PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Clas
GO6F 1/00

sification 5 :

Al

(11) International Publication Number:

(43) International Publication Date:

WO 92/20022

12 November 1992 (12.11.92)

(21) International Application

(22) International Filing Date:

. (30) Priority data:

Number: PCT/US92/03812

6 May 1992 (06.05.92)

697,652 8 May 1991 (08.05.91) US
723,456 28 June 1991 (28.06.91) UsS
722,840 28 June 1991 (28.06.91) US
723,457 28 June 1991 (28.06.91) US

(71) Applicant: DIGITAL EQUIPMENT CORPORATION
[US/US]; 146 Main Street, Maynard, MA 01754 (US).

(72) Inventor: WYMAN, Robert, Mark; 410 Second Avenue,
South No. 108, Kirkland, WA 98033 (US).

(74) Agents: NATH, Ram, B. et al.; c/o Joyce D. Lange, Digi-
tal Equipment Corporation, 111 Powdermill Road, May-
nard, MA 10754 (US).

(81) Designated States: AT, AT (European patent), AU, BB, BE
(European patent), BF (OAPI patent), BG, BJ (OAPI
patent), BR, CA, CF (OAPI patent), CG (OAPI patent),
CH, CH (European patent), CI (OAPI patent), CM
(OAPI patent), CS, DE, DE (European patent), DK,
DX (European patent), ES, ES (European patent), FI,
FR (European patent), GA (OAPI patent), GB, GB (Eu-
ropean patent), GN (OAPI patent), GR (European pa-
tent), HU, IT (European patent), JP, KP, KR, LK, LU,
LU (European patent), MC (European patent), MG, ML
(OAPI patent), MR (OAPI patent), MW, NL, NL (Euro-
pean patent), NO, PL, RO, RU, SD, SE, SE (European
patent), SN (OAPI patent), TD (OAPI patent), TG (OA-
PI patent).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and 10 be republished in the event of the receipt of
amendments.

(54) Title: MANAGEMENT INTERFACE AND FORMAT FOR LICENSE MANAGEMENT SYSTEM

L ICENSE

LICENSE
y DOCUMENT os
PRODUCER g Docoment | [T
A ISSUE 1 303 % 2
LICENSE bcee] g
0 PROGRAM | DATABASE
INTERSERVERTF| SERVER | 05
----- 06 f~2
2 L
. I3 —
/“l i =5 A] _F
DELEGATEE E) LICENSE] DELEGATEE |
13— I#{cﬁfé{- SERVER I“SI = s | fos |
2 oY i
NN 16_] - | 16— 16|
USER
Py T o _
[~"05 0 [i3 05 49 i} 05
9 T _» . 1]
..... R e 24 ST Bl N
LICENSED 170 _
(57) Abstract e 17 - ”

f makes a call to a license server to check on whether usage is
t
- returned to the requesting user node. The

L]

management is the use of a filter function.

A distributed computer system employs a license management system to account for software product usage. A
management policy having a variety of alternative styles and contexts is provided. Each licensed product upon start-up

licenses, called product use authorizations, that it administers. If the
‘ product use authorization is structured
¥ ' allowing a variety of license alternatives by values called “style”, “context”,
determination method”. The license administration may be delegated by the license server to
organization, by creating another license management facility
receive a license document (a product use authorization) from an
provided. A mechanism is provided for one user node to make
node; this is referred to as a “calling card”, by which a user node obtains permission to make a procedure call to use a
program on another node. A management interface allows a license manager at a server to modify the license documents
in the database maintained by the server, within the restraints imposed by the license, to make delegations, assignments,
etc. The license documenis are maintained in a standard format referred to as a license document interchange format so
the management system is portable and can be used by all adhering software vendors. A feature of the database

permitted, and the license server checks a database of the
particular use requested is permitted, a grant is
to define a license management policy
“duration” and “usage requirements
a subsection of the
duplicating the main facility. The license server must
issuer of licenses, where a license document generator is
a call to use a software product located on another user

applications under the PCT.

AT
Al
88
BE
BF
BG
BJ

BR
CA
CF
G
CH
i

M
s

DE
DK
ES

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the fiont pages of pamphlets publishing international

Amlini
Australiu
Barbados
Belgium
Buarkine Faxa
Bulgaris

Benin

Brasi!

Canada
Central African Republic
Congo
Switzctland
Céle d'Ivoie
Cameroon
Crechostovakia
Gerniany
Denmark
Spain

Fi

FR
GA
GB
GN
GR
HU
IE

JP
KpP

KR
Lt
LK
LU
MC
MG

Finland

France

CGuabon

Unted Kingdom
Guincis

Greeee

Hungary

beckind

Ttaly

Japan

Democratic Peopie’s Republic
of Korca

Republic of Korea
[icchienstein

Sri Lanka
Luemboury
Monaco
Madagascar

Ml
MN
MR

MW

Ni.
NO
PL
RO
RU
SD
SE
SN
Su
™
TG
us

Mali

Mongohia
Mauritania

Mualawi
Netherlands
Norway

Poland

Ronmania

Russian Federation
Sudan

Sweden

Scnegal

Soviet Union

Chad

Togo

United States of Amicrica

15

20

, Pl
—

WO 92/20022 PCT/US92/03812

-4-

MANAGEMENT INTERFACE AND FORMAT FOR LICENSE MANAGEMENT SYSTEM

BACKGROUND OF THE INVENTION

This invention relates to methods of operation of computer systems, and
more particularly to a method and system for managing the licensing of software

executed on computer systems.

In U.S. Patent 4,937,863, issued to Robert, Chase and Schafer and assigned
to Digital Equipment Corporation, the assignee of this invention, a Software
Licensing Management System is disclosed in which usage of licensed software
may be monitored in a computer system to determine if a use is within the scope

of a license. The system maintains a database of licenses for software products,

10

15

20

WO 92/20022

delivering the license document may be in the form of a network, or may be a
phone line using modems, or may include physical delivery by disks or CD ROMs,
for example. Likewise, the method of delivery of the software products being
licensed, i.e., the applications programs 17 to be executed on the CPUs 16, is not
material to the license management facility of the invention; the products are
delivered by some appropriate means, €.g, the communications link 30 and the
networks 21 and 22, by CD ROMs or disks physically distributed, etc.

Although shown in Figure 1 as operating on a distributed system, in the
simplest case the license management facility of the invention may be operated
on a single CPU. The license management program 11 and the applications
program 17 may be executing on the same CPU, in which case the license
document would be stored in a database 23 as before, on this CPU, and the calls
from the unit 18 to the license server would be local instead of RPCs. As in the
distributed system, however, the licensed product would still not have access to the
license document, but instead could only make inquires to the server program,

even if all are executing on the same CPU.

In operation of the distributed system of Figure 1, the producer 28 gives the
issuer 25 authority to grant licenses on its behalf (the producer and issuer can be
a single entity or multiple entities). The license document generator program 26,
under control of a user (a person), generates a license (usually the result of
negotiation between the user of program 26 and a user of the server 10). This
license is called a product use authorization, and it is transmitted by the link 30
to the server 10. The license management program in the server 10 stores the
product use authorization in the database 23, and, if delegation is an authorized

option, may distribute parts of the authorized use to the delegatee servers 13,

PCT/US92/03812

10

15

20

WO 92/20022

PCT/US92/03812

-3 -

where it is likewise stored in a database. Thereafter, administration of the license
is only in response to inquiries from user nodes 16. When execution of a program
17 begins, the unit 18 is invoked to check on the availability of a license for this
particular node. The unit 18 sends (as by an RPC) a request to the license
management program 14 (or 11 if there is no delegatee), where the product use
authorization stored in database 23 is checked to see if use is authorized. If so,
a return is sent to the user node 16, granting permission to continue. When the
program 17 has finished executing, the unit 18 again is invoked to signal to the
license management program, again by an RPC, that the authorization is released,
so the license management program can take appropriate action, e.g., log the use
in log 24, etc.

To implement these operations, the license management program 11 or 14
contains several functions, including a client interface 31, a database interface 32,
a management interface 33, and an interserver interface 34 for communicating
with the delegatees 13 (if any). The client interface 31, as described below,
handles the requests received from the user nodes 16, and returns resulting from
these requests. The database interface 32 handles the storing and retrieval of
license information in the database 23, and logging license usage activity to log 24,
and retrieval of this data. The management interface 33 handles the tasks of
receiving the product use authorizations from the issuer 25 and maintaining the
database 23 via the database interface 32. The interserver interface 34 handles
the task of communicating with the delegatee servers 13, including transmitting the
assigned parts of the product use authorizations, or communicating with other
license servers that may be separately executing the license management function;

for example, calls for validating calling cards may be made to another such server.

10

15

20

WO 92/20022

PCT/US92/03812

If there are no delegatees or no other license servers, then of course the

interserver interface 34 has no function, and is idle.

The license document or "product use authorization” forming the basis for
the license management activity of the program 11 on the server 10 may be
illustrated as a data structure containing the information set forth in Figure 2; in
actual practice the product use authorization is preferably a more abstract data
arrangement, not in such a rigidly structured format as illustrated. For example,
the product use authorization as well as similar documents stored in the database
23, or passed between components of the system of Figure 1, may be of the so-
called tag-length-value data format, where the data structure begins with an
identifying tag (e.g., PUA or product use authorization) followed by a field giving
the length, followed by the value itself (the content). One type of data treatment
using this tag-length-value format is an international standard referred to as ASN.1
or Abstract Syntax Notation. In any event, the document 35 illustrated in Figure
2 is merely for discussing the various items of data, rather than representing the
way the information is stored. Some of the fields shown here exist at some times
and not others, and some are optional; the product use authorization may also
include additional fields not shown or discussed here. Also it should be noted that
copies of parts of this type of document are made for the delegatees, so this
representation of Figure 2 is a composite of several documents used in the system
of Figure 1. The document 35 includes fields 36 identifying the software product
by product name, producer, version numbers, release date, etc. The issuer 25 is
identified in field 37, and the licensee (usually the owner of the license server 10)
identified in field 38. The essential terms of the license grant are then defined in
fields 40-46. The start date and end date are specified in fields 40; these store the

exact time (date, hour, minute, second, etc.) when the license becomes valid and

10

15

20

25

WO 92/20022

when it ends, so licenses may be granted to start at some future time and to end
at a particular time. Note that the previous practice has been to specify only the
ending date, rather than also a start date as employed here. Each of the nodes,
including issuer 25, servers 10 and 13, and user nodes 16, maintain a time value
by a local clock referenced to a standard, so inherent in the license management
facility is the maintaining of a time standard to compare with the start and end
date information in the fields 40. The units granted are specified in field 41; the
units are an arbitrary quantitative measure of program usage. In a delegatee
server 13, the units field 41 will have some subset of the units field in the original
product use authorization. As units are granted to users 16 or delegated, the
remaining units available for grant are indicated in a subfield 42 in the copy of the
document used by the server. The management pdlicy occupies fields 43-46, and
includes style, context, duration and LURDM (license use requirements
determination method), as will be explained. The style field 43 specifies whether
the licensed units are controlled by an "allocative” style or "consumptive" style, or
some other "private” algorithm, where styles are ways used to account for the
consumption or allocation of the units. The context field 44 specifies the location
and environment in which product use or license management occurs, i.e., a CPU
or an individual user or a network, etc. Duration field 45 indicates whether the
license granted to a user is by assignment, by transaction, or immediate. The
LURDM field 46 indicates the license use requirements determination method,
in some cases using a license use requirements table (LURT) seen as field 47, as

will be described.

Additional fields 48-54 in the product use authorization 35 of Figure 2

define features such as delegation authorization, calling authorization, overdraft

PCT/US92/03812

10

15

20

WO 92/20022

PCT/US92/03812

authorization, combination authorization, token, signature, checksum, etc. These

will be described in the following paragraphs.

If the delegation field 48 is true, a license server 10 may distribute license
units to multiple servers 13. A time limit may be imposed, i.e., units can be
delegated to other hardware systems until they time out. Delegation allows an
administrator to distribute units to improve response time and increase the
resilience of the system. For example, the communication network 21 may include
a satellite link to a remote facility where the local server 13 has a number of
clients or users 16, in which case the calls to the server 13 would be completed
much quicker than would be the case if calls had to be made to the server 10.
Also, delegation may be used as a method of allocating licensed units within a
budget for administrative purposes. Usually the delegation authorization is a
feature that is priced by the issuer, ie., a license granting 1000 units with

delegation authorization is priced higher than without this authorization.

The field 49 contains a calling authorization and/or a caller authorization.
If the caller authorization in field 49 is true, the product is permitted to receive
calls from other named products requesting use of the product, and if conditions
are met (identified caller is authorized) the server can grant a calling card, as
described below. If the calling authorization is true, the product can make calls
to other products. If neither is true, then the product can neither make or receive
calls using the calling card feature. Referring to Figure 1, if product 17a wishes
to make a remote procedure call to a feature of product 17b running on a
different user node 16, it makes a call to its server 13 including a request for a
calling card, and, if permitted, the return to product 17a includes a calling card

49a. The product 17a then makes 2 call to product 17b in the usual manner of

10

15

20

25

WO 92/20022 PCT/US92/03812

RPCs, sending along the calling card 49a, which the product 17b then verifies by
a call to its server 13 before executing the called procedure and issuing its return
to product 17a. The feature of calling cards is important for distributed
applications. For example, if a product is able to execute faster in a distributed
system by assigning tasks to other CPUs, then the issue is presented of which
license policy is needed, i.e., does every node executing a part of the task have to
be licensed and consume or receive allocation of a unit, or just the one managing
the task? This is resolved for most applications by use of this calling card concept.
The product use authorization for such a product has the calling authorization
field 49 enabled, so calling cards can be issued. This feature is typically separately

priced.

The combination authorization field 50 of Figure 2 determines whether or
not license requests from a user node 16 can be satisfied by combining units from
multiple product use authorizations. It may be advantageous to purchase licenses
with different policy values, and use units from certain product use authorizations
only for overflow or the like. Or, for other reasons, it may be advantageous to
"borrow" and "lend" units among delegated servers or user nodes. This function

is permitted or denied by the content of field 50.

The overdraft field 51 determines whether or not a requested allocation
from a user node 16 will be nevertheless granted, even though the units available
field 42 is zero or too small to permit the requested use. Overdrafts can be
unlimited, or a specific overdraft pool can be set up by a server 10, for a
customer’ internal administrative purposes. That is, the overdraft value may be
unlimited in the original license, but limited or zero for internally distributed

copies of the license. Thus, the product use authorization sent by the issuer 25 to

10

15

20

WO 92/20022

the customer may have overdrafts permitted by the field 51, but the customer may
deny overdraft permission for its own budgeting purposes. In any event, if
overdraft is permitted, additional fees have to be paid to the issuer at some
accounting period, when the logged usage from log 24 indicates the available units
have been exceeded. If overdraft is denied, then the units 18 of the user nodes
making request allocations are structured to inform the products 17 that a license
grant is not available. The intent is not to prevent the application program from
running; the license server merely informs the application whether or not the
license manager determines that it is authorized to run. The application can itself
be structured to shut itself down if not authorized to run, or it can be structured
to shut down certain functions (e.g., ability to save files, ability to print, etc.), or
it can be structured to continue in a fully functional manner. The purpose of the
license management facility is not that of enforcement, nor that of "copy

protection”, but instead is merely that of license management.

An optional token field 52 is available in the product use authorization 35
of Figure 2. This field can contain comments or other information desired by the
issuer or user. For example, a telephone support number may be included in the
token field, then when the product 17 shows its "help screen” the number is
inserted. This number would be part of the argument, i.e., data transmitted to the
user node 16, when the server 10 makes a return following a request allocation
message from the user. This field may also be used to store information used in
a "private” style, where the information from this field returned to the user node
is employed by the application program 17 or the stub 19 to determine if the

application can be activated.

PCT/US92/03812

10

15

20

25

WO 92/20022

The signature field 53 in the product use authorization 35 is a part of a
validation mechanism which provides important features. This field contains a
digital signature encoded to reflect the data in the license itself, as well as other
encoding methods not known to customers, so it cannot be duplicated unless the
encoding algorithm is known. In a preferred embodiment, a so-called
"public/private key" system of encoding is used for the signature field 53. The
encoding algorithm used to generate the signature 53 is known to the issuer 25,
using a private key, and anyone knowing the public key can decode the signature
to determine if it is valid but cannot determine the encoding algorithm so it
cannot produce a forged signature. So, if the server 10 knows the public key
which is unique to the issuer 25, it can determine if a license document 35 is
genuine, but it cannot itself generate license documents. However, if the server
possesses a valid license document that gives it the right to delegate, then it will
be assigned its own private key (different from all other issuers or servers) and its
delegatees 13 will be able to determine if a valid delegated license is delivered to
them as they will be given the public key for the servers 13. The field 53 will
thus contain both the original signature from the issuer 25 and the license server’s
signature when delivered to a delegatee 13. The decoding algorithm using a
public key for any signatures is thus used by the license server 10 or delegatee 13
to make sure a product use authorization 35 is authentic before it is stored in the
database 23. Related to the digital signature 53 is a checksum field 54, which
merely encodes a value related by some known algorithm to the data in the
product use authorization 35 itself. This field may be used merely to check for
corruption of the data as it is stored, recalled, and transmitted within the system.

That is, the checksum is used for data validation rather than security.

PCT/US92/03812

10

15

20

PCT/US92/03812

WO 92/20022

- 10 -

Two concepts central to the license management system implemented using
the license document or product use authorization 35 of Figure 2 are the "license
units”, specified in field 41 or 42 and the "context’, specified in field 44. License
units are an abstract numerical measure of product use allowed by the license.
When a product 17 (or a function or feature of 2 product) makes a license-
checking request, the license management program 11 on server 10 computes how
many license units are required to authorize this particular use of the product, and
this is the license units requirement, in some cases using the LURDM field 46.
A "context" is a set of tagged values which define the location and environment
in which product use or license management occurs. Context values may be
specified in field 44 of the product use authorization 35 of Figure 2 to restrict the
environments in which the license may be managed and in which product use may
occur. A context template may also be specified in the field 44 to indicate which
parts of the complete context of product use (sub-contexts) are significant in
differentiating product uses for the purposes of unit allocation; when this is
specified, it allows separate product uses to share license units in a controlled way.

The two general types of policies specified in field 43 are allocative and
consumptive. An allocative policy grants to the holder a specific number of
license units (field 41) and specifies the policy which must be used to account for
the allocation of these units. A software product 17 which is being managed by
an allocative license will require verification that the appropriate number of
license units have been allocated to it prior to performing services to the user.
Typically, this allocation of units occurs either at the time of activation of the
product 17 or at the time that product use is enabled on a particular platform
(user CPU 16). The units typically remain allocated to the product 17 throughout

the period that the product is running or is enabled to run. Upon termination of

10

15

20

» 25

WO 92/20022

- 11 -

processing or disabling, the allocated units are deallocated and made available for
allocation to other instances of the software product 17 (other users 16 activating
the product). In general, as long as any license units remain unallocated in field
42, the holder of the license is contractually authorized to increase his utilization
of the licensed product. The usage does not deplete the license, however, as the
units are returned to the units-available field 42 after a user is finished, and can

be granted again to another user.

A consumptive unit based license, indicated in policy field 43, grants to the
holder a specific number of initial license units (from field 42) and specifies the
policy used to account for the consumption of those units. A software product 17
which is being managed by a consumptive license will cause an appropriate
number of license units to be consumed to reflect the services provided by the
product. Once consumed, units cannot be reused. Thus, the number of units
available for future use declines upon every use of the licensed software product
17. This may also be referred to as a "metered" policy, being conceptually similar
to measured consumption of electricity, water, etc. When the number of available
units in field 42 reaches zero, the license may require that further use of the
product is prohibited, or, the agreement may permit continued decrementing of
the number of available units; the result is the accumulation of a negative number
of available units in the field 42. It is anticipated that most consumptive unit
based licenses will consider negative units to represent an obligation of the license
holder to pay the license issuer 25. The transaction log 24 maintains an audit trail

for providing a record of the units used in a consumptive license.

Referring to Figure 3, the major elements of the management policy are

set forth in a table, where the possible entries for the fields 43, 44, 45 and 46 are

PCT/US92/03812

10

15

20

WO 92/20022 PCT/US92/03812

- 12 -

listed. For the style entry 43, the possibilities are allocative and consumptive as
just described, plus a category called "private" which represents a style of
management undefined at present but instead to be created especially for a given
product, using its own unique algorithm. It is expected that most licenses may be
administered using the named alternatives of Figure 3, but to allow for future
expansion to include alternatives not presently envisioned, or to permit special
circumstances for unique software, the "private” choices are included, which merely
mean that the product 17 will generate its own conditions of use. It is important
to note that, except for the "private" alternative, the license management is totally
in control of the license management program 11 on the license server 10 (or
delegatee 13), rather than at the product 17. All the product 17 does, via the unit
18, is to make the request inquiry to the server 10 via the client interface 31, and

report when finished.

