(54) 发明名称
用于癌症诊断和治疗的方法和组合物

(57) 摘要
本发明涉及利用HLA-I表达水平和/或拷贝数检测和/或诊断癌细胞的转移潜能或对癌症患者的预后进行评估的方法、试剂盒和组合物，以及HLA-I表达水平和/或拷贝数作为癌症标志物的用途。
权利要求书

1. 一种用于对癌症患者的预后进行评估的试剂盒，所述试剂盒包括用于检测HLA-A、HLA-B和HLA-C表达水平和/或拷贝数的试剂，其中与对照相比，HLA-A、HLA-B和HLA-C的表达水平高和/或拷贝数扩增提示癌症患者的预后差，以及HLA-A、HLA-B和HLA-C的表达水平低和/或拷贝数缺失提示癌症患者的预后良好；所述试剂盒还包括用于检测NK细胞数目或活性的试剂，其中NK细胞数目或活性高提示癌症患者的预后良好；其中所述癌症为胃癌。

2. 用于检测HLA-A、HLA-B和HLA-C表达水平和/或拷贝数的试剂在制备用于对癌症患者的预后进行评估的试剂盒中的用途，其中与对照相比，HLA-A、HLA-B和HLA-C的表达水平高和/或拷贝数扩增提示癌症患者的预后差，以及HLA-A、HLA-B和HLA-C的表达水平低和/或拷贝数缺失提示癌症患者的预后良好，其中所述癌症为胃癌。

3. 权利要求1的试剂盒或权利要求2的用途，其中所述用于检测HLA-A、HLA-B和HLA-C表达水平和/或拷贝数的试剂为与HLA-A、HLA-B和HLA-C结合的结合剂或与编码HLA-A、HLA-B和HLA-C的多核苷酸杂交或扩增所述多核苷酸的物质。

4. 权利要求3的试剂盒或用途，其中所述与HLA-A、HLA-B和HLA-C结合的结合剂为抗HLA-A、HLA-B和HLA-C的抗体。

5. 权利要求2的用途，所述试剂盒还包括用于检测NK细胞数目或活性的试剂，其中NK细胞数目或活性高提示癌症患者的预后良好。

6. 权利要求1的试剂盒或权利要求2的用途，所述试剂盒还包括用于检测从以下的物质的试剂：NKp30、pERK、IL2、IL12以及它们的任意组合，其中NKp30、pERK、IL2和/或IL12的表达水平低提示癌症患者的预后差。

7. 一种用于对癌症患者的预后进行评估的组合物，其包含用于检测HLA-A、HLA-B和HLA-C表达水平和/或拷贝数的试剂，以及以下试剂中的至少一种：用于检测NK细胞数目或活性的试剂、用于检测IL-2和/或IL-12表达水平的试剂，用于检测NKp30表达水平的试剂和用于检测pERK表达水平的试剂以及它们的任意组合，其中所述癌症为胃癌。
用于癌症诊断和治疗的方法和组合物

技术领域
[0001] 本发明涉及利用HLA-I型抗原的拷贝数和/或表达水平联合肿瘤周围组织的自然杀伤细胞数目检测和/或诊断检测和/或诊断癌细胞的转移潜能或对癌症患者的预后进行评估的方法、试剂盒和组合物，以及HLA-I表达水平和/或拷贝数作为癌症标志物的用途。

背景技术
[0002] 胃癌在全世界范围内是发病率最高的癌症之一，死亡率较高，大部分胃癌病人死于远端转移或复发。胃组织相邻其他器官，具有丰富的淋巴系统，因此胃癌的转移和复发主要是通过淋巴转移途径。淋巴系统中含有丰富的免疫细胞，有效的活化免疫细胞可减少胃癌远端转移或复发的可能，但是肿瘤细胞也可以逃逸免疫细胞的杀伤，其具体机制并不十分明确。免疫治疗是继手术、化疗后一个重要的肿瘤治疗方式，根据肿瘤细胞逃逸免疫细胞的机制进行的免疫治疗具有重要的临床治疗价值。

[0003] 免疫系统包括天然免疫和获得性免疫。获得性免疫包括T细胞和B细胞，是通过产生抗体发挥作用的，因此要多天后才能发挥抗肿瘤的作用。自然杀伤细胞 (Natural-killer cell, NK细胞) 是天然免疫中的重要免疫细胞，是机体免疫的第一道防线。NK细胞的杀伤作用出现很早，在体内4小时即可见到杀伤效应。NK细胞的杀伤介质主要有穿孔素、NK细胞毒因子和TNF等。NK细胞能迅速溶解某些肿瘤细胞，因此开发它的抗癌功能是近年来癌症研究的重点。

[0004] 由NK细胞介导的细胞毒性活性分别由活化性信号和抑制性信号“平衡”的结果，靶细胞表面表达的HLA-A、B和C（统称经典的HLA-I）可与NK细胞表面的抑制性受体相互作用，抑制NK对靶细胞的识别，但是HLA-I在靶细胞表面高表达的机制并不清楚；另一方面由树突状细胞分泌的IL2/12可以活化NK细胞。

[0005] 根据NK细胞的性质，临床医生和研究人员多通过改造NK细胞达到治疗肿瘤的目的，如使用异体NK细胞、干扰NK细胞的抑制性受体等。虽然这样的治疗方法可以提高NK细胞免疫治疗的效果，但是也会导致自身免疫系统疾病。因此，有效地提高NK细胞的治疗效果之一，是对肿瘤细胞进行改造。

发明内容
[0006] 本发明一方面涉及一种用于检测和/或诊断癌细胞的转移潜能或对癌症患者的预后进行评估的试剂盒，所述试剂盒包括用于检测HLA-I表达水平和/或拷贝数的试剂，其中与对照相比，HLA-I的表达水平高和/或拷贝数增多标志所述癌细胞的转移潜能高和/或癌症患者的预后差，以及HLA-I的表达水平低和/或拷贝数减少标志所述癌细胞的转移潜能低和/或癌症患者的预后良好。

