wO 2007/044170 A1 |10 0 OO0 O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO R OO0 OO

International Bureau

(43) International Publication Date
19 April 2007 (19.04.2007)

(10) International Publication Number

WO 2007/044170 Al

(51) International Patent Classification:
GOGF 17/00 (2006.01) GOGF 9/00 (2006.01)
GOGF 9/44 (2006.01)

(21) International Application Number:
PCT/US2006/035390

(22) International Filing Date:
12 September 2006 (12.09.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/724,324
11/321,209

Us
Us

6 October 2005 (06.10.2005)
29 December 2005 (29.12.2005)
(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).
(72) Inventors: JEZIERSKI, Eduardo, A.; One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).
PROVOST, Peter, G.; One Microsoft Way, Redmond,
Washington 98052-6399 (US). WILSON, Bradley, J.;
One Microsoft Way, Redmond, Washington 98052-6399
Us).
(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,
NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,
SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: EXTENSIBLE MECHANISM FOR OBJECT COMPOSITION

ol
102 104
CUSTOMIZED e
STRATEGY | RECEPTION | IMPLEMENTATION
COMPONENT | COMPONENT

(57) Abstract: An extensible framework for object oriented programming comprises a reception component that receives a cus-
tomized strategy relating to composing a target object. An implementation component automatically implements the customized
strategy to compose the target object based at least in part upon context associated with the target object. The extensible framework
can further comprise a context component that determines the context, including context of an application associated with the target
object, existing objects associated with the target object, and relationships between the existing objects.

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

EXTENSIBLE MECHANISM FOR OBJECT COMPOSITION

BACKGROUND
[0001] Advancements in computing technologies have enabled transformation
of computers from high-cost, low functionality devices that could be employed for
basic mathematical calculations to low-cost, high functionality devices that can be
utilized for word-processing, instantaneous communications between friends and
family, bill payment, entertainment, and the like. To enable this leap in functionality
over a relatively short period of time, size of transistors has been greatly reduced,
thereby enabling integrated circuits to be associated with significant amounts of
memory as well as increased processing speed (due to a number of transistors that can
be located on a single integrated circuit). These advancements in turn have led to
creation of more robust and flexible programming environments, which are employed
by computer pro grammefs to generate applications and/or improve existing
applications. In more detail, a plurality of programming languages now exist, where a
programmer can select a particular language based on familiarity and/or functionality
associated with a selected language.
[0002] In more detail, programming languages are formal languages
employed specifically to communicate instructions to computers or microprocessors
for task execution. Through the years, object oriented programming has become one
of many familiar and popular models designers and programmers utilize to implement
functionality within computer systems. Object oriented programming is unique from
other programming languages because it is premised on viewing programming in
terms of objects or things rather than actions like other models.
[0003] The benefit of object technology arises out of three basic principles:
encapsulation, polymorphism and inheritance. Objects hide or encapsulate the
internal structure of their data and associated methods. Instead of exposing
implementation details, objects present interfaces that represent their abstractions
cleanly without extraneous information. Polymorphism takes encapsulation one-step
further. Polymorphism allows the use of the same code for different data types- the
idea being many shapes, one interface. Hence, a software component can make a
request of another component without knowing exactly what that component is. The

component that receives the request interprets it and figures out according to its

10

15

20

25

30

WO 2007/044170 L PCT/US2006/035390

variables and data how to execute the request. The third principle is inheritance,
which enables developers to reuse pre-existing design and code. This capability
allows developers to avoid creating all software from scratch. Rather, through
inheritance, developers can derive subclasses that inherit and modify both state and
behaviors of other classes.

[0004] The object oriented programming model is often defined via a class-
based approach. In this system, objects are entities including both state and behavior.
Both the state and behavior of an object are defined by a class, which identifies
objects of a particular type. An object created based on a class definition is
considered an instance of that class reflected in a dynamic type. Thus, a class
specifies the data (e.g., state) that the object can contain as well as methods, functions,
or behaviors that the object can perform. Methods operate to modify the internal state
of the associated objects by altering the data contained therein. The combination of
such data and methods in objects is often referred to as encapsulation in object-
oriented programming. Encapsulation provides for the state of an object to be
changed only by well-defined methods associated with the object. When the behavior
of an object is confined to such well-defined locations and interfaces, changes (e.g.,
code modifications) in the object will have minimal impact on the other objects and
elements in the system.

[0005] A current deficiency associated with object oriented programming is
that it is difficult to automatically create a new object based upon existing objects,
application context, and the like, and it is further difficult to modify existing objects
(e.g., modify relationships between existing objects). Rather, a skilled programmer
may be forced to generate a plurality of additional objects, wherein each object is
utilized for disparate contexts. Existing frameworks for object-oriented programming
do not allow customized strategies to be implemented in connection with composing

objects.

SUMMARY
[0006] The following presents a simplified summary in order to provide a
basic understanding of some aspects of the claimed subject matter. This summary is
not an extensive overview, and is not intended to identify key/critical elements or to

delineate the scope of the claimed subject matter. Its sole purpose is to present some

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

concepts in a simplified form as a prelude to the more detailed description that is
presented later.

[0007] Described herein is an extensible framework that can be employed in
connection with composing one or more objects associated with an application,
wherein the objects conform to object oriented programming. In contrast to
conventional frameworks, the claimed framework described below enables user-
creation and implementation of various composition strategies. The term composition
as used herein refers to creation of a new object, defining relationships associated
with the new object, defining relationships associated with existing objects, and the
like. Composing an object can involve several specific examples, such as creating a
new object instance in memory by invoking an adequate object initializer, establishing
relationships between the object and other new or existing objects, modifying an
internal object state or invoking methods on the internal state, efc. A composition
conceptually involves a target object and a context, wherein the context is a term
utilized to represent existing entities in an application. For instance, these entities can
include existing object instances, policy and type definitions, configuration of the
application, etc. Based upon the context, various strategies can be implemented in
particular orders to compose one or more objects.

[0008] In more detail, a composition strategy can be responsible for one
particular style or portion of a composition. A composition strategy may be
dependent upon execution of a different composition strategy or a series of disparate
composition strategies before, during, or after execution of such strategy (to enable
the composition strategy to complete its task). Thus, it can be discerned that the
behavior of a composition strategy is determined solely by its implementation.
Furthermore, composition strategies can (but are not required to) enable external
entities to alter their behavior (temporarily or permanently) via one or more policies
that can be provided by programmatic, declarative, or configuration-based means.
These composition strategies can be generated by one or more programmers and
applied to an application at run-time, wherein composition strategies are executed
based upon the determined context. Furthermore, the composition strategies can be
executed in a particular order based upon the determined context. For instance,
composition strategies can be run as a chain of sequential composition strategies

classified into stages — thus, multiple strategies can act on a same object and context.

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

Furthermore, strategies can be executed in parallel if the context and application
require.

