发明名称
用于自外向内制备层状牙科器械的体系和方法

摘要
本发明涉及用于制备层状牙科器械的体系和方法。所述体系可包括第一部分和第二部分，所述第一部分包括层状牙科器械的第一层的正形，所述第二部分包括所述层状牙科器械的第二层的正形。所述方法可包括提供模具，以及将残料设置于所述模具中，形成所述层状牙科器械的第一层，所述模具包括层状牙科器械的外部形状的负形。所述方法还可包括提供固体结构，以及将所述固体结构压入所述模具中的所述残料中，所述固体结构包括所述层状牙科器械的第二层的正形。
1. 一种制备层状牙科器械的方法，所述方法包括：
 提供模具，所述模具包括层状牙科器械的外部形状的负像；
 将浆料设置于所述模具中，形成所述层状牙科器械的第一层；
 提供固体结构，所述固体结构包括所述层状牙科器械的第二层的正形；以及
 将所述固体结构压入所述模具中的所述浆料中。
2. 根据权利要求1所述的方法，其中所述固体结构包括牙芯和压模中的至少一个。
3. 根据权利要求1所述的方法，其中将所述固体结构压入所述浆料中并包括将牙芯压入
 所述浆料中，使得所述牙芯形成所述第二层的至少一部分。
4. 根据权利要求1所述的方法，其中所述固体结构包括压模，且所述方法还包括从所
 述浆料中移除所述压模，以便在所述浆料中形成腔体，所述腔体包括所述第二层的负像。
5. 根据权利要求4所述的方法，还包括使用所述腔体作为用于所述牙科器械的第二
 层的模具。
6. 根据权利要求4或5所述的方法，其中所述浆料为第一浆料，且所述方法还包括将第
 二浆料设置于所述腔体中以形成所述层状牙科器械的第二层。
7. 根据权利要求6所述的方法，其中还包括将牙芯压入所述第二浆料中，使得所述芯形
 成所述层状牙科器械的第三层的至少一部分。
8. 根据权利要求6所述的方法，还包括：
 提供第二固体结构，所述第二固体结构包括所述层状牙科器械的第三层的正形；以及
 将所述第二固体结构压入所述第二浆料中。
9. 根据权利要求1-8中任一项所述的方法，其中所述第一层形成所述层状牙科器械的
 最外层。
10. 根据权利要求1-9中任一项所述的方法，还包括在将所述浆料设置于所述模具
 中之前，活化所述浆料。
11. 根据权利要求1-9中任一项所述的方法，还包括在将所述浆料设置于所述模具
 中之前，在所述浆料中引发溶胶-凝胶反应。
12. 一种用于制备层状牙科器械的体系，所述体系包括：
 第一部分，所述第一部分包括层状牙科器械的第一层的负像；
 第二部分，所述第二部分包括所述层状牙科器械的第二层的正形；以及
 第一浆料，所述第一浆料被配置为设置于所述第一部分和所述第二部分之间，使得所
 述第一浆料形成所述层状牙科器械的第一层。
13. 根据权利要求12所述的体系，其中所述第二部分包括牙芯，使得所述牙芯形成所
 述层状牙科器械的第二层。
14. 根据权利要求12所述的体系，其中还包括第三部分，所述第三部分包括所述层状牙
 科器械的第三层的正形。
15. 根据权利要求14所述的体系，其中所述第三部分包括牙芯，使得所述牙芯形成所
 述层状牙科器械的第三层的至少一部分。
用于自外向内制备层状牙科器械的体系和方法

技术领域

本发明通常涉及用于制备牙科器械的体系和方法，特别地涉及用于制备层状牙科器械的体系和方法。

背景技术

通过磨削经压实且热处理的玻璃或玻璃陶瓷粒子的本体而制得一些现有的由玻璃或玻璃陶瓷材料形成的牙齿修复体（如牙冠）。这种本体可通过如下制得：首先通常与有机粘结剂一起机械压实（例如单轴压机）无机粉末。所得经压实本体的形状可受限于所用压实工具的形状。在一些情况下，可获得圆柱形或立方体形本体。然后，这种经压实本体可经受热处理以增加所述经压实本体的机械强度。这种热处理可在引起所述粉末的至少部分烧结的温度下发生。在这种烧结步骤过程中，所述经压实粉末的本体的密度可增加。然后可将所得经压实和热处理的本体粘结固定至框架中或附接至支持器（holder）以将它们准备用于磨削至所需形状（例如牙冠或牙面）。然后可从所述框架移除经磨削的本体。由于所述经压实粉末的低机械强度，机械加工未经热处理的经压实本体可能是不可能的。

另外，在一些现有牙科系统中，将芯铣削然后烧结（例如至全密度）。也可从研磨坯块铣削和烧结，例如使用在所述芯和烧结之间形成中间层的浆料而将所述烧结熔合至所述芯。然后可将所述烧结熔合至所述芯。

发明内容

本发明的一些方面提供了一种制备层状牙科器械的方法。所述方法可包括提供模具，所述模具包括层状牙科器械的外部形状的负像（negative）。所述方法还可包括将浆料设置于所述模具内，形成所述层状牙科器械的外轮廓。所述方法还可包括提供固体结构，并将所述固体结构压入模具中的浆料内，所述固体结构包括所述层状牙科器械的第二层的正形（positive shape）。

本发明的一些方面提供了一种制备层状牙科器械的方法。所述方法可包括提供模具，所述模具包括层状牙科器械的第二层的负像。所述方法还可包括将浆料设置于所述模具内，并将所述层状牙科器械的第二层的负像。所述方法还可包括在所述第二层的负像内形成所述层状牙科器械的另一层，所述方法包括所述层状牙科器械的第二层的正形和第二浆料中的至少一种。

本发明的一些方面提供了一种制备具有 n 层的层状牙科器械的方法。所述方法可包括提供模具、所述模具包括层状牙科器械的层 n-1 的负像。所述方法还可包括将浆料设置于所述模具内，并将所述层状牙科器械的层 n-1 的负像。所述方法还可包括将所述芯压至所述浆料中。
料中，使得所述牙内形成所述层状牙科器械的层 n 的至少一部分。

【0008】本发明的一些方面提供了一种制备层状牙科器械的体系。所述体系可包括第一部分和第二部分，所述第一部分包括层状牙科器械的第一层的负像，所述第二部分包括所述层状牙科器械的第二层的正形。所述体系还可包括第一浆料，所述第一浆料被配置为设置于所述第一部分和第二部分之间，使得所述第一浆料形成所述层状牙科器械的第一层。

【0009】本发明的一些方面提供了一种制备层状牙科器械的体系。所述体系可包括第一部分和第二部分，所述第一部分包括层状牙科器械的第一层的负像，所述第二部分包括所述层状牙科器械的第二层的正形。所述体系还可包括第三部分，所述第三部分包括所述层状牙科器械的第三层的正形。

【0010】通过考虑详细说明和附图，本发明的其它特征和方面将变得清楚。

附图说明

【0011】图 1 为根据本发明的一个实施例的方法的示意性流程图，并示出根据本发明的一个实施例的体系。

具体实施方式

【0012】在详细说明本发明的任何实施例之前，应当理解本发明在其应用中并不受限于下述描述中提及的或列出附图中所示的结构细节和部件布置。本发明可具有其他实施例，并且能够以多种方式实践或实施。另外应该理解的是，本文中所用的用语和术语的目的是为了进行说明，不应被看作是限制性的。本文中所用的 “包括”、“包含”或“具有”以及它们的变化形式意在涵盖其后所列举的项目及其等同项目以及附加项目。除非另有规定或限制，否则术语“联接”及其变化形式被广泛地使用并涵盖直接和间接的连接。此外，术语“联接”不限于物理或机械连接或联接。应当理解，可利用其它实施例并且在不脱离本发明的范围的情况下可以进行结构或逻辑改变。

【0013】本发明通常涉及用于制备层状牙科器械，如牙齿修复体的体系和方法。在一些实施例中，可需要一种牙科器械（如牙齿修复体），其不仅满足性能或材料要求，还与相邻的天然牙齿表面在视觉上不可区分。例如，如果朝向器械的外表面的一个或多个层比内层更半透明，使得所述器械（例如修复体）更加逼真地模仿天然牙齿的外观，则层状牙科器械可具有相比于单层或单个材料器械改进的美感。

【0014】在一些实施例中，本发明的体系和方法可以是原位或在患者口中进行。相反，在一些实施例中，本发明的体系和方法可在实验室环境中，如在牙科实验室中使用。即，在一些实施例中，本发明的方法可称为实验室程序、桌面程序或实验室程序。

【0015】本发明的一些体系和方法可例如使用二氧化硅玻璃作为无机粘结剂，经过凝胶浇铸过程（例如溶胶-凝胶浇铸过程）制备终形或近终形牙科器械（例如修复体）。多个浇铸步骤可连续进行以实现层状结构。

【0016】本发明的一些体系和方法可包括提供多部分（例如两部分）模具，所述模具既包括层的外部形状的负像（例如所得修复体的所需外部形状的负像），也包括所述层的内部形状的正像。在这种体系和方法中，层状牙科器械可使用凝胶浇铸过程而形成。所述凝胶浇铸过程可包括提供模具，所述模具包括层状牙科器械的外部形状的负像；将浆料设置于
所述模具中；形成所述层状牙科器械的第一层；提供固体结构，所述固体结构包括所述层状牙科器械的第二层的正形；以及将所述固体结构压至所述模具中的浆料中。在一些实施例中，所述模具和所述固体结构可形成两部分模具。

【0017】 在一些实施例中，所述模具可实际包括超过两个部分，因为可提供多个“阳”模（或模具的正形部分）以接连形成内层。例如，第一阳模可与阴模一起使用，以形成牙科器械的第一（外）层，可使用第二阳模（例如与相同的阴模加所述第一层一起）以形成第二层，所述第二层相对于所述第一层为内层，等等。根据本发明的方法，所述牙科器械的最外层将首先形成，随后为下一个内层，随后为下一个内层等。作为结果，本发明的方法有时可称为制备层状牙科器械的“自外向内”方法。