[0007] 在一个实施方案中，所述用于检测HLA-I表达水平和/或拷贝数的试剂为与HLA-I结合的结合剂或与编码HLA-I的多核苷酸杂交或扩增所述多核苷酸的物质。在另一个实施方案中，所述与HLA-I结合的结合剂为抗HLA-I的抗体，并且所述HLA-I为HLA-A、HLA-B或
HLA-C，优选HLA-C。在又一个实施方案中，所述试剂盒还包括用于检测NK细胞数目或活性的试剂，其中NK细胞数目或活性高指示所述癌细胞的转移潜能低和/或癌症患者的预后良好。在另一个实施方案中，所述试剂盒还包括用于检测选自以下的物质的试剂：Nkp30，pERK，IL2，IL12以及它们的任意组合，其中Nkp30，pERK，IL2和/或IL12的表达水平低指示所述癌细胞的转移潜能高和/或癌症患者的预后差。在又一个实施方案中，所述癌细胞为胃癌细胞，所述癌症为胃癌。

[0008] 本发明第二方面涉及用于检测HLA-I表达水平和或/或拷贝数的试剂在制备用于检测和/或诊断癌细胞的转移潜能或对癌症患者的预后进行评估的试剂盒中的用途，其中与对照相比，HLA-I的表达水平高和/或拷贝数增加指示所述癌细胞的转移潜能高和/或癌症患者的预后差，以及HLA-I的表达水平低和/或拷贝数缺失指示所述癌细胞的转移潜能低和/或癌症患者的预后良好。

[0009] 在一个实施方案中，所述用于检测HLA-I表达水平和或拷贝数的试剂为与HLA-I结合的结合剂或与编码HLA-I的多核苷酸杂交或扩增所述多核苷酸的物质。在另一个实施方案中，所述与HLA-I结合的结合剂为抗HLA-I的抗体，并且所述HLA-I为HLA-A，HLA-B或HLA-C。在一个实施方案中，所述用于检测HLA-I表达水平和或拷贝数的试剂与用于检测NK细胞数目或活性的试剂联合用于制备所述试剂盒，其中NK细胞数目或活性高指示所述癌细胞的转移潜能低和/或癌症患者的预后良好。在一个实施方案中，所述用于检测HLA-I表达水平和或拷贝数的试剂与用于检测选自以下的物质的试剂联合用于制备所述试剂盒：Nkp30，pERK，IL2，IL12以及它们的任意组合，其中Nkp30，pERK，IL2和/或IL12的表达水平低指示所述癌细胞的转移潜能高和/或癌症患者的预后差。在一个实施方案中，所述癌细胞为胃癌细胞，所述癌症为胃癌。

[0010] 本发明第三方面涉及抗HLA-I的抗体或下调HLA-I的表达的寡核苷酸在制备用于增强NK疗法的药物中的用途。在一个实施方案中，所述药物还包括IL2和/或IL12。在一个实施方案中，所述药物还包含活化Nkp30/MAPK3途径的试剂。在另一个实施方案中，所述活化Nkp30/MAPK3途径的试剂为靶定Nkp30配体BAG6的寡核苷酸，所述寡核苷酸上调BAG6在癌细胞中的表达。在另一个实施方案中，所述HLA-I为HLA-A，HLA-B或HLA-C，并且所述NK疗法用于治疗癌症。在一个实施方案中，癌细胞表达HLA-I。

[0011] 本发明第四方面涉及一种用于检测和/或诊断肿瘤细胞的转移潜能或对癌症患者的预后进行评估的组合物，其包含以下试剂中的至少一种或由以下试剂中的至少一种组成：用于检测HLA-I表达水平和/或拷贝数的试剂，用于检测NK细胞数目或活性的试剂，用于检测IL2和/或IL12表达水平的试剂，用于检测Nkp30表达水平的试剂和用于检测pERK表达水平的试剂以及它们的任意组合。在一个实施方案中，所述组合物包含用于检测HLA-I表达水平和或/或拷贝数的试剂和用于检测NK细胞数目或活性的试剂。在一个实施方案中，所述组合物包含用于检测HLA-I表达水平和/或拷贝数的试剂和下列试剂中的一种：至少两种、至少三种和全部下列试剂：用于检测IL2和/或IL12表达水平的试剂，用于检测Nkp30表达水平的试剂和用于检测pERK表达水平的试剂。

[0012] 本发明第五方面涉及一种用于判断细胞或细胞系在个体中的致瘤能力的试剂盒，其包括用于检测HLA-I表达水平的试剂和用于检测NK细胞数目或活性的试剂，其中与对照相比，HLA-I的表达水平低且NK细胞数目或活性高指示所述细胞或细胞系有致瘤能力或致
说明书

瘤能力差。

[0013] 本发明第六方面涉及一种用于判断细胞或细胞系在个体中的致癌能力的试剂盒，具体包括用于检测HNA-1表达水平的试剂和用于检测选自以下的物质的试剂：NKp30、pERK、IL2、IL12以及它们的任意组合，其中与对照相比，HNA-1表达水平高且NKp30、pERK、IL2和/或IL12的表达水平低指示所述细胞或细胞系致癌能力弱。在一个实施方案中，NKp30的表达提示所述细胞或细胞系的致癌能力差。在另一个实施方案中，所述细胞或细胞系为上皮来源的肿瘤细胞。

[0014] 在第五或第六方面的一个实施方案中，所述用于检测HNA-1表达水平的试剂为抗HNA-1的抗体，并且所述HNA-1为HNA-A、HNA-B或HNA-C。在第五或第六方面的另一个实施方案中，所述肿瘤细胞为胃癌细胞。在第五或第六方面的另一个实施方案中，所述个体为人类或裸鼠。

