Office de la Proprieté Canadian CA 2534725 C 2013/04/30

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 534 725
gln gfganisg‘e ; 'f“c‘j age”%y of ; 12 BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(22) Date de depot/Filing Date: 2006/02/01 (51) CLInt./Int.Cl. GO6F 77/30(2006.01)
(41) Mise a la disp. pub./Open to Public Insp.: 2006/09/28 (72) Inventeurs/Inventors:
“1; . SHUKLA, AMIT, US;
(45) Date de délivrance/lssue Date: 2013/04/30 NORI. ANIL KUMAR US:
(30) Priorité/Priority: 2005/03/28 (US11/091,079) DEMIROSKI. BEKIM, US:

FRIEDMAN, GREGORY S., US;
HUNTER, JASON T., US;
PEARCE, JEFFREY T., US;
NEWMAN, MICHAEL J., US;

(73) Proprietaire/Owner:
MICROSOFT CORPORATION, US

(74) Agent: SMART & BIGGAR

(54) Titre : MAPPAGE D'UN MODELE DE SYSTEME DE FICHIER APPLIQUE A UN OBJET DE BASE DE DONNEES
(54) Title: MAPPING OF A FILE SYSTEM MODEL TO A DATABASE OBJECT

5 100

102 FILE STORAGE DATA

MODEL

Y

104
"/ TYPE STORAGE
SYSTEM

106
\ INTERFACE
A

DATA

(57) Abrégée/Abstract:

The subject invention provides a system and/or a method that facilitates mapping a data base model to a database object. A type
storage system can utilize a storage mapping of a file storage data model. The mapping can describe the database object created

:':‘;‘:‘-';:;‘:': Bt N,
R A -:::; N7
> \) Q"’...

I*I) . Pen, B Y
C an ad a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca opPIc B & .

) SR RO PRI S G _,\‘.s
OPIC - CIPO 191 5

(72) Inventeurs(suite)/Inventors(continued):
(57) Abrege(suite)/Abstract(continued):

=LLIS, NIG

CA 2534725 C 2013/04/30

anen 2 534 725
13) C

=L R., US; ACHARYA, SRINIVASMURTRHY P., US

based at least In part upon a schema and how Instances of the type described In the schema are stored and/or accessed.
Furthermore, a guery can be provided to find at least one of an item, a document, and/or a contact that satisfy at least one criterion.
The type storage system can recelve data, wherein the data Is at least one of a schema, a data model, a type, a query, and query
criteria via an interface to provide the storing and querying. Additionally, the type storage system can generate a view that exposes

at least one Instance of the type.

CA 02534725 2006-02-01

ABSTRACT

The subject invention provides a system and/or a method that facilitates mapping
a data base model to a database object. A type storage system can utilize a storage
mapping of a file storage data model. The mapping can describe the database object
created based at least in part upon a schema and how instances of the type described 1n
the schema are stored and/or accessed. Furthermore, a query can be provided to find at
least one of an item, a document, and/or a contact that satisfy at least one criterion. The
type storage system can receive data, wherein the data is at least one of a schema, a data
model, a type, a query, and query criteria via an interface to provide the storing and
querying. Additionally, the type storage system can generate a view that exposes at least

one 1nstance of the type.

CA 02534725 2006-02-01

Title: MAPPING OF A FILE SYSTEM MODEL TO A DATABASE OBJECT

TECHNICAL FIELD
[0001] The present invention generally relates to databases, and more particularly

to systems and/or methods that facilitate storing a type instance and/or querying data.

BACKGROUND OF THE INVENTION
[0002] Advances in computer technology (e.g., microprocessor speed, memory
capacity, data transfer bandwidth, software functionality, and the like) have generally
contributed to increased computer application 1n various industries. Ever more powerful
server systems, which are often configured as an array of servers, are commonly provided
to sefvice requests originating from external sources such as the World Wide Web, for
example.
[0003] As the amount of available electronic data grows, it becomes more
important to store such data in a manageable manner that facilitates user friendly and
quick data searches and retrieval. Today, a common approach is to store electronic data
in one or more databases. In general, a typical database can be referred to as an
organized collection of information with data structured such that a computer program
can quickly search and select desired pieces of data, for example. Commonly, data
within a database 1s organized via one or more tables. Such tables can be arranged with
rows and columns.
[0004] The tables can comprise one or more records, wherein a record can
include a set of fields. Records are commonly indexed as rows within a table, and the
record fields are typically indexed as columns, such that a row/column pair of indices can
reference a particular datum within a table. For example, a row may store a complete
data record relating to a sales transaction, a person, or a project. Likewise, columns of
the table can define discrete portions of the rows that have the same general data format,
wherein the columns can define fields of the records.
[0005] Each individual piece of data, standing alone, 1s generally not very
informative. Database applications make data more useful because they help users

organize and process the data. The database application allows the user to compare, sort,

CA 02534725 2006-02-01 .

order, merge, separate and interconnect the data, so that useful information can be

generated from the data. Yet, the capacity and versatility of databases have grown to an

incredible amount to allow a virtually endless storage capacity utilizing databases.
Moreover, typical database systems offer limited query-ability based upon time, file
extension, location, and size. For example, in order to search the vast amounts of data
associated to a database, a typical search 1s limited to a file name, a file size, a date ot
creation, wherein such techniques are deficient and 1nept.

[0006] With a continuing and increasing creation of data from end-users, the
problems and difficulties surrounding finding, relating, and storing such data 1s reaching
its peak. End-users write documents, store photos, rip music from compact discs, receive
email, retain copies of sent email, efc. For example, in the simple process of creating a
music compact disc, the end-user can create megabytes of data. Ripping the music from
the compact disc, converting the file to a smitable format, creating a jewel case cover,
designing a compact disc label, all require the creation of data.

[0007] Not only are the complications surrounding users, developers have similar
issues with data. Developers create and write myriad of applications varying from
personal applications to highly developed enterprise applications. While creating and/or
developing, developers frequently, 1f not always, gather data. While obtaining such data,
the data needs to be stored. In other words, the problems and difficulties surrounding
finding, relating, and storing data affect both the developer and the end user. In view of
the above, there is a need to improve upon and/or provide systems and/or methods that

mitigate deficiencies associated with conventional systems and databases.

SUMMARY OF THE INVENTION
[0008] The following presents a simplified summary of the invention in order to
provide a basic understanding of some aspects of the invention. This summary 1s not an
extensive overview of the invention. It 1s intended to neither 1dentify key or critical
elements of the invention nor delineate the scope of the invention. Its sole purpose is to

present some concepts of the invention 1n a simplified form as a prelude to the more

detailed description that is presented later.

10

20

25

30

CA 02534725 2011-02-01

51331-827

[0009] Some embodiments of the subject invention relates to systems

and/or methods that facilitate mapping of a data model to a database object. A
type storage system can provide storing of a type instance and/or querying. The
storing of the type can describe the database object and how instances of types
are stored and/or accessed. The querying can find at least one of an item, a
document, and a contact that each satisfies a certain criteria. Moreover, the type
storage system can utilize an interface to receive data, wherein the data can

Include a schema, a type, a criteria, a query criteria, efc.

[0010] In accordance with one aspect of the subject invention, the type
storage system can include a store component that stores at least one type
instance. The storage can be a mapping of the data model, wherein the data
model can represent a file storage system. Furthermore, the type storage system
can also include a query component. The query component can provide at least
one query in the file storage system data model to satisfy a criterion. In
accordance with another aspect of the subject invention, the type storage system
can Include a relational component that can utilize a relational storage and/or a
relational query capability. The relational component can invoke a database
engine to provide such relational techniques, wherein these technigues can

facilitate storing the type instance and/or querying.

[0011] Moreover, the type storage system can further include a view
component that can provide a view that exposes all instances of a given type.
The type can be a hierarchical structure and/or an inheritance structure. The view

can be related to a particular type that projects a subset of the types with a base

type. In other aspects of the subject invention, methods are provided that facilitate

mapping of a data model to a database object.

According to another aspect of the present invention, there is
provided a system that facilitates mapping a data model comprising: a file storage
data model that is utilized to define a mapping schema and that enables storing,
finding, and relating information; a type storage component that maps a schema
object to a database object based on the associated mapping schema, wherein an
instance of a type in the mapping schema is stored, and wherein the type storage

component further provides a query to find at least one of the following: at least
3

10

15

20

29

30

CA 02534725 2011-02-01

51331-827

one item In the system that satisfies a respective criteria; at least one document in
the system that satisfies a respective criteria; and at least one contact that
satisfies a respective criteria, where the contact includes at least one of the
following: an individual; an organization; and a group; wherein the type in the
schema maps to a common language runtime (CLR) class in a storage of the file
storage data model, and the type Is at least one of the following: an item; an item
extension; an item fragment; and a link; a table that has at least one of the
following: 1) a column that contains at least one instance of the respective type;
and 2) a row that contains a serialized representation of the CLR class instance
that represents the type instance; wherein the item extension, item fragment and
the link type instances are represented in a similar table structure and inline type
Instances are stored inside a parent object instance rather than storing in separate
tables and columns; and an intelligent component that determines a user defined
type to be stored via inferring a specific context or action of a user and generating
a probability distribution over states of interest based on a consideration of data

and events.

