(54) Title: SOLID STATE ELECTRONIC BALLAST

The electronic ballast for a fluorescent lamp replaces the three main components of a traditional fluorescent lamp ballast, namely the ferro-magnetic ballast, the power factor condenser, the starter and starter holder. The solid state electronic ballast of the invention comprises a power supply conversion circuit, a start-up circuit and a switching resonant circuit. The power supply conversion circuit consists of a common mode line filter connected with a rectifier bridge circuit and a low harmonic filter. Connected in series follows the start-up circuit with a sawtooth oscillator, a diac trigger and a first transistor. A second transistor forms together with an inductor, a transformer, and a lamp-load the resonant-circuit. The electronic ballast of the invention saves costs, energy and weight.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>ES</td>
<td>Spain</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GA</td>
<td>Gabon</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GB</td>
<td>United Kingdom</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IT</td>
<td>Italy</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>JP</td>
<td>Japan</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td></td>
<td></td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td></td>
<td></td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MC</td>
<td>Monaco</td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
Solid State Electronic Ballast

Background and Summary of the Invention

Since their introduction in 1938, fluorescent lamps have largely replaced incandescent lamps as the preferred lighting system for public buildings such as schools, offices, factories etc as well as in many homes. Since the early 1950's, sales of fluorescent lamps have overtaken that of incandescent lamps in most industrialized countries.

A fluorescent lamp consists of a glass tube containing a small amount of mercury and a chemically inert gas at low pressure, usually argon or krypton. Each end of the tube has an electrode which is a coil of tungsten wire with a coating of rare earth oxide. A ferro-magnetic ballast, power factor condenser and starter together with the metal housing, two tube holders, one starter holder and wiring system complete the lamp fixture.
Over the past 50 years the three significant areas of improvements to this system have been:

(1) Switch from a pre-heat starter to a rapid starter.

(2) Introduction of a warm light as an alternative to the cool light which has helped somewhat to enhance its aesthetic qualities in certain applications.

(3) Availability of a low loss ferro-magnetic ballast which has succeeded in replacing about 5-10% of the conventional ballast market.

A fluorescent lamp requires an element which will initially provide the breakdown voltage and thereafter limit the current through the lamp. This element is called a ballast and could be constructed with an inductor and a switch. A more sophisticated circuit is constructed by using active elements. The simple ballast is not very expensive but produces a low efficiency of energy transfer. The sophisticated ballast is usually expensive, not very reliable, and liable of producing electromagnetic interferences.
Solid state electronic ballasts are well known in the art. US-4,689,524 (Ureche) shows an electronic fluorescent lamp ballast with a self-adjusting frequency of operation as a function of lamp impedance variations due to age and enables constant ionization within the fluorescent lamp. This is achieved by an energy storing component, a controlling component which has two states and two socket elements. They enable the filaments of the fluorescent lamp to be connected in series with the energy storing component. A constant current flows through a portion of the energy storing component when the controlling component is in a state of producing an "energy latching" effect which will enable the ballast to achieve a very high energy transfer.

In EP 247,529 (Kim) an electronic ballast stabilizer is shown comprising a noise reduction transformer and two capacitors for regulating AC input voltage. A bridge rectifier changes the AC input into DC voltage. A noise reduction circuit comprises a resistor and a capacitor through which plus voltage passes at the time of voltage drop. The positive voltage also passes through a resistor and a diode and is applied to the emitters of two...
switching transistors. The positive voltage also passes through the bases of two resistors.

A minus voltage passes through voltage regulating coils, is applied to a collector of constant current transistor and through series and parallel circuit comprising resistors, capacitors and diode. A coil is connected between the secondary coils of a chopper transformer coupled through noise reduction coils to filaments of fluorescent lamps respectively. This eliminates disturbing influence on the human eye because the intensity of light is constant.

It is one of the objects of this invention to provide an electronic ballast that replaces the three main components of a traditional fluorescent lamp ballast, namely the ferro-magnetic ballast, the power factor condenser, the starter and starter holder. It is a further object of the invention to minimize third and higher order harmonic distortions of the line current. Another object of the invention is to eliminate start-up flicker which is one of the major drawbacks of the fluorescent system. Still another object of the invention is to save weight and costs.
BRIEF DESCRIPTION OF THE DRAWINGS.