[0015] 本发明第七方面涉及一种用于在体外和/或体内检测和/或诊断癌细胞的转移潜能或对癌症患者的预后进行评估的方法，所述方法包括使用于检测HNA-1表达水平和/或拷贝数的试剂与来自个体的癌细胞样品接触，其中HNA-1的表达水平和/或拷贝数高指示所述癌细胞的转移潜能高和/或癌症患者预后差。在一个实施方案中，所述方法还包括使用来自个体的癌细胞样品用于检测NK细胞数目或活性的试剂接触，其中NK细胞数目或活性高指示所述癌细胞的转移潜能低和/或癌症患者预后良好。在另一个实施方案中，所述方法还包含使用来自个体的癌细胞样品用于检测选自以下的物质的试剂接触：NKp30、pERK、IL2、IL12以及它们的任意组合，其中NKp30、pERK、IL2和/或IL12的表达水平低指示所述癌细胞的转移潜能高和/或癌症患者预后差。在另一个实施方案中，所述用于检测HNA-1表达水平和/或拷贝数的试剂为与HNA-1结合的结合剂或与编码HNA-1的多核苷酸片段或扩增所述多核苷酸的物质。在又一个实施方案中，所述与HNA-1结合的结合剂为抗HNA-1的抗体，并且所述HNA-1为HNA-A、HNA-B或HNA-C。在另一个实施方案中，所述癌细胞为胃癌细胞，所述癌症为胃癌。

[0016] 本发明第八方面涉及HNA-1用于检测和/或诊断癌细胞的转移潜能或对癌症患者的预后进行评估的用途。在一个实施方案中，所述癌细胞为胃癌细胞，所述癌症为胃癌。

[0017] 本发明的另一方面涉及选自以下的至少一种、至少两种、至少三种和全部下列试剂用于检测HNA-1表达水平和/或癌细胞的转移潜能或对癌症患者的预后进行评估的用途：用于检测HNA-1表达水平和/或拷贝数的试剂，用于检测NK细胞数目或活性的试剂，用于检测IL-2和/或IL-12表达水平的试剂，用于检测NK细胞数目或活性的试剂，用于检测IL-2和/或IL-12表达水平的试剂，用于检测pERK表达水平的试剂以及它们的任意组合。在一个实施方案中，所述用于检测HNA-1表达水平的试剂为抗HNA-1的抗体，并且所述HNA-1为HNA-A、HNA-B或HNA-C。在另一个实施方案中，所述肿瘤细胞为胃癌细胞，所述癌症为胃癌。

[0018] 在上述任何方面的另一个实施方案中，所述对照为不表达或低表达HNA-1的细胞，例如正常对照细胞例如癌旁正常细胞，或者不表达或低表达HNA-1的肿瘤细胞，例如AGS细胞。在上述任何方面的另一个实施方案中，所述肿瘤细胞为上皮来源的肿瘤细胞，优选胃癌细胞；所述癌症为上皮来源的肿瘤，优选胃癌。在另一个实施方案中，肿瘤细胞或癌细胞表达HNA-1。
附图说明

图1为BGC823和AGS细胞的裸鼠致癌实验。左图，裸鼠照片；A：BGC823细胞注射细胞数为2.5×10^6；B：BGC823细胞注射细胞数为1×10^6；C：AGS细胞注射细胞数为1×10^6；D：AGS注射细胞数为1×10^6。右图：分别注射2.5×10^6个BGC823细胞，1×10^6个BGC823细胞，1×10^6个AGS细胞和1×10^7个AGS细胞的肿瘤生长曲线图。

图2为与NK细胞杀伤有关的基因的拷贝数变化。A，BGC823细胞和AGS细胞全基因组测序的Circus图；B，BGC823细胞和AGS细胞的拷贝数；C，实时PCR检测HLA-I在BGC823和AGS细胞中的表达以验证测序结果。

图3为NK细胞杀伤的信号通路及相关基因的拷贝数变化情况。

图4为NK杀伤相关基因的蛋白表达和亚细胞定位。A，HLA-I在BGC823和AGS细胞中的表达；B，NKp30/VAV2/MAPK3通路在BGC823和AGS细胞中的表达；C，HLA-A，HLA-B和NKp30在BGC823和AGS细胞中的定位；D，在BGC823和AGS细胞中，HLA-C在裸鼠NK细胞刺激前后的定位。

图5为NK细胞对AGS细胞的杀伤。A，自然杀伤细胞杀伤实验检测不同数量的NK细胞对BGC823和AGS细胞的杀伤；B，实时摄影（Timelaps）实验实时检测NK细胞对BGC823和AGS细胞的杀伤；C，左，自然杀伤细胞杀伤实验检测AGS细胞对包裹基质胶（Matrigel）的AGS细胞的杀伤；右，裸鼠致癌实验检测包裹基质胶的AGS细胞的致癌能力；D和E，在NOD SCID鼠中检测BGC823和AGS细胞的致癌能力。

图6为HLA-I和NKp30/VAV2/MAPK3/IL12（IL2）信号通路在NK细胞杀伤肿瘤细胞过程中中的重要作用。A和B，用抗HLA-I的抗体和IL12处理细胞后，进行NK细胞杀伤实验和实时摄影实验。C，免疫印迹法在BGC823和AGS细胞中检测NKp30/VAV2/MAPK3/IL12（IL2）信号通路。D，免疫印迹法AGS细胞中检测干扰Nkp30表达后，IL12的表达水平。E，实时摄影实验检测在干扰Nkp30或用抗HLA-I的抗体和IL12处理细胞后，NK细胞对AGS细胞的杀伤。

图7为经典的HLA-I家族和Nkp30/MAPK3/IL12（IL2）在其他具有不同裸鼠致癌能力的胃癌细胞中的表达水平。A，实时检测HLA-A家族在其他具有不同裸鼠致癌能力的胃癌细胞中拷贝数的变异；B，免疫印迹法检测经典的HLA-I家族和Nkp30/MAPK3/IL12（IL2）在其他具有不同裸鼠致癌能力的胃癌细胞中的表达水平。C，实时检测HLA-A家族在转移和不转移的肿瘤组织中HLA-I的拷贝数的变异。

图8为HLA-I在胃癌配对组织中的表达。A，免疫印迹法检测HLA-I在胃癌配对组织中的表达。B，免疫印迹法检测HLA-I在胃癌转移组和不转移组中的表达。C，生存分析HLA-I的表达与预后的关系。D，生存分析HLA-I的表达和NK细胞与预后的关系。E，用IgG（对照组）或IL12和抗HLA-I抗体（治疗组）在裸鼠中治疗肿瘤。F，肿瘤组织的苏木精和伊红（HE）染色。