The context field 44 specifies those components (sub-contexts) of the
execution-context name which should be used in determining if unit allocations are
required. License data is always used or allocated within, or for the benefit of,
some named licensing context, and context can include "platform contexts" and
"application contexts". Platform contexts are such things as a specific network, an
execution domain, a login domain, a node, a process ID or a process family, a user
name, a product name, an operating system, 2 specific hardware platform, as listed
in Figure 3. Applications contexts are information supplied from the application
(the product 17), such as may be used ina "private” method of determining license
availability. The context name can use several of these, in which case the context
name is constructed by concatenating the values of all subcontexts into a single

context name, er.g.. a VAX 3100 platform using VMS operating system.

10

15

20

25

WO 92/20022

PCT/US92/03812

- 13 -

The duration field 45 defines the duration of an allocation of license units
to a specific context or the duration of the period which defines a valid
consumptive use. For durations of type "Assignment,” the specification of a
reassignment constraint is also provided for, as discussed below. There are three
types of duration, these being "transaction,” "assignment" and "immediate" as seen

in Figure 3.

The transaction duration type, when specified for an allocative policy,
indicates that license units should be allocated to the specified context upon
receipt of a license request and that those units should be deallocated and
returned to the pool of available units upon receipt of a corresponding license
release from a user node 16. Abnormal termination of the process or context
having made the original license request will be semantically equivalent to a
license release. On the other hand, when specified for a consumptive policy, this
duration type indicates that license units should be allocated to the specified
context upon receipt of a license request and permanently removed from the
available units pool (field 42) upon receipt of a license release which reflects
successful completion of the transaction. Upon receipt of a license release which
carries an error status or upon abnormal termination of the processor context
having made the original license request, the allocated units will be deallocated

and returned to the pool of available units (field 42).

The assignment duration type in Figure 3 (field 45 of Figure 2) imposes the
constraint that the required units must have been previously assigned to a specific
context. The sub-contexts which must be specified in the assignment are those
given in the context-template. A "reassignment constraint” may be imposed, and

this is a limitation on how soon a reassignment can be made. For example, a

10

15

20

WO 92/20022

- 14 -~

reassignment constraint of 30-days would require that units assigned to a specific
context could not be reassigned more often than every 30-days; this would prevent
skirting the intent of the license by merely reassigning units whenever a user of
another context made a request allocation call for the product. Related to this
assignment constraint, a weallocation limit" may also be imposed, to state the
minimum duration of an allocation; where there is a context template of process,
the intent is to count the number of uses of the software product at a given time,
but where software runs in batch rather than interactive mode it may run very
quickly on a powerful machine, so a very few concurrent uses may permit almost
unlimited usage - by imposing a reallocation constraint of some time period, this

manner of skirting the intent of the license may be constrained.

The immediate duration type (field 45 of Figure 2) is used to indicate that
the allocation or consumption of an appropriate number of license units from the
pool of available units (field 42) should be performed immediately upon receipt
of a license request. Receipt of license release or abnormal terminations will then
have no impact on the license management system. When specified as the
duration for an allocative policy, the effect will be simply to check if an
appropriate number of license units are available at the time of a license request.
When specified as the duration for a consumptive policy, the effect will be to
deduct the appropriate number of license units from the available pool at the time
of a license request, and, thereafter, abnormal termination, such as a fault at the

user CPU 16 or failure of the network link, will not reinstate the units.

The LURDM or license unit requirement determination method, field 46,
has the alternatives seen in Figure 3 and stores information used in calculating the

number of units that should be allocated or consumed in response to a license

PCT/US92/03812

10

15

20

25

WO 92/20022

- 15 -

request. If this field specifies a table lookup kind, this means license unit
requirements are 1o be determined by lookup in the LURT (field 47) which is
associated with the current license. If a constant kind is specified, this indicates
that the license units requirements are constant for all contexts on which the
licensed product or product feature may run. A private LURDM specifies that
the license unit requirements are to be determined by the licensed product 17, not
by the license management facility 11. The license unit requirements tables
(LURTSs) provide a means by which issuers of licenses can store information
describing the relation between context (or row selector) and unit requirements.
The license units requirements determination method (LURDM) must specify
"table lookup" for the LURT to be used, and if so a row selector must be
specified, where a valid row selector is any subcontext, e.g., platform ID, user
name, time of day, etc. An example of an LURT fragment is shown in Figure 4,
illustrating the license unit requirements table mechanism. In this example, the
row selector is "platform-ID" so the platform-ID value determines which row is
used. The issuer of this LURT of Figure 4 has established three unit requirement
tiers for use in determining the unit requirements for that issuer’s products. The
reason for the tiers is not mandated by the license management system, but the
issuer 25 (actually the user of the program 26) would probably be establishing
three pricing tiers, each reflecting a different perspective on the relative utility of
different platforms in supporting the use of various classes of product 17. The
first column in Figure 4, Column A, specifies the use requirements for a class of
products whose utility is highly sensitive to the characteristics of the specific
platform on which they are run. This can be seen by observing that the unit
requirements are different for every row in Column A. Products which use the
second column (Column B) éppear to have a utility which is more related to the

class of platform on which they run. This is indicated by the fact that all the PC

PCT/US92/03812

10

15

20

WO 92/20022

- 16 -

platforms share a single value which is different from that assigned to the VAX
platform. The final column (Column C) is for use with a class of products which
is only supported on the VAX platform. Figure 4 is of course merely an example,
and the actual LURT created by the license document generator 26 and stored
in the license database 23 (as field 47 of the product use authorization 35) can be

of any content of this general format, as desired by the license issuer.

Instead of always selecting the rows in LURT tables according to the
platform ID of the execution platform, in order to handle the breadth of business
practices that need to be supported by the license management facility, the LURT
mechanism is extended by providing a "row selector” attribute in the LURT class
structure. No default is provided although it is expected that the normal value for

the row selector attribute will be "platform ID.”

In the system of patent 4,937,863, a concept similar to that of the LURT
of Figure 4 was provided, with rows selected by the platform ID and columns
selected by some arbitrary means, typically according to product type. The system
of this invention allows flexibility in the selection of both LURT row and column
while continuing to provide backwards compatibility for licenses defined within the

constraints of patent 4,937,863.

Some examples will illustrate potential uses for the row selector attribute.
A customer may only want to pay for the use of a product during one or two
months of the vear; the product may be FORTRAN and the reason for this
request may be that the company has a fairly stable set of FORTRAN subroutines
that are given regular "annual maintenance" only during the months of May and
June. To handle this customer’s needs, the FORTRAN product would generate

PCT/US92/03812

10

15

20

WO 92/20022

- 17 -

an application subcontext which would contain a value representing the month of
the year. Then, a LURT table would be defined with twelve rows, one for each
month of the year. In some column, probably column A, a negative one (-1)
would be placed in each month except for May and June. These two months
would contain some positive number. The product use authorization would then
have a LURDM field specifying a LURT for use to determine the units
requirement, and would name this custom LURT table. The effect would be that
the PUA could only be used during the months of May and June since negative
one is interpreted by license managers to mean "use not authorized." This
mechanism could also be used to do "time of day" charging. Perhaps charging
fewer units per use at night than during the day. Also, if a subcontext was used
that contained a year value, a type of license would be provided that varied in its
unit requirements as time passed. For instance, it might start by costing 10-units
per use in 1991 but then cost one unit less every year as time passed, eventually

getting to the point where the unit requirement was zero.

Another example is font names. A specific customer may purchase a
license giving it the right to concurrent use of 100-units of a large font collection;
some of the fonts may cost more to use than others. For instance, Times Roman
might cost 10-units per use while New Century Schoolbook costs 20-units per use.
The problem is, of course, making sure that charges are properly made. The
solution is to build a LURT table with a specified application subcontext as its
row selector. A row is then created for each font in the collection and in Column
A of the LURT, the number of units required to pay for use of the font would be
specified. The print server would then specify the name of a font as the value of
the application subcontext whenever it does an Im_request_allocation() call. This

will allow charges to be varied according to font name.

PCT/US92/03812

10

15

20

WO 92/20022

PCT/US92/03812

- 18 -

A further example is memory size. Some products are more or less
valuable depending on the size of memory available to support them. A software
vendor wishing to determine unit requirements based on memory size will be able
to do so by building LURT tables with rows for each reasonable increment of
memory (probably 1-megabyte increments). Their applications would then sense
memory size (using some mechanism not part of the license management facility)

and pass a rounded memory size value to the license manager in a private context.

Other examples are environment and operating system. Some products
may be valued differently depending on whether they are being run in an
interactive mode or in batch. This can be accomplished by building LURT rows
for each of the standard platform subcontexts that specify environment.
Regarding operating system, it has been considered desirable by many to have a
single product use authorization permit the use of a product on any number of
operating systems, this conflicts with some vendors policies who do not want to
have to create a single price for a product that applies to all operating systems.
Thus, if an operating system independent license were offered for a C compiler,
the price would be the same on MS-DOS, VMS, and/or UNIX. Clearly, it can be
argued that the value of many products is, in part, dependent on the operating
system that supports them. By using a row selector of operating system (one of
the standard platform subcontexts), license designers could, in fact, require
different numbers of units for each operating system. However, it might be more
desirable to base the row selection on a private application subcontext that
normally had the same value as the operating system subcontext. The reason for
this is that the license designer might want to provide a default value for operating
system names that were unknown at the time the LURT rows were defined. If

this is the case, the product would contain a list of known operating systems and

10

15

20

WO 92/20022

- 19 -

pass the subcontext value of "Unknown" when appropriate. The LURT row for
"Unknown" would either contain a negative one (-1) to indicate that this operating

system was unsupported or it would contain some default unit requirement.

Another example is variable pricing within a group. One of the problems
with a "group” license is that there is only one unit requirements field on the PUA
for a group. Thus, all members of the group share a single unit requirement.
However, in those cases were all members of the group can be appropriately
licensed with a constant unit requirement yet it is desired to charge different
amounts for the use of each group member, a LURT can be built that has rows
defined for each group member. The row selector for such a group would be the

standard platform subcontext "product name."

Many different types of license can be created using different combinations
of contexts, duration and policy from the table of Figure 3. As examples, the
following paragraphs show some traditional licensing styles which can be
implemented using the appropriate values of the product use authorization fields
43-46.

A "system license" as it is traditionally designated is a license which allows
unlimited use of a product on a single hardware system. The correct number of
units must be allocated to the processor in advance and then an unlimited product
use is available to users of the system. The product use authorization would have
in the context field 44 a context template for a node name, the duration field

would be "assignment” and the policy style field 43 would be "allocative".

PCT/US92/03812

10

15

20

WO 92/20022

PCT/US92/03812

- 20 -

A "concurrent use" license is one that limits the number of simultaneous
uses of a licensed product. Concurrent use license units are only allocated when
the product is being used and each simultaneous user of the licensed product
requires their own units. In this case the context template, field 44, is a process

ID, the duration field is "transaction” and the policy style 43 is "allocative”.

A "personal use” license is one that limits the number of named users of
a licensed product. This style of licensing guarantees the members of a list of
users access to a product. Associated with a personal use type of product use
authorization there is a list of registered users. The administrator is able to assign
these users as required up to the limit imposed by the product use authorization;
the number of units assigned to each user is indicated by the LURDM. It may be
a constant or it may vary as specified in a LURT. The context template is “user

name", the duration is "assignment", and the policy is "allocative".

A "site license" is one that limits the use of a licensed product to a physical
site. Here the product use authorization contains for the context template either

"network name" or "domain name", the duration is "assignment” and the policy

style field 43 is "allocative”.

Generally, a license to use a software product is priced according to how
much benefit can be gained from using the product, which is related to the
capacity of the machine it will run on. A license for unlimited use on a large
platform such as a mainframe, where there could be thousands of potential users
at terminals, would be priced at a high level. Here the style would be "allocative”,
the context template = "node”, the duration = "assignment" and the LURDM may
be "Column A" - the units, however, would be large, e.g., 1000. At the other end

10

15

20

WO 92/20022

PCT/US92/03812

- 2] -

of the scale would be a license for use on a single personal computer, where the
field values would be the same as for the mainframe except the units would be "1".
If a customer wanted to make the product available on the mainframe but yet
limit the cost, he could perhaps get a license that would allow only five users at
any given time to use the product; here the fields in the product use authorization
would be: units = §; style = allocative; context template = process; duration =
transaction; LURDM = constant, 1-unit. This would still be priced fairly high
since a large number of users may actually use the product if a session of use was
short. A lower price would probably be available for a personal use license where
only five named persons could use the product, these being identified only in the
license server 10, not named by the license issuer 25. Here the fields in the
product use authorization are: units = 5; style = allocative; context template =

user name; duration = transaction; LURDM = constant, 1-unit.

An additional feature that may be provided for in the product use
authorization 35 is license combination. Where there are multiple authorizations
for a product, license checking requests sent by user nodes 16 may be satisfied by
combining units from multiple authorizations. Individual product use
authorizations may prohibit combined use. Thus, a licensee may have a license
to use a product 17 on an allocative basis for a certain number of units and on a
consumptive basis for another number of units (this may be attractive from pricing
standpoint); there might not be enough units available for a particular context
from one of these licenses, so some units may be "borrowed" from the other

license (product use authorization), in which case a combination is made.

The interface between the program executing on the client or user 16 and

the license server 10 or its delegatees 13 includes basically three procedure calls:

10

20

WO 92/20022

PCT/US92/03812

- 22 -

a request allocation, a release allocation and a query allocation. Figure 5
illustrates in flow chart form some of the events occurring in this client interface.
The request allocation is the basic license checking function, a procedure call
invoked when a software product 17 is being instantiated, functioning to request
an allocation of license units, with the return being a grant or refusal to grant.
Note that a product may use request allocation calls at a number of points in
executing a program, rather than only upon start-up; for example, a request
allocation may be sent when making use of some particular feature such a special
graphics package or the like. The release allocation call is invoked when the user
no longer needs the allocation, e.g, the task is finished, and this return is often
merely an acknowledge; if the style is consumptive, the caller has the opportunity
via the release allocation call to influence the number of units consumed, e.g.,
decrease the number due to some event. The query allocation call is invoked by

the user to obtain information about an existing allocation, or to obtain a calling

card, as will be described.

The request allocation, referred to as Im_request_allocation(), is a request
that license units be allocated to the current context. This function returns a grant
or denial status that can be used by the application programmer to decide whether
to permit use of the product or product feature. The status is based on the
existence of an appropriate product use authorization and any license management
policies which may be associated with that product use authorization. License
units will be allocated or consumed, if available, according to the policy statement
found on the appropriate product use authorization. The product would normally
call this function before use of a licensed product or product feature. The
function will not cause the product’s execution to be terminated should the request

fail. The decision of what to do in case of failure to obtain allocation of license

10

15

20

WO 92/20022

- 23 -

units is up to the programmer. The arguments in a request allocation call are the
product name, producer name, version, release date, and request extension. The
product name, producer name, version and release date are the name of the
software product, name of producer, version number and release date for
specifically identifying the product which the user is requesting an allocation be
made. The request extension argument is an object describing extended attributes
of the request, such as units required, LURT column, private context, and
comment. The results sent back to the calling node are a return code, indicating
whether the function succeeded and, if not, why not, and a grant handle, returned
if the function completes successfully, giving an identifying handle for this grant
50 it can be referred to in a subsequent release allocation call or query allocation

call, for example.

The release allocation, referred to as Im_release_allocation(), is an
indication from a user to the license manager to release or consume units
previously allocated. This function releases an allocation grant made in response
to a prior call to request allocation. Upon release, the license management style
38 determines whether the units should be returned to the pool of available units
or consumed. If the caller had specified a request extension on the earlier call to
request allocation which contained a units-required-attribute, and the number of
units requested at that time are not the number of units that should be consumed
for the completed operation, the caller should state with the units-consumed
argument how many units should be consumed. The arguments of the release
allocation are: grant handle, units consumed, and comment. The grant handle
identifies the allocation grant created by a previous call to request allocation. The
units-consumed 'argument identifies the number of units which should be

consumed if the license policy is consumptive; this argument should only be used

PCT/US92/03812

10

15

20

WO 92/20022

PCT/US92/03812

- 24 -

in combination with an earlier call to request allocation which specified a units
requirement in a request extension. Omission of this argument indicates that the
number of units to be consumed is the same as the number allocated previously.
The comment argument is a comment which will be written to the log file 24 if
release units are from a consumptive style license or if logging is enabled. The

result is a return code indicating if the function succeeded, and, if not, why not.

The query allocation, or Im_query_allocation(), is used by licensed products
which have received allocations by a previous request allocation call. The query
is to obtain information from the server 10 or delegatee server 13 about the
nature of the grant that has been made to the user and the license data used in
making the grant, or to obtain a calling card (i.e., a request that a calling card be
issued). Typically, the item read by this query function is the token field 52 which
contains arbitrary information encoded by the license issuer and which may be
interpreted as required by the stub 19 for the licensed product software 17, usually
when a "private” allocation style or context is being employed. The arguments in
this procedure call are the grant handle, and the subject. The grant handle
identifies the allocation grant created by a previous call to request allocation. The
subject argument is either "product use authorization" or "calling card request”; if
the former then the result will contain a public copy of the product use
authorization. If this argument is a calling card request and a calling card which
matches the previous constraints specified in that request can be made available,
the result will contain a calling card. If the subject argument is omitted, the result
will contain an instance of the allocation. The results of the query allocation call
are (1) a return code, indicating whether the function succeeded, and, if not, why
not, and (2) a result, which is either an allocation, a product use authorization or

a calling card, depending on type and presence of the subject argument.

10

15

20

WO 92/20022

PCT/US92/03812

- 25 -

Referring to Figure 5, the flow chart shows the actions at the client in its
interface with the server. When the software product 17 is to be invoked, the unit
18 is first executed as indicated by the block 60, and the first action is to make a
request allocation call via the stub 19, indicated by the block 61. The client waits
for a return, indicated by the loop 62, and when a return is received it is checked
to see if it is a grant, at decision block 63. If not, the error code in the return is
checked at block 64, and if a return code indicates a retry is possible, block 63,
control passes back to the beginning, but if no retry is to be made then execution
is terminated. If the policy is to allow use of the product 17 without a license
grant, this function is separately accounted for. If the decision point 63 indicates
a grant was made, the grant handle is stored, block 66, for later reference. The
program 17 is then entered for the main activities intended by the user. During
this execution of product 17, or before or after, a query allocation call can be
made, block 67, though this is optional and in most cases not needed. When
execution of the program 17 is completed, the grant handle is retrieved, block 68,
and a release allocation call is made, block 69. A loop 70 indicates waiting for the
return from the server, and when the return received it is checked for an error
code as before, and a retry may be appropriate. If the release is successfully

acknowledged, the program exits.

Referring to Figure 6, the actions of the server 10 or delegatee server 13
in executing the license management program 11 or 14, for the client interface,
are illustrated in flow diagram form. A loop is shown where the server program
is checking for receipt of a request, release or query call from its clients. The call
would be a remote procedure call as discussed above, and would be a message
communicated by a network, for example. This loop shows the decision blocks 71,
72 and 73. If a release allocation call is received, a list of products for which

10

15

20

WO 92/20022

- 26 -

authorizations are stored is scanned, block 74, and compared to the product
identity given in the argument of the received call, block 75. If there is no match,
an error code is returned to the client, block 76, and control goes back to the
initial loop. If the product is found, the authorization is retrieved from the
database 23, block 77 (there may be more than one authorization for a given
product, in which case all would be retrieved, but only one will be referred to
here) and all of the information is matched and the calculations made depending
upon the management policy of Figures 3 and 4, indicated by the decision block
78. If a grant can be made, it is returned as indicated at block 79, or if not an
error code is returned, block 80. If a release allocation call is received, indicated
by a positive at the decision block 72, the grant handle in the argument is checked
for validity at block 81. If no match is found, an error code is returned, block 82,
and control passes back to the initial loop. If the handle is valid, the authorization
for this product is retrieved from the database 23 at block 83, and updated as
indicated by the block 84. For example, if the license management style is
allocative, the units are returned to the available pool. Or, in some cases, no
update is needed. The authorization is stored again in the database, block 85, and
a return made to the client, block 86, before control passes back to the initial
loop. If the decision block 73 indicates that a query allocation call is received,
again the grant handle is checked at block 87, and an error code returned at block
88 if not valid. If the grant handle matches, the authorization is retrieved from
the database 23, at block 89, and a return is made to the client giving the

requested information in the argument, block 90.

The basic allocation algorithm used in the embodiment of the license
management system herein described, and implemented in the method of Figures

5 and 6, is very simple and can handle a very large proportion of known license

PCT/US92/03812

10

15

20

WO 92/20022

-27 -

unit allocation problems. However, it should be recognized that a more elaborate
and expanded algorithm could be incorporated. Additions could be made in
efforts to extend the allocation algorithm so that it would have specific support for
optimizing unit allocation in a wider variety of situations. Particularly, sources of
non-optimal allocations occurring when using the basic allocation algorithm are

those that arise from combination and reservation handling.