【0018】术语“牙科制品”应被理解为能用于以及有待用于牙科实验室在内牙科或口腔正畸领域中的制品。

【0019】术语“牙科器械”通常指任何牙科或口腔正畸修复体、牙科研磨坏、假体装置、它们的组合。所述器械可为准备引入患者口腔中的成品器械、未精修（例如无着色）但具有其最终形状的器械（即“终形”器械），或所述器械可为在使用之前经受进一步加工的预成型或近终牙科器械（即“终形”器械），或牙科研磨坏。

【0020】短语“牙科研磨坏”通常指材料的固体坯料（block），可从所述材料的固体坯料机械加工所需产品（例如牙科修复体）。牙科研磨坏在两个维度上具有约10mm至约30mm的尺寸，例如，可具有在该范围内的直径，并且在第三维度上具有特定长度。用于制造单个牙冠的坯料可具有约15mm至约30mm的长度，而用于制造牙桥的坯料可具有约40mm至约80mm的长度。在一些实施例中，用于制造单个牙冠的坯料可具有约24mm的直径和约19mm的长度。在一些实施例中，用于制备牙桥的坯料可具有约24mm的直径和约58mm的长度。

【0021】术语“机械加工”指通过机器成形材料，并可包括但不限于铣削、磨削、切削、雕刻中的一种或多种，或它们的组合。在一些情况下，铣削比磨削更快且更高性价比。

【0022】短语“牙科工件”通常指已被进一步加工（例如：通过机械加工）以获得预期成形产品的牙科器械。牙科工件可被进一步加工（例如：通过烧结）或直接使用。

【0023】短语“牙齿修复体”通常用于指可用于牙科领域中的任何修复体，包括但不限于牙冠、部分牙冠、镶嵌物、填补物、支座、牙桥（例如，包括2部分、3部分、4部分、5部分或6部分牙冠）、植入物，其他合适的牙科制品，和它们的组合。牙齿修复体可包括三维内外表面，所述三维内外表面包括凸型和凹型结构。相比于其他陶瓷制品（如陶石或铝锆石），牙齿修复体相对较小，并可包括银丝网。牙齿修复体的厚度可由极薄（例如：在其边缘（edge）和边（rim）（例如小于约0.1mm）变化至相当厚（例如：在咀嚼或咬合区域（例如：高达约7mm）。一些实施例中，牙齿修复体的厚度为0.3mm至0.5mm。在一些实施例中，所述牙齿修复体可包括如下材料或基本上由如下材料组成：玻璃、玻璃陶瓷、多晶陶瓷材料，所述多晶陶瓷材料例如包括氧化铝（例如Al₂O₃）、氧化锆（ZrO₂）、部分或完全稳定化的氧化锆（例如：钇稳定的氧化锆）、二氧化钛（TiO₂）、第Ⅰ、Ⅱ和Ⅲ和Ⅳ主族和第ⅠⅠ和ⅠⅡ副族的元素和离子氧化物，以及它们的混合物；金属、金属合金、贵金属、贵金属合金或它们的组合（例如：钴铬合金，如钴；铬；钛合金；金/铂/钯合金等，和它们的组合）；以及它们的组合。在一些实施例中，所述牙齿修复体可包括至少两层，例如，牙芯（或牙架）和牙面。

【0024】短语“牙芯”或“牙骨架”通常指一种固体结构，其可被预定或至少部分预定，然后
用作本发明的层状牙科器械的最内芯或中心层。例如，在一些实施例中，所述牙芯可适于联接至或安装至压桩、植入物支架等中的一种或多种，或它们的组合。[0025]

短语“牙镶面”通常指由一个或多个层形成的结构，所述结构可被联接（例如熔合）至或构建在另一结构（例如牙芯）上以获得颜色、美观、纹理、表面性质等，且在一些实施例中，以模仿天然牙齿的外观。

[0026]

牙芯（有时称为“牙骨架”）和牙镶面各自包括三维内外表面，所述三维内外表面包括凸型和凹型结构。所述牙芯的外表面可对应于所述牙镶面的内表面。所述牙芯的内表面可对应于制得的压桩的外表面，而所述牙镶面的外表面可对应于所需（例如最终）的牙齿修复体。

[0027]

牙芯或牙骨可由如下材料的至少一种制成或包含如下材料的至少一种：金属、金属合金、贵金属、贵金属合金和它们的组合。金属的例子包括但不限于氧化铝（例如 Al₂O₃）、氧化锆（ZrO₂）、部分或完全稳定化的氧化锆（例如钇稳定的氧化锆）、二氧化钛（TiO₂）；第 II、III 和 IV 主族和第 III 和 IV 副族的元素的高强度氧化物和它们的组分；以及它们的组合。金属、金属合金、贵金属和贵金属合金的例子包括但不限于合金（例如钴-铬）、钛合金、金/铂/钯合金，和它们的组合。

[0028]

相比于其他骨架（如陶瓷或金属骨），牙芯或牙骨可为小的且为银银丝网的，并具有高精度。牙骨的厚度可由极薄（例如在其边缘和边（约0.1mm以下））变化至相当厚（例如，在咀嚼区域（高达约7mm））。

[0029]

牙镶面可包括一个或多个层，所述一个或多个层可被联接（例如熔合）至或构建于牙科器械的内芯或中心上。牙镶面也可为小的牙镶银丝网的物体。然而，牙镶面的强度比牙骨架更小。牙镶面可由玻璃和/或玻璃陶瓷材料制成，或包含玻璃和/或玻璃陶瓷材料。合适的玻璃材料的例子包括但不限于与如下材料的一种或多种组合的二氧化硅（SiO₂）；氧化铝（Al₂O₃）；氧化锆（ZrO₂）；氧化钠（Na₂O）等，和它们的组合。合适的玻璃陶瓷材料的例子包括但不限于具有玻璃部分和结晶部分的材料，所述玻璃部分包含与如下的一种或多种组合的二氧化硅（SiO₂）；氧化铝（Al₂O₃）；氧化锆（ZrO₂）；氧化钠（Na₂O）等，和它们的组合，所述结晶部分包含例如白榴石、二硅酸锂等，和它们的组合。

[0030]

在一些实施例中，重要的是使牙芯的热膨胀系数（CTE）与牙镶面（或牙镶面的一部分）的热膨胀系数匹配。否则，在一些情况下，在烧制过程中所述镶面和芯可能会被正确熔合，这可能导致修复体的破坏。在一些实施例中，玻璃本身（例如包括如上所列配比的一些）可匹配氧化锆的热膨胀系数。在一些实施例中，例如，当芯包含趋于具有较高 CTE 的氧化铝和/或金属时，可能需要将结晶材料（例如白榴石）加入形成镶面的玻璃中。将白榴石加入玻璃可升高玻璃的 CTE，也可改进玻璃的机械强度，但也可能使用除了白榴石之外的晶体材料。待加入玻璃中的白榴石（或其他晶体相）的量可取决于构成牙芯（牙镶面将联接（例如熔合）至所述牙芯）的材料，因为不同金属和合金具有不同的 CTE。表 1 列出了牙芯和牙镶面材料的示例性配对。表 1 仅旨在为说明性的和非限制性的：

[0031]

表 1：牙芯和牙镶面材料的示例性配对

[0032]
<table>
<thead>
<tr>
<th>牙芯材料</th>
<th>牙面材料</th>
</tr>
</thead>
<tbody>
<tr>
<td>氧化锆</td>
<td>玻璃（例如具有 Al2O3、K2O、Na2O 等的 SiO2）</td>
</tr>
<tr>
<td>氧化铝</td>
<td>玻璃陶瓷：玻璃部分（例如具有 Al2O3、K2O、Na2O 等的 SiO2）和结晶部分（例如白榴石）</td>
</tr>
<tr>
<td>金属</td>
<td>玻璃陶瓷：玻璃部分（例如具有 Al2O3、K2O、Na2O 等的 SiO2）和结晶部分（例如白榴石）</td>
</tr>
</tbody>
</table>

[0033] 术语“玻璃”通常指硬的、易碎的、透明的固体。玻璃的例子包括但不限于钠钙玻璃和硼硅酸盐玻璃。玻璃可包括已冷却至刚性状态而无结晶的熔合的无机产物。一些玻璃含有作为其主要组分的二氧化硅和一定量的玻璃形成物。

[0034] 短语“玻璃陶瓷”通常指具有玻璃和更常规的结晶陶瓷的许多性质的材料。将其（玻璃陶瓷）成形为玻璃，并且随后通过热处理使其部分结晶。与烧结陶瓷不同，玻璃陶瓷没有晶间孔隙。相反，晶体之间的空间由玻璃残基填充。玻璃陶瓷主要指碱金属氧化物、硅氧化物和铝氧化物的混合物。

[0035] 术语“陶瓷”通常指通过施加热而制得的无机非金属材料。陶瓷可为硬的、多孔或易碎的，与玻璃或玻璃陶瓷不同，陶瓷可显示基本上结晶的结构。

[0036] 牙科陶瓷器械可被分为在本发明的含义内的“预烧结”，如果所述牙科陶瓷器械已被热处理（例如约 900 至约 1100℃的温度）约 1 至约 3 小时，达到了使所述牙科陶瓷器械的初始强度（Weibull 均值 σ0）在约 15 至约 55MPa 或约 30 至约 50MPa 的范围内的程度（根据在 1999 年 3 月编辑的 DINEN 6872 中所述的“三球冲击试验（punch on three ball test）”（双轴弯曲强度），并经如下修改进行测量：钢球直径：6mm；支撑压直径：14mm；平冲头直径：3.6mm；样品盘直径：25mm；样品盘厚度：2mm；无样品的磨削和抛光）。