具体实施方式

参考用于说明的示例应用在下文中描述本发明的数个方面。应当理解的是，陈述许多具体细节、关系和方法来提供对本发明的充分理解。然而，在相关领域的普通技术人员将容易地认识到，可在不含一个或多个具体细节的情况下实施本发明或者可用其他方法来实施本发明。
说明书

[0028] 本发明涉及新发现的癌症标志物（例如HLA-1）的表达与癌症的转移潜能和/或预后评估之间的关系。本文所述癌症标志物提供用于预测癌症转移潜能的方法。因此，本发明的一个实施方案代表肿瘤标志物的改进，所述肿瘤标志物适用于诊断一般的癌症，或所述肿瘤标志物适用于诊断特定肿瘤类型例如胃癌，尤其适用于预测胃癌的转移潜能和预后。在又一个实施方案中，本发明所发现的癌症标志物（即HLA-1）可与本领域已知的一种或多种其它癌症标志物（例如CEA、NSE、CA 19-9、CA 125、CA 72-4、PSA、proGRP、SCC、NNMT）或本文公开的一种或多种其它标志物（例如NK细胞、Nkp30、pERK、IL2、IL12或它们的组合等）联用，例如用于治疗或诊断癌细胞转移潜能或对患者的预后进行评估或用于制备用于此目的的试剂盒。


[0030] 本文所述的术语“癌症”是指在哺乳动物中发现的所有类型的癌症或新生物或恶性肿瘤，包括但不限于例如：纤维肉瘤、粘液肉瘤、脂肪肉瘤、软骨肉瘤、骨肉瘤、脊索瘤、血管肉瘤、内皮肉瘤、淋巴管肉瘤、淋巴管内皮肉瘤、滑膜瘤、间皮瘤、尤因氏瘤（Ewing’s tumor）、平滑肌肉瘤、横纹肌肉瘤、胃癌、结肠癌、胰腺癌、乳腺癌、卵巢癌、前列腺癌、鳞状细胞癌、基底细胞癌、腺癌、汗腺癌、皮脂腺癌、乳头癌、乳头状腺癌、囊腺癌、髓样癌、支气管癌、肾细胞癌、肝细胞癌、胆管癌、绒毛膜癌、精原细胞癌、胚胎性癌、维拉姆斯氏肿瘤（Wilms’tumor）、子宫颈癌、睾丸肿瘤、肺癌、小细胞肺癌、膀胱癌、上皮癌、神经胶质瘤、星形细胞瘤、髓母细胞瘤、颅咽管瘤、室管膜瘤、松果体癌、成血管细胞瘤、听神经瘤、少突神经胶质瘤、脑膜瘤、黑素瘤、成神经细胞瘤和视网膜母细胞瘤。在本发明的某些方面，癌症优选为胃癌，更有选高致癌或转移潜能高的胃癌细胞。

[0031] 本文所述的术语“癌细胞”或“肿瘤细胞”是指一种变异的细胞，是产生癌症或肿瘤的病原，具有无限制生长、转化和转移三大特点。在本发明的某些方面，“癌细胞”或“肿瘤细胞”是指上皮来源的癌细胞或肿瘤细胞，优选胃癌细胞，更优选高致癌或转移潜能高的胃癌细胞。在本发明的多个方面，癌细胞或肿瘤细胞表达HLA-1，例如HLA-A、HLA-B或HLA-C。在本发明的某些方面，胃癌细胞为实施例中所使用的高致癌细胞，例如BGC823、MGC803、SGC7901和MKN45等。

[0032] 术语“转移潜能”是指癌细胞从最初部位移动至机体的其它部位的能力或可能性。

[0033] 术语“样品”意指已知或疑似表达或含有癌症标志物或结合剂的材料，结合剂为例如对癌症标志物（例如HLA-1）有特异性的抗体。样品可来源于生物来源（“生物样品”），例如组织（例如活组织检查样品）、提取物或包括细胞（例如肿瘤细胞）、细胞裂解物在内的细胞
培养物和生物或生理流体，例如全血、血浆、血清、唾液、脑髓液、汗、尿液、乳汁、腹膜液等。获自来源的样品或在预处理以改进样品特征（例如从血液制备血浆、稀释黏液等）后的样品可直接使用。在本发明的某些方面，样品是人生理流体，例如人血清。在本发明的某些方面，样品是活组织检查样本例如经组织检查获得的肿瘤组织或细胞。在本发明的某些方面，样品是恶性或正常组织样品例如癌旁正常组织样品。

0034 可按照本发明进行分析的样品包括临床来源的多核苷酸。正如本领域技术人员应理解的，靶多核苷酸可包括RNA，包括但不限于细胞总RNA、核(A)+信使RNA（mRNA）或其部分、胞质mRNA或由cDNA转录的RNA（即cRNA）。

0035 可采用本领域已知方法，在一个或多个核苷酸上对靶多核苷酸进行可检测标记。可检测标记可以是可不于发光标记、荧光标记、生物发光标记、化学发光标记、放射性标记和比色标记。

0036 本文使用的术语“标志物”是指用作分析患者实验样品的靶标的分子。这样的分子靶标的实例是蛋白或多肽。在本发明中用作标志物的蛋白或多肽预期包括所述蛋白的天然存在的变体以及所述蛋白或所述变体的片段，特别是免疫学上可检测的片段。免疫学上可检测的片段优选的包含所述标志物多肽的至少6、7、8、10、12、15或20个连续氨基酸。本领域的技术人员认识到，由细胞释放的蛋白或存在于胞外基质中的蛋白可能受到损害（例如在炎症过程中），且可被降解或切割成这样的片段。某些标志物以无活性形式合成，其可以随后通过蛋白酶解来活化。熟练的技术人员将对的，蛋白或其片段也可以作为复合物的一部分而存在。这样的复合物也可以用作本发明意义上标志物。标志物多肽的变体由相同的基因编码，但可能在其等电点（pI）或分子量（MW）或以上二者上有差异，例如作为可选的mRNA或mRNA前体加工的结果，变体的氨基酸序列与相应的标志物序列具有95%或更高的同一性。另外，在替代方案中，标志物多肽或其变体可以携带翻译后修饰。翻译后修饰的非限制性实例是糖基化、酰化和/或磷酸化。

