromo-2-clorobenzamida anterior de manera similar al ejemplo de referencia 45 para dar 3-bromo-2-cloro-1-(benzo[b]tiofen-2-ilmetil)benceno como un sólido incoloro.

Ejemplo de referencia 62

45 <u>1-(benzo[b]tiofen-2-ilmetil)-5-bromo-2-etilbenceno</u>

- (1) A una disolución de ácido 2-etilbenzoico (10,0 g) en diclorometano (50 ml) se le añadieron cloruro de oxalilo (7,0 ml) y N,N-dimetilformamida (3 gotas) y se agitó la mezcla a temperatura ambiente durante 3 horas. Se evaporó el disolvente a presión reducida para dar el cloruro de ácido correspondiente. Se disolvió el cloruro del ácido en metanol (60 ml) y se agitó la mezcla a temperatura ambiente durante 3 horas y entonces se evaporó el disolvente a presión reducida. Se disolvió el residuo en dietil éter y se lavó sucesivamente con una disolución de hidrogenocarbonato de sodio acuosa saturada y salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida para dar 2-etilbenzoato de metilo, que se usó en la etapa posterior sin purificación adicional.
- (2) Se mezcló el 2-etilbenzoato de metilo anterior con tamiz molecular 13X (polvo, 70 g) y mientras se agitaba la mezcla, se añadió gota a gota bromo (5,2 ml) a la misma a 80 °C. Se agitó la mezcla adicionalmente a la misma temperatura durante 1,5 horas. Se enfrió la mezcla hasta temperatura ambiente y a la misma se le añadieron carbonato de potasio (7,4 g), agua (70 ml) y metanol (350 ml) y se agitó la mezcla durante 8 horas. Se eliminaron por filtración los materiales insolubles y se suspendieron en una disolución mezclada de metanol (500 ml)-agua (500 ml) y se agitó la mezcla a temperatura ambiente durante la noche. Se eliminaron por filtración los materiales insolubles y se combinó el filtrado con el filtrado obtenido previamente y se evaporó el disolvente a presión reducida. Se extrajo el residuo con acetato de etilo y se lavó el extracto con salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se destiló el residuo a presión reducida para dar 5-bromo-2-
- (3) Se trató el 5-bromo-2-etilbenzoato de metilo anterior de manera similar al ejemplo de referencia 4-(1) y (2) para dar N-metoxi-N-metil-5-bromo-2-etilbenzamida como un aceite incoloro. APCI-masas m/Z 272/274 (M+H).

etilbenzoato de metilo (2,44 g). APCI-masas m/Z 260/262 (M+NH₄).

(4) Se trataron la N-metoxi-N-metil-5-bromo-2-etilbenzamida anterior y tianafteno de manera similar al ejemplo de referencia 45 para dar 1-(benzo[b]tiofen-2-ilmetil)-5-bromo-2-etilbenceno como un aceite.

Ejemplo de referencia 63

5

10

15

20

25

30

45

50

1-(benzo[b]tiofen-2-ilmetil)-5-bromo-2-trifluorometilbenceno

- (1) Se trató ácido 5-bromo-2-yodobenzoico (véase Jorg Frahn, A.-Dieter Schluter Synthesis 1997, 1301-1304) de manera similar al ejemplo de referencia 4-(2) para dar N-metoxi-N-metil-5-bromo-2-yodobenzamida como un sólido de color amarillo pálido. APCI-masas m/Z 370/372 (M+H).
- (2) A una disolución de la N-metoxi-N-metil-5-bromò-2-yódobenzamida anterior (2,67 g) en N-metil-2-pirrolidinona (12 ml) se le añadieron bromuro de cobre (I) (124 mg) y (difluoro)acetato de metil-fluorosulfonilo (1,34 ml) y se agitó la mezcla con calentamiento durante 1,5 horas. Se enfrió la mezcla de reacción hasta temperatura ambiente y entonces se añadió amoniaco acuoso diluido a la misma y se extrajo la mezcla con acetato de etilo. Se lavó el extracto con agua y salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 100:0-85:15) para dar N-metoxi-N-metil-5-bromo-2-trifluorometilbenzamida (1,59 g) como un aceite incoloro. APCI-masas m/Z 312/314 (M+H).
- (3) Se tràtaron la N-metoxi-N-metil-5-bromo-2-trifluorometilbenzamida anterior y tianafteno de manera similar al ejemplo de referencia 45 para dar
- 1-(benzo[b]tiofen-2-ilmetil)-5-bromo-2-trifluorometilbenceno como un sólido incoloro. ESI-masas m/Z 369/371 (M-H).

Ejemplo de referencia 64

5-bromo-2-cloro-1-(5-fenil-2-tienilmetil)benceno

Se trató 2-feniltiofeno de manera similar al ejemplo de referencia 5 para dar el compuesto objetivo. APCI-masas m/Z 363/365 (M+H).

Ejemplo de referencia 65

5-bromo-2-cloro-1-(5-(4-metilfenil)-2-tienilmetil)benceno

- 35 (1) Se trataron 2-yodotiofeno y ácido 4-metilfenilborónico de manera similar al ejemplo de referencia 26-(2) para dar 2-(4-metilfenil)tiofeno como cristales incoloros. APCI-masas m/Z 175 (M+H).
 - (2) Se trató el 2-(4-metilfenil)tiofeno anterior de manera similar al ejemplo de referencia 5 para dar 5-bromo-2-cloro-1-(5-(4-metilfenil)-2-tienilmetil)benceno como cristales incoloros. APCI-masas m/Z 377/379 (M+H).
- 40 Ejemplo de referencia 66

5-bromo-2-cloro-1-(5-(2-fluorofenil)-2-tienilmetil)benceno

- (1) Se trataron 2-fluorobromobenceno y ácido tiofen-2-borónico de manera similar al ejemplo de referencia 26-(2) para dar 2-(2-fluorofenil)tiofeno como un líquido incoloro.
- (2) Se trató el 2-(2-fluorofenil)tiofeno anterior de manera similar al ejemplo de referencia 5 para dar 5-bromo-2-cloro-1-(5-(2-fluorofenil)-2-tienilmetil)benceno como un sólido incoloro. APCI-masas m/Z 381/383 (M+H).

Ejemplo de referencia 67

5-bromo-2-cloro-1-(5-(4-fluorofenil)-2-tienilmetil)benceno

- (1) Se trataron 2-yodotiofeno y ácido 4-fluorofenilborónico de manera similar al ejemplo de referencia 26-(2) para dar 2-(4-fluorofenil)tiofeno como un polvo incoloro.
- 55 (2) Se trató el 2-(4-fluorofenil)tiofeno anterior de manera similar al ejemplo de referencia 5 para dar 5-bromo-2-cloro-1-(5-(4-fluorofenil)-2-tienilmetil)benceno como un polvo incoloro.

Ejemplo de referencia 68

60 <u>5-bromo-2-cloro-1-(5-(4-etoxifenil)-2-tienilmetil)benceno</u>

- (1) Se trataron 2-bromotiofeno y ácido 4-etoxifenilborónico de manera similar al ejemplo de referencia 20-(1) para dar 2-(4-etoxifenil)tiofeno como un sólido incoloro. APCI-masas m/Z 205 (M+H).
- (2) Se trató el 2-(4-etoxifenil)tiofeno anterior de manera similar al ejemplo de referencia 5 para dar 5-bromo-2-cloro-1-(5-(4-etoxifenil)-2-tienilmetil)benceno como un sólido incoloro. APCI-masas m/Z 407/409 (M+H).

5-bromo-2-cloro-1-(5-(3-etoxifenil)-2-tienilmetil)benceno

- 5 (1) Se trataron 2-bromotiofeno y ácido 3-etoxifenilborónico de manera similar al ejemplo de referencia 20-(1) para dar 2-(3-etoxifenil)tiofeno como un aceite incoloro. APCI-masas m/Z 205 (M+H).
 - (2) Se trataron el 2-(3-etoxifenil)tiofeno anterior y 5-bromo-2-clorobenzaldehído obtenido en el ejemplo de referencia 16-(1) de manera similar al ejemplo de referencia 9 para dar 5-bromo-2-cloro-1-(5-(3-etoxifenil)-2-tienilmetil)benceno como un aceite incoloro. APCI-masas m/Z 407/409 (M+H).

Ejemplo de referencia 70

10

20

45

50

55

5-bromo-2-cloro-1-(5-(2-etoxifenil)-2-tienilmetil)benceno

- 15 (1) Se trataron 2-yodotiofeno y ácido 2-etoxifenilborónico de manera similar al ejemplo de referencia 26-(2) para dar 2-(2-etoxifenil)tiofeno como un sólido de color amarillo pálido.
 - (2) Se trataron el 2-(2-etoxifenil)tiofeno anterior y 5-bromo-2-clorobenzaldehído obtenido en el ejemplo de referencia 16-(1) de manera similar al ejemplo de referencia 9 para dar 5-bromo-2-cloro-1-(5-(2-etoxifenil)-2-tienilmetil)benceno como un aceite incoloro. APCI-masas m/Z 407/409 (M+H).

Ejemplo de referencia 71

5-bromo-2-fluoro-1-(5-fenil-2-tienilmetil)benceno

25 Se trataron 2-feniltiofeno y 5-bromo-2-fluorobenzaldehído de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo. APCI-masas m/Z 347/349 (M+H).

Ejemplo de referencia 72

30 <u>5-bromo-1-(5-(4-etoxifenil)-2-tienilmetil)-2-fluorobenceno</u>

Se trataron 2-(4-etoxifenil)tiofeno obtenido en el ejemplo de referencia 68-(1) y 5-bromo-2-fluorobenzaldehído de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo. APCI-masas m/Z 391/393 (M+H).

35 <u>Ejemplo de referencia 73</u>

5-bromo-1-(5-(2-etoxifenil)-2-tienilmetil)-2-fluorobenceno

Se trataron 2-(2-etoxifenil)tiofeno obtenido en la síntesis 70-(1) y 5-bromo-2-fluorobenzaldehído de manera similar al ejemplo de referencia 9 para dar el compuesto objetivo. APCI-masas m/Z 391/393 (M+H).

Ejemplo de referencia 74

5-bromo-2-fluoro-1-(5-(2-fluorofenil)-2-tienilmetil)benceno

Se trataron 2-(2-fluorofenil)tiofeno obtenido en el ejemplo de referencia 66-(1) y 5-bromo-2-fluorobenzaldehído de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo. APCI-masas m/Z 365/367 (M+H).

