(12) 특허협력조약에 의하여 공개된 국제출원

(19) 세계지식재산권기구
국제사무국

(43) 국제공개일
2016 년 12 월 8 일 (08.12.2016)

(51) 국제특허분류:
H01S 3/16 (2006.01) H01S 3/102 (2006.01)

(21) 국제출원번호: PCT/KR2016/000836

(22) 국제출원일: 2016 년 1 월 27 일 (27.01.2016)

(25) 출원인: 한국어

(26) 공개인: 한국어

(30) 우선권일:
10-2015-0075881 2015 년 5 월 29 일 (29.05.2015) KR

(72) 발명자: 정미은 (JEONG, Mi-yun); 02794 서울시 성북구 회기로 5길 100 101-703, Seoul (KR).

(74) 대리인: 정홍식 (JEONG, Hong-sik); 06654 서울시 서초구 서초중앙로 53 대림빌딩 8층, Seoul (KR).

공개:
- 국제조사보고서와 함께 (조약 제 21 조 (3))

(54) Title: LASER OSCILLATION DEVICE

(54) 발명의 명칭: 레이저 발진 소자

(57) Abstract: Disclosed is a laser oscillation device. The laser oscillation device comprises: a first substrate; a second substrate which is provided above the first substrate and forms a wedge cell between the second substrate and the first substrate; a liquid crystal layer, formed by a liquid crystal having the same pitch, which is injected into the wedge cell; and a temperature controller which is connected to both sides of the wedge cell and controls the temperatures of both sides of the wedge cell to be different from each other.

(57) 요약서: 레이저 발진 소자는 제 1 기판, 상기 제 1 기판의 상부에 구비되어 상기 제 1 기판과의 사이에 페키지 웨지 (wedge cell)를 형성하는 제 2 기판, 상기 페키지 웨지에 주입되어 위치가 동일한 역정에 의해 형성되는 밸런싱 및 페키지 웨지의 양쪽에 연결되어, 상기 페키지 웨지의 양쪽의 온도를 다르게 조절하는 온도 컨트롤러를 포함한다.
명세서
발명의 명칭: 레이저 발전 소자

기술표시
[1] 본 발명은 레이저 발전소자에 관한 것으로, 더욱 상세하게는 일정
광장영역에서 연속적 파장 가변 레이저가 가능한 셀 형식(wedge cell)을
이용하는 레이저 발전소자에 관한 것이다.

배경기술
종래의 레이저 발전소자는 setStatus로 구현하기 위해 두께가 균일한 셀에
클레스테릭 영역을 주입한 후 액정의 온도에 따라 변하는 피치 또는 UV광을
이용하여 만들어진다.

[3] 그러나 종래의 레이저 발전소자에서 사용되는 클레스테릭 액정구조는 레이저
공전기와 같은 역할을 하며, 균일한 두께 간격의 셀은 레이저 공전기 간격이
일정하게 고정된 Fabry-Perot Laser Cavity에 해당한다. 이로써, 종래의 레이저
발전소자를 이용하여 레이저는 손은 광장 영역에서 레이저
라인의 발전을 보여주며, 불연속적인 파장 가변, 즉, 불연속적인 레이저 광장
발전이라는 결과에 봉착한다.

[4] 또한, 이러한 문제점을 해결하기 위하여, 종래에는 셀 형식 셀에 두 개의 다른
피치를 가지고 있는 클레스테릭 영역을 셀 양쪽에서 주입한 후 확산을 이용하여
연속적인 피치 그래디언트를 형성함으로써, 넓은 광장 영역에서 연속적으로
레이저파장은 발생할 수 있었다.

[5] 다만, 일반 액정의 경우, 수 개월이 지나면 형성된 분자 농도에 따른
그래디언트가 분자 확산에 의해 사라져 버리며, 레이저 파장의 변화가 사라지는
문제점이 있었다. 또한, 고분자화 시킨 액정의 경우, 분자 농도를 연속적으로
변화시키는 제작과정이 어렵고 많은 제작시간이 요구되는 문제가 있었다.