0037 标志物的表达也可通过检测标志物的翻译（即，样品中标志物蛋白的检测）来鉴定。适合于检测标志物蛋白的方法包括用于检测和/或测量得自细胞或细胞提取物的蛋白的任何合适方法。这样的方法包括但不限于免疫印迹（如蛋白质印迹）、酶联免疫吸附测定（ELISA）、放射免疫测定（RIA）、免疫沉淀、免疫组织化学和免疫荧光。用于检测蛋白的特别优选的方法包括任何基于细胞的测定，包括免疫组织化学和免疫荧光测定。这样的方法是本领域熟知的。

0038 术语“受试者”、“患者”和“个体”在本文可互换使用，是指温血动物，例如患有或疑似患有、易患或对其筛查癌症，特别是癌症转移潜能的哺乳动物。该术语包括但不限于家畜、啮齿动物（例如大鼠和小鼠）、灵长类动物和人。优选该术语是指人。

0039 本文所用的术语“治疗”或“疗法”涵盖对哺乳动物中疾病状态的治疗，并包括：(a) 防止疾病状态出现于哺乳动物中，特别是当这类哺乳动物倾向于疾病状态但尚未诊断为患有该疾病状态时；(b) 抑制疾病状态，例如，阻止其发展；和/或(c) 减轻疾病状态，例如，引起疾病状态的退行直到达到所需的终点。治疗也包括改善疾病的症状（例如，减少疼痛或不适），其中这类改善可直接或可间接地影响疾病（例如，原因、传递、表达等）。

0040 术语“多肽”和“蛋白质”在本文可互换使用，表示通过共价和/或非共价键连接的氨基酸的至少一个分子链。该术语包括肽、寡肽和蛋白质及多肽的翻译后修饰，例如糖基
化、乙酰化、磷酸化等。蛋白质片段、类似物、突变蛋白质或变体蛋白质、融合蛋白等也包括在该术语的含义中。

[0041] 在某些实施方案中，如本文所用的测定“蛋白表达水平”、“基因表达”或“基因表达水平”包括但不限于测定相应的RNA、蛋白或肽水平（或其组合）。本发明不限于测定蛋白、肽或RNA水平的具体方法和试剂，所有这些方法和试剂是本领域熟知的。

[0042] 用于测定样品中蛋白质的量或浓度的方法为技术人员所知。所述方法包括放射性免疫测定、竞争性结合测定、蛋白质印迹分析和ELISA测定。对于使用抗体的方法，单克隆和多克隆抗体都适用。所述抗体对于蛋白质、蛋白表达或片段蛋白可为免疫学上特异的。

[0043] 术语“多核苷酸”是指任何长度的核苷酸的多聚体形式，为核糖核苷酸或脱氧核糖核苷酸。该术语包括双链和单链DNA和RNA，例如多核苷酸的甲基化或帽化等修饰形式和未修饰形式。术语“多核苷酸”和“寡核苷酸”在本文可互换使用。多核苷酸可但非必需包括其它编码或非编码序列，或者它可以但一定与其它分子和/或载体或支持材料连接。用于本发明方法或试剂盒的多核苷酸可具有适于具体方法的任何长度。在某些应用中，该术语是指反义核酸分子（例如处于与编码本发明癌症标志物的LHA-I的有义多核苷酸相反方向的mRNA或DNA链）。

[0044] 本发明的多核苷酸癌症标志物包括编码多肽癌症标志物（例如LHA-I）的多核苷酸，多肽癌症标志物包括天然序列多肽、包括多肽癌症标志物一部分的多肽结晶体、同种型、前体和嵌合多肽。编码可用于本发明的LHA-I多肽的多核苷酸包括但不限于包含Genbank检索号Z46633、D83043和D83957的序列或其片段的核酸。

[0045] 用于本发明的多核苷酸包括互补核苷酸序列和与这些序列基本相同的核酸，并且还包括因遗传密码简并而不同于核苷酸序列的序列，可用于本发明的多核苷酸还包括在严格条件下、优选在严格性条件下与多核苷酸癌症标志物核酸序列杂交的核酸。

[0046] 多核苷酸杂交测定是本领域熟知的。杂交测定程序和条件将根据应用而变化并依据已知的通用结合方法选择，参见例如J. 萨姆布鲁克等，分子克隆，实验指南（第三版。科学出版社，2002）以及Young和Davis，P.N.A.S.，80: 1194 (1983)。进行重复和受控杂交反应的方法和设备已经描述于美国专利号5,871,928,5,874,219,6,045,996,6,386,749和6,391,623中，其各自通过引用结合到本文中。

[0047] 在某些情况下，可能需要扩增样品。基因组样品可通过各种机制扩增，其中一些机制可采用PCR。样品可在阵列上扩增。参见，例如美国专利号6,300,070和美国专利申请系列号9/513,300。


[0049] 与对照或标准（例如正常水平、不同病期的水平或患者其它样品的水平）相比，患
者样品中标志物表达水平“高”或“低”或者拷贝数“扩增”或“缺失”可表示高于或低于检测
试验的标准误差的水平,优选水平或拷贝数分别为对照或标准的至少约1.25、1.5、2、3、4、
5、6、7、8、9或10倍或更多倍或者为对照或标准的至多约1/1.25、1/1.5、1/2、1/3、1/4、1/5、
1/6、1/7、1/8、1/9或1/10或更少。拷贝数扩增或缺失可通过本领域周知的技术检测,例如实
施例所述的全基因测序。

[0050] 可用于检测HLA-I表达水平和/或拷贝数的试剂是本领域众所周知的。适用于本发
明的这种试剂可市购获得或通过本领域技术人员熟知的方法常规地制得。例如,在一个实
施方案中,这种试剂可以为与HLA-I结合的结合剂或与编码HLA-I的多核苷酸杂交或扩增所
述多核苷酸的物质。

[0051] 术语“结合剂”是指例如与本发明癌症标志物(例如HLA-I)特异性结合的多肽、抗
体、核糖体或试剂等物质。如果物质以可检测的水平与本发明癌症标志物起反应,而不与含
有无关序列或不同多肽的序列的肽可检测地起反应,则它与本发明癌症标志物“特异性结
合”。可采用本领域技术人员可容易进行的ELISA来评价结合性质。