Ejemplo de referencia 75

5-bromo-2-cloro-1-(5-(3-fluorofenil)-2-tienilmetil)benceno

- (1) Se trataron 2-yodotiofeno y ácido 3-fluorofenilborónico de manera similar al ejemplo de referencia 26-(2) para dar 2-(3-fluorofenil)tiofeno como un aceite.
- (2) Se trató el 2-(3-fluorofenil)tiofeno anterior de manera similar al ejemplo de referencia 5 para dar el compuesto objetivo como un polvo.

Ejemplo de referencia 76 5-bromo-1-(5-(3-etoxifenil)-2-tienilmetil)-2-fluorobenceno

60 Se trataron 2-(3-etoxifenil)tiofeno obtenido en el ejemplo de referencia 69-(1) y 5-bromo-2-fluorobenzaldehído de manera similar al ejemplo de referencia 9 para dar el compuesto objetivo. APCI-masas m/Z 391/393 (M+H).

Ejemplo de referencia 77

65 <u>5-bromo-2-fluoro-1-(5-(3-fluorofenil)-2-tienilmetil)benceno</u>

Se trataron 2-(3-fluorofenil)tiofeno obtenido en el ejemplo de referencia 75-(1) y 5-bromo-2-fluorobenzaldehído de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo.

Ejemplo de referencia 78

5

5-bromo-2-fluoro-1-(5-(4-fluorofenil)-2-tienilmetil)benceno

Se trataron 2-(4-fluorofenil)tiofeno obtenido en el ejemplo de referencia 67-(1) y 5-bromo-2-fluorobenzaldehído de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo.

10

Ejemplo de referencia 79

5-bromo-2-metil-1-(5-fenil-2-tienilmetil)benceno

15 Se trataron 2-feniltiofeno y ácido 5-bromo-2-metilbenzoico obtenido en el ejemplo de referencia 4-(1) de manera similar al ejemplo de referencia 5 para dar el compuesto objetivo. APCI-masas m/Z 343/345 (M+H).

Ejemplo de referencia 80

20 <u>5-bromo-1-(5-(3-fluorofenil)-2-tienilmetil)-2-metilbenceno</u>

Se trataron 2-(3-fluorofenil)tiofeno obtenido en el ejemplo de referencia 75-(1) y ácido 5-bromo-2-metilbenzoico obtenido en el ejemplo de referencia 4-(1) de manera similar al ejemplo de referencia 5 para dar el compuesto objetivo.

25 <u>Ejemplo de referencia 81</u>

5-bromo-1-(5-(4-fluorofenil)-2-tienilmetil)-2-metilbenceno

Se trataron 2-(4-fluorofenil)tiofeno obtenido en el ejemplo de referencia 67-(1) y ácido 5-bromo-2-metilbenzoico obtenido en la síntesis 4-(1) de manera similar al ejemplo de referencia 5 para dar el compuesto objetivo.

Ejemplo de referencia 82

5-bromo-2-metoxi-1-(5-fenil-2-tienilmetil)benceno

35

Se trató 2-feniltiofeno de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo. APCI-masas m/Z 359/361 (M+H).

Ejemplo de referencia 83

40

45

5-bromo-2-metil-1-(5-(3-metilfenil)-2-tienilmetil)benceno

- (1) Se trataron 2-bromotiofeno y ácido 3-metilfenilborónico de manera similar al ejemplo de referencia 26-(2) para dar 2-(3-metilfenil)tiofeno como un aceite incoloro.
- (2) Se trataron el 2-(3-metilfenil)tiofeno anterior y 5-bromo-2-metilbenzaldehído obtenido en el ejemplo de referencia 4 de manera similar al ejemplo de referencia 9 para dar el compuesto objetivo. APCI-masas m/Z 357/359 (M+H).

Ejemplo de referencia 84

50

55

5-bromo-2-cloro-1-(5-(3-metilfenil)-2-tienilmetil)benceno

Se trataron 2-(3-metilfenil)tiofeno obtenido en el ejemplo de referencia 83-(1) y 5-bromo-2-clorobenzaldehído obtenido en el ejemplo de referencia 16-(1) de manera similar al ejemplo de referencia 9 para dar el compuesto objetivo. APCI-masas m/Z 377/379/381 (M+H).

Ejemplo de referencia 85

5-bromo-2-cloro-1-(5-(3-clorofenil)-2-tienilmetil)benceno

60

- (1) Se trataron 2-bromotiofeno y ácido 3-clorofenilborónico de manera similar al ejemplo de referencia 26-(2) para dar 2-(3-clorofenil)tiofeno como un aceite incoloro.
- (2) Se trató el 2-(3-clorofenil)tiofeno anterior de manera similar al ejemplo de referencia 5 para dar el compuesto objetivo como un aceite incoloro.

65

Ejemplo de referencia 86

5-bromo-1-(5-(3-clorofenil)-2-tienilmetil)-2-metilbenceno

Se trataron 2-(3-clorofenil)tiofeno obtenido en el ejemplo de referencia 85-(1) y ácido 5-bromo-2-metilbenzoico obtenido en el ejemplo de referencia 4-(1) de manera similar al ejemplo de referencia 5 para dar el compuesto objetivo como un aceite incoloro.

Ejemplo de referencia 87

10 <u>5-bromo-1-(5-(3-metoxifenil)-2-tienilmetil)-2-metilbenceno</u>

- (1) Se trataron 3-metoxibromobenceno y ácido tiofen-2-borónico de manera similar al ejemplo de referencia 26-(2) para dar 2-(3-metoxifenil)tiofeno como un líquido de color amarillo. APCI-masas m/Z 191 (M+H).
- (2) Se trataron el 2-(3-metoxifenil)tiofeno anterior y 5-bromo-2-metilbenzaldehído obtenido en el ejemplo de referencia 4 de manera similar al ejemplo de referencia 9 para dar el compuesto objetivo como un aceite de color amarillo. APCI-masas m/Z 373/375 (M+H).

Ejemplo de referencia 88

15

35

60

20 4-bromo-2-(4-etilfenilmetil)-2H-isoquinolin-1-ona

Se trató 4-bromo-2H-isoquinolin-1-ona (véase el documento EP0355750) de manera similar al ejemplo de referencia 2 para dar el compuesto objetivo. APCI-masas m/Z 342/344 (M+H).

25 <u>Ejemplo de referencia 89</u>

4-bromo-2-(4-etilfenilmetil)-8-metil-2H-isoquinolin-1-ona

- (1) A una disolución de 8-metil-2H-isoquinolin-1-ona (1,15 g) en diclorometano (20 ml) se le añadió gota a gota una disolución de bromo (1,26 g) en diclorometano (4 ml) a temperatura ambiente. Se agitó la mezcla a la misma temperatura durante una hora y se evaporó el disolvente a presión reducida. Se cristalizó el residuo en éter para dar 4-bromo-8-metil-2H-isoquinolin-1-ona (1,86 g) como cristales incoloros. APCI-masas m/Z 238/240 (M+H).
 - (2) Se trató la 4-bromo-8-metil-2H-isoquinolin-1-ona anterior de manera similar al ejemplo de referencia 2 para dar el compuesto objetivo como cristales incoloros. APCI-masas m/Z 356/358 (M+H).

Ejemplo de referencia 90

4-bromo-2-(4-etilfenilmetil)tiofeno

- 40 (1) Se enfrió una disolución de 4-bromo-2-tiofencarboxaldehído (4,78 g) en tetrahidrofurano (40 ml) hasta 0 °C bajo atmósfera de argón y a la misma se le añadió gota a gota bromuro de 4-etilfenilmagnesio (disolución en tetrahidrofurano 0,5 M, 50 ml). Se agitó la mezcla a la misma temperatura durante 30 minutos y a la misma se le añadió una disolución de cloruro de amonio acuosa saturada y se extrajo la mezcla con acetato de etilo. Se lavó el extracto con salmuera y se secó sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 97:3-84:16) para dar 4-bromo-2-tienil-4-etilfenilmetanol (5,37 g) como un aceite incoloro. APCI-masas m/Z 279/281 (M+H-H₂O).
 - (2) Se trató el 4-bromo-2-tienil-4-etilfenilmetanol anterior de manera similar al ejemplo de referencia 1-(2) para dar el compuesto objetivo como un aceite incoloro.

50 Ejemplo de referencia 91

5-bromo-2-(4-etilfenilmetil)tiofeno

Se trató 5-bromo-2-tiofencarboxaldehído de manera similar al ejemplo de referencia 90 para dar el compuesto objetivo. ESI-masas m/Z 279/281 (M-H).

Ejemplo de referencia 92

3-bromo-2-(4-etilfenilmetil)tiofeno

- (1) Se trataron 2,3-dibromotiofeno y 4-etilbenzaldehído de manera similar al ejemplo de referencia 1-(1) para dar 3-bromo-2-tienil-4-etilfenilmetanol como un aceite de color amarillo. APCI-masas m/Z 279/281 (M+H- $\mathrm{H}_2\mathrm{O}$).
- (2) Se añadió gota a gota una disolución del 3-bromo-2-tienil-4-etilfenilmetanol anterior (12,4 g) en dietil éter (10 ml) a una suspensión de hidruro de litio y aluminio (2,6 g) y cloruro de aluminio (9,0 g) en dietil éter (35 ml) a 0 °C. Posteriormente, se agitó la mezcla a temperatura ambiente durante la noche y entonces se vertió en hielo. Se extrajo la mezcla con dietil

éter, se lavó con una disolución de hidrogenocarbonato de sodio acuosa saturada y se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano) para dar

3-bromo-2-(4-etilfenilmetil)tiofeno (8,77 g) como un aceite incoloro. APCI-masas m/Z 279/281 (M+H).

5

20

30

35

Ejemplo de referencia 93

5-bromo-3-(4-etilfenilmetil)tiofeno

10 Se trató 5-bromo-3-tiofencarboxaldehído (véase Amishiro, N. *et al.*, Chem. Pharm. Bull. 47 (1999) 1393-1403) de manera similar al ejemplo de referencia 90 para dar el compuesto objetivo.

Ejemplo de referencia 94

15 5-bromo-2-cloro-3-(4-etilfenilmetil)tiofeno

- (1) Se trató ácido 5-bromo-2-cloro-3-tiofencarboxílico (véase la publicación de patente no examinada japonesa n.º 10-324632) de manera similar al ejemplo de referencia 4-(2) y (3) para dar 5-bromo-2-cloro-3-tiofencarboxaldehído como un aceite de color amarillo pálido. APCI-masas m/Z 239/241/243 (M+H+MeOH-H₂O).
- (2) Se trató el 5-bromo-2-cloro-3-tiofencarboxaldehído anterior de manera similar al ejemplo de referencia 90 para dar el compuesto objetivo como un aceite incoloro.