The first step is formation of full context. The client stub 19 is responsible
for collecting all specified platform and application subcontexts from the execution
environment of the product 17 and forwarding these collected subcontexts to the
license management server 13 or 10. The collection of subcontexts is referred to

as the "full context” for a particular license unit allocation request.

The next step is retrieval of the context template. When the license
manager receives an Im_request_allocation(), it will look in its list of available
product use authorizations (PUA) to determine if any of them conform to the
product identifier provided in the Im_request_allocation() call. The product
identifier is composed of: product name, producer, version, release date. If any
match is found, the license manager will extract from the matching PUA the
context template. This template is composed of a list of subcontexts that are
relevant to the process of determining unit requirements. Thus, a context
template may indicate that the node-ID subcontext of a specific full context is of
interest for the purposes of unit allocation. The context template would not
specify any specific value for the node-ID; rather, it simply says that node-ID

should be used in making the allocation computation.

PCT/US92/03812

10

15

20

WO 92/20022

PCT/US92/03812

- 28 -

The next step is masking the full context. Having retrieved the context
template, the license manager will then construct an “allocation context" by
filtering the full context to remove all subcontexts which are not listed in the

context template. This allocation context is the context to be used in determining

allocation requirements.

Then follows the step of determining if the request is new. Thelicense
manager maintains for each product use authorization a dynamic table which
includes the allocation contexts of all outstanding allocations for that PUA (i.e.,
allocations that have been granted but have not yet been released). Associated
with each entry in this table is some bookkeeping information which records the
number of units allocated, the full context, etc. To determine if a recent
Im_request_allocation() requires an allocation of units to be made, the license
manager compares the new allocation context with all those allocation contexts in
the table of outstanding allocations and determines if an allocation has already
been made to the allocation context. If the new allocation context does not
already exist in the table, an attempt will be made to allocate the appropriate
number of units depending on the values contained in the LURDM structure of
the PUA and any LURT: that might be required. If an allocation context similar
to that specified in the new allocation request does exist in the table, the license
manager will verify that the number of units previously allocated are equal to or
greater than the number of units which would need to be allocated to satisfy the
new allocation request. If so, the license manager will return a grant handle to
the application which indicates that the allocation has been made (ie., it is a
nshared allocation” - the allocated units are shared between two requests.) If not,

the license manager will attempt to allocate a number of units equal to the

10

15

20

WO 92/20022

-29 -

difference between the number previously allocated and the number of units

required.

The step of releasing allocations (Fig. 6, blocks 84-85) occurs when the
license manager receives an Im_release_allocation() call; it will remove the record
in its dynamic allocation table that corresponds to the allocation to be released.
Having done this, the license manager will then determine if the allocation to be
removed is being shared by any other allocation context. If so, the units
associated with the allocation being released will not be released. They will
remain allocated to the remaining allocation contexts. Some of the units might
be released if the license manager determines that the number of allocated units
exceeds the number needed to satisfy the outstanding allocation contexts. If this
is the case, the license manager will "trim" the number of allocated units to an

appropriate level.

In summary, the two things that make this algorithm work are (1) the basic
rule that no more than one allocation will be made to any single allocation
context, and (2) the use of the context template to make otherwise dissimilar full

contexts appear to be similar for the purposes of allocation.

The license designer’s task, when defining basic policy, is then to determine
which contexts should appear to be the same to the license manager. If the
license designer decides that all contexts on a single node should look the same
(context template = node-ID), then any requests that come from that node will
all share allocations. On the other hand, a decision that all contexts should be
unique (i.e., context template = process-ID) will mean that allocations are never

shared.

PCT/US92/03812

10

15

20

25

WO 92/20022

PCT/US92/03812

- 30 -

and stores a unit value indicating the number of licensing units for each product.
When a user wishes to use a licensed product, a message is sent to the central
license management facility requesting a license grant. In response to this
message, the facility accesses the database to see if a license exists for this
product, and, if so, whether units may be allocated to the user, depending upon
the user’s characteristics, such as the configuration of the platform (CPU) which
will execute the software product. If the license management facility determines
that a license can be granted, it sends a message to the user giving permission to

proceed with activation of the product. If not, the message denies permission.

While the concepts disclosed in the patent 4,937,863 are widely applicable,
and indeed are employed in the present invention, there are additional functions
and alternatives that are needed in some applications. For example, the license
management system should allow for simultaneous use of a wide variety of
different licensing alternatives, instead of being i’igidly structured to permit only
one or only a few. When negotiating licenses with users, vendors should have
available a wide variety of terms and conditions, even though a given vendor may
decide to narrow the selection down to a small number. For example, a software
product may be licensed to a single individual for use on a single CPU, or to an
organization for use by anyone on a network, or for use by any users at terminals
in a cluster, or only for calls from another specific licensed product, or any of a
large number of other alternatives. A vendor may have a large number of
products, some sold under one type of license and some under others, or a
product may be a composite of a number of features from one or more vendors
having different license policies and prices; it would be preferable to use the same

license management system for all such products.

10

15

20

25

WO 92/20022 PCT/US92/03812

- 31 -

Distributed computing systems present additional licensing issues. A
distributed system includes a number of processor nodes tied together in a
network of servers and clients. Each node is a processor which may execute
programs locally, and may also execute programs or features (subparts of
programs) via the network. A program executing on one node may make remote
procedure calls to procedures or programs on other nodes. In this case, some
provision need be made for defining a license permitting a program to be
executed in a distributed manner rather than separately on a single CPU, short of

granting a license for execution on all nodes of a network.

In a large organization such as a company or government agency having
various departments and divisions, geographically dispersed, a software license
policy is difficult to administer and enforce, and also likely to be more costly, if
individual licenses are negotiated, granted and administered by the units of the
organization. A preferred arrangement would be to obtain a single license from
the software producer, and then split this license into locally-adhﬁnistered parts
by delegation. The delays caused by network communication can thus be
minimized, as well as budgetary constraints imposed on the divisions or
departments. Aside from this issue of delegation, the license management facility
may best be operated on a network, where the licensing of products run on all
nodes of the network may be centrally administered. A network is not necessary
for use of the features of the invention however, since the license management can

be implemented on a single platform.

Software products are increasingly fragmented into specific functions, and
separate distribution of the functions can be unduly expensive. For example, a

spreadsheet program may have separate modules for advanced color graphics, for

10

15

20

WO 92/20022 PCT/US92/03812

- 32 -

accessing a database, for printing or displaying an expanded list of fonts, etc.
Customers of the basic spreadsheet product may want some, none or all of these
added features. Yet, it would be advantageous to distribute the entire
combination as one package, then allow the customer to license the features
separately, in various combinations, or under differing terms. The customer may
have an entire department of the company needing to use the spreadsheet every
day, but only a few people who need to use the graphics a few days a month. It
is advantageous, therefore, to provide alternatives for varied licensing of parts or

features of software packages, rather than a fixed policy for the whole package.

Another example of distribution of products in their entirety, but licensing
in parts, would be that of delivering CD ROM s to a customer containing all of the
software that is available for a system, then licensing only those parts the customer
needs or wishes to pay fees for rights to use. Of course, the product need not be
merely applications programs, operating systems, or traditional executable code,
but instead could also include static objects such as printer fonts, for example, or

graphics images, or even music or other sound effects.

As will be explained below, calling and caller authorizations are provided
in the system according to one feature of the invention, in order to provide
technological support for a number of business practices and solve technical
problems which require the use of what is called "transitive licensing.” By
"transitive licensing” is meant that the right to use one product or feature implies
a right to use one or more other products or features. Transitive licenses are
similar to group licenses in that both types of license consist of a single instrument
providing rights of use for a plurality of products. However, transitive licenses

differ from group licenses in that they restrict the granted rights by specifying that

10

15

20

25

WO 92/20022 PCT/US92/03812

- 33 -

the licensed products can only be used together and by further specifying one or
more permitted inter-product calling/caller relationships. Some examples may
help to clarify the use and nature of a transitive license: the examples to be
explained are (1) two products sold together, (2) a give-away that results from
narrow choices of licensing alternatives, (3) a client licensing method in a
client/server environment, (4) impact of modular design, and (5) the impact of

distributed design.

A software vendor might have two products for sale: the first a mail
system, and the second a LEXIS™:-like content-based text retrieval system. Each
of these products might be valued at $500 if purchased separately. Some
customers would be satisfied by purchasing the rights to use only one of these
products. others might find that they can justify use of both. In order to increase
the likelihood that customers will, in fact, purchase both products, it would not be
surprising if the software vendor offered his potential customers a volume
discount, offering the two products for a combined price of $800. The customers
who took advantage of this combined offer would find that they had received two
products, each of which could be exploiied to its fullest capabilities independently
from the other. Thus, these customers would be able to use the content based
retrieval system to store and retrieve non-mail documents. However, from time
to time, the vendor may discover that particularly heavy users of mail wish to be
able to use the content based retrieval system only to augment the filing
capabilities provided by the standard mail offering. It is likely that many of these
potential customers would feel that $800 is simply too much to pay for an
extended mail capability —The vendor might then consider offering these
customers a license that grants mail users the right to use the content-based

retrieval system only when they are using mail and prohibits the use of content

10

15

20

25

WO 92/20022 PCT/US92/03812

- 34 -

based retrieval with any other application that might be available on the

customers system. This type of license is referred to below a "transitive license,”

and it might sell for $600.

Another example is a relational database product (such as that referred to
as Rdb™) designed for use on a particular operating system, €.g., VMS. This
relational database product has two components: (1) A user interface used in
developing new databases, and (2) a "run-time" system which supports the use of
previously developed databases. The developers of the database product might
spend quite a bit of effort trying to get other products made by the vendor of the
database product to use it as a database instead of having those other products
build their own product-specific databases. Unfortunately, the other product
designers may complain that the cost of a run-time license for the database
product, when added to the cost of licenses for their products, would inevitably
make their products uncompetitive. Thus, some mechanism would be needed that
would allow one or another of the vendor’s products to use the run-time system
for the relational database product in a "private” manner while not giving
unlicensed access to products of other vendors. No such mechanism existed, prior
1o this invention; thus, the vendor might be forced to sell the right to use its run-
time system for the database product with its proprietary operating system license.
Clearly, this combined license would make it possible for the vendor’s products to
use its database product without increasing their prices; however, it also would
make it possible for any customers and third-parties to use the database product
without paying additional license fees. However, had the system of the invention
been available, the vendor could have granted transitive licenses for the run-time
component of its database product to all the vendor’s products. Essentially, these

licenses would have said that the database run-time could be used without an

10

15

20

WO 92/20022

- 35 -

additional license fee if and only if it was used in conjunction with some other of
the vendor’s products. Any customer wishing to build a new relational database
application or use a third-party application that relied on the vendor’s database

product would have had to pay the vendor for its database run-time license.

A proposed client/server licensing method provides yet another example
of a problem which could be solved by transitive licensing. Typically, a client is
only used by one user at a time, while a server can support an arbitrary number
of clients depending on the level of client activity and the capacity of the machine
which is supporting the server. While traditionally, server/client applications have
been licensed according to the number of clients that a server could potentially
support, this may not be the most appropriate method for licensing when the
alternatives afforded by the invention are considered. The business model for the
proposed client/server method requires that each client be individually licensed
and no explicit licensing of servers is required to support properly licensed clients.
Such a licensing scheme makes it possible to charge customers only for the specific
number of clients they purchase. Additionally, it means that a single client can
make use of more than one server without increasing the total cost of the system.
The solution to this transitive licensing problem would be to provide a mechanism
that would allow the clients to obtain license unit allocations and then pass a
"proof" of that allocation to any servers they may wish to use. Servers would then
support any clients whose proofs could be verified to be valid. On the other hand,
if a client that had not received a proof of allocation attempted to use a server,
the server would obtain a license allocation for that client session prior to

performing any services. Such a solution has not been heretofore available.

PCT/US92/03812

10

15

20

25

WO 92/20022

PCT/US92/03812

- 36 -

As the complexity and size of the software systems provided to customers
increases, it is found that the actual solution provided to customers is no longer
a single product. Rather, customers are more often now offered solutions which
are built ub by integrating an increasing number of components or products, each
of which can often stand alone or can be part of a large number of other
solutions. In fact, a product strategy may rely almost exclusively on the vendor’s
engineering and selling a broad range of specialized components that can only be
fully exploited when combined together with other components into a larger
system. Such components include the relational database runtime system
mentioned above, mail transport mechanisms, hyperinformation databases,
document format conversion services, time services, etc. Because these
components are not sold on their own merits, but rather on their ability to
contribute to some larger system, it is unlikely that any one customer will be
receiving the full abstract economic value of any one of the components once
integrated into a system. Similarly, it can be observed that the value of any
component once integrated into a larger system varies greatly from system to
system. Thus, it may be found that a mail transport mechanism contributes a
large part of a system whose primary-focus is mail, however, it will contribute
proportionally less of the value of a system that provides a broader office
automation capability. As a result of these observations, the job of the business
analyst who is attempting to find the "correct” market price for each component
standing on its own, is more complex. In reality, the price or value of the
component can only be determined when considering the contribution of that
component to the full system or solution in which it is integrated. Attempting to

sell the components at prices based on their abstract, independent values will

simply result in overpriced systems.

10

15

20

25

WO 92/20022 PCT/US92/03812

- 37 -

Transitive license styles are particularly suited to dealing with pricing of
modular components, since component prices can be clearly defined in relation
to the other components or systems which they support. Thus, a vendor can
charge a price of $100 for the right to use a mail transport system in conjunction
with one product, yet charge $200 for the use of the same mail transport system

when used by another product.

In addition to the "business" reasons for wanting to support transitive
licensing, there is also a very good technical reason that arises from the growing
tendency of developers to build "distributed products” as well as the drive toward
application designs that exploit either tightly or loosely coupled multiprocessor
systems; the availability and growing use of remote procedure calls has contributed
to this tendency. This technical problem can be seen to arise when considering
a product which has a number of components, each of which may run in a
different process space and potentially on a different computer system. Thus,
there might be a mail system whose user interface runs on one fnachine, its "file
cabinet" is supported by a second machine and its mail transport system runs on
yet a third machine. The simple question which arises is: "Which of the three
components should check for licenses?" Clearly it must be ensured that no single
component can be used if a valid license is not present. Thus, the answer to the
question will probably be that all three components should check for licenses.
However, the question is then presented: "Where are the licenses to be located?".

This can become more complex.

Increasingly, the distributed systems being built are being designed so that
it is difficult to predict on which precise machine any particular component will

run. Ideally, networks are supposed to optimize the placement of functions

10

15

20

WO 92/20022 PCT/US92/03812

- 38 -

automatically so that the machine with the most available resource is always the
one that services any particular request. This dynamic method of configuring the
distribution of function servers on the network makes it very difficult for a system
or network manager to predict which machines will run any particular function

and thus very difficult for him to decide on which machines software licenses

should be loaded.

Even if a system manager could predict which machines would be running
the various application components and thus where the license units should be
loaded, the situation would still be less than ideal. The problem arises from the
fact that each of the components of the application would be independently
making requests for license unit allocations. This behavior will result in a difficult
problem for anyone trying to decide how many license units are required to
support any one product. Given the mail example, the problem wouldn't exist if
it were assumed that all three components (i.e., user interface, file cabinet, and
transport system) were required by the design of the mail system to be in use
simultaneously. If this were the case, it could be simply assumed that supporting
a single activation of the mail system would require three units. However, in a
real mail system, it will be inevitably discovered that many users will only be using
just the user-interface and file-cabinet components of the system at one time.
Thus, there will be some unused units available which could be used to authorize

additional users. This situation might not be what is desired by the software

vendor.

The problem of providing license support to multi-component products
which are dynamically configured could be solved by viewing each of the product

components as a distinct licensable product and by treating the problem as one

10

15

20

WO 92/20022 PCT/US92/03812

- 39 -

of transitive licensing, but a mechanism for accomplishing this has not been
available. Essentially, a single license document would be created that stated that
if any one of the components had successfully obtained a license to run, it could
use this grant to give it the right to exploit the other components. Thus, in the
example above, the user might start the mail sy;tem by invoking its user interface.
This user interface code would then query the license management facility for a
license allocation and once it has received that allocation, it would pass a proof
of allocation to the other mail components that it uses. Each of the other
components would request that the license management system validate that the
"proof" is valid prior to performing any service; however, none of the other
components would actually require specific allocations to be made to them. In
this way, the complexity of licensing and managing networks of distributed

applications can be significantly reduced.

SUMMARY OF THE INVENTION

In accordance with one emt;odiment of the invention, a license
management system is used to account for software product usage in a computer
system. The system employs a license management method which establishes a
management policy having a variety of simultaneously-available alternative styles
and contexts. A license server administers the license, and each licensed product
upon start-up makes a call to the license server to check on whether usage is
permitted, in a manner similar to that of patent 4,937,863. The license server
maintains a store of the licenses, called product use authorizations, that it
administers. Upon receiving a call from a user, the license server checks the

product use authorization to determine if the particular use requested is

10

15

WO 92/20022

PCT/US92/03812

-40-

permitted, and, if so, returns a grant to the requesting user node. The license
server maintains a database of product use authorizations for the licensed
products, and accesses this database for updating and when a request is received
from a user. While this license management system is perhaps of most utility on
a distributed computer system using a local area network, it is also operable in a
stand-alone or cluster type of system. In a distributed system, a license server
executes on a server node and the products for which licenses are administered
are on client nodes. However, the license management functions and the licensed

products may be executing on the same processor in some embodiments.

The product use authorization is structured to define a license management
policy allowing a variety of license alternatives by components called "style’,
ncontext”, "duration" and "usage requirements determination method". The style
may be allocative or consumptive. An allocative style means the units of the
license may be allocated temporarily to a user when a request is received, then
returned to the pool when the user is finished, so the units may be reused when
another user makes a request. A consumptive style means the units are deducted
from an available pool when a user node makes a valid request, and “"consumed”,
not to be returned for reuse. The context value defines the context in which the
use is to be allowed, such as on a particular network, by a particular type of CPL,
by a particular user name, by a particular process, etc. The duration value (used
in conjunction with the style component) concerns the time when the license units
are to be deducted from the available pool of units, whether at the time of
request, after a use is completed, etc. A usage requirements determination
method may be specified to define or provide information concerning the number
of license units charged in response to a license request from a user node; for

example, some CPU platforms may be charged a larger number of license units

10

15

20

25

WO 92/20022

- 41_

than others. A table may be maintained of usage requirements, and the
determination method may specify how to access the table, for example. The
important point is that the user node (thus the software product) can only make
a request, identifying itself by user, platform, process, etc., and the license
management facility calculates whether or not the license can be granted (that is,
units are available for allocation), without the user node having access to any of
the license data or calculation. There is a central facility, the license server,
storing the license documents, and, upon request, telling the licensed products

whether they can operate under the license terms.

An important feature of one embodiment is that the license administration
may be delegated to a subsection of the organizatioh, by creating another license
management facility duplicating the main facility. For example, some of the units
granted in the product use authorization may be delegated to another server,

where the user nodes serviced by this server make requests and receive grants.

The license management facility cannot create a license itself, but instead
must receive a license document (a product use authorization) from an issuer of
licenses. As part of the overall license management system of the invention, a
license document generator is provided which creates the product use
authorizations under authority of the owner of the software, as negotiated with
customers. Thus, there are three distinct rights in the overall license management
facility of the invention: (1) the right to issue licenses, (2) the right to manage
licenses, and (3) the right to use the licensed products. Each one of these uses the
license document only in prescribed ways. The license issuer can generate a
license document. The license manager (or license server as referred to herein)

can grant products the right to use under the license, and can delegate parts of the

PCT/US92/03812

WO 92/20022 PCT/US92/03812

licensed units for management by another server, as defined by the license
document; the way of granting rights to products is by responding to certain
defined calls from the products. And, the licensed products can make certain calls
to the license server to obtain grants of rights based upon the license document,

inquire, or report, but ordinarily cannot access the document itself.

As explained above, transitive licensing is an important feature of one
embodiment. This is the provision of a mechanism for one user node to get
permission to use another software product located on another user node; this is
referred to as a calling authorization and a caller authorization, using a “calling
card." and these are examples of the optional features which must be specifically
permitted by the product use authorization. A user node must obtain permission
to make a procedure call to use a program on another node; this permission is
obtained by a request to the license server as before, and the permission takes the
form of a calling card. When a calling card is received by a second node (i.e.,
when the procedure call is made), a request is made by the second node to the
license server to verify (via the product use authorization) that the calling card is
valid, and a grant sent to the user node if allowed. In this manner, all nodes may

have use of a program by remote calls, but only one consumes license units.

Another important feature of one embodiment is a management interface
which allows a license manager to modify the license policy components of a
license document maintained by at a license server in its database. Usually the
license manager can only make modifications that restrict the license policy
components to be more restrictive than originally granted. Of course, the
management interface is used to make delegations and assignments, if these are

authorized.