[0052] 结合剂可为含或不含肽组分的核糖体、RNA或DNA分子或多肽。结合剂可以是包
含多肽HLA-I标志物序列、其肽变体或这类序列的非肽模拟物的多肽。

[0053] 适体包括与核酸和蛋白质结合的DNA或RNA分子，与本发明标志物结合的适体可在
无需过多实验的情况下利用常规技术产生。例如参考下列描述适体外选择的出版物:
Biol. 6:281-287 (1996)。

[0054] 用于本发明的抗体包括但不限于合成抗体、单克隆抗体、多克隆抗体、重组抗体、
抗体片段（例如Fab、Fab’、F(ab’)2、dAb（结构域抗体；参见Ward等, 1989, Nature, 341:
544-546), 抗体重链、胞内抗体、人源化抗体、人抗体、抗体轻链、单链Fv（scFv）（例如包
括单特异性、双特异性等）、抗独特型(ant-1d)抗体，包含抗体部分的蛋白质，嵌合抗体（例
如含有鼠抗体的结合特异性但其中其余部分是人来源的抗体）、衍生物例如酶缀合物或标记
的衍生物、双链抗体、线性抗体、二硫键连接的Fv（sdFv）、多特异性抗体（例如双特异性抗
体）、上述任一种的表位结合片段和包含所需特异性的抗原识别部位的免疫球蛋白分子的
任何其它修饰构型。抗体包括任何类型（例如IgA、IgD、IgE、IgG、IgM和IgY）、任何类别（例
如IgG、IgG2、IgG3、IgG4、IgA1和IgA2）或任何亚类（例如IgG2a和IgG2b）的抗体，抗体不必是
任何特定的类型、类别或亚类。在本发明的某些实施方案中，抗体是IgG抗体或其类别或亚
类。抗体可来自任何动物来源，包括鸟类和哺乳动物（例如人、鼠、驴、绵羊、兔、山羊、豚
鼠、骆驼、马或鸡)。

[0055] 例如,用于本发明的抗体可市购自例如Santa Cruz Biotechnology (HLA I抗体
(B425 (246-88,E7)), 货号:sc-59204)、ProteinTech Group (HLA-A抗体, 货号:66013-
1-1g和15240-1-AP; HLA-B抗体, 货号:17260-1-AP; HLA-C抗体, 货号:15777-1-AP), Abcam
(例如货号为ab33252和ab79523的抗体)、Epitomics (货号为1913-1-2389-1和5472-1的抗
体)等。或者,所述抗体可通过本领域周知的重组方法制备。在一些实施方案中,所述抗体是
单克隆抗体。对于单克隆抗体的制备参见例如Kohler等(1975) Nature 256:495-497:

【0056】在一些实施方案中，用于检测HLA-1表达水平和/或拷贝数的试剂可利用CN1703624A中所公开的方法和体系筛选得到。在另一些实施方案中，所述试剂为CN101287755A、WO2012176879或WO 2011037160中所鉴定的肽/抗体或多核苷酸或者使用CN101287755A、WO2012176879或WO 2011037160中所公开的方法制备得到。


【0058】同样，可用于检测NKp30、pERK、IL2或IL12的试剂也是本领域众所周知的。适用于本发明的这种试剂可市购获得或通过本领域技术人员熟知的方法常规地制得。

【0059】虽然上文已描述了本发明的各种实施例，但是应理解的是，其仅以实例的方式提供，而并非限制。对公开的实施例的许多改变可依照本发明的公开内容来进行，而不会背离本发明的精神或范围。因此，本发明的广度和范围不应受到任何上述的实施例所限制。

【0060】本文提及的所有文献都通过引用结合到本文中。本申请引用的所有出版物和专利文件都为所有目的而通过引用结合，引用程度如同单独地指出各个出版物或专利文件一样。

实施例


【0062】材料：

【0063】1. 抗体：HLA-A (1913-1; Epitomics)，HLA-B (2389-1; Epitomics)，HLA-C (5472-1; Epitomics)，MICA (T3305; Epitomics)，VAV2 (B1241; anbo)，MAPK3 (C11133; anbo)，NKp30 (BS3888; Bioworld)，和pERK (Tyr204) (sc-7383; Santa Cruz)，Bag6 (T3305; Epitomics)，肌动蛋白(A0541-5MG; Sigma).

【0064】2. 细胞株：购于ATCC或协和细胞库

【0065】3. qPCR引物序列
基因
名称
有义链(5'----3')
反义链(5'----3')

LINE-1: AAGGCCGTTCACTACATGGG
          TGCTTTTGATGGCTCTTCAGAG

HLA-A: GTAGAAGGAGGAATGGGTT
       CAGCAAATGATCCACGATG

HLA-B: TGAGATGGGTTAAGGAGGGG
       CACAATGCTAGCAGACGAC

HLA-C: GTCCAGAACCCCAATACTGCT
       TGCCAGGCTCTTGAAGTC

以胃癌细胞系的cDNA或胃癌配对组织为模板,进行扩增,得到的数据用ABI公司提供的SDS System软件以2^ΔΔ^ct的方法计算,以LINE-1为内参。

4. 全基因测序
产生了WGS配对尾端的WGS数据,将Burrows-Wheeler Aligner用于将读出与参考基因组(National Center for Biotechnology Information Build 37)配对。通过ReadDepth预测CNV(C. A. Miller, O. Hampton, C. Coarfa, A. Milosavljevic, ReadDepth: a parallel R package for detecting copy number alterations from short sequencing reads. PloS one, 6, e16327 (2011)), 其中如通过染色体核型分型和测序深度分布所测定的, 染色体4在两种细胞系中具有2个拷贝。将各区段的比例针对染色体4进行标准化。当log2比值>0.45和< -0.45时,分别将拷贝数变异(CNV)鉴定为扩增和缺失。

