

(19) AUSTRALIAN PATENT OFFICE

(54) Title
Otoplasic with an integrated module, in-ear otoplasic and
method for adapting otoplastics

(51) 6 International Patent Classification(s)
H04R 25/00 060101BHAU
(2006.01) PCT/CH00/0052
H04R 25/00 3
20060101AFI20

(21) Application No: 2000272658 (22) Application Date: 2000.09.25

(87) WIPO No: WO02/25994

(43) Publication Date: 2002.04.02

(43) Publication Journal Date: 2002.06.20

(71) Applicant(s)
Phonak AG

(72) Inventor(s)
Widmer, Christoph; Weidmann, Markus; Hessel, Hans

(74) Agent/Attorney
Griffith Hack, 509 St Kilda Road, Melbourne, VIC, 3004

(56) Related Art
EP 855847A
US 4712245

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
28. März 2002 (28.03.2002)

(10) Internationale Veröffentlichungsnummer
PCT WO 02/25994 A1

(51) Internationale Patentklassifikation?: H04R 25/00

(21) Internationales Aktenzeichen: PCT/CH00/00523

(22) Internationales Anmeldedatum:
25. September 2000 (25.09.2000)

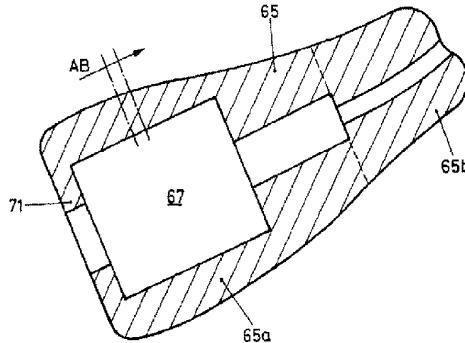
(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(71) Anmelder für alle Bestimmungsstaaten mit Ausnahme
von US: PHONAK AG [CH/CH]; Laubisütistrasse 28,
CH-8712 Stäfa (CH).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): WIDMER, Christoph
[CH/CH]; Glärmischstrasse 48c, CH 8712 Stäfa (CH).
HESSEL, Hans [DE/CH]; Cholibuck 12, CH-8121 Ben-
gen (CH). WEIDMANN, Markus [CH/CH]; Nörgelbach
6, CH 8493 Saland (CH).


(74) Anwalt: TROESCH SCHEIDECKER WERNER AG;
Schwäntenmos 14, CH-8126 Zumikon (CH).

(54) Title: OTOPLASTIC WITH AN INTEGRATED MODULE, IN-EAR OTOPLASTIC AND METHOD FOR ADAPTING
OTOPLASTICS

(54) Bezeichnung: OTOPLASTIK MIT EINGEBAUTEM MODUL, IM-OHR-OTOPLASTIK UND VERFAHREN ZUR ANPAS-
SUNG VON OTOPLASTIKEN

WO 02/25994 A1

(57) Abstract: The invention relates to an in-ear hearing aid whose shell (65) is rubber-elastic. This enables the shell to be changed modularly without changing the electronics module on which it is mounted.

(57) Zusammenfassung: Es wird ein Im-Ohr-Hörgerät vorgeschlagen, dessen Schale (65) gummielastisch ist. Damit wird es mög-
lich, modular die Schale an gleichbleibenden Elektronikmodulen zu wechseln.

2000272658 20 Mar 2006

- 1 -

Otoplastic with integrated module, in-the-ear otoplastic, and method for adapting otoplastics

The present invention relates to an otoplastic and a
5 method of adapting an otoplastic to changed requirements
of an individual wearer.

The present invention starts out from problems which have
arisen in conventional hearing devices. The solution to
10 said problems, however, can also be applied to other
otoplastics, such as headphones for example.

The present invention starts out principally from the
problem that hearing devices to date are produced
15 integrally and are in most cases replaced as such.
However, if for example one considers children and their
growing-up, it is evident that, because of this growth,
hearing devices worn outside the ear, and also very
especially in-the-ear hearing devices, have to be changed
20 in order to keep pace with this growth, which either means
using less expensive hearing devices in childhood or, if
the best hearing devices from the point of view of
acoustic behaviour are used right from the outset, a
relatively high cost accrues over the years.

25 Even if it were possible, in the case of today's hearing
devices worn outside the ear, to disassemble a hearing
device and provide it with a new shell taking account of
the growth which has taken place, the expense in doing so
30 would be great. In the case of in-the-ear hearing
devices, the expense involved would be unfeasibly great.

According to one aspect of the invention there is provided
an otoplastic with integrated module and a shell
35 surrounding the latter, and wherein the shell has at least
one rubber-elastic portion with an insertion/removal
opening for the module.

According to another aspect of the invention there is

H:\krystal\keep\Speci\2000272658.doc 20/03/06

2000272658 20 Mar 2006

- 2 -

provided a method for adapting an otoplastic conceived for an individual to changed needs of said individual with respect to characteristics of the outer surface of said otoplastic comprising

5

- providing said otoplastic with a shell and at least one unit within said shell;
- removing said at least one unit from said shell;
- 10 - providing an adapted shell with an outer surface characteristic fulfilling actual needs of said individual and having an insertion opening within a section of said shell;
- 15 - introducing said at least one unit through said insertion opening into said shell and collapsing said section with said insertion opening, thereby securing said unit within said shell.

20

In one example of an otoplastic, the shell thereof has at least one rubber-elastic portion with an insertion/removal opening for the module.

25

By this means, it is possible to push or pull the shell of the otoplastic over the module fitted into the insertion opening, and likewise to press the module out of the shell. If appropriate, in order to remove the module from an existing shell, the latter can be completely destroyed, 30 for example by being split open, and discarded in practice as a disposable article, after which a new shell is pushed on over the module.

35

In one example the otoplastic shell is made of rubber-elastic material.

In a further example the rubber-elastic properties of the otoplastic are additionally made use of by the shell

H:\krytalim\keep\Speci\2000272658.doc 20/03/06

engaging around the module at least partially and at least with a form-fit. It is entirely possible for the shell to engage at least partially around said module not only with a form-fit, but also, in the context of the elasticity of 5 the rubber-elastic material, with rubber-elastic clamping, in other words with a partial force-fit. It is thus particularly preferred that the rubber-elastic portion engages around the module at least partially and at least partially with a form-fit, it being entirely possible that 10 a shell portion not made of rubber-elastic material also engages or clamps around the module with a form-fit or even with a force-fit.

In a further example, it is proposed that the opening on 15 the rubber-elastic portion is smaller than the greatest cross-sectional extent of the module, viewed in a plane perpendicular to a direction of insertion of the module into the opening or into the shell. In this way, a phase plate is in practice created on the rubber-elastic portion, which phase plate, after complete insertion of 20 the module into the shell, closes again at least partially over the module, once introduced. The module can in this case consist of one unitary module in which individual subsidiary modules such as electronic components are 25 already joined, for example cast, to form one unit, or said module consists of two or more subsidiary modules which are then introduced in the correct order into the shell. The module preferably comprises a battery and/or one or more electronic modules.

30 The otoplastic is also preferably an in-the-ear hearing device or a hearing device worn outside the ear.

The otoplastic can be realised both for an otoplastic worn 35 outside the ear and also for an in-the-ear otoplastic. Specifically in the case of an in-the-ear otoplastic, the shell may consist of at least two parts which can be detached from one another. It is thus possible, in the case of an in-the-ear otoplastic too, in particular in-

the-ear hearing devices, to disassemble the shell and to continue using the modules with a new shell or a new shell part. If, for example for reasons of cleanliness, one wishes to ensure that a shell part which has already been 5 in use cannot be used again, the two parts are designed so that they can be separated only by destroying at least one of the parts. This can be done, for example, by the parts being connected by way of a catch connection, which can be opened only by destroying the catch. The parts can also 10 be connected to and released from one another using locking members, including bayonet-like closure elements. Here too, it is further proposed that the shell engages around the module at least partially and at least with a form-fit. The module can again be of an integral design 15 and combine several subsidiary modules or it can be made in two or more parts. It in this case preferably comprises at least one battery and at least one electronic module.

20 With the otoplastic, it is now possible to change the shell without causing wear of the integrated modules. Over and above the case of growth which was mentioned at the outset, this is in principle also extremely useful 25 when changes occur in the application area, that is to say changes in the auditory canal in the case of in-the-ear hearing devices. However, as a result of the ease with which the shell of the otoplastic can be changed, shells of hearing devices worn outside the ear can also be changed in some situations, for example in order to change 30 the hearing device color or, generally, its esthetic appearance. However, in the case of hearing devices worn outside the ear and also, and in particular, in the case of in-the-ear hearing devices, a change of shell may also be indicated for cleanliness reasons, with the otoplastic 35 shell being changed, in practice as a disposable article, instead of the relatively expensive cleaning of the otoplastic. This procedure is used in particular if diseases occur in the application area, i.e. in the auditory canal in the case of in-the-ear hearing devices,

and sterile shells have to be fitted at relatively short intervals, or the shells are actually used as supports for medicines and then have to be changed anyway as the healing process progresses. In order to use the

5 otoplastic shells as supports for medicine, it is entirely possible for medicines, for example medicines diffusing into the surrounding tissue, to be incorporated on the outer surface of the shell.

10 In one example at least part of the otoplastic shell on the module is changed. In another example the entire otoplastic shell is changed. In line with the above statements, it is proposed, that the otoplastic shell is pushed over the module like a rubber-elastic stocking and,

15 correspondingly, the module is pressed out of the otoplastic shell, or, if appropriate, an otoplastic shell which is to be changed is destroyed, for example by being split open, and a new rubber-elastic shell is pushed on over the exposed module.