According to another aspect of the present invention, there is
provided a computer-implemented method that facilitates mapping a data model,
comprising: obtaining a file storage data model that is utilized to define a mapping
schema and that enables storing, finding, and relating information; receiving at
least one of a schema, a type, a criteria, and a query information; mapping a
schema object to a database object based on the schema associated to the file
storage data model; storing an instance of the type from the schema; mapping the
type in the schema to a common language runtime (CLR) class in a storage of the
file storage data model, wherein the type is at least one of the following: an item;
an item extension; an item fragment; and a link; and wherein the type storage
component further provides a query to find at least one of the following: at least
one item in the system that satisfies a respective criteria; at least one document in
the system that satisfies a respective criteria; and at least one contact that
satisfies a respective criteria, where the contact includes at least one of the
following: an individual; an organization; and a group; providing a table that has at
least one of the following: 1) a column that contains at least one instance of the

respective type; and 2) a row that contains a serialized representation of the CLR
3a

10

15

20

25

30

CA 02534725 2011-02-01

51331-827

class instance that represents the type instance; wherein the item extension, item
fragment and the link type instances are represented in a similar table structure
and inline type instances are stored inside a parent object instance rather than
storing In separate tables and columns; and providing an intelligent component
that determines a user defined type to be stored via inferring a specific context or
action of a user and generating a probability distribution over states of interest

based on a consideration of data and events.

According to still another aspect of the present invention, there is
provided a system that facilitates mapping a data model comprising: means for
receiving at least one of the following a schema, a type, a criteria, and a query
criteria; means for defining a mapping schema that enables storing, finding, and
relating information utilizing a file storage data model; means for mapping a
schema object to a database object based on a schema associated to a file
storage data model, wherein an instance of a type in the schema is stored, and
wherein the type storage component further provides a query to find at least one
of the following: at least one item In the system that satisfies a respective criteria;
at least one document in the system that satisfies a respective criteria; and at
least one contact that satisfies a respective criteria, where the contact includes at
least one of the following: an individual; an organization; and a group; means for
mapping the type in the schema to a common language runtime (CLR) class in a
storage of the file storage data model, wherein the type is at least one of the
following: an item; an item extension; an item fragment; and a link; and means for
providing a table that has at least one of the following: 1) a column that contains at
least one instance of the respective type; and 2) a row that contains a serialized
representation of the CLR class instance that represents the type instance;
wherein the item extension, item fragment and the link type instances are
represented in a similar table structure and inline type instances are stored inside
a parent object instance rather than storing in separate tables and columns; and
means for providing an intelligent component that determines a user defined type
to be stored via inferring a specific context or action of a user and generating a
probability distribution over states of interest based on a consideration of data and

events.

3b

10

15

20

25

CA 02534725 2011-02-01

51331-827

According to yet another aspect of the present invention, there is
provided a system for storing a type Instance associated with a file storage data
model, wherein the file storage data model is a model representation of a file
storage system utilizing type hierarchy and inheritance, the file storage data model
being utilized to define a mapping schema, the system comprising: a type storage
component adapted to store an instance of a type from the mapping schema in a
storage being a mapping of the file storage data model, wherein each type in the

mapping schema maps to a common language runtime, CLR, class in the storage.

According to a further aspect of the present invention, there is
provided a computer-implemented method for storing a type instance associated
with a file storage data model, wherein the file storage data model is a model
representation of a file storage system utilizing type hierarchy and inheritance, the
file storage data model being utilized to define a mapping schema, the method
comprising: obtaining the file storage data model; mapping a schema object to a
database object based on the mapping schema associated to the file storage data
model; and storing an instance of a type from the mapping schema in a storage
being a mapping of the file storage data model, wherein each type in the mapping

schema maps to a common language runtime, CLR, class in the storage.

According to yet a further aspect of the present invention, there is
provided a computer-readable medium having stored thereon computer-
executable instructions that, when carried out by a processor, cause the processor

to perform a method as described above or described below.

[0012] The following description and the annexed drawings set forth in
detail certain illustrative aspects of the invention. These aspects are indicative,
however, of but a few of the various ways in which the principles of the invention
may be employed and the subject invention is intended to include all such aspects
and their equivalents. Other advantages and novel features of the invention will

become apparent from the following detailed description of the invention when

considered in conjunction with the drawings.

3¢

CA 02534725 2006-02-01

BRIEF DESCRIPTION OF THE DRAWINGS
[0013] Fig. 1 illustrates a block diagram of an exemplary system that facilitates
storing a type instance associated with a data model.
[0014] Fig. 2 illustrates a block diagram of an exemplary system that facilitates

storing a type instance and/or querying to find at least one of an item, a document, and a

contact.

[0015] Fig. 3 1llustrates a block diagram of an exemplary system that facilitates
utilizing a relational storage and/or relational query capabilities.

[0016] Fig. 4 illustrates a block diagram of an exemplary system that facilitates
mapping and/or viewing in conjunction with a type storage system.

[0017] Fig. 5 1llustrates a block diagram of an exemplary system that facilitates
storing a type instance associated with a data model.

[0018] Fig. 6 1llustrates a block diagram of a high-level structure of a store within
a file storage data model.

[0019] Fig. 7 1llustrates a block diagram of a type instance with associated tables.
[0020] Fig. 8 illustrates block diagram of a type hierarchy and a corresponding

view projection.

[0021] Fig. 9 illustrates an exemplary methodology for storing a type instance
that maps to a data model and/or providing a query.

[0022] Fig. 10 1llustrates an exemplary methodology for storing a type instance
that maps to a data model and/or providing a query.

[0023] Fig. 11 1llustrates an exemplary networking environment, wherein the
novel aspects of the subject invention can be employed.

[0024] Fig. 12 1llustrates an exemplary operating environment that can be

employed in accordance with the subject invention.

DESCRIPTION OF THE INVENTION

2% 6

system,” “interface,”

2% ¢

[0025] As utilized 1n this application, terms “component,
“schema,” and the like are intended to reter to a computer-related entity, either hardware,
software (e.g., 1n execution), and/or firmware. For example, a component can be a

Process running on a processor, a processor, an object, an executable, a program, and/or a

CA 02534725 2006-02-01

computer. By way of illustration, both an application running on a server and the server
can be a component. One or more components can reside within a process and a
component can be localized on one computer and/or distributed between two or more
computers.

[0026] The subject invention 1s described with reference to the drawings, wherein
like reference numerals are used to refer to like elements throughout. In the following
description, for purposes of explanation, numerous specific details are set forth in order
to provide a thorough understanding of the subject invention. It may be evident,
however, that the subject invention may be practiced without these specific details. In
other instances, well-known structures and devices are shown in block diagram form in
order to facilitate describing the subject invention.

[0027] Now turning to the figures, Fig. 1 illustrates a system 100 that facilitates
storing a type instance associated with a data model. The data model can be a file storage
data model 102 that enables storing, finding, and relating information. For example, an
information type can be, but 1s not limited to, a document, an 1image, a video, a contact, a
message, an ematl, an audio clip, efc. The informational types can be considered units of
information, which can be represented as instances of complex types that are part of a
type system that supports inheritance. Inheritance can be defined as a situation in which
certain characteristics are passed on from one context to another. In particular to object-
oriented programming, objects inherit attributes and/or behaviors from other objects. It 1s
to be appreciated that inheritance can be considered a hierarchical structure and/or

format.

[0028] A type storage system 104 can store the type instance and query to
efficiently and effectively find at least one of 1tems, documents, and/or contacts. The
type storage system 104 can receive data, wherein the data can include a type, a criteria, a
schema, a query critera, Specifically, storing the type instance that relates to an
informational type (e.g., a document, an image, a video, a contact, a message, an email,
an audio clip) can provide at least one of the following: 1) find at least one item in the file
storage data model 102 that satisfy a certain criteria; 2) find at least one document in the

file storage data model 102 that satisty a particular criteria; and 3) find at least one

CA 02534725 2006-02-01

contact (e.g., including an individual, organization, and group) that satisfy a certain
criteria.