[0037] 预烧结牙科陶瓷器械可包括多孔结构，且其密度（例如对于钇稳定的 ZrO2 陶瓷可为 3.0g/cm³）相比于完全烧结或最终烧结（或“良好烧结”，即使得无另外的烧结步骤存在）的牙科陶瓷器械的密度（例如对于钇稳定的 ZrO2 陶瓷可为 6.1g/cm³）可更小。在一些实施例中，孔径可为约 50nm 至约 150nm（对应于约 500 至约 1500Å）的范围内。在一些实施例中，孔径可为约 120nm。

[0038] 在一些实施例中，玻璃和/或玻璃陶瓷材料的预烧结可在约 500 至约 750℃的温度范围内完成。

[0039] 术语“烧结”通常指通过加热材料（例如，在其熔点以下—“固态烧结”）直至其粒子彼此粘附，而从粉末制备物体。烧结可导致多孔材料的致密化及具更高密度的较不多孔的材料（或具有更多小孔的材料）。在一些情况下，烧结也可包括材料相组成的改变（例如，无定形相向结晶相的部分转化）。

[0040] 术语“烧结”和“烧制”在本文可互换使用。预烧结的陶瓷骨架可在烧结步骤过程中（即，如果施加足够的温度）收缩。所施加的烧结温度取决于选择的陶瓷材料。例如，对于 ZrO2-基陶瓷，烧结温度可为约 1200℃至约 1500℃。在一些实施例中，Al2O3-基陶瓷可在约 1300℃至约 1700℃的温度下烧结。在一些实施例中，陶瓷陶瓷材料可在约 700 至约 1100℃的温度下烧结约 1 至约 3 小时。在一些实施例中，本发明的烧制步骤可包括在至少约 500℃的温度下，在一些实施例中，在至少约 700℃的温度下，在一些实施例中，在至少约
1000°C的温度下，和在一些实施例中，在至少约1200°C的温度下烧制。

[0041] 单位“小孔/µm”涉及存在于待分析样品的横截面上的孔数。合适的测定方法于
DIN 13925中规定。

[0042] 术语“浇铸”通常指一种制造方法，通过所述方法，将液体材料（例如溶液或分散体）倾注至包括具有所需形状的中空腔体（即负像）的模具中，然后使所述液体材料固化。

[0043] “溶胶—凝胶反应”为湿化学技术（有时也称为“化学溶液沉渍”），所述湿化学技术用于起始于化学溶液或胶体粒子（例如纳米级例子）而制成材料以制备一体化网络（凝胶）。在一些实施例中，溶胶—凝胶前体可包括金属醇盐和金属氯化物，所述金属醇盐和金属氯化物经历水解和缩聚反应以形成胶体，所述胶体为由分散于溶剂中的固体粒子（例如，尺寸为1nm至1µm）组成的体系。所述溶胶可朝着形成含有液相（凝胶）的无机连续网络发展。金属氧化物的形成可包括使用氧桥（M-O-M）或羟基（M-OH-M）桥连接金属中心，因此在溶液中产生金属—氧或金属—羟基聚合物。干燥过程可用于从凝胶中移除液相，由此形成多孔材料。然后，可进行热处理（例如烧结）以有利于进一步的缩聚并且提高机械性能。

[0044] 在陶瓷技术领域中，短语“多孔材料”可通常指包括由空隙、孔穴或小孔形成的局部空间的材料。

[0045] “液体”为任何溶剂或液体，其能够在环境条件下（例如23°C，1013mbar）至少部分分散或溶解浆料或混合物组合的无机粘结剂。

[0046] 如同作为组合物或溶液的基本特征不包含某种组分，则在本发明的含义内，所述组合物或溶液是“基本上或实质上不含”所述组分的。即，不故意地将该组分本身加入至所述组合物或溶液中，或不故意地将该组分与其他组分组合或作为其他组分的成分加入至所述组合物或溶液中。在一些实施例中，基本上不含某种组分的组合物通常相对于整个组合物计小于约1wt.-%，在一些实施例中小于约0.1wt.-%，在一些实施例中小于约0.01wt.-%，和在一些实施例中小于约0.001wt.-%的量含有所述组分。在一些实施例中，“基本上或实质上不含”通常指组合物或溶液完全不包含所述组分。然而，例如由于存在于所用原料中的杂质，因此有时少量所述组分的存在可能是不可避免的。

[0047] 如上所述，本发明的一些体系和方法使用凝胶浇铸过程，相对较快地提供了具有复杂形状的单独成形的层状牙科器械。在一些实施例中，使用溶胶—凝胶浇铸过程，其中浆料或混合物通过组合如下材料而形成：

[0048] (i) 玻璃和/或玻璃陶瓷粉末；
[0049] (ii) 液体（例如水）；
[0050] (iii) 粘结剂（例如无机粘结剂）；和
[0051] (iv) 活化剂（例如酸或碱）。

[0052] 在一些实施例中，所述浆料包含组分(i)、(ii)和(iii)，且直至浇铸之前不加入
活化剂（组分(iv)）。

[0053] 通过提供包含液体、粘结剂（例如无机粘结剂）以及玻璃和/或玻璃陶瓷粉末或
粒子的混合物，可引发溶胶—凝胶过程，从而产生玻璃和/或玻璃陶瓷粉末或粒子在无机网
络中的均匀分布。与此相比，通过单轴向压制制备的坯料有时为不均匀的（就密度而言），
这可能由压制基质中的不均匀压力分布导致。
相比通过预热压过程制得，并非进行预烧烧结不具具有足够强度的牙科器械，可根据本发明的凝胶烧结过程获得的牙科器械具有足够的强度，并可在不预先预烧烧结所述牙科器械的情况下进行机械加工。

此外，加工并不仅限于磨削，也可通过铣削来实现。如上所述，所述牙科器械的强度因应高，使得所述牙科器械在无烧结步骤的情况下进行机械加工，但所述牙科器械的强度又足够低，使得所述牙科器械可通应用更有效的（例如更快和更便宜的）铣削工艺而进行成形。

此外，通过使用无机粘结剂代替有机粘结剂来产生无机网络，在硬后的加热或烧结步骤期间可挥发较少的废剂。有机粘结剂通常产生诸如碳化氢类或氯氟烃类的气体。就算有，根据本发明的无机粘结剂的例子，也仅产生诸如醇（例如甲醇和乙醇）的低沸点溶剂，所述低沸点溶剂通常在干燥步骤过程中蒸发。

除了可受限于特定形状（例如立方和圆柱体）的压缩技术之外，或与所述压缩技术相反，本发明的浇铸过程有利于复杂形状的制造。所得牙科器械的形状仅受限于所用模具的形状，因此，可制造具有凸结构和/或凹结构的物体。相比之下，预烧烧结的牙科器械，通过本发明的方法获得的牙科器械可具有更低的密度。更低的密度可有利于所述牙科器械的机械加工（例如机械加工工具的延长的使用寿命），也可降低在成形过程中产生的废料量。

本发明的一些方法有利于提供着色的牙科器械。可在过程的极早期（例如当提供待浇铸的混合物时）和/或在过程的稍后（例如在干燥步骤之后）加入着色添加剂。如果在干燥步骤之后进行着色，则可通使用含有着色添加剂（例如金属盐）的着色溶液进行着色。

在所述过程的早期阶段（例如当提供待浇铸的混合物时）加入着色添加剂，可使得所述着色添加剂整个牙科器械中或在所得层状牙科器械的整个层中均匀分布。

用无机粘结剂前的量可允许调节凝胶时间和坯料整体。所用的粉末和水的量也可允许调节干燥坯料的密度。

图 1 示出了根据本发明的一个实施例的方法 10 的示意性流程图，以及根据本发明的一个实施例的体系 50。图 1 中，方法 10 包括步骤 10A-10H，且体系 50 包括模具 52、第一固体结构 54、第二固体结构 56，且还可包括一种或多种浆料，如下文更详细地描述。在一些实施例中，如图 1 所示，体系 50 包括第一模具组件 51 和第二模具组件 53。所述第一模具组件 51 包括底模（或“阴”模）52 和第一固体结构（或第一“阳”模）54。所述第二模具组件 53 包括底模（或“阴”模）52 和第二固体结构（或第二“阳”模）56。

在一些实施例中，所述模具组件 51 和 53 可各自或总体简称为模具或体系，所述模具或体系包括第一部分 52（例如包括腔体的负像部分）、第二部分 54（例如包括凸起的第一正像部分，如压模），和/或第三部分 56（例如包括凸起的第二正像部分，如压模）。在方法 10 和体系 50 适于产生超过三个层的实施例中，所述模具或体系可分别包括超过三个部分。

在一些实施例中，体系 50 本身可被描述为模具体系或组件，所述模具体系或组件包括第一部分 52 和第二部分 54，所述第一部分 52 包括所需牙科器械的外部形状（例如第一层）的负像，所述第二部分 54 包括第二层的正形。在一些实施例中，体系 50 还可包括第三部分 56，所述第三部分 56 包括第三层的正形。在一些实施例中，所述体系还可包括第四
部分（未显示），所述第四部分包括第四层的正形，等等。

[0065] 在图1所示的示例性方法10中，步骤10A-10C用于形成三层牙科器械的第一层65，且步骤10D-10F用于形成所述牙科器械的第二层75。在示例性方法10中，步骤10D-10F基本上类似于步骤10A-10C，且步骤10A-10C表示在方法10中形成层的一个反复，而步骤10D-10F表示在方法10中形成层的另一反复。即，在图1所示的方法10中，所述第一反复（即步骤10A-10C）用于形成所述层状牙科器械的第一外层，且第二反复（即步骤10D-10F）用于形成第二层75，所述第二层75相对于第一层65向内设置。作为图1所示的方法10的反复性质的结果，应了解相对于步骤10A-10C描述的元件、特征和步骤（以及这种元件、特征和步骤的替代物）的任何描述也通常适用于步骤10D-10F，反之亦然。也应了解所述能够重复所述反复步骤以获得具有所应那样的层的层状牙科器械。

[0066] 在方法10的第一步骤10A中，提供了第一模具组件51。模具52适于接收一种或多种浆料和一个或多个固体结构54、56，并可包括所需牙科器械的外部形状（或外层）的负形或表面（或腔体）58。