20 The method of an example provides for an in-the-ear otoplastic by virtue of the fact that the otoplastic shell is designed in at least two parts, and the parts are separated in order to remove the module, at least one of

25 the parts is exchanged and new shell parts are re-assembled with the module. As has been mentioned, at least one of the parts can be destroyed upon separation, in particular both parts if it is intended to make it obligatory in practice to fit a new shell or at least a

30 new shell part. The need for obligatory changing of a shell can readily be adapted to the duration of use of a battery which is provided.

The method is suitable in particular for hearing devices

35 in which the modules contained in them are expensive. The method is also suitable for an in-the-ear otoplastic when changes occur in the auditory canal. Both the otoplastic and the method are further suitable for changing the otoplastic shell for sterility reasons and/or for

application of medicinal products.

The invention is explained below by way of example and with reference to the figures, in which:

5 Fig. 1 shows a simplified diagram of a production installation operating according to the preferred production method for optimizing the industrial production of otoplastics;

10 Fig. 2 shows a further installation concept, in a view analogous to that in Fig. 1;

15 Fig. 3 shows yet another installation concept in a view analogous to that in Figures 1 and 2;

20 Fig. 4 shows a diagrammatic view of an in-the-ear hearing device, with an earwax protection cap fitted in a known manner;

25 Fig. 5 shows, in a view analogous to Fig. 4, an in-the-ear hearing device produced with an earwax protection cap;

30 Fig. 6 shows an in-the-ear hearing device with a ventilation groove formed in it in a known manner;

Figures 7 (a) through (f) show

30 novel ventilation grooves on the basis of perspective views of cutouts of otoplastic shell surfaces;

35 Fig. 8 shows, based on a diagrammatic cutout of an otoplastic surface, a ventilation groove with a cross section and cross-sectional shape varying along its longitudinal extent;

Fig. 9 shows a diagrammatic view of an in-the-ear otoplastic with lengthened ventilation groove;

5 Fig. 10 shows, in a view analogous to Fig. 9, an in-the-ear otoplastic with a plurality of ventilation grooves;

Figures 11 (a) through (e) show

10 cutouts of otoplastic shells with ventilation channels of different cross-sectional shapes and dimensions formed in them;

15 Fig. 12 shows, in a view analogous to that in Fig. 8, a ventilation channel in an otoplastic shell with a cross-sectional shape and cross-sectional surface varying along its longitudinal extent;

20 Fig. 13 shows, diagrammatically in analogy to the view on Fig. 9, an in-the-ear otoplastic with a lengthened ventilation channel formed in it;

25 Fig. 14 shows, in a view analogous to Fig. 10, an in-the-ear otoplastic with a plurality of ventilation channels;

30 Fig. 15 shows a diagrammatic view, in longitudinal section, of an in-the-ear otoplastic with a ribbed inner surface;

Fig. 16 shows a cutout of the otoplastic according to Fig. 15 in cross section, the ribs having different cross-sectional surfaces;

35 Fig. 17 shows a perspective view of the cutout of an otoplastic shell with inner ribbing according to Fig. 15 or 16, the ribs having different cross-sectional shapes and dimensions along their longitudinal extent;

Fig. 18 shows, in a view analogous to Fig. 15 an in-the-ear otoplastic with outer ribbing;

5 Fig. 19 shows a diagrammatic view of a cutout of a ribbed otoplastic shell according to Fig. 18, with ribs having different cross-sectional surfaces;

10 Fig. 20 shows a diagrammatic view of a cross section through an otoplastic with outer ribbing, or inner ribbing, and an interior at least partly filled with filler material;

15 Fig. 21 shows a diagrammatic cutout, in longitudinal section, of an otoplastic shell with a part which is flexible upon bending and compression;

20 Fig. 22 shows a diagrammatic view, in longitudinal section, of an in-the-ear otoplastic with a receiving space for an electronic module;

Fig. 23 shows the otoplastic according to Fig. 22 being pushed on over an electronic module;

25 Fig. 24 shows a perspective and diagrammatic view of an in-the-ear otoplastic, such as in particular an in-the-ear hearing device, with a two-part, separable and connectable otoplastic shell;

30 Fig. 25 shows, in a diagrammatic and cutaway view, the integration of acoustic leads and adapter members to an acoustic/electric or electric/acoustic transducer, in an otoplastic;

35 Fig. 26 shows, in a view analogous to that in Fig. 25, the arrangement of two or more acoustic leads in the shell of an otoplastic shell, and

Fig. 27 shows, in a simplified signal flow chart and

functional block diagram, a procedure, and an arrangement for carrying out the procedure, where the dynamics of the application area of an otoplastic are taken into consideration when

5 configuring the latter.

The examples of otoplastics which are described following the production method are preferably all produced by this described production method.

10

Definition

An otoplastic is to be understood here as being a device which is fitted directly outside the auricle and/or on the 15 auricle and/or in the auditory canal. These include hearing devices worn outside the ear, in-the-ear hearing devices, headphones, inserts protecting against noise and inserts protecting against water, etc.

20 1. Production method

In the production method preferably used to produce the otoplastics described in detail hereinafter, the shape of an individual application area for an intended otoplastic 25 is three-dimensionally digitized, and the otoplastic or its shell is then constructed by an additive construction method. Additive construction methods are also known by the term "rapid prototyping". With regard to additive methods which have already been

2000272658 20 Mar 2006

- 10 -

used in rapid prototyping, reference is made for example to:

5 . <http://ltk.hut.fi/~koukka/RP/rptree.html> (1)

or to

10 . Wohlers Report 2000, Rapid Prototyping & Tooling State of the industry (2)

15 From the group of these additive methods known today for rapid prototyping, it appears that laser sintering, laser lithography or stereolithography, or the thermojet method are particularly well suited for constructing otoplastics or their shells, and in this case in particular the specific embodiments described hereinafter. Therefore, specifications of these preferably used additive construction methods will be discussed here, only in a brief summary:

20 . Laser sintering: Hot-melt powder is applied in a thin layer on a powder bed, for example by means of a roller. The powder layer is solidified by means of a laser beam, said laser beam being guided, inter alia according to a cutting layer of the otoplasty or otoplastic shell, by means of the 3-D shape information of the individual application area. A solidified cutting layer of the otoplasty or of its shell is obtained in the otherwise loose powder. This layer is lowered from the powder plane, and a new layer of powder is applied over it, and this layer of powder is in turn solidified by laser according to a cutting layer, etc.

25 . Laser lithography or stereolithography: A first cutting layer of an otoplastic or of an otoplastic shell is solidified by means of UV laser on the surface of liquid photopolymer. The solidified

layer is lowered and is again covered by liquid polymer. By means of said UV laser, the second cutting layer of the otoplasty or of its shell is solidified on the already-solidified layer. Once again, the laser positioning is controlled inter alia by means of the 3-D data or information from the individual, previously recorded application area.

10 . Thermojet method: The contour formation in accordance with a cutting layer of the otoplastic or of the otoplasty shell is carried out, in the same way as in an ink-jet printer, by liquid application inter alia according to the digitized 15 3-D shape information, in particular also the individual application area. The deposited cutting "picture" is then solidified. Once again, according to the principle of the additive construction methods, the otoplastic or its shell 20 is built up by depositing layer after layer.

As regards additive construction methods, and the preferred ones mentioned above, reference may be made to the following further publications:

25

- . http://www.padtinc.com/srv_rpm_sls.html (3)
- . "Selective Laser Sintering (SLS) of Ceramics",
30 Muskesh Agarwala et al., presented at the
Solid Freeform Fabrication Symposium, Austin,
Texas, August 1999, (4)
- . http://www.caip.rutgers.edu/RP_Library/process.html (5)
- . <http://www.biba.uni-bremen.de/groups/rp/lom.html>
35 and
- . http://www.biba.uni-bremen.de/groups/rp/rp_intro.html (6)

2000272658 20 Mar 2006

- 12 -

- Donald Klosterman et al., "Direct Fabrication of Polymer Composite Structures with Curved LOM", Solid Freeform Fabrication Symposium, University of Texas at Austin, August 1999, (7)
- <http://lff.me.utexas.edu/sls.html> (8)
- 10 · http://www.padtinc.com/srv_rpm_sla.html (9)
- <http://www.cs.hut.fi/~ado/rp/rp.html> (10)

15 In principle, therefore, in additive construction methods, a thin layer of material is in each case deposited on a surface, either over the whole surface as in laser sintering or stereolithography, or, as in the thermojet method, already in the contour of a cut of the otoplastic or of its shell under construction.

20 The desired cut shape is then stabilized and solidified.

25 Once a layer has been solidified, a new layer is deposited over this, as has been described, and this new layer is in turn solidified and connected to the already solidified layer lying below it. The otoplastic or its shell is thus constructed layer by layer by additive layer-by-layer application.

30 For industrial production, it is preferable not just for the cutting layer of one individual otoplastic or otoplastic shell to be deposited and solidified in each case, but for a plurality to be deposited and solidified simultaneously per individual. In laser sintering, for example, the one laser, normally under mirror control, successively solidifies the cutting layers of a plurality of otoplastics or their shells, before all the solidified cutting layers are lowered in unison. Then, after a new layer of powder has been

deposited over all the already solidified and lowered cutting layers, the plurality of further cutting layers are formed in turn. Despite this parallel production, the respective otoplastics or their shells are produced
5 individually by digital control.

In this case, in order to solidify the plurality of cutting layers, a single laser beam is used and/or several beams are operated and controlled in parallel.