[0009] In a specific example, an application can be deployed, wherein such
application is written by way of object oriented programming. After the application is
written, it may be desirable to compose particular objects within such application.
Accordingly, composition strategies can be generated relating to such composition,
wherein the composition strategies do not affect the application or context. At run-
time of the application, the composition strategies can be executed and objects can be
composed according to the composition strategies and a determined context.

[0010] To the accomplishment of the foregoing and related ends, certain
illustrative aspects are described herein in connection with the following description
and the annexed drawings. These aspects are indicative, however, of but a few of the
various ways in which the principles of the claimed subject matter may be employed
and the claimed matter is intended to include all such aspects and their equivalents.
Other advantages and novel features may become apparent from the following

detailed description when considered in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
[0011] Fig. 1 is a high-level block diagram of a system that facilitates
composing an object given particular customized strategies.
[0012] Fig. 2 is a block diagram of a system that facilitates employing
multiple strategies to compose a target object, wherein an order of the strategies is

based at least in part upon a determined context.

[0013] Fig. 3 is a block diagram of an extensible programming framework.
[0014] Fig. 4 is a block diagram of a system that facilitates generating
inferences.

[0015] Fig. 5 is a representative flow diagram of a methodology for
composing an object in an application.

[0016] Fig. 6 is a representative flow diagram of a methodology for
determining sequencing of strategies in connection with composing one or more
objects.

[0017] Fig. 7 is a representative flow diagram illustrating a methodology for

performing constructor dependency injection according to a composition strategy.

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

[0018] Fig. 8 is a representative flow diagram illustrating a methodology for
performing setter injection according to a composition strategy.

[0019] Fig. 9 is a representative flow diagram illustrating a methodology for
registering and storing a target object in a container according to a composition
strategy.

[0020] Fig. 10 is a representative flow diagram illustrating a methodology for
locating a target object from within a container according to a composition strategy.
[0021] Fig. 11 is a representative flow diagram illustrating a methodology for
performing type mapping with respect to a target object according to a composition
strategy.

[0022] Fig. 12 is a representative flow diagram illustrating a methodology for
performing attribute reflection with respect to a target object according to a

composition sirategy.

[0023] Fig. 13 is a representative flow diagram illustrating a methodology for
providing a proxy object according to a composition strategy.
[0024] Fig. l4isa schematic block diagram illustrating a suitable operating
environment.
[0025] Fig. 15 is a schematic block diagram of a sample-computing
environment.

DETAILED DESCRIPTION
0026} The claimed subject matter is now described with reference to the

drawings, wherein like reference numerals are used to refer to like elements
throughout. In the following description, for purposes of explanation, numerous
specific details are set forth in order to provide a thorough understanding of the
claimed subject matter. It may be evident, however, that such subject matter may be
practiced without these specific details. In other instances, well-known structures and
devices are shown in block diagram form in order to facilitate describing the subject
invention.

[0027] As used in this application, the terms “component” and “system” are
intended to refer to a computer-related entity, either hardware, a combination of
hardware and software, software, or software in execution. For example, a
component may be, but is not limited to being, a process running on a processor, a

processor, an object, an executable, a thread of execution, a program, and a computer.

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

By way of illustration, both an application running on a server and the server can be a
component. One or more components may reside within a process and/or thread of
execution and a component may be localized on one computer and/or distributed
between two or more computers. The word “exemplary” is used herein to mean
serving as an example, instance, or illustration. Any aspect or design described herein
as “exemplary” is not necessarily to be construed as preferred or advantageous over
other aspects or designs.

[0028) Furthermore, aspects of the claimed subject matter may be
implemented as a method, apparatus, or article of manufacture using standard
programming and/or engineering techniques to produce software, firmware, hardware,
or any combination thereof to control a computer to implement various aspects of the
subject invention. The term "article of manufacture" as used herein is intended to
encompass a computer program accessible from any computer-readable device,
carrier, or media. For example, computer readable media can include but are not
limited to magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips...),
optical disks (e.g., compact disk (CD), digital versatile disk (DVD)...), smart cards,
and flash memory devices (e.g., card, stick, key drive...). Additionally it should be
appreciated that a carrier wave can be employed to carry coﬁlputer-readable electronic
data such as those used in transmitting and receiving electronic mail or in accessing a
network such as the Internet or a local area network (LAN). Of course, those skilled
in the art will recognize many modifications may be made to this configuration
without departing from the scope or spirit of what is described herein.

[0029] The claimed subject matter will now be described with respect to the
drawings, where like numerals represent like elements throughout. Referring now to
Fig. 1, an extensible object composition system 100 is illustrated. Composition of an
object conceptually involves acting on a target object based at least in part upon a
context associated with such target object. The context can be defined as existing
entities in a particular application as well as relationships between such entities, and
the target object can be defined as an object that is being composed in such context.
Composition as used herein can include creating an object (e.g., the target object) and
generating relationships with respect to such object, receiving an existent object (the |
target object) and creating relationships between the existent object and other objects,
deleting existing relationships associated with the target object, altering relationships

associated with the target object, efc. The composition with respect to a target object

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

can be undertaken through utilization of one or more customized composition
strategies, wherein a framework associated with implementing the composition
strategies enables addition of new composition strategies as well as defining use of
such strategies.

[0030] Still more specifically, the system 100 includes a reception component
102 that receives a customized composition strategy, wherein the composition
strategy can be received from a user, a program, from memory, a hard disk, or any
other suitable location. The customized composition strategy can be one of several
strategies that are received by the reception component 102, and can include any
suitable actions that may be undertaken with respect to composing an object. For
example, the customized composition strategy can relate to creating a new object
instance in memory by invoking an adequate object initializer, establishing
relationships between an object and other new or existing objects within a particular
context, modifying internal object state, invoking methods on an object, acting on
other objects within a context without acting on the target object itself, among others.
It is to be understood that this listing of actions that may be associated with the
customized composition strategy is exemplary in nature and not limitative. The
received composition strategy can be responsible for one particular style of
composition, and can rely on other associated composiﬁon strategies to run before the
customized composition strategy, after the customized composition strategy, and/or
during the customized composition strategy to enable proper execution of the received
customized composition strategy. Thus, the behavior of the composition strategy can
be determined solely by implementation, and can (but is not required to) allow
external entities to alter its behavior temporarily or permanently by way of poliéy.
These policies can be provided by pro grammatic, declarative, or configuration-based
means.