10

15

WO 92/20022 PCT/US92/03812

- 43 -

The license document interchange format is an important feature, in that
it allows the license management system to be used with a wide variety of software
products from different vendors, so long as all follow the defined format. The

format uses data structures that are defined by international standards.

An important function is the filter function, used in the management
interface and also in the client interface to select among elements in the data

structures.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention are set forth in
the appended claims. The invention itself, however, as well as other features and
advantages thereof, will be best understood by reference to the detailed
description of specific embodiments which follows, when read in conjunction with

the accompanying drawings, wherein:

Figure 1 is a diagram in block form of a distributed computer system which
may be used to implement the license management operations according to one

embodiment of the invention;

Figure 2 is a diagram of the content of a license document or "product use
authorization” generated by the license document generator and stored by the

license server in the system of Figure 1;

WO 92/20022 PCT/US92/03812

Figure 3 is a diagram of the alternatives for license style, context and
duration making up the license management policy implemented in the system of

Figure 1, according to one embodiment of the invention;

Figure 4 is a diagram of an example of a fragment of a license use
5 requirements table (LURT) used in the system of Figure 1, according to one

embodiment of the invention;

Figure 5 is a logic flow chart of a program executed by a user node (client),

in the system of Figure 1, according to one embodiment of the invention;

Figure 6 is a logic flow chart of a program executed by a license server, in

10 the system of Figure 1, according to one embodiment of the invention; and

Figure 7 is a diagram of the calls and returns made in an example of use

of calling cards in the system of Figure 1.

Figure 8 is a diagram of an LDIF document identifier, according to an

standard format;
15 Figure 9 is a syntax diagram of an LDIF document;
Figure 10 is a diagram of an LDIF document structure;

Figures 11, 13, 15, 17, 18, 19, 21-28 and 31-43 are syntax diagrams for

elements of various ones of the LDIF data structures;

i0

15

+ 20

WO 92/20022 PCT/US92/03812

..45..

Figure 16 is a diagram of a license data structure;

Figures 12, 14 and 20 are examples of descriptions of data elements using

a standard notation;

Figures 29 and 30 are examples of context templates used in the license

management system,

Figures 44 and 45 are tables of attributes specific to filter and filter item

type; and

Figure 46 is notation in a standard format for an example of a filter.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

Referring to Figure 1, a licen§e management facility according to one
example embodiment of the invention is centered around a license server 10,
which typically includes a CPU located in the customer’s main office and executing
a license management program 11 as will be described, under an operating system
12. The license server 10 communicates with a number of delegatees 13 which
likewise include CPUs in departments or divisions of the company or organization,
each also executing a license management program 14 under an operating system
15. The license management program 14 is the same as the program 11 executing
on the main server 10; the only difference in the functions of server 10 and servers
13 is that the latter have a delegated subset of the license units granted to the

server 10, as will be described. The CPUs 13 are in turn servers for a number of

10

15

20

WO 92/20022 PCT/US92/03812

_46-

users 16, which are CPU nodes where the licensed programs 17 are actually
executed. The programs 17 executing on the user CPUs 16 are applications
programs (Or operating systems, etc.) which have added to them units 18 and 19,
according to the invention, allowing them to make inquiry to the their server 13
(or 10) before executing and to report back after executing, using a client stub 19
in the manner of remote procedure calls, in one embodiment. A user node 16
may have many different programs 17 that may be executed, and the various user
nodes 16 would usually each have a set of programs 17 different from the other
user nodes, all of which would be administered by the license management
program 14 or 11. The terms "program” and "licensed product” are used in
reference to the element 17, but it is understood that the products being
administered may be segments of programs, or functions or features called by
another program, or even merely data (such as printer fonts), as well as complete
stand-alone applications programs. The license server 10 communicates with the
delegatee servers 13 by a network 21, as is usual in large organizations, and the
delegatee servers 13 each communicate with their user nodes 16 by networks 22;
these networks may be of the Ethernet, token ring, FDDI types or the like, or
alternatively, the user nodes 16 may ’bc merely a cluster of terminals on a
multiuser system with the delegatee being a host CPU. The particular hardware
construction of the user nodes, server nodes, communication networks, etc., and
the operating systems 12 or 15, are of no concern regarding the utility of the
features of the invention, the only important point being that the user CPUs 16
of the software products 17 in question can communicate readily and quickly with
their respective server nodes 13 or 10. In one embodiment, remote procedure
calls (RPCs) are used as the communication medium for the interfaces between

components of the system, handling the inquiries and grants as will be described.

10

15

20

WO 92/20022 PCT/US92/03812

_47..

A remote procedure call is similar to a local procedure call but is made to a

procedure located on a remote node, by way of a communications network.

The function of the unit 19 is that of a client stub, in a remote procedure
call sense. The calls to the license server 10 are made through this stub 19, and
returns are received by the stub 19 and passed on to the program 17. The stub
19 is responsible for obtaining the network addresses of other nodes on the
network, such as the server 10. Also, the stub 19 is responsible for determining
the context (as defined below) for passing on to the server 10. The unit 18
functions to execute a "private” type of license availability determination if this is
used, rather than this task being done by the application program 17, but if the
ordinary method of determination is employed (using the license server) as is
usually the case, the unit 18 is merely code that starts the execution and passes

calls and returns back and forth between the program 17 and the unit 19.

The license server 10, using the license management program 11, maintains
a license data file 23 comprising a number of license documents or licenses
(product use authorizations), and also maintains a log 24 which is a record of the
usage activity of all of the user CPUs 16 of each of the licensed programs. The
delegatee servers 13 would maintain similar license databases and logs. The
license server 10 has no authority to originate a license, but instead must receive
a license from a license issuer 25. The issuer 25 is again a CPU executing a
license document generator program 26 under an operating system 27. The
license issuer 25 may be under control of the producer 28 of the programs or
software products being licensed, or may be controlled by a distributor who has
received the authority to grant licenses from the producer or owner 28. The

communications link 30 between the license issuer 25 and the license server 10 for

10

15

20

WO 92/20022 PCT/US92/03812

48,

This mechanism permits the system of the invention to dispose of the
cumbersome, explicit support of license types having different scope such as the
cluster licenses, node licenses, and process licenses found in prior license
management systems including that of patent 4,937,863. Instead of defining a
limited set of scopes (cluster, node, etc.), the system of this invention provides a
general mechanism which allows an effectively unlimited range of allocation

scopes to be defined.

Transitive licensing, as referred to above, is supported by the system of the
invention by (1) calling authorizations, which are statements made in field 49 of
the product use authorization 35 for one product (the "caller") to permit that
product to call another product (the "callee"), and, (2) caller authorizations, which
are statements made in field 49 of the product use authorization for one product

(the “callee") to permit it to be called by another product (the "caller”).

If calling or caller authorizations are to be exploited by products, then
whenever one product calls another product, it must pass the callee a calling card
49a. This calling card 49a is an encoding of an identification of the caller as well
as a statement by the license management system that a license unit allocation has
been made to the caller which is passing the calling card. This calling card is then
passed by the callee to the license management system for validation and, if the
either the product use authorization of the caller carries an appropriate calling
authorization or the product use authorization of the callee carries an appropriate
caller authorization, the use of the callee by the caller will be authorized without

requiring any additional license unit allocations.

10

15

20

WO 92/20022 PCT/US92/03812

- 49 -

Referring to Figure 7, the intercomponent interactions that occur when
either calling or caller authorizations are being used are illustrated. This figure
shows a license management server 10, a caller product 17a named "Product-1"
and a callee product 17b named "Product-2". When Product-1 starts to run, it will
make an Im_request_allocation() call to the license management server 10 to
obtain a grant handle for an allocation of some number of units of the Product-1
license. Either immediately, or at some later time, but always prior to making a
call to Product-2, Product-1 will call im_query allocation(), passing the grant
handle received earlier and specifying that it wants a calling card for the product
named "Product-2." If the field 49 of the product use authorization 35 used to
satisfy the grant represented by the grant handle carries a calling authorization in
field 49 naming "Product-2," the license manager will create a calling card 49a
which includes the statement that a calling authorization exists and pass this
calling card back to Product-1. If the calling authorization does not exist, the

calling card passed to Product-1 will contain a statement to that effect.

Once Product-1 has successfully obtained a calling card 49a from the
license manager, it will then make a call to Product-2, passing the calling card
along with any other initialization parameters that would normally be used when
starting Product-2. Product-2 will then pass that calling card to the license
manager as part of its Im_request_allocation() call and the license manager will
determine if the calling card is valid. Note that calling cards become invalid once
the process which received the calling card makes an im_release_allocation() call
or terminates abnormally. If the calling card is valid, and it indicates that a calling
authorization is present, the license manager will verify this statement and if found
to be true, will return a grant handle to Product-2. If, on the other hand, the

calling card carries an indication that no calling authorization is present, the

10

15

20

WO 92/20022

PCT/US92/03812

- 5’0.—

license manager will attempt to find a product use authorization for Product-2 that
contains a caller authorization naming Product-1 as an authorized caller. If the
caller authorization is found, a grant handle will be passed back to Product-2. If

not, the license manager will ignore the calling card and proceed with the normal

Im_request_allocation() logic.

The requirement to be passing calling cards between products requires that
both the caller and the callee be "aware” of the fact that calling and caller
authorizations may be used. This is one of the few examples of a requirement for
a product 17 to become actively involved in the licensing problem when using the
licensing management system of the invention. However, since the use of
calling/caller authorizations if a fairly "sophisticated” and powerful feature, it is

considered acceptable to impose this burden on application coders.

MANAGEMENT INTERFACE

Referring to Figure 1, the license management program 11 executing on a
server 10 includes a license management interface 33 which functions to allow a
user at a console for the server 10 CPU or at a remote terminal to implement
certain necessary operations. The management interface 33 is essentially the tools
or mechanisms available to the license manager at the licenseess site to (a) load
the various licenses received from issuers 25 into the database 23 and make them
available for request allocation calls from the users, (b) remove the licenses from
the machine when expired, (c) to make delegations if permitted, (d) to make
assignments, (e) to make reservations, etc. Whatever the license manager is

allowed to do to modify the license for his special circumstances (within the

10

15

20

WO 92/20022 PCT/US92/03812

_5"—

original grant, of course), he does it by the mechanism of the management
interface 33. Some licenses are not modified at all, but merely loaded. In a
multiple machine environment, as on a network, there is considerable modifica-
tion, as it is necessary to make sure the correct number of units are distributed
onto the correct machines, the right people have access, other people don't have
access, etc. Thus, in a network environment, there is extensive use of the

management interface 33.

In reference to the terminology used in describing the management
interface, as well as the license management system in general, it is helpful to note
that the documentation conventions, data declarations, macro declarations, etc.,
for the object management used in one embodiment of the invention are
according to the standards set forth in OSI Object Management API Specification,
Version 2.0, X.400 API Association and X/Open Company Limited, 24 August
1990, a published document. '

The specific operations available to the management interface 33 are to
allow a manager to open and close a management session, register (load) objects

in the license database 23, obtain a list of objects in the license database 23, and
control a cursor (a cursor is a movable pointer to a member of a list of items).
Once an object in the license database 23 is identified with the cursor, certain
changes may be made in the object by a write function. For example, certain
fields of a license document of Figure 2 or an LURT of Figure 4 may be changed

in only specified ways as will be explained.

The operation of opening a session goes by the name of Im_open_session()

and is used to establish a license management service session between a

10

15

20

WO 92/20022

PCT/US92/03812

_52—

management client and the service. Opening a session also creates a workspace
to contain objects returned as a result of functions invoked within the session.
Object management Objects can be created and manipulated within this
workspace. Objects created within this workspace, and only such objects, may be
used as Object arguments to the other license management service management
functions used during the session established by a call to this function. More than

one session may exist simultaneously.

The arguments that go with a Im_open_session() call are (a) the binding
handle, which is binding information that defines one possible binding (2 client-
server relationship), and (b) a comment which will be inserted in the log file 24
if logging is enabled. The results from a lm_open;session() call are (a) a return
code indicating whether the function succeeded, and, if not, why not, (b) a session,
which is an established license management session between the management
client and the license management service, and (c) a workspace that will contain

all objects returned as a result of functions invoked in the session.

The close session call is referred to by Im_close_session() and functions to
terminate the Im session. This function terminates the license service manage-
ment session and makes the argument unavailable for use with other interface
functions. The arguments that go with a Im_close_session() call are (a) the session
which identifies the established Im session between the management client and the
license management service, and (b) a comment which will be inserted in the log
file if logging is enabled. The result of the call is a return code indicating whether

the function succeeded, and, if not, why not.

10

15

20

25

WO 92/20022 PCT/US92/03812

-53._

The list function returns a set of selected objects in the license database 23,
and uses the name /m_list_licenses(). This function is used to search the license
database 23 and return a cursor which represents the first of one or more objects
which match the specified filter. The specified filter will be applied to each object
in the license database 23; all objects for which the filter evaluates true will be
included in the object list accessible by the set_cursor function. The arguments
that go with Im_list_licenses() are (a) session which identifies an established
session between the management client and the license management service, and
(b) a filter which is an object used to select license database 23 objects; license
database objects will only be included in the object list headed by the cursor if
they satisfy the filter - the constant no-filter may be used as the value of this
argument if all license data objects are to be included in the object list. The
results of the Im_list_licenses() call are (a) a return code indicating whether the
function succeeded, and, if not, why not, and (b) a license list upon successful
completion of this call containing a cursor which represents the first of one or
more objects in the current license database 23 for which the specified filter

evaluates true.

The register function is to register objects in the license database 23, and
uses the name Im_register(). This function is used to register (i.e., load or create)
new objects, or modify existing objects, in the license database 23; the objects
which may be registered include only those which are subclasses of the license
data class or history objects. The arguments are (a) session, which identifies an
established session between the management client and the license management
service, (b) license data object which is to be registered; if this argument is
omitted, the comment argument is a required argument and a history object

containing the comment will be registered in the license database 23, and (c)

10

15

20

WO 92/20022

PCT/US92/03812

N

comment, which will be inserted in the log file if logging is enabled. The resuit
is a return code indicating whether the function succeeded, and, if not, why not.
The errors possible when it does not succeed include data-expired, duplicate-

object, no-such-session, memory-insufficient, network-error, etc., indicated by this

return code.

The set cursor function establishes a new cursor, and is calied by
im_set_cursor(). The arguments are (a) session, which identifies an established
session between the management client and the license management service, (b)
forward, which is a boolean value indicating if the direction in which the cursor
is to be moved is forward or reverse, (c) filter which is used to eliminate cursors
from the search for the next cursor that are not wanted; a new cursor will only be
set if it satisfies the filter - the constant no-filter may be used as the value of this
argument if any cursor is to be considered as the target cursor, and (d) the cursor
which is to be used as the starting point in searching for the new cursor. The
results are (a) a return code indicating whether the function succeeded, and, if
not, why not, and (b) next-cursor, which is the requested cursor. The error codes

in the return code may be end-of-list, not-a-cursor, etc.

After a session is opened, and an object such as a product use authorization
or a LURT has been identified by the cursor, using the functions explained above,
the management interface 33 is able to execute certain object management
interface functions such as write or copy. By this mechanism, the management
interface can modify certain limited attributes. None of these attributes can be
modified in such a way that they reduce constraints established by corresponding
autributes in the license data objects. The more important attributes which can

be modified by the management interface 33 using this mechanism are:

10

15

20

25

WO 92/20022

PCT/US92/03812

-55-

(a) assignment: an assignment of some or all of the units granted on
the associated product use authorization;

(b) reservation: a reservation of some or all of the units granted on
the associated product use authorization;

(c) delegation: a delegation of the right to manage some or all of
the units granted on the associated product use authorization, or if the
associated license data is not a product use authorization, the delegation
is of the right to use that license data;

(d) backup delegation: a statement of the right to manage some or
all or the units granted on the associated product use authorization; this
right is only active at times when the delegating server is not available;

(e) allocation: an allocation of units to a specific context;

(f) allocation period: the minimum duration of a single allocation -
all allocated units cannot be allocated to a new context until a time period
equal to the allocation period has passed since the units were last
allocated;

(g) termination date: a date which is to override the value specified
as the end date of the product—use authorization 40 - this date must be
earlier than specified;

(h) delegation permitted: an override of the delegation permitted
flag of the associated license data;

(i) overdraft: the current overdraft level;

(j) overdraft logging: an override of the overdraft logging attribute
of the associated product use authorization,;

(k) comment: a comment created by the licensee;

(1) extended info: information not defined by the architecture which

may be of use in managing the license data.

10

15

20

PCT/US92/03812

WO 92/20022

- 56"

It will be noted that an assignment and a reservation are identical, the only
difference being that a reservation is something optional, while an assignment is
something that is required. If the duration is Assignment in the policy declaration
of Figure 3, the license manager [must assign some or all of the units before units
can be allocated. Reservations, on the other hand, are made by the license

manager using the management interface, regardless of the policy.

Thus, there are certain attributes that can be changed by a license
administrator using the management interface at the server 10, but none of these
can result in obtaining more extensive rights to use than granted by the product
use authorization. In each case, the license administrator can limit the rights
which will be allocated to users in some way that may be appropriate for the

administrator for control purposes.

LICENSE DOCUMENT INTERCHANGE FORMAT

The major structural componer;ts of an ASN.1 encoded document which
conforms to the specifications for the license management system discussed above
will be described. The object identifier that is assigned to this data syntax,
according to one embodiment, is that specified in ASN.1 as seen in Figure 8. The
International Standards Organization or ISO, as it is referred to, defines how bit
patterns are chosen to uniquely identify an object type, so the bit pattern set forth
in Figure 8 would preceed each document used in the license management system
so the document could be identified as being a document conforming to the

prescribed License Document Interchange Format.

10

15

20

WO 92/20022 PCT/US92/03812

- 57~

A document encoded according to this format is represented by a value of
a complex data type called "license document interchange format document” of
LDIFDocument, in this embodiment. A value of this data type represents a single
document. This self-describing data structure is of the syntax defined in the
international standard ASN.1 referred to above. The X/Open standard referred
to above defines the conventions that must be used in employing this syntax, while
the syntax itself is described in an OSI (Open Systems Interconnect, a standard
administered by ISO) document identified as X.409 (referenced in the X/Open

document identified herein).

The LDIFDocument data type consists of an ordered sequence of three
elements: the document descriptor, the document header, and the document itself.
Each of these elements are in turn composed of other elements. The overall
structure of the LDIFDocument data type will be described, and the nature of the
document descriptor and document header types. Then, the document content
elements will be described in detail, as well as the various component data types

used in the definition of the descriptor, the header and the content.

The LDIFDocument represents a single license document, with the syntax
being shown in Figure 9 and the high-level structure of an LDIF document in
graphical form being seen in Figure 10. The DocumentDescriptor of Figure 9 is
a description of the document encoding, the DocumentHeader contains
parameters and processing instructions that apply to the document as a whole, and

the DocumentContent is the content of the document, all as explained below.

Referring to Figure 9, what this says is that an LDIFDocument is composed

of (::= means "is composed of') a number of elements, the first thing in an

10

15

20

WO 92/20022

PCT/US92/03812

- 58-

LDIFDocument is a bit pattern (tag) according to an international standard,
indicating a certain type of document follows, which is indicated here to be
"private” or vendor selected, the number 16373 in this case. Following the bit
pattern which functions as a "starting delimiter” it is "implicit" that a "sequence”
of elements must follow, where a sequence is distinguished from a set. A
sequence is one or more of the elements to follow, whereas a set is exactly one
of the elements to be listed. Implicit means that any file identified as
LDIFDocument must have a sequence data type, rather than some other type. In
the case of Figure 9, the sequence is document-descriptor, document header and
document content; the document-content is mandatory, whereas the first two are
optional. If an element in the sequence begins with a "0" it is a document-
descriptor, "1" means a document-header, and "2" means it is a document-content.
Again, it is implicit that the data following is of the format DocumentDescriptor,

etc., in each case, and these are defined in Figure 11, Figure 13 and Figure 15.

Each file is in the tag-length-value format mentioned above, and also each
element of a file containing multiple elements is of the tag-length-value format.
The data stream could be examined beginning at any point, and its content
determined by first looking for a tag, which will tell what data structure this is,
then a length field will say how long it is, then the content will appear. These
structures are nested within one another; a document containing several product-
use-authorizations would be an LDIFDocument of the format of Figure 9, with a
qumber of DocumentContent elements of Figure 15 following, with the length
given for the LDIFDocument spanning the several PUAS, and the length given for
each PUA being for the one PUA.

10

15

20

WO 92/20022

- 59 -

In Figure 11, the elements major-version and minor-version are seen to be
"implicit integer”. This means that because the element is of the type major-
version, etc.. it must be an integer. Various other implicit types are given in other

syntax diagrams, such as character-string, boolean, etc.

In Figure 15, the license body is identified as being of the type "choice”
meaning it can be one of PUA, LURT, GroupDefinition, KeyRegistration, etc.
Thus, knowing this is a license-body does not mean the data type of the object is
known; it is a bit further where the kind of a license-body becomes known. The

defintion of a license body is not implicit, but instead is a chioce type.