10 In an alternative to this procedure, a cutting layer is solidified with one laser, while at the same time the layer of powder is being deposited for the formation of a further otoplastic or otoplastic shell. Thereafter, the
15 same laser will solidify the prepared layer of powder according to the cutting layer for the next otoplastic, while the previously solidified layer is lowered and a new layer of powder is deposited there. The laser then operates intermittently between two or more otoplastics or
20 otoplastics shells under construction, and so the idle time of the laser occasioned by the deposition of powder for the formation of one of the shells is exploited for solidification of a cutting layer of another otoplastic under construction.

25 Fig. 1 shows, in a diagrammatic view, how, in one embodiment, a plurality of otoplastics or their shells are produced industrially in a parallel process by means of laser sintering or laser lithography or stereolithography.
30 The laser with control unit 5 and beam 3 is mounted above the material bed 1 for powder or liquid medium. At position 1, it solidifies the layer S_1 of a first otoplastic or its shell, controlled by the first individual set of data D_1 . Thereafter, it is displaced on
35 a displacement device 7 to a second position where, with the individual set of data D_2 , it prepares the layer S_2 according to a further individual contour. Of course, a plurality of the lasers can be displaced as a unit and in each case several individual

otoplastics layers are prepared simultaneously. It is only when the lasers 5 provided have prepared the respective individual layers at all the intended positions that a new layer of powder is deposited, in 5 the case of laser sintering, by the powder delivery means represented in general at 9, whereas in laser lithography and stereolithography (not shown) the solidified layers S are lowered in the liquid bed.

10 According to Fig. 2, layers of individual otoplastics or their shells are solidified simultaneously on one or more liquid or powder beds 1 by a plurality of lasers 5 which are controlled individually and simultaneously. Once again, after this solidification phase has been 15 completed and after the lasers have been stopped, the powder delivery unit 9 deposits a new layer of powder, whereas, in the case of laser lithography or stereolithography, the layers which have just solidified, or already solidified structures, are 20 lowered in the liquid bed.

According to Fig. 3, the laser 5 solidifies the layer S₁ on a powder or liquid bed 1a and is then transferred (broken line) to the bed 1b, so that, during the 25 solidification phase at the bed 1a, the powder application device 9b removes powder from above a previously solidified layer S₁, or, in laser lithography or stereolithography, the layer S₁ is lowered. It is only when the laser 5 is active at the bed 1b that the 30 powder delivery device 9a deposits a new layer of powder over the layer S₁ which has just solidified at the bed 1a, or the layer S₁ is lowered in the liquid bed 1a.

35 When using the thermojet methods, and to similarly increase productivity, cutting layers of more than one otoplasty or its shell are deposited simultaneously, in practice through one application head or, in parallel, through several in one go.

2000272658 20 Mar 2006

- 15 -

By means of the method described, it is possible to obtain extremely complex shapes of otoplastics or their shells, specifically as regards both their outer shape, 5 with individual adaptation to the application area, and also, in the case of a shell, as regards their inner shape. Overhangs and inward and outward protrusions can be readily achieved.

10 Moreover, materials for additive construction methods are known which can be shaped to give a rubber-elastic and yet dimensionally stable shell, which, if so desired, can be given local differences and even an extremely thin wall and yet remain resistant to 15 tearing.

In a presently preferred embodiment, the digitization of the individual application area, in particular the application area for a hearing device, in particular an 20 in-the-ear hearing device, is undertaken in a specialized institute, in the latter case by an audiologist. The individual shape recorded there as digital 3-D information is, particularly in connection with hearing devices, sent to a production center, 25 either by transfer of a data carrier or via an Internet link, etc. The otoplastic or its shell, in the present case the shell of the in-the-ear hearing device, is shaped individually at the production center, in particular using the abovementioned methods. The 30 fitting of the hearing device with the functional component groups is preferably also carried out there.

On account of the fact that, as has been mentioned, the thermoplastic materials used generally lead to a 35 relatively elastic, conformable outer shape, the shaping with respect to pressure points in otoplastics or their shells is also much less critical than was hitherto the case, which is of huge importance in particular for in-the-ear otoplastics. Thus, in-the-ear

otoplastics, for example as ear protectors, headphones, devices protecting against water, but in particular also for in-the-ear hearing devices, can be used similarly to rubber-elastic plugs, and their surface conforms optimally 5 to the application area, i.e. the auditory canal. One or more ventilation channels can be easily incorporated in the in-the-ear otoplastic so that, with the resulting and possibly relatively tight fit of the otoplastic in the auditory canal, it is possible to guarantee unimpaired 10 ventilation as far as the eardrum. The individual 3-D data from the application area can also be used during production to optimize the interior of the otoplastic and utilize this optimally, including individually with respect to the individual array of components which this 15 interior is possibly intended to receive, as in the case of a hearing device.

Particularly, in the case of otoplastics in the form of hearing devices, centralized production of their shells 20 permits central storing and administration of individual data, both with respect to the individual application area and also to the individual functional parts and their settings. If, for whatever reasons, a shell has to be replaced, it can be newly prepared without any problem by 25 calling up the individual sets of data, without the need for laborious readaptation, as has hitherto been the case.

On account of the fact that the methods described for the production of otoplastics are known and described in the 30 literature, albeit only for prototyping, it is not necessary at this point to reproduce all the technical details of these methods.

At any rate, taking these technologies previously known 35 from prototyping and using them for industrial and commercially feasible production of otoplastics surprisingly affords very considerable advantages, specifically for reasons which in themselves are not critical in prototyping, for example the elasticity of the

thermoplastic materials which can be used, the possibility of individual construction with extremely thin walls, etc.

In summary, by using said additive construction methods

5 for the production of otoplastics or their shells, it is possible to integrate various functional elements on them, which functional elements are prepared on computer during the planning of the otoplastics and which are generated with the construction of the otoplastic or its shell.

10 Hitherto, functional elements of this kind were typically fitted into or onto the otoplastic or its shell only after the latter had been produced, which is recognizable from material interfaces or from lack of homogeneity of the material at the connection points.

15 For said otoplastics, in particular those with electronic inserts, for example for hearing devices, and in particular for in-the-ear hearing devices, examples of elements which can be fitted directly into the otoplastic 20 shell by the proposed technique are: seats and holders for structural parts, earwax protection systems, ventilation channels in the case of in-the-ear otoplastics, and support elements which hold the in-the-ear otoplastic in the auditory canal, for example channel locks.

25 Fig. 4 shows, in diagrammatic form, an example of an in-the-ear otoplastic 11, for example an in-the-ear hearing device in which the acoustic outlet 13 to the eardrum is protected by means of an earwax protection cap 15. This 30 protection cap 15 has hitherto been produced as a separate part and attached to the shell 16 of the otoplastic 11 and fixed, for example, by adhesion or welding. As Fig. 5 shows in the same view, by using said additive construction methods, the earwax protection cap 15a is 35 integrated directly on the shell

16a of the otherwise identical in-the-ear otoplastic
11a. At the connection points indicated schematically
at P in Fig. 4, where in conventional methods there is
necessarily a lack of homogeneity of the material or a
5 material interface, there are no such interfaces
according to Fig. 5, and the material of the shell 16a
merges homogeneously into that of the earwax protection
cap 15a.

10 This is just an example of how known earwax protection
systems and other functional elements can be integrally
incorporated by using said production method.

15 A number of specific, novel otoplastics are presented
below:

2. In-the-ear otoplastics with ventilation

20 In the case of in-the-ear otoplastics, in particular
in-the-ear hearing devices, it is known to provide a
ventilation groove on the outside, as is shown
diagrammatically in Fig. 6. Such ventilation grooves,
as they are used today, are not by any means optimal,
and for different reasons:

25 - As regards acoustics: The ventilation grooves
known today are not really adapted to the
particular acoustic requirements. Thus, in active
30 otoplastics, for example in-the-ear hearing
devices, they can do little to help effectively
solve the problems of feedback from electro-
mechanical output transducer to acoustic/electric
input transducer. In the case of passive in-the-
ear otoplastics too, for example ear protectors,
35 they are not able to support the desired
protective action and simultaneously maintain the
desired ventilation properties.

- Earwax sensitivity: The ventilation grooves used

2000272658 20 Mar 2006

- 19 -

today in the outer surfaces of in-the-ear otoplastics are extremely sensitive to formation of earwax. Depending on its intensity, the earwax formation can quickly impair the ventilation properties of the 5 ventilation grooves provided, if not completely obstruct them

Ventilation measures are proposed below for in-the-ear otoplastics, in particular for in-the-ear hearing devices 10 or ear protectors, but also for otoplastics which extend only partially into the auditory canal, for example headphones, these ventilation measures at least partly avoiding the abovementioned disadvantages of known measures.

15 In this connection, a distinction is made below between ventilation systems which

- are groove-like and at least partially open toward the wall of the auditory canal,

20

- are completely closed off from the wall of the auditory canal.

2a) Ventilation systems open toward the wall of the
auditory canal

In Figures 7(a) through (f), which are perspective diagrammatic views of cutouts of the outer wall 18 of an in-the-ear otoplastic which bears against the auditory 30 canal, novel ventilation groove profiles are shown in cutaway view. According to Fig. 7(a), the profile of the ventilation groove 20a is rectangular or square with predetermined and exactly observed dimensional relationships. According to Fig. 7(b), the profile of the 35 ventilation groove 20b is in the shape of a sector of a circle or ellipse, again with an exactly predetermined cross-sectional edge curve 21b. By exact determination and execution of the cross-sectional shape of the ventilation grooves 20 provided, it is

already possible to a certain extent to predict and influence the acoustic transmission conditions along this groove, upon bearing against the inner wall of the auditory canal. Of course, the acoustic behavior also 5 depends on the length by which the groove 20 extends along the outer wall 18 of the otoplasty.