5. 免疫组化实验
石蜡切片经二甲苯脱蜡两次,每次30min;脱蜡后的切片依次经100%、95%、90%、85%、80%梯度酒精水化,每次5min;去离子水洗3次;切片在0.01M磷酸缓冲液(pH=6.0)中用微波加热法进行抗原修复;去离子水洗3次;3%过氧化氢室温孵育10min,以阻断内源性过氧化酶的活性;用5%牛奶室温封闭30min;加入最适浓度的一抗,4℃孵育过夜;1×PBS洗3次;然后用生物素偶联的相应二抗,室温孵育30min;1×PBS洗3次;加入过氧化物酶偶联的酶显色试剂,室温孵育30min;1×PBS洗3次;DAB染色;加入PBS终止反应,自来水冲洗;苏木素染色,1%盐水酒精除去浮色,温水复蓝;依次经80%、85%、90%、95%、100%梯度酒精脱水;二甲苯透明5min,中性树脂封片,镜下观察结果。

6. 统计学分析
使用SPSS16.0完成。X²和t检验用于比较基因在不同样本中的差异。用Kaplan-Meier和Cox回归模型进行预后生存分析。P值小于0.05视为差异具有统计学意义。

裸鼠缺乏胸腺,不具备获得性免疫系统,因而多种肿瘤细胞具有裸鼠成瘤能力;尽管如此,仍有一部分肿瘤细胞不能在裸鼠体内成瘤,我们推测这可能是由于NK细胞的杀伤作用造成的。临床研究表明,在给病人输入有活性的NK细胞进行治疗时,仍有部分病人对该治疗不敏感,但其机制并不明确。为了阐明这一机制,在本研究中,我们以裸鼠为动物模型,研究在同一NK细胞活性的基础上,以高致瘤的胃癌细胞系BGC823和不致瘤的胃癌细胞系AGS为细胞模型,利用基因组测序的方法比较两个细胞系的不同,鉴定AGS细胞被自然杀伤细胞杀伤,而BGC823细胞逃逸的关键基因,阐明肿瘤细胞逃逸NK细胞杀伤的作用机制;在大样本中检测这些关键基因的临床意义并初步研究其临床应用性。

实施例1:裸鼠致瘤实验
为了检测肿瘤细胞的裸鼠致瘤能力和NK细胞杀伤的关系以及研究肿瘤细胞逃逸
NK细胞杀伤的作用机制，需要选择裸鼠致瘤性高的肿瘤细胞和不具备裸鼠致瘤能力的肿瘤细胞。我们以裸鼠皮下注射不同数量的肿瘤细胞系的方法，检测癌细胞的裸鼠致瘤能力。如图1和表1所示，BGC823为高致瘤的细胞系，当皮下注射细胞数为2.5×10^6时，该细胞系在11天时就可以100%致瘤；而AGS细胞，即使在注射细胞数为1×10^6时，该细胞系在120天时也不见成瘤情况。根据该结果，我们选择高裸鼠致瘤能力的BGC823和不具裸鼠致瘤能力的AGS细胞为研究对象。

表1. BGC823和AGS细胞的裸鼠致瘤实验

<table>
<thead>
<tr>
<th>细胞系</th>
<th>0.25×10^6</th>
<th>0.3×10^6</th>
<th>0.5×10^6</th>
<th>1×10^6</th>
<th>5×10^6</th>
<th>1×10^7</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGC823</td>
<td>4/4</td>
<td>65/66</td>
<td>18/19</td>
<td>4/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

实施例2：分析高致瘤能力的BGC823细胞和不致瘤的AGS细胞的拷贝数差异，识别与NK细胞杀伤有关的基因。

实施例3：检测拷贝数异常的NK细胞杀伤相关基因在蛋白质水平的表达情况。

实施例4：根据KEGG的结果，我们检测了其他NK细胞杀伤相关的基因的蛋白质表达情况。
VAV2和MAPK3在AGS中的表达水平也显著高于BGC823细胞，提示原本在NK细胞中活化的通路在不具备致瘤能力的肿瘤细胞中也存在，同时可能是肿瘤细胞容易被NK细胞攻击的主要机制之一。

【0085】实施例4：检测裸鼠的NK细胞对高致瘤能力的BGC823细胞和不致瘤的AGS细胞的杀伤情况

【0086】以上结果表明，抑制NK细胞识别的HLA-I基因在高致瘤能力的BGC823细胞中表达，不致瘤的AGS细胞中低表达；活化NK细胞的通路在高致瘤能力的BGC823细胞中低表达。在不致瘤的AGS细胞中高表达；且在裸鼠NK细胞刺激后，AGS细胞出现了凋亡小体，提示NK细胞对AGS的杀伤，可能是其不具备致瘤能力的主要机制。为了验证这一假设，我们提取了裸鼠的NK细胞，并将其与BGC823和AGS细胞孵育。自然杀伤细胞杀伤结果显示，NK细胞呈数量依赖性地杀伤AGS细胞，但对BGC823细胞不反应（图5A）。我们用延时摄影实验实时检测NK细胞对两个细胞系的杀伤，结果显示，NK细胞从与AGS细胞共同孵育起，就能识别该细胞且将其杀伤；但对BGC823细胞不反应（图5B）。之后，我们利用基质胶将AGS细胞包裹用以隔离NK细胞，自然杀伤细胞杀伤实验显示，在这种情况下，NK细胞杀伤对AGS细胞的杀伤能力大大减弱，并且在基质胶将AGS细胞包裹后，AGS细胞便获得了裸鼠致瘤能力（图5C）。为了进一步证实这一假设，我们将BGC823和AGS细胞分别注入于不具自然杀伤细胞免疫和获得性免疫的NOD SCID鼠，图5D所示，两个细胞系在NOD SCID小鼠中都可致瘤，说明NK细胞对AGS的杀伤，是其不具备致瘤能力的主要机制。

【0087】实施例5：肿瘤细胞在高表达HLA-I可逃脱NK细胞的攻击

【0088】为了阐明NK细胞杀伤AGS细胞，而不杀伤BGC823细胞的作用机制，首先研究了HLA-I的作用。利用HLA-A、B和-C蛋白特异性抗体封闭细胞膜上的HLA-A、B、C蛋白，并进行了NK细胞细胞毒性测定。如图6A所示，当将抗HLA-I的特异性抗体和活化NK细胞的IL12加入培养基时，NK细胞可杀伤BGC823细胞。因AGS细胞中低表达HLA-I，因此对于AGS细胞，对照组和处理组之间差异不明显。延时摄影结果也显示在与HLA-I抗体和IL12孵育后，细胞可裂解BGC823细胞（图6B）。