Ejemplo de referencia 95

25 5-bromo-3-cloro-2-(4-etilfenilmetil)tiofeno

- (1) Se enfrió una disolución de diisopropilamina (6,8 ml) en tetrahidrofurano (75 ml) hasta -78 °C bajo atmósfera de argón y a la misma se le añadió gota a gota n-butil-litio (disolución en hexano 1,59 M, 30,5 ml). Se agitó la mezcla de reacción a la misma temperatura durante 30 minutos y a la misma se le añadió gota a gota una disolución de ácido 3-cloro-2-tiofencarboxílico (3,92 g) en tetrahidrofurano (40 ml). Se agitó la mezcla a la misma temperatura durante 30 minutos; y a la misma se le añadió gota a gota 1,2-dibromo-1,1,2,2-tetrafluoroetano (6,0 ml). Se agitó la mezcla a la misma temperatura durante una hora y entonces se calentó hasta temperatura ambiente. Se vertió la mezcla en una disolución de ácido clorhídrico acuosa diluida y se extrajo la disolución con acetato de etilo. Se lavó el extracto con salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se cristalizó el residuo en un disolvente mixto de diisopropil éter y hexano para dar ácido 5-bromo-3-cloro-2-tiofencarboxílico (3,79 g) como un sólido de color amarillo. ESI-masas m/Z 239/241 (M-H).
- (2) Se trató el ácido 5-bromo-3-cloro-2-tiofencarboxílico anterior de manera similar al ejemplo de referencia 94 para dar 5-bromo-3-cloro-2-(4-etilfenilmetil)tiofeno como un aceite incoloro.

40 Ejemplo de referencia 96

3-bromo-1-(benzo[b]tiofen-3-ilmetil)benceno

Se trató tianaften-3-carboxaldehído de manera similar al ejemplo de referencia 1 para dar el compuesto objetivo.

45

60

Ejemplo de referencia 97

3-bromo-1-(5-etil-2-furilmetil)benceno

- 50 (1) Se trató 5-etil-2-furaldehído de manera similar al ejemplo de referencia 1-(1) para dar 3-bromofenil-5-etil-2-furilmetanol como un aceite. APCI-masas m/Z 263/265 (M+H-H₂O).
 - (2) Se trató el 3-bromofenil-5-etil-2-furilmetanol anterior de manerá similar al ejemplo de referencia 9-(2) para dar el compuesto objetivo como un aceite.

55 <u>Ejemplo de referencia 98</u>

3-bromo-1-(benzo[b]furan-2-ilmetil)benceno

Se trató 2-benzo[b]furancarboxaldehído de manera similar al ejemplo de referencia 97 para dar el compuesto objetivo.

Ejemplo de referencia 99

1-(benzo [b]furan-2-ilmetil)-5-bromo-2-clorobenceno

Se trataron benzo[b]furano y 5-bromo-2-clorobenzaldehído obtenido en el ejemplo de referencia 16-(1) de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo.

5

10

15

20

25

30

35

40

1-(benzotiazol-2-ilmetil)-5-bromo-2-metilbenceno

- (1) Se trataron benzotiazol y 5-bromo-2-metilbenzaldehído obtenido en el ejemplo de referencia 4 de manera similar al ejemplo de referencia 7-(1) para dar 5-bromo-2-metilfenil-(benzotiazol-2-il)metanol como cristales de color amarillo pálido. APCI-masas m/Z 334/336 (M+H).
- (2) A una disolución del
- 5-bromo-2-metilfenil-(benzotiazol-2-il)metanol anterior (2,60 g) en diclorometano (30 ml)-tolueno (10 ml) se le añadió óxido de manganeso (IV) (3,42 g) y se agitó la mezcla a temperatura ambiente durante 3 horas. Se eliminaron por filtración los materiales insolubles y se evaporó el filtrado a presión reducida para dar 5-bromo-2-metilfenil benzotiazol-2-il cetona (2,45 g) como cristales incoloros. APCI-masas m/Z 332/334 (M+H).
 - (3) Se trató la 5-bromo-2-metilfenil benzotiazol-2-il cetona anterior de manera similar al ejemplo de referencia 14-(1) para dar 1-(benzotiazol-2-ilmetil)-5-bromo-2-metilbenceno como un aceite. APCI-masas m/Z 318/320 (M+H).

Ejemplo de referencia 101

1-(benzotiazol-2-ilmetil)-5-bromo-2-clorobenceno

Se trataron benzotiazol y 5-bromo-2-clorobenzaldehído obtenido en el ejemplo de referencia 16-(1) de manera similar al ejemplo de referencia 100 para dar el compuesto objetivo. APCI-masas m/Z 338/340 (M+H).

Ejemplo de referencia 102

5-bromo-2-cloro-1-(5-fenil-2-tiazolilmetil)benceno

- (1) Se agitó una disolución de tiazol (10,0 g), yodobenceno (2,63 ml), tetraquis(trifenilfosfina)paladio (0) (1,36 g) y acetato de potasio (3,46 g) en N,N-dimetilacetamida (100 ml) con calentamiento a 100 °C durante la noche. Se evaporó el disolvente a presión reducida y al residuo se le añadió acetato de etilo. Se lavó sucesivamente la mezcla con agua y salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 100:0-90:10) para dar 5-feniltiazol (1,50 g) como un sólido de color amarillo pálido. APCI-masas m/Z 162 (M+H).
- (2) Se trataron el 5-feniltiazol anterior y 5-bromo-2-clorobenzaldehído obtenido en el ejemplo de referencia 16-(1) de manera similar al ejemplo de referencia 100 para dar 5-bromo-2-cloro-1-(5-fenil-2-tiazolilmetil)benceno como un sólido de color amarillo. APCI-masas m/Z 364/366 (M+H).

Ejemplo de referencia 103

3-(4-etilfenilmetil)-2,4-pentanodiona

Se enfrió una suspensión de yoduro de sodio (15,0 g) en acetonitrilo (100 ml) hasta 0 °C bajo atmósfera de argón y a la misma se le añadieron gota a gota clorotrimetilsilano (12,7 ml), 2,4-pentanodiona (2,05 ml) y 4-etilbenzaldehído (2,68 g), sucesivamente. Se agitó la mezcla de reacción a temperatura ambiente durante 17 horas y se agitó adicionalmente a 60 °C durante 10 horas. Se enfrió la mezcla de reacción hasta temperatura ambiente y se vertió en una disolución de tiosulfato de sodio acuosa. Se extrajo la mezcla con dietil éter y se lavó el extracto con salmuera y se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 9:1) para dar 3-(4-etilfenilmetil)-2,4-pentanodiona (2,72 g) como un aceite de color amarillo pálido. APCI-masas m/Z 219 (M+H).

Ejemplo de referencia 104: tri-n-butil(4-etilfenil)estaño

A una disolución de magnesio (896 mg) en tetrahidrofurano (20 ml) se le añadió dibromoetano (0,1 ml) y se agitó la mezcla a temperatura ambiente durante 15 minutos. A la misma se le añadió gota a gota una disolución de 1-bromo-4-etilbenceno (5,7 g) en tetrahidrofurano (20 ml) y posteriormente se agitó la mezcla a temperatura ambiente durante una hora. Se enfrió la mezcla de reacción hasta -78 °C y a la misma se le añadió gota a gota cloruro de tributilestaño (9,49 g). Se agitó la mezcla a la misma temperatura durante 30 minutos y entonces a temperatura ambiente durante una hora. A la mezcla de reacción se le añadieron disolución de fluoruro de potasio acuosa al 10 % y acetato de etilo y se agitó la mezcla a temperatura ambiente durante 30 minutos. Se eliminaron por filtración los materiales insolubles. Se lavó la fase orgánica del filtrado con agua y salmuera sucesivamente y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de alúmina (hexano) para dar el tri-n-butil(4-etilfenil)estaño deseado (10,7 g) como un aceite incoloro. El-masas m/Z 337 (M-Bu).

65 Ejemplo de referencia 105: 4-(4-etilfenilmetil)pirazol

- (1) Se agitó una disolución mezclada de bromuro de 4-etilbencilo (10,0 g), malononitrilo (6,64 g), carbonato de potasio (6,94 g) y bromuro de tetra-n-butilamonio (648 mg) en tolueno (100 ml) a temperatura ambiente durante 17 horas. Se vertió la mezcla de reacción en agua y se extrajo la mezcla con acetato de etilo dos veces. Se lavó el extracto sucesivamente con agua y salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 6:1) para dar 2-(4-etilfenilmetil)malononitrilo (3,28 g) como un sólido incoloro.
- (2) Se calentó una disolución del 2-(4-etilfenilmetil)malononitrilo anterior (1,30 g) e hidrato de hidrazina (0,86 ml) en etanol (35 ml) a reflujo durante 4 horas. Se añadió adicionalmente hidrato de hidrazina (0,43 ml) a la misma y se calentó adicionalmente la mezcla a reflujo durante 4 horas. Se enfrió la mezcla de reacción hasta temperatura ambiente y se evaporó el disolvente a presión reducida. Se cristalizó el residuo en acetato de etilo-dietil éter para dar 3,5-diamino-4-(4-etilfenilmetil)pirazol (2,63 g) como un polvo de color rosa pálido. APCI-masas m/Z 217 (M+H). (3) Se añadió el 3,5-diamino-4-(4-etilfenilmetil)pirazol anterior (1,30 g) a disolución de ácido fosfórico acuosa al 50 % (19 ml) y a la misma se le añadió adicionalmente agua (10 ml). Se enfrió la mezcla hasta 0 °C y a la misma se le añadió gota a gota una disolución acuosa (4 ml) de nitrito de sodio (912 mg). Se agitó la mezcla a la misma temperatura durante 30 minutos y se agitó adicionalmente a temperatura ambiente durante 4 horas. Se enfrió la mezcla de reacción otra vez hasta 0 °C, se añadió disolución de hidróxido de sodio acuosa al 10 % a la misma para ajustar el pH de la mezcla de reacción a 7. Se extrajo la mezcla con acetato de etilo, se lavó sucesivamente con agua y salmuera y se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (cloroformo:metanol = 100:0-90:10) para dar el 4-(4-etilfenilmetil)pirazol deseado (414 mg) como un semisólido de color marrón pálido. APCI-masas m/Z 187 (M+H).