The contents of the various data elements will now be described in detail
with reference to Figures 11-43. Using these detailed descriptions, the exact

format of each of the elements used in the LDIF can be interpreted.

The license document descriptor or DocumentDescriptor consists of an
ordered sequence of four elements which specify the version level of the LDIF
encoding and identify the software that encoded the document, with the syntax
being shown in Figure 11. An example of the way a product called PAKGEN
V1.0 is expressed in the DocumentDescriptor encoding is shown in Figure 12.
The fields in the DocumentDescriptor syntax are major-version, minor-version,
encoder-identifier and encoder-name. The major-version field is the primary
indicator of compatibility between LDIF processors and the encoding of the
present document; this major-version field is updated if changes are made to the
system encoding that are not backward compatible. The minor-version field is the
revision number of the system encoding. The encoder-identifier field is a

registered facility mnemonic representing the software that encoded the document;

PCT/US92/03812

10

15

20

WO 92/20022

- 60 -

the encoder-identifier can be an acronym Or abbreviation for the encoder name -
this identifier is constant across versions of the encoder. The encoder-identifier
should be used as a prefix to Named Value Tags in Named Value Lists to identify
the encoder of the named value. The encoder-name field is the name of the

product that encoded the document; the encoder-name string must contain the

version number of the product.

The document header or DocumentHeader contains data that pertains to
the document as a whole, describing the document to processors that receive it;
the syntax is shown in Figure 13. An example of a document header is shown in
Figure 14, using the hypothetical product PAKGEN V1.0 of Figure 12. The
private-header-data contains the global information about the document that is not
currently standardized; all interpretations of this information are subject only to
private agreements between parties concerned, so a processor which does not
understand private header data may ignore that data. The Title field is the user-
visible name of the document. The Author field is the name of the person or
persons responsible for the information content of the document. The Version
field is the character string used to distinguish this version of the document from
all other versions. The Date filed is the date associated with this document. Note
that the nature and significance of the Title, Author, Version, and Date fields can

vary between processing systems.

The content of an LDIF document is represented by a value of a complex
data type called DocumentContent. An element of this type contains one or more

LicenseData content element using a syntax as shown in Figure 15. There are no
restrictions on the number, ordering or context of LicenseData elements. The

structure of a LicenseData element is represented in Figure 16. No restrictions

PCT/US92/03812

10

15

20

WO 92/20022

are made on the number, ordering, or context of LicenseData elements. The
license-data-header field of Figure 16 specifies that data, common to all types of
license data. which describes the parties to the licensing agreement, the term of
the agreement, and any constraints that may have been placed on the management
of the license data encoded in the license body. The license-body is an element
th;n contains one content element, including: product use authorizations, license
unit requirements tables, group definitions, key registrations, and various forms of
delegations. The Management-Info is an element that contains information
concerning the current state of the license data; this element is not encoded by

Issuers.

The license data header, called LicenseDataHeader, is represented as a
syntax diagram in Figure 17. The license-id field provides a potentially unique
identification of the encoded license data, so issuers of license data can generate
unique license-ids to distinguish each issuance of license data; however, the
architecture does not require this to be the case, since the only architectural
restriction is that no two objects in any single license management domain may
have the same value for license-id. The licensee field identifies the party who has
received the rights reflected in the license data; there are at least two parties
involved in all transfers of license data, first, the issuer of the license data, and
second, the licensee or recipient of that data - it is anticipated that individual
licensees will specify to those issuing them licenses what the licensee fields on
their license data should contain. the term field identifies the term during which
the license data may be used; the validity of license data can be limited by issuers
to specific time ranges with given starting and ending dates, which are carried in
the term element - attempts to use license data or products described by that data

either before the start date or after the end date will result in conforming license

PCT/US92/03812

10

15

20

WO 92/20022

-62 -

managers denying access to the license. Management-constraints identifies
constraints placed on the right to manage the associated license data; these
constraints can include (a) limiting the set of contexts permitted to manage the
data, (b) limiting the set of platforms which may benefit from that management,
and (c) limiting the right to backup and delegate the managed data. The
signature provides the digital signature used by the issuer to sign the license data
and identifies the algorithm used in encoding the signature. Issuer-comment is 2

comment provided by the issuer and associated with the license data.

The IssuerComment is of an informational nature and does not impact the
process of authorizing product or feature use. This field is not included in the
fields used to generate the signature for a license, thus, even if specified by an
issuer, the IssuerComment can be omitted from a license without invalidating the
license. If specified, the IssuerComment should be stored in the appropriate
license data base with the associated license data. The IssuerComment can be
retrieved by products which use the system and may be of particular utility to
products in the "Software Asset Management" domain which are intended to
extend or augment the administrative or accounting facilities or basic system
components. Some examples of potential uses for this field are order information,
additional terms and conditions, and support information. For order information,
some issuers may wish to include with their loadable license data some indication
of the purchase order or orders which caused the license data to be issued;
licensees may find it useful to include this data in their license databases to assist
in the license management process. For additional terms and conditions, the
system will never provide automatic means for the management of all possible
license terms and conditions, and so some issuers may wish to include summaries

of non-system managed terms and conditions in the comment as a reminder. For

PCT/US92/03812

10

15

20

WO 92/20022

63

support information, the IssuerComment could be used to record the phone
numbers or addresses of the responsible individuals within the issuing organization

who should be contacted if there are problems with the data as issued.

A product use authorization as previously discussed in reference to Figure
2 is used to express the issuance of a right to use some product, product feature,
or members of some product group. As such, it records the identity of the product
for which use is authorized and specifies the means that will be used by the
license manager to ensure that the licensee’ actual use conforms to the terms and
conditions of the license. Figure 18 illustrates a syntax diagram for a
ProductUseAuthorization. Product-id identifies the name of the producer of the
product or product feature of which usage rights are being granted as well as the
name of that product; in addition, issuers of product use authorizations may
specify a range of versions and/or releases whose use is controlled by the specific
product use authorization. Units-granted - Contains the number of units of
product use which are granted by the license. Management-policy defines the
policy which is to be used in managing the granted software usage rights; this
definition specifies the Style, Context-Template, Duration, and License Unit
Requirements Determination Method which must be used. The calling-
authorizations and caller-authorizations are as explained above in reference to
calling cards. The execution-constraints field identifies constraints placed on the
characteristics of execution contexts which may be authorized to benefit from the
units granted by this Product Use Authorization. The product-token filed contains
product specific data not interpreted in any way by any processors conformant
with the architecture; software product producers 28 use this array to augment the

capabilities of conformant license managers.

PCT/US92/03812

10

15

20

WO 92/20022

- 64 -

Some anticipated uses of the token field include language support, detailed
feature authorizations, and product support number. For language support, a
token could be constructed which contains a list of local language interface
versions whose use is authorized; thus, if a product were available in English,
German, French and Spanish, a token could be constructed listing only English
and German as the authorized languages. For detailed feature authorizations,
some license issuers will wish to have very fine control over the use of features in
a complex product; however, they may not wish to issue a large number of
individual Product Use Authorizations to "turn on" each feature, so these vendors
could construct tokens which contain lists of the features authorized or whose use
is denied. For product support number, some issuers may wish to include on the
product use authorization, and thus make available to the running product, some
information concerning the support procedures for the product; for example, an
issuer might include the telephone number of the support center or a support
contract number, and the product could be designed to retrieve this data from the

license manager and display it as part of Help dialogues.

The LURTS or license use requirements tables of Figure 4 provide a
means by which issuers of licenses, whose LURDM is dependent on the type of
platform on which the product is run, can store information describing the
relationship between the platform type and unit requirements. A syntax diagram
for a LURT is shown in Figure 19. In Figure 20, an example of how the LURT
of Figure 4 might be encoded is illustrated. Lurt-name specifies the name by
which the LURT is to be known to conforming license managers. The rows field
models a list of multicolumn lurt rows. Platform-id identifies the platform for
which this LurtRow provides license unit requirements. The lurt-columns field

provides a list of one or more lurt column values; the first value provided is

PCT/US92/03812

10

15

20

WO 92/20022

- 65 ~

assigned to column-1 of the lurt-row, the second value provided is assigned to
column-, etc. A lurt column value of -1 indicates that use of the product or
feature is not authorized, while a lurt column value of 0 or greater indicates the
number of units that must be allocated in order to authorize product use on the
platform described by this lurt-row. All unspecified columns (e.g., columns whose
number is greater than the number of column values provided in the lurt columns

element) will be considered to contain the value -1.

In reference to Figure 19, to use the row-selector feature mentioned above,
the platform-ID element would be replaced with row-selector which would be
implicit of Context. Also, in Figure 34 described below, in the lurdm-kind

element, row-selector would be included if the row-select feature is to be used.

As discussed above, Figure 4 provides an example of a hypothetical LURT,
illustrating the LURT mechanism, where the issuer of this LURT table has
established three unit requirement tiers for use in determining the unit
requirements for that issuer’s products. Figure 20 provides an example of how the
LURT presented in Figure 4 might be encoded.

A group definition is used to define and name a license group. Once so
defined, the name of this group can be used on product use authorizations in the
same manner as a product name. Since a single product use authorization
specifies the management policy for all members of the group, the members of
that group must be compatible in their licensing styles, i.e., a personal use type
product can not be mixed with a concurrent use product in the same group.
Figure 21 shows a group definition syntax diagram. Group-name is the name

which must appear on Product Use Authorizations for this group. Group-version

PCT/US92/03812

10

15

20

WO 92/20022

- 66 -
specifies the current version of this group; the requirements for matching between
the version information on a product use authorization and that on a specified
group definition are the same as those rules which require matching between
produce use authorizations and the Release Date data provided by products.

Group-members lists those products or features which are components of the

named group.

A key registration is used by a producer 28 or issuer 25 who have been
registered as authorized license issuers and provided with an appropriate public
and private key pair. The key registration identifies the public key which is to be
used by conforming license managers 10 in evaluating signatures 53 created by the
named issuer 25 or producer 28. A key registration syntax diagram is shown in
Figure 22. Key-owner-name provides the name which must be used in either of,
or both, of the Producer and Issuer fields of license data generated by the issuer;
the key-owner-name must be identical to that specified in the Issuer field of the
header record. Key-algorithm identifies the registered algorithm that is to be used
when producing digital signatures with this key. Key-value identifies the public

key.

An issuer delegation is typically issued by a producer 28 and authorizes the
named issuer 25 to issue licenses for products produced by the producer. An
issuer delegation syntax diagram is shown in Figure 23. Delegated-issuer-name
identifies the name which must appear in the Issuer field of any Product Use
Authorization generated using the License Issuer Delegation. Delegated-product-
id identifies the products whose licenses the named issuer is authorized to issue.
Delegated-units-granted, if specified, indicates that the use of this IssuerDelegation

is to be managed in the style of a consumptive license; the value of this attribute

PCT/US92/03812

10

15

20

WO 92/20022

67

gives the number of units for which license documents may be generated (i.e., if
granted 1000 units by a Producer, an Issuer can only issue 1000 units.) Template-
authorization provides a "template” Product Use Authorization whose attribute
values must be included on any Product Use Authorization generated using this
IssuerDelegation; in the case of attributes which have a scalar value (i.e., Version,
Release Date, etc.), the Issuer may issue licenses with more restrictive values than
those specified on the Template Authorization. Sub-license-permitted indicates
whether the Issuer identified on this IssuerDelegation may issue an

IssuerDelegation for the delegated-product-id.

A license delegation, as shown in a syntax diagram of Figure 24, is used to
delegate the right to manage license data. Such delegations are created by the
licensee (by the license manager), if authorized by the issuer 28. A backup
delegation, also shown in Figure 24, is used by one license management facility to
authorize another to manage the delegated rights in the case that the delegating
license manager is not running. The delegated-units field speciﬁeé the number of
units whose management is being delegated; this may only be specified when a
product use authorization is being delegated. Delegation-distribution-control
defines the mechanisms by which the distribution and refreshing of the delegation
will be accomplished. Delegatee-execution-constraints identifies any constraints
which are placed on the execution-context of the Delegatee; these constraints are
applied in addition to those which are a part of the delegated License Data.
Assignment-list identifies any assignments of the delegated units that must be
respected by the delegatee. Delegated-data stores a copy of the LicenseData
received from the issuer that is the subject of the delegation; the delegated data
is not provided when the LicenseDelegation element is included in a

DelegationList.

PCT/US92/03812

10

15

20

WO 92/20022

- €68 -

The management information oOf Managementinfo element records
information concerning the current state of the LicenseData with which it is
associated. A syntax diagram of the ManagementInfo element is shown in Figure
25. The assignments field identifies a list of one or more assignments which may
be outstanding for the units on the associated product use authorization.
Reservations identifies a list of one or more reservations which may be
outstanding for the units on the associated product use authorization. Delegations
identifies a list of all outstanding delegations. Backup-delegations identifies all
outstanding backup delegations. the allocations field provides detailed
information about outstanding allocations which involve units from the associated
product use authorization. Registration-date is the date on which the LicenseData
was registered in the license database. Registrar is the context which caused the
LicenseData to be registered. Local-comment is a comment field. Termination-
date means a license defined date after which the license data may not be used;
this date must be earlier than the end-date specified in the license data’s term
record. The extended-info field allows additional information concerning the state

of the LicenseData and its handling by the license manager that is not

standardized.

The defined types of elements will now be described. These defined type

are:
Allocation ManagementPolicy
Assignment Member
Context NamedValue
DistributionControl Named ValueList
ExecutionConstraints ProductID

IntervalTime Signature

PCT/US92/03812

10

15

20

WO 92/20022

- 69 -

LicenseID Term
LUDRM Version

ManagementConstraints

The allocation element records the information concerning a single unit
allocation, and is shown in a syntax diagram in Figure 26. Allocation-context
specifies the context to which the allocation was made. The allocation-lur field
specifies the license unit requirement which applies to the allocation-context, this
license unit requirement is calculated without consideration of any allocation
sharing which may be possible. The allocation-group-id field identifies the
"allocation-group” for the current allocation, in which an unshared allocation will
always have an allocation group id of 0; allocations which utilize shared units will
have an allocation group id which is shared by all other allocations sharing the

same units.

The assignment element is shown in syntax diagram in Figure 27.
Assigned-units identifies the number of units which are assigned. Assignment-
term identifies the start and end of the assignment period. Assignee identifies the

context to which the assignment is made.

The context element is shown in syntax diagram in Figure 28. The
SubContext-type field identifies the type of subcontext, and this type can be either
standard or private; if standard, the type value will be taken from the standard-
subcontext-type enumeration: (a) network-subcontext means the subcontext value
identifies a network; (b) execution-domain-subcontext means the subcontext value
is the name of the management domain within which the caller is executing; (d)

login-domain-subcontext means the subcontext value is the name of the

PCT/US92/03812

10

15

20

25

WO 92/20022

-70-

management domain within which the user of the caller was originally
authenticated or "logged in"; (d) node-subcontext means the subcontext value is
the name of a node; (e) process-family-subcontext means the subcontext value
is an implementation specific identifier for a group of related processes; (f)
process-ID-subcontext means the subcontext value is an implementation specific
process identifier; (g) user-name-subcontext means the subcontext value is a user
name; (h) product-name-subcontext means the subcontext value is the same as
the product name found on the Product Use Authorization; (i) operating-system-
subcontext means the subcontext value is a character string representation of the
name of the operating system; (j) platform-ID-subcontext means the subcontext
value is an identifier that describes the hardware platform supporting the context.

The subcontext-value field is the value of the subcontext.

As discussed above, license data is always used or allocated within, or for
the benefit of, some named licensing context. This context name is constructed
by concatenating the values of all subcontexts into a single context name. A
Context Template specifies those components of the context name which should
be used in calculating license unit requirements. The management system
determines the need to perform a unit allocation each time license units are
requested. The full context on whose behalf the allocation should be made is
obtained for each requested authorization. The system will mask the full context
1o exclude all sub-contexts not specified in the context template and then
determine if the resulting context already has units allocated to it. If not, units
will be allocated according to the specification of the LURDM, otherwise, the
units previously allocated will be shared by the new context. Thus, if a given
product authorization contains a context specification of NODE + USER_NAME,

each context which requests license unit allocations and which has a unique pair

PCT/US92/03812

10

15

20

WO 92/20022 PCT/US92/03812

-71-

of NODE + USER_NAME subcontext values will require an explicit grant of
license units to be made. On the other hand, any contexts which share the same
pair of NODE and USER_NAME subcontext values will be able to "share" a
single allocation of license units. The requirement for specific allocations of units
and the ability to share units is exhibited in Figure 29 which attempts to provide
a "snapshot" of the units allocated for the product FOOBAR V4.1 at a particular
instance. It is seen from the figure that although presented with five unique full
contexts, only four of them are unique when looking only at those portions of each
context which are described by the Context Template (ie: NODE +
USER_NAME). A unit allocation must be made for each of the four instances
of unique contexts, when masked by the Context Template. The fifth context can
share allocated units with another context. Thus, the total requirement to support
product use as described in this example would be 40-units (ie: four allocations of
ten units each). Significant changes in the unit requirements can be achieved by
making small modifications to the Context Template. Figure 30 shows the same
contexts as in Figure 29 but a Context_Template of NODE. The total unit
requirement for this example would be three units (three allocations of ten units

each) rather than the forty units required in the previous example.

The distribution control element defines the mechanism that will be used
for distributing the subject delegation and records some status information
concerning the distribution of that delegation. A syntax diagram of the
distribution control element is shown in Figure 31. Distribution-method identifies
the means by which the delegation will be distributed, and the alternatives are
refresh-distribution, initial =distribution-only, and manual-distribution. Refresh-
distribution means the license manager shall be responsible for the initial

distribution of the delegation and for ensuring that refresh delegations are

10

15

20

WO 92/20022

~72-

properly distributed. Initial-distribution-only means the license manager shall be
responsible for the initial distribution of the delegation, however, distribution of
refresh delegations will be made by some other means. Manual-distribution
means the distribution of the delegation will be under the control of some other
mechanism (perhaps a license asset manager). Current-start-date is the time that
the last successful initial or refresh delegation distribution was performed.
Current-end-date identifies the last date on which the most recent delegation
distribution was performed. Refresh-interval identifies the period of time between
attempts to refresh the delegation; the refresh-interval may not be longer than the
maximum-delegation-period and should normally be less than that in order to
ensure that refresh delegations are distributed prior to the expiration of the
previous delegations that they are replacing. Retry-interval identifies the amount
of time to wait for an unsuccessful distribution attempt to try again. Maximum-
retry-count identifies the maximum number of times that an unsuccessful
distribution attempt may be retried. Retries-attempted records the number of

unsuccessful retry attempts which have been made since the last successful initial

or refresh delegation distribution was performed.

The execution constraints elements place limits on the environments and
contexts which may receive allocations. A syntax diagram of the execution
constraints element is shown in Figure 32. Operating-system contains a list of zero
or more operating systems on which the use of the subject license is authorized;
if no operating systems are specified, it is assumed that license use is authorized
on all operating systems. Execution-context specifies a list of zero or more full or
partial context names which identify the contexts within which products described
by the license data may be executed: if no context names are specified, the

licensed products may be executed in any context controlled by the licensee.

PCT/US92/03812

10

15

20

WO 92/20022

..73..

Environment-list identifies those environments within which the licensed product

may be used.

The interval time element is defined by the syntax IntervalTime ::=
UTCTime.

The license ID element uniquely identifies the license data it is associated
with, and is described by the syntax diagram of Figure 33. Here issuer uniquely
identifies the issuer of the license data as well as the name space within which the
LicenseID Number is maintained. While the issuer name will typically be the
same as the name of the issuer's company or personal name, this is not a
requirement. For instance: The issuer name for Digital Equipment Corporation
is "DEC," an abbreviation of the corporate name. Valid contents of the Issuer
field are maintained in the an Issuer Registry. The serial-number provides a
unique identification or serial number for the license data. The amendment field
is an integer which is incremented each time license data is amended by its issuer,
with the first version of any license data carries the amendment number 0; an
amendment can only be applied to license data if that license data has identical
Issuer and Number values and an amendment number less than the number of the

amendment to be applied.