[0031] The customized composition strategy can be relayed from the
reception component 102 to an implementation component 104, wherein the
implementation component 104 utilizes such composition strategy in connection with
composing an object 106. For instance, the implementation component 104 can be
called by an application at run-time, and the application can request particular
customized composition strategies as well as specify default policies associated
therewith. The reception component 102 can thereafter receive such composition

strategies. The context (described above) can then be ascertained and provided to the

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

implementation component 104, wherein the context includes a set of entities in the
application — for example, existing object instances, policy and type definitions,
configuration of the application, and the like. Based at least in part upon the context
and the application call, the implementation component 104 can compose the object
106. Accordingly, it can be discerned that the system 100 enables extensibility with
respect to a composition, as composition strategies that are utilized to implement the
composition can be independently built and utilized without requiring alteration to a
consuming application or other composition strategies. In other words, within a
particular context several rules exist, and utilizing such rules objects can be created
and wired together with one call, wherein the rules are extensible and policy—drilven.
An analogy to the system 100 would be a factory line, wherein the system 100 enables
provision of additional portions to the line at the will of a user. These portions
(strategies) can then be consumed and employed by an application at runtime,
wherein a context associated with the application can determine which composition
strategies to employ, which policies to employ, ordering of composition strategies,
and the like.

[0032] In a still more particular example that illustrates benefits of the system
100, it may be desirable to wire-up several objects associated with an application in a
substantially similar manner, wherein such wire-up is desirably customized. Contrary
to static systems, the system 100 enables creation of a customized composition
strategy or strategies and implementation of such composition strategies without
requiring alteration of the application or alteration of other composition strategies. In
more detail, an individual may wish that wire-ups were complete with respect to
several objects associated with an application. In conventional systems, if a
composition strategy were not provided with the system, then wiring-up would need
to be done manually for each object. The system 100, however, enables provision of
a customized strategy that performs the desired wire-up and automatically performs
the wire-up on appropriate objects (which can be determined by the context). For
instance, the appropriate customized strategy can be created by a programmer,
provided to the reception component 102 at run-time of an application, and then
implemented by the implementation component 104 based upon a context.

[0033] Turning now to Fig,. 2, a system 200 that facilitates object composition
by way of composition strategies provided through an extensible framework is

illustrated. The system 200 includes the reception component 102 that receives a

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

plurality of customized composition strategies, wherein such composition strategies
relate to composing at least the target object 106. As described above, composition
can relate to various specific actions, including creating object instances in memory,
establishing relationships between objects, modifying internal object states, acting on
various objects in a context, and the like. The reception component 102 can be
associated with a policy component 202 that defines and implements policies with
respect to each of the plurality of customized composition strategies. For instance,
the policies can be permanent or temporary. Permanent policies remain constant
between multiple composition executions, while temporary policies exist only for a
single execution of the system 200. The policy component 202 enables an application
to specify which composition strategies are needed as well as specify default policies.
Additionally, the policy component 202 can define policies with respect to the
customized composition strategies based at least in part upon programmatic,
declarative, or configuration-based commands. Furthermore, temporary policies can
be employed to either override or extend policies associated specifically with the
customized composition strategies. Moreover, the policy component 202 can alter
policies associated with the strategies between calls related to the target object 106.
This flexibility is unattainable in conventional systems.

[0034] The reception component 102 can further be associated with an
ordering component 204 that describes an order in which the plurality of customized
composition strategies are to be implemented. Further, the ordering component 204
can be associated with a context component 206 that provides the ordering component
204 with a context relating to the object 106. As stated above, the context can include
entities in an application that includes the target object 106, such as existing object
instances, policy and type definitions, configuration of the application, etc.
Furthermore, existing object instances can be local or remote, wherein the term
“remote” refers to objects in another computer, network, process, and the like. The
context component 206 can determine the context and provide it to the ordering
component 204, which utilizes the context to determine an order in which the
composition strategies are to be applied (to effectuate composition of the target object
106). The ordering component 204 can also receive declarative or programmatic
statements relating to an order. Furthermore, the ordering component 204 can cause

composition strategies to operate in parallel if desired.

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

[0035] The determined context and the order of composition strategies can
then be provided to the implementation component 104, which causes the strategies to
execute in a particular order at run-time of the application. Accordingly, it can be
determined that a flexible and robust object composition system is enabled through
the components described in such figure.

[0036] Now referring to Fig. 3, an exemplary system 300 that utilizes one or
more aspects described above in connection with composing the target object 106 is
illustrated. The system 300 includes the reception component 102 which receives one
or more customized composition strategies. In the exemplary system 300, the
composition strategy received by the reception component 102 can relate to building
the target object 106. The reception component 102 is associated with the
implementation component 104, which can implement the received strategy with
respect to the target object 106. The implementation ’component 104 can include
and/or be associated with an object builder component 302, which can receive code
304 from a programmer. and class definitions 306. Given the code 304 and definitions
306, the target object 106 can be built by the object building component 302
according to the received strategy. Such use of composition strategies enables object-
oriented programmers to complete highly complex and difficult tasks in a much more
efficient manner when compared to conventional frameworks.

[0037] The system 300 can further include a policy interrogator component
308 that can receive and interrogate a user-defined policy. For example, the policy
can specify whether the strategy is to be employed a single time or for several
instances. The implementation component 104 can further determine and/or receive a
context associated with the target object 106, where the context refers to a set of
entities in an application, such as existing object instances, policy and type
definitions, configuration of the application, efc. The system 300 allows for multiple
styles and requirements of composition by delegating actual composition work to one
or more composition strategies. For instance, each strategy may be responsible for a
particular style of composition. The received strategy may allow external entities to
alter its behavior by way of policy, wherein the policy can be provided by
programmatic, declarative, or configuration-based means. The policy interrogator
component 308 can interrogate such policy to determine whether it is a permanent
policy and/or a transient policy. Permanent policies remain constant between multiple

composition executions while transient policy exists for a single execution of a

10

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

builder. Transient policy can override or extent policies provided to the composition
strategies.

[0038] Composition strategies implemented by the system 300 can be
extended, wherein the extensions can be built and employed independently. Further,
extensions can be independent or interdependent. In a particular exemplary use of the
system 300, patterns of factory, builder, and chain of responsibility are well
understood, and have been applied to solve composition problerﬁ as illustrated in
existing dependency injection containers and proxying factories. The system 300
enables extensibility in a manner in which composition occurs, as strategies that are
implement the composition can be independently build and used without requiring
alteration to consuming application or other strategies.

[0039] In a particular example, the system 300 can be supported for NET
events, thereby allowing a class author to decorate an event with a publisher attribute
that specifies the event’s topic. Another class author can decorate an event handler
with a subscriber attribute specifying the same topic. At runtime, the framework
described herein can be employed to create and wire up instances of these classes
without any intervention from calling code. In other words, the object builder

component 302 can create and wire up instances of classes. For example:

public class PublisherClass

{
[EventPublisher(“MyTopic™)]
public event EventHandler MyTopicEvent;
//Do something that fires the event...

}

public class SubscriberClass

{
[EventSubscriber(“MyTopic”)]

public void HandleMyTopicEvent(object sender, EventArgs €)
{

/Do something with the event

}

11

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

}

The above illustrates an exemplary strategy that can be utilized by the system 300 to
perform wire-up of the event to the handler when objects are created.
[0040] In another example, the definitions 306 can include the following C#

class definitions:

public class ParentClass

{
private ChildClass child;
public ParentClass(ChildClass child)
{
this.child = child;
}
public ChildClass Child
{
get { return child; }
}
}
public class ChildClass
{
}

The received strategy can be employed to provide a class that would allow the
exemplary code 304 below to generate a new instance of ParentClass automatically
populated with an instance of ChildClass.