[0029] The type storage system 104 can utilize a relational database technique
associated to a relational storage and a relational query. It 1s to be appreciated that such
capabilities can be provided by a database engine (not shown). The relational database
techniques can be associated to relational databases, wherein a relational database 1s a
collection of data items organized as a set of formally-described tables. The data within
the tables can be accessed and/or reassembled in various ways without the requirement of
reorganizing the database tables. Furthermore, the relational database can be easily
extended, such as adding new categories without modifications to existing applications
and/or data. It is to be appreciated that the subject invention is not limited to relational
databases and/or associated techniques and that any suitable technique can be utilized.
[0030] The system 100 further includes an interface component 106, which
provides various adapters, connectors, channels, communication paths, efc. to integrate
the type storage system 104 into virtually any operating system. In addition, the interface
component 106 can provide various adapters, connectors, channels, communication
paths, efc. that provide for interaction with data and the type storage system 104. It 1s to
be appreciated that although the interface component 106 1s incorporated 1nto the type
storage system 104, such implementation is not so limited. For instance, the interface
component 106 can be a stand-alone component to receive or transmit the data 1n relation
to the system 100.

[0031] Fig. 2 illustrates a system 200 that facilitates storing a type instance and/or

querying to find an item, a document, and a contact associated to a data model 202. The
data model 202 can be a model representation of a file storage system that utilizes a
hierarchical characteristic and/or inheritance. The type can include a document, an
image, a video, a contact, a message, an email, an audio clip, efc. However, it 1s to be
appreciated that a type can be a typical information type stored 1n a system represented
by the data model 202. A type storage system 204 can store the type instance and
provide querying that can efficiently find at least one of the following: an item in the data
model 202, a document in the data model 202, and a contact in the data model 202. The

type storage system 204 can receive data, wherein the data can be a query criteria, a

CA 02534725 2006-02-01

schema, a criteria, a schema definition, a data model, a type, The system 200 can
further employ an interface 206 to facilitate providing various adapters, connectors,
channels, communication paths, efc. to integrate the type storage system 204 into
virtually any operating system and facilitate communication.

[0032] The type storage system 204 can further include a store component 208
(“store 208”) that can store the type instances. The storage can be a mapping of the data
model 202, wherein the storage mapping can describe the database object that 1s created
based on a schema definition and how instances of types described in the schema are
stored and/or accessed. In other words, the store 208 can store the instances of the type
and at least one rule associated to mapping a type declaration into the database object.
[0033] The type storage system 204 can include a query component 210 (“query
210”) that provides a querying of data. The query 210 can obtain at least one of the
following: an item in the system represented by data model 202; a document in the
system represented by data model 202; and a contact (e.g., including an individual, an
organization, and a group) in the system represented by the data model 202. It 1s to be
appreciated and understood that the query can be based at least upon a certain criteria
and/or query criteria obtained via the interface 206. Furthermore, the query 210 1s not so
limited to the item, document, and contact, and any suitable information type stored in
the system represented by the data model 202 can be utilized.

[0034] Fig. 3 illustrates a system 300 that facilitates utilizing a relational storage
and relational query capabilities. A type storage system 304 can store a type instance and
query to efficiently and effectively find 1tems, documents, and contacts, wherein such
elements are associated to a file system represented by a data model 302. It 1s to be
appreciated that the file system can be a storage file system that utilizes a hierarchical
structure and/or an inheritance characteristic. The type storage system 304 can be
substantially similar to the type storage system 104, 204, as depicted in Figs 1 and 2
respectively. The type storage system 304 can invoke an interface 306 to facilitate
communication and/or receiving data to be further utilized in accordance with the subject
invention.

[0035] The type storage system 304 can include a store component 308 (store
308) and a query component 310 (“query 310”). The store 308 can provide any suitable

CA 02534725 2006-02-01

storing technique to store the type instance. The query 310 can provide a query that can
efficiently and effectively obtain at least one of the following: at least one item 1n a
system that meets a criteria; at least one document in a system that satisfies a criteria; and
at least one contact that meets a criteria. It is to be appreciated and understood that the
store 308 and the query 310 can be substantially similar to the store 208, and the query
210 as depicted 1n Fig. 2.

[0036] The type storage system 304 can further include a relational component
312 (“relational 312). The relational 312 utilizes database techniques (e.g., utilizing a
database engine) to build a relational storage and/or provide a relational query capability
to facilitate storing type instances and/or querying. The relational 312 can incorporate
techniques associated to a relational database, wherein the relational database 1s a
collection of data items organized as a set of formally-described tables as described 1n
detail above. It 1s to be appreciated that the subject invention 1s not limited to relational
database and associated techniques and that any suitable technique can be utilized.

[0037] Fig. 4 1llustrates a system 400 that facilitates mapping and/or viewing in
conjunction with a data model 402. The data model 402 can represent a file storage
system that enables storing, finding, and relating information. A typical information type
that can be stored in the system can include a document, an 1mage, music, a video, a
contact, a message, efc. The information type can be represented as instances of complex
types that are part of a type system that supports inheritance. A type storage system 404
can store the type instances and provide a query to find items, documents, and contacts

that satisfy a certain criteria. The system 400 can further employ an interface 406 to

facilitate communication and/or receiving data that can include criteria, types, schemas,
models, and query criteria.

[0038] The type storage system 404 can further include a map component 408 to
facilitate storing the type instance. The map component 408 provides mapping of types
described in a schema to defined types and database objects. The map component 408
can be a storage mapping that describes at least one database object, wherein the database
object can be created based on a schema definition and/or how 1nstances of types
described in the schema are stored and/or accessed. In other words, the instances of types

can be stored and rules can be utilized to map a type declaration into the database object.

CA 02534725 2006-02-01

Each type in the schema maps to a class (e.g., common language runtime (CLR)) in a

storage.

[0039] The type storage system 404 can include a view component 410 to provide
a view projection. The view projection can expose instances of the type that 1s viewed.

It is to be appreciated that the types can be in a hierarchical structure utilizing at least
inheritance. In other words, each type is a part of a type hierarchy. The view can be
associated with a given type and can project a subset of the respective types of the view
associated with its base type. The view can project instances associated to the particular
type. For example, for a type “message,” only the instances of which message 1s a parent
can be viewed based at least upon the hierarchy structure.

[0040] The view component 410 can provide various types of user interfaces to
facilitate interaction between a user and any component coupled to type storage system
404. As depicted, the view component 410 1s a separate entity that 1s incorporated into
the type storage system 404. However, 1t 1s to be appreciated that the view component
410 and/or similar view components can be a separate component from the type storage
system 404 and/or a stand-alone unit. The view component 410 can provide one or more
graphical user interfaces (GUIs), command line interfaces, and the like. For example, a
GUI can be rendered that provides a user with a region or means to load, import, read,
etc. data, and can include a region to present the results of such. These regions can
comprise known text and/or graphic regions comprising dialogue boxes, static controls,
drop-down-menus, list boxes, pop-up menus, as edit controls, combo boxes, radio

buttons, check boxes, push buttons, and graphic boxes. In addition, utilities to facilitate

the presentation such vertical and/or horizontal scroll bars for navigation and toolbar
buttons to determine whether a region will be viewable can be employed. For example,
the user can interact with one or more of the components coupled to the type storage
system 404.

[0041] The user can also interact with the regions to select and provide
information via various devices such as a mouse, a roller ball, a keypad, a keyboard, a
pen and/or voice activation, for example. Typically, a mechanism such as a push button
or the enter key on the keyboard can be employed subsequent entering the information n

order to 1nitiate the search. However, 1t 1s to be appreciated that the invention is not so

CA 02534725 2006-02-01

limited. For example, merely highlighting a check box can initiate information
conveyance. In another example, a command line interface can be employed. For
example, the command line interface can prompt (e.g., via a text message on a display
and an audio tone) the user for information via providing a text message. The user can
than provide suitable information, such as alpha-numeric input corresponding to an
option provided in the interface prompt or an answer to a question posed 1n the prompt.
It is to be appreciated that the command line interface can be employed in connection
with a GUI and/or API. In addition, the command line interface can be employed 1n
connection with hardware (e.g., video cards) and/or displays (e.g., black and white, and
EGA) with limited graphic support, and/or low bandwidth communication channels.
[0042] Fig. 5 illustrates a system 500 that employs intelligence to facilitate
storing a type instance associated with a data model 502. The system 500 includes a type
storage system 504, an interface 506, and the data model 502, which can be substantially
similar to the components depicted in earlier figures. The interface 506 can facilitate
communication associated to data, which can include a critena, a type, a schema, a data
model, and a query criteria. The system 500 can provide storing a type, querying, and/or
providing a view. It is to be appreciated and understood that a database engine can
provide a relational storage and a relational query to the system 500.