Figures 7(c) through (f) show further ventilation groove profiles which are additionally protected 10 against earwax. The profile of the groove 20c according to Fig. 7(c) is T-shaped.

Regarding the wide cross-sectional surface of the groove at 27c, the inwardly jutting portions 23c and 15 the resulting constriction 25c, toward the wall of the auditory canal, already give a considerable protective action against earwax. Even if earwax penetrates into the constriction 25c and hardens there, this does not cause any real constriction or even blockage of the 20 ventilation groove, which now becomes an enclosed ventilation channel. In Figures 7(d) through 7(f), which follow the principle of Fig. 7(c) already explained, the cross-sectional shape of the wide groove portion 27d through 27f is designed with different 25 shapes: in Fig. 7(d) in the shape of a sector of a circle or the sector of an ellipse, in Fig. 7(e) in the shape of a triangle, and in Fig. 7(f) in the shape of a circle or ellipse.

30 By specific configuration of the cross-sectional surface of the groove, shown simply by way of example in Figures 7(a) through 7(f), it is already possible to achieve a considerably improved effect, both with respect to the acoustic properties and also with 35 respect to the protection against earwax, compared to conventional ventilation grooves which have more or less random profiles. In this case, the profiles are first computer-modeled, taking into consideration said protection against earwax and the acoustic effect, and

are integrated exactly into the finished otoplastics. The additive construction methods discussed above are very particularly suitable in this respect. In order now to further optimize the acoustic effect of the ventilation 5 groove, a very wide variety of acoustic impedances can be obtained along the length of the novel ventilation grooves, which results, for example as in Fig. 8, in ventilation grooves 29 defining different profiles along their longitudinal extent, which in Fig. 8 are made up of 10 profiles according to Fig. 7.

Like the configuring of passive electrical networks, the acoustic transmission behaviour of the groove which bears on the auditory canal can thus be computer-modelled and 15 checked and then integrated into the in-the-ear otoplastic or its shell.

More areas protected against earwax can be specifically provided on exposed portions for this purpose, as is 20 indicated at A in Fig. 8.

Moreover, with a view to optimizing the acoustic conditions, it may be entirely desirable for the provided ventilation grooves to be made longer than is permitted in 25 principle by the longitudinal extent of a given in-the-ear otoplastic. As is shown in Fig. 9, this is achieved by the fact that such grooves 31, designed in the manner shown for example in Figures 7 and 8, are guided in predetermined curves along the surface of the otoplastic, 30 for example as is shown in Fig. 9, in practice as grooves running round the otoplastic like a thread. Further optimization flexibility is achieved by the fact that not just one ventilation groove, but a plurality are guided across the surface of the otoplastic, as is shown 35 diagrammatically in Fig. 10. The high degree of flexibility of the groove design means that, depending on the application area in the auditory canal, differently dimensioned ventilation grooves

specifically optimized in each case with respect to earwax protection and acoustic transmission behavior can be formed along the surface of the otoplasty.

5 2b) Ventilation systems with fully integrated channels

This alternative embodiment of the novel ventilation systems is based on ventilation channels which are fully integrated into the otoplastic, at least in some 10 areas, and closed off from the wall of the auditory canal. This system is explained below on the basis of its design on an otoplastic shell. It should be stressed, however, that when no other units are to be integrated on the otoplastic in question and the latter 15 is designed as a solid otoplastic, the following explanations naturally relate also to a channel passage in any form right through said solid otoplasty.

Fig. 11 shows, in analogy to Fig. 7, different cross-20 sectional shapes and surface relationships of the proposed ventilation channels 33a through 33e. According to Fig. 11(a), the ventilation channel 33a built into the otoplasty shell 35a has a rectangular or square cross-sectional shape. In the embodiment 25 according to Fig. 11(b), it has, at 35b, a channel cross-sectional shape in the form of a sector of a circle or sector of an ellipse. In the embodiment according to Fig. 11(c), the ventilation channel 33c provided has a circular or elliptic cross section, and, 30 in the embodiment according to Fig. 11(d), it has a triangular cross-sectional shape.

In the embodiment according to Fig. 11(e), the otoplasty shell has a complex inner shape, for example 35 a retention part 37 integrated thereon. For optimal utilization of space, the ventilation channel 35e provided here is designed with a cross-sectional shape which also makes use of complex shapes of the otoplasty shell. Accordingly, its cross-sectional shape extends

in a complicated manner partially into the retention strip 37 built onto the shell 35e.

Looking back at the variant embodiment in accordance with section 2a), it should be noted that these complex cross-sectional shapes optimally utilizing the available space can also be realized on ventilation grooves which are open toward the auditory canal, and, conversely, channel passages as shown for open grooves in Figures 9 and 10 can be realized on closed ventilation channels.

Fig. 12 shows, finally, an alternative embodiment of a fully integrated ventilation channel 39 which has different cross-sectional shapes and/or cross-sectional dimensions along its longitudinal extent, as is represented for example in the otoplasty shell 41, in which case the acoustic transmission behavior can be optimized in the sense of executing different acoustic impedance elements. In this connection, and with reference to subsequent section 5), it may also be noted that, because of the possibility of realizing complex acoustic impedance conditions, ventilation channels, in particular of the closed configuration presented in this section, can at the same time be used, at least in some sections, as acoustic lead sections on the output side of active electromechanical transducers, for example on the output side of microphones, for example in in-the-ear hearing devices.

Figures 13 and 14, in analogy to Figures 9 and 10, show, on the one hand, how the integrated ventilation channels discussed in this section are lengthened on the respective otoplastic 43 by appropriate guiding of their course, and, on the other hand, how two and more of said channels, if appropriate with different and/or varying channel cross sections, in analogy to Fig. 12, are integrated on the otoplastic.

The possibilities which are presented in sections 2a) and 2b), and which can also be combined in any desired manner, afford the skilled person a countless number of design variants of the novel ventilation systems and in particular, because of the different independently dimensionable parameters, a large degree of freedom in creating optimum earwax protection and optimum acoustic transmission conditions for the respective individual otoplastic. In all the embodiment variants, the specific individual configuration of the system is preferably calculated or computer-modelled, taking the stated requirements into account. The individual otoplastic is then made. Once again, the production method with the additive construction principle, which is known from prototyping and which is explained in the introduction, is suitable for this purpose, which method is then controlled with the optimized model result.

3. Otoplastics with optimized shape stability

This section deals with providing novel otoplastics which are optimally adapted to the dynamics of the application areas. It is known, for example, that conventional in-the-ear otoplastics are unable to accommodate the relatively great dynamics of the auditory canal, for example during chewing, because their shape stability is substantially identical in all parts. Similarly, for example, the acoustic leads between hearing devices worn outside the ear, and the auditory canal are unable to freely follow the dynamics of the application area. The same problem arises with in-the-ear otoplastics, to a slightly lesser extent, and also with ear protectors, headphones, inserts protecting against water, etc. In particular, their intrinsic function, for example their protective action, in this case partially deteriorates if the stated dynamics of the application area are increasingly taken into consideration. By way of example, reference may be made in this connection to

known ear protectors which are made of elastically deformable plastics and which indeed take considerable account of the stated dynamics of the application area, but at the expense of their acoustic transmission behavior.

Fig. 15 shows a diagrammatic view of a longitudinal section of an in-the-earotoplastic, and Fig. 16 shows a diagrammatic cross-sectional view of a portion of this 10 otoplasty. The otoplastic, for example for receiving electronic components, has a shell 45 which is made, like a pair of tights, as a thin wall of elastic material. The shape stability of the shell skin, which is smooth on the outside in the illustrative embodiment 15 shown, is ensured, where so desired, by ribs 47 which are applied integrally on the inside of the shell and which are made of the same material as the shell skin.

Depending on the required dynamics of the in-the-ear 20 otoplasticon the one hand, in order for example to take account of the dynamics of the auditory canal, and the requirements in respect of the support and protection of built-in components, as in an in-the-ear hearing device, the course of the wall thickness of shell skin 25 45 and the density and configuration of the ribs 47 are calculated in advance, and the otoplastic is thereafter constructed according to the calculated data. Once again, the above-discussed production method using additive construction methods is outstandingly suitable 30 for this purpose. Of course, the design of the in-the-ear otoplasty just discussed can be readily combined with a ventilation system of the kind discussed with reference to Figures 7 through 14. In particular, the ribs provided to influence the shape stability or 35 bendability can also be designed with different cross-sectional profile in certain areas of the otoplasty, if appropriate also advancing from one cross section to the other in their longitudinal extent.

In the form of a perspective view, Fig. 17 shows purely by way of example and diagrammatically the design of the outer skin 45 with ribs 47 having varying cross-sectional surfaces along their longitudinal extent.

5

Instead of or in addition to the specific wall strengthening and the specific configuration of the bending and torsion behavior, in short of the shaping behavior of the in-the-ear otoplasty, it is possible, 10 as has been mentioned, in addition to the internal ribbing pattern as is shown in Figures 17 and 18, also to provide an external ribbing pattern. According to Figures 18 and 19, a pattern of ribs 51 is worked on the outer surface of the otoplasty 49, if appropriate 15 with different density, orientation and profile shape in different areas.

According to Fig. 19, this can be used for the 20 otoplastics in question here which have a hollow cavity, but also for otoplasties with no hollow cavity, that is to say, for example, with no electronic components, e.g. for ear protector devices and devices protecting against water. One such otoplastic is shown 25 diagrammatically in a cross-sectional view in Fig. 20.