Fig. 1 is a functional block diagram of the present invention;

Fig. 2 illustrates a power conversion circuit;

Fig. 3 shows the waveform generated by the bridge circuit in the power conversion circuit;

Fig. 4 shows the waveform generated by the low harmonic filter section in the power conversion circuit;

Fig. 5 illustrates the start-up circuit that is downstream-connected to the power conversion circuit;

Fig. 6 illustrates the switching resonant circuit that is downstream-connected to the start-up circuit of fig. 5;

Fig. 7 shows the complete scheme of the solid state electronic ballast;
Detailed Description of the Preferred Embodiment

Generally an electronic ballast operates as an on/off switch alternating the voltage of the fluorescent lamp. The basic principle of the solid state electronic ballast of the invention is to convert the 50 Hz 230 V AC mains into an AC voltage at a much higher frequency (approx. 30-40 KHz) to operate the fluorescent lamp. The ballast circuit is composed of three basic function blocks. These are namely:

a power supply conversion circuit 1

a start-up circuit 2 and

a switching resonant circuit 3,

connected to the fluorescent lamp 4. All three circuits are downstream-connected as shown in fig. 1.

The primary role of the power supply circuit 1 is to convert the AC mains power into a varying DC supply voltage for the operation of the fluorescent lamp circuit. The
variation of this DC voltage is designed in a manner to minimize the third harmonic distortion of the line current. Fig. 2 shows the details of the circuit. The inductor L1 and the capacitor C7 form a common mode line filter to provide isolation and prevents the high frequency currents of the ballast circuit from being coupled back to the mains supply.

The bridge circuit, consisting of diodes D4 and D7, rectifies the mains supply into a full wave rectified voltage which is a positive sinusoidal varying voltage (fig. 3).

If a single capacitor is used to filter the above voltage, a high DC voltage with a low ripple voltage is achieved. However, the consequence is to have high and short current pulses charging the filter capacitor, resulting in unacceptable levels of third and higher order harmonic distortions to the line current. The design of the filter section is to avoid short and sharp line current pulses. Components D1, D2, D3, C1 and C2 constitute an improved low harmonic filter section (fig. 2) resulting in a filtered voltage with a waveform as shown in fig. 4.
The operation of the filter circuit is explained as follows:

The bridge circuit conducts over the period of t1, t2 and t3. During this period, power to the lamp circuit is drawn directly from the mains supply. During the period t2, the bridge conducts additional currents to charge the filter capacitors C1 and C2.

During the period t1, the rectified voltage exceeds the capacitor voltages of C1 and C2. All diodes D1, D2 and D3 are reversed biased and the capacitors C1 and C2 are prevented from charging.

In the beginning of the period t2, the rectified voltage now exceeds the total of voltages of the capacitors C1 and C2. Diode D3 is forward biased and connects the capacitors C1 and C2 in series for charging. The capacitors are charged to a maximum of 167 volts (approx.) each at the end of period t2. After this, diode D3 is reversed biased again and disconnects the capacitors C1 and C2.

When the rectified voltage falls below 167 volts, diodes D1 and D2 are forward biased thereby connecting both
capacitors C1 and C2 in parallel. Hence, over the period t4, energy to the lamp circuit is provided by the two capacitors C1 and C2. The voltages of the capacitors discharge until they equal the rectified voltage.

Downstream the power supply conversion circuit 1 and the start-up circuit 2 is connected. The role of the start-up circuit is to initiate the oscillation of the switching resonant circuit. This circuit operates during the initial power-on of the ballast. Once the switching resonance circuit is in operation, this circuit is deactivated. The circuit operates again in the event that the lamp is removed. Hence, the resonant circuit will be energized immediately when the lamp is replaced.

The start-up circuit 2 is essentially a "sawtooth" oscillator. With reference to fig. 5 capacitor C5 charges toward Vs through resistor R5 linearly until it reaches 32 volts. This is the "turn on" voltage of the diac trigger, D9, which subsequently switches the transistor TR1 on. Currents are then passed through the resonant circuit. This excitation provides induced voltages at the secondary windings of the transformer T1 to sustain self-oscillations. Resistor R6 acts as a load to transistor TR1 before
the resonant circuit is turned on. Diode D4 discharges capacitor C5 through transistor TR1 and prevents it from charging sufficiently to fire the diac during the normal operation of the resonant circuit.