[0043] The system 500 further includes an intelligent component 508. The
intelligent component 508 can be utilized by the type storage system 504 to facilitate
storing and/or querying for the system 500. For example, the intelligent component 510

can be utilized to facilitate determining a user defined type to be stored. Historic data in

conjunction with user profiles can allow the intelligent component 508 to determine
storing the type and/or querying with certain critera.

[0044] It is to be understood that the intelligent component 508 can provide for
reasoning about or infer states of the system, environment, and/or user from a set of
observations as captured via events and/or data. Inference can be employed to identify a
specific context or action, or can generate a probability distribution over states, for
example. The inference can be probabilistic - that 1s, the computation of a probability
distribution over states of interest based on a consideration of data and events. Inference

can also refer to techniques employed for composing higher-level events from a set of

10

CA 02534725 2006-02-01

events and/or data. Such inference results in the construction of new events or actions
from a set of observed events and/or stored event data, whether or not the events are

correlated in close temporal proximity, and whether the events and data come from one
or several event and data sources. Various classification (explicitly and/or implicitly
trained) schemes and/or systems (e.g., support vector machines, neural networks, expert
systems, Bayesian belief networks, fuzzy logic, data fusion engines...) can be employed
in connection with performing automatic and/or inferred action in connection with the
subject imnvention.

[0045] A classifier 1s a function that maps an iput attribute vector, x = (x1, x2,
x3, x4, xn), to a confidence that the input belongs to a class, that 1s, f(x) =
confidence(class). Such classification can employ a probabilistic and/or statistical-based
analysis (e.g., factoring into the analysis utilities and costs) to prognose or infer an action
that a user desires to be automatically performed. A support vector machine (SVM) 1s an
example of a classifier that can be employed. The SVM operates by finding a
hypersurface in the space of possible inputs, which hypersurface attempts to split the
triggering criteria from the non-triggering events. Intuitively, this makes the
classification correct for testing data that 1s near, but not identical to training data. Other
directed and undirected model classification approaches include, e.g., naive Bayes,
Bayesian networks, decision trees, neural networks, fuzzy logic models, and probabilistic
classification models providing different patterns of independence can be employed.
Classification as used herein also 1s inclusive of statistical regression that 1s utihized to
develop models of priority.

[0046] Furthermore, the intelligent component 508 can utilize a data store 510 to
store user profiles and/or historic data. The data store 510 can be, for example, either
volatile memory or nonvolatile memory, or can include both volatile and nonvolatile
memory. By way of illustration, and not limitation, nonvolatile memory can include read
only memory (ROM), programmable ROM (PROM), electrically programmable ROM
(EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
Volatile memory can include random access memory (RAM), which acts as external

cache memory. By way of illustration and not limitation, RAM is available in many

forms such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM

11

CA 02534725 2006-02-01

(SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM),
Synchlink DRAM (SLDRAM), Rambus direct RAM (RDRAM), direct Rambus dynamic
RAM (DRDRAM), and Rambus dynamic RAM (RDRAM). The data store 510 of the

subject systems and methods is intended to comprise, without being limited to, these and
any other suitable types of memory. In addition, it is to be appreciated that the data store
510 can be a server and/or database.

[0047] Fig. 6 illustrates a high-level structure of a store. A schema can be
provided, wherein various instances of types can be stored in tables dependent upon their
type. The types can be, but are not limited to, an item, an item extension, an item
fragment, and a link. Each type can have a corresponding table that can include columns
having object instances therein. For instance, one column 1n the item table can contain
all instances of items in the store. For each row, the column can contain a serialized
representation of the CLR class instance that represents the item type instance. It 1s to be
appreciated that for the item extension, item fragment and the link type instances can be
represented in a similar structure. Inline type instances can be stored inside a parent
object instance rather than storing in separate tables and/or columns. For each item, item
extension, item fragment, and link a view can be generated that exposes all the instances
of that type. Each type is a part of a type hierarchy. For instance, the item view projects
all items 1n the store.

[0048] Briefly turning to Fig. 7, an item 702 1s depicted. A table 704 of the item
702 can contain all instances of the items 1n the store (not shown). The table 704 can

contain an object instance 706 (“Document”) and an object instance 708 (“Contact™). It

is to be appreciated that each type in a schema maps to a CLR class 1n the storage. The
object instance 706 can include a title, an abstract, a printed, an author, and various other
metadata associated with the object instance 706. Similarly, the object instance 708 can
include various metadata such as name, address, email, efc.

[0049] Fig. 8 1llustrates a type hierarchy 800 and a corresponding view projection
820. The type hierarchy 800 can include an item 802, a contact 804, a document 806, a
message 808, a person 810, an organization 812, an email 814, a fax 816, and a voice
818. It 1s to be appreciated that the type hierarchy 800 is an example and any suitable

hierarchy and/or types can be utilized in accordance with the subject invention. As

12

CA 02534725 2006-02-01

illustrated, item 802 1s considered a parent of every type included therein. Thus, contact
804 1s the parent for person 810 and organization 812, while message 808 1s the parent
for email 814, fax 816, and voice 818. Furthermore, the corresponding view projection
820 can reflect the type hierarchy 800. The view associated with a given type can project
a subset of the items of the view associated with its base type. For example, the item
view projects all the items in the store. The contact view projects only the items that are
of type Contact. The person view projects only the contacts that have the most derived
typ€ as person.

[0050] Turning back to Fig. 6, type mapping can be provided utilizing an
algorithm for mapping the type to the type used to describe the corresponding storage
structure in the store. It is to be appreciated that the mapping can be associated to any

file storage system (e.g., a data model based on a system that utilizes complex instances
of types to describe and/or represent a unit of information). Each type declared in a
schema 1s mapped to a CLR class that supports the SQL UDT contract. It is to be
appreciated that although SQL 1s utilized 1n the following examples, any suitable
database management system can be employed. The types belong to a namespace whose
name corresponds to the namespace of the schema with ““.Store” suffix appended. The
types in a given namespace are compiled into a single assembly that is utilized as a unit
of deployment of the schema. The name of the CLR type 1s equal to the name declared 1n
the schema. For each declared property of the type, the following 1s added to the
corresponding CLR type: 1) a private field with the name equal to the name specified 1n
the schema, pre-fixed by “m 7. The field 1s attributed with the UDT specific attribute:
System.Data.SqlTypes.SqlUdtField; 2) a public property with the name equal to the name
specified in the schema and corresponding get/set statements. The property 1s attributed
with the UDT specific attribute System.Data.SqlTypes.SqlUdtProperty; and 3) the type of
the field and the property 1s the CLR type that corresponds to the type declared in the
schema. If the type is one of the scalar types that i1t 1s mapped to one of the scalar SQL
types (discussed infra).

[0051] The following table describes the mapping of the file storage system scalar
types to the corresponding SQL managed types:

13

CA 02534725 2006-02-01

Svystem Type e

ariable-length Unicode data with a maximum length of
length of 2731 characters. Length can be fixed from 1 —
4000 characters or unconstrained using the “max”

ariable-length binary data with a maximum length of
length of 2732 bytes. Length can be fixed from 1 —
8000 bytes or unconstrained using the “max’ keyword.

qlBoolean Null-able Boolean value

IByte A singe unsigned byte
Integer data from -2"15 (-32,768) through 2715 - 1
(32,767). '
Integer (whole number) data from -2731 (-
2,147,483,648) through 2”31 - 1 (2,147,483,647).
Integer (whole number) data from -2763 (-

oolean

Sqlint32

9223372036854775808) through 2/63-1
(9223372036854775807).

SqlSingle Floating precision number data from -3.40E + 38 through
3.40E + 38

Single

SqlDouble Floating precision number data from -1.79E + 308
hrough 1.79E + 308

SqlDecimal Numeric data types with fixed precision and scale.
Precision and Scale attributes apply for properties of type
Decimal.

Precision defines the maximum number of decimal digits
hat decimal value. This includes the digits to the left and
o the right of the decimal point. The value of the

Precision attribute is an integer between 1 and 28.

Scale defines the maximum number of decimal digits to
he right of the decimal point. The value of the Scale

attribute must be between 0 and the value of the

Precision attribute.

Note for milestone B: these attributes are not supported

1n this milestone. Precision 1s fixed to 28 and Scale 1s
fixed to 14.

T

<

¢
75 21192172 75 7 2
= L e - =<
5 5 % A
N — - 2. ya
~ o)\ = = e
< ua o,
/)
-
-

5 — — — —
7l S AEE
O - N > —
-y o AN) @)
S =

oo

SqlDateTime |Date and time data from January 1, 1753, through
December 31, 9999, with an accuracy of three-
hundredths of one second or 3.33 milliseconds.