발명의 상세한 설명
기술표시 과제
[6] 본 발명은 상술한 필요성에 따른 것으로, 본 발명의 목적은, 셀 형식에서 온도
차이에 의한 액정의 피치 그래디언트를 형성하여 연속적인 레이저 파장을
발생시키는 레이저 발전소자로 제공함에 있다.

과제 해결 수단
[7] 이상과 같은 목적을 달성하기 위한 본 발명의 실시 예에 따른 레이저
발전소자는, 제1 기판, 상기 제1 기판의 상부에 구비되어 상기 제1 기판과의
사이에 셀 형식(wedge cell)을 형성하는 제2 기판, 상기 셀 형식에 주입되는
피치가 동일한 색상이 첨가된 액정에 의해 형성되는 액정층 및 상기 셀 형식의
양쪽에 연결되어, 상기 셀 형식의 양쪽의 온도를 다르게 조절할 수 있는 온도
킨트롤러를 포함한다.

[9] 이 경우, 본 레이저 발전소자는, 상기 피치 그래디언트가 형성된 후 UV를 조사하거나 또는 열을 가하여 상기 액정을 폴리머(polymer)화할 수 있다.

[10] 또한, 본 레이저 발전소자는, 상기 폐기형 셀을 형성하기 위하여 상기 제1기관과 상기 제2기관 사이 양측에 구비되는 적어도 두 개의 스페이서를 더 포함할 수 있다.

[12] 또한, 상기 액정은 네마틱 액정과 카이랄 도폰트로 이루어지는 클레스테릭 액정이며, 상기 피치는 상기 네마틱 액정과 상기 카이랄 도폰트의 상대적 높드 비율에 따라 결정될 수 있다.

발명의 효과

도면의 간단한 설명

[14] 도 1은 본 발명의 일 실시 예에 따른 클레스테릭 액정이 주입되기 이전의 레이저 발전소자의 단면도이다.

[15] 도 2는 도 1의 폐기형 셀에 액정이 주입되었으나 양쪽에 부착된 온도 킨트롤러가 상온일 때 액정이 가릴 수 있는 피치 변화를 설명하는 단면도이다.

[16] 도 3 및 도 4는 본 발명의 일 실시 예에 따른 액정이 주입된 폐기형 셀의 양쪽 끝에 부착된 온도 킨트롤러의 온도를 다르게 함으로써 셀의 온도 그래디언트 형성이 의해 낮은 영역에서의 액정의 피치 그래디언트를 설명하기 위한 도면이다.

[17] 도 5는 본 발명의 일 실시 예에 따른 도 2의 상온에서의 폐기형 셀의 꼬瘘 레이저 빔의 x-위치 변화에 따라 발생한 레이저 과장을 나타내는 도면이다.

[18] 도 6은 본 발명의 일 실시 예에 따른 도 3과 도 4에서의 온도 기울기가 형성 되었을 때 폐기형 셀의 꼬瘘 레이저 빔의 x-위치 변화에 따라 발생한 레이저 과장을 나타내는 도면이다.

[19] 도 7은 본 발명의 일 실시 예에 따른 레이저 과장에 따른 레이저의 강도를 나타내는 도면이다.

발명의 실시를 위한 형태

[21] 도 1은 본 발명의 일 실시 예에 따른 클레스테릭 액정이 주입되기 이전의 레이저 발전소자의 단면도이다.
[22] 도 1을 참조하면, 레이저 발전소자(100)는 제1 기판(110), 제2 기판(120), 제1 스페이서(130), 제2 스페이서(140) 및 액정층(150)을 포함한다. 제1 기판(110)과 제2 기판(120)은 슬라이드 글라스 또는 ITO(Indium Tin Oxide) 투명전극 등의 유리기판이 사용될 수 있다. 제1 기판(110)이 하부기판인 경우, 제2 기판(120)은 제1 기판(110)을 기준으로 소정 각도만큼 기울여지도록 구비될 수 있다. 제2 기판(120)의 기울기는 제1 스페이서(130) 및 제2 스페이서(140)에 의하여 결정될 수 있다.