Here, the interior 53 is made, for example, from 30 extremely compressible absorption material and is surrounded by a shape-giving skin shell 55 with rib pattern 57. Here, the "skin" 55 and the rib pattern 57 are integrally produced together. The production method 35 discussed in the introduction and using additive construction methods is once again suitable for this purpose. How far these additive construction methods will be able to be used, in the near future, on a workpiece with changing of the processed materials remains to be seen. Should this become possible, then 35 the way is clear, for example in the illustrative embodiment according to Fig. 20, to sequentially also construct the filler 53 at the same time as the shell skin 55 and the ribs 57 in respective construction

layers.

Looking back in particular to Figures 18 and 19, it will be seen that ventilation channels or free spaces 5 can at the same time be formed with the aid of the external ribbing pattern, as is shown purely schematically and by way of example by the path P.

Returning once more to Fig. 20, it is entirely 10 possible, if so required, and as is shown by broken line 57_i in Fig. 20, to provide an internal ribbing pattern 57_i on the shell skin 55 even if the in-the-ear otoplastics is filled with material, that is to say if it 15 is not intended to receive further components, such as electronic components. As is also shown by the broken line 59 in Fig. 20, otoplastics can also be created which indeed leave free a hollow cavity to receive 20 units such as electronic components, but in which the interspace, between such a hollow cavity 59, is designed specifically to the necessary volumes and shapes of the units additionally to be received, and the shell skin 55 is filled for example with a 25 resilient or sound-damping material, or components to be incorporated are surrounded by such a material as far as the shell skin 55.

The shell skin 55 or 45 according to Figures 15, 16 and 17 can be made entirely of electrically conductive material, by which means an electrical screening effect 30 is at the same time created for electronic components lying on the inside. This also applies, if appropriate, to the filling 53 according to Fig. 20.

Figures 15 through 20 have shown an example of an 35 otoplasty in the form of an in-the-ear otoplastics whose shell is shape-stabilized with ribs lying on the inside and/or outside, resulting in an extraordinarily light and deliberately formable structure. If necessary, this structure can of course also be used for otoplastics

worn outside the ear.

Fig. 21 shows a further alternative embodiment of an in-the-ear otoplastic which is deliberately bendable or compressible in one area. For this purpose, the shell 61 of an otoplastic, such as in particular the shell of an in-the-ear hearing device, has an undulated or creased configuration 63 at one or more predetermined regions where, in accordance with the particular requirements, it is bendable or compressible. Although Fig. 21 shows this measure on the basis of the shell of an in-the-ear otoplastic, it is entirely possible, if necessary, to provide this measure also for an otoplastic worn outside the ear. For this purpose, the production method discussed in the introduction is once again preferably used.

In this illustrative embodiment too, it is possible, as was explained with reference to Fig. 20, for the internal volume of the otoplastic to be filled with filler material in accordance with the requirements, and built-in components integrated therein can be embedded in such filler material, resulting in a higher degree of stability of the appliance and improved acoustic conditions.

25

4. Modular housing/built-in components

Particularly in the case of -in-the-ear hearing devices, the problem is that the application area, i.e. the auditory canal, changes its shape. This is obviously the case when a person is growing up. In adults too, however, the auditory canal changes, sometimes considerably, and in most cases in the sense of narrowing (e.g. what is called diver's ear).

35

In the case of in-the-ear hearing devices, the problem thus generally arises that, even if the components built into the hearing device could themselves be maintained over long periods of the user's life, for example with

only the transmission behaviour of the hearing device having to be readjusted to the particular hearing conditions, new hearing devices nevertheless have to be constantly designed, simply because of the fact that the 5 previous ones no longer fit satisfactorily into the auditory canal.

The measures discussed in section 3 already make it possible to improve this, on account of the fact that 10 automatic shape adjustment of the otoplastic to the changing application areas is thus permitted. In this section, further measures in this connection will be discussed, particularly with reference to in-the-ear otoplastics. However, it should be noted that also in the 15 case of otoplastics worn outside the ear, for example hearing devices worn outside the ear, this opens up the possibility of changing the "housing", and of doing so not only when this necessary for reasons of wearing comfort, but also as and when desired, for example in order to 20 change the esthetic appearance of such hearing devices worn outside the ear.

Fig. 22 shows a diagrammatic view of an in-the-ear otoplastic 65 in longitudinal section, the design of the 25 interior 67 corresponding substantially to the shape of the electronic module 69 to be received, which is shown diagrammatically in Fig. 23. The otoplastic 65 if made of rubber-elastic material and, as is shown in Fig. 23, can be pushed on over the electronic modules 69. The shaping 30 of the interior 67 is such that the module or the plurality of modules to be received are positioned and held directly with a form fit by the otoplastic 65. By means of this measure, it is easily possible to provide one and the same electronic modules 69 with different 35 otoplastics 65, for example in order thereby to take account of the changing shape of the auditory canal in a growing child. The otoplastic in practice becomes an easily exchangeable throw-away accessory for the in-the-ear hearing device. The otoplastic 65 can be easily

changed not only to take account of changing conditions in the application area, namely the auditory canal, but also simply for reasons of soiling. This concept can even be used, if appropriate, for example in cases of inflammation 5 of the auditory canal, to apply medicines, for example by application of medicines to the outer surface of the otoplastic, or at least in order to use sterilized otoplastics at regular intervals.

10 The concept shown with reference to Figures 22 and 23 can of course be combined with the concepts set out in sections 2) and 3), and the otoplastic 65 is preferably produced using the production method discussed in section 1), which permits the design of highly complex internal 15 shapes for receiving the module 69 in a manner free from play and vibration.

As can be seen from Figures 22 and 23, the phase plate 1 otherwise provided in conventional in-the-ear hearing 20 devices is built integrally with the otoplastic, for example as part of the module holder. The same applies to other holders and receiving seats for electronic components of the hearing device. If the layer-by-layer construction method set out in section 1) is carried out, 25 as is indicated by broken lines in Fig. 22 and in the direction shown by the arrow AB, then it ought to be easily possible to produce the otoplastic from different materials in said construction direction AB, according to the requirements in the respective areas. This applies 30 also to the otoplastics set out in sections 2) and 3), and to those discussed in sections 5), 6) and 7) below. Taking the example in Fig. 22, it is thus quite possible 35 to produce the area 65_a using rubber-elastic material, and by contrast the outlet area 65_b using more shape-stable material.

Fig. 24 shows a further embodiment of an otoplastic,

again taking the example of an in-the-ear hearing device, which allows the internal built-in components to be easily and quickly changed. In principle it is proposed here that the otoplasty shell of an in-the-ear otoplastic with built-in components is designed in a plurality of parts which can be fitted together, as is shown in Fig. 24. By means of quick-acting couplings, such as snap-in couplings, catches or even bayonet-like couplings, it is possible for housing parts 73a and 73b of the in-the-ear otoplastic to be quickly separated from one another, for the built-in components such as electronic modules to be removed, and for these to be inserted again into a new shell, if appropriate with different outer shape, or in principle into a new shell even when this is necessary, for example, for cleaning reasons, sterility reasons, etc. If provision is made for the already used shell to be disposed of, it is easily possible to design the connections of the shell parts in such a way that the shell can only be opened by destroying it, for example by providing locking members, such as catches, which are not accessible from the outside and by the shell being cut open in order to remove them.

25 This embodiment can of course also be combined with the alternative embodiments described above and those still to be described.

30 5. Integration of acoustic leads in otoplastics and their shells

In hearing devices worn outside the ear, and also in in-the-ear hearing devices, it is customary for the provided acoustic/electric transducers or electro-acoustic output transducers to be coupled, on the input side or output side, to the environment of the hearing device via acoustic leads assembled as independent parts, namely tube-like structures, or, in particular with acoustic/electric transducers on the input side,

to place these with their receiving surface immediately in the area of the surfaces of the hearing device, if appropriate separated from the environment only by small hollow spaces and protective measures.

5

In the design of such hearing devices, there is therefore a relatively large join where the actual transducers are to be provided in the hearing device and where the actual coupling openings to the environment are to be provided on said hearing device. As regards the arrangement of coupling openings to the environment and the arrangement of said transducers inside the hearing device, it would be highly desirable to have the greatest possible design freedom.

10

15 This is in principle achieved by the fact that said acoustic leads - at the input side of acoustic/electric transducers or output side of electric/acoustic transducers - are integrated into the otoplasty or into 20 the wall of otoplasty shells.

25

This is shown purely schematically in Fig. 25. A transducer module 75 has an acoustic input/output 77. The shell 79 of the otoplastic of an in-the-ear hearing device, or of a hearing device worn outside the ear, or of headphones, has an acoustic lead 81 integrated within it. This lies at least partially within the wall of the otoplastic shell 79, as is shown in Fig. 25. The respective acoustic impedance of the acoustic lead 81 30 is preferably adapted by means of acoustic stub lines or line sections 83. This concept, taking the example of hearing devices worn outside the ear, makes it possible to provide acoustic input openings 85 staggered along the hearing device and at desired 35 locations, and to couple said inlet openings 85 to the provided acoustic/electric transducers 91 via acoustic leads 89 integrated in the otoplasty or its shell 87, and largely irrespective of where these transducers 91 are built into the hearing device. Thus, Fig. 26 shows,

only by way of example, how two transducers are centralized into one module and their inputs are connected to the desired receiving openings 85 via said path of acoustic leads 89. In the light of figures 25 and 26 and 5 the statements in section 2) regarding the novel ventilation systems, it will be evident that it is quite possible to use ventilation channels also as acoustic lead channels, especially if, as is shown diagrammatically in Fig. 25, the acoustic impedance conditions are 10 specifically configured by means of acoustic adapter members 83.