SqlGuid A globally unique identifier (GUID).

SqlString ML 1s currently stored as a string field. Native Xml
ype support is being considered for post-Betal.

Support planned for post-Betal. If supported 1t may

Gud
1

=

»
=
o
—
=
o

72
—
ve
-

tream

14

CA 02534725 2006-02-01

~ Jreplace string(max) and binary(max) declarations.

L4

Table 1

[0052] A database object created in a file storage system store can be stored 1n a
SQL schema name derived from the file storage system schema name. The suffix
“.Store” is appended to the file storage system schema name to produce the SQL schema
name. For example, the file storage system.storage schema produces objects in the
“[System.Storage.Store]” SQL schema such as “[System.Storage.Store|.Item.”

[0053] Content in the file storage system can be accessed through views. The
views depicted below are read-only, but the subject invention 1s not so limited since the
views can be write-enabled. Each item type can be mapped to a typed view. Each typed
item view can be identified in a file storage system store using the naming convention
[<schema name>.Store].[<Item type name>]. A type view for type T can return all items
that are type T and all types that derive from T. The view that corresponds to the
System.Storage.Item type 1s [System.Storage.Store].[Item]. This view can return all the
items 1n a file storage system store. The following table describes the columns of an item

type view:

Column name escription
ItemId [System.Storage.Store].Itemld temld of the item

Typeld [System.Storage.Store]. Typeld chematized type 1d

NamespaceName nvarchar(255) The unique name of
the 1tem

Containerld [System.Storage.Store].Itemld The 1d of the
type

EntityState [System.Storage.Store].EntityState The state
information for the

item

ObjectSize Bigint Si1ze of the 1tem
object (persisted
column)

Changelnformation Change tracking
information

ItemSyncMetadata | [System.Storage.Store]|.ItemSyncMetadata | Sync metadata

PathHandle [System.Storage.Store].BinPathHandle The handle of the

15

CA 02534725 2006-02-01

vath to the item

v

PromotionStatus Int The status of the
promotion for the
1tem

Table 2

[0054] Each link type is mapped to a typed view. Each typed link view 1s
identified in a file storage system store using the naming convention [<schema
name>.Store].[<link type name>]. The view that corresponds to the System.Storage.Link
type is [System.Storage.Store].[Link]. This view can contain all the links 1n a file storage

system store. The following table describes the columns of a link type view:

—

Column name ype Description
SourceRef [System.Storage.Store].Itemld [temId of the source
item

LinkId [System.Storage.Store].LinkId Id of the link

TargetRef [System.Storage.Store].Itemld ItemId of the target
item
]

Typeld [System.Storage.Store]. Typeld Typeld of the most
derived type of the
link 1nstance

Link Link type Instance of the link
type

EntityState [System.Storage.Store].EntityState The state

information for the
link

ObjectSize Bigint S1ze of the link
object (persisted
column)

Changelnformation | [System.Storage.Store].Changelnformation | Change tracking
information

LinkSyncMetadata | [System.Storage.Store].ItemSyncMetadata

PathHandle [System.Storage.Store].BinPathHandle The handle of the
path to the 1tem that

1S the source of the
link

Table 3

16

CA 02534725 2006-02-01

[0055] All item fragments can be accessible through single view
[System.Storage.Store].[ItemFragment]. The following table describes the columns of
global 1tem fragment view:

Column name Description

ItemlId [System.Storage.Store].Itemld [temId of the owning
item

Setld [System.Storage.Store].Setld The usage of the
1tem fragment

Fragmentld System.Storage.Store].Fragmentld The Id of the
fragment 1nstance

[
Typeld [System.Storage.Store]. Typeld Typeld of the most
derived type of the
ItemFragment
Instance

—]
S
|

ItemFragment [System.Storage.Store].[[temFragment]} Instance of the
[temFragment type

[System.Storage.Store].EntityState The state

EntityState
information for the

link

Changelnformation | [System.Storage.Store].ChangeInformation | Change tracking
information

PathHandle [System.Storage.Store].BinPathHandle The handle of the
path to the item that
1s the source of the
link

Table 4

[0056] Each store provides a global extension view named

[System.Storage.Store].[ItemExtension]. Instances of all extension types are accessible
through this view. The following table describes the columns in the global extension
VIEW:

Column name Description

[temId [System.Storage.Store]. Itemld [temId of the
extension

Typeld [System.Storage.Store]. Typeld Schematized type 1d
[.

|.
ItemExtension System.Storage.Store].ItemExtension Extension type

Instance

EntityState [System.Storage.Store].EntityState

17

CA 02534725 2006-02-01

information for the
extension

Size of the extension

object (persisted

ObjectSize Bigint
column)
ChangeInformation | [System.Storage.Store].ChangeInformation | Change tracking
information
]

[
PathHandle [System.Storage.Store].BinPathHandle The handle of the

path to the item that
owns the extension

Table 5

[0057] Each extension type is mapped to a typed view. Each typed extension
view is identified in a file storage system store using the naming convention [<schema
name>.Store].[<extension type name >]. The following table describes the columns of

an extension type view:

Column name Description

ItemId System.Storage.Store].Itemld Itemld of the
extension

Typeld [System.Storage.Store]. Typeld Schematized type 1d

[temExtension Extension type Extension type
instance
o e gt

1
object (persisted
EnfityState [System.Storage.Store].EntityState

—]
=
I

column)
The state

information for the
extension

Changelnformation | [System.Storage.Store].Changelnformation | Change tracking
information

PathHandle [System.Storage.Store].BinPathHandle The handle of the

path to the item that

owns the extension

Table 6

In the file storage system, an inline type instance can be stored within entity type

instances. It is to be appreciated and understood that they are accessed by querying the

appropriate search view.

18

CA 02534725 2006-02-01

[00S8] All Items are stored in a single item table, called
[System.Storage.Store].[Table!Item]. The unique key in the following table 1s ItemlId:

Column name Description

[temId [System.Storage.Store]. Itemld [temId of the
1tem

type 1d
NamespaceName Nvarchar(255) The unique name
Containerld [System.Storage.Store].Itemld The 1d of the
| container 1tem

Item The item

EntityState [System.Storage.Store].EntityState EntityState udt

about the 1tem.
SDId Int Internal use only
(used by security
sub-system)
the SDId. Used
for change
[temSyncMetadata [System.Storage.Store].ItemSyncMetadata | Sync metadata
for global Ids
TombstoneStatus Tombstone status
indexing). This
column 1s

which contains
SDLastUpdateLocalTS | Bigint The timestamp of

tracking.
[LastUpdateLocalTS Bigint Internal use only

actually mapped

meta information

the last change of
Changelnformation [System.Storage.Store].Changelnformation | Change tracking

information

(used for

to

ChangelInformati
on.LastUpdateLo
calTS. We need
to map 1t 1n order
to create an
index on it.

MaxOrd Int Internal use only
(used to compute

19

CA 02534725 2006-02-01

PathHandle for

new 1tems added
to this container

1item)
Hierarchical Type Id Internal use only

(persisted
column)

TypePath
Si1ze of the 1tem
object (persisted

ObjectSize Bigint

column)
PathHandle [System.Storage.Store].BinPathHandle The path handle

to this item

PromotionStatus [nt The promotion
status for the
1tem

LastAccessTime DateTime The last access
time for the file
stream associated
with the item.

StreamSize Bigint The si1ze of the

T

»

with the 1tem

The allocated
size for the

stream associated
with the item

Table 7

[0059] The indexes on the item table are described 1n the following table:

Columns nique lustered | Included Columns
TypePath, Itemld
ItemId Yes O TombstoneStatus, TypePath,
SDId

SDId, TombstoneStatus
SDId, TombstoneStatus
SDId, TombstoneStatus,

PathHandle

ii
%

< =<
3
c'|o o

PathHandle
Containerld, NamespaceName

LastUpdateLocalTS 0

i
o

Table &

20

CA 02534725 2006-02-01

[0060] All links will be stored 1n the link table, which 1s named
[System.Storage.Store].[Table!Link]. The unique key in the following table 1s Itemld,
LinkId:

—

Column name DEe Description

SourceRef [System.Storage.Store].Itemld ItemId of the source
item

LinklId [System.Storage.Store].LinkId Id of the link

TargetRef [System.Storage.Store].Itemld [temId of the target
item

Typeld [System.Storage.Store]. Typeld Schematized type 1d

TypePath Hierarchical Type Id Internal use only
(persisted column)

Link The link object

EntityState [System.Storage.Store].EntityState State information
about the link

SDId Internal use only
TombstoneStatus Tombstone status

ObjectSize Bigint Size of the link
object (persisted
column)

Changelnformation Change tracking
information

LinkSyncMetadata | [System.Storage.Store].LinkSyncMetadata | Sync metadata

LastUpdateLocalTS | Bigint Internal use only
(used for indexing).
This column 1s
actually mapped to
Changelnformation.
[astUpdateLocalTS.
We need to map it
1n order to create an
index on it.