[23] 레이저 발전소자(100)를 제작하기 위해, 먼저 셀을 제작하여야 한다. 이를 위하여, 제1 기판(110)의 상면과 제2 기판(120)의 하면에 폴리아미드(Polyimide)를 고정하고, 고정된 폴리아미드막을 러핑 처리(Rubbed-Polyimide)하여 액정 배향막(115, 125)을 형성할 수 있다. 여기서, 액정 배향막(115, 125)은 폴리아미드뿐만 아니라, 폴리아미드(Polyamide), 폴리아미드이미드(Polyamide-imide), 폴리페닐렌옥사이드(Polyphenylene Oxide) 등의 다양한 소재가 사용될 수 있다.

[24] 러핑 처리 후, 크기가 다를(예를 들어, 높이(h1, h2)가 다를) 제1 스페이서(130)와 제2 스페이서(140)를 제1 기판(110)과 제2 기판(120) 사이에 배치하여, 속이 비어 있는 상태의 웨지형 셀(wedge cell)을 제1 기판(110)과 제2 기판(120) 사이에 형성할 수 있다. 또한, 본원 발명은 제1 기판(110)과 제2 기판(120) 사이에 웨지형 셀을 형성하기 위하여 제1 기판(110)과 제2 기판(120) 사이의 양 측에 제1 스페이서(130)와 제2 스페이서(140)를 각각 배치할 수 있다.

[25] 도 2는 도 1의 웨지형 셀에 액정이 주입되었으나 양쪽에 부착된 온도 컨트롤러가 상온일 때 액정이 가열되는 피쳐 변화를 설명하는 단면도이다.

[26] 도 2에 도시된 바와 같이 웨지형 셀이 형성되면, 피쳐가 동일한 액정을 웨지형 셀에 주입하여 액정층(150)을 형성할 수 있다. 이 경우, 액정은 콜레스테릭 액정뿐만 아니라, UV나 열에 의해 풀리며 콜레스테릭으로 변환될 수 있는 다른 액정이 될 수도 있다.

[27] 콜레스테릭 액정은 내마력 액정에 카이랄 도판트를 혼합하여 생성되는데, 콜레스테릭 액정은 혼합되는 내마력 액정과 카이랄 도판트의 비율에 따라 액정의 피쳐가 결정될 수 있다. 이때, 필요에 따라 다양한 레이저 색소(laser dye)를 콜레스테릭 액정에 추가하여 레이저 광장 재력을 높이거나 줄일 수 있다. 레이저 색소는 레이저 발전을 연속적으로 하고자 하는 영역에서 향상 스펙트럼 영역을 가진 색소를 사용할 수 있다. 즉, 각 콜레스테릭 액정에는 레이저 튜닝을 하고자 하는 영역에서 향상스펙트럼 영역을 가진 레이저 색소를 추가할 수 있다.

[28] 또한, 제1 기판(110) 및 제2 기판(120) 사이의 웨지형 셀에 피쳐가 동일한 콜레스테릭 액정을 주입하고, 일정 시간이 지남에 따라 셀의 경계조건에 의해 대략 5-8 mm의 연속적인 레이저 광선기가 형성될 수 있다. 구체적으로, 상온에서 콜레스테릭 액정을 주입하고 일정시간이 지남에 X축 방향으로 피쳐의 길이가
연속적으로 늘어나고 줄어드는 것을 반복하는 레이저 공전기 이어지기 형성될 수 있다. 이 경우, 클래스터링 액정은 한 가지 이상의 색소가 첨가될 수 있다. 또한, 파지치는 폐기형 셀의 두께(디)에 비례할 수 있다. 즉, 폐기형 셀의 두께(디)가 커질수록 1 파지치의 길이가 증가할 수 있다.

[29] 도 3 및 도 4는 본 발명의 일 실시 예에 따른 셀의 양쪽 끝의 온도를 다르게 하는 경우를 설명하기 위한 도면이다.