6. Identification of otoplastics

15 In the production of otoplastics, in particular of in-the-ear otoplastics, each one is individually adapted to its respective wearer. For this reason, it would be highly desirable to identify each finished otoplastic, as mentioned in particular each in-the-ear otoplastic, and 20 very particularly each in-the-ear hearing device. It is therefore proposed to provide an individual identification in the otoplastic or its shell by means of indentations and/or embossings, which identification, in addition to giving the individual orderer, for example manufacturer, 25 can contain the product serial number, left/right application, etc. Such an identification is created in a much preferred manner during the production of the otoplastic using the removal method described under 1). This ensures that any mix-up of the otoplastics is ruled 30 out starting from the time of production. This is particularly important in the subsequent and possibly automatic fitting with further modules, for example the fitting of in-the-ear hearing devices.

This measure can be of course combined with one or more of 35 the aspects described under sections 2) through 5).

7. Optimization of otoplastics with respect to the

dynamics of the application area

When molding otoplastics for in-the-ear application, for example for in-the-ear hearing devices, it is at 5 present customary to take an impression of the auditory canal, for example using silicone. If one now considers the quite substantial dynamics of movement of the auditory canal, for example during chewing, it is evident that basing the shape of the in-the-ear 10 otoplastic on an impression, which corresponds in practice to a momentary record, can scarcely yield a result which will be entirely satisfactory in use. As is now shown in Fig. 27, which is a simplified functional block diagram/signal flow chart, a mold is 15 taken from the dynamic application area, represented by the block 93, at several of the positions corresponding to the dynamics occurring in practice, or the dynamics of the application area are recorded per se in the manner of a film. The resulting data sets are stored in 20 a memory unit 95. Also in the conventional procedure with impression-taking, this can be readily done by taking impressions, corresponding to the practical dynamics, of the application area at two or more positions.

25

These impressions are then scanned and the respective digital data sets are stored in the memory unit 95. As a further possibility, the dynamics of the application area can be recorded by X-ray, for example.

30

Thus, depending on the accuracy which is to be achieved, a number of "images" or even in practice a "film" of the pattern of movement of the application area in question are recorded. The data recorded in the 35 memory unit 95 are then fed to a computer unit 97. At its output, the computer unit 97 controls the production process 99 for the otoplasty. If, for example, as is still customary today, in-the-ear otoplastics are produced with a relatively hard shell,

the computer unit 97 uses the dynamics data stored in the memory unit 95 and, if appropriate, further production parameters as shown schematically at K, to calculate the best matching shape for the otoplastic, so that optimum 5 wearing comfort in everyday use is achieved while maintaining its functionality. If the otoplastic to be produced is realized using the principle set out in section 3), the computer unit 97 determines which 10 otoplastic areas are to be configured and how in terms of their flexibility, bendability, compressibility, etc. At its output, the computer unit 97, as has been stated, controls the production process 99, preferably in this case the production process as was set out in section 1) as the preferred process.

15

It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any 20 other country.

In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary 25 implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. An otoplastic with integrated module and a shell surrounding the latter, and wherein the shell has at least one rubber-elastic portion with an insertion/removal opening for the module.
5
2. The otoplastic as claimed in claim 1, wherein the shell is made of rubber-elastic material.
10
3. The otoplastic as claimed in claim 1 or 2, wherein the shell engages around the module at least partially and at least with a form-fit.
15
4. The otoplastic as claimed in any one of claims 1 through 3, wherein the rubber-elastic portion engages around the module at least partially and at least with a form-fit.
20
5. The otoplastic as claimed in any one of claims 1 through 4, wherein a greatest diameter of a surface of the opening on the rubber-elastic portion is smaller than a greatest diameter extent of the module, viewed in a plane perpendicular to a direction of insertion of the module into the shell.
25
6. The otoplastic as claimed in any one of claims 1 through 5, wherein the module consists of at least two subsidiary modules.
30
7. The otoplastic as claimed in any one of claims 1 through 6, wherein the module comprises at least one battery and one electronic module.
35
8. The otoplastic as claimed in any one of claims 1 through 7, wherein the otoplastic is either an in-the-ear hearing device, or a hearing device worn

outside the ear.

9. A method for adapting an otoplastic conceived for an individual to changed needs of said individual with respect to characteristics of the outer surface of said otoplastic comprising

- providing said otoplastic with a shell and at least one unit within said shell;
- removing said at least one unit from said shell;
- providing an adapted shell with an outer surface characteristic fulfilling actual needs of said individual and having an insertion opening within a section of said shell;
- introducing said at least one unit through said insertion opening into said shell and collapsing said section with said insertion opening, thereby securing said unit within said shell.

10. The method of claim 9, further comprising providing said adapted shell with said section being of elastic material.

11. The method of claim 9, wherein said otoplastic is an in-the-ear hearing device.

12. The method of claim 9, wherein said otoplastic is an outside-the-ear hearing device.

13. The method of claim 9, wherein said otoplastic is a hearing aid.

14. The method of claim 9, wherein said actual needs are hygienic needs.

2000272658 20 Mar 2006

- 38 -

15. The method of claim 9, wherein said actual needs are medical needs.

5 16. The method of claim 9, wherein said actual needs are aesthetic needs.

10 17. The method of claim 9, wherein said actual needs are caused by geometric characteristics of individual's application areas for said otoplastic.

18. The method of claim 9, wherein said otoplastic has more than one unit.

15 19. The method of claim 18, further comprising removing more than one of said units and introducing more than one of said units into said adapted shell.

20 20. The method of claim 9, wherein the adapted shell is a sterilized shell or an adapted shell that will provide medicines to an area of application of the adapted shell to a wearer.

21. An otoplastic as claimed in any one of claims 1 to 8, 25 and substantially as herein described with reference to the accompanying drawings.

22. The method of any one of claims 9 to 20, and 30 substantially as herein described with reference to the accompanying drawings.

Dated this 20th day of March 2006

Phonak AG

By their Patent Attorneys

35 GRIFFITH HACK
Fellows Institute of Patent and
Trade Mark Attorneys of Australia

H:\krystalm\keep\Speci\2000272658.doc 20/03/06

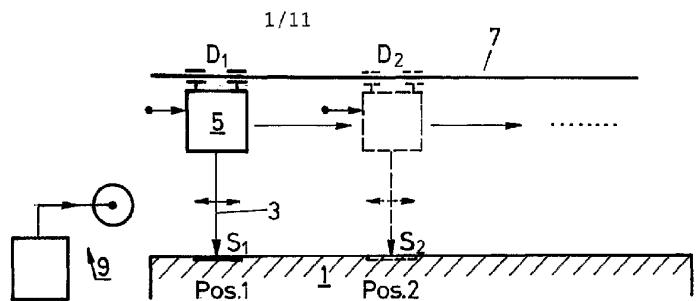


FIG.1

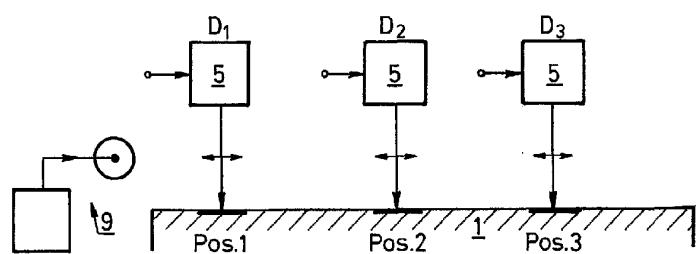


FIG.2

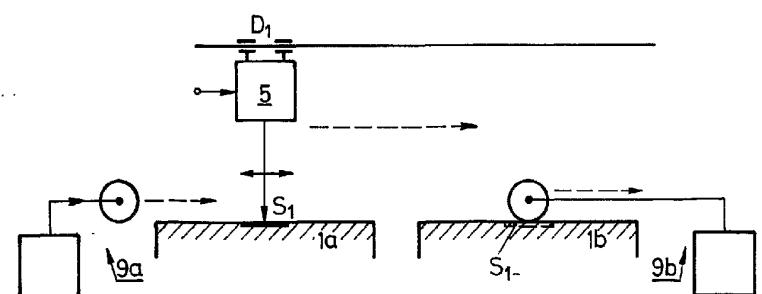


FIG.3

ERSATZBLATT (REGEL 26)

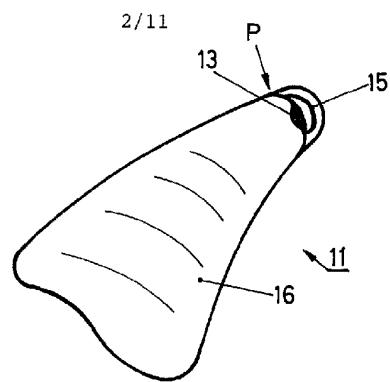


FIG. 4

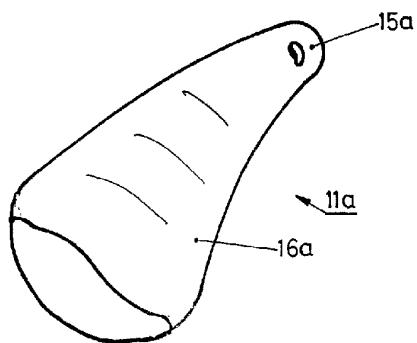
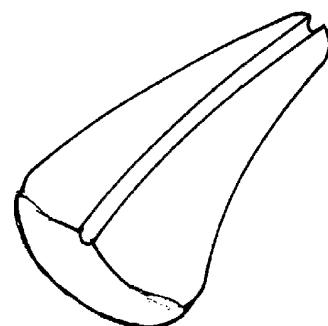