Should the oscillations of the resonant circuit be halted, e.g. in the event of the lamp removal, transistor TR1 is turned off and capacitor C5 is allowed to charge to 32 volts to fire the diac trigger D9 again. If the resonant circuit can not be excited, the cycle repeats itself.

Downstream-connected with the start-up circuit 2 is the switching resonance circuit 3. The resonance circuit 3, illustrated in fig. 6, consists of capacitor C3, lamp load in parallel with a capacitor C4, an inductor L2, a transformer T1 and transistors TR1 and TR2. Transistors TR1 and TR2 conduct alternately and are switched by a feedback mechanism provided by the secondary windings of the transformer T1. The resonant circuit is series connected across the supply when the first transistor TR1 turns on. It is connected as a loop circuit when the second transistor TR2 turns on. Resistors R1 and R4 limit the current through the resonant circuit and may be used to
- manipulate the luminescence level of the fluorescent lamp. Resistors R2 and R3 limit the currents in the base circuit of the transistors. The transformer T1 may have a toroid core.

On power up, the first transistor TR1 is turned on when the diac D9 fires. The resonant circuit is connected across the power supply. The operation of the first half cycle is as follows:

Current flows through the circuit and energy is stored in the reactive components. Power to the lamp is drawn from the supply. Induced voltages on the secondary windings of the transformer T1 keep the transistor TR1 turned on and hold the second transistor TR2 off until the resonant circuit current reaches its peak and begins to fall.

The second half cycle of oscillations begins when the resonant circuit current falls. The induced voltages are reversed to turn the first transistor TR1 off and to switch the second transistor TR2 on. The resonant circuit loop is closed by the second transistor TR2 and oscillates for the next half cycle. Energy stored in the reactive components are released to the lamp. When the current reverses
direction, transistor TR1 is turned on once again and the next cycle begins. In this way oscillations are self-sustaining.

Under abnormal conditions, such as a faulty lamp, an electronic shut-down mechanism is triggered. The ballast shut-down results from the saturation of the toroid core and the disability of the feedback mechanism that sustains oscillations. This is accomplished by an additional secondary winding that is shortened by an electronic device when abnormal power level is detected.

It is obvious that the novel circuit arrangement using fewer components results in lower costs and less weight per unit in comparison with a traditional electronic lamp ballast. It is found that the ballast of the invention uses 20-25% less energy than the conventional ferro-magnetic ballast and 10-12% less than a low-loss ferro-magnetic ballast.
CLAIMS

1. A solid state electronic ballast for a fluorescent lamp comprising
 - a power supply conversion circuit (1)
 - a start-up circuit (2) and
 - a switching resonant circuit (3)

 said power supply conversion circuit having a common mode line filter (L1,C7) connected with a rectifier bridge circuit (D4-D7), said bridge circuit is connected with a low harmonic filter;
 said start-up circuit having a sawtooth oscillator and a diac trigger (D9) that switches a first transistor (TR1) so that the current passes through said resonant circuit (3);

 said resonant circuit having a lamp load, an inductor (L2), a transformer (T1) and said first and a second transistor (TR1,TR2) and that said switching resonant circuit (3) is connected in series with said power supply conversion circuit when said first transistor (TR1) is turned on.
2. The solid state electronic ballast of claim 1 wherein said low harmonic filter consists of a first capacitor (C1) and a first diode (D1) and a second capacitor (D2) and a second diode (D2) linked by a third diode (D3) so that all said diodes (D1-3) are reversed biased when the rectified voltage exceeds the voltage of said capacitors and that said capacitors are connected in series when said third diode (D3) is forward biased, and are disconnected when said third diode is reversed biased, while said first and second capacitors are parallel-connected when said first and second diodes are forward biased.

3. The solid state electronic ballast of claim 1 wherein said start-up circuit includes a resistor (R6) that acts as a load to said first transistor (TR1) before said resonant circuit is turned on.

4. The solid state electronic ballast of claim 1 wherein said transformer of said switching resonant circuit having secondary windings that are connected with said first and second transistors (TR1, TR2) keeping said first transistor turned on and said second transistor turned off until the current of the resonant circuit
reaches its peak and begins to fall.

5. The solid state electronic ballast of claim 1 wherein two resistors (R1, R4) each connected to the emitter of one of said transistors (TR1, TR2) are variable to manipulate the luminescence level of the fluorescent lamp.