[30] 도 3을 참조하면, 폐기형 셀의 양쪽에 셀의 온도를 조절할 수 있는 온도 컨트롤러(160)를 연결하여, 폐기형 셀의 양쪽의 온도를 다르게 할 수 있다. 예를 들어, 폐기형 셀의 두께(d)가 두꺼운 쪽의 온도 컨트롤러(161)의 온도를 두께(d)가 얇은 쪽의 온도 컨트롤러(162)의 온도보다 높으로 할 수 있다. 즉, 두꺼운 쪽의 온도 컨트롤러(161)의 온도는 자른으로, 얇은 쪽의 온도 컨트롤러(162)의 온도는 고흐으로 할 수 있다. 또는, 액정의 온도 특성에 따라 약 2cm 를 반대로 폐기형 셀의 두께(d)가 두꺼운 쪽의 온도 컨트롤러(161)의 온도를 두께(d)가 얇은 쪽의 온도 컨트롤러(162)의 온도보다 높으므로 할 수 있다. 이 경우, 폐기형 셀의 x축 방향으로 연속적인 온도 그래디언트가 형성되며 연속적인 레이저 공전기 이어지기를 형성할 수 있고, 넓은 과장 영역에서 연속적으로 레이저 광장을 발생시킬 수 있다. 이 경우, 온도 컨트롤러(160)의 온도를 조절하여 온도 기울기를 조절함으로써, 과장 가변 영역을 능동적으로 조절할 수 있게 된다.

[31] 또한, 범드갈의 위치는 클래스터링 액정의 경우, 네마틱 액정과 카이랄 도포트의 상대적인 높도 비율을 조정하여 결정할 수 있다. 레이저로서 펄파 빛을 사용하는 경우, 펄파 빛의 위치를 폐기형 셀의 두께(d)가 큰 쪽에서 작은쪽으로 이동함으로써, 연속적으로 파장이 튜닝되는 레이저를 발전할 수 있다.

[32] 또한, 본 레이저 발전 소자는, 색소가 첨가된 클래스터링 액정 폐기형 셀을 이용하여 발생하는 레이저 광장을 능동적으로 변화시킬 수 있다. 구체적으로, 한 개의 클래스터링 액정 폐기형 셀에 한쪽 끝은 높은 온도를 갖고 하고, 다른 한쪽 끝은 낮은 온도를 갖고 한 후, 셀에 온도 그래디언트를 형성하여 온도에 의한 액정의 파지 그래디언트를 형성시킴으로써 연속적인 레이저 광장을 발생시킬 수 있다.

[33] 한편, 본 발명의 일 실시 예에 따른 레이저 발전 소자에 의하면, 클래스터링 액정을 폐기형 셀에 주입한 후 폐기형 셀의 양쪽의 온도를 다르게 조절하고, 폐기형 셀의 전체에 걸쳐 연속적 파장 가변 공전기가 형성되는 시점에 UV를 조사하거나 열을 가하여 고분자 PCLC(Polymer Cholesteric Liquid Crystal)를 제작하여 사용할 수 있다. 연속적 파장 가변 공전기가 형성되는 시점, 즉, UV를 조사하거나 열을 가하는 시점은 설계자의 선택에 의해 결정될 수 있으며, 설계자는 원하는 파장 가변 영역마다 다른 시점을 선택할 수 있다.

[34] 도 4는 본 발명의 일 실시 예에 따른 폐기형 셀의 양측의 온도를 다르게 한 경우의 파지 그래디언트를 나타낸 도면이다. 도 4에 도시된 바와 같이, 폐기형
셀에 동일한 폐치를 갖는 클레스테릭 액정을 주입한 후, 폐기형 셀의 양측의 온도를 다르게 하면 연속적인 폐치 그레디언트가 나타날 수 있다.

[35] 도 5는 폐기형 셀에 동일한 폐치를 갖는 클레스테릭 액정을 주입한 후, 본 발명의 일 실시 예에 따른 폐기형 셀의 상온에서의 위치에 따른 레이저 과장은 나타나는 도면이다.

[36] 도 5를 참조하면, 상온에서는 클레스테릭 액정이 주입된 폐기형 셀의 위치에 따라, 레이저 라인은 5nm ~ 7nm 범위에서 주기적으로 과장 가변 레이저되는 것을 확인할 수 있다.

[37] 도 6은 본 발명의 일 실시 예에 따른 온도 그레디언트가 형성된 폐기형 셀의 위치에 따른 레이저 과장을 나타내는 도면이다.