【0089】实施例6：NKp30/VAV2/MAPK3/IL12通路的活化可促进NK细胞对肿瘤细胞的杀伤

【0090】在机体中很多细胞，如红细胞表面HLA的表达水平很低，但NK细胞并不杀伤红细胞，说明除了HLA抑制NK细胞的杀伤外，还存在其他的机制来活化NK细胞。在免疫细胞中，NKp30/VAV2/MAPK3/IL12通路的活化可促进IL12/IL2的产生和分泌，从而活化NK细胞。以往研究表明，NKp30只表达于免疫细胞的细胞膜上，我们的研究发现，NKp30也表达于不致瘤的AGS细胞膜上，但在致瘤性较高的BGC823细胞中不表达。同时，我们发现NKp30配体的BAG6在AGS细胞中表达，而不表达于BGC823细胞（图6C）。NKp30下游的pERK和IL12在AGS细胞中的表达水平也显著高于BGC823细胞（图6C）。在AGS细胞中，干扰NKp30的表达时，IL12的表达也相应减少（图6D）。延时摄影结果也显示在干扰NKp30蛋白表达或用特异性抗体阻断IL12蛋白时，NK细胞不杀伤AGS细胞（图6E）。这些数据表明AGS细胞通过活化NKp30/MAPK3途径刺激IL12，从而促进NK细胞对AGS细胞的杀伤，并且该通路是NK细胞裂解肿瘤细胞的必要因素。

【0091】实施例7：经典的HLA-I家族和NKp30/MAPK3/IL12（IL2）在其他具有不同裸鼠致瘤能力的胃癌细胞中的表达水平
【0092】为了检查经典HLA-I和NKp30通路的表达模式是否也存在于其他具有不同致病能力胃癌细胞系中，我们选择了另外5个胃癌细胞系。其中MGC803、SGC7901和MKN45的致病性与BGC823细胞类似；N87和KATOII11细胞类似于AGS细胞的裸鼠致病能力。我们利用实时PCR法检测HLA-A、B和C的拷贝数变异情况。如图7A所示，HLA-I在高致病性的肿瘤细胞中的拷贝数高于低致病性的细胞系。之后我们用免疫印迹法检测HLA-I和NKp30/MAPK3/L1L2（L1L2）信号通路在这些细胞系中的表达水平。如图7B所示，在具有较高致病性的细胞系中HLA-I的表达水平较高，BAG6、NKp30、pErk和IL2/12的表达水平在具有较低致病性的肿瘤细胞中高表达。上述结果表明，HLA-I的拷贝数或表达水平或HLA-I及NKp30/MAPK3/L1L2（L1L2）信号通路的表达水平可用于预测肿瘤细胞系的裸鼠致病能力。

【0093】实施例8：经典的HLA-I家族在胃癌配对组织中的拷贝数变异和表达水平

【0094】为了评估HLA-I表达的临床意义，我们在100例胃癌配对组织中利用免疫组化法检测了HLA-I的表达水平。我们发现在胃癌组织中HLA-A、B和C的表达水平显著高于癌旁组织（图8A，表2），提示HLA-I的表达与肿瘤发生相关。进一步分析发现，低表达的HLA-I与转移（包括淋巴结和肺转移）相关（p=0.005，表3）（图8B），因为细胞的生存显示，HLA-I的拷贝数和其蛋白质的表达水平一致性较高。因而，我们将胃癌样本分为转移组和不转移组，并检测HLA-I的拷贝数变异。如图7C所示，在不转移组，HLA-I的拷贝数低于正常组织。而在转移组，HLA-I的拷贝数高于正常组织，提示HLA-I的拷贝数可用于预测胃癌的转移。生存分析显示高表达的经典HLA-I是独立的预后因子（p=0.008，HR=2.758，95%CI=1.3-5.8）（图8C）。同时我们在此100例胃癌配对样本中检查了NK细胞。我们发现了将NK细胞与低表达的经典HLA-I组合与仅低表达的经典HLA-I相比与转移相关度更高（p<0.001，表3）。此外，联合NK细胞和经典HLA-I的表达能更好地预测胃癌患者的预后（图8D）。

【0095】表2. 通过IHC分析在GC组织中检测的HLA-I蛋白的表达

<table>
<thead>
<tr>
<th>组织学</th>
<th>HLA-I 表达</th>
<th>总病例</th>
<th>P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>正常</td>
<td>阴性</td>
<td>62(62.0%)</td>
<td>38(38.0%)</td>
</tr>
<tr>
<td>肿瘤</td>
<td>阴性</td>
<td>38(38.0%)</td>
<td>62(62.0%)</td>
</tr>
</tbody>
</table>

【0096】表3. GC患者中转移与分子特征之间的关系

<table>
<thead>
<tr>
<th>特征</th>
<th>转移</th>
<th>总病例</th>
<th>P值</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA-I 表达</td>
<td>阴性</td>
<td>9(14.5%)</td>
<td>53(85.5%)</td>
</tr>
<tr>
<td></td>
<td>阳性</td>
<td>15(39.5%)</td>
<td>23(60.5%)</td>
</tr>
<tr>
<td>HLA-I 低表达和NK细胞的积聚</td>
<td>是</td>
<td>14(50.0%)</td>
<td>14 (50.0%)</td>
</tr>
<tr>
<td></td>
<td>否</td>
<td>10(39.5%)</td>
<td>62 (60.5%)</td>
</tr>
</tbody>
</table>

【0097】实施例9：拮抗HLA-I可增加NK细胞免疫治疗的效果

【0098】上述数据提示用抗体拮抗经典HLA-I的表达可增强NK疗法的效果。为了证实此假
设，我们用IgG（对照组）或IL12和抗HLA-I抗体（治疗组）在裸鼠中治疗肿瘤。与对照组相比，治疗组中肿瘤组织的体积明显变小（图8E）。在治疗组，苏木精和伊红（HE）染色显示免疫细胞出现在肿瘤细胞周围（图8F）。该结果表明IL12与抗HLA-I抗体的组合增强NK免疫疗法的效果。
图 5

图 6
图 7

图 8