FIG. 5

ERSATZBLATT (REGEL 26)

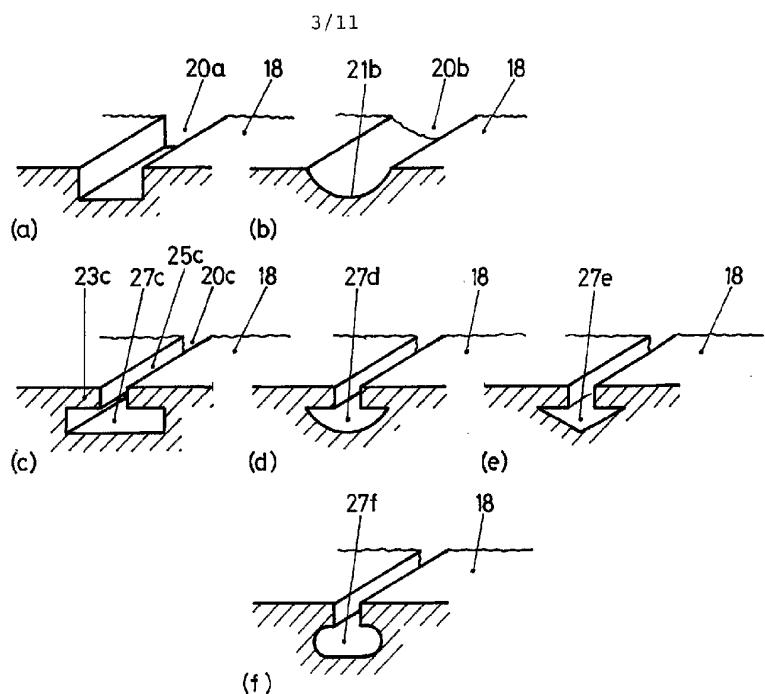


FIG.7

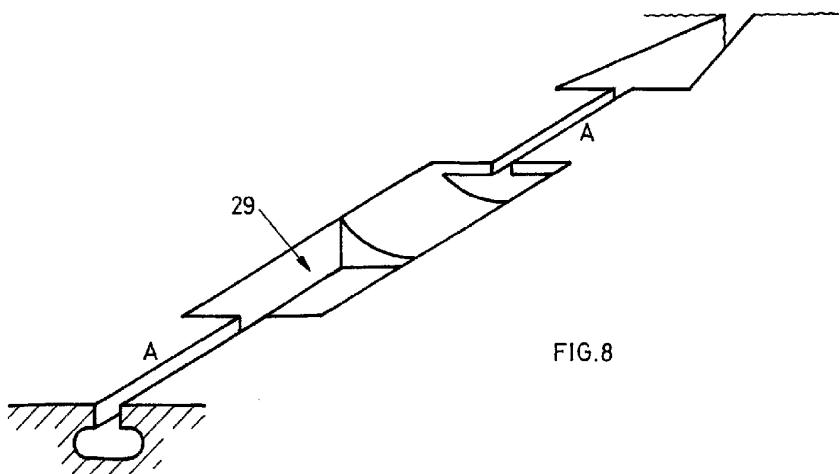


FIG.8

ERSATZBLATT (REGEL 26)

4/11

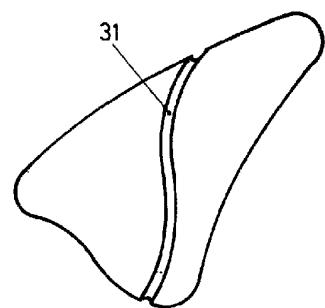


FIG.9

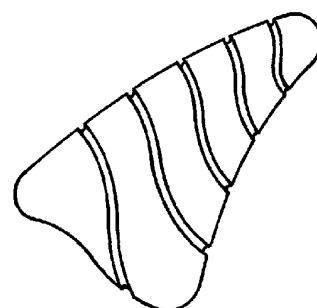


FIG.10

ERSATZBLATT (REGEL 26)

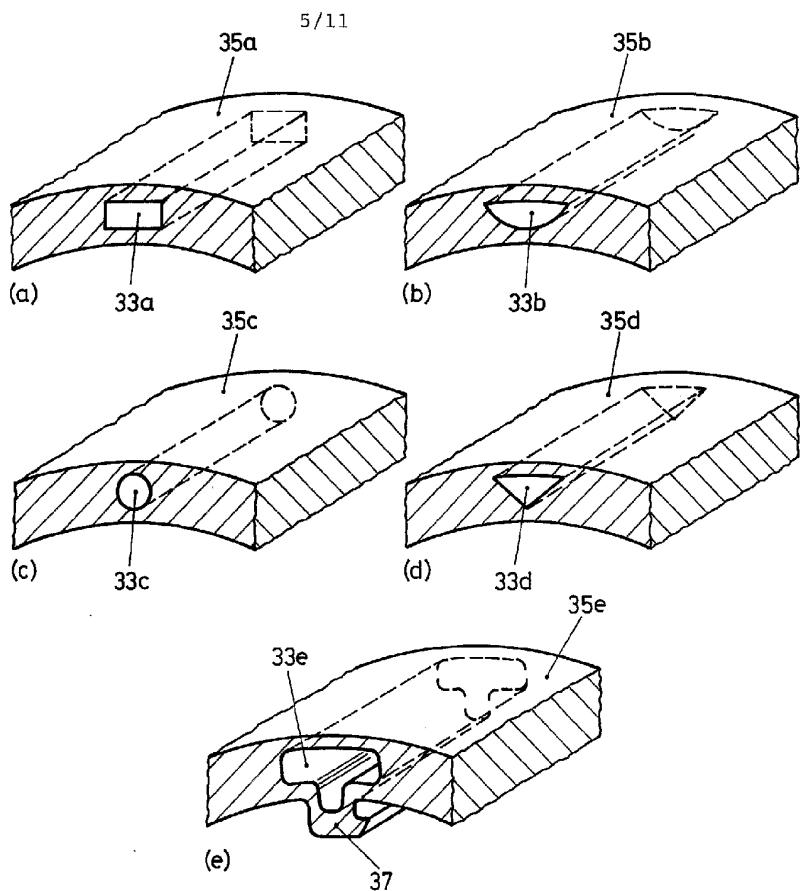


FIG.11

ERSATZBLATT (REGEL 26)

6/11

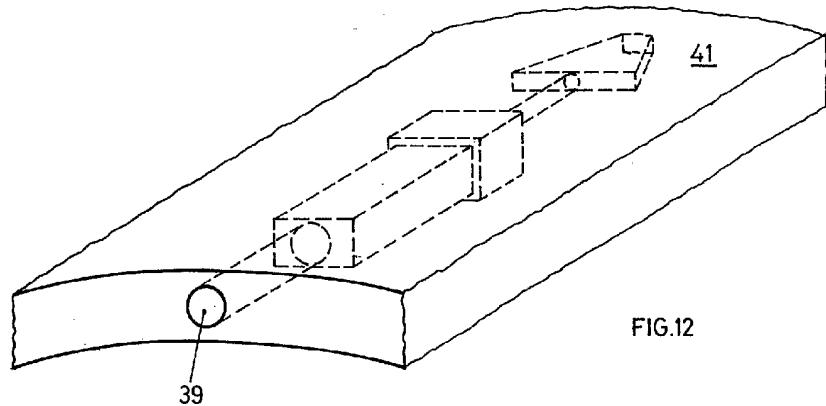


FIG.12

FIG.13

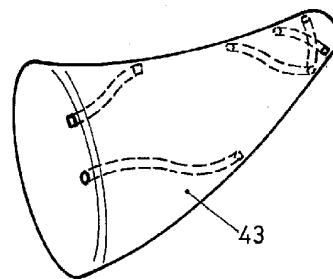


FIG.14

ERSATZBLATT (REGEL 26)