[38] 도 6을 참조하면, 클레스테릭 액정이 주입된 폐기형 셀의 양측에는 온도 조절기가 연결되어, 폐기형 셀의 두께운 쪽은 저온으로, 폐기형 셀의 얇은 쪽은 고온으로 조절할 수 있다. 이 경우, 폐기형 셀의 두께운 쪽(저온)에서 얇은 쪽(고온)으로 x축 방향으로 이동할수록 레이저의 파크 과장이 연속적으로 감속할 수 있다.

[39] 또한, 클레스테릭 액정은 폐기형 셀 구조와 온도 기울기의 조화에 의하여 연속적인 폐치 그레디언트를 형성함으로써, 연속적인 레이저 공전기 어레이를 형성하여 낮은 과장 영역에서 연속적으로 레이저 과장을 발생시킬 수 있다.

[40] 도 7은 본 발명의 일 실시 예에 따른 레이저 과장에 따른 레이저의 강도를 나타내는 도면이다.

[41] 도 5 및 도 7을 참조하면, 레이저 튜닝 영역이 상온에서 5nm ~ 7nm 이었으나, 클레스테릭 액정이 주입된 폐기형 셀의 양측에 온도 그레디언트를 형성한 경우 레이저 튜닝 영역이 10배 이상 확장되어, 레이저 라인은 590 nm ~ 670 nm 범위에서 연속적으로 과장 가변 레이저되는 것을 확인할 수 있다.

[42] 또한, 폐기형 셀 형태에 온도 그레디언트를 형성하여 공전기를 제작하는 경우 연속적으로 공전기 길이를 가변시킬 수 있으며, 연속적으로 공전기 길이를 가변시키는 모드에 부합되는 폐치를 가진 클레스테릭 액정이 공전기에서 폐처리 그레디언트를 형성함으로써 연속적으로 레이저 과장을 발전할 수 있다.

[43] 또한, 연속적으로 과장 가변 레이저되는 구간은 네마릭 액정과 카이랄 도포트의 상대적 높도 비율을 조정하거나, UV를 조사하여 고체화하는 시점을 변경함에 따라 조정할 수 있다. 따라서, UV curable PCLC를 이용하여 레이저 발전 소자를 제작하는 경우에도 수 백 나노미터 이상, 즉, 100nm 이상의 구간에서 연속적인 과장가변이 가능함은 물론이다.

[44] 상술한 본 발명에 따르면, 고분자와 아닌 형태의 클레스테릭 또는 고분자 형태의 클레스테릭을 이용하여 가시영역(VIS 영역)에서 연속적인 광범위 과장 가변 레이저를 구현할 수 있으며, 이 원리는 UV(Ultraviolet rays) 영역, VIS(Visible rays) 영역 또는 IR(Infrared rays) 영역 모두에 적용될 수 있으므로, 수십 나노미터 또는 수 백 나노미터 영역에서 연속적인 과장 변조를 구현할 수 있다.
즉, 본 발명에 따르면, 클래스테리릭 액정과 레이저 색소로 제작된 히트 형광소자에서 수백 nm 이상의 범위에서 연속적인 과장 가변 레이저가 가능할 레이저를 제작할 수 있다. 특히, 본 발명은 단색 과장(monochromatic)의 레이저 라인을 약 100 nm 이상의 범위에서 다른 부가적인 광학소자 없이 연속적으로 발생시킬 수 있으므로, 적은 비용의 초초형, 고효율의 광대역 과장 가변 레이저를 제작할 수 있으며, 독립적으로 레이저 소스로 이용가능하다.

또한, 본 발명은, 기존의 연속적인 과장 가변 레이저 시스템인 Optical Parametric Oscillator(OPO)에 비해 매우 효율적이며, 일반적인 클래스테리릭 액정 레이저가 제공하는 특징점들을 모두 제공한다. 따라서, 본 발명은 레이저뿐만 아니라 광화학, 분광기의 광소자, 광산업 등에서 응용가능하며, 특히, 광통신에서 응용시, 광통신의 신호전달효율을 증가시킬 수 있다.