[0041] In more detail, the following test case illustrates generation of the
above-described new instance utilizing a class called ObjectBuilderContainer that
provides an implementation of the claimed subject matter that may be populated with

a set of strategies to provide simple constructor-based dependency injection.

[Test]
public void ConstructorDependencylnjectionTest()

12

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

{
ObjectBuilder builder = new ObjectBuilder();

ParentClass parent = builder.Build<ParentClass>();
Assert.IsNotNull (parent.Child);

Extending this example, such code (building code) can be extended by adding an
additional strategy that uses reflection to locate an attributed method and execute such

method.

public class SomeClass

{
public bool MethodInvoked = false; '
[InvokeMethod]
public void DoSomething ()
{

MethodInvoked = true;

b

}

[Test]

public void MethodInvocationStrategyTest ()

{
ObjectBuilder builder = new ObjectBuilder();
builder.AddStrategy(new MethodInvocationStrategy());
SomeClass result = builder.Build<SomeClass>();
Assert.IsTrue(result. MethodInvoked);

}

It can be discerned that behavior of the builder was quickly and easily modified by
adding a strategy to the builder prior to use of such builder.

13

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

[0042] From the previous examples, it can be determined that the system 300
can implement strategies to perform tasks such as constructor dependency injection,
setter injection, registration and storage in a container, lookup from a container, type
mapping, attribute reflection, proxy return, and other suitable tasks. In addition to
simple strategies shown above, some strategies may employ policy to be configured.
For example, a user in a particular instance may use policy to configure some
strategies. For instance, the user may desire to perform setter injection on particular
properties. In this case, the user might provide a policy (analyzed by the policy
interrogator component 308) ihdicating how the strategy should be implemented by

the implementation component 104. For example:

public class Person

{

private string hame;

public string Name

{

get { return name; }

set { name = value; }

[Test]
public void PropertyPolicyTest

{
ObjectBuilder builder = new ObjectBuilder();

builder.AddStrategy(new PropertySetterStrategy());
builder.AddPolicy(new PropertyPolicy(“Name”, “John Doe”));

Person result = builder. Build<Person>();

Assert. AreEqual(“John Doe”, result.Name);

14

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

This policy is a permanent policy, in that for every run of the builder, a class that has
a string property named “Name” will be set to “John Doe”. It is understood, however,
that the system 300 (and other systems described herein) can support policies utilized

for single runs of the builder. For example:

[Test]

public void TransientPolicyTest

{
ObjectBuilder builder = new ObjectBuilder();
Builder.AddStrategy(new PropertySetterStrategy());

PropertyPolicy johnPolicy = new PropertyPolicy(“Name”, “John Doe”);
Person john = builder.Build<person>(johnPolicy);

PropertyPolicy samPolicy = new PropertyPolicy(“Name”, “Sam Smith”);
Person sam = builder.Build<Person>(samPolicy);

Assert. AreEqual(“John Doe”, john.Name);

Assert.AreEqual(“Sam Smith”, sam.Name);

[0043] Now turning to Fig. 4, a system 400 that facilitates consolidating and
encapsulating common patterns that occur in object-oriented programming is
illustrated. The system 400 includes the reception component 102 that receives a
strategy and the implementation componeht 104 that implements such strategy at
runtime of an application. In one utilization of the system 400, the strategy can relate
to constructor dependency injection, which is associated with discovering
requirements of a class’s constructor at run-time, resolving those requirements to
determine objects that need to be retrieved or created, and passing them into the
constructor for the object when the object itself is created. Constructors in object-
oriented programming are methods utilized to create a new instance of an object, and
can require certain parameters. Constructor dependency injection is the idea that
methods needed by the constructor can be inferred so that a developer consuming the
class doesn’t need to explicitly define such methods. Accordingly, the requirements

are injected into the constructor method call as an object is created based upon an

15

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

inferred parameters list, wherein a machine-learning component 402 associated with
the implementation component 104 can generate the inferences.

[0044] As used herein, the term “inference” refers generally to the process of
reasoning about or inferring states of the system, environment, and/or user from a set
of observations as captured via events and/or data. Inference can be employed to
identify a specific context or action, or can generate a probability distribution over
states, for example. The inference can be probabilistic - that is, the computation of a
probability distribution over states of interest based on a consideration of data and
events. Inference can also refer to techniques employed for composing higher-level
events from a set of events and/or data. Such inference results in the construction of
new events or actions from a set of observed events and/or stored event data, whether
or not the events are correlated in close temporal proximity, and whether the events
and data come from one or several event and data sources. Various classification
schemes and/or systems (e.g., support vector machines, neural networks, expert
systems, Bayesian belief networks, fuzzy logic, data fusion engines, ...) can be
employed in connection with performing automatic and/or inferred action.

[0045) In one particular example, the inference can be controllable through
strategy and policy. Thus, inference can be accomplished by analyzing attribute
declarations that can be applied to parameters of a constructor. In another example,
inference can be undertaken by the machine-learning component 402 through simple
inspection of object types (in analyzing a context). Still further, metadata can be
provided to a strategy (which can be perceived as advice to the strategy), enabling the
machine-learning component 402 to make better decisions regarding such .
determination. The metadata can, for example, be provided in the form of an external
file 404 (e.g., an external XML configuration file). In another example, the metadata
can be in the form of advice given by the programmer within code. In still another
example, the metadata can be obtained from an attributal laniguage, such as NET.
Thus, any suitable manner for receiving and/or providing metadata is contemplated
and intended to fall under the scope of the hereto-appended claims. Moreover, while
the system 400 is described with respect to constructor dependency injection, it is
understood that inference can be undertaken with respect to wire-ups, setter injection,
registration and storage in a container, lookup from a container, type mapping,

attribute reflection, returning proxy objects, and the like.

16

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

[0046] Referring now to Figs. 5-13, methodologies in accordance with the
claimed subject matter will now be described by way of a series of acts. It is to be
understood and appreciated that the claimed subject matter is not limited by the order
of acts, as some acts may occur in different orders and/or concurrently with other acts
from that shown and described herein. For example, those skilled in the art will
understand and appreciate that a methodology could alternatively be represented as a
series of interrelated states or events, such as in a state diagram. Moreover, not all
illustrated acts may be required to implement a methodology in accordance with the
claimed subject matter. Additionally, it should be further appreciated that the
methodologies disclosed hereinafter and throughout this specification are capable of
being stored on an article of manufacture to facilitate transporting and transferring
such methodologies to computers. The term article of manufacture, as used herein, is
intended to encompass a computer program accessible from any computer-readable
device, carrier, or media.