[0067] 在一些实施例中，用于接收混合物的模具52或模具组件51、53（例如多部件模具的一个或多个部件）可通过如下特征中的至少一个来表征：

[0068] - 模具体积：可为小于约1cm³或可为约20cm³以上；可用的范围包括0.2cm³至约50cm³，或约0.5cm³至约30cm³；

[0069] - 模具尺寸：任意，只要不存在过小而不能由反应混合物填充的腔体；

[0070] - 模具形状：任意，只要不存在过小而不能由反应混合物填充的腔体；

[0071] - 和/或

[0072] - 模具材料的例子（例如用于负像部分52或正像部分54和56）：有机硅、聚乙烯（PE）、聚丙烯（PP）、聚碳酸酯、聚氯乙烯、聚丙乙烯、聚甲醛、其他合适的聚合物、金属（例如钢）等，或它们的组合。

[0073] 在一些实施例中，模具52或模具组件51、53（例如多部件模具的一个或多个部件）可具有规则形状（例如立方体、圆柱体等）或不规则形状（例如牙齿、镶面、镶嵌物、填补物、牙冠、牙龈、正畸托槽的形状，其他合适的牙科器械形状等，或它们的组合）。例如，“简单齿状”形状可用于近外形应用。在一些实施例中，具有特别设计的齿形的模具可用于形变应用。举例而言，在一些实施例中，特别设计的齿形（例如齿形的正像和/或齿形的负象）可通过数字化工作流程制得，且齿象可用作模具，或正像可用作形成模具。这种数字化工作流程包括扫描患者口腔以产生用于所需牙科器械的模型。这种扫描可使用联接至电脑辅助设计（CAD）体系的光扫描器进行，所述电脑辅助设计体系与计算机集成制造（CIM）体系结合运行。这种CIM体系可例如以商品名LAVA™得自3M ESPE AG（Seefeld，Germany）。

[0074] 在一些实施例中，模具组件51、53的至少一部分（如模具52）可相对于所需的所得牙科器械扩大，例如以适应可能发生的任何收缩（例如当所述牙科器械被烧制时）。例如，在一些实施例中，模具组件51、53的至少一部分（如模具52）可为所得器械的尺寸的至少110％，在一些实施例中，至少150％，且在一些实施例中，至少200％。

[0075] 在一些实施例中，可经由电脑辅助设计和制造（CAD/CAM），例如通过铣削或印刷石蜡模型，将所述石蜡模型嵌入模具材料中，并在铸造之后烧制所述石蜡，而实现模具（例如，模具组件51、53的至少一部分，如模具52）的扩大。或者，在一些实施例中，模具可被铣
剔、蜡染或 3D- 印刷，通过快速原型法形成，通过立体光刻形成，或为它们的组合。另外，在一些实施例中，可经由仿形铣削或其他手动放大，例如通过用一定厚度的层（其对应于所需百分比的扩大）涂布手工制造的蜡型而实现扩大。

【0076】在一些实施例中，所述模具（例如模具组件 51、53 的至少一部分）可包括支撑器（例如，支撑器可嵌入模具中）。即，在一些实施例中，在所述牙科器械从模具 52 中移除之后，所述牙科器械可包括支撑器，或可被固定至支撑器。这可有利于在进一步加工或机械加工步骤中处理牙科器械。在一些实施例中，所述支撑器可由金属形成。

【0077】如图 1 所示，在方法 10 的第一步骤 10A 中，可将第一浆料 62 设置（例如浇铸）于模具 52 中。另外，所述第一固体结构 54 可开始向所述模具 52 的内部移动，或移动至所述模具 52 的内部中。所述第一固体结构 54 可包括对应于所需上形状牙科器械的第二层的正形或背形 60。具体而言，所述第一固体结构 54（和所述第二固体结构 56）在图 1 中显示为同中心/轴向并对其地固定于所述模具 52 中；然而，应了解所述固体结构 54 和 56 可反而被相对于所述模具 52 “偏心”设置，并可多种方式与所述模具 52 配合或配合。另外，所述模具组件 51 和 53 的正像部分和负像部分之间的配合不限于图 1 中所示的那样。

【0078】如上所述，所述第一浆料 62 可包括 (i) 玻璃和/或玻璃陶瓷粉末；(ii) 液体（例如水）；(iii) 粘结剂（例如无机粘结剂）；和 (iv) 活化剂（例如酸或碱）。本发明的浆料的配方和形式本发明的浆料的示例性方法在下文更详细地描述。本发明的浆料有时可称为“玻璃和/或玻璃陶瓷”浆料。

【0079】在所述方法的第二步骤 10B 中，可将所述第一固体结构 54 压入所述第一浆料 62 中，从而形成所述牙科器械的第二层 65。在方法 10 和体系 50 的这种实施例中，所述第一固体结构 54 可充当压模，所述压模可用于形成形成所述层状牙科器械中的层，但不必作为完工牙科器械中的组件保留。

【0080】然而，应了解在一些实施例中，所需牙科器械可仅包括在牙芯或牙骨架上形成的一层。在这种实施例中，所述第一固体结构 54 可包括所述牙科器械的骨架的所需内芯；所述体系 50 可包括第一模具组件 51（即，不是第二模具组件 53）；且所述方法 10 可仅包括步骤 10A 和 10B。这种体系和方法在实施例 2 中示例。此外，在这种实施例中，可干燥在步骤 10B 中所示的构造，牙芯 54 和第一层 65 可从模具 52 中脱模或移除，且包括芯 54 和第一层 65 的两层牙科器械可任选地被进一步烧制（例如在真空下）和/或机械加工。

【0081】作为结果，在一些实施例中，所述第一固体结构 54 可包括或充当压模，且在一些实施例中，所述第一固体结构 54 可包括牙芯，所述牙芯形成所得牙科器械的一部分。换言之，“材料”可被设置于所述第一浆料 62 中。在一些实施例中，所述材料包括牙芯，且所述牙芯形成所述牙科器械的第二层；且在一些实施例中，所述材料包括第二浆料 72（例如在所述第一固体结构 54 已从所述第一浆料 62 中移除之后，如下文更详细描述）。在另一方面，在一些实施例中，所述第二浆料 72 可填充在所述第一浆料 62 中的空腔，以形成形成牙科器械的第二层（即内芯），或者所述第二浆料 72 可用所述第二固体结构 56（如图 1 所示并如下述）压迫以形成所述牙科器械的第二层 75。

【0082】在一些实施例中，本发明的任何浇铸步骤可通过如下特征中至少一个来表现：

- 持续时间：对于 10g 反应混合物，约 2 至约 5 秒；和/或
- 温度：约 10 至约 40℃或约 15 至约 30℃或在环境条件下（即环境温度和压力，
例如 23℃，1013mbar）。

[0085] 在一些实施例中，可加快通过施加减压而避免在浇铸步骤过程中气泡形成的减少。

[0086] 如图 1 所示，可干燥整个构造（例如在环境条件下和 / 或在高温下的干燥烘箱中）以硬化所述第一浆料 62 并形成牙科器械的第一层 65，所述整个构造包括所述第一模具组件 51 和在所述第一模具组件 51 的两个（即正像和负像）部分（即模具 52 和所述第一固体结构 54）之间压制的所述第一浆料 62。

[0087] 本发明的任何干燥步骤可通过如下特征中的至少一个来表征：

- 持续时间：至多约 24h 或至少约 8h 或至多约 1h，
- 温度：约 10 至约 120℃或约 20 至约 100℃，和 / 或
- 压力：环境压力。

[0089] 在干燥步骤过程中，可完成粘结剂的网络形成，且可在网络形成过程中产生的沸点组分（如果存在的话）可从浇铸混合物蒸发。

[0090] 可在环境条件下通过简单地使含有混合物的模具静置足够的时间来进行干燥。如果需要更快速的干燥，则可在干燥烘箱中进行干燥。

[0091] 如图 1 所示，在方法 10 的第三步骤 10C 中，所述第一固体结构 54 可从模具 52 和第一浆料 62 中移除，从而留下第一层 65，所述第一层类似于固体壳，并包括所述牙科器械的外部形状或表面 66 和内部（负像）形状 68，所述外部形状或表面 66 对应于所述模具 52 的内（负像）表面 58，所述内部（负像）形状 68 对应于所述第一固体结构 54 的外部（正像）表面 60。所述第一层 65 的内部（负像）形状 68（或 “腔室”或“第二阴模”）包括所述牙科器械的下一层的所需外部形状或表面的负像。

[0092] 然而，在一些实施例中，需要这种壳状牙科器械，且所得壳状第一层 65 形成所需牙科器械。在这种实施例中，方法 10 仅包括步骤 10A-10C，使得所述方法在从模具 52 中移除所述第一固体结构 54 之后完成。在这种实施例中，所述第一层 65 可被干燥、从模具 52 中移除，并任选地进一步烧制和 / 或机械加工。

[0093] 本发明的烧制或烧结步骤可通过如下特征中的至少一个来表征：

- 持续时间：约 10 至约 60min 或约 20 至约 25min，
- 温度：约 600 至约 900℃或约 750 至约 850℃，
- 压力：约 10 至约 50mbar 或约 15 至约 35mbar，和 / 或
- 气氛：空气。

[0100] 烧结可在市售的烧结炉（如得自德国 Dekema Comp. 的 Austromat 3001）中进行。

[0101] 就算有，烧结也可在所得牙科器械进行机械加工之前或之后进行。在一些实施例中，当采用烧结时，经烧结的材料可具有约 2g/cm³ 至约 2.7g/cm³ 的密度。

[0102] 经烧结的材料可包括一定水平的半透明度。半透明度可通过材料相对于日光的不透明度来确定。在一些实施例中，经烧结的材料的不透明度为约 50% 至约 60%（例如对应于天然牙釉质），在一些实施例中为约 60% 至约 80%（例如对应于天然牙质），且在一些实施例中为约 80% 至约 90%（例如对应于天然不透明牙质）。