]

PathHandle [System.Storage.Store].BinPathHandle The path handle to
the 1tem that 1s the
source of the link

Table 9

[0061] The indexes on the Link table are described 1n the following table:

21

CA 02534725 2006-02-01

Unique | Clustered
‘SourceRef, Linkld [Yes |Yes |
PathHandle
Table 10
[0062] All EntityExtensions are stored in a single table called:

[System.Storage.Store].[Table!ItemExtension]. The following table describes item

extension table:

Column name T Description

ItemlId [System.Storage.Store].Itemld ItemId of the
extension

Typeld Schematized type id
(persisted column)
[temExtension The ItemExtension
object
|]

EntityState System.Storage.Store].EntityState EntityState udt
which contains meta
information about

the EntityExtension.

SDId [nternal use only

TombstoneStatus Int Tombstone status

ObjectSize Bigint Size of the
EntityExtension
object (persisted
column)

Changelnformation | [System.Storage.Store].Changelnformation | Change tracking
information

LastUpdateLocal TS | Bigint Internal use only
(used for indexing).
This column 1s
actually mapped to
Changelnformation.
LastUpdateLocalTSs.
We need to map it
1in order to create an

22

i

CA 02534725 2006-02-01

- |indexonmit

PathHandle [System.Storage.Store].BinPathHandle The path handle to
the 1tem owning this
EntityExtension

Table 11

[0063] The indexes on the ItemExtension table are described in the following

table:

lustered | Included Columns

0 SDId, TombstoneStatus,
PathHandle

Columns nique
TypePath, Itemld, Typeld

Itemld, Typeld

o 8 O 8
o 2

PathHandle SDId, TombstoneStatus

LastUpdateLocalTS No SDId, TombstoneStatus,
PathHandle

Table 12

[0064] All ItemFragment type instances are stored in a single table named

[System.Storage.Store].[Table!ItemFragment]. The following table depicts the
ItemFragment type:

Column name Description

ItemId [System.Storage.Store].Itemld [temId of the
owning item
Setld [System.Storage.Store].Setld The usage of the

item fragment

Fragmentld [System.Storage.Store].Fragmentld The Id of the
fragment 1nstance

[temFragment [System.Storage.Store].ItemFragment The ItemFragment
object

Typeld [System.Storage.Store]. Typeld Schematized type 1d

TypePath Hierarchical Type Id Internal use only
(persisted column)

[System.Storage.Store].EntityState

EntityState EntityState udt
which contains meta
information about

the fragment.

SDId int

TombstoneStatus nt Tombstone status

23

CA 02534725 2006-02-01

ObjectSize bigint Si1ze of the
[temkFragment
object (persisted
column)

ChangeInformation | [System.Storage.Store].Changelnformation | Change tracking
information

LastUpdateLocalTS | bigint Internal use only
(used for indexing).

This column 1s
actually mapped to
Changelnformation.
LastUpdateLocalTs.
We need to map 1t
1in order to create an
index on 1it.

PathHandle [System.Storage.Store]|. BinPathHandle The path handle to
the owning i1tem

Table 13

[0065] The indexes on the ItemFragment table are described 1n the following

table:

Fragmentld
PathHandle
Yes
PathHandle
Table 14
[0066] Figs. 9-10 illustrate methodologies in accordance with the subject

invention. For simplicity of explanation, the methodologies are depicted and described as
a series of acts. It is to be understood and appreciated that the subject invention is not
limited by the acts illustrated and/or by the order of acts, for example acts can occur 1n
various orders and/or concurrently, and with other acts not presented and described
herein. Furthermore, not all illustrated acts may be required to implement the

methodologies in accordance with the subject invention. In addition, those skilled 1n the

24

CA 02534725 2006-02-01

art will understand and appreciate that the methodologies could alternatively be

represented as a series of interrelated states via a state diagram or events.

[0067] Fig. 9 illustrates a methodology 900 that facilitates storing a type instance
that maps to a data model and/or provides a query. The data model can be a file storage
data model that enables storing, finding, and relating information. An information type
can be, but is not limited to, a document, an image, a video, a contact, a message, an
email, an audio clip, etc. These informational types (e.g., units of information) can be
represented as instances of complex types that are part of a type system that supports
inheritance, wherein inheritance allows objects to inherit attributes and/or behaviors from
other objects. It is to be appreciated that inheritance can be considered a hierarchical
structure and/or format.

[0068] At reference numeral 902, data can be received, wherein the data can
include a type, a criteria, a schema, a query criteria, The type instance can be stored
to map to a data model (e.g., a file storage data model) at reference numeral 904. For
instance, the model can map types described in the schema to user defined types and
database objects. The storage mapping can describe the database objects that are created
based on a schema definition and how instances of types described in the schema are
stored and/or accessed. In one example, a database structure can be designed such that
the instances of types and the rules for mapping of type declarations into database objects
can be provided.

[0069] At reference numeral 906, a query can be invoked to satisty at least one

criterion to efficiently and effectively find items, documents, and contacts. For instance,

storing the type instance that relates to information types can utilize the query to provide
at least one of the following: 1) find at least one item 1n the file storage data model 102
that satisfy a certain criteria; 2) find at least one document in the file storage data model
102 that satisfy a particular criteria; and 3) find at least one contact (e.g., including an
individual, organization, and group) that satisfy a certain criteria.

[0070] Fig. 10 illustrates a methodology 1000 that facilitates storing a type
instance and/or providing a query. At reference numeral 1002, data 1s obtained and/or
received. The data can include a type, a criteria, a schema, a query criteria, etzc. At 1004,

a database engine can be utilized to provide at least one mechanism for storing the type

25

CA 02534725 2006-02-01

instances and/or for querying. For instance, a relational database engine can be utilized
to provide a relational storage and a relation query capability. The relational database
engine can utilize a collection of data items organized as a set of formally described
tables. The data within the tables can be accessed and/or reassembled 1n various ways
without the requirement of reorganizing the database tables. Furthermore, the relational
database can be easily extended, such as adding new categories without modifications to
existing applications and/or data.

[0071] At reference numeral 1006, a type instance 1s stored that maps to a data
model, wherein the data model can be a file storage system. The storage mapping
describes the database objects that are created based on the schema and how 1nstances of
types described in the schema are stored and/or accessed. The mapping can be of types
described in the schema, wherein such mapping 1s to user defined types and database
objects. At reference numeral 1008, a query can be provided to find at least one of an
item, a document, and a contact. The query can be utilized to search based at least in part
upon a criterion. Moreover, at reference numeral 1010, a view can be employed to
expose the instances of the type. For instance, the type system can be hierarchical 1n
structure, wherein a view can be generated to expose any instance of the particular type.
In other words, because of the hierarchy, the view 1s associated with a given type that
projects a subset of the particular types of the view associated with its base type.

[0072] In order to provide additional context for implementing various aspects of
the subject invention, Figs. 11-12 and the following discussion 1s intended to provide a

brief, general description of a suitable computing environment in which the various

aspects of the subject invention may be implemented. While the invention has been
described above in the general context of computer-executable instructions of a computer
program that runs on a local computer and/or remote computer, those skilled 1n the art
will recognize that the invention also may be implemented in combination with other
program modules. Generally, program modules include routines, programs, components,
data structures, etc., that perform particular tasks and/or implement particular abstract
data types.

[0073] Moreover, those skilled in the art will appreciate that the inventive

methods may be practiced with other computer system configurations, including single-

20

CA 02534725 2006-02-01

processor or multi-processor computer systems, minicomputers, mainframe computers, as
well as personal computers, hand-held computing devices, microprocessor-based and/or
programmable consumer electronics, and the like, each of which may operatively
communicate with one or more associated devices. The illustrated aspects of the
invention may also be practiced in distributed computing environments where certain
tasks are performed by remote processing devices that are linked through a
communications network. However, some, if not all, aspects of the invention may be
practiced on stand-alone computers. In a distributed computing environment, program
modules may be located in local and/or remote memory storage devices.

[0074] Fig. 11 is a schematic block diagram of a sample-computing environment
1100 with which the subject invention can interact. The system 1100 includes one or
more client(s) 1110. The client(s) 1110 can be hardware and/or software (e.g., threads,
processes, computing devices). The system 1100 also includes one or more server(s)
1120. The server(s) 1120 can be hardware and/or software (e.g., threads, processes,
computing devices). The servers 1120 can house threads to perform transformations by
employing the subject invention, for example.