[0047] Referring specifically to Fig. 5, a methodology 500 for composing one
or more objects that conform to object-oriented programming is illustrated. The
methodology 500 begins at 502, and at 504 a plurality of composition strategies are
received. These strategies can be customized by a user and can be dependent or
interdependent on other strategies. At 506, a command to compose a target object is
received. For example, initiation of an application can cause a request for a
composition to occur at run-time of such application. At 508, context associated with
the target object can be analyzed, wherein context relates to existing entities,
relationships, instances, classes, and the like that are associated with the application.
At 510, at least one of the plurality of composition strategies are executed based at
least in part upon the context. For instance, the composition strategies can relate to
creating an object, modifying references, creating relationships, or any other suitable
action. Moreover, the composition strategies can be independent or dependent upon
one or more disparate strategies, and can be executed in particular orders depending
upon context and/or policy. The methodology 500 then completes at 512.

[0048] Referring now to Fig. 6, a methodology 600 for composing an object
through an extensible framework is illustrated. The methodology 600 begins at 602,
and at 604 a plurality of composition strategies are received. Multiple styles and
requirements of composition can be effectuated by delegating actual composition

work to a subset of the plurality of strategies. Further, each of the strategies can relate

- 17

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

to a particular style of composition, and may or may not rely on other composition
strategies running before or after to fulfill its work. At 606, an application is
executed, and at 608 a command to compose a target object is received. The
command can be automatically generated upon executing the application, for
example. Moreover, the command can be generic in that no target object currently
exists, but rather composition strategies are run on a plurality of objects (thus the
strategies are executed generically, and the command does not initially relate to a
particular object). At 610, a context associated with the application is determined,
wherein the context includes entities within or related to such application as well as
application configuration. At 612, at least two of the plurality of composition
strategies are executed based at least in part upon the context, wherein such strategies
can be executed in parallel or sequentially (in a particular order). For instance,
depending upon the context, a first composition strategy may require that a second
composition strategy precede such first strategy. Accordingly, the second
composition strategy should be implemented prior to the first composition strategy.
In a similar manner, a first composition strategy may require a second composition
strategy to be executed in parallel. The methodology 600 then completes at 614.
[0049] Referring collectively to Figs. 7-13, various tasks that can be
performed through strategy are described. While illustrated separately, it will be
understood by those skilled in the art that multiple strategies can be provided that
relate to a combination of any or all of the methodologies described in these figures.
Turning spectifically to Fig. 7, a methodology 700 for undertaking constructor
dependency injection through utilization of one or more strategies is illustrated. The
methodology 700 begins at 702, and at 704, a composition strategy is received,
wherein the strategy is intended to be utilized in connection with constructor
dependency injection. At 706, a context associated with a target object is analyzed.
In the methodology 700, the target object may be an object instance that is desirable
created. At 708, constructor dependency injection is performed according to the
received strategy (or strategies). As described above, constructor dependency
injection relates to discovering requirements of a class’s constructor at runtime,
resolving such requirements to determine objects that should be retrieved or created,
and then passing such objects to the constructor for the target object when such object
is created. Constructors in object-oriented programming are methods utilized to

create new instances of an object, and can receive parameters. The strategy can be

18

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

designed in such a way that it can automatically be inferred what is passed to the
constructor, wherein the inference is controllable through strategy and policy. The
methodology 700 completes at 710.

[0050] Referring now to Fig. 8, a methodology 800 for undertaking setter
injection through utilization of a sirategy is illustrated. The methodology 800 begins
at 802, and at 804 a composition strategy is received, wherein such strategy can be
employed in connection with setter injection. Setter injection relates to automatically
setting proﬁerties and calling methods on a created object. Setter injection is similar
to constructor dependency injection, except that with respect to setter injection the at-
issue object already exists. Inferring which properties to set and which methods to
call, however, can be accomplished through inference. As described above, such
inference can be based upon analyzing types of objects in a context, metadata
associated with the object (e.g., in an XML configuration file, in code provided by a
developer, ...). At 806, a context associated with a target object is analyzed. For
instance, analysis of the context can provide metadata that is utilized in connection
with the above-described inference. At 808, the setter injection is performed upon the
target object. The methodology 800 then completes at 810.

[0051] Now turning to Fig. 9, a methodology 900 for registering an object and
storing it in a container based upon a strategy is illustrated. The methodology 900
starts at 902, and at 904 a strategy is received. The strategy can relate to registering a
target object, wherein such object can be newly created and/or pre-existent (the object
is the target object). At 906, a context associated with such object is analyzed to
obtain metadata relating to the target object. The metadata can then be employed in
connection with the strategy. At 908, registration and storage of the target object is
performed according to the strategy. Registration and storage of an object into a
container refers to notifying a system that the object should be remembered for future

utilization. Thus, when a requirement for an object is resolved through inspection,

. containers can be parsed to determine if a pre-existent object is suitable for a

particular need or if it is desirable to create a new object. As described above, the
strategy can be associated with one or more inferences, can be run according to
analyzed metadata, and/or can be operated according to specific commands. For
example, if a programmer explicitly states that an object should be registered and
stored, then the strategy can be run accordingly. The methodology 900 then
completes at 910.

19

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

[0052] Referring now to Fig. 10, a methodology 1000 for looking up an object
within a container based upon a received strategy is illustrated. The methodology
1000 starts at 1002, and at 1004 a strategy relating to looking up an object within a
container is received (e.g., a target object). At 1006, a context associated with the
target object is analyzed, and at 1008 an object lookup from a container is performed
according to the strategy. Retrieving an object from a container relates to determining
through inference, metadata, explicit commands, or a combination thereof whether an
object should be retrieved from a container or whether a new object should be created.
The methodology 1000 completes at 1010.

[0053] Turning to Fig. 11, a methodology 1100 for performing type mapping
given a certain strategy is illustrated. The methodology 1100 starts at 1102, and at
1104 a composition strategy relating to type-mapping is received. Type mapping
relates to interfaces and concrete classes, where an interface is a definition of a public
method with respect to a particular class. Through polymorphism, another class may
only need to know that an object being provided conforms to the interface. In more
detail, a type of the object may be irrelevant so long as such object is associated with
particular methods. Furthermore, type mapping can relate to converting a requested
type into a more specific concrete type. At 1106, a context is analyzed with respect to
a target object, and at 1108 type mapping is performed according to the strategy. The
methodology 1100 then completes at 1110.

[0054) Referring now to Fig. 12, a methodology 1200 for performing attribute
reflection according to a received composition strategy is illustrated. The
methodology 1200 starts at 1202, and at 1204 a customized composition strategy
relating to attribute reflection is received. Attribute reflection enables automatic
discovery and configuration of one or more strategies by reflecting over a class being
built. This can be enabled through utilization of any language that supports atiributes,
such as NET. At 1206, a context associated with a target object is analyzed. In this
example, the context can be a particular class associated with the target object. At
1208, attribute reflection is performed according to the received strategy, and the
methodology 1200 then completes at 1210.