[0103] 本发明的机械加工步骤可通过如下特征中的至少一个来表征：

- 机械加工可在干燥或湿润条件下完成。
[0106] - 铣削参数旋转 :约 18,000 至约 32,000rpm，和 / 或
[0107] - 铣削参数运动 :约 1,500 至约 2,500mm/ 分钟。

[0108] 如果需要，可使用如在机械加工的如上定义中提及的那些的其他机械加工设备。

[0109] 在所述方法的第四步骤 100 中，提供第二模具组件 53，并将第二浆料 72 设置 (例如浇铸) 于所述第一层 65 的腔体 68 中。另外，所述第二固体结构 56 可开始于所述模具 52 中的腔体 68 的内部移动，或可移动至所述模具 52 中的腔体 68 的内部。所述第二固体结构 56 可包括对应于所需层状牙科器械的第三层的正形或表面 70。

[0110] 两个模具组件 51 和 53 仅以举例的方式示于图 1 中。应了解在一些实施例中，体系 50 可仅包括所述第一模具组件 51。在这种实施例中，在步骤 10A-10C 中所用的第一固体结构 54 可在方法 10 的步骤 10D-10F 中再使用。在一些实施例中，使用所述第一和第二模具组件 51 和 53，但所述两个模具组件 51 和 53 是相同的，使得所述第二固体结构 56 具有与所述第一固体结构 54 相同的形状。所述第二固体结构 56 的使用消除了再使用所述第一固体结构 54 的需要。另外，在一些实施例中，如图 1 所示，所述第二固体结构 56 可具有与所述第一固体结构 54 不同的形状和 / 或不同的（例如更小的）尺寸。

[0111] 体系 50 和方法 10 的一些实施例完全不包括第二模具组件 53，因为所述方法 10 在将所述第二浆料 72 设置于腔体 68 中之后完成（即所述方法 10 仅包括步骤 10A-10D）。例如，在一些实施例中，所述第二浆料 72 可用于形成所牙科器械的内部，使得第二模具组件 53 和第二固体结构 56 (或 “压模”) 不是必要的。然后可干燥所层牙科器械，从模具 52 中移除，并任选地进一步烧制和 / 或机械加工，所述所层牙科器械包括第一层 65 和由第二浆料 72 形成的芯。这种体系和方法在实例 1 中示例。

[0112] 类似于上述第一浆料 62，所述第二浆料 72 可包括：(i) 乳胶和 / 或玻璃陶瓷粉末；(ii) 液体 (例如水)；(iii) 粘结剂 (例如无机粘结剂)；和 (iv) 活化剂 (例如酸或碱)。所述第二浆料 72 可与所述第一浆料 62 为相同配方或不同配方。

[0113] 如图 1 所示的方法 10 的第五步骤 10E 中，可将所述第二固体结构 56 压入所述第二浆料 72 中，从而形成所述牙科器械的第二层 75。在方法 10 和体系 50 的这种实施例中，所述第二固体结构 56 也可充当压模，所述压模可用于形成所层牙科器械的下层，但不必作为完工牙科器械中的组件保留。然而，应了解，类似于上述第一固体结构 54，在一些实施例中，所述第二固体结构 56 可包括牙芯或骨架，所述牙芯或骨架不被移除，并形成所层牙科器械的内芯。在这种实施例中，方法 10 可仅包括步骤 10A-10E。此外，在这种实施例中，可干燥在步骤 10E 中所示的构造，牙芯 56、第二层 75 和第一层 65 可从模具 52 中脱模或移除，并包括芯 56、第二层 75 和第一层 65 的三层牙科器械可任选地被进一步烧制（例如在真空下）和 / 或机械加工。

[0114] 所述第二层 75 在图 1 中示为通常具有与第一层 65 相同的厚度。然而，应了解这种情况是必需的。在一些实施例中，第一层 65 可具有更大厚度。例如，在一些实施例中，可用于形成第二层 75 的体积或空间与用于形成第一层 65 的体积或空间相比可能更小，其中所述第二层 75 在所述第一层 65 中的腔体 68 和第二固体结构 56 的外表面 70 之间，所述第一层 65 在模具 52 的内表面 58 和第一固体结构 54 之间。具有更小的可用于形成第二层 75 的空间可导致第二二层 75 比第一层 65 更薄。这可能在，例如，其中所述第二固体结构 56 通常与第一固体结构 54 为类似的尺寸，或如果再使用第一固体结构 54 以形成第二层 75
的实施例中发生。或者，在一些实施例中，层的厚度可朝着牙齿器械的中心或内芯而增加。例如，这种实施例可通过使用在烧制过程中收缩不同的不同浆料而实现。

[0114] 如图1所示，在方法10的第六步骤10F中，所述第二固体结构56可从模具52和第二浆料72中移除，从而留下第二层75和第一层65，所述第二层75和第一层65在一起形成两层固体壳，并包括牙科器械的外部形状或表面66和内部（负像）形状78。所述外部形状或表面66对应于所述模具52的内部（负像）表面58，所述内部（负像）形状78对应于所述第二固体结构56的外部（正像）表面70。所述第二层75的内部（负像）形状78或“腔室”包括所述牙科器械的下（第三）层的所需外部形状或表面的负像。

[0115] 然而，在一些实施例中，需要这种壳状牙科器械，且使得两层壳形成所需牙科器械。在这种实施例中，方法10仅包括步骤10A-10F，使得所述方法在从模具52中移除所述第二固体结构56之后完成。在这些实施例中，包括所述第一层65和第二层75的两层壳可以干燥、脱模52中移除，并任选地进一步烧制和/或机械加工。

[0116] 如图1所示，在方法10的第七步骤10G中，将第三浆料82设置（例如浇铸）于所述第二层75的腔体78中。类似于所述第一和第二浆料，所述第三浆料82可包括(i) 玻璃和/或玻璃陶瓷粉末；(ii) 液体（例如水）；(iii) 粘结剂（例如聚乙烯醇）；和(iv) 活化剂（例如酸或碱）。所述第三浆料82可与所述第一浆料62和所述第二浆料72之一或两者具有相同配合或不同的配合。

[0117] 仅举例而言，在图1示出的体系50和方法10中，所述第三浆料82显示为用于形成所述牙科器械的内芯，使得第三模具组件和第二固体结构不是必需的。然而，在其中需要具有超过三层的牙科器械的实施例中，可将第三浆料设置于其它一层的腔体中并用固体结构（例如蜂窝或模具的正像部分）压制成型。所述浆料以形成下一层的过程，直至达到所需。可干燥（例如在室温下或在高温下干燥烘箱中）在步骤10G中所示的构造以固化所述第三浆料82并形成所述牙科器械的第三层85（即芯），所述构造包括模具52、第一层65、第二层75和第三浆料82。

[0118] 在方法10的第八步骤10H中，所得三层牙科器械90可从模具52中移除，并任选地进一步烧制（例如在真空下）和/或机械加工。所述所得三层牙科器械90包括第一层65、第二层75和第三层85。

[0119] 在一些实施例中，所述牙科器械90或所述牙科器械90的一个或多个层可基本上不含小孔、空隙或孔穴，或可包括至多约20小孔/mm²。在一些实施例中，所述牙科器械90或所述牙科器械90的一个或多个层可包括约4至约10小孔/mm²。在一些实施例中，所述小孔可具有小于约150μm的直径，在一些实施例中可具有小于约100μm的直径，且在一些实施例中可具有小于约50μm的直径。

[0120] 在一些实施例中，在所述牙科器械90（或所述牙科器械90的一个或多个层）中的小孔的体积，相对于所述牙科器械90的总体积（或相对于所述牙科器械90的一个或多个层的总体积）可为约20％至约40％，且在一些实施例中可为约30％至约38％。在一些实施例中，这些百分数指预烧结态，而不是完全烧结的玻璃或玻璃陶瓷。

[0121] 可通过图1的方法10以及体系50和方法10的替代形式的如上描述了解，本发明提供了一种具有两个或更多个层的多层牙科器械，其中最内层可包括固体结构（例如牙芯）和/或由浆料（例如玻璃或玻璃陶瓷浆料）形成。此外，方法10仅以举例
的方式显示为，在形成所述牙科器械的内芯之前包括两个“压模”步骤，其中阳模和阴模一起使用以形成所述牙科器械的层。然而，应了解可使用如无可移除固体结构（例如，当两层牙科器械的第二（内）层通过牙芯或骨架提供时）那样少的，以及如所需那样多的可移除固体结构以提供具有所需层数的牙科器械。

在上述描述中，最终牙科器械 90 和用于制备牙科器械 90 的方法 10 被描述为包括和形成第一层 65、第二层 75 和第三层 85。然而，在一些实施例中，所述最终牙科器械 90 可包括许多层，且用于制备所述牙科器械 90 的方法 10 可包括步骤 10D-10F 以及随后的步骤 10G 和 10H 的许多次重复。在这种实施例中，所述方法可为反复的，且最内层可称为“层 n”，下一连续（外）层可称为“层 n-1”，下一连续（外）层可称为“层 n-2”，等等，所述层可以以最外层至最内层的顺序形成，使得层 n（最内层）为形成的第一层。换言之，每一层可称为“层 n-x”，其中 x 为 0 至 n-1（由最内层至最外层）。换句话说，最外层可称为“层 1”，下一连续（内）层可称为“层 2”，下一连续（内）层可称为“层 3”，等等，且最终最内层可称为“层 n”，其中所得层状牙科器械包括 n 层。

另外，仅实例而言并未说明的简化，所述第一和第二固体结构 54 和 56 被显示为分别压入第一和第二浆料 62 和 72 中，直至所述固体结构 54 和 56 与模具 52 的顶表面齐平。然而，图 1 中所示的部件的示意图表示以及这种部件之间的配合仅以举例的方式并为了说明的目的示于图 1，而不在限制。另外，在一些实施例中，可不将所述固体结构 54 和 56 压入模具 52 中那么深。在一些实施例中，当将分别的第一和 / 或第二固体结构 54 和 / 或 56 移动至所述模具 52 中时，过量的一个或多个浆料 62 和 / 或 72 可从模具 52 中压出。在下游加工（例如机械加工）过程中需要移除这些过量。