5

10

15

20

25

30

35

55

60

65

3-(4-etilfenilmetil)-5-metil-1H-pirazol

- (1) Se disolvió ácido 4-etilfenilacético (3,0 g) (véase la publicación de patente no examinada japonesa 63-233975) en diclorometano (15 ml) y al mismo se le añadieron cloruro de oxalilo (6,0 ml) y N,N-dimetilformamida (una gota). Se agitó la mezcla a temperatura ambiente durante 1,5 horas. Se evaporó la mezcla de reacción a presión reducida y se sometió el residuo a destilación azeotrópica con tolueno para dar cloruro de 4-etilfenilacetilo en bruto, que se usó en la etapa posterior sin purificación adicional.
- (2) Se enfrió una suspensión de cloruro de magnesio (1,74 g) en diclorometano (30 ml) hasta 0 °C y a la misma se le añadieron acetoacetato de t-butilo (3,03 ml) y piridina (2,96 ml) y sucesivamente se añadió una disolución del cloruro de 4-etilfenilacetilo anterior en diclorometano (30 ml). Se agitó la mezcla a la misma temperatura durante 2,5 horas y se añadió una disolución de ácido cítrico acuosa a la misma. Se extrajo la mezcla con cloroformo. Se lavó el extracto con salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 15:1) para dar 2-acetil-4-(4-etilfenil)-3-oxobutirato de t-butilo (4,75 g) como un aceite de color amarillo pálido. APCI-masas m/Z 322 (M+NH₄)
- (3) Se agitó una disolución del 2-acetil-4-(4-etilfenil)-3-oxobutirato de t-butilo anterior en ácido trifluoroacético (60 ml) a temperatura ambiente durante 2 horas. Se evaporó el disolvente a presión reducida y se disolvió el residuo en acetato de etilo y se lavó sucesivamente la mezcla con una disolución de hidrogenocarbonato de sodio acuosa saturada y salmuera. Se secó la mezcla sobre sulfato de sodio y se evaporó el disolvente a presión reducida para dar 1-(4-etilfenil)-4-hidroxi-3-penten-2-ona (4,00 g) como un aceite de color amarillo. APCI-masas m/Z 205 (M+H).
- (4) Se agitó una disolución de la 1-(4-etilfenil)-4-hidroxi-3-penten-2-ona anterior (3,98 g) e hidrato de hidrazina (4,0 ml) en tolueno (20 ml) con calentamiento a 100 °C durante 1,5 horas. Se enfrió la mezcla de reacción hasta temperatura ambiente y se lavó sucesivamente con agua y salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (cloroformo:acetato de etilo = 2:1) para dar 3-(4-etilfenilmetil)-5-metil-1H-pirazol (3,12 g) como un aceite de color amarillo. APCI-masas m/Z 201 (M+H).

Ejemplo de referencia 107

3-(4-etilfenilmetil)-6-hidroxipiridina

- (1) A una disolución de cloruro de 6-cloronicotinoílo (10,0 g) y clorhidrato de N,O-dimetilhidroxiamina (6,65 g) en diclorometano (200 ml) se le añadió gota a gota trietilamina (17,2 g) a 0 °C. Posteriormente se agitó la mezcla a temperatura ambiente durante la noche. Se lavó sucesivamente la mezcla con agua, disolución de ácido cítrico acuosa al 5 %, agua y salmuera y entonces se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida para dar N-metoxi-N-metil-6-cloronicotinamida (11,73 g) como un aceite de color amarillo pálido. APCI-masas m/Z 201/203 (M+H).
- (2) Se enfrió una disolución de la N-metoxi-N-metil-6-cloronicotinamida (4,2 g) en tetrahidrofurano (40 ml) hasta 0 °C y a la misma se le añadió gota a gota bromuro de 4-etilfenilmagnesio (disolución en tetrahidrofurano 0,5 M, 55 ml). Se agitó la mezcla a 0 °C durante 4 horas y entonces a temperatura ambiente durante 10 minutos. Se enfrió la mezcla de reacción otra vez hasta 0 °C y a la misma se le añadió disolución de ácido clorhídrico acuosa al 10 %. Se extrajo la mezcla con acetato de etilo y se lavó con salmuera y se secó sobre sulfato de sodio. Se evaporó el

- disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 20:1) para dar 6-cloro-3-piridil 4-etilfenil cetona (3,68 g) como cristales incoloros. APCI-masas m/Z 246/248 (M+H).
- (3) Se disolvió la 6-cloro-3-piridil 4-etilfenil cetona anterior (1,68 g) en N-metil-2-pirrolidinona (20 ml) y a la misma se le añadieron alcohol bencílico (815 ml) e hidruro de sodio al 60 % (275 mg). Se agitó la mezcla a temperatura ambiente durante 6 horas y entonces a 90 °C durante una hora. Se enfrió la mezcla de reacción hasta temperatura ambiente y se añadió agua a la misma y se extrajo la mezcla con acetato de etilo. Se lavó el extracto con agua y posteriormente con salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 100:0-95:5) para dar 6-benciloxi-3-piridil 4-etilfenil cetona (1,68 g) como un aceite incoloro. APCI-masas m/Z 318 (M+H).
 - (4) Se disolvió la 6-benciloxi-3-piridil 4-etilfenil cetona anterior (865 mg) en etilenglicol (8,5 ml) y a la misma se le añadieron hidrato de hidrazina (0,44 ml) e hidróxido de potasio (550 mg). Se agitó la mezcla con calentamiento a 190 °C durante 8 horas. Se enfrió la mezcla de reacción hasta temperatura ambiente y se añadió agua a la misma y se extrajo la mezcla con acetato de etilo. Se lavó el extracto con agua tres veces y posteriormente con salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 100:0-0:100) para dar la 3-(4-etilfenilmetil)-6-hidroxipiridina deseada (256 mg) como un polvo incoloro. APCI-masas m/Z 214 (M+H).

5

10

15

20

35

45

50

55

3-(4-etilfenilmetil)-3-hidroxipiridina

- (1) Se trató cloruro de 2-cloronicotinoílo de manera similar al ejemplo de referencia 107-(1), (2) y (3) para dar 2-benciloxi-3-piridil 4-etilfenil cetona como un aceite incoloro. APCI-masas m/Z 318 (M+H).
- (2) Se disolvió la 2-benciloxi-3-piridil 4-etilfenil cetona anterior (1,69 g) en etanol (15 ml) y a la misma se le añadió borohidruro de sodio (403 mg) y se agitó la mezcla a temperatura ambiente durante 3 horas. Se evaporó el disolvente a presión reducida y se disolvió el residuo en acetato de etilo. Se lavó la mezcla con agua y sucesivamente con salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida para dar 2-benciloxi-3-piridil-4-etilfenilmetanol en bruto como un aceite incoloro, que se usó en la etapa posterior sin purificación adicional.
 - (3) Se disolvió el 2-benciloxi-3-piridil-4-etilfenilmetanol anterior en metanol (10 ml) y al mismo se le añadieron ácido clorhídrico concentrado (1,0 ml) y paladio al 10 % sobre carbono (500 mg). Se agitó la mezcla a temperatura ambiente durante 15 horas bajo atmósfera de hidrógeno a presión normal. Se eliminaron por filtración los materiales insolubles y se evaporó el disolvente a presión reducida. Se disolvió el residuo en acetato de etilo y se lavó la disolución con agua y sucesivamente con salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (cloroformo:metanol = 100:0-97:3) para dar la 3-(4-etilfenilmetil)-2-hidroxipiridina deseada (307 mg) como un sólido de color marrón pálido. APCI-masas m/Z 214 (M+H).

40 Ejemplo de referencia 109 3-(4-etilfenilmetil)-1H-indol

- (1) A una disolución de indol (6,00 g) en metanol (60 ml) se le añadieron hidróxido de sodio (2,25 g) y 4-etilbenzaldehído (7,56 g) y se agitó la mezcla a temperatura ambiente durante 3 días bajo atmósfera de argón. A la misma se le añadió agua y se evaporó metanol a presión reducida. Se extrajo el residuo con dietil éter y se lavó el extracto con agua y se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 98:2-70:30) para dar 4-etilfenil-(1H-indol-3-il)metanol (2,10 g) como un sólido incoloro. APCI-masas m/Z 234 (M+H-H₂O).
- (2) Se trató el 4-etilfenil-(1H-indol-3-il)metanol anterior de manera similar al ejemplo de referencia 1-(2) para dar el 3-(4-etilfenilmetil)-1H-indol deseado como cristales incoloros. APCI-masas m/Z 236 (M+H).

Ejemplo de referencia 110 3-(4-etilfenilmetil)-1H-indazol

- (1) Se agitó una mezcla de polvo de zinc (712 mg) y dibromoetano (0,04 ml) en N,N-dimetilformamida (2,5 ml) con calentamiento a 70 °C durante 10 minutos bajo atmósfera de argón. Se enfrió la mezcla de reacción hasta temperatura ambiente y se añadió clorotrimetilsilano (0,04 ml) a la misma y se agitó la mezcla a temperatura ambiente durante 30 minutos. A la disolución de zinc activado se le añadió gota a gota una disolución de bromuro de 4-etilbencilo (1,74 g) en N,N-dimetilformamida (10 ml) a 0 °C a lo largo de un periodo de 2 horas. Posteriormente, se agitó la mezcla a 0 °C durante 2 horas, para preparar una disolución de bromuro de 4-etilbencilzinc en N,N-dimetilformamida, que se usó en la etapa posterior sin purificación adicional.
- 60 (2) Se agitó una disolución de tris(dibencilidenacetona)dipaladio (0) (167 mg) y tri(2-furil)fosfina (135 mg) en tetrahidrofurano (20 ml) a temperatura ambiente durante 5 minutos bajo atmósfera de argón. A la misma se le añadieron 1-t-butoxicarbonil-3-yodo-1H-indazol (2,0 g) y el bromuro de 4-etilbencilzinc anterior (disolución en N,N-dimetilformamida) a 0 °C y se agitó la mezcla a temperatura ambiente durante 5 horas. Se vertió la mezcla de reacción en agua y se extrajo la mezcla con dietil éter. Se lavó el extracto con agua y se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano: acetato de etilo = 100:0-92:8) para dar 1-t-butoxicarbonil-3-(4-etilfenilmetil)-1H-indazol

- (1,37 g) como un aceite incoloro. APCI-masas m/Z 337 (M+H).
- (3) Se disolvió el 1-t-butoxicarbonil-3-(4-etilfenilmetil)-1H-indazol anterior (1,35 g) en metanol (15 ml) y al mismo se le añadió disolución de metóxido de sodio al 28 % (disolución en metanol, 1,0 ml) y se agitó la mezcla a temperatura ambiente durante una hora. A la misma se le añadió una disolución de ácido cítrico acuosa y se extrajo la mezcla con acetato de etilo. Se lavó el extracto sucesivamente con agua y salmuera y se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida y se cristalizó el residuo en hexano para dar el 3-(4-etilfenilmetil)-1H-indazol deseado (800 mg) como cristales incoloros. APCI-masas m/Z 237 (M+H).