[0055] Turning now to Fig. 13, a methodology 1300 for returning a proxy
object is illustrated. A proxy object can be returned as an object that provides a
different implementation of a method declared in a target object. Proxying is known

in the art, but heretofore undertaking proxying was not available through utilization of

20

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

strategies. The methodology 1300 starts at 1302, and at 1304 a composition strategy
relating to providing a proxy of an object is received. At 1306, a context associated
with the object (the target object) is analyzed, and at 1308 the proxy object is
provided according to the strategy. The methodology 1300 then completes at 1310.
[0056] In order to provide additional context for various aspects of the subject
invention, Fig. 14 and the following discussion are intended to provide a brief, general
description of a suitable operating environment 1410 in which various aspects of the
subject invention may be implemented. While the invention is described in the
general context of computer-executable instructions, such as program modules,
executed by one or more computers or other devices, those skilled in the art will
recognize that the invention can also be implemented in combination with other
program modules and/or as a combination of hardware and software.

[0057] Generally, however, program modules include routines, programs,
objects, components, data structures, efc. that perform particular tasks or implement
particular data types. The operating environment 1410 is only one example of a
suitable operating environment and is not intended to suggest any limitation as to the
scope of use or functionality of the invention. Other well known computer systems,
environments, and/or configurations that may be suitable for use with the invention
include but are not limited to, personal computers, hand-held or laptop devices,
multiprocessor systems, microprocessor-based systems, programmable consumer
electronics, network PCs, minicomputers, mainframe computers, distributed
computing environments that include the above systems or devices, and the like.
[0058] With reference to Fig. 14, an exemplary environment 1410 for
implementing various aspects of the invention includes a computer 1412. The
computer 1412 includes a processing unit 1414, a system memory 1416, and a system
bus 1418. The system bus 1418 couples system components including, but not
limited to, the system memory 1416 to the processing unit 1414. The processing unit
1414 can be any of various available processors. Dual microprocessors and other
multiprocessor architectures also can be employed as the processing unit 1414.
[0059] The system bus 1418 can be any of several types of bus structure(s)
including the memory bus or memory controller, a peripheral bus or external bus,
and/or a local bus using any variety of available bus architectures including, but not
limited to, 8-bit bus, Industrial Standard Architecture (ISA), Micro-Channel
Architecture (MSA), Extended ISA (EISA), Intelligent Drive Electronics (IDE),

21

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

VESA Local Bus (VLB), Peripheral Component Interconnect (PCI), Universal Serial
Bus (USB), Advanced Graphics Port (AGP), Personal Computer Memory Card
International Association bus (PCMCIA), and Small Computer Systems Interface
(SCSI). The system memory 1416 includes volatile memory 1420 and nonvolatile
memory 1422. The basic input/output system (BIOS), containing the basic routines to
transfer information between elements within the computer 1412, such as during start-
up, is stored in nonvolatile memory 1422. By way of illustration, and not limitation,
nonvolatile memory 1422 can include read only memory (ROM), programmable
ROM (PROM), electrically programmable ROM (EPROM), electrically erasable
ROM (EEPROM), or flash memory. Volatile memory 1420 includes random access
memory (RAM), which acts as external cache memory. By way of illustration and
not limitation, RAM is available in many forms such as synchronous RAM (SRAM),
dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM
(DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and
direct Rambus RAM (DRRAM).

[0060] Computer 1412 also includes removable/nonremovable,
volatile/nonvolatile computer storage media. Fig. 14 illustrates, for example a disk
storage 1424. Disk storage 1424 includes, but is not limited to, devices like a
magnetic disk drive, floppy disk drive, tapé drive, Jaz drive, Zip drive, LS-100 drive,
flash memory card, or memory stick. In addition, disk storage 1424 can include
storage media separately or in combination with other storage media including, but
not limited to, an optical disk drive such as a compact disk ROM device (CD-ROM),
CD recordable drive (CD-R Drive), CD rewritable drive (CD-RW Drive) or a digital
versatile disk ROM drive (DVD-ROM). To facilitate connection of the disk storage
devices 1424 to the system bus 1418, a removable or non-removable interface is
typically used such as interface 1426.

[0061] It is to be appreciated that Fig. 14 describes software that acts as an
intermediary between users and the basic computer resources described in suitable
operating environment 1410. Such software includes an operating system 1428.
Operating system 1428, which can be stored on disk storage 1424, acts to control and
allocate resources of the computer system 1412. System applications 1430 take
advantage of the management of resources by operating system 1428 through

program modules 1432 and program data 1434 stored either in system memory 1416

22

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

or on disk storage 1424. It is to be appreciated that the subject invention can be
implemented with various operating systems or combinations of operating systems.
[0062] A user enters commands or information into the computer 1412
through input device(s) 1436. Input devices 1436 include, but are not limited to, a
pointing device such as a mouse, trackball, stylus, touch pad, keyboard, microphone,
joystick, game pad, satellite dish, scanner, TV tuner card, digital camera, digital video
camera, web camera, and the like. These and other input devices connect to the
processing unit 1414 through the system bus 1418 via interface port(s) 1438.
Interface port(s) 1438 include, for example, a serial port, a parallel port, a game port,
and a universal serial bus (USB). Output device(s) 1440 use some of the same type of
ports as input device(s) 1436. Thus, for example, a USB port may be used to provide
input to computer 1412, and to output information from computer 1412 to an output
device 1440. Output adapter 1442 is provided to illustrate that there are some output
devices 1440 like monitors, speakers, and printers among other output devices 1440
that require special adapters. The output adapters 1442 include, by way of illustration
and not limitation, video and sound cards that provide a means of connection between
the output device 1440 and the system bus 1418. It should be noted that other devices
and/or systems of devices provide both input and output capabilities such as remote
computer(s) 1444.

[0063] Computer 1412 can operate in a networked environment using logical
connections to one or more remote computers, such as remote computer(s) 1444. The
remote computer(s) 1444 can be a personal computer, a server, a router, a network
PC, a workstation, a microprocessor based appliance, a peer device or other common
network node and the like, and typically includes many or all of the elements
described relative to computer 1412. For purposes of brevity, only a memory storage
device 1446 is illustrated with remote computer(s) 1444. Remote computer(s) 1444 is
logically connected to computer 1412 through a network interface 1448 and then
physically connected via communication connection 1450. Network interface 1448
encompasses communication networks such as local-area networks (LAN) and wide-
area networks (WAN). LAN technologies include Fiber Distributed Data Interface
(FDDI), Copper Distributed Data Interface (CDDI), Ethernet/IEEE 802.3, Token
Ring/IEEE 802.5 and the like. WAN technologies include, but are not limited to,
point-to-point links, circuit switching networks like Integrated Services Digital

23

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

Networks (ISDN) and variations thereon, packet switching networks, and Digital
Subscriber Lines (DSL).