The license units requirements determination method or LURDM element
is shown in syntax diagram in Figure 34. The combination-permitted field
indicates whether conforming license managers are permitted to combine together
into a common pool the units from different product use authorizations if those
produce use authorizations have the same product record value; for example, if

combination is permitted and a single license manager discovers in its database

PCT/US92/03812

10

15

20

WO 92/20022

PCT/US92/03812

_7L1 -

two S00-unit authorizations for the use of DEC Cobol, the license manager would
be permitted to combine these two authorizations into a logical grant of 1000
units. The overdraft-limit modifies the behavior of a conforming license
management facility in those cases where it is found that there are zero or fewer
license units available for use at the time of a request for the allocation or
consumption of additional license units. Operation of overdraft is different
depending upon whether allocative, or consumptive style is being used. In using
with allocative style, an allocation is granted even though the remaining units are
zero or less, up to the overdraft-limit. In using with consumptive style, the license
is authorized to accumulate a negative balance of license units, up to the
overdraft-limit. Overdraft-logging-required indicates whether all license grants
which are the result of overdraft use must cause a log record to be generated.
When the allocation-size field is non-zero, then all unit allocations and delegations
must be made in sizes which are whole number multiples of the allocation-size
value. Lurdm-kind identifies the method by which license unit requirements will
be calculated once the requirement for an allocation has been discovered, the
permitted alternatives being (a) LURT which specifies that license unit
requirements are to be determined by lookup in the LURT which is associated
with the current license, (b) Constant which specifies that license unit
requirements are constant for all platforms on which the licensed product or
product feature may run, and (c) Private-LURDM which specifies that license unit
requirements are to be determined by the licensed product, not by the license
management facility. The named-lurt-id specifies the name of the LURT table to
be used in determining license unit requirements if the LURDM-kind is specified
as LURT: if the LURDM-kind is specified as LURT and no table is explicitly
named, the name of the table to be used is constructed from the issuer name on

the product use authorization. Lurdm-value specifies the LURT column to be

10

15

20

WO 92/20022

~75"

used when LURDM-kind = LURT; however, when LURDM-kind = Constant,
the Lurdm-vaiue field contains the precise number of units to be allocated or
consumed. Default-unit-requirement specifies the unit requirement value to be
used when the appropriate LURT does not have a row corresponding to the
appropriate platform ID; when specified on a product use authorization with
Style = Allocative, the context template will change to Process +
Product_Specific and the Duration will change to Transaction in cases of

unrecognized Platform ID’.

The management constraints element is shown in a syntax diagram in
Figure 35. The management-context field specifies a list of zero or more partial
context names which identify the specific contexts within which the license data
may be managed. If no management contexts are specified, the license data may
be managed within any context controlled by the licensee. The contexts used in
specifying Management Context Constraints may only contain the Network,

Domain, and Node subcontexts. Specifying a list of management contexts does
not effect whether or not the license data can be used within other contexts. For

example, unless otherwise restricted, license data with a specified management
context can be remotely accessed from or delegated to other nodes in a network.
The management-scope field defines the maximum permitted size of the license
management domain within which the license data may be managed or distributed,
these being single-platform, management-domain, or entire-network. Single-
platform constrains the license management domain for the subject license data
to be no larger than a single platform. Management-domain constrains the license
management domain for the subject license data to be no larger than a single
management domain. Entire-network constrains the license management domain

for the subject license data to be no larger than a single wide area network; that

PCT/US92/03812

10

15

20

25

WO 92/20022

-

network which contains the platform on which the license units were initially
loaded. Although technology may not exist to detect the interorganizational
boundaries of a wide area network (i.e, what is on the Internet as opposed to
being on a company’s own network), the assumption is that interorganization and
internetwork sharing of licenses will normally be considered a violation of license
terms and conditions. The backup-permitted field indicates if the Issuer has
authorized the use of backup delegations for this data. Delegation-permitted
indicates if the Issuer has authorized the licensee to delegate this data.
Maximum-delegation-period identifies the longest interval during which a

delegation may be valid; by default, delegations have a life of 72-hours.

The major elements of the management policy specification are shown in
Figure 3, as previously discussed. A syntax diagram for the management policy
element is shown in Figure 36. For the Style field, three fundamental styles of
license management policy are supported, allocative, consumptive, and private-
style, as explained above. Only one of these styles may be assigned to any single
product use authorization. The Context-template specifies those components (sub-
contexts) of the execution-context name which should be used in determining if
unit allocations are required. The Duration defines the duration of an allocation
of license units to a specific context or the duration of the period which defines
a valid consumptive use. For durations of type "Assignment,” the specification of
a Reassignment Constraint is also provided for. Three types of Duration_Kind are
supported, these being Transaction, Assignment and Immediate, as explained
above. The lur-determination-method stores information used in calculating the
number of units that should be allocated or consumed in response to a license
request. The allocation-sharing-limit identifies the largest number of execution

contexts that may share an allocation made under this management policy; an

PCT/US92/03812

10

15

20

WO 92/20022 PCT/US92/03812

-77-

allocation-sharing-limit of 0 indicates that the number of execution contexts that
may share an allocation is unlimited. The reassignment-constraint specifies a
minimum duration of assignment; although there is normally no constraint placed
on how frequently granted units may be reassigned, an issuer may constrain
reassignment by specifying this minimum duration of an assignment, in which case
reassignment of assigned units will not be supported until the amount of time
specified in the Reassignment Constraint has passed. If an assignment of some
particular set of units has been delegated and the delegation period for that
delegation has not terminated, cancellation of the delegation must be performed

prior to reassignment.

The member element identifies a specific licensed product which may be
part of a calling authorization or group definition, and is shown in syntax diagram
in Figure 37. Member-product identifies the product which is a member.
Member-signature is constructed from the product and token fields of the called
member structure as well as the product and issuer fields of the calling product.
Member-token provides the data which should be used as the product token for

this member.

Named values are data elements with a character string tag that identifies
the data element, and have a syntax as shown in Figure 38, which also shows the
syntax for ValueData and named value list. A named value list models a list of
named values, with an example being shown in Figure 39. In Figure 38, Value-
Name uniquely identifies the value; no standard value names are defined, and the
period character can be used as a part of the value name to form a hierarchical
tag registry at the discretion of the issuer. Value-data is the data that has been

named; data types are selected from the possible Value Data types, seen in the

10

15

20

WO 92/20022

_78 -

Figure. Value-boolean means the named data is a boolean value. Value-integer
means the named data is an integer value. Value-text means the named data is
a StringList value. Value-general means the named data is a stream of bytes in

any format. Value-list means the named data is a list of named data values.

The product ID explicitly identifies the product which is the subject of the
license data with which it is associated, with the syntax for ProductID being shown
in Figure 40. The version and release date fields provide a mechanism for
defining which specific instances of the licensed product are described in the
associated license data. The Producer field is a registered name which identifies
the producer of the licensed feature; in the case of Group Names, the Producer
is always also the Issuer of the group. The Product-name identifies a licensed
software feature. The First-version identifies the earliest version of the product
whose use is authorized. The Last-version identifies the latest version of the
product whose use is authorized. The First-release-date identifies the earliest
release of the product whose use is authorized. The Last-release-date identifies
the latest release of the product whose use is authorized. Conforming license
managers are required to interpret the contents of these fields in the most
restrictive way possible. Thus, if a license is issued with Last-version = 3.0 and
a Last-release-Date of 1-Jan-1991, then the use of version 2.0 of the licensed
product would be unauthorized if it had a release date of 2-Jan-1991. If either a
First-version or First-release-date is specified without a matching Last-version or
Last-release-date, use of the produce is authorized for all versions or release dates
following that specified. Similarly, if either a last-version or Last-release-date is
specified without a matching First-version or First-release-date, use of the produce
is assumed to be authorized for all versions or release dates prior to that specified.

Issuers should typically only specify one of either First-version or First-release-

PCT/US92/03812

10

15

20

WO 92/20022

-79-

date. This is the case since it is anticipated that these fields will typically refer to
events which occurred prior to the moment of license data issuance. Thus, it
should normally be possible for the issuer to state unambiguously with only one
of these two fields which is the oldest implementation of the product that is to be
authorized. The architecture does permit, however, both fields to be used in a

single product authorization.

The signature element is used to establish the integrity and authorship of
the license data with which it is associated. A syntax diagram for the signature
element is shown in Figure 41. The Signature-algorithm field identifies the
registered algorithm that was used to produce the digital signature. Signature-
parameters are the values of the algorithm’s parameters that are to be used; the
need for and syntax of parameters is determined by each individual algorithm.
Signature-value is an enciphered summary of the information to which the
signature is appended; the summary is produced by means of a one-way hash
function, while the enciphering is carried out using the secret key of the signer

(Issuer).

The term element defines an interval during which the license data is valid,
and is shown in syntax diagram form in Figure 42. The fields are start-date and
end-date. Start-date identifies the first date of the term; if not specified, the
license data is considered valid on any date prior to the end-date. End-date
identifies the last date of the term; if not specified, the license data is considered
valid on any date after the Start-date. While the Start-date is always either
omitted or specified as an absolute date, the End-date can be either absolute or
relative. If the End-date is specified as a relative or "interval" date and the Start-
date has been orhitted, the date of license registration will be used as the effective

PCT/US92/03812

10

15

20

WO 92/20022

..eo_

start date in computing the valid term of the license data. It should be noted that
the system does not specify the mechanism by which system dates are maintained
by platforms supporting system components. Instead, the system always accepts
that system time returned to it as correct. Thus, the reliability of the management
of license data which specifies terms is dependent on the time management

function of the underlying platform.

The version element identifies a four-part version of the licensed software
product or feature. A syntax diagram of the version element is shown in Figure
43. The schematics of each of the four parts is not detailed, but it is required that
producers who wish to permit version ranges to be specified on product use
authorizations ensure that the collating significance of the four parts is maintained.
When comparing versions, Part-1 is considered first, then Part-2, then Part-3, and
finally, Part-4. Part-1 identifies a major modification to the versioned object.
Part-2 identifies a modification to the versioned object which is less significant
than a modification which would cause a change in the Part-1 value. Part-3
identifies 2 modification to the versioned object which is less significant than a
modification which would cause a change in the Part-2 value. Part-4 identifies a
modification to the versioned object which is less significant than a modification

which would cause a change in the Part-3 value.

FILTERS

An important feature is the use of filters in the license management
program 11, including the client interface 31 and the management interface 33.

A filter is used is select items in the license database 23, for example. Various

PCT/US92/03812

10

15

20

WO 92/20022 PCT/US92/03812

selection mechanisms are used in picking out or doing lookups in database
technology; filters are one of them. The filter engine used in the license
management system 11 of Figure 1 is generally of a known construction, with the
exception of the select filter item type as will be described, which allows a
complex rather than a flat data format to be selected from. The feature that is
of importance to this embodiment is the way of specifying items as an input to the
filter function , rather than the filter function itself. Thus, there is described
below a template for specifying input to the filter engine. This is as if a form
were used as the input, with blanks on the form; by filing in certain blanks these
would be the items selected on, the blanks not filled in would be “don’t care".

An instance of the class filter is a basis for selecting or rejecting an object
on the basis of information in that object. At any point in time, a filter has a
value relative to every object - this value is false, true or undefined. The object
is selected if and only if the filter’s value is true. This concrete class has the
attributes of its superclass - Object - and the specific attributes listed in the table

of Figure 44.

A filter is a collection of simpler filters and elementary filter-items together
with a Boolean operation. The filter value is undefined if and only if all the
component filters and filter-items are undefined. Otherwise, the filter has a
Boolean value with respect to any object, which can be determined by evaluating
each of the nested components and combining their values using Boolean
operation (components whose value is undefined or ignored). The attributes
specific to filter as shown in Figure 44 are (a) filter items which are a collection of

assertions, each relating to just one attribute of an object, (b) filters which are a

10

15

20

WO 92/20022

P 92—

collection of simple filters, and (c) filter type which is the filter’s type, of one of the

following values: And, Or, Not.

An instance of the class filter item is a component of a filter. It is an
assertion about the existence or values of a single attribute of a license data object
or one o its subobjects. This concrete class has the attributes of its superclass -

object - and the specific attributes listed in the table of Figure 45.

The value of a filter item is undefined if: (a) the Attribute Types are
unknown, or (b) the syntax of the Match Value does not conform to the attribute
syntax defined for the attribute type, or (c) a required Attribute is not provided.
The attributes specific to filter item as shown in Figure 45 are (a) filter item type
which identifies the type of filter item and thereby the nature of the filter, and its

value must be one of

equality less

inequality present

greater or equal select

less or equal request candidates
greater simulate request

(b) attribute type which identifies the type of that attribute whose value or
presence is to be tested; the value of All Attributes may be specified, (c) match
value which is the value which is to be matched against the value of the attribute,

(d) filter which identifies the filter to be used in evaluating a selected subobject

of the current object; the filter is ignored if the filter item type is not select or if the

specified attribute type is not present in the object, and upon evaluation of the
filter the value of filter item will be set to that of the filter, (e) initial substring, if

present, this is the substring to compare against the initial portion of the value of

PCT/US92/03812

10

15

20

WO 92/20022

_93-

the specified attribute type, (f) substring, if present, this is the substring(s) to
compare against all substrings of the value of the specified attribute type, (g) final
substring, if present, this is the substring to compare against the final portion of the
value of the specified attribute type, and (h) license request, if present, this is
license request against which the appropriate license data objects should be
evaluated: this attribute may only be specified if the value of the filter item type

is either Request Candidates or Simulate Request.

An instance of enumeration syntax Filter Type identifies the type of a filter.
Its value is chosen from one of the following: (a) And means the filter is the
logical conjunction of its components; the filter is true unless any of the nested
filters or filter items is false, or if there are no nested components, the filter is
true; (b) Or means the filter is the logical disjunction of its components; the filter
is false unless any of the nested filters or filter items is true, or, if there are no
nested components, the filter is false; (c) Not means the result of the filter is
reversed; there must be exactly one nested filter or filter item, and the filter is
true if the enclosed filter or filter item is false, and is false if the enclosed filter

or filter item is true.

An instance of enumeration syntax Filter Item Type identifies the type of a
filter item. Its value is chosen from one of the following: (a) Equality which
means the filter item is true if the object contains at least one attribute of the
specified type whose value is equal to that specified by Match Value (according
to the equality matching rule in force), and false otherwise; (b) Inequality which
means the filter item is true if the object contains at least one attribute of the
specified type whose value is not equal to that specified by Match Value

(according to the equality matching rule in force), and false otherwise; (c) Greater

PCT/US92/03812

WO 92/20022 PCT/US92/03812
-8R 4 -

or Equal which means the filter item is true if the object contains at least one
attribute of the specified type whose value is equal to or greater than the value
specified by Match Value (according to the matching rule in force), and false
otherwise; (d) Less or Equal which means the filter item is true if the object
contains at least one attribute of the specified type whose value is equal or less
than the value specified by Match Value (according to the matching rule in force),
and false otherwise; (e) Greater which means the filter item is true if the object
contains at least one attribute of the specified type whose value is greater than the
value specified by Match Value (according to the matching rule in force), and
false otherwise; (f) Less which means the filter is true if the object contains at
least one attribute of the specified type, whose value is less than the value
specified by Match Value (according to the matching rule in force),and false
otherwise; (g) Present which means the filter item is true if the object contains at
Jeast one attribute of the specified type, and false otherwise; (h) Select which
means the filter item is true if the object contains at least one attribute of the
specified type which has an object syntax and when the Filter is evaluated against
the attributes of that object the Filter is true, and false otherwise; (i) Request
Candidates which means the filter item is true if the object against which it is
evaluated is one which could be used to provide some or all of the units requested
by the specified License Request; the evaluation is made independently of any
outstanding allocations or preallocations; and (j) Simulate Request which means
the filter item is true if the object against which it is evaluated is one which would

be used to provide some or all of the units requested by the specified License

Request.

The Request Candidates and Simulate Request filter item types are of

special use in testing and prototyping of systems by a license manager at a

10

15

20

WO 92/20022

'85‘

licensee’s site. For example, the license manager can simulate the effect of

potential assignments, the effect of a population of certain types on a network, etc.

As an example, Figure 46 shows how a filter may be constructed to identify
"All Product Use Authorizations issued by Digital for the Product ‘Amazing
Graphics System’ which contains 2 calling authorization for Digital’s 'Amazing
Database’ Product’. This example is in the international standard format referred

to as X.409 as mentioned above.

Filters can also used in a request allocation, being specified in a request
extension as explained above. That is, a filter is one of the optional items in 2
request extension. For example, if a user wanted to use a version of WordPerfect
with French language extension, and there were version with and without on the
network, his request allocation would have a request extension that specified a
filter for "French” in the token field. In this manner, a product can describe itself
more richly. The filter in the request extension can be a Required filter or a
Preferred filter, meaning the feature such as "French® is either absolutely

necessary, or merely the preferred.

While this invention has been described with reference to specific embodi-
ments, this description is not meant to be construed in a limiting sense. Various
modifications of the disclosed embodiments, as well as other embodiments of the
invention, will be apparent to persons skilled in the art upon reference to this
description. It is therefore contemplated that the appended claims will cover any

such modifications or embodiments as fall within the true scope of the invention.

PCT/US92/03812

|

= W N

10
11
12
i3
14
15
16
17
18
19
20
21
22

WO 92/20022 PCT/US92/03812

_226

WHAT IS CLAIMED IS:

1. A method of managing use of licensed software items, said
software items separately executable on a computer system or
accessible by said computer system, the computer system including
a processor and one or more nodes, comprising the steps of:

maintaining by said processor a store of license
authorizations for said software items; each license authorization
including an indication of license management policy for a software
item, said indication having a plurality of sets of policy
components, said sets of policy components granting alternatives of
specified restrictive rights to selectively access and execute said
software items in said system; said indication of license
management policy being in the format of an encoded document of a
data type consisting of an ordered sequeﬁce of elements;

accessing said store by said processor to modify in said store
one or more of said specified restrictive rights of said policy
components of an identified license authorization;

accessing said store by said processor using a filter to
obtain information from said license authorization for a selected
software item, in response to a request from a node, and

comparing an identification of said node and said software
item with said information, to produce and send to said node a

grant or refusal of said request.

2. A method according to claim 1 including the step of

receiving said license authorizations , for storing in said store,

WO 92/20022 PCT/US92/03812

67
from a license grantor external to said processor, and wherein said
step of accessing said store to modify in said store one or more of
said specified restrictive rights employs management functions
executable on said processor but not on said nodes or said license

grantor to identify a license authorization in said store.

3. A method according to claim 1 wherein said indication is
in the format of an encoded document of a data type consisting of
an ordered sequence of three elements, the three elements including

a document descriptor, a document header and the document content.

4, A method according to claim 1 wherein said filter

specifies one or more of said attributes and a Boolean operator for

each selected attribute.

5. A method according to claim 2 wherein said step of
accessing said store to modify one or more of said policy
components is to allow grant of rights to use which are more

restrictive than said specified restrictive rights.

6. A method according to claim 2 including the steps of:

sending a request by a user of one of said software items to

obtain permission to wuse said software item; said request

identifying the user and said software item;

w N

-8

w N

> W N

(&)

WO 92/20022 PCT/US92/03812

88
accessing said store to obtain information from said license
authorization for said software item, in response to said request,
and comparing said identification of said user and said software
item with said information, to produce a grant or refusal of said

request for sending to said user.

7. A method according to claim 6 wherein said store is
maintained by a license server, and said request is sent to said
server and wherein said request is in the form of a remote
procedure call, and said grant or refusal sent to said user is a

return of said procedure call.

8. A method according to claim 7 wherein said license
authorization is a data arrangement specified as a product use
authorization, and said product use authorization is received by
said server from an issuer, and wherein said server and said users

are nodes on a computer network.

9. A method according to claim 2 wherein said policy
components include a termination date, and said management
functions can modify said termination date to an earlier
termination date and wherein said policy components include a right
of delegation of a right to grant said requests to another server,
and said management functions can modify said right of delegation

to remove said right of delegation.

WO 92/20022 PCT/US92/03812

a9
10. A method acc: :ding to claim 2 including storing in
association with said license authorization a number of management
attributes, and said management functions being able to modify said

management attributes.

11. A method according to claim 10 wherein said management
attributes include a reservation of units of license use granted by
said license authorization so that said units will not be granted
to a user in response to said request, and wherein said management
attributes include an allocation of units of license use to a

specific context.

12. A method according to claim 10 wherein said management
attributes include an allocation period which is the minimum
duration of an allocation of units, and wherein said management
attributes include permission to enable a backup delegation of the

right to grant said requests.

13. A system for managing use of licensed software products,
comprising: means for maintaining a store of license documents, one
for each said product; each license document including an
indication of license policy having plurality of sets of policy
components granting specified restrictive rights to use said
software products, said policy components in each set providing
alternatives;

a management interface for accessing said store to modify

> W N

~N o O»n

10

a G s~ W N

~J

WO 92/20022 PCT/US92/03812

9ge
gelected ones of said components of an identified license

authorization.

14. A system according to claim 13 including:

means for sending a request from a user of one of said
products to obtain permission to use said product; said request
identifying the user and said product;

means for accessing said store to obtain information from said
license document for said product, in response to said request, and
for comparing said identification of said user and said product
with said information, and with constraints imposed by said policy
components, to produce a grant or refusal of said request and send

said grant or refusal to said user.

15. A system according to claim 13 wherein said management
interface can modify said selected ones of said components to allow
grant of rights to use which are more restrictive than said
specified restrictive rights and wherein said means for
maintaining, and said means for accessing and sending to said user
are all located at a server on a distributed network, and said

means for sending a request is located at a user node on said

network.

16. A system according to claim 14 wherein said request is in
the form of a remote procedure call, and said grant or refusal sent

to said user is a return of said procedure call, and wherein said

WO 92/20022 PCT/US92/03812

91
license document is a data arrangement specified as a product use
authorization, and said product use authorization is received by

said server from a license issuer.