10

5

15

25

30

35

40

45

- (1) Se trataron 4-bromobenzotrifluoruro y ácido tiofen-2-borónico de manera similar al ejemplo de referencia 20-(1) para dar 2-(4-trifluorometilfenil)tiofeno como cristales incoloros.
- (2) Se trataron el 2-(4-trifluorometilfenil)tiofeno anterior y 5-bromo-2-metilbenzaldehído obtenido en el ejemplo de referencia 4 de manera similar al ejemplo de referencia 7 para dar el 5-bromo-2-metil-1-(5-(4-trifluorometilfenil)-2-tienilmetil)benceno deseado como cristales incoloros. APCI-masas m/Z 425/427 (M+H+MeOH).

Ejemplo de referencia 112

20

 $\underline{\text{5-bromo-2-metil-1-(5-(3-trifluorometilfenil)-2-tienilmetil)}} benceno$

5-bromo-2-metil-1-(5-(4-trifluorometilfenil)-2-tienilmetil)benceno

- (1) Se trataron 3-bromobenzotrifluoruro y ácido tiofen-2-borónico de manera similar al ejemplo de referencia 20-(1) para dar 2-(3-trifluorometilfenil)tiofeno como un aceite incoloro.
- (2) Se trataron el 2-(3-trifluorometilfenil)tiofeno anterior y 5-bromo-2-metilbenzaldehído obtenido en el ejemplo de referencia 4 de manera similar al ejemplo de referencia 7 para dar el 5-bromo-2-metil-1-(5-(3-trifluorometilfenil)-2-tienilmetil)benceno deseado como un aceite incoloro.

Ejemplo de referencia 113 2-(4-etilfenil)tiofeno

Se trataron 2-bromotiofeno y ácido 4-etilfenilborónico de manera similar al ejemplo de referencia 20-(1) para dar el compuesto objetivo.

Ejemplo de referencia 114 2-(4-metilfenil)tiofeno

Se trataron 2-bromotiofeno y ácido 4-metilfenilborónico de manera similar al ejemplo de referencia 20-(1) para dar el compuesto objetivo.

Ejemplo de referencia 115

2-(2,3-dihidro-5-benzo[b]furanil)tiofeno

- (1) Se enfrió 5,7-dibromo-2,3-dihidrobenzo[b]furano (véase el documento WO 02/070020) (3,0 g) en dietil éter hasta -78 °C bajo atmósfera de argón y al mismo se le añadió gota a gota n-butil-litio (disolución en hexano 2,44 M, 5,09 ml). Se agitó la mezcla a la misma temperatura durante 30 minutos y se vertió en una disolución de cloruro de amonio acuosa saturada. Se extrajo la mezcla con dietil éter y se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida para dar 5-bromo-2,3-dihidrobenzo[b]furano (2,0 g) como cristales de color amarillo pálido, que se usó en la etapa posterior sin purificación adicional.
- (2) Se trataron el 5-bromo-2,3-dihidrobenzo[b]furano anterior y ácido tiofen-2-borónico de manera similar al ejemplo de referencia 20-(1) para dar el 2-(2,3-dihidro-5-benzo[b]furanil)tiofeno deseado como cristales de color amarillo pálido. APCI-masas m/Z 203 (M+H).

Ejemplo de referencia 116: 4-bromo-2-(5-cloro-2-tienilmetil)-1-fluoronaftaleno

- (1) Se enfrió una disolución de 2,2,6,6-tetrametilpiperidina (1,04 g) en tetrahidrofurano (15 ml) hasta -78 °C bajo atmósfera de argón y a la misma se le añadió gota a gota n-butil-litio (disolución en hexano 1,58 M, 4,43 ml). Se agitó la mezcla de reacción a la misma temperatura durante 30 minutos y a la misma se le añadió gota a gota una disolución de 1-bromo-4-fluoronaftaleno (1,50 g) en tetrahidrofurano (12 ml) a -78 °C. Se agitó la mezcla a la misma temperatura durante una hora y a la misma se le añadió gota a gota una disolución de 5-cloro-2-tiofencarboxaldehído (1,07 g) en tetrahidrofurano (11 ml) a -78 °C. Se agitó la mezcla a la misma temperatura durante 30 minutos y a la misma se le añadió una disolución de cloruro de amonio acuosa saturada y la mezcla de reacción se extrajo con acetato de etilo. Se lavó el extracto con salmuera, se secó sobre sulfato de sodio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice tratado con aminosilano (hexano:acetato de etilo = 3:1) para dar 4-bromo-1-fluoro-2-naftil-5-cloro-2-tienilmetanol (2,00 g) como un polvo de color amarillo pálido. APCI-masas m/Z 353/355 (M+H-H₂O).
 (2) Se trató

el 4-bromo-1-fluoro-2-naftil-5-cloro-2-tienilmetanol anterior de manera similar al ejemplo de referencia 1-(2) para dar el

4-bromo-2-(5-cloro-2-tienilmetil)-1-fluoronaftaleno deseado como un sólido de color amarillo.

5 Ejemplo de referencia 117

20

30

40

45

55

60

65

5-bromo-2,4-dimetil-1-(5-fenil-2-tienilmetil)benceno

- (1) Se suspendió ácido 2,4-dimetilbenzoico (20,0 g) en cloroformo (100 ml) y al mismo se le añadieron cloruro de oxalilo (6,8 ml) y N,N-dimetilformamida (2 gotas). Se agitó la mezcla a temperatura ambiente durante la noche. Se evaporó el disolvente a presión reducida y se disolvió el residuo en metanol (200 ml). Se agitó la mezcla a temperatura ambiente durante 3 horas. Se evaporó el disolvente a presión reducida y se disolvió el residuo en acetato de etilo. Se lavó sucesivamente la mezcla con una disolución de hidrogenocarbonato de sodio acuosa saturada y salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida para dar 2,4-dimetilbenzoato de metilo como un aceite de color amarillo pálido, que se usó en la etapa posterior sin purificación adicional
 - (2) A una mezcla del 2,4-dimetilbenzoato de metilo anterior (19,75 g) y óxido neutro de aluminio activado (120 g) se le añadió gota a gota bromo (9,25 ml) mientras se agitaba a temperatura ambiente. Se agitó la mezcla a temperatura ambiente durante 8 horas y se diluyó con dietil éter (1000 ml). Se eliminaron por filtración los materiales insolubles y se lavó con dietil éter (500 ml). Se lavó sucesivamente el filtrado combinado con disolución de tiosulfato de sodio acuosa al 10 %, una disolución de hidrogenocarbonato de sodio acuosa saturada y salmuera. Se secó el filtrado sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se cristalizó el residuo en metanol (40 ml) para dar 5-bromo-2,4-dimetilbenzoato de metilo (6,34 g) como cristales incoloros. APCI-masas m/Z 243/245 (M+H).
- 25 (3) Se trató el 5-bromo-2,4-dimetilbenzoato de metilo anterior de manera similar al ejemplo de referencia 4-(1) para dar ácido 5-bromo-2,4-dimetilbenzoico como cristales incoloros. ESI-masas m/Z 227/229 (M-H).
 - (4) Se trataron el ácido 5-bromo-2,4-dimetilbenzoico anterior y 2-feniltiofeno de manera similar al ejemplo de referencia 5 para dar 5-bromo-2,4-dimetil-1-(5-fenil-2-tienilmetil)benceno como cristales incoloros. APCI-masas m/Z 357/359 (M+H).

Ejemplo de referencia 118

5-bromo-1-(5-fenil-2-tienilmetil)-2-trifluorometilbenceno

- (1) Se trató ácido 5-bromo-2-yodobenzoico (véase Jorg Frahn, A.-Dieter Schluter Synthesis 1997, 1301-1304) de manera similar al ejemplo de referencia 117-(1) para dar 5-bromo-2-yodobenzoato de metilo como un sólido de color marrón.
 - (2) A una disolución del 5-bromo-2-yodobenzoato de metilo (4,65 g) anterior en N-metil-2-pirrolidinona (20 ml) se le añadieron bromuro de cobre (I) (235 mg) y 2,2-difluoro-2-(fluorosulfonil)acetato de metilo (2,6 ml) y se agitó la mezcla con calentamiento a 120 °C durante 1,5 horas. Se enfrió la mezcla de reacción y a la misma se le añadieron disolución de ácido clorhídrico acuosa al 10 % y acetato de etilo. Se eliminaron por filtración los materiales insolubles y se lavó una fase orgánica del filtrado con agua 4 veces y posteriormente se lavó con una disolución de hidrogenocarbonato de sodio acuosa saturada y salmuera. Se secó el filtrado sobre sulfato de sodio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 80:1) para dar 5-bromo-2-trifluorometilbenzoato de metilo (3,55 g) como un aceite incoloro.
 - (3) Se trató el 5-bromo-2-trifluorometilbenzoato de metilo anterior de manera similar al ejemplo de referencia 4-(1) para dar ácido 5-bromo-2-trifluorometilbenzoico como cristales de color marrón. ESI-masas m/Z 267/269 (M-H).
- (4) Se trataron el ácido 5-bromo-2-trifluorometilbenzoico anterior y 2-feniltiofeno de manera similar al ejemplo de referencia 5-(1) para dar 5-bromo-2-trifluorometilfenil 5-fenil-2-tienil cetona como cristales de color amarillo pálido. APCI-masas m/Z 411/413 (M+H).
 - (5) A una disolución mezclada de la 5-bromo-2-trifluorometilfenil 5-fenil-2-tienil cetona (670 mg) anterior en metanol (20 ml)-tetrahidrofurano (10 ml) se le añadió borohidruro de sodio (62 mg) y se agitó la mezcla a temperatura ambiente durante 3 horas. Se evaporó el disolvente a presión reducida y se disolvió el residuo en cloroformo (10 ml)-acetonitrilo (20 ml). Al mismo se le añadió trietilsilano (0,78 ml) y se enfrió la mezcla hasta 0 °C. A la misma se le añadió gota a gota complejo de trifluoruro de boro · dietil éter (0,52 ml). Se agitó la mezcla a temperatura ambiente durante 45 minutos y a la misma se le añadió una disolución de hidrogenocarbonato de sodio acuosa saturada y se extrajo la mezcla con acetato de etilo. Se lavó el extracto con salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano) para dar el 5-bromo-1-(5-fenil-2-tienilmetil)-2-trifluorometilbenceno deseado (565 mg) como un aceite incoloro.