[0064] Communication connection(s) 1450 refers to the hardware/software
employed to connect the network interface 1448 to the bus 1418. While
communication connection 1450 is shown for illustrative clarity inside computer
1412, it can also be external to computer 1412, The hardware/software necessary for
connection to the network interface 1448 includes, for exemplary purposes only,
internal and external technologies such as, modems including regular telephone grade
modems, cable modems and DSL modems, ISDN adapters, and Ethernet cards.

[0065] Fig. 15 is a schematic block diagram of a sample-computing |
environment 1500 with which the subject invention can interact. The system 1500
includes one or more client(s) 1510. The client(s) 1510 can be hardware and/or
software (e. g., threads, processes, computing devices). The system 1500 also includes
one or more server(s) 1530. The server(s) 1530 can also be hardware and/or software
(e.g., threads, processes, computing devices). The servers 1530 can house threads to
perform transformations by employing the subject invention, for example. One
possible communication between a client 1510 and a server 1530 can be in the form
of a data packet adapted to be transmitted between two or more computer processes.
The system 1500 includes a communication framework 1550 that can be employed to
facilitate communications between the client(s) 1510 and the server(s) 1530. The
client(s) 1510 are operably connected to one or more client data store(s) 1560 that can
be employed to store information local to the client(s) 1510. Similarly, the server(s)
1530 are operably connected to one or more server data store(s) 1540 that can be
employed to store information local to the servers 1530.

[0066] What has been described above includes examples of the claimed
subject matter. It is, of course, not possible to describe every conceivable
combination of components or methodologies for purposes of describing such subject
matter, but one of ordinary skill in the art may recognize that many further
combinations and permutations are possible. Accordingly, the claimed subject matter
is intended to embrace all such alterations, modifications, and variations that fall
within the spirit and scope of the appended claims. Furthermore, to the extent that the
term “includes” is used in either the detailed description or the claims, such term is
intended to be inclusive in a manner similar to the term “comprising” as “comprising”

is interpreted when employed as a transitional word in a claim.

24

WO 2007/044170 PCT/US2006/035390

10

15

20

25

30

35

CLAIMS

What is claimed is;

L. An extensible framework for object oriented programming comprising the
following computer-executable components:

a reception component (102) that receives a customized strategy relating to
composing a target object (106); and

an implementation component (104) that automatically implements the
customized strategy to compose the target object (106) based at least in part upon a

context associated with the target object (106).

2. The framework of claim 1, the strategy is implemented at runtime.

3. The framework of claim 1, further comprising a context component that
determines the context, including context of an application associated with the target
object, existing objects associated with the target object, and relationships between
the existing objects, wherein the context is a set of components that are relevant to the
application and the target object and at least one of the existing objects is a remote

object.

4. The framework of claim 1, the reception component receives a plurality of

strategies.
5. The framework of claim 4, further comprising an ordering component that
facilitates execution of the plurality of strategies in an order that is determined by at

least one of a declarative statement and context associated with the target object.

6. The framework of claim 1, the implementation component creates a new

object based at least in part upon the customized strategy.

7. The framework of claim 1, the target object is an object that is to be created by

the implementation component.

25

10

15

20

25

30

WO 2007/044170 PCT/US2006/035390

8. The framework of claim 1, the target object is a pre-existent object.
9. The framework of claim 1, further comprising a policy component that

enforces one of a permanent policy and a transient policy with respect to the strategy.

10. The framework of claim 1 configured to employ inferences in connection with

composing the target object.

11. The framework of claim 10, the inferences generated based at least in part

upon one or more of analyzed metadata and explicit commands.

12. The framework of claim 10, further comprising an external configuration file

that is employed in connection with generating the inferences.

13. A method for composing an object comprising the following computer-
executable acts:

receiving a plurality of composition strategies;

receiving a command to compose a target object;

analyzing context associated with the target object; and

executing at least one of the plurality of composition strategies based at least

in part upon the analyzed context.

14, The method of claim 13, further comprising executing at least two of the

composition strategies in a parallel manner.

15. The method of claim 13, further comprising executing at least two of the

composition strategies sequentially in a specified order.

16. The method of claim 13, further comprising performing one or more of
constructor dependency injection and setter injection upon executing the at least one

strategy.

17. The method of claim 13, further comprising performing one or more of
registering the target object and storing the target object in a container and retrieving

the target object from a container upon executing the at least one strategy.

26

10

WO 2007/044170 PCT/US2006/035390

18. The method of claim 13, further comprising performing at least one of type
mapping with respect to the target object upon executing the at least one strategy and

providing a proxy object to the target object upon executing the at least one strategy.

19. The method of claim 13, further comprising performing attribute reflection

upon executing the at least one strategy.

20. An extensible framework in an object-oriented programming environment,
comprising;

computer-implemented means (102) for receiving a composition strategy;

computer-implemented means (206) for analyzing a context associated with a
target object; and

computer-implemented means (104) for composing the target object based at

least in part upon the received composition strategy and the analyzed context.

- 27

PCT/US2006/035390

WO 2007/044170

1715

901

1 OI4

2:|\<

INANOdNOD
NOILVINHWH TdNI

INANOJNOD
NOILdHOdd

[t

14UE

(4i}}

ADALVAILS
ddZINoOLSD

PCT/US2006/035390

WO 2007/044170

2/15

¢ O

901

00—

90T

INANOJNOD _ INANOJNOD
DONIIHTIO NOILJHOHYE
A
14114 01
Y
LINHNOdNOD
LXHINOD
INANOdNOD JINOJNOD
NOILV LNIWH TdNI ADI'IOd

141)6

(4114

-

SHIDALVYILS
AHZINOLSID

PCT/US2006/035390

WO 2007/044170

3/15

¢ Ol

90¢

0¢
|/

90T

o0s—" "

| INANOJNOD |

!
N AJA1INd 1D4drdo

1
i !

INANOdNOD
NOILVINANWH TINI

80¢

INANOJNOD
JOLVOOUIHINI [«

ADI'T0d AJI'T0d
AANIIFA-gdSN
INANOJNOD <
NOILddOdd ADAIVILS
ddZINOLSND

1418

01

PCT/US2006/035390

WO 2007/044170

4/15

) I |

HTIH TVNIHLXA

vcvl\

zo—"]

—————— o —— —

ININOJNOD
NOILVINANH TdNI

——P>

INANOJNOD
NOILJHOHY

et

ADHIVILS

901

ccvl\

141]}

(411

_ @IZINOISND

WO 2007/044170 PCT/US2006/035390

5/15

/500
02
START

504
RECEIVE A PLURALITY OF COMPOSITION /—
STRATEGIES

l

506
RECEIVE A COMMAND TO COMPOSE A T
TARGET OBJECT

l

508
ANALYZE CONTEXT ASSOCIATED WITH /_
TARGET OBJECT

l

EXECUTE AT LEAST ONE OF THE /— >10
PLURALITY OF COMPOSITION
STRATEGIES BASED AT LEAST IN PART
UPON THE CONTEXT

512
END

FIG. 5

WO 2007/044170 PCT/US2006/035390

6/15

/—600
602
START

04

1

RECEIVE A PLURALITY OF COMPOSITION
STRATEGIES

l

EXECUTE AN APPLICATION

l

RECEIVE A COMMAND TO COMPOSE A
TARGET OBIJECT

l

ANALYZE CONTEXT ASSOCIATED WITH
TARGET OBJECT

l

EXECUTE AT LEAST TWO OF THE
STRATEGIES IN PARALLEL ORIN A
SPECIFIED SEQUENCE

06

)