[0075] One possible communication between a client 1110 and a server 1120 can
be in the form of a data packet adapted to be transmitted between two or more computer
processes. The system 1100 includes a communication framework 1140 that can be
employed to facilitate communications between the client(s) 1110 and the server(s) 1120.
The client(s) 1110 are operably connected to one or more client data store(s) 1150 that

can be employed to store information local to the client(s) 1110. Similarly, the server(s)

1120 are operably connected to one or more server data store(s) 1130 that can be
employed to store information local to the servers 1140.

[0076] With reference to Fig. 12, an exemplary environment 1200 for
implementing various aspects of the invention includes a computer 1212. The computer
1212 includes a processing unit 1214, a system memory 1216, and a system bus 1218.
The system bus 1218 couples system components including, but not limited to, the
system memory 1216 to the processing unit 1214. The processing unit 1214 can be any
of various available processors. Dual microprocessors and other multiprocessor

architectures also can be employed as the processing unit 1214.

27

CA 02534725 2006-02-01

[0077] The system bus 1218 can be any of several types of bus structure(s)
including the memory bus or memory controller, a peripheral bus or external bus, and/or

a local bus using any variety of available bus architectures including, but not limited to,
Industrial Standard Architecture (ISA), Micro-Channel Architecture (MSA), Extended
ISA (EISA), Intelligent Drive Electronics (IDE), VESA Local Bus (VLB), Peripheral
Component Interconnect (PCI), Card Bus, Universal Serial Bus (USB), Advanced
Graphics Port (AGP), Personal Computer Memory Card International Association bus
(PCMCIA), Firewire (IEEE 1394), and Small Computer Systems Interface (SCSI).
[0078] The system memory 1216 includes volatile memory 1220 and nonvolatile
memory 1222. The basic input/output system (BIOS), containing the basic routines to
transfer information between elements within the computer 1212, such as during start-up,
is stored in nonvolatile memory 1222. By way of illustration, and not limitation,
nonvolatile memory 1222 can include read only memory (ROM), programmable ROM
(PROM), electrically programmable ROM (EPROM), electrically erasable programmable
ROM (EEPROM), or flash memory. Volatile memory 1220 includes random access
memory (RAM), which acts as external cache memory. By way of 1llustration and not
limitation, RAM is available in many forms such as static RAM (SRAM), dynamic RAM
(DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM),
enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), Rambus direct RAM
(RDRAM), direct Rambus dynamic RAM (DRDRAM), and Rambus dynamic RAM
(RDRAM).

[0079] Computer 1212 also includes removable/non-removable, volatile/non-
volatile computer storage media. Fig. 12 illustrates, for example a disk storage 1224.
Disk storage 1224 includes, but is not limited to, devices like a magnetic disk drive,
floppy disk drive, tape drive, Jaz drive, Zip drive, LS-100 drive, flash memory card, or
memory stick. In addition, disk storage 1224 can include storage media separately or in
combination with other storage media including, but not limited to, an optical disk drive
such as a compact disk ROM device (CD-ROM), CD recordable drtve (CD-R Drive), CD
rewritable drive (CD-RW Drive) or a digital versatile disk ROM drive (DVD-ROM). To
facilitate connection of the disk storage devices 1224 to the system bus 1218, a

removable or non-removable interface is typically used such as interface 1226.

238

CA 02534725 2006-02-01

[0080] It is to be appreciated that Fig. 12 describes software that acts as an
intermediary between users and the basic computer resources described in the suitable
operating environment 1200. Such software includes an operating system 1228.
Operating system 1228, which can be stored on disk storage 1224, acts to control and
allocate resources of the computer system 1212. System applications 1230 take
advantage of the management of resources by operating system 1228 through program
modules 1232 and program data 1234 stored either in system memory 1216 or on disk
storage 1224. It is to be appreciated that the subject invention can be implemented with
various operating systems or combinations of operating systems.

[0081] A user enters commands or information into the computer 1212 through
input device(s) 1236. Input devices 1236 include, but are not limited to, a pointing
device such as a mouse, trackball, stylus, touch pad, keyboard, microphone, joystick,
game pad, satellite dish, scanner, TV tuner card, digital camera, digital video camera,
web camera, and the like. These and other input devices connect to the processing unit
1214 through the system bus 1218 via interface port(s) 1238. Interface port(s) 1238
include, for example, a serial port, a parallel port, a game port, and a universal serial bus
(USB). Output device(s) 1240 use some of the same type of ports as input device(s)
1236. Thus, for example, a USB port may be used to provide input to computer 1212,
and to output information from computer 1212 to an output device 1240. Output adapter
1242 is provided to illustrate that there are some output devices 1240 like monitors,
speakers, and printers, among other output devices 1240, which require special adapters.

The output adapters 1242 include, by way of illustration and not limitation, video and

sound cards that provide a means of connection between the output device 1240 and the
system bus 1218. It should be noted that other devices and/or systems of devices provide
both input and output capabilities such as remote computer(s) 1244,

[0082] Computer 1212 can operate in a networked environment using logical
connections to one or more remote computers, such as remote computer(s) 1244. The
remote computer(s) 1244 can be a personal computer, a server, a router, a network PC, a
workstation, a microprocessor based appliance, a peer device or other common network
node and the like, and typically includes many or all of the elements described relative to

computer 1212. For purposes of brevity, only a memory storage device 1246 1s

29

CA 02534725 2012-12-12

5>1331-827

1llustrated with remote computer(s) 1244. Remote computer(s) 1244 is logically
connected to computer 1212 through a network interface 1248 and then physically

connected via communication connection 1250. Network interface 1248 €NCompasses
wire and/or Wireless communication networks such as local-area networks (LAN) and
wide-area networks (WAN). LAN teehnologies include Fiber Distributed Data Interface
(FDDI), Copper Distributed Data Interface (CDDI), Ethernet, Token Ring and the like.
WAN technologies include, but are not limited to, point-to-point links, circuit switching
networks like Integrated Services Digital Networks (ISDN) and variations thereon,
packet switching networks, and Digital Subscriber Lines (DSL). ‘

[0083] Communication connection(s) 1250 refers to the hardware/software
employed to connect the network interface 1248 to the bus 1218. While communication
connection 1250 1s shown for 1llustrative clarity inside computer 1212, it can also be
external to computer 1212. The hardware/software necessary for connection to the

- network interface 1248 includes, for exemplary purposes only, internal and external

technologies such as, modems including regular telephone grade modems, cable modems
and DSL modems, ISDN adapters, and Ethernet cards.

[0084] What has been described above includes examples of the subject
invention. It is, of course, not possible to describe every concelvable combination of
components or methodologies for purposes of describing the subject invention, but one of
ordinary skill in the art may recognize that many further combinations and permutations
of the subject invention are possible. Accordingly, the subject invention is intended to

embrace all such alterations, modifications, and variations that fall within the

scope of the appended claims.

[0085] In particular and in regard to the various functions performed by the above
described components, deVices, circuits, systems and the like, the terms (including a
reference to a “means”) used to describe such components are intended to correspond,
unless otherwise indicated, to any component which performs the specified function of
the described component (e.g., a functional equivalent), even though not structurally
equivalent to the disclosed structure, which performs the function in the herein illustrated
exemplary aspects of the invention. In this regard, it will also be recognized that the

invention includes a system as well as a computer-readable medium having computer-

30

CA 02534725 2006-02-01

executable instructions for performing the acts and/or events of the various methods of

the invention.

[0086] In addition, while a particular feature of the invention may have been

disclosed with respect to only one of several implementations, such feature may be
combined with one or more other features of the other implementations as may be desired

and advantageous for any given or particular application. Furthermore, to the extent that

the terms “includes,” and “including” and variants thereof are used 1n either the detailed

description or the claims, these terms are intended to be inclusive in a manner similar to

the term “comprising.”

31

10

15

20

25

CA 02534725 2011-02-01

51331-827

CLAIMS:

1. A system that facilitates mapping a data model comprising:

a file storage data model that is utilized to define a mapping schema

and that enables storing, finding, and relating information;

a type storage component that maps a schema object to a database
object based on the associated mapping schema, wherein an instance of a type In
the mapping schema is stored, and wherein the type storage component further
provides a query to find at least one of the following: at least one item in the
system that satisfies a respective criteria; at least one document in the system that
satisfies a respective criteria; and at least one contact that satisfies a respective
criteria, where the contact includes at least one of the folliowing: an individual; an

organization; and a group,;

wherein the type in the schema maps to a common language
runtime (CLR) class in a storage of the file storage data model, and the type is at

least one of the following: an item; an item extension; an item fragment; and a link;

a table that has at Ieast one of the following: 1) a column that
contains at least one instance of the respective type; and 2) a row that contains a
serialized representation of the CLR class instance that represents the type
instance; wherein the item extension, item fragment and the link type instances
are represented in a similar tabie structure and inline type instances are stored
iInside a parent object instance rather than storing in separate tables and columns;

and

an intelligent component that determines a user defined type to be
stored via inferring a specific context or action of a user and generating a

probability distribution over states of interest based on a consideration of data and

events.