이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어날이 없이 당해 발명이 속하는 기술분야에서 동상의 지식을 가진자에 의해 다양한 변형실시가 가능할 것은 물론이고, 이러한 변형 실시 예들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.
청구범위

[청구항 1] 제1 기관;
상기 제1 기관의 상부에 구비되어 상기 제1 기관과의 사이에 셀(wedge cell)을 형성하는 제2 기관;
상기 셀에 주입된 피치가 동일한 색소가 철가된 액정에 의해 형성되는 액정층; 및
상기 셀의 상부에 연결되어, 상기 셀의 양쪽의 온도를 다르게 조절할 수 있는 온도 컨트롤러;를 포함하는 것을 특징으로 하는 레이저 발진소자.

[청구항 2] 제1항에 있어서,
상기 주입된 액정은, 상기 셀의 온도 차이에 의해 연속적인 피치 그레디언트(pitch gradient)를 형성하는 것을 특징으로 하는 레이저 발진소자.

[청구항 3] 제2항에 있어서,
상기 피치 그레디언트가 형성된 후 UV를 조사하거나 또는 열을 가하여 상기 액정을 폴리머(polymer)화하는 것을 특징으로 하는 레이저 발진소자.

[청구항 4] 제3항에 있어서,
상기 셀을 형성하기 위하여 상기 제1기관과 상기 제2기관 사이 양쪽에 구비되는 적어도 두 개의 스페이서를 더 포함하는 것을 특징으로 하는 레이저 발진소자.

[청구항 5] 제4항에 있어서,
상기 제1기관과 상기 제2기관 사이의 거리에 해당하는 상기 적어도 두 개의 스페이서의 높이는 서로 다른 것을 특징으로 하는 레이저 발진소자.

[청구항 6] 제2항에 있어서,
상기 액정은 네마틱 액정과 카이릴 도폰트로 이루어지는 콜레스테리 액정이며, 상기 피치는 상기 네마틱 액정과 상기 카이릴 도폰트의 상대적 높도 비율에 따라 결정되는 것을 특징으로 하는 레이저 발진소자.
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION NO.
PCT/KR2016/000836

A. CLASSIFICATION OF SUBJECT MATTER
H01S 3/16(2006.01)i, H01S 3/102(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
H01S 3/16; H01S 3/05; G02F 1/13; G02B 5/30; H01S 3/00; G01J 3/26; G02F 1/01; H01S 3/06; H01S 3/102

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS (KIPO internal) & Keywords: laser oscillation device, wedge cell, liquid crystal, cholesteric, temperature controller

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>KR 10-2011-0014432 A (INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYEONGSANG NATIONAL UNIVERSITY) 11 February 2011 See claims 1-5, 7 and figure 2.</td>
<td>1-6</td>
</tr>
<tr>
<td>Y</td>
<td>JP 05-249426 A (NIPPON TELEGR. & TELEPH. CORP.) 28 September 1993 See abstract, paragraph [0017], claim 1 and figure 1.</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>JP 2005-244106 A (NIPPON OIL CORP.) 08 September 2005 See abstract, claim 1 and figure 1.</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-0833090 B1 (NIPPON OIL CORPORATION) 29 May 2008 See claims 1, 3 and figure 1.</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>JP 10-221661 A (YAZAKI CORP. et al.) 21 August 1998 See paragraphs [0016]-[0027] and figure 1.</td>
<td>1-6</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. × See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
03 MAY 2016 (03.05.2016)

Date of mailing of the international search report
09 MAY 2016 (09.05.2016)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
Government Complex-Daejeon, 159 Seowon-ro, Daejeon 340-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer
Telephone No.