6. The solid state electronic ballast of claim 1 wherein said transformer (T1) has a secondary winding shortened by a power level detection circuit and that a shutdown results from the saturation of the core of said transformer stopping the feedback mechanism that sustains oscillations.

7. The solid state electronic ballast of claim 6 wherein said core of said transformer (T1) is preferably a toroid core.
AMENDED CLAIMS

[received by the International Bureau on 9 March 1990 (09.03.90)
original claims 1-7 replaced by amended claims 1-6 (3 pages)]

1. A solid state electronic ballast for a fluorescent lamp
 with a power supply conversion circuit (1) a start-up
 circuit (2) and a switching resonant circuit (3),
 characterised in that the power supply conversion
 circuit incorporates a low harmonic filter consisting
 of a first capacitor (C1) and a first diode (D1) and a
 second capacitor (C2) and a second diode (D2) linked by
 a third diode (D3) so that all said diodes (D1-3) are
 reversed biased when the rectified voltage exceeds the
 voltage of said capacitors and that said capacitors are
 connected in series when third diode (D3) is forward
 biased, and are disconnected when said third diode is
 reversed biased, while said and second capacitors are
 parallel connected when said first and second diodes
 are forward biased.

2. A solid state electronic ballast as claimed in claim 1,
 characterised in that the switching resonant circuit
 has a transformer (T1) with additional secondary winding
shortened by a power level detection circuit and that a shutdown results from the saturation of the core of said transformer stopping the feedback mechanism that sustains oscillations.

3. The solid state electronic ballast of claim 1 wherein said start-up circuit includes a resistor (R6) that acts as a load to said first transistor (TR1) before said resonant circuit is turned on.

4. The solid state electronic ballast of claim 1 wherein said transformer of said switching resonant circuit having secondary windings that are connected with said first and second transistors (TR1, TR2) keeping said first transistor turned on and said second transistor turned off until the current of the resonant circuit reaches its peak and begins to fall.

5. The solid state electronic ballast of claim 1 wherein two resistors (R1, R4) each connected to the emitter of one of said transistors (TR1, TR2) are variable to manipulate the luminescence level of the fluorescent lamp.
6. The solid state electronic ballast of claim 2 wherein said core of said transformer (T1) is preferably a toroid core.
STATEMENT UNDER ARTICLE 19

The new claim 1 concerns the matter formerly claimed in claims 1 and 2.

Former claims 3-5 are unchanged, claim 7 is renumbered and refers to new claim 2.

Although this type of circuit arrangement has been previously cited in patent documents, the application and function of said low harmonic filter (C1,C2,D1-D3) in the invention is unique and novel in that the operation of the filter is so designed as to widen the conduction period of the bridge circuit (t1,t2 & t3 of Fig 4) so as to achieve a reduction in the third and higher order supply line current harmonic content, and in particular the third and higher order odd harmonics, and to achieve a high power factor (0.9 or greater) without the use additional inductive filtering elements or electronic current wave processing circuitry.

The new claim 2 concerns the matter formerly claimed in claim 6.

The shut down mechanism employed is unconventional and is unique for such applications and eliminates the need for complex electronic detection and shut down circuitry as is the present state of the art.
INTERNATIONAL SEARCH REPORT

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

| Int.Cl. 4 | H05B41/29 |

II. FIELDS SEARCHED

Minimum Documentation Searched

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.Cl. 4</td>
<td>H05B</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP, A, 239793 (PATENT TREUHAND) 07 October 1987 see the whole document</td>
<td>1, 3-6</td>
</tr>
<tr>
<td>X</td>
<td>WO, A, 8701552 (EBTEK) 12 March 1987 see page 18, line 25 - page 19, line 2; figure 5</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4461980 (NILSSON) 24 July 1984 see abstract; figure 1</td>
<td>6, 7</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "C" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

*"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

*"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

*"&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search 23 March 1989

International Searching Authority EUROPEAN PATENT OFFICE

Date of Mailing of this International Search Report 24.04.89

Signature of Authorized Officer SPEISER P.
ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO. PCT/EP 88/01211
SA 26363

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 23/03/89

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US-A- 4710682</td>
<td>01-12-87</td>
</tr>
<tr>
<td>WO-A-8701552</td>
<td>12-03-87</td>
<td>AU-A- 6228786</td>
<td>24-03-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP-A- 0236423</td>
<td>16-09-87</td>
</tr>
<tr>
<td>US-A-4461980</td>
<td>24-07-84</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82