2. The system of claim 1, wherein the instance of the type is at least
one of. a document; an iImage; music; a video, a contact; a message; a person; an

organization; an email; a fax; a voice; and an audio clip.

32

10

15

25

CA 02534725 2011-02-01

51331-827

3. The system of claim 1, further comprising a relational component

that utilizes at least one of a reiational storage and a relational query capability.

4. The system of claim 3, wherein the relational component utilizes a
relational database technique that is a collection of data items organized as a set
of formally described tables, wherein data can be at least one of accessed without

reorganization and reassembled without reorganization.

5. The system of claim 1, wherein the mapping describes at least one
of the database objects created based on the schema and how the instance of the

type described in the schema is stored and accessed.

0. The system of claim 1, further comprising a view component that

generates a view that exposes at least one instance of the type, wherein the view

projects a subset of the respective type of the view associated with a base type.

7 The system of claim 6, wherein the view component invokes a user

interface to interact between a user and the type storage component.

8. The system of claim 1, wherein the type contains at least one of the

following a type hierarchy and an inheritance.

9. A computer-implemented method that facilitates mapping a data

model, comprising:

obtaining a file storage data model that is utilized to define a

mapping schema and that enables storing, finding, and relating information;

receiving at least one of a schema, a type, a criteria, and a query

information:

mapping a schema object to a database object based on the

schema associated to the file storage data model;

storing an instance of the type from the schema; mapping the type in

the schema to a common language runtime (CLR) class in a storage of the file

33

10

19

20

25

CA 02534725 2011-02-01

51331-827

storage data model, wherein the type is at least one of the following: an item; an

item extension; an item fragment; and a link; and

wherein the type storage component further provides a query to find
at least one of the following: at least one item in the system that satisfies a
respective criteria; at least one document in the system that satisfies a respective
criteria; and at least one contact that satisfies a respective criteria, where the

contact includes at least one of the following: an individual; an organization; and a

group;

providing a table that has at least one of the following: 1) a column
that contains at least one instance of the respective type; and 2) a row that
contains a serialized representation of the CLR class instance that represents the
type instance; wherein the item extension, item fragment and the link type
instances are represented in a similar table structure and inline type instances are

stored inside a parent object instance rather than storing in separate tables and

columns;

and providing an intelligent component that determines a user
defined type to be stored via inferring a specific context or action of a user and
generating a probability distribution over states of interest based on a

consideration of data and events.

10. The method of claim 9, further comprising querying to find at least
one of the following: at least one item in the system that satisfies a respective

criteria: at least one document in the system that satisfies a respective criteria;

and at least one contact that satisfies a respective criteria.

11. The method of claim 9, further comprising utilizing a relational

database engine to provide a relational storage and a relational query capability.

12. The method of claim 9, further comprising generating a view that
exposes at least one instance of the type, wherein the view projects a subset of

the respective type of the view associated with a base type.

34

CA 02534725 2012-12-12

" 51331-827

10

15

20

25

13. A system that facilitates mapping a data model comprising:

means for receiving at least one of the following a schema, a type, a criteria,

and a query criteria;

means for defining a mapping schema that enables storing, finding, and

relating information utilizing a file storage data model;

means for mapping a schema object to a database object based on a schema
associated to a file storage data model, wherein an instance of a type in the schema is stored,
and wherein the type storage component further provides a query to find at least one of the
following: at least one item in the system that satisfies a respective criteria; at least one
document in the system that satisfies a respective criteria; and at least one contact that satisfies
a respective criteria, where the contact includes at least one of the following: an individual; an

organization; and a group;

means for mapping the type in the schema to a common language runtime
(CLR) class 1n a storage of the file storage data model, wherein the type is at least one of the

tfollowing: an item; an item extension; an item fragment; and a link; and

means for providing a table that has at least one of the following: 1) a column
that contains at least one instance of the respective type; and 2) a row that contains a serialized
representation of the CLR class instance that represents the type instance; wherein the item

extension, item fragment and the link type instances are represented in a similar table structure
and nline type instances are stored inside a parent object instance rather than storing in

separate tables and columns; and

means for providing an intelligent component that determines a user defined
type to be stored via inferring a specific context or action of a user and generating a

probability distribution over states of interest based on a consideration of data and events.

14. A computer-readable medium having stored thereon computer-executable
instructions that, when carried out by a processor, cause the processor to perform the method

of any one of claims 9 to 12.
35

CA 02534725 2006-02-01

1/12

102 FILE STORAGE DATA

MODEL

104 —_ |
"\ TYPE STORAGE

SYSTEM

106 L
{ INTERFACE

DATA

FIG. 1

204

206

202

CA 02534725 2006-02-01

2/12

DATA MODEL

TYPE STORAGE SYSTEM
208 210

STORE QUERY
INTERFACE |

DATA

FIG. 2

CA 02534725 2006-02-01

3/12

302
DATA MODEL

304 TYPE STORAGE SYSTEM

310 -
STORE l QUERY |

RELATIONAL

306
\ INTERFACE |

DATA

FIG. 3

CA 02534725 2006-02-01

402

4/12

DATA MODEL

404
N

l

408

MAP

406
INTERFACE

TYPE STORAGE SYSTEM

410
NG

VIEW

| | COMPONENT | | COMPONENT

DATA

FIG. 4

CA 02534725 2006-02-01

5/12

502

DATA MODEL

504

Y 508
INTELLIGENT
TYPE STORAGE SYSTEM COMPONENT
506
INTERFACE
T 510 >
DATA
STORE
DATA

FIG. S

CA 02534725 2006-02-01

6/12
item Type Extension
Views Views

L _
L T

l ltem \ l ltemEXxtension '

[Table!ltem] [Table!
ltemExtension]

[System. Storage. Store]
schema

FIG. 6

ltemFragment | Link I

ItemFragment]

[Table!Link]

CA 02534725 2006-02-01

7/12

07 \l ltem |

[Table!ltem]

M~ 1T
I -
=1 .
1 .
H—
706 708
Document Contact
Title : String

| Name : String
Abstract: String | |Address:Address
Printed:DateTime | Email : String

Author: String

I

FIG. 7

CA 02534725 2006-02-01

8/12

800
802 /—

04 806
810 812 814 818
e
816

8

Ve 820

812 810 314 816 818
808

[tem I

802

CA 02534725 2006-02-01

9/12

902
RECEIVE DATA

STORE A TYPE INSTANCE
THAT MAPS TO A DATA
MODEL

904

906 QUERY TO FIND ITEMS,
DOCUMENTS, AND
CONTACTS

CA 02534725 2006-02-01

10/12

1002
RECEIVE DATA

1004

UTILIZE DATABASE
ENGINE

1006 STORE A TYPE INSTANCE
THAT MAPS TO A DATA
MODEL

1008 PROVIDE QUERY TO FIND
ITEMS, DOCUMENTS, AND
CONTACTS

1010 EMPLOY A VIEWTO
EXPOSE THE INSTANCES
OF ATYPE

FIG. 10

CA 02534725 2006-02-01

11/12

1100
y

1110 1120

CLIENT(S) SERVER(S)

>

CLIENT SERVER
DATA] DATA
STORE(S) STORE(S)

COMMUNICATION
1150 FRAMEWORK

1140

FIG. 11

CA 02534725 2006-02-01

12/12

_— 1228
T R S,
| OPERATING SYSTEM

-
O
-
Q.
3>
-
O
Z.
75

oooooooooooooooooooooooooooooooo

1212
OUTPUT
DEVICE(S)
1240
I
I
: mgggggila i INPUT
: DEVICE(S)
I
' 1236
! 1 1218
| - 1250
| INTERFACE | @ [NETWORK
F 1226 || COMMUNICATION | INTERFACE
’ CONNECTION(S)
: =
| 1248
——]- DISK
STORAGE REMOTE

COMPUTER(S)
1224

MEMORY
STORAGE

1244

1246

FIG. 12

1

L FILE STORAGE DATA

MODEL

v

104
| TYPE STORAGE
SYSTEM

106
INTERFACE

A

DATA

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - abstract drawing