17. A system according to claim 13 wherein said policy
components include a termination date, and said management
functions can modify said termination date to an earlier
termination date, and wherein said policy components include a
right of delegation of a right to grant said requests to another
server, and said management functions can modify said right of

delegation to remove said right of delegation.

18. A system according to claim 15 including means for storing
in association with said license authorization a number of
management attributes, wherein said management functions are able
to modify said management attributes and wherein said management
attributes include a reservation of units of license use granted by
said license authorization so that said units will not be granted

to a user in response to said request.

19. A system according to claim 18 wherein said management
attributes include an allocation of units of license use to a

specific context.

20. A system according to claim 18 wherein said management

attributes include an allocation period which is the minimum

w N

w N

WO 92/20022 PCT/US92/03812

92
duration of an allocation of units, and include permission to

enable a backup delegation of the right to grant said requests.

21. A method according to claim 3 wherein said document
descriptor includes an encoding method version number, and encoder-
identifier and an encoder-name, and wherein said document-header

includes a title, an author, a version and a date for the software

item.

22. A method according to claim 3 wherein said document
content includes at least one of the following:
a product-use-authorization;
a license-use-requirements-table;
a group-definition;

key-registration;

)

delegation.

w

23. A method according to claim 3 wherein said document-
content includes a license-data-header, and said license-data-
header describes the parties to the license document, the term of
the agreement and constraints that may have been placed on

management of the license data.

24. 2 method according to claim 3 wherein said document -
content includes management-info, where the management-info may

include at least one of the following:

10
11
12
13
14
15

16

WO 92/20022 PCT/US92/03812

43
an assignment;
a reservation;
a delegation;
a backup delegation;
an allocation;
a registration date;
a registrar;
a comment;

a termination-date.

25. A method according to claim 3 wherein:

said document descriptor includes an encoding method
version and a date for the software item;

said document content may include at least one of the
following: a product-use-authorization, a license-use-requirements-
table, a group-defination, a key-registration, and a delegation;

said document-content selectively includes a license-
data-header, and said license-data-header describes the parties to
the license document, the term of the agreement and constraints
that may have been placed on management of the license data;

said document-content may have been placed on management
of the license data;

said document-content selectively includes management-
info, where the management-info may include at least one of the
following: an assignment, a reservation, a delegation, a backup

delegation, an allocation, a registration date, a registrar, and a

w N

WO 92/20022 PCT/US92/03812

94

comment .

26. A method according to claim 3 wherein said store is
maintained by a license server, and said request is sent to said

server, and wherein said server and said users are nodes on a

computer network.

27. A method according to claim 3 wherein said request is in
the form of a remote procedure call, and said grant or refusal sent
to said user is a return of said procedure call, and wherein said

license authorization is received by said server from an issuer.

28. A method according to claim 3 including the steps of:
sending a request by a user of one of said software items to obtain
permission to use said software item; said request identifying the
user and said software item;

sending said grant or refusal to said user.

29. Apparatus for managing use of licensed software items,
comprising:

means for maintaining a store of license authorizations

for said software items; each license authorization including an

indication of license management policy for a software item, said

indication being in the format of an encoded document of a data

type consisting of an ordered sequence of three elements, the three

elements including a document descriptor, a document header and the

10

WO 92/20022 PCT/US92/03812

document content;

means for sending a request by a user of one of said
software items to obtain permission to use said software item; said
request identifying the user and said software item;

means for accessing said store to obtain information from
said license authorization for said software item, in response to
said request, and comparing said identification of said user and
said software item with said information, to produce a grant or
refusal of said request;

means for sending said grant or refusal to said user.

30. Apparatus according to claim 29 wherein said document
descriptor includes an encoding method version number, and an
encoder-identifier and an encoder-name, and wherein said document-
header includes a title, an author, a version and a date for the

software item.

31. Apparatus according to claim 29 wherein said document

content includes at least one of the following:

2]

product-use-authorization;
a license-use-requirements-table;

group-definition;

V)

a key-registration;

[+

delegation.

N A ™

(o)}

10
11

12

WO 92/20022 PCT/US92/03812

96
32. Apparatus according to claim 29 wherein said document-
content includes a license-data-header, and said license-data-
header describes the parties to the license document, the term of

the agreement and constraints that may have been placed on

management of the license data.

33. Apparatus according to claim 29 wherein said document-
content includes management-info, where the management-info may
include at least one of the following:

an assignment;

a reservation;

a delegation;

a backup delegation;
an allocation;

a registration date;
a registrar;

a comment;

a termination-date.

34. Apparatus according to claim 29 wherein:

said document descriptor includes an encoding method
version number, and encoder-identifier and an encoder-name;
said document-header includes a title, an author, a

version and a date for the software item;

said document content may include at least one of the

following: a product-use-authorization, a license-use-requirements-

WO 92/20022 PCT/US92/03812

97

table, a group-definition, a key-registration, and a delegation;

said document-content may include a license-data-header,
and said license-data-header describes thé parties to the license
document, the term of the agreement and constraints that may have
been placed on management of the license data;

said document-content may include management-info, where
the management-info may include at least one of the following: an
assignment, a reservation, a delegation, a backup delegation, an

allocation, a registration date, a registrar, and a comment.

35. Apparatus according to claim 29 wherein said store is
maintained by a license server, and said request is sent to said
server, and wherein said request is in the form of a remote
procedure call, and said grant or refusal sent to said user is a

return of said procedure call.

36. Apparatus according to claim 29 wherein said 1license
authorization is received by said server from an issuer, and

wherein said server and said users are nodes on a computer network.

37. A method of storing license documents by a server for a
license management system, comprising the steps of:

maintaining a store of license documents for software items;
each license document including an indication of license management
policy for a software item, said indication being in the format of

an encoded document of a data type consisting of an ordered

H ~N oy 0o W N s W N

> W N

WO 92/20022

PCT/US92/03812

9%
sequence of three elements, the three elements including a document
descriptor, a document header and the document content;

accessing said store to obtain information from a selected one
of said license documents for a software item, in response to a
request, and referencing gaid indication of license management
policy, to produce a grant or refusal of said request.

38. A method according to claim 37 wherein said document
descriptor includes an encoding method version number, an encoder-
identifier and an encoder-name, and wherein said document-header
includes a title, an author, a version and a date for the software
item.

39. 2A method according to claim 37 wherein said document
content includes at least one of the following:

a product-use-authorization;

a license-use-requirements-table;
a group-definition;

a key~-registration;

a delegation.

40. A method according to claim 4 wherein said step of
selecting by a filter may select on one or more of the attributes:
issuer, producer, product name, product use authorization, calling
authorization, and wherein said store is maintained by a license

server, and said request is sent to said server.

41. A method according to claim 4 wherein said request is in

the form of a remote procedure call, and said grant or refusal sent

10
11
12
13
14
15
16
© 17

18

WO 92/20022 PCT/US92/03812

99

to said user is a return of said procedure call.

42. A method according to claim 40 wherein said license
authorization is a data arrangement specified as a product use
authorization, and said product use authorization is received by
said server from an issuer, and wherein said server and said users

are nodes on a computer network.

43. Apparatus for managing use of licensed software items,
comprising:

means for maintaining a store of license authorizations for
said software items; each license authorization including an
indication of license ﬁanagement policy for a software item, said
indication being an encoded document containing a number of
attributes defining said license policy;

filter means for selecting from said store, said filter means
specifying one or more of said attributes and a Boolean operator
for each selected attribute;

means for sending a request by a user of one of said software
items to obtain permission to use said software item; said request
identifying the user and said software item;

means for accessing said store to obtain information from said
license authorization for said software item, in response to said
request, and comparing said identification of said user and said
software item with said information, to produce a grant or refusal

of said request; and

w N

WO 92/20022 PCT/US92/03812

100

means for sending said grant or refusal to said user.

44. Apparatus according to claim 43 wherein said filter means
may select on one or more of the attributes: issuer, producer,
product name, product use authorization, calling authorization, and
wherein said store is maintained by a license server, and said
request is sent to said server, and wherein said request is in the
form of a remote procedure call, and said grant or refusal sent to

said user is a return of said procedure call.

45. BApparatus according to claim 43 wherein said license
authorization is a data arrangement specified as a product use
authorization, and said product use authorization is received by
said server from an issuer, wherein said server and said users are

nodes on a computer network.

PCT/US92/03812

WO 92/20022

1/32

— L - LL Ll (1~ Wvy90yd
. e __ T —~ _____ ! "1 03SN3IIT
I||'|||I|1/w—. IIIII LI. E lllll —~ UN.—‘ lllllll wP llllll w—\ ||||||
, 6L . - 61 , 6l

I . S0P s0_ __S0__ | | _SO__ | _S0___
5
d
~9i =91 ~9; 91 =9l 91
T o ‘2z [ez N
| ¥3AYIS | J9VNVKW . ¥IAYIS 1 FOVYNVW
\mon 331v93130 “ ISNIIIT =€l mO“ 331v53130 “ ISNIDIT —El
P
s Tl o n B
- (
_ | L 3L INJII— LE he
w~] 901 _ |31 3svaviva— e
| | 41 39vNvill— €€
] SO | ¥3AY3S __%am@ulmm&.@.xi;
cz—{3svaviva | | WY49034d o
ENER]N | | ININFDYNY WS
‘ _ HENERNEN
~ T L
4 ¢ \.\wcm W anss] o
. 0l
ARSI E | danss) | YOLVEINID | 1pojw
SO | 3N | INGWM0d ~——==y33n004d
Lz _ | 3ISNAIIT 19z

SHEET

TE

SUBSTITU

PCT/US92/03812
WO 92/20022

2/32

License (ProductUse
j Authorization)

35 Product Name
\\ Producer
Version Nos.
Release Date
Issuer 37
Licensee [—38
Start Date = A
End Date -

Units Granted {41 License Unit Requirements Table
Units Available }—42
Style 143
Context 444
Duration 4+—45
LURDM 446
LURT 4—47
Delegation Auth. }—48
Calling Auth. }—49
Combination Auth. }-50 Fi1CG -
Overdraft Auth, }—51
Token: }-52
Signature 4-53
Check Sum _|- 54

L b

36

\

AN

Row Selector Columns
Platform ID A B C
PC-0 10 | 230 -1
PC-1 12 1230 |-.1
VAX 6210 158 | 300 | 150

I FIG.2

43 bl 45 L6
\ \

[/
[Sstyle Context Duration LURDM

Allocative Network Transaction Constant
Consumptive Execution Domain Assignment | Table Lookup
Private Login_Domain Immediate Private
Node ID
Process_Family
Process

User_Name FIG'3
Product Name
Operating System
Platform _ID
Private

SUBSTITUTE SHEEY

WO 92/20022

Execute
Unit 18

60—

PCT/US92/03812

3/32

, Make Call
Lm_Request_Allocation (),
Arguments:

/| —

62
Return N

Rec'd ?

Y

63
Return N
Is

Grant ?

Y

66 — Store Grant
Handle

Check
Error
Code

EXECUTE

Make Call
Lm_Query_Allocation (),
Arguments:

PROGRAM 17

!

Receive Return

!

FIGC.5

Retrieve Handle }— 68

Make Call
Lm_Release_Allocation ()

]

70—

Receive
Return Ack.

SUBSTITUTE SHEET

PCT/US92/03812

_

ajpueH juesn
6L - uiniay

SNS T E

4/32

WO 92/20022

ajpueH 8pod juawasinbay
98~ | *ov uimeay dou3 pajenajed
Wiy 8101s Kcg 08
- _ a|pueH ojuy } ‘yiny aAauay
un}e . .
L Y yiny %mua: g)
- . apo) % ‘Bboid
88 — yiny aaauay ﬁ\.ow yiny sasiiey _ 10413 1senbay
— uinjey yolew L
apo)d ’ apo ‘ _
Joig ¢ PlleA _ PoO 9L
—E: a|pueH 10143 sweiboid "yiny
194 wnjay josnuess |
t !
8

() oolv Aanp wn

|

SUBSTITUTE SHEET

WO 92/20022

PCT/US92/03812

5/32

qLL
2

« ¢ - 10NAO0Hd .
EERRL 0]

e ——————

pie) bujjjen buissed
‘L - 19npoud |1ed

23112

juess

Dgty— OO |-e=

e

0D buissed
‘uonesoqy isenbay wn

}

00 | D6Y

-—1 00 [~D6Y

pied Bujjed ern

s\vnd
Jsva viva

ISN3IN

H3IAH3S
H3ITIVO uolneso|ly Alenp wn
jueln @
——— —— i
7 uole20||y Isenbay wn @ \
[37A% (€l J0) 0L

SUBSTITUTE SHEET

PCT/US92/03812

WO 92/20022

6/32

1a1413uap| 109[q0 4101

L1LX0 “€X0 “LX0 ‘€L%X0 ‘£L8X0
‘ZX0 "'2X0 ‘gex0 ‘8x0 ‘9x0

(VAR o]

(€)epd

(1)sexejuAs-eiep
(LLOL)o8p
(¢)Auedwoo-iaquawl

(¢ L)ewda-pol
(£)uoneziuebio-paijinuapl
(L)os!

}
{

= = Buipooug isynnuapj 10siqo

8 DlId

: anjeA Jayusp| 198[qo

SUBSTITUTE SHEET

PCT/US92/03812

WO 92/20022

7/32

8iN1dNi1g wawnaoqg 4141

BlEp-an|eA
i awieu-an|eaA
. BleiapeaHalealld
@Em_m-m«mn-mmcmo__
. alep
. UOoISIBaA
Juswiaje-elep-asuadl|. loyine
BlER(JOSuUadI] ann
EmEoUﬁWE:ooD lapeaHiuswnooQq
|

Ol 'OId

aweu-18pooua
131j11uspi-18poous
UOISIBA-I0UIW
uoisiaA-lofew
Joyduosaiuawnoogg

ucmE:o.oDu__D._

weibeiq xejuAg juswinooq 41q7

jusjuojiuswindoq LIDINdNI (2]
“TVYNOILdO JepeaHiuawinoog LIDNdWI 1]

TVNOILdO ‘0iduosaqiuawnooq 112114 [0]
} 30N3IND3S LIDINdI [E£E9L FLVAIYAI

4

6 ‘Old

1UBlU0D-}UBWNJ0P
Japeay-juawnoop

Joyduosap-juswinoop

uBwno0q4Ian

SUBSTITUTE SHEET

PCT/US92/03812

WO 92/20022

8/32

ajdwex3 101dudsa uawinoo(

¢l Ol
{

{.0 LA 101e18UBD MY, Bumg-1eloeley)} sweu-1apoous

‘uNIOVd. 18i1uepl-19poous
‘D uolIsiaA-IouWw
‘1 uoisiaa-iolew
} =:1 101dusssq@iuswinooq uabyey

weibelq xejuAg solduossq uswnooqg

LL "Oid
| {
TVNOILdO Bumig-1aioeseyd 119114 €] 8WeU-19poous
“IYNOILdO Bumg-is1oeieyd 110114 [Z] 1a13uspi-18poous
“IVNOILJO HIOILNI LIDIdWI (1] UOISI8A-10uIW
“IVNOILJO HIDILNI LIDINdL [O] uoisian-lofew
} 30NanD3s =

JoyduossaqiuawinosoQq

SUBSTITUTE SHEET

PCT/US92/03812

WO 92/20022

8/32

a|dwex3 JspesH juswnoo(Y1 "Ol4

{

.00G0-001 120108861, 81ep

{.L'OA. Buuig-ia1oeiey)} uoisian

{.1uswiiedag asusdiq *ou| ‘18qOO4 ‘sauof wo] Buing-isloeseyn} soyine

{.e1ep 14N pelePOSSY yum sesuadi] NIOMNVC. Bullg-ieloeieyd} apn
} =:: 1speay-juswinoop ispeay-sjdwexs

weibei xejuAg JapeaH juawinooq €l "Oi4

{

TVNOILJO awildin 1IDINdI] alep
“TVNOILdO Bumg-ieloeieyd 112141 €] uoisiaa
“IVNOILdO Buing-ia1oeseyd 112114 (2] ioyine
“IVNOILdO Bumng-1e1oeieyd 1{21MdWI [L] sl
“IVNOILJO 3IsnenjeppaweN 11011dWI [0] eiep-ispeay-sleAld

} 3oN3aND3s J18peaHiluawnoo(

SUBSTITUTE SHEET

PCT/US92/03812

WO 92/20022

10/32

weibelq xejuAg jusjuo) uawnooq

TVNOILJO ojupuawabeuepy D114 _.m.m

uonebajagdnyoeg 11D17dNI [9]

‘uonebapgasuadin 1IDITdNI [G]
‘uonebajaquanss 11D1dWI [¥]
‘uoneuisibayAay 11D17dNI [€]
‘uoniuyyaqdnoln 1 1D1NdNI (2]

Gl "Old

ojul-ljuswebeuew

uonebajap-dnyoeq
uonebajop-asuaol|
uoiyebajap-1anssi
uoneusibal-Aay
uoinuyap-dnoub

‘14N LIDNdWI [L] @|qel-sluswaiinbsi-sun-asuaoy)
uonezuoyine-asn-jyonpoud

‘uonezuoyinyasnionpoid 11D11dNi [0]
} 30I0HD 1]
‘18peaHele@asuadl 1 [1J11dI (0]
} 30Nanoas

Blggasusdr] 40 3DN3IN0D3S

Apog-asuaj]
lapeay-eilep-asual|
ejeQoesusd

usjuod juswindog

SUBSTITUTE SHEET

WO 92/20022

PCT/US92/03812

11/32

weibeiq xejuAg ispesH ejeq asuaoly

TVNOILJO isranjeppswepN 11D11d NI [9]
‘aun1eubis | 1D1dnI [S]

“TYNOILdO siutennsuodiuawabeuey 11D11dNI [p]

“IVNOILJO wia] 1121dWNiI 2]
“TVNOILJO Bumns-1e1oeieyd 11911dNI [1]

Ojui-papualxa
1UsWIW09-|Bd0|
1ensibal
a1ep-uoneuasibal
suolleoo|je
suonebasjap-dnyoeq

suoiebajap
SUOl1BAI9Sal
sjuawubisse

(leuondo) ojuinusawabeuejy

‘aiesusdn 12[1dNI [0]

-

} 30N3aIND3S =::

8in1onJi1g El1BQ @SUadI

(30 auo) Apogesuadi

_

L1 "Dl

JUBWWOD-18NSS|
ainjeubis

Sjuiesisuoo-juswabeuew

wnal

CETED]

pl-asuaolj
lepeaHeleQasusoi

91 'Dld
~
(" uonebajap-dnyoeq
uonebajap-asuaoy) JUaWIWo9-18Nss)
uollebajap-ianssi ainjeubis
uoijealsibai-Aay Sjuleli3suoo
W -juswabeuew
uoniuyap-dnoib wiial}
a|qe3-sjuawalinbal-sjun-asusoy) @asuaol|
uopnezuoyine-asn-jonpouid J p1-8susao|)

lapeape1eQasuadi

m«mommcmo_._

SUBSTITUTE SHEET

PCT/US92/03812

WO 92/20022

12/32

weibeig xeluAg ejqe] juswalinbay jun asusory

HIDIALNI 40 IDNIN0IS LIDINdWI [L]
‘Bug-1s1oeieyd 11D17dNI (O]
} 30N3ND3s =::

MmoyunTg 40 3DN3IN0D3IS

Isrimoy 11IDINdNI [L]
‘buing-ialoeieyd 112114 I (0]
} 30Nanoas =::

weibe|q xeluAg uolezioyiny asn 19npoid

TVNOILJO 1sienjeApaweN 1101MdWiI [9]

61 Old

SUWN|02-1N|
pi-wioed
MOH1INT
isrmoy

SMOI
aWeU-1IN|
14N

8L D4

uayol-jonpoud

“TVNOILJO siulennsuojuonnaaxy 1d1dNi [G] SIUIRIISUOD-UOIINDAaXd

“IVNOILdO J8qua 40 IDNINDIS LIDIMNdI]

suollezioyine-iajjed

“TVNOILJO J8quainy 40 3ININD3IS LIDMNdWI [€] suonezuoyine-buljjeo

‘Aotjodiuswabeueiy 1121141 (2]
‘HIOILNI LIDINdN [L]
‘anponpold 1121NdNI [0]

} 3ON3IND3S =::

Aojjod-juswebeuews

paiueib-siun

pi-3onpoud
uoilezuoyinyasnionpoid

ITUTE SHEET

SUBST

PCT/US92/03812

WO 92/20022

13/32

LHN7 30 Buipooug sjdwexy 0Z ‘O

{{os1} {oo€} {851}}
{.0129 XVA. Bumng-iaoeieyn}
} moyiuini
{{t-} {ogz} {z1}}
{.1-20d. Bumg-ialoesieys}
} moyun
{{1-} {oez} {o1}}
{.0-2d. bBumng-iayoeseys}
} moyunt
} smou
{.14N7 sdwexz, Buug-isoeiey) } eweu-un|