本发明的浆料配方以及形成所述浆料的示例性方法的如下描述，可通常适用于图 1 中所示的第一浆料 62、第二浆料 72 和第三浆料 82 中的每一个，以及适用于可能在本发明的方法或体系的另一实施例中必需的另外的浆料。关于化合物的浆料以及牙科器械的无机凝胶浇铸的其他细节和方面可见于 2008 年 10 月 1 日提交的名称为“Dental Appliance, Process for producing adental appliance and Use thereof”的欧洲专利申请 No. EP0165607.6 中，其公开内容以全文引用方式并入本文。

液体

除非不能实现预期目的，不特别限制待用于本发明的浆料（例如第一浆料 62）中的液体的性质和结构。

在一些实施例中，液体可通过如下特征中的至少一个来表征：

- 沸点：约 60 至约 120°C，
- 凝固点：约 -120 至约 0°C，和 / 或
- 密度：约 0.7 至约 1.2g/cm³。

液体的具体例子包括但不限于水、醇（包括甲醇、乙醇、丙二醇和异丙醇）、酮（包括丙酮），和它们的组合。

在一些实施例中，液体存在的量为约 15wt.% 至约 60wt.%，在一些实施例中为约 20wt.% 至约 40wt.%，且在一些实施例中为约 25wt.% 至约 35wt.%，分别以整个组合物或混合物计。

在一些实施例中，液体存在的量为至少约 15wt.%，在一些实施例中为至少约
20wt.-%%，且在一些实施例中为至少约 25wt.-%%，分别以整个组合物或混合物计。

[0134] 在一些实施例中，液体存在的量可不大于约 35wt.-%%，在一些实施例中不大于约 40wt.-%%，且在一些实施例中不大于约 60wt.-%%，分别以整个组合物或混合物计。

[0135] 无机粘结剂

[0136] 除非预期目的不能实现，不特别限制用作粘接体无机粘结剂的性质和结构。

[0137] 所述无机粘结剂可在引发固化或硬化反应时形成无机网络。所述固化或硬化反应可例如通过调节 pH 值（通过加入酸性或碱性试剂，包括下文更详细描述的那些）引发。

[0138] 由无机粘结剂形成的网络可具有与所用的玻璃/玻璃陶瓷粉末/粒子的化学性质或组成类似或基本上相同的化学性质或组成。

[0139] 在一些实施例中，所述无机粘结剂可在环境条件（例如 23℃; 1013mbar）下为液体，或作为水溶液使用，可通过如下特征中的至少一个来表征：

[0140] - 密度：约 0.7 至约 1.5g/cm³ 或约 0.9 至约 1.4g/cm³，
[0141] - 分子量：约 100 至约 500g/mol 或约 150 至约 250g/mol（对于分子前体）。
[0142] - 含有 Si 和 O，和 / 或
[0143] - 在硬化过程中产生低沸点副产物或副产物（如果有的话）（例如沸点在约 120℃以下）。

[0144] 无机粘结剂前体的具体例子包括但不限于四烷基硅（例如 C1 至 C4）原硅酸酯（包括四甲基原硅酸酯（TMOS）、四乙基原硅酸酯（TEOS）、四甲基硅酯和氧化硅溶胶。

[0145] 在一些实施例中，无机粘结剂（例如二氧化硅）存在的量可为约 0.1wt.-%至约 40wt.-%%，在一些实施例中为约 1.0wt.-%至约 20wt.-%，且在一些实施例中为约 2.5wt.-%至约 10wt.-%，分别以混合物的固体含量计。

[0146] 在一些实施例中，无机粘结剂存在的量可为至约 0.1wt.-%，在一些实施例中为至少约 1.0wt.-%，且在一些实施例中为至少约 2.5wt.-%，分别以混合物的固体含量计。

[0147] 在一些实施例中，无机粘结剂存在的量可不大于约 10wt.-%，在一些实施例中不大于约 20wt.-%，且在一些实施例中不大于约 40wt.-%，分别以混合物的固体含量计。

[0148] 玻璃和 / 或玻璃陶瓷粉末

[0149] 除非预期目的不能实现，不特别限制待用于浆料中的玻璃和 / 或玻璃陶瓷粉末的性质和结构。

[0150] 玻璃和 / 或玻璃陶瓷粉末中基本上由玻璃和 / 或玻璃陶瓷材料组成，或仅由玻璃和 / 或玻璃陶瓷材料组成。选择玻璃和 / 或玻璃陶瓷材料以与在人体中的用途相容。此外，可选择玻璃和 / 或玻璃陶瓷材料以提供用于牙科器械的良好美学外观。

[0151] 在一些实施例中，玻璃和 / 或玻璃陶瓷粉末可通过如下特征中的至少一个来表征：

[0152] - 平均粒度：约 5 μm 至约 60 μm，或约 10 至约 40 μm（使用激光衍射测得）；
[0153] - 熔融温度：大约或小于 1000℃和 / 或
[0154] - 密度：约 2.0 至约 2.6 或约 2.2 至约 2.5g/cm³（根据制造商提供的技术数据表）。
[0155] - 在一些实施例中，可使用的玻璃组合物可包含：
[0156] - 二氧化硅：约 60 至约 70wt.-%，
[0157] - 氧化铝：约 9 至约 13wt.-%，
[0158] - 氧化钾：约 5 至约 10wt.-%。
[0159] - 氧化钠：约 9 至约 13wt.-%。
[0160] - 氧化锂：约 0 至约 1wt.-%。
[0161] - 氧化钙：约 2 至约 5wt.-%。
[0162] - 氧化钡：约 0 至约 2wt.-%（任选的）。
[0163] - 氧化锶：约 0 至约 1wt.-%（任选的），和
[0164] - 氧化铈或氟化铈：约 0 至约 1wt.-%（任选的）。
[0166] - 在一些实施例中，玻璃和/或玻璃陶瓷粉末存在的量可为至少约 40wt.-%，在一些实施例中为至少约 60wt.-%，且在一些实施例中为至少约 65wt.-%，分别以整个组合物或混合物计。
[0167] - 在一些实施例中，玻璃和/或玻璃陶瓷粉末存在的量可不不大于约 75wt.-%，在一些实施例中不大于约 80wt.-%，且在一些实施例中不大于约 85wt.-%，分别以整个组合物或混合物计。
[0168] - 在一些实施例中，玻璃和/或玻璃陶瓷粉末存在的量为约 40wt.-% 至约 85wt.-%，在一些实施例中为约 60wt.-% 至约 80wt.-%，且在一些实施例中为约 65wt.-% 至约 75wt.-%，分别以整个组合物或混合物计。
[0169] - 粒度的分布可为（例如）：
[0170] • 10% 粒子小于约 5μm 或小于约 2μm；
[0171] • 50% 粒子小于约 25μm 或小于约 10μm；和
[0172] • 90% 粒子小于约 70μm 或小于约 40μm。
[0173] - 添加剂
[0174] - 本发明的混合物或浆液也可包含另外的组分或添加剂，如着色剂和/或颜料（例如可在烧制过程中燃尽的颜料的例子用于更易识别坯料（“标记”）的荧光、有机颜料；和/或留在器械中用于经烧结材料的着色的无机颜料）。这些添加剂或组分也可存在或包含于玻璃和/或玻璃陶瓷粉末或粒子中。合适的着色剂可包含如下元素中的一种或多种或者它们的离子：Fe, Mn, V, Cr, Zn, Sn 和 Co。
[0175] - 可加入的另外的添加剂可包括缓聚剂（如 1,2-二苯基乙烯）、增塑剂（包括聚乙二醇衍生物、聚丙二醇、低分子量聚酯、邻苯二甲酸酯、硬脂酸二甲酯、邻苯二甲酸酯的混合物、和/或某些脂溶性有机化合物，如维生素 E、维生素 A、维生素 D、维生素 K 等）、防静电剂（如磷酸酯、氯化物、硫醇、氯化物等）、以及可溶于水和有机溶剂的物质，如它们的组合）、氟化物释放材料，或它们的组合。
[0176] - 一些实施例不包括添加剂，然而，如果存在添加剂，则它们存在的量为至少约 0.01wt.-%，在一些实施例中为至少约 0.1wt.-%，且在一些实施例中为至少约 1wt.-%，分别以整个组合物或混合物计。
[0177] - 在一些实施例中，添加剂存在的量可不大于约 20wt.-%，在一些实施例中不大于
约 10wt.-%，且在一些实施例中不大于约 5wt.-%，分别以整个组合物或混合物计。

【0178】在一些实施例中，包含的添加剂的量为约 0.01 至约 20wt.-%，在一些实施例中为
约 0.1 至约 10wt.-%，且在一些实施例中为约 1 至约 5wt.-%。

【0179】只要添加剂不影响溶胶 – 凝胶反应，则其可以以任何所需量（以整个组合物或混
合物计）使用。

【0180】在一些实施例中，待用于本发明的铸造过程的浆料或混合物可包含如下量的各个
组分：

【0181】- 液体：约 15wt.-%至约 60wt.-%，或约 20wt.-%至约 40wt.-%，或约 25wt.-%
至约 35wt.-%，以混合物的总重量计；

【0182】- 无机粘结剂：约 0.1wt.-%至约 20wt.-%，或约 1wt.-%至约 20wt.-%，或约
2.5wt.-%至约 10wt.-%，以混合物的固含量计；

【0183】- 玻璃粉 / 或玻璃陶瓷粉末：约 40wt.-%至约 85wt.-%，或约 60wt.-%至约
80wt.-%，或约 65wt.-%至约 75wt.-%，以混合物的总重量计；以及