Ejemplo de referencia 119

5-bromo-1-(5-(3-etilfenil)-2-tienilmetil)-2-metilbenceno

- (1) Se trataron 1-bromo-3-etilbenceno y ácido tiofen-2-borónico de manera similar al ejemplo de referencia 20-(1) para dar 2-(3-etilfenil)tiofeno como un líquido de color amarillo pálido.
- . (2) Se trataron el 2-(3-etilfenil)tiofeno anterior y 5-bromo-2-metilbenzaldehído obtenido en el ejemplo de referencia 4 de manera similar al ejemplo de referencia 9 para dar 5-bromo-1-(5-(3-etilfenil)-2-tienilmetil)-2-metilbenceno como un aceite de color amarillo pálido. APCI-masas m/Z 371/373 (M+H).

5-bromo-2-metil-1-(5-(2-piridil)-2-tienilmetil)benceno

- (1) Se trataron 2-(2-piridil)tiofeno y 5-bromo-2-metilbenzaldehído obtenido en el ejemplo de referencia 4 de manera similar al ejemplo de referencia 7-(1) para dar 5-bromo-2-metilfenil-5-(2-piridil)-2-tienilmetanol como un aceite incoloro. APCI-masas m/Z 360/362 (M+H).
- (2) Se enfrió una disolución del 5-bromo-2-metilfenil-5-(2-piridil)-2-tienilmetanol anterior (1,59 g) en ácido trifluoroacético (40 ml) hasta 0 °C y a la misma se le añadieron gradualmente triacetoxiborohidruro de sodio (4,68 g). Se agitó la mezcla a temperatura ambiente durante una hora y se enfrió otra vez hasta 0 °C. Se añadió disolución de hidróxido de sodio acuosa al 10 % a la misma para basificar la mezcla de reacción. Se extrajo la mezcla con acetato de etilo v se lavó el extracto con salmuera v se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 3:1) para dar el
 - 5-bromo-2-metil-1-(5-(2-piridil)-2-tienilmetil)benceno deseado (1,38 g) como un sólido incoloro. APCI-masas m/Z 344/346 (M+H).

Ejemplo de referencia 121

2-(5-fluoro-2-tienil)tiofeno

Se enfrió 2,2'-bitiofeno (7,40 g) en tetrahidrofurano (90 ml) hasta -78 °C bajo atmósfera de argón y al mismo se le añadieron gota a gota n-butil-litío (disolución en hexano 1,59 M, 28,0 ml). Se agitó la mezcla a 0 °C durante 30 minutos y se enfrió otra vez hasta -78 °C. A la misma se le añadió N-fluorobencenosulfonimida (15,5 g) y la mezcla se calentó gradualmente y se agitó a temperatura ambiente durante 17 horas. Se vertió la mezcla de reacción en agua helada y se extrajo la disolución con hexano dos veces y se lavó el extracto sucesivamente con aqua y salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano) para dar

2-(5-fluoro-2-tienil)tiofeno (5,89 g) como un aceite incoloro.

Ejemplo de referencia 122

5-bromo-2-metil-1-(5-(3-piridil)-2-tienilmetil)benceno

Se trató 2-(3-piridil)tiofeno de manera similar al ejemplo de referencia 120 para dar el compuesto objetivo como cristales incoloros. APCI-masas m/Z 344/346 (M+H).

Ejemplo de referencia 123

5-bromo-1-(5-(4-metoxifenil)-2-tienilmetil)-2-metilbenceno

- (1) Se trataron p-bromoanisol y ácido tiofen-2-borónico de manera similar al ejemplo de referencia 20-(1) para dar 2-(4-metoxifenil)tiofeno como un sólido de color amarillo pálido. APCI-masas m/Z 191 (M+H).
- (2) Se trataron el 2-(4-metoxifenil)tiofeno anterior y ácido 4-bromo-2-metilbenzoico obtenido en el ejemplo de referencia 4-(1) de manera similar al ejemplo de referencia 5 para dar 5-bromo-1-(5-(4-metoxifenil)-2-tienilmetil)-2metilbenceno como un sólido de color amarillo pálido. APCI-masas m/Z 373/375 (M+H).

Ejemplo de referencia 124

5-bromo-2-metil-1-(5-(1,2-metilendioxibencen-4-il)-2-tienilmetil)benceno

Se trató 4-bromo-1,2-(metilendioxi)benceno de manera similar al ejemplo de referencia 119 para dar el compuesto objetivo como un polvo incoloro.

Ejemplo de referencia 125

5-bromo-2-cloro-1-(2-(5-fenil-2-tienil)etil)benceno

(1) A una disolución de alcohol 5-bromo-2-clorobencílico (10,66 g) en disolución de tolueno (100 ml) se le añadieron cloruro de tionilo (10 ml) y piridina (2 gotas) y se agitó la mezcla con calentamiento a 100 °C durante la noche. Se

89

5

10

15

20

25

30

35

40

45

50

55

60

evaporó el disolvente a presión reducida y se disolvió el residuo en acetato de etilo. Se lavó la disolución sucesivamente con agua, una disolución de ácido clorhídrico acuosa al 10 %, una disolución de hidrogenocarbonato de sodio acuosa saturada y salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida para dar cloruro de 5-bromo-2-clorobencilo como cristales de color amarillo pálido, que se usó en la etapa posterior sin purificación adicional.

- (2) Se disolvió el cloruro de 5-bromo-2-clorobencilo anterior en acetonitrilo (100 ml) y se enfrió la mezcla hasta 0 °C. A la misma se le añadió cianuro de tetraetilamonio (8,8 g) y se agitó la mezcla a temperatura ambiente durante 2 horas. Se evaporó el disolvente a presión reducida y se disolvió el residuo en acetato de etilo. Se lavó la disolución sucesivamente con agua, disolución de ácido clorhídrico acuosa al 10 %, una disolución de hidrogenocarbonato de sodio acuosa saturada y salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida para dar 5-bromo-2-clorofenilacetonitrilo como un sólido de color amarillo pálido, que se usó en la etapa posterior sin purificación adicional.
- (3) Se añadió el 5-bromo-2-clorofenilacetonitrilo anterior a agua (90 ml)-ácido sulfúrico (75 ml) y se agitó la mezcla con calentamiento a 160 °C durante la noche. Se diluyó la mezcla adicionalmente con agua y se enfrió hasta 0 °C. Se eliminó el disolvente mediante decantación y se disolvió el residuo en dietil éter. Se lavó la disolución con agua y salmuera y se extrajo con hidróxido de sodio al 10 %. Al extracto se le añadió ácido clorhídrico concentrado para volver la disolución ácida. Se recogieron los precipitados mediante filtración y se purificaron mediante cromatografía en columna de gel de sílice (cloroformo) para dar ácido 5-bromo-2-clorofenilacético (6,67 g) como cristales incoloros. ESI-masas m/Z 247/249 (M-H).
- 20 (4) Se trató el ácido 5-bromo-2-clorofenilacético anterior de manera similar al ejemplo de referencia 118-(4) y (5) para dar el 5-bromo-2-cloro-1-(2-(5-fenil-2-tienil)etil)benceno deseado como un sólido de color amarillo pálido. APCI-masas m/Z 377/379 (M+H).

Ejemplo de referencia 126

5

10

15

25

35

40

45

60

5-bromo-1-(5-(6-fluoro-2-piridil)-2-tienilmetil)2-metilbenceno

- (1) Se trataron 2-bromo-6-fluoropiridina y ácido tiofen-2-borónico de manera similar al ejemplo de referencia 20-(1) para dar 2-(6-fluoro-2-piridil)tiofeno como un aceite de color amarillo. APCI-masas m/Z 180 (M+H).
- 30 (2) Se trató el 2-(6-fluoro-2-piridil)tiofeno anterior de manera similar al ejemplo de referencia 120 para dar el 5-bromo-1-(5-(6-fluoro-2-piridil)-2-tienilmetil)2-metilbenceno deseado como un sólido incoloro. APCI-masas m/Z 362/364 (M+H).

Ejemplo de referencia 127

5-bromo-2-metil-1-(5-trifluorometil-2-tienilmetil)benceno

Se trataron 2-trifluorometiltiofeno (véase la publicación de patente no examinada japonesa 2000-34239) y 5-bromo-2-metilbenzaldehído obtenido en el ejemplo de referencia 4 de manera similar al ejemplo de referencia 7 para dar el compuesto objetivo como un aceite incoloro.

Ejemplo de referencia 128

5-bromo-1-(5-(5-fluoro-2-tienil)-2-tienilmetil)-2-metil benceno

Se trataron ácido 5-bromo-2-metilbenzoico obtenido en el ejemplo de referencia 4-(1) y 2-(5-fluoro-2-tienil)tiofeno obtenido en el ejemplo de referencia 121 de manera similar al ejemplo de referencia 5 para dar el compuesto objetivo como un sólido incoloro. APCI-masas m/Z 367/369 (M+H).

50 Ejemplo de referencia 129

3-bromo-2-fluoro-6-metil-1-(5-fenil-2-tienilmetil)benceno

Se trataron 4-bromo-3-fluorotolueno y 5-fenil-2-tiofencarboxaldehído de manera similar al ejemplo de referencia 116 para dar el compuesto objetivo como polvos de color azul pálido. APCI-masas m/Z 361/363 (M+H).

Ejemplo de referencia 130

5-bromo-2-cloro-1-(2-fenil-5-tiazolilmetil)benceno

- (1) Se disolvió ácido 5-bromo-2-clorofenilacético (2,0 g) obtenido en el ejemplo de referencia 125-(3) en diclorometano (40 ml) y al mismo se le añadieron cloruro de oxalilo (0,77 ml) y N,N-dimetilformamida (una gota) a 0 °C. Se agitó la mezcla a temperatura ambiente durante la noche. Se evaporó el disolvente a presión reducida para dar cloruro de 5-bromo-2-clorofenilacetilo, que se usó en la etapa posterior sin purificación adicional.
- 65 (2) Se enfrió una disolución de t-butóxido de potasio (1,35 g) en tetrahidrofurano (20 ml) hasta 0 °C y a la misma se le añadió isocianoacetato de metilo (1,33 ml). Entonces, se añadió una disolución del cloruro de 5-bromo-2-

clorofenilacetilo anterior en tetrahidrofurano (20 ml) a la misma y se agitó la mezcla a 0 °C durante 2 horas y luego a temperatura ambiente durante la noche. Se enfrió la mezcla otra vez hasta 0 °C. Se añadió disolución de ácido cítrico acuosa al 10 % a la misma y se extrajo la mezcla con acetato de etilo. Se lavó el extracto con agua y salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 3:1) para dar 5-bromo-2-cloro-1-(4-metoxicarbonil-5-oxazolilmetil)benceno (1,12 g) como un sólido de color amarillo. APCI-masas m/Z 330/332 (M+H). (3) Se calentó el 5-bromo-2-cloro-1-(4-metoxicarbonil-5-oxazolilmetil)benceno anterior (1,37 g) a reflujo en disolución de ácido clorhídrico acuosa 6 N (20 ml) durante la noche. Se evaporó el disolvente a presión reducida y se disolvió el residuo en metanol y se trató con polvo de carbono. Se eliminó mediante filtración el polvo de carbono y se evaporó el filtrado a presión reducida para dar el clorhidrato de 1-(3-amino-2-oxopropil)-5-bromo-2-clorobenceno deseado (1,73 g) como un sólido de color marrón pálido, que se usó en la etapa posterior sin purificación adicional. APCI-masas m/Z 262/264 (M+H).