08

)

10

12

1)

FIG. 6

WO 2007/044170 PCT/US2006/035390

7115

/700

702
START

704
/—

RECEIVE COMPOSITION STRATEGY

l

706
ANALYZE CONTEXT ASSOCIATED WITH A /—
TARGET OBJECT

l

708
PERFORM CONSTRUCTOR DEPENDENCY |~
INJECTION ACCORDING TO THE
STRATEGY

710
END

| FIG. 7

WO 2007/044170 PCT/US2006/035390

8/15

/800
802
START

804
/_

RECEIVE COMPOSITION STRATEGY

l

806
ANALYZE CONTEXT ASSOCIATED WITH A /—
TARGET OBJECT

l

808
PERFORM SETTER INJECTION ACCORDING /—
TO THE RECEIVED STRATEGY

810
END

FIG. 8

WO 2007/044170 PCT/US2006/035390

9/15

/900
902
START

904
/—

RECEIVE COMPOSITION STRATEGY

l

906
ANALYZE CONTEXT ASSOCIATED WITH A /
TARGET OBJECT

l

908
PERFORM REGISTRATION AND STORAGE /_
OF AN OBJECT IN A CONTAINER
ACCORDING TO THE RECEIVED
STRATEGY

910
END

FIG. 9

WO 2007/044170 PCT/US2006/035390

10/15

/1000
1002
START

1004
e

RECEIVE COMPOSITION STRATEGY

!

1006
ANALYZE CONTEXT ASSOCIATED WITH A /—
TARGET OBJECT

5

1008
PERFORM LOOKUP OF AN OBJECT FROM A /'
CONTAINER ACCORDING TO THE
RECEIVED STRATEGY

1010
END

FIG. 10

WO 2007/044170 PCT/US2006/035390

11/15

/1 100
1102
START

1104
T

RECEIVE COMPOSITION STRATEGY

l

1106
ANALYZE CONTEXT ASSOCIATED WITH A /—
TARGET OBJECT

l

1108
PERFORM TYPE MAPPING ACCORDING TO /
THE RECEIVED STRATEGY

l 1110

FIG. 11

WO 2007/044170 PCT/US2006/035390

12/15

/1200
1202
START

1204
/—

RECEIVE COMPOSITION STRATEGY

l

1206
ANALYZE CONTEXT ASSOCIATED WITH A T
TARGET OBJECT

l

20

PERFORM ATTRIBUTE REFLECTION /—1 8

ACCORDING TO THE RECEIVED
STRATEGY

FIG. 12

WO 2007/044170 PCT/US2006/035390

13/15

/1300
1302
START

1304
/—

RECEIVE COMPOSITION STRATEGY

l

1306
ANALYZE CONTEXT ASSOCIATED WITH A T
TARGET OBJECT

l

RETURN PROXY OF AN OBJECT /1308
ACCORDING TO THE RECEIVED
STRATEGY

1310
END

FIG. 13

WO 2007/044170

14/15

PCT/US2006/035390

: Operating System 1410
| /—
| —— 1430
| Applications |
=TT oo —: Yl 1432
: : Modules
|
: T o 1434
| | Data | 1412
| ¥
|
: ., : 1414
' | Processing 1442
! i)
| Unit -
: Output ¢ Output
! Adapter(s) Device(s)
| 1416 <
]'_ L System 1438 1440
l Memory -
'I Interface ¢ > Input
Volatile
| 1420 Port(s) Device(s)
: Non Volatile T 136
|
: 1422 N 1418
| 13 1450
: Interface A f Network
\ 1426 Communication]¢_|_> Interface
{ Connection(s) O
|
! . 1448
l.——|—3»] Disk v
Storage Remote
Computer(s)
1424

FIG. 14

Memory
Storage

WO 2007/044170 PCT/US2006/035390

15/15

/ 1500
1530
2

1510
CLIENT(S) SERVER(S)
CLIENT SERVER
DATA DATA
STORE(S) STORE(S)
\\\7:/// COMMUNICATION \\\~[’//
1560 FRAMEWORK 1540

1550

FIG. 15

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2006/035390

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 17/00(2006.01)i, GOGF 9/44(2006.01)i, GOGF 9/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC8 GO6F17/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean patents and applications for inventions since 1975.

Korean utility models and applications for utility models since 1975.

Japanese utility models and applications for utility models since 1975.

Electronic data base consulted during the intertnational search (name of data base and, where practicable, search terms used)
¢-KIPASS "programming, compose, component, automatically implement, object, builder"

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 6,199,195 B1 (Richard Glenn Goodwin. et al.) 06 MARCH 2001 1-20
See abstract; figures 2~7; col 2, line 63 ~ col 3, line 56; claims

A US 5,890,158 A (Daniel Edward House. et al.) 30 MARCH 1999 1-20
See abstract; figures 4~5C; col 2, line 43 ~ col 3, line 11; claims

A US 6,574,736 B1 (Anthony D. Andrews) 03 JUNE 2003 1-20
See abstract; figure 1; col 4, line 21 ~ col 5, line 59; claims

A US 5,875,333 A (Nathan S. Fish) 23 FEBRUARY 1999 1-20
See abstract; figures 2~5; col 2, line 5 ~ col 3, line 3; claims

|:| Further documents are listed in the continuation of Box C. & See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
26 FEBRUARY 2007 (26.02.2007) 26 FEBRUARY 2007 (26.02.2007)
Name and mailing address of the ISA/KR Authorized officer —

Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701, MUN, Hyeong Sub
Republic of Korea

Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8121

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2006/035390
Patent document Publication Patent family Publication
cited in search report date member(s) date
US06199195 06.03.2001 AUZ200059248A1 30.01.2001
AUZ200059248A5 30.01.2001
US200202326 1A1 21.02.2002
US200202326 1AA 21.02.2002
US6199195B1 06.03.2001
US6199195BA 06.03.2001
US71522288B 19.12.2006
W00104726A2 18.01.2001
W0200104726C2 09.08.2001
us05890158 30.03. 1999 US5890158A 30.03. 1999
US6212673B1 03.04.2001
US6212673BA 03.04.2001
US62533688 1 26.06.2001
US6253368BA 26.06.2001
US642497481 23.07.2002
US6424974BA 23.07.2002
uS06574736 03.06.2003 US657473681 03.06.2003
US6574736BA 03.06.2003
US05875333 23.02.1999 US5875333A 23.02.1999

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - wo-search-report
	Page 45 - wo-search-report