【0184】- 添加剂 （包括着色剂）：约 0.01 至约 20wt.-%，或约 0.1 至约 10wt.-%或约 1
至约 5wt.-%，以混合物的总重量计。

【0185】在一些实施例中，液体与无机粘结剂的比例（以重量计）可为约 10：1 至约
1：1，或约 7：1 至约 3：1。如果比例在所述范围之外，则所得牙科器械可能不包括所需
性质。

【0186】在一些实施例中，无机粘结剂与玻璃粉 / 或玻璃陶瓷粉末的比例（以重量计）可
为约 1：100 至约 1：5，或约 1：40 至约 1：10。如果比例在该范围之外，则所得牙科
器械可能不包括所需性质。

【0187】形核浆料

【0188】在一些实施例中，可通过如下示例性过程获得浆料或混合物：

【0189】i）提供液体，

【0190】ii）取决于所用的粘结剂前体，将所述液体调节至适于启动缩合反应的 pH 值（例
如对于 TMS 为 10 至约 12，对于水玻璃为约 2 至约 4），

【0191】iii）加入玻璃粉 / 或玻璃陶瓷粉末，和

【0192】iv）加入无机粘结剂，

【0193】其中步骤 iii）和 iv）也能够以相反的顺序进行。

【0194】可通过使用常规碱性试剂（如包含 NaOH、KOH 或 NH₃ 的溶液）或者酸性试剂（如
包含 HCl 或 HNO₃ 的溶液）来调节 pH 值，其中 pH 值可在调节步骤过程中确定。pH 值可通过
例如 pH 敏感试纸或电子设备（例如 pH 电极）而确定。如果使用强酸或强碱，也可从所用
的酸量进行计算来获得 pH 值。

【0195】无机粘结剂可在搅拌溶液的同时快速加入。无机粘结剂的加入可标志由无机粘结
剂分子的反应所产生的溶胶 – 凝胶反应的起点。在一些实施例中，可使用两 - 浆料体系。如
果使用两浆料体系（“I”和“II”），则这两种浆料的混合标志着溶胶凝胶反应的起点。

【0196】在溶胶 - 凝胶反应过程中，可形成无机网络。

【0197】在一些实施例中，提供浆料或混合物可通过如下特征中的至少一个来表征：

【0198】- 胶凝所需时间（即从加入无机粘结剂直至混合物凝固至其不能变形或不能通过
说明书中

倾斜模具而从模具中移除的点的时间)：30秒至5分钟；和/或
[0199] 沉降所需时间（即从停止搅拌混合物直至混合物由于玻璃和/或玻璃陶瓷粒子的沉降而变得不均匀的时间）：7分钟至超过1周（所述值在不存在无机粘结剂，或存在粘
结剂但在抑制胶凝的pH值下获得）。
[0200] 待用于本发明的过程中的混合物或浆料通常不含可聚合有机粘结剂组分，如含
（甲基）丙烯酸酯或环氧基团的组分。
[0201] 即，在一些实施例中，所述混合物基本上不含可聚合有机粘结剂组分。本发明的有
机粘结剂为由有机化合物组成的粘结剂，所述有机化合物被添加以强化器具或工件并且在于
低于200°C的温度下不能从工件中通过加热来去除。有机粘结剂可在加热至燃烧温度以上
时产生气体，如碳氧化物或氮氧化物。这些废气可能不得不通过昂贵的空气处理或烟囱来
除去。
[0202] 在一些实施例中，通常需要用于启动无机粘结剂的硬化过程的引发剂（例如光
引发剂或氧化还原引发剂）的加入或存在。可通过调节pH值或只是通过使用稀释的酸/碱
溶液来引发硬化过程。
[0203] 本发明的制备过程通常也不包括压制步骤（例如等压或单轴的）或预烧结步骤。
[0204] 如下实施例在示出本发明而非进行限制。
[0205] 实施例
[0206] 实施例1为一种制备层状牙科器械的方法，所述方法包括：提供模具，所述模具包
括层状牙科器械的外部形状的负模；将浆料设置于所述模具中，形成所述层状牙科器械的
第一层；提供固体结构，所述固体结构包括所述层状牙科器械的第二层的正形；将所述固
体结构压入所述模具中的浆料中。
[0207] 实施例2为实施例1所述的方法，其中所述固体结构包括牙芯和压模中的至少
一种。
[0208] 实施例3为实施例1所述的方法，其中将所述固体结构压入所述浆料中包括将牙
芯压入所述浆料中，使得所述牙芯形成所述第二层的至少一部分。
[0209] 实施例4为实施例1所述的方法，其还包括从所述浆料中移除所述固体结构。
[0210] 实施例5为实施例1或4所述的方法，其中所述固体结构包括压模，所述方法还包
括从所述浆料中移除压模以在所述浆料中形成腔体，所述腔体包括所述第二层的负模。
[0211] 实施例6为实施例5所述的方法，其还包括使用所述腔体作为用于所述牙科器械
的第二层的模具。
[0212] 实施例7为实施例5或6所述的方法，其中所述浆料为第一浆料，且所述方法还包
括将第二浆料设置于腔体中以形成所述层状牙科器械的第二层。
[0213] 实施例8为实施例7所述的方法，其中所述第一浆料具有与所述第二浆料不同的
组成。
[0214] 实施例9为实施例7或8所述的方法，其还包括将牙芯压入所述第二浆料中，使得
所述芯形成所述层状牙科器械的第三层的至少一部分。
[0215] 实施例10为实施例7或8所述的方法，其还包括；提供第二固体结构，以及将所述
第二固体结构压入所述第二浆料中，所述第二固体结构包括所述层状牙科器械的第三层的
正形。
实施例 11 为实施例 10 所述的方法，其中将所述第二固体结构压入所述第二浆料中，使得所述牙芯形成所述第二层的至少一部分。

实施例 12 为实施例 10 所述的方法，其中所述第二固体结构包括第二压模，且所述方法还包括从所述第二浆料中移除所述第二压模以形成第二腔体，所述第二腔体包括所述牙科器械的第三层的负像。

实施例 13 为实施例 12 所述的方法，其还包括将第三浆料设置于所述第二腔体中以形成所述牙科器械的第三层。

实施例 14 为实施例 13 所述的方法，其中所述第三浆料具有与所述第一浆料和所述第二浆料中的至少一种相同的组成。

实施例 15 为一种制备层状牙科器械的方法，所述方法包括：提供模具，所述模具包括层状牙科器械的第一层的负像；提供压模，所述压模包括所述层状牙科器械的第二层的正形；将第一浆料设置于所述模具中；将所述压模压入所述模具中的所述第一浆料中以在所述第一浆料中形成腔体，所述腔体包括所述第二层的负像；从所述第一浆料中移除所述压模；以及将材料设置于所述腔体中以形成所述层状牙科器械的另一层，其中所述材料包括牙芯和第二浆料中的至少一种。

实施例 16 为实施例 15 所述的方法，其中将材料设置于所述腔体中包括将第二浆料设置于所述腔体中。

实施例 17 为实施例 15 或 16 所述的方法，其还包括：提供第二压模，所述第二压模包括所述层状牙科器械的第三层的正形；将所述第二压模压入所述材料中以在所述材料中形成第二腔体，所述第二腔体包括所述第三层的负像；以及将材料设置于所述第二腔体中以形成所述层状牙科器械的第三层，其中所述材料包括牙芯和第三浆料中的至少一种。

实施例 18 为实施例 17 所述的方法，其中所述第三层形成所述层状牙科器械的内芯。

实施例 19 为实施例 17 或 18 所述的方法，其中将材料设置于所述第二腔体中包括将第三浆料设置于所述第二腔体中。

实施例 20 为实施例 19 所述的方法，其中所述第三浆料具有与所述第一浆料和所述第二浆料中的至少一种相同的组成。

实施例 21 为实施例 15 或 16 所述的方法，其中所述材料包括第二浆料，且所述方法还包括将牙芯压入所述第二浆料中，使得所述牙芯形成所述层状牙科器械的第三层的至少一部分。

实施例 22 为实施例 15 所述的方法，其中所述材料包括牙芯，且所述方法还包括：在将所述牙芯设置于所述腔体中之前，将第二浆料设置于所述腔体中，且其中将材料设置于所述腔体中包括将牙芯压入设置于所述第一浆料的腔体中的所述第二浆料中。

实施例 23 为实施例 15 所述的方法，其中所述材料包括牙芯，且所述方法还包括：制备所述牙芯的蜡型，使得所述蜡型包括所述牙科器械的正形；用所述蜡型制备模具，从所述模具中移除所述蜡型；从所述牙芯中移除石蜡；以及使用所述牙芯作为用于第二层的材料。

实施例 24 为实施例 1-23 中任一个所述的方法，其中所述第一层形成所述层状牙科器械的最外层。
实施例 25 为一种制备具有 n 层的层状牙科器械的方法，所述方法包括：提供模具，所述模具包括层状牙科器械的层 n-1 的负像；将浆料设置于所述模具中形成所述层状牙科器械的层 n-1；以及将牙芯压入所述浆料中，使得所述牙芯形成所述层状牙科器械的层 n 的至少一部分。

实施例 26 为实施例 25 所述的方法，其中所述浆料为第二浆料，且所述模具为第二模具，所述方法还包括：提供第一模具，所述第一模具包括所述层状牙科器械的层 n-2 的负像；提供第二模具，所述第二模具包括所述层状牙科器械的层 n-1 的正形；将第一浆料设置于所述模具中形成所述层状牙科器械的层 n-2；以及将所述浆料压入所述第一模具中的第一浆料中，以在所述第二模具中提供第二模具，所述第二模具包括层 n-1 的负像。