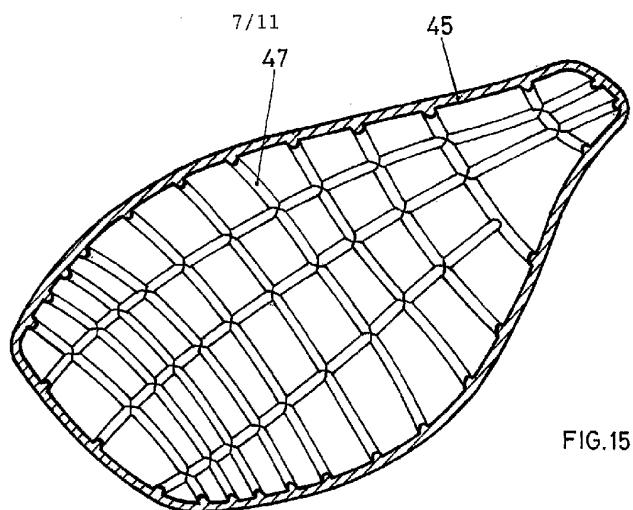


FIG.15

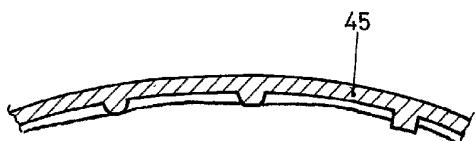


FIG.16

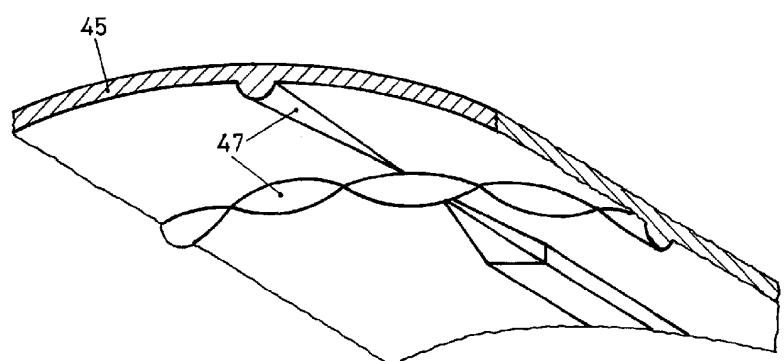
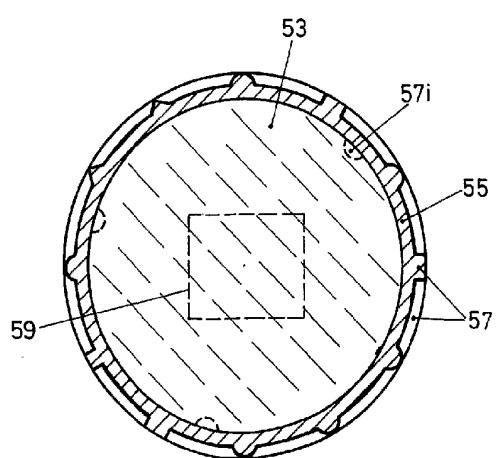
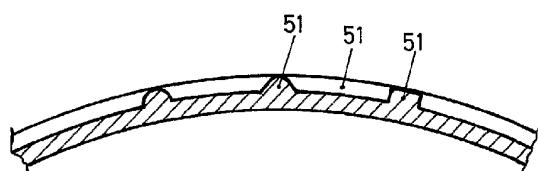
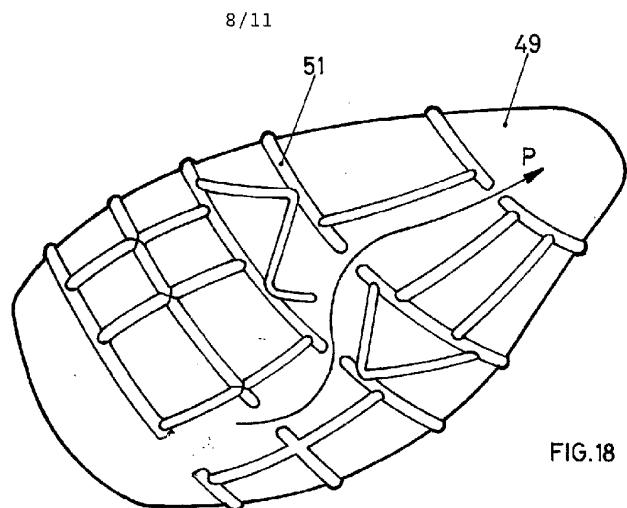





FIG.17

ERSATZBLATT (REGEL 26)

ERSATZBLATT (REGEL 26)

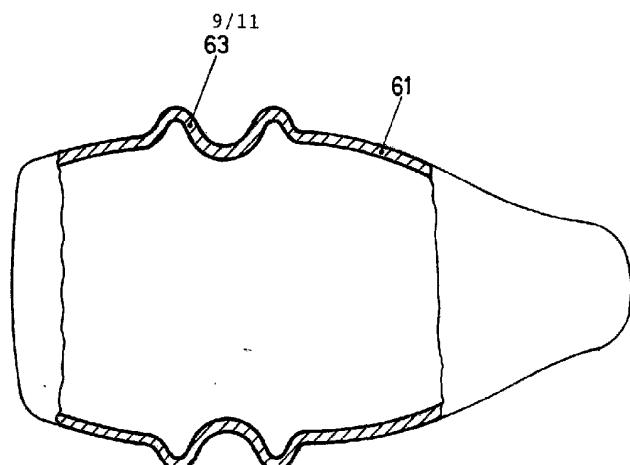


FIG.21

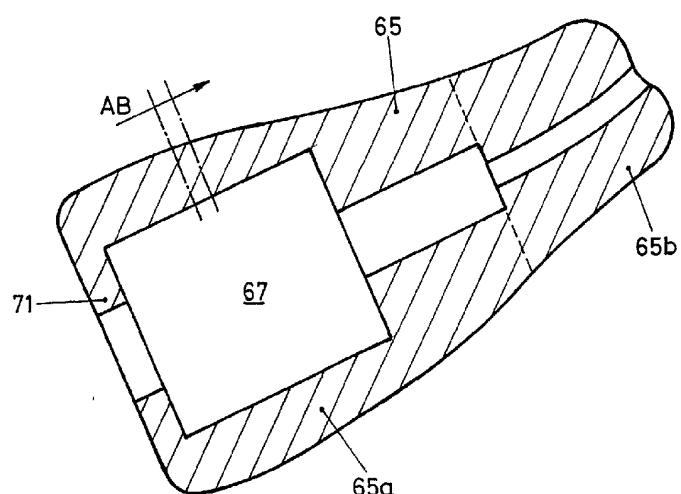


FIG.22

ERSATZBLATT (REGEL 26)

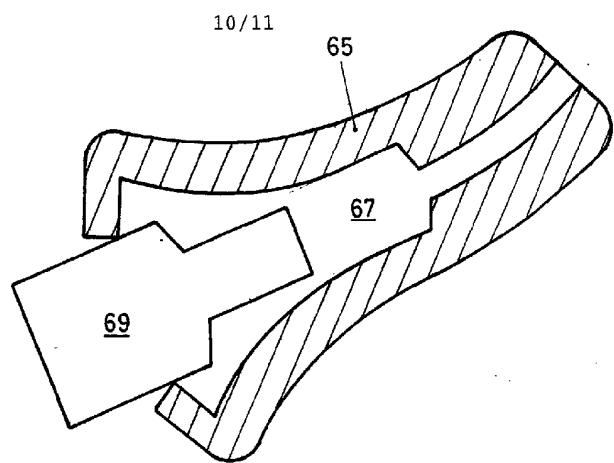


FIG. 23

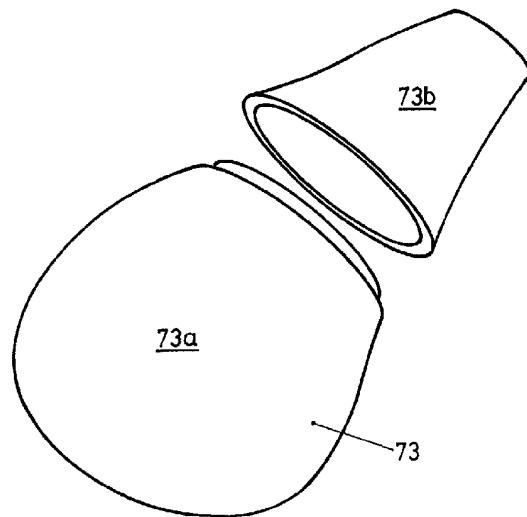


FIG. 24

ERSATZBLATT (REGEL 26)

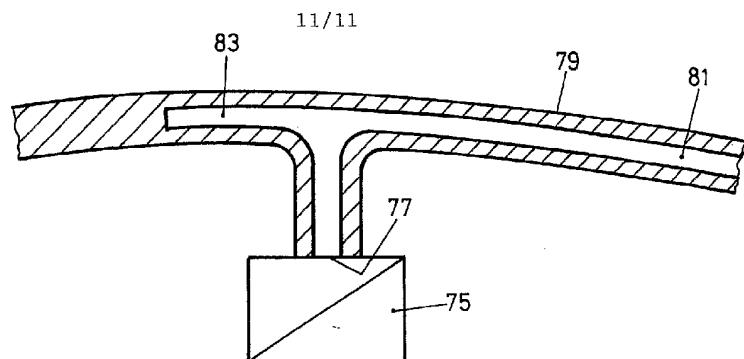


FIG.25

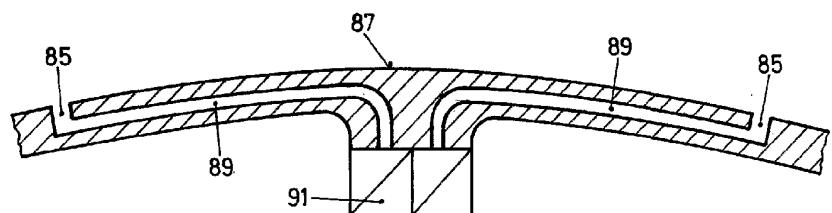


FIG.26

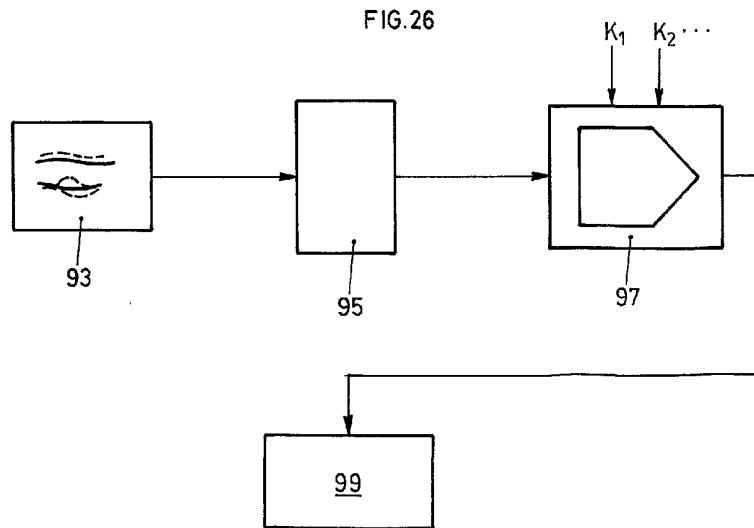


FIG.27

ERSATZBLATT (REGEL 26)