} =: 147 ejdwexy

SUBSTITUTE SHEET

WO 92/20022

PCT/US92/03812

14/32

weibelq xejuAg uonensibay As)y

¢c¢ '9Old

ONIHLS 13120 LIDNdNI [Z]
‘Bunis-seloeieyd 1 191dNI (L]
‘Bulng-ialoereyd 11DdNI [O]

} 30N3IND3s =::

anjeA-Aay

wyluobje-Aay

aweu-18umo-Aay
uonelysibayAay

weubeiq xejuAg uoniuyaq dnouig

YA

18quWsy 40 3DNINDAS LIDIdWNI [€]
‘awnidin LIDINdwi (2]

‘UoIsisA 11D1NdWI [L]
‘Buing-iazoeieyd L1914 (0]

} 3O0NaNnoD3s =::

slaquawi-dnoib
alep-asedjas-dnoub
uoisian-dnoub
aweu-dnoib

uoniuysg dnoig

SUBSTITUTE SHEET

PCT/US92/03812

WO 92/20022

15/32

sweibeiq xejuAg uonebajpg dnyoeg g uonebsjaq asusor

v¢ "Old

m
._<ZO_.EOmumomwcmoﬁ._._u_._n_s__:w_ mpmv-umummm_mn
“IYNOILJO 1siuswubissy 11211dWI [€] isi-luawiubisse
“IVNOILJO siuiensuojuonnsaxy 1191dI [Z] SjuieI1SUOD-uoiINdaxe-aalebajap
‘lonnuoguonnquisia 1I21NdniI (1] |[ol3uod-uoinqisip-palebsjsp

TVNOILJO H3IDIALNI LIDINdWNI [0] suun-palebajap

} 30N3ND3as =:: uonebajaqesuaiy

weibelq xejuAg uonebajaq i8nss)

€¢ 'Old

3S1v4d 11Nv43a Nv310089 LiIDIdni []
“TYNOILJO uonezuoyinyasnionpoid 11911dNI (€]

“IVNOILJO HIDIALNI LIDNdWI [Z]
‘19qWiBIN 40 JONINDIS LIDIdNI [L]
‘Buiig-1e10e1RYyD 11D1MdWI (0]

} 30N3NDas =::

panwiad-asuaolj-gns
uoilezuoyine-aje|dwa)
paijueib-siun-pajebajap
pi-1onpoud-paiebasjsp
aweu-ianssi-pajebajap
uoiiebajaianssi

SUBSTITUTE SHEET

PCT/US92/03812

WO 92/20022

16/32

Emhmm_.n_ XelUAG ojujiuswabeuep

TVNOILdO IsnenjeApaweN 110174 [6]
“TVNOILJO 3wil1D1n 1ID2INdNI (8]
“TVNOILJO isrenjeppaweN 1121TdWI [£]
‘Ix81u0) 11017dINI [9]

‘swi1din LIoNdwi [s]
“IVNOILdO 3srjuoiedoliy LIDIdNI (1]

“TYNOILdO 1siquonebajaqg 11D21NdNI €]
“IVNOILJO isiuonebajaq 1121NdNI (2]
“IVNOILLHO 1siuswubissy 11D11dINI [L]
“IVNOILdO 1simiuawubissy | 1D11dI [0]

} 3O0N3ND3S =::

G¢ 'Oid

Ojul-papualixa
alep-uoneuiwial
IuaWWwoo-|eoo|
Jesysibal
alep-uoneasibai
suojleoojje
suonebajap-dnyoeq
suonebajep
SuollBAlaSal
siuawubisse
ojujiuswabeuep

SUBSTITUTE SHEET

PCT/US92/03812

WO 92/20022

17/32

weibeiq xeluAg juswubissy

IX8uoy 1101dWi (2]
‘wisy 112NdI L]
‘HIDILNI LID11dWi [0]

} 30NanDas =::
swubissy 40 3ININD3IS

weibelq xejuAg uoneso|y

TVNOILAO HIDALNI LIDIdWI [Z]
‘HIDILNI LIDIMdWI [L]

‘1Xa3u0) 11211dWI (0]

} 30N3IND3S ==

uonesojly 40 IONINDIS =:

LC "Dl

aaubisse

wual-luawubisse

suun-paubisse
luswubissy

1siuawubissy

9¢ 'Ol

pi-dnoib-uopeoo|e
inj-uoneoo)e
1X831u02-uoeoojje

uoie2o||y

1sIuonesoyy

SUBSTITUTE SHEET

WO 92/20022

PCT/US92/03812

18/32

weibeiq xejuAg 1xajuo)

8¢ 'OlId

{(ggegnser’(0)say} HIDIALNI LIDIANI [L] Ixajuooqns-aleald

{
(O L)3xauooqns-pi-wiojie|d
‘(p)3Ixa1uooqns-walsAs-buiiesado
‘{8)1xajuoogns-aweu-1onpoid
‘(£)1xa1uoogns-aweu-1asn
‘(9)1xayuooqns-pi-ssadoud
‘(Gg)ixawuooqns-Ajiwiey-ssasouid
‘(¥7)3x@31u00QqNSs-apou
‘(£)1xa1uooqns-uiewop-ulbo|
‘(Z)Ix@1uoogns-ujewop-uoi3Ndaxa
(1)1Ixa3uo0oqns-3i0miau
} 4393LNI LIDIdNI [0] adA3-1xejuooqns-piepuels

} 3010HD =t adA J1xajuongng
{

eleganjeA [L]

anjeA-1xaiuooqns
‘adA j 1xa1u0)gns [0]

adAl-1xaj1uo00-qns

} 3ON3aND3s == 1IX8juonqng
1x21u00gng 40 JONINDIS =:: 1X83u0)
Ixa1u0) 40 IJININDIS =:: 1sIIxa83uo)

SUBSTITUTE SHEET

PCT/US92/03812

WO 92/20022

19/32

‘suonedojie Hun 1o1dxe alsinbai s1x8juod anbiun Ajug 6C "D

NVINAM “"*"2-Aid ‘NIIUD ‘181sn|D vV ‘13INT

NVINAM N33HO

NYIWAM ‘" L-Aid ‘NIIUD ‘481sn|D Vv ‘13N3

NVINAM N334O ot

NVWAM “"""2-dld ‘a3y ‘181snD g9 ‘13N3 NVINAM a3y ol

N3ST0 ‘""" L-Ald ‘a3y ‘1eisn|) gg ‘13N3 N3S10 a3y oL

NVWAM ‘" L-Qid ‘3N18 ‘181snD vV ‘13IN3T NVYINAM anig oL
awepN J19sn apopN

suoed110adg 1X831U07) |IN4 alejdwa| Ixa1uon) suun

SHUN Pe1B2O|lY | ¥A HVEOOH

SUBSTITUTE SHEET

PCT/US92/03812

WO 92/20022

20/32

‘sjuswelinbas syun sioedwy alejdwa] 1X81U0D O UOIIEDIHPOA

O€ "OlId
NVINAM “""Z-dld ‘NIIYD “481sn|D VYV ‘13N3 N3I34O
NVIWAM ‘""" L-Ald ‘NIIHD “1818N[3 VYV ‘13IN3J N33HO 0]}
NVIWNAM ‘*""2-Qid ‘a3y ‘4e1sn|D g9 ‘13N3 a3y
N3STO """ L-aid ‘a3y ‘481sn[3 gg ‘13N3 a3d 0]}
NVIWAM ‘" L-Aid ‘3N18 “181sn|D vV ‘13N3 anig 0]}
9PON
suoledy10eds 1xa1uo) |ind e1ejdwa | 1xajuo) suun

sSHun peledojlv L 'vA Hvd0O0d

SUBSTITUTE SHEET

PCT/US92/03812

WO 92/20022

21/32

Emhnm_o XEJuAg jonuc) uonnqguisig LE 'Ol

{
TVNOILJO H3IO3LNI LIDITdWiI [9] paidwane-salnal
“TVNOILJO HIODILNI LIDITdWI [S] junod-Anal-wnuwixew
“TIYNOILdO 8wijjeassiu] 11D11dWNI (] jlealalui-Aial
“TIVNOILdO 8wi]jeasalu] LIDI1dNI €] |[eAldjul-ysaljal
“TVNOILHO 3wi1d1Nn LIDNdWI [Z] 81ep-pus-jusnnd
TVYNOILJO swiidin LIDindwi :m 8}ep-l1e}s-jualind

(€)uonnguisip-jenuew
‘(2)Ajuo-uoinquisip-jeniuy
‘(1)uonnquisip-ysaial
} H3D3LNI LIDIdII (O] poylsw-uonngulsip
} 3oNanoas =:: |osuojuonnquisiq

SUBSTITUTE SHEET

PCT/US92/03812

WO 92/20022

22/32

weibe)q XelUAG S1UIRIISUOY) UOIIND38XT Z€ 'Old

{

(g)aiowal
‘()ya0oMmiau
‘(€)1e20]
‘(Z)aAnoesalul

‘(1)yoleq
} 4aoaINI = PUINIUBWUONAUT

{
TVNOILJO pubjiuswiuoiiaug 40 3JNIN0D3S LIDINdNI (2] 1Sij-luswiuodiAug

‘ “TVNOILdO 1sMIxaiuod 1ID1NdWI (1] 1X831U02-UOIINIBXS
TVNOILdO Buig-is1oeiey) 40 IONINDIS LIDINHWNI (O] walsAs-Buijesado

} 3DN3N0D3S =:: swiensuojyuonnoexy

SUBSTITUTE SHEET

PCT/US92/03812

WO 92/20022

23/32

weibeiqg xejuAg q) esuson €€ 'Ol

0 1INV43a HADALNI LIDI1dWI [2] Juswpuswe
OC_hwmn._muUmhm_._U ._._U_:_n_s__ :; ‘_QDEJC-_N_._mw
‘Bumng-1ar0e1RYD 119114 [0] 18nss|

} 30N3ND3Ss == aiasusor

SUBSTITUTE SHEET

PCT/US92/03812

WO 92/20022

24/32

weibeiq xejuAg poylspy uoneulwiglaq suswainbay Jupn asusor

TVNOILdO HIOILNI LIDINdNI [£]

“IVNOILJO HIDIALNI LIDINdNI [9]
“TYNOILdO bBuiig-isroeieyd 11214 [S]

{

} H3D3ALNI LIDNdNI (1]

“TYNOILJO HIDILNI LIDINdI [E]
‘A5Tv4 1INV43a Nv3I008 LIDINdWI (2]
‘0 1INV43a HIDILNI LIDINdNI (L]
‘INYL 11NV43a Nv31009 LIDINdWI [0]

{
juswalinbail-yun-jjnejsp
anjeA-wpin|
pl-1Nn}j-paweu

(E)wipinj-ajeand
‘(Z)1ueisuod
‘(L)un)
pPupj-wpinj
azis-uojjeoo|je
paiinbai-buibboj-1jeipiano
Huwj-1jeipiano
pailiwiad-uojjeuiquiod

} 3OoN3IND3as =:: nwadni

vE Old

SUBSTITUTE SHEET

WO 92/20022

PCT/US92/03812

25/32

weibeiq xeluAg sjulenisuo) juswabeuepy

G€ 'OId
{

TVNOILdO awijjeasdiu] 11D11d NI [¥] pouad-uonebajep-wnuwixew

‘INHL 17NV43a Nv31008 LIDNdwi €] pallwied-uonebajep

‘INYL 17NVv43a NvIT1008 LIDINdI (2]

palliwiad-dmyjoeq
“IYNOILJO {

(E)40M18U-8113UB

‘(Z)ulewop-juawabeuew

‘(1)wuojrejd-a|buis
adoos-juawebeuew

IXajuoos-juswsbeuew
} 30N3IND3S =:: sjuensuodiuswabeuepy

} 4393 LN LIDINdWI [L]
“IYNOILO 3s3x81u0) 1194 [0]

SUBSTITUTE SHEET

WO 92/20022

PCT/US92/03812

26/32

weibeiq xejuAg Aoljod Juswabeuepy 9¢ 'Ol

TVNOILdO swi]jeassiu] 110NdNI [S)
“TYNOILdO HIADILNI LIDINdWNI [¥]
“TYNOILdO IWAaHN1 LIDNdWI [€]

“IYNOILJO {

} H3IDIALNI LIDINdNI (2]

“TVNOILdO

adA | 1xe1u00qns 40 IONINDIS LIDNDWI (L]

{

} 393 LNI LIDINdWI (O]
} 3O9N3aND3S =::

{

juiensuod-juswubisseal
}wi)-buneys-uoneoojje
poyiawi-uoijeuiwiaiap-1n)

(€)e1eipawiy

‘(Z)iuswubisse

‘(1)uonoesuen
uoneinp

aje|dwa}-1xajuod

(g)8)A1s-93A L
‘(Z)8Aandwinsuod
‘(L)8anedo)je
9|A1s
Aoljoqiuauwiabeuey

SUBSTITUTE SHEET

PCT/US92/03812

WO 92/20022

27/32

sweibeiq xejuAg 1sI snjep pswep g ejeq anjeA ‘snjea pawep 8¢€ ‘DI

anjeApaweN 40 IONIND3IS =:: IsrenjeApawep
{
BlEQaN|BA 40 IONINDIAS LIDIMAWI 1] 1si-anjeA
‘ONIHLS 13120 LI21dWi [€] |esouab-anjea
Buing-ie1oeieyd 40 IDNINDIS LIDMLNI (2] 1x8}-anjeA
"HIDALNI LIDINdWI (1] 18bajui-anjea
‘NV3I1008 LI21dIiI [0] ues|oog-anjea
} 3010HD =:: Bleqganien
{
eljeganjea ejep-anjea
‘Bunig-1a3oeiey) aweu-anjeA
} 30N3NDIS = an[eppawep

weibeiq xejuAg 1aquiajy L€ ‘DA

TVNOILdO isfianjeApaweN 1[D1dWI (2] uaxojl-iaquaw

‘ainieubis 1 1D1NdNI (L] ainjeubis-taquiaw
‘aronpoid 1121Ndwi (0] 1onpoud-1equiaw
} 30NaND3s == 1equiapy

SUBSTITUTE SHEET

PCT/US92/03812

WO 92/20022

28/32

weibeiq xewuAs @l wnpold Of "D)|4

AVNOILJO aunidin 1I1I2NdnWiI [S] ajep-aseajal-ise|
IYNOILJO sw1d 1N 1IDNdwi [+l olep-aseajal-1sily
"TVYNOILdO uoisiaA 11D11dWI (€] - uolsian-ise|
“TVYNOILJO uoisisA 11D1TdNI (2] UolISiaA-1sily
‘Buing-isioeseyd 11D1dNI (L] aweu-jonpoid
‘Buing-1a10e1eyd 1121141 (0] iaonpoud

} 30N3NDas == ananpoid

s|dwiex3 isi] anjep paweN g€ D)4

{vEC1-GGS (666) | +} Bulig-19308184y]} EIEpP-8NjERA
{.# noddng suoydsjaj, Bumng-iajoeiey)} sweu-anjea
} anjeppawepn
{
{e6v¥S1L HIDIALNI} eiep-anjea
{.18p10 a8seyoing, Buuig-isyoeiey)} aweu-anjea
} enjeapawepn
} =:: 1simenjeppawenN isrna|duwiexy

SUBSTITUTE SHEET

PCT/US92/03812

WO 92/20022

/25
- -

29/

weibeiq xejuAg wia |

“IVNOILHO 3w D1 LIDNdWI (1]
“IVNOILJO 8wl D 1N Lidd (0]
} 3ON3ND3S =::

weibeiq xejuAg ainjeubig

ONIHLS 13120 1101ndWNi (2]
“TVNOILJO IsnenjeapaweN 11D 1dWI [L]

‘Buing-1a3oeseyd 1191dWI [0]
} 3O0N3nDas =::

¢V ‘Ol

alep-pus
ajep-uels
wise |

LY "OId

anjea-ainjeubis

siajaweled-ainjeubis
wyiuobje-ainjeubs

ainjeubig

SUBSTITUTE SHEET

WO 92/20022

PCT/US92/03812

30/32

v "Old
- L - (8dA) 181)14)wnugy adA] o4
- alow 10 QO - (433114)1081q0 s19}|i4
- aiow 10 Q - (wayy 181114)193Iq0 swalj i8I
Ajleniuj Jsquiny | yibusq XBlUAG ainqully
anjea anjep anjep anjep
18}ji4 03 oiy1pedg sainqully
ev "Oid
{
0 17INV43A H3IODILNI LIDINdNI €] -1ed
‘0 11NVv43Q H3ADALNI LIDINdWI (2] £-}ed
‘0 L7INV43Q HADILNI LIDINdWI (L] ¢-Hed
‘HIADIALNI LIDNdWI (0] L-yed
} 30NaND3s =::

UOISIBA

SUBSTITUTE SHEE

PCT/US92/03812

WO 92/20022

31/32

Sv Old
- -0 - | (3senbay asuaor])108fqp | 1sanbay asuaon
aiow
- 10 |-0 |eiow 10 | («)Bulg Bunisqng jeuiy
- |8iow 10 0 |8i0Ww 0 | (.)BuLlg Buusqng
- L-O |®iow 10 | («)Buing Buuisqgng jenu)
- L-0 - (193114)300[q0 sia1)i4
- L-0 - Aue anjeA yolew
- L - adA) adA] ainquny
- L - (edA] walj 183j14)wnug adAj wal| Jayi4
en | omen | Yomen “aen S

181ji4 01 oy1vadg sainquUIlyY

UBSTITUTE SHEET

)
-
tod

WO 92/20022 PCT/US92/03812

32/32
Filter {
Filter-Type AND
Filter-ltem {
Filter-ltem-Type SELECT
Attribute-Type Product-Use-Authorization
Filter {
Filter-Type AND
Fiiter-ltem{
Filter-ltem-Type SELECT
Attribute-Type Calling-Authorization
Filter{
Filter-Type AND
Filter-ltem {
Filter-item-Type EQUALITY
Atribute-Type Producer
Match-Value "Digital"
Filter-ltem {
Filter-ltem-Type EQUALITY
Attribute-Type Producer
Match-Value "Amazing Database”
}
}
}
Filter-ltem {
Filter-ltem-Type EQUALITY
Attribute-Type Producer
Match-Value "Digital”
Filter-ltem{
Filter-item-Type EQUALITY
Attribute-Type Issuer
Match-Value "Digital”
}
Filter-ltem {
Filter-tem-Type EQUALITY
Attribute-Type Product-Name
Match-Value "Amazing Graphics System"
}
}
}

FIG. 46 Example Filter Value Notation

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

see column 3, line 31 - column 7, line 55

PAT/IIR Q2/N2R1T?
internatiohal Application No
1. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate ail)$
According to International Patent Classification (IPC) or to both National Classification and IPC
Int.C1. 5 GO6F1/00
II. FIELDS SEARCHED
Minimum Documentation Searched’
Classification System Classification Symbols
Int.C1. 5 GO6F
Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched®
[1. BOCUMENTS CONSIDERED TO BE RELEVANT?
Category ° Citation of Document, 11 with indication, where appropriate, of the relevant passages 2 Relevant to Claim No.l3
Y EP,A,0 332 304 (DIGITAL EQUIPMENT CORPORATION) 1-3,
. 13 September 1989 6-19,22,
cited in the application 24,
26-29,
31-33,
35-37,39
Y see figure 1 43-45
cited in the application
A 5,15,21,
25,30

- /_...

© Special categories of cited documents : 10

“A” document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

“L”* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O” document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

#T* later document published after the international filing date
or priority date and not in conflict with the ap lication but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step

“y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

& document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

09 SEPTEMBER 1992

Date of Mailing of this International Search Report

17.09 92

International Searching Authority

EUROPEAN PATENT OFFICE

Signature of Authorized Officer

WEISS P.

Fonn PCT/ISA/210 (second sheet) (Jamnary 1925}

peATAIC Q2 /N2Q172
Internationai Appiication Mo

0. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Citation of Document, with indication, where appropriate, of the relevant passages | Relevant to Claim No.

Category °
|
Y IBM TECHNICAL DISCLOSURE BULLETIN. P1-3,
vol. 31, no. 8, 1 January 1989, NEW YORK US L 6-19,22,
pages 195 - 198; IMETHOD FOR MANAGING 24,
CLIENT/SERVER RELATIONSHIP IN THE AIX OPERATING 26-29,
SYSTEM' 31-33,
. 35-37,39
Y i see the whole document 43-45
A 21

Focm PCT/ISA/210 (extra sheet] (Jansary 1985)

EPO FORM PO47T9

ANNEX TO THE INTERNATIONAL SEARCH REPORT

ON INTERNATIONAL PATENT APPLICATION NO. gi 92032(1)557

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in Ro way liable for these particulars which are merely given for the purpose of information. 09/09/92

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP-A-0332304 13-09-89 US-A- 4937863 26-06-90

JP-A- 2014321 18-01-90

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