- (4) Se enfrió una disolución mezclada del clorhidrato de 1-(3-amino-2-oxopropil)-5-bromo-2-clorobenceno anterior (1,70 g) en acetato de etilo (30 ml)-agua (15 ml) hasta 0 °C. A la misma se le añadieron cloruro de benzoílo (0,99 ml) e hidrogenocarbonato de sodio (2,39 g) y se agitó la mezcla a la misma temperatura durante 3 horas. Se lavó la fase orgánica con salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (cloroformo: acetato de etilo = 95:5) para dar 1-(3-benzoilamino-2-oxopropil)-5-bromo-2-clorobenceno (710 mg) como un sólido incoloro. APCI-masas m/Z 366/368 (M+H).
- 20 (5) A una disolución del 1-(3-benzoilamino-2-oxopropil)-5-bromo-2-clorobenceno anterior (710 mg) en tolueno (20 ml) se añadió reactivo de Lawesson (2,35 g) y se calentó la mezcla a reflujo durante 2 horas. La mezcla de reacción se enfrió y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 90:10) para dar el 5-bromo-2-cloro-1-(2-fenil-5-tiazolilmetil)benceno deseado (512 mg) como un sólido incoloro. APCI-masas m/Z 364/366 (M+H).

Ejemplo de referencia 131:

5

10

15

25

45

65

ácido t-butil 5-bromo-2-clorobenzoico

A una disolución de ácido 5-bromo-2-clorobenzoico (11,75 g) en N,N-dimetilformamida (50 ml) se le añadió 1,1'carbonildiimidazol (8,10 g) y se agitó la mezcla con calentamiento a 40 °C durante una hora. A la misma se le añadieron
t-butanol (7,40 g) y 1,8-diazabiciclo[5.4.0]undec-7-eno (7,60 g) y se agitó la mezcla adicionalmente con calentamiento
a 40 °C durante la noche. Se diluyó la mezcla con dietil éter y se lavó sucesivamente con agua (3 veces), disolución
de ácido clorhídrico acuosa al 2 % (dos veces), una disolución de hidrogenocarbonato de sodio acuosa saturada y
salmuera. Se secó la mezcla sobre sulfato de magnesio y se evaporó el disolvente a presión reducida para dar 5bromo-2-clorobenzoato de t-butilo (12,53 g) como un aceite de color amarillo pálido.

Ejemplo de referencia 132:

40 <u>5-bromo-2-cloro-1-(6-etoxibenzo[b]tiofen-2-ilmetil)benceno</u>

- (1) Se enfrió una disolución de 5-bromo-2-cloro-1-(6-metoxibenzo[b]tiofen-2-ilmetil)benceno (2,70 g) obtenido en el ejemplo de referencia 46 en diclorometano (27 ml) hasta 0 °C bajo atmósfera de argón y a la misma se le añadió gota a gota, tribromuro de boro (0,83 ml). Se calentó la mezcla hasta temperatura ambiente y se agitó durante 30 minutos. Se basificó la mezcla con una disolución de hidrogenocarbonato de sodio acuosa saturada y posteriormente, la mezcla de reacción se acidificó con una disolución de ácido cítrico acuosa saturada. Se extrajo la mezcla con cloroformo y se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida. Se cristalizó el residuo en cloroformo-hexano para dar 5-bromo-2-cloro-1-(6-hidroxibenzo[bjtiofen-2-ilmetil)benceno (2,01 g) como cristales de color verde pálido. ESI-masas; m/Z 351/353 (M-H).
- (2) Se disolvió el 5-bromo-2-cloro-1-(6-hidroxibenzo[b]tiofen-2-ilmetil)benceno anterior (500 mg) en N,N-dimetilformamida (5 ml) y al mismo se le añadieron yodoetano (0,23 ml) y carbonato de potasio (390 mg). Se agitó la mezcla a temperatura ambiente durante 2 días. A la misma se le añadió agua y se extrajo la mezcla con acetato de etilo. Se lavó el extracto con agua y salmuera y se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 98:2-80:20) para dar el 5-bromo-2-cloro-1-(6-etoxibenzo[b]tiofen-2-ilmetil)benceno deseado (492 mg) como un aceite de color rosa pálido. APCI-masas m/Z 381/383 (M+H).

Ejemplo de referencia 133:

60 <u>5-bromo-2-cloro-3-(5-fenil-2-tienilmetil)tiofeno</u>

Se trataron ácido 5-bromo-2-cloro-3-tiofencarboxílico (véase la publicación de patente no examinada japonesa 10-324632) y 2-feniltiofeno de manera similar al ejemplo de referencia 5 para dar el compuesto objetivo como un sólido incoloro. APCI-masas m/Z 367/369 (M+H).

Ejemplo de referencia 134

éster pinacólico del ácido 6-fluoro-2-piridilborónico

Se enfrió una disolución de 2-bromo-6-fluoropiridina (1,0 g) en tetrahidrofurano (10 ml) hasta -78 °C bajo atmósfera de argón y a la misma se le añadió una disolución de n-butil-litio (disolución en hexano 2,59 M, 2,24 ml) en tetrahidrofurano (10 ml). Se agitó la mezcla a la misma temperatura durante 45 minutos y a la misma se le añadió gota a gota una disolución de triisopropoxiborano (1,28 g) en tetrahidrofurano (10 ml). Se agitó la mezcla a la misma temperatura durante 2 horas, se calentó y se agitó adicionalmente a temperatura ambiente durante una hora. Posteriormente, se añadió gota a gota una disolución de pinacol (0,91 g) en tetrahidrofurano (10 ml) a la misma y se agitó a temperatura ambiente durante 20 minutos. Se eliminaron por filtración los materiales insolubles. Se extrajo el filtrado con hidróxido de sodio al 2,5 % y se enfrió el extracto hasta 0 °C y se volvió débilmente ácida con disolución de ácido clorhídrico acuosa 2 N. Se extrajo con dietil éter, se lavó con una cantidad pequeña de salmuera y se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida y se solidificó el residuo con hexano para dar éster pinacólico del ácido 6-fluoro-2-piridilborónico (850 mg) como un sólido incoloro. APCI-masas m/Z 224 (M+H).

Ejemplo de referencia 135: 5-bromo-2-cloro-1-(6-fenil-3-piridilmetil)benceno

- (1) Se trató ácido 5-bromo-2-clorobenzoico de manera similar al ejemplo de referencia 4-(2) para dar N-metoxi-N-metil-5-bromo-2-clorobenzamida como un sólido incoloro. APCI-masas m/Z 278/280 (M+H).
- 20 (2) Se trataron la N-metoxi-N-metil-5-bromo-2-clorobenzamida anterior y 2,5-dibromopiridina, de manera similar al ejemplo de referencia 31-(4) para dar 5-bromo-2-clorofenil 6-bromo-3-piridil cetona como un sólido de color amarillo pálido. APCI-masas m/Z 374/376 (M+H).
 - (3) Se trataron la 5-bromo-2-clorofenil 6-bromo-3-piridil cetona anterior y ácido fenilborónico de manera similar al ejemplo de referencia 20-(1) para dar 5-bromo-2-clorofenil 6-fenil-3-piridil cetona como cristales de color amarillo. APCI-masas m/Z 372/374 (M+H).
 - (4) Se trató la 5-bromo-2-clorofenil 6-fenil-3-piridil cetona anterior de manera similar al ejemplo de referencia 14-(1) para dar el 5-bromo-2-cloro-1-(6-fenil-3-piridilmetil)benceno deseado como cristales incoloros. APCI-masas m/Z 358/360 (M+H).

30 Ejemplo de referencia 136

5

10

15

25

55

60

65

5-bromo-2-cloro-1-(6-isopropiloxibenzo[b]tiofen-2-ilmetil)benceno

Se trataron 5-bromo-2-cloro-1-(6-hidroxibenzo[b]tiofen-2-ilmetil)benceno obtenido en el ejemplo de referencia 132-(1) y 2-yodopropano de manera similar al ejemplo de referencia 132-(2) para dar el compuesto del título. APCI-masas m/Z 395/397 (M+H).

Ejemplo de referencia 137 4-bromo-1-fluoro-2-(5-(2-piridil)-2-tienilmetil)naftaleno

- (1) Se enfrió una disolución de 2,2,6,6-tetrametilpiperidina (4,13 ml) en tetrahidrofurano (40 ml) hasta -78 °C bajo atmósfera de argón y a la misma se le añadió gota a gota n-butil-litio (disolución en hexano 2,44 M , 10,0 ml). Se agitó la mezcla a la misma temperatura durante 30 minutos y se añadió gota a gota a la misma a -78 °C una disolución de 1-bromo-4-fluoronaftaleno (5,0 g) en tetrahidrofurano (20 ml). Se agitó la mezcla a la misma temperatura durante 1 hora y se añadió gota a gota a la misma a -78 °C N,N-dimetilformamida (5,16 ml). Se agitó la mezcla a la misma temperatura durante 1 hora y a la misma se le añadió una disolución de cloruro de amonio acuosa saturada y se extrajo la mezcla con acetato de etilo. Se lavó el extracto con agua y se secó sobre sulfato de magnesio y se evaporó el disolvente a presión reducida. Se cristalizó el residuo en diisopropil éter y hexano para dar 4-bromo-1-fluoro-2-naftaldehído (4,43 g) como cristales de color amarillo pálido. APCI-masas m/Z 267/269 (M+NH₄).
- 50 (2) Se trataron el 4-bromo-1-fluoro-2-naftaldehído anterior y 2-(2-piridil)tiofeno de manera similar al ejemplo de referencia 120 para dar el 4-bromo-1-fluoro-2-(5-(2-piridil)-2-tienilmetil)naftaleno deseado como un polvo incoloro. APCI-masas m/Z 398/400 (M+H).