实施例 27 为实施例 26 所述的方法，其还包括从所述第一浆料中移除所述压模。

实施例 28 为实施例 14 和 24-27 中的任一个所述的方法，其还包括在将所述浆料设置于所述模具中之前，清洗所述浆料。

实施例 29 为实施例 14 和 24-28 中的任一个所述的方法，其还包括在将所述浆料设置于所述模具中之前，在所述浆料中引发溶胶-凝胶反应。

实施例 30 为实施例 14 和 24-29 中任一个所述的方法，其中所述浆料包括玻璃浆料、玻璃陶瓷浆料和它们的组合中的至少一种。

实施例 31 为实施例 14 和 24-30 中的任一个所述的方法，其还包括在将所述浆料设置于所述模具中之后，干燥所述浆料。

实施例 32 为实施例 1-31 中的任一个所述的方法，其中所述模具的至少一部分由如下材料中的至少一种形成：有机硅、聚乙烯（PE）、聚丙烯（PP）、聚碳酸酯、聚氨酯、聚苯乙烯、聚甲醛、金属，和它们的组合。

实施例 33 为实施例 1-32 中的任一个所述的方法，其中提供包括负像的模具包括提供包括扩大的负像的模具。

实施例 34 为实施例 1-33 中的任一个所述的方法，其提供包括模具包括基于数字化工作流程制备模具。

实施例 35 为实施例 1-34 中的任一个所述的方法，其还包括：从模具中移除所述层状牙科器械，以及烧制所述层状牙科器械。

实施例 36 为实施例 35 所述的方法，其中烧制第一制品包括在至少 500 ℃的温度下烧制所述第一制品。

实施例 37 为实施例 1-36 中的任一个所述的方法，其还包括机械加工所述层状牙科器械。

实施例 38 为实施例 1-37 中的任一个所述的方法，其还包括：从模具中移除所述层状牙科器械，所述层状牙科器械包括近终型；以及将所述层状牙科器械机械加工成终型。

实施例 39 为一种用于制备层状牙科器械的体系，所述体系包括：第一部分，所述第一部分包括层状牙科器械的第一层的负像；第二部分，所述第二部分包括所述层状牙科器械的第二层的正形；以及第一浆料，所述第一浆料被配置为设置于所述第一部分和所述第二部分之间，使得所述第一浆料形成所述层状牙科器械的第一层。

实施例 40 为实施例 39 所述的体系，其中所述第二部分包括牙芯，使得所述牙芯形成所述层状牙科器械的第二层。
[0246] 实施例 41 为实施例 39 所述的体系，其还包括第三部分，所述第三部分包括所述层
状牙科器械的第三层的正形。

[0247] 实施例 42 为实施例 41 所述的体系，其中所述第三部分包括牙芯，使得所述牙芯形
成所述层状牙科器械的第三层的至少一部分。

[0248] 实施例 43 为一种用于制备层状牙科器械的体系，所述体系包括：第一部分，所述
第一部分包括层状牙科器械的第一层的负像；第二部分，所述第二部分包括所述层状牙科
器械的第二层的正形；以及第三部分，所述第三部分包括所述层状牙科器械的第三层的正
形。

[0249] 实施例 44 为实施例 43 所述的体系，其中所述第二层相对于所述第一层向内设置，
且所述第三层相对于所述层状牙科器械的第二层向内设置。

[0250] 实施例 45 为实施例 43 或 44 所述的体系，其中所述第二部分包括第一压模，且其
中所述第二部分包括第二压模。

[0251] 实施例 46 为实施例 43-45 中的任一个所述的体系，其中所述第二部分和所述第三
部分具有相同的形状。

[0252] 实施例 47 为实施例 43-46 中的任一个所述的体系，其中所述第三部分小于所述第
二部分。

[0253] 实施例 48 为实施例 43-47 中的任一个所述的体系，其中所述第三部分具有与所述
第二部分不同的形状和尺寸。

[0254] 实施例 49 为实施例 43 或 44 所述的体系，其中所述第二部分包括压模，且所述第
三部分包括牙芯，所述牙芯形成所述层状牙科器械的第三层的至少一部分。

[0255] 实施例 50 为实施例 1-24 和 28-38 中的任一个所述的方法或实施例 39-49 中的任
一个所述的体系，其中所述第一层相对于所述层状牙科器械的第一层向内设置。

[0256] 实施例 51 为实施例 1-38 和 50 中的任一个所述的方法或实施例 39-42 和 50 中的
任一个所述的体系，其中所述浆料包括玻璃浆料和玻璃陶瓷浆料中的至少一种。

[0257] 实施例 52 为实施例 2, 3, 9, 11, 15-38 和 50-51 中的任一个所述的方法或实施例
40, 42 和 49-51 中的任一个所述的体系，其中所述牙芯包括陶瓷、金属、金属合金、贵金属、
贵金属合金和它们的组合中的至少一种。

[0258] 下面工作实例旨在示出本发明而非进行限制。

[0259] 实例

[0260] 实例 1；两层牙齿修复体的形成

[0261] 使用具有精确固定封盖的塑料箱覆盖并对准模具的负像和正像部分，所述模具的
负像部分由有机硅形成，且所述模具的正像部分由聚甲基形成（可以商品名 Delrin 得自
DuPont Corp., Wilmington, DE）。通过使用 Lava™ Form M148 炉机（可得自 3M ESPE AG,
Seefeld, Germany）铣削聚甲醛的坯料，将所述正像部分（压模）成型为典型的切牙形状。
使用 Scotch-Weld 粘合剂（可得自 3M Company, St.Paul, MN）将所述压模的底部附接至所述
箱封盖的内部。用聚二甲基甲基苯基硅氧烷（Heraform, A+B 型, Heraeus Kulzer, Germany）
填充所述箱的底部，将封盖置于箱上，由此迫使压模压入所述有机硅。使所述有机硅固化，
移除封盖，留下对应于所需牙齿修复体的外部形状的压模负形。

[0262] 在不从所述封盖移除压模下，使用牙科磨削工具从压模表面去除薄层（约 1mm),
由此形成具有描述牙齿修复体的所需内层的正形的较小压模。

【0263】通过混合在去离子水中的9.8ml 1mM氢氧化钠（Fluka/Sigma-Aldrich, Germany）溶液和25.0g白玻璃粉末（LAVAM™ Ceram E1, 3M ESPE），制得第一浆料。向所述混合物加入2.0ml 98％四甲基原硅酸酯（Fluka/Sigma-Aldrich）并搅拌，由此引发硬化反应。40秒后，所述浆料倾注至模具的负模部分，附着所述箱的封盖，由此迫使具有内层形状的压模进入所述浆料中。在室温下凝胶20min之后，将所述模具置于在50℃的干燥烘箱（Memmert, Germany）中60min。在从烘箱中移出并冷却之后，从所述箱移除封盖，所凝固的壳具有所需牙齿修复体的外部形状/表面和内层的内部形状/表面。

【0264】通过混合在去离子水中的9.8ml 1mM氢氧化钠溶液和25.0g棕色玻璃粉末Dentin A4（Chemich1, Liechtenstein）（为了可视化的目的而使用棕色玻璃），制得第二浆料。向所述混合物加入2.0ml 98％四甲基原硅酸酯（Fluka/Sigma-Aldrich）并搅拌。在加入之后30秒，向所述浆料倾注所述模具中，凝固的壳仍然在适当的位置。由于这是最终层，因此无压模被压入浆料中，使所述浆料在室温下凝胶15min并在50℃下干燥180min。

【0265】将所得凝固的两层牙齿修复体从模具中移除，并在780℃下的Austromat3001炉（Dekema, Germany）中在真空下烧制25min以形成齿（切牙）形坯料。

【0266】所得切牙形坯料在唇面和边缘处为白色。能够通过白色外层的薄部以及在牙齿的唇面处观察到内部棕色芯。

【0267】实例2：两层修复体的形成

【0268】使用LAVAM™数字体系（3M ESPE）形成三单元氧化锆牙桥芯（bridge core）。该牙桥变成完工修复体的内芯。将熔融蜡在所述芯上涂层，冷却，然后成形，以形成具有三单元牙桥的最终外部形状的“蜡型”。在所述芯上的蜡型的厚度为大约1mm。

【0269】在半块形成，底部的一半为牙桥底部（即与制得的牙桩啮合的部分）的负模，且咬合的一半为牙桥咬合面的负模。

【0270】起始于内部的一半模具，将蜡型的底部嵌入有机硅印模材料（VPSImpression Material, 3M ESPE）中，留下不被有机硅覆盖的咬合的一半。使有机硅固化，并进一步部分嵌入湿石膏（Fixare Presto Plus, Picodent, Germany）的坯料中，所述湿石膏的坯料在硬化时变成固化的有机硅模具的支承结构。

【0271】为了形成模具的咬合的一半，用凡士林涂布底部的一半（有机硅和石膏）以提供最后的脱模，然后将有机硅层施用至牙桥芯蜡型的暴露的咬合的一半，并固化。再次将石膏支承层施用至固化的有机硅。

【0272】一旦石膏硬化，就分离模具的两半块，并从模具中移除蜡型。将蜡从所述牙桥芯刮下，通过在炉（HTC 03/169, Nabertherm, Germany）中在500℃下加热1min而进一步清洁所述牙桥芯。也清洁模具半块的凡士林。

【0273】通过混合8g玻璃粉末（GM/LM-Zr, Chemich1, Liechtenstein）,2.5ml去离子水和1g纯硅酸钠（Sigma-Aldrich, Germany）而制得浆料。再次将无蜡氧化锆芯压入模具的底部的一半中，并将浆料置于模具的咬合的一半中。将1滴1M盐酸加入模具中的液体浆料中，由此引发硬化过程。将具有芯的模具的底部的一半压入所述浆料中，并将半块夹在一起。模具在50℃烘箱中加热12小时，冷却并分离模具，移除层状牙桥。

【0274】通过在炉中在790℃下烧制15min而完成所述修复体。完成的牙桥修复体具有
氧化锆芯和成形用以安装在制得的牙桩上的底部，以及成型为所需牙齿形状的外部玻璃镶面。

[0275] 如上所述并在附图示出的实施例仅以举例的方式呈现，且不旨在作为对本发明的概念和原则的限制。这样，本领域的普通技术人员应当理解，在不脱离本发明的精神和范围的情况下可以对元件及其结构和布置进行各种改变。以下权利要求书描述了本发明的各种特征和方面。