Form PCT/ISA/210 (second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US 2012-0147288 A1</td>
<td>14/06/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011-016682 A2</td>
<td>10/02/2011</td>
</tr>
<tr>
<td>KR 10-0833090 B1</td>
<td>29/05/2008</td>
<td>AT 438942 T</td>
<td>15/08/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1672753 A1</td>
<td>21/06/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1672753 B1</td>
<td>05/09/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04102762 B2</td>
<td>18/06/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04102763 B2</td>
<td>18/06/2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005-136357 A</td>
<td>26/05/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005-136398 A</td>
<td>26/05/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7826510 B2</td>
<td>02/11/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005-036794 A1</td>
<td>21/04/2005</td>
</tr>
<tr>
<td>JP 10-221661 A</td>
<td>21/08/1998</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
국제조사보고서

A. 발명이 속하는 기술분야(국제특허분야(IPC))

H01S 3/16(2006.01)i, H01S 3/102(2006.01)i

B. 조사된 문헌

조사된 최소문헌(국제특허분야를 기재)

H01S 3/16; H01S 3/05; G02F 1/13; G02B 5/30; H01S 3/00; G01J 3/26; G02F 1/01; H01S 3/06; H01S 3/102

조사된 기술분야에 속하는 최소문헌 이외의 문헌

한국특허출원신고정보 및 한국공개특허출원정보: 조사된 최소문헌의 기재된 IPC
일본특허출원신고정보 및 일본공개특허출원정보: 조사된 최소문헌의 기재된 IPC

국제조사에 이용된 전산 데이터베이스(데이터베이스의 명칭 및 검색어(해당하는 경우))

eKOMPASS(특허청 내부 검색시스템) & 키워드: 레이저 발전소자, 레이저 센서, 백업, 플레스테어, 운도 캡슐

C. 관련문헌

<table>
<thead>
<tr>
<th>카테고리</th>
<th>인용문헌번호 및 관련 구절(해당하는 경우)</th>
<th>관련 청구항</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>KR 10-2011-0014432 A (경상대학교산학협력단) 2011.02.11</td>
<td>1-6</td>
</tr>
<tr>
<td></td>
<td>JP 05-249426 A (NIPPON TELEGR & TELEPH CORP.) 1993.09.28</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>JP 2005-244106 A (NIPPON OIL CORP.) 2005.09.08</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-0833090 B1 (신북안테나카무라가이아) 2008.05.20</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>JP 10-2216661 A (YAZAKI CORP. 등) 1998.08.21</td>
<td>1-6</td>
</tr>
</tbody>
</table>

추가 문헌이 없습니다.

대응특허에 관한 별지를 참조하십시오.

* 인용된 문헌의 특별 카테고리:
 “A” 특별히 문헌이 없는 것으로 보이는 일관적인 기술수준을 정의한 문헌
 “E” 국제특허문헌보다 더 큰 중합 또는 우선권을 가진 국제특허나 이후에 공개된 출원문헌 또는 특허문헌
 “L” 우선권 증가에 의한 예시 또는 다른 인용문헌의 공개일 또는 다른 특별한 이유로 미적용된 피청구(예시)를 발명을 위하여 인용된 문헌
 “O” 구두 개시, 특허, 신청 또는 기타 수신을 인용하고 있는 문헌
 “P” 우선권 이후에 공개되었으나 국제특허문헌에 공개된 문헌

국제조사의 설계 완료일
2016년 05월 03일 (03.05.2016)

국제조사보고서 발송일

2016년 05월 09일 (09.05.2016)

ISA/KR의 명칭 및 우편주소
대한민국 특허청
(35208) 대전광역시 서구 정사로 189, 4동 (문산동, 정부대전청사)

서식 PCT/ISA/210 (두 번째 용지) (2015년 1월)
<table>
<thead>
<tr>
<th>국내외관련특허문헌</th>
<th>공개일</th>
<th>국내외관련특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US 2012-0147288 A1</td>
<td>2012/06/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011-016682 A2</td>
<td>2011/02/10</td>
</tr>
<tr>
<td>KR 10-0833090 B1</td>
<td>2008/05/29</td>
<td>AT 438942 T</td>
<td>2009/08/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1672753 A1</td>
<td>2006/06/21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1672753 B1</td>
<td>2009/08/05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04102762 B2</td>
<td>2008/06/18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04102763 B2</td>
<td>2008/06/18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005-136367 A</td>
<td>2005/05/26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005-136368 A</td>
<td>2005/05/26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7825510 B2</td>
<td>2010/11/02</td>
</tr>
</tbody>
</table>

JP 10-221661 A | 1998/08/21 | 없음 |