Ejemplo de referencia 138

5-bromo-2-cloro-1-(6-etil-3-pirridilmetil)benceno

(1) Se disolvió 5-bromo-2-clorofenil 6-bromo-3-piridil cetona (3,2 g) del ejemplo de referencia 135-(2) en tetrahidrofurano (80 ml) y al mismo se le añadieron trietilaluminio (disolución en hexano 1,0 M, 9,9 ml), tetraquis(trifenilfosfina)paladio (0) (570 mg) y cloruro de cerio (III) (7,3 g) y se agitó la mezcla a 30 °C durante 1,5 horas. Se diluyó la mezcla de reacción con metanol y se basificó la disolución de reacción con una disolución de hidrogenocarbonato de sodio acuosa saturada. Se eliminaron por filtración los materiales insolubles y el filtrado se extrajo con acetato de etilo y se secó sobre sulfato de magnesio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 99:1-85:15) para dar 5-bromo-2-clorofenil 6-etil-3-piridil cetona (1,98 g) como un sólido incoloro. APCI-masas m/Z 324/326 (M+H). (2) Se trató la 5-bromo-2-clorofenil 6-etil-3-piridil cetona anterior de manera similar al ejemplo de referencia 14-(1)

para dar el 5-bromo-2-cloro-1-(6-etil-3-piridilmetil)benceno deseado como un aceite incoloro. APCI-masas m/Z 310/312 (M+H).

Ejemplo de referencia 139: 6-etilbenzo[b]tiofeno

- (1) Se trataron 4-bromo-2-flurobenzaldehído y tioglicolato de etilo de manera similar al ejemplo de referencia 31-
- (1) para dar 6-bromo-2-etoxicarbonilbenzo[b]tiofeno como un sólido incoloro.
- (2) Se trató el 6-bromo-2-etoxicarbonilbenzo[b]tiofeno anterior de manera similar al ejemplo de referencia 138-(1) para dar 6-etil-2-etoxicarbonilbenzo[b]tiofeno como un aceite incoloro. APCI-masas m/Z 235 (M+H).
- (3) Se disolvió el 6-etil-2-etoxicarbonilbenzo[b]tiofeno anterior (1,26 g) en tetrahidrofurano (4 ml) y metanol (8 ml) y al mismo se le añadió hidróxido de litio monohidratado (677 mg) y se agitó la mezcla a temperatura ambiente durante la noche. Se evaporó el disolvente a presión reducida y se disolvió el residuo en agua y la disolución se acidificó con una disolución de ácido clorhídrico acuosa al 10 %. Se recogieron los precipitados mediante filtración y se lavaron con agua para dar ácido 6-etilbenzo[b]tiofen-2-ilcarboxílico (1,15 g) como cristales incoloros. ESI-Imasa m/Z 205 (M-H).
 - (4) Se trató el àcido 6-etilbenzo[b]tiofen-2-ilcarboxílico anterior de manera similar al ejemplo de referencia 47-(2) para dar el 6-etilbenzo[b]tiofeno deseado como un aceite incoloro.

Ejemplo de referencia 140

5

10

15

20

25

30

35

40

5-bromo-2-cloro-1-(1-oxo-2-isoindolinilmetil)benceno

- (1) Se disolvió alcohol 5-bromo-2-clorobencílico (3,0 g) en tolueno (30 ml) y al mismo se le añadieron cloruro de tionilo (2,35 ml) y piridina (dos gotas) y se calentó la mezcla con agitación a 100 °C durante 2 horas. Se enfrió la mezcla, se lavó con una disolución de hidrogenocarbonato de sodio acuosa saturada y salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida para dar cloruro de 5-bromo-2-clorobencilo (3,34 g) como un aceite de color marrón pálido, que se usó en la etapa posterior sin purificación adicional.
- (2) Se disolvió el cloruro de 5-bromo-2-clorobencilo anterior (3,34 g) en N,N-dimetilformamida (30 ml) y al mismo se le añadió ftalimida potásica (2.63 g) y se calentó la mezcla con agitación a 70 °C durante 3 horas. Se vertió la disolución de reacción en agua y se extrajo la mezcla con acetato de etilo. Se lavó el extracto con salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se cristalizó el residuo en diisopropil éter para dar 5-bromo-2-cloro-1-(ftalimid-2-ilmetil)benceno (3,33 g) como cristales incoloros. APCI-masas m/Z 350/352 (M+H).
- (3) Se disolvió el 5-bromo-2-cloro-1-(ftalimid-2-ilmetil)benceno anterior (4,3 g) en ácido acético (43 ml) y al mismo se le añadió polvo de zinc (8,02 g) y se calentó la mezcla a reflujo durante 3 días. Se enfrió la mezcla y se diluyó con cloroformo y se basificó con una disolución de hidróxido de sodio acuosa. Se secó la fase orgánica sobre sulfato de sodio y se evaporó el disolvente a presión reducida. Se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 6:1-4:1) para dar el 5-bromo-2-cloro-1-(1-oxo-2-isoindolinilmetil)benceno deseado (1,39 g) como un polvo incoloro. APCI-masas m/Z 336/338 (M+H).

Ejemplo de referencia 141

5-bromo-2-cloro-1-(1-fenil-4-pirazolilmetil)benceno

- (1) Se enfrió una disolución de 1-fenil-4-bromopirazol (véase M. A. Khan, et al., Can. J. Chem., (1963) 41 1540) (2,23 g) en dietil éter (30 ml) hasta -78 °C bajo atmósfera de argón y a la misma se le añadió gota a gota n-butillitio (disolución en hexano 1,59 M, 6,9 ml). Se agitó la mezcla a de -20 °C a -10 °C durante 5 horas y a la misma se le añadió gota a gota a la misma temperatura una disolución de 5-bromo-2-clorobenzaldehído (2,19 g) obtenido en el ejemplo de referencia 16-(1) en dietil éter (30 ml). Se agitó la mezcla a la misma temperatura durante 30 minutos y a la misma se le añadió tetrahidrofurano (30 ml) y se agitó la mezcla a 0 °C durante 30 minutos adicionales. Se añadió una disolución de cloruro de amonio acuosa saturada a la misma y se extrajo la mezcla con acetato de etilo. Se lavó el extracto con salmuera y se secó sobre sulfato de sodio. Se evaporó el disolvente a presión reducida y se purificó el residuo mediante cromatografía en columna de gel de sílice (hexano:acetato de etilo = 83:17-80:20) para dar 5-bromo-2-clorofenil-1-fenil-4-pirazolilmetanol (831 mg) como un aceite de color amarillo. APCI-masas m/Z 363/365 (M+H).
 - (2) Se trató el 5-bromo-2-clorofenil-1-fenil-4-pirazolilmetanol anterior de manera similar al ejemplo de referencia 120-(2) para dar el 5-bromo-2-cloro-1-(1-fenil-4-pirazolilmetil)benceno deseado como un polvo incoloro. APCI-masas m/Z 347/349 (M+H).

60 Ejemplo de referencia 142

5-bromo-2-cloro-1-(6-n-propiloxibenzo[b]tiofen-2-il-metil)benceno

Se trataron 5-bromo-2-cloro-1-(6-hidroxibenzo[b]tiofen-2-ilmetil)benceno obtenido en el ejemplo de referencia 132-(1) y 1-bromopropano de manera similar al ejemplo de referencia 132-(2) para dar el compuesto objetivo. APCI-masas m/Z 395/397 (M+H).

5

5-bromo-2-cloro-1-(6-(2-fluoroetiloxi)benzo[b]tiofen-2-ilmetil)benceno

Se trataron 5-bromo-2-cloro-1-(6-hidroxibenzo[b]tiofen-2-ilmetil)benceno obtenido en al ejemplo de referencia 132-(1) y 1-bromo-2-fluoroetano de manera similar al ejemplo de referencia 132-(2) para dar el compuesto objetivo. APCI-masas m/Z 399/401 (M+H).

REIVINDICACIONES

1. Uso de un compuesto de fórmula (IA)

5

en la que R^A es un átomo de halógeno, un grupo alquilo C_{1^-6} o un grupo alcoxi C_{1^-6} ; R^B es un grupo fenilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo C_{1^-6} , un grupo halo-alquilo C_{1^-6} , un grupo halo-alcoxi C_{1^-6} o un grupo mono- o di-alquilamino C_{1^-6} ; o un grupo heterociclilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo C_{1^-6} , un grupo halo-alcoxi C_{1^-6} o un grupo mono- o di-alquilamino C_{1^-6} ; y R^c es un átomo de hidrógeno; o una sal farmacéuticamente aceptable del mismo; en la fabricación de un medicamento para el tratamiento de diabetes mellitus (tipo 1 y tipo 2), retinopatía diabética, neuropatía diabética, nefropatía diabética, hiperglicemia postprandial o cicatrización de heridas retardada, en la que la cadena de carbono C_1 - C_6 es lineal o ramificada.

15

10

2. Uso de acuerdo con la reivindicación 1 en el que el medicamento es para el tratamiento de diabetes mellitus (tipo 2).

20 3

3. Uso de acuerdo con la reivindicación 1 en el que el medicamento es para el tratamiento de retinopatía diabética, neuropatía diabética o nefropatía diabética.

25

4. Uso de acuerdo con la reivindicación 1 en el que el medicamento es para el tratamiento de hiperglicemia postprandial.

5. Uso de acuerdo con la reivindicación 1 en el que el medicamento es para el tratamiento de cicatrización de heridas

30

retardada.

6. Uso de acuerdo con una cualquiera de las reivindicaciones 1 a 5 en la que R^A es un átomo de halógeno, un grupo alquilo C₁-6 o un grupo alcoxi C₁-6; R^B es un grupo fenilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo C₁-6, un grupo halo-alquilo C₁-6, un grupo alcoxi C₁-6 o un grupo halo-alcoxi C₁-6; o un grupo heterociclilo opcionalmente sustituido con un átomo de halógeno, un grupo ciano, un grupo alquilo C₁-6 o un grupo

35

7. Uso de acuerdo con una cualquiera de las reivindicaciones 1 a 6 en el que el compuesto de fórmula (IA) es 1-(β-D-glucopiranosil)-4-metil-3-[5-(4-fluorofenil)-2-tienilmetil]benceno.

alcoxi C₁₋₆; y R^c es un átomo de hidrógeno; o una sal farmacéuticamente aceptable del mismo.

. .

8. Uso de acuerdo con una cualquiera de las reivindicaciones 1 a 6 en el que el compuesto de fórmula (IA) tiene la siguiente estructura guímica: