

HU000028846T2

(19) **HU**

(11) Lajstromszám: **E 028 846**

T2

MAGYARORSZÁG Szellemi Tulajdon Nemzeti Hivatala

EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(21) Magyar ügyszám: E 12 783816 B32B 5/02 (51) Int. Cl.: (2006.01)(22) A bejelentés napja: 2012. 10. 31. B28B 7/46 (2006.01)B32B 5/26 (2006.01)(96) Az európai bejelentés bejelentési száma: E04C 5/07 (2006.01)EP 20120783816 B32B 27/12 (2006.01)(97) Az európai bejelentés közzétételi adatai: B28B 23/00 (2006.01)

(97) Az európai szabadalom megadásának meghirdetési adatai: (86) A nemzetközi (PCT) bejelentési szám: EP 2773502 B1 2016, 07, 06,

2013. 05. 10.

PCT/US 12/062831

(87) A nemzetközi közzétételi szám:

WO 13067034

(30) Elsőbbségi adatok:

EP 2773502 A1

201161554377 P 2011. 11. 01. US 201261703618 P 2012. 09. 20. US (73) Jogosult(ak):

Cortex Composites, LLC, Pacific Palisades, California 90272 (US)

(72) Feltaláló(k):

(54)

KRASNOFF, Curren, E., Pacific Palisades, California 90272 (US)

MOBASHER, Barzin, Paradise Valley, Arizona 85253

BONAKDAR, Aboozar, Mesa, Arizona 85202 (US) BERKE, Neal, S., Portage, Michigan 49024 (US) LEE, David, S., Pacific Palisades, California 90272 (US) LAU, Jan, Windsor, California 95492 (US) MORRIS, Jonathan, Santa Rosa, California 95404 (US)

FEYH, Marc, Sebastopol, California 95472 (US)

(74) Képviselő:

SBGK Szabadalmi Ügyvivői Iroda, Budapest

Helyszínen végzett hidratálásra szolgáló nemszőtt cementáló kompozit

Az európai szabadalom ellen, megadásának az Európai Szabadalmi Közlönyben való meghirdetésétől számított kilenc hónapon belül, felszólalást lehet benyújtani az Európai Szabadalmi Hivatalnál. (Európai Szábadalmi Egyezmény 99. cikk(1))

(11) EP 2 773 502 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:06.07.2016 Bulletin 2016/27

(21) Application number: 12783816.7

(22) Date of filing: 31.10.2012

(51) Int Cl.:

B32B 5/02 (2006.01) E04 B28B 7/46 (2006.01) B28 B32B 5/26 (2006.01) B32

E04C 5/07 (2006.01) B28B 23/00 (2006.01) B32B 27/12 (2006.01)

(86) International application number:

PCT/US2012/062831

(87) International publication number: WO 2013/067034 (10.05.2013 Gazette 2013/19)

(54) NONWOVEN CEMENTITIOUS COMPOSITE FOR IN-SITU HYDRATION

ZEMENTÖSER VLIESVERBUNDSTOFF FÜR IN-SITU-HYDRIERUNG COMPOSITE NON TISSÉ CIMENTAIRE À HYDRATER SUR SITE

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

- (30) Priority: 01.11.2011 US 201161554377 P 20.09.2012 US 201261703618 P
- (43) Date of publication of application: 10.09.2014 Bulletin 2014/37
- (73) Proprietor: Cortex Composites, LLC
 Pacific Palisades, California 90272 (US)
- (72) Inventors:
 - KRASNOFF, Curren, E.
 Pacific Palisades, California 90272 (US)
 - MOBASHER, Barzin
 Paradise Valley, Arizona 85253 (US)
 - BONAKDAR, Aboozar Mesa, Arizona 85202 (US)

- BERKE, Neal, S.
 Portage, Michigan 49024 (US)
- LEE, David, S.
 Pacific Palisades, California 90272 (US)
- LAU, Jan Windsor, California 95492 (US)
- MORRIS, Jonathan Santa Rosa, California 95404 (US)
- FEYH, Marc Sebastopol, California 95472 (US)
- (74) Representative: Thum, Bernhard Wuesthoff & Wuesthoff Patentanwälte PartG mbB Schweigerstraße 2 81541 München (DE)
- (56) References cited:

EP-B1- 0 876 524 WO-A2-2008/134604 WO-A2-2010/086618 US-A1- 2006 099 415

P 2 773 502 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Patent Application No. 61/554,377, filed November 1,2011, and U.S. Provisional Patent Application No. 61/703,618, filed September 20, 2012, which are incorporated herein by reference in their entirety.

BACKGROUND

10

15

20

25

[0002] The present Application relates to composite materials, including textile- and fiber-reinforced cementitious composites. Specifically, the present Application relates to a flexible pre-fabricated textile and fiber reinforced cementitious composite capable of in-situ hydration (i.e. in place, on location, on a construction site, etc.). In-situ hydration allows for a liquid to be topically applied and react with cementitious material while the composite is positioned without disturbing the pre-fabricated nature of the composite. Such a cementitious composite material allows cementitious material to set and harden within the composite without requiring traditional mixing procedures.

[0003] Traditional textile-reinforced composites typically include at least one layer of a two-dimensional textile and a layer of concrete to form a laminated composite. Such laminated composites may exhibit excellent in-plane properties but poor inter-laminar properties due to a lack of reinforcement in the thickness direction (i.e. a direction orthogonal to a planar surface of the composite) or weak bonding of the layers. This deficiency exposes the composite to damage or delamination when experiencing interlaminar stresses. While traditional composites include plain weave fabrics or multiple layers of fabric to improve performance, these systems may still fail easily under loading.

[0004] Other cementitious composites include woven or knitted three-dimensional textiles configured to entrap cementitious material between two layers. Such woven or knitted three-dimensional textiles may not independently function to secure cementitious materials for in-situ hydration. These woven or knitted layers may need to be formed between other layers before they can entrap cementitious materials.

Document EP 0 876 524 B1 relates to reinforced concrete products. The document discloses a yarn having a core and a multitude of staple fibers. The core preferably comprises at least two twisted strands which form a mechanical connection with the staple fibers that are spun around the core. The yarn can be introduced into a concrete product for reinforcement.

30

35

40

SUMMARY

[0005] One exemplary embodiment of the present disclosure relates to a cementitious composite material for in-situ hydration having a mesh layer including a first side, a second side, and a plurality of discontinuous fibers arranged in a nonwoven configuration and coupled with one another; a cementitious material having a plurality of cementitious particles disposed within the mesh layer; a sealing layer disposed along the first side of the mesh layer and coupled to the plurality of discontinuous nonwoven fibers, and a containment layer disposed along the second side of the mesh layer and configured to prevent the plurality of cementitious particles from migrating out of the mesh layer.

[0006] Another exemplary embodiment of the present disclosure relates to a cementitious composite material for insitu hydration including a mesh layer having a first side, a second side, and a plurality of discontinuous fibers arranged in a nonwoven configuration intermediate the first side and the second side and coupled with one another; a cementitious material having a plurality of cementitious particles disposed within the mesh layer; a sealing layer disposed along the first side of the mesh layer and coupled to the plurality of discontinuous nonwoven fibers; and a coating disposed along the second side of the mesh layer and configured to prevent the plurality of cementitious particles from migrating out of the mesh layer.

[0007] Yet another exemplary embodiment of the present disclosure relates to a method for manufacturing a cementitious composite material. The method includes providing a mesh layer having a first side, a second side, and a plurality of discontinuous fibers arranged in a nonwoven configuration and coupled with one another, and disposed in at least one of a sheet and a roll, wherein the volume within the mesh layer and between the plurality of discontinuous nonwoven fibers defines an open space; providing a membrane coupled to the first side of the mesh layer; disposing a cementitious material comprising cementitious particles within the open space of the mesh layer; and positioning a containment layer along the second side of the mesh layer.

BRIEF DESCRIPTION OF THE DRAWINGS

55

[0008] The disclosure will become more fully understood from the following detailed description taken in conjunction with the accompanying drawings wherein like reference numerals refer to like elements, in which:

- FIG. 1 is a perspective view of operators installing a nonwoven cementitious composite in a canal lining application.
- FIG. 2 is an exploded, perspective view of a flexible nonwoven cementitious composite.
- FIG. 3 is a perspective view of a rolled nonwoven cementitious composite.
 - FIG. 4 is a schematic cross-sectional view of a nonwoven cementitious composite.
 - FIG. 5 is a side elevation view of a machine and method for manufacturing a nonwoven cementitious composite.
 - FIGS. 6-7 are perspective views of roller systems that may define apertures within a surface of a nonwoven cementitious composite.
- FIGS. 8a-1 le are side elevation views of various joining methods used to couple adjacent sections of nonwoven cementitious composites.
 - FIGS. 12a-12e are side elevation views of a method for filling a space between the structure layers of adjacent nonwoven cementitious composites.
- FIG. 13 is a graphical representation of experimental stress versus displacement data for various configurations of nonwoven cementitious composites.

DETAILED DESCRIPTION

[0009] Before turning to the figures which illustrate the exemplary embodiments in detail, it should be understood that the application may be not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology may be for the purpose of description only, and should not be regarded as limiting.

30 Composite Layers

5

10

15

35

40

55

[0010] Nonwoven cementitious composite materials may provide enhanced structural performance relative to concrete reinforced with traditional materials (e.g., fibers, rebar, etc.), traditional unidirectional textile reinforced concrete composites, and woven or knitted three dimensional textile concrete composites. Nonwoven cementitious composites include a dry cementitious mixture embedded in, or contained by, a structural layer that enables the cementitious material to undergo its normal setting and strength gain process after in-situ hydration to produce a rigid composite. Such a nonwoven structural layer may be independently formed and include interlocking fibers that form a free-standing material. Nonwoven cementitious composites may provide a solution that has improved structural performance per equal unit of volume, is lower cost, reduces labor costs, and requires less processing than traditional concrete or concrete composites. Further, the nonwoven fibers improve load bearing capabilities by distributing the energy of a load across the fibers. The nonwoven fibers also bridge crack faces in the cementitious phase to provide improved crack resistance and localize cracking to reduce crack propagation.

[0011] Hydration of nonwoven cementitious composites may be initiated in-situ (i.e. in place, on a job site, etc.). Therefore, the nonwoven cementitious composite may be transported to a location (e.g., canal, etc.) as a flexible composite material in a pre-packaged configuration (e.g., sheets, rolls, etc.) and hydrated on location. Such nonwoven cementitious composite materials may provide commercial, water conservation, and operational benefits. By way of example, nonwoven cementitious composites may be applied to form a canal lining, as shown in FIG. 1. Other applications for nonwoven cementitious composites may include the following: low to high flow channels, open-channel water conveyance canals, irrigation and drainage ditches, swales, culverts, jetties, groins, dikes, levees, reservoirs, check dams, interceptor ditches, horizontal drains, stream restoration and storm water management, seawall and bulkhead scour protection, landfill layering and capping, brown field layering and capping, mine shaft reinforcement, structural reinforcement, airfield or helipad construction, boat launch ramps, column and beam reinforcement, pipe repair, oilfield lining, holding basins, pond lining, pit lining, waste water lagoon lining, slope fortification, snow basin fortification, tieback fortification, berm lining, beach and shoreline restoration, as a road surface, driveways, sidewalks and walkways, form work lining, concrete waterproofing, a material for homes or other structures, landscaping, foundation linings, flooring, pool construction, patio construction, roofs, insulation and weatherproofing, as a replacement for stucco, for noise attenuation, and for retaining wall and embankment construction, among other applications.

[0012] According to the exemplary embodiment shown in FIG. 2, a composite, shown as nonwoven cementitious

composite 10, includes a plurality of layers. As shown in FIG. 2, such layers include a containment layer, shown as permeable layer 20, a cementitious layer, shown as cementitious layer 30, a three dimensional volume layer (i.e. mesh), shown as structure layer 40, and an impermeable (e.g., sealing) layer, shown as impermeable layer 50. According to an exemplary embodiment, permeable layer 20, cementitious layer 30, structure layer 40, and impermeable layer 50 may be disposed adjacent to one another and assembled into a sheet to form nonwoven cementitious composite 10. As shown in FIG. 2, structure layer 40 may be sandwiched between permeable layer 20 and impermeable layer 50. According to an exemplary embodiment, nonwoven cementitious composite 10 may have a thickness of between 0.5 and 4.0 centimeters pre-hydration. However, the thickness of nonwoven cementitious composite 10 may exceed 2.0 inches post- in-situ hydration when, by way of example, additives are included in cementitious layer 30 (e.g., expansive cement, etc.). According to an exemplary embodiment, which does not pertain to the scope of protection but is helpful for understanding the invention, nonwoven cementitious composite 10 does not include a permeable layer 20 or an impermeable layer 50 but does include a structure layer 40 that contains cementitious layer 30. As discussed in more detail below, it has been experimentally confirmed that cementitious layer 30 is capable of hardening within structure layer 40 without the use of a containment layer, such as permeable layer 20. Such a composite may include a structure layer 40 designed to control the flow of water into and out of the composite. According to an exemplary embodiment, control of water into nonwoven cementitious composite 10 may be performed by coupling other layers to structure layer 40. [0013] According to an exemplary embodiment, nonwoven cementitious composite 10 includes layers that are coupled together. Such coupling may reduce the relative movement between the layers pre-hydration (e.g., during the manufacturing process, during transportation, during installation, etc.) By way of example, impermeable layer 50 may be coupled (e.g., fused, integrally formed, welded, adhesively secured, melted, etc.) with structure layer 40. According to an exemplary embodiment, permeable layer 20 is coupled with structure layer 40. Such coupling may improve the structural characteristics of nonwoven cementitious composite 10 by facilitating load transfer between permeable layer 20 and structure layer 40. According to an exemplary embodiment, coupling structure layer 40 with permeable layer 20 or impermeable layer 50 may improve the structural characteristics of nonwoven cementitious composite 10 by facilitating load transfer between the lavers.

[0014] According to an alternative embodiment, the nonwoven cementitious composite is heated after cementitious layer 30 is disposed within structure layer 40 to fuse (e.g., shrink wrap, compress, etc.) structure layer 40. By way of example, nonwoven structure layer 40 may begin as 1.0 inch thick having 0.5 inches of cementitious layer 30 disposed within it. After heating, structure layer 40 may shrink to 0.5 inches thick. According to an exemplary embodiment, which does not pertain to the scope of protection but is helpful for understanding the invention, a portion of structure layer 40 (e.g., the fused portion) may replace permeable layer 20, impermeable layer 50, or both permeable layer 20 and impermeable layer 50.

[0015] Referring next to the exemplary embodiment shown in FIG. 3, nonwoven cementitious composite 10 may be arranged in a flexible sheet. As shown in FIG. 3, permeable layer 20, structure layer 40, and impermeable layer 50 are each flexible and disposed adjacent to one another. According to an exemplary embodiment, such a combination of flexible layers allows nonwoven cementitious composite 10 to be rolled to facilitate transportation and reduce the amount of cementitious material that migrates through permeable layer 20. According to an alternative embodiment, nonwoven cementitious composite 10 may be arranged in another configuration (e.g., various sheets that may be stacked, a sheet having a preformed shape, etc.).

[0016] According to an alternative embodiment, the nonwoven cementitious composite may include a different plurality of layers. By way of example, the nonwoven cementitious composite may include an impermeable layer, a structural layer, and a cementitious layer that includes a mixture of cementitious materials. Such a composite may utilize the structural layer to retain the cementitious material, may include a removable layer to retain the cementitious material during transport and in the application of composite 10, or may include another system designed to retain the cementitious material. According to various alternative embodiments, nonwoven cementitious composite 10 may include permeable layer 20 and impermeable layer 50, only impermeable layer 50, only permeable layer 20, or neither permeable layer 20 nor impermeable layer 50.

[0017] According to still another alternative embodiment, the nonwoven cementitious composite may include cutout voids extending entirely through the nonwoven cementitious composite. By way of example, the cutout voids may allow a fluid to drain through the composite after hardening. A nonwoven cementitious composite having cutout voids may be produced by forming voids in the structural or other layers either before or after manufacturing the composite. According to an exemplary embodiment, the cutout voids can be formed in any shape (e.g., triangle, circle, oval, diamond, square, rectangle, octagon, etc.). The volume of the composite removed to form the cutout voids may define between one and ninety percent of the total composite volume.

Structure Layer

10

15

20

25

30

35

40

50

55

[0018] According to an exemplary embodiment shown in FIGS. 2-4, structure layer 40 comprises a three dimensional

material having specific characteristics designed to facilitate the operation of nonwoven cementitious composite 10. By way of example, such characteristics of structure layer 40 may include low density, high void space, and discontinuities, among other characteristics. These characteristics improve the strength and transportability, among other features, of nonwoven cementitious composite 10. It has been observed that a structure layer 40 having strands arranged in a nonwoven configuration also reduces the prevalence and severity of shrink cracking within cementitious layer 30. Such a reduction may be produced because the nonwoven fibers limit crack propagation by bridging crack faces within the cementitious phase.

[0019] Referring to the exemplary embodiment shown in FIG. 4, structure layer 40 includes a plurality of discontinuous fibers, shown as strands 42. As shown in FIG. 4, strands 42 are arranged in a nonwoven configuration (e.g., randomly distributed, systematically arranged, arranged in a specified pattern, distributed non-uniformly, etc.). Such a structure layer 40 may comprise a structurally independent material. Strands 42 may be coupled where they intersect, overlap, or otherwise interface with one another. According to an exemplary embodiment, structure layer 40 comprises a lofty, open mat material (e.g., a scouring pad manufactured from silicon carbide, aluminum oxide, nylon, etc.). Such open mat materials are discussed in U.S. Patent Nos. 2,958,593; 3,537,121; and 4,437,271 in their entirety. According to an exemplary embodiment, the distances between non-overlapping strands 42 is between approximately half a micron and several millimeters.

10

15

20

25

30

35

40

55

[0020] As shown in FIG. 4, structure layer 40 includes an interstitial volume (e.g., open volume, void volume, etc.), shown as void 44 formed within structure layer 40 and defined by the interstitial volume between strands 42. According to an exemplary embodiment, void 44 represents between 80 and 99.8 percent by volume of structure layer 40. According to an alternative embodiment, void 44 represents between 95 and 99.8 percent by volume of structure layer 40. The volume of structure layer 40 that is comprised of void 44 impacts the density, weight, and other characteristics of structure layer 40 and nonwoven cementitious composite 10.

[0021] Referring still to the exemplary embodiment shown in FIG. 4, cementitious layer 30 is disposed within void 44 of structure layer 40. As shown in FIG. 4, cementitious layer 30 includes a plurality of constituents, shown as particles 32. According to an exemplary embodiment, cementitious layer 30 may be positioned within void 44 using physical vibration, compaction, or both vibration and compression, or another process. Additionally, the extent that cementitious layer 30 is compacted may impact the ability of water to flow through cementitious layer 30, the time required for hydration, setting, and hardening of cementitious layer 30, the strength of nonwoven cementitious composite 10, and the likelihood that cementitious material will migrate through permeable layer 20. It has been experimentally confirmed that a denser structure layer 40 may reduce the loss of cementitious layer 30 during the transportation and handling of the nonwoven cementitious composite.

[0022] According to an exemplary embodiment, structure layer 40 supports (i.e., holds, contains, reinforces, etc.) cementitious layer 30. By way of example, strands 42 of structure layer 40 may physically support cementitious layer 30 within void 44. Modifying the size, shape, or orientation of strands 42 that support cementitious layer 30 may improve the structural properties or hydration characteristics of nonwoven cementitious composite 10. By way of example, a slightly less open space (e.g., where void 44 is between 80 and 95 percent by volume of structure layer 40) with more densely arranged strands 42 may improve the strength of structure layer 40 but make it harder to fill, which may reduce the efficiency of manufacturing non-woven cementitious composite 10.

[0023] According to an alternative embodiment, the density of structure layer 40 transitions (i.e., changes) in at least one of the lateral, the longitudinal, and the thickness direction. In one embodiment, structure layer 40 includes a more open interstitial volume (e.g., between 95 and 99.8 percent of structure layer 40) formed at an interior portion of structure layer 40 and less open interstitial volume (e.g., between 80 and 95 percent of structure layer 40) formed towards the outer portions of structure layer 40 (i.e. a denser portion of structural material along the outsides of structure layer 40). In any embodiment having a changing density, the transition may be uniform or non-uniform. According to an exemplary embodiment, a portion of structure layer 40 (e.g., the denser portions) may supplement or replace permeable layer 20, impermeable layer 50, or both permeable layer 20 and impermeable layer 50.

[0024] According to an alternative embodiment, structure layer 40 may include void patterns (e.g., shapes cut through structure layer 40, three dimensional voids formed within structure layer 40, etc.). Such void patterns may be formed in structure layer 40 through cutting, forming, or another process. The void patterns may be formed during the primary manufacturing of structure layer 40 or subsequently as a secondary manufacturing process. According to an exemplary embodiment, the void patterns are randomly distributed or formed in sequence (e.g., a honeycomb, etc.). The void patterns may decrease the time required to dispose cementitious layer 30 in structure layer 40, improve the physical properties of composite 10 after in-situ hydration, or provide other advantages.

[0025] According to an exemplary embodiment, structure layer 40 may have independent mechanical properties apart from those of the other layers of nonwoven cementitious composite 10. By way of example, such mechanical properties may include tensile strength, elongation at break, and tear strength, among other known properties. These mechanical properties may vary, for example, based on the thickness, length, or coupling between strands 42. According to an exemplary embodiment, structure layer 40 has a thickness of between 0.25 inches and three inches. Such a structure

layer 40 may also have a weight of between 0.5 and 10 ounces per square foot.

[0026] The mechanical properties of structure layer 40 may also be impacted by the composition of strands 42, which may be manufactured from various known materials. According to an exemplary embodiment, strands 42 are polypropylene. According to an alternative embodiment, strands 42 are another material (e.g., silicon carbide, aluminum oxide, nylon, polypropylene, coconut fiber, cellulose fiber, other synthetic materials, other natural materials, etc.). The modulus of elasticity and geometry of structure layer 40 may affect the flexibility of nonwoven cementitious composite 10. Such a structure layer 40 having one of a lower modulus of elasticity or more open geometry may increase the pliability (e.g., lower radius of curvature) of nonwoven cementitious composite 10 (e.g., for shipping, to contain cementitious material, etc.).

[0027] According to an alternative embodiment, a coating may be disposed around at least a portion of the fibers. By way of example, the coating may be configured to improve various properties (e.g., strength, durability, etc.) of structure layer 40. As still a further example, the coating may improve the bond strength of the fibers within structure layer 40, of structure layer 40 to permeable layer 20 and impermeable layer 50, and of structure layer 40 to cementitious layer 30 after in-situ hydration. By way of example, the coating may include an abrasive coating (e.g., similar to a Scotch-Brite® heavy duty scouring pad), a coating to provide resistance to ultraviolet light, a coating to protect strands 42 from the cementitious materials (e.g., improved alkaline resistance), or still another known coating.

[0028] According to an alternative embodiment, nonwoven cementitious composite 10 includes a scrim lining (e.g., reinforcing material, geotextile, geogrid, another nonwoven material, a woven material, etc.) coupled (e.g., fused, integrally formed, joined, etc.) to structure layer 40. A scrim lining may be coupled to one or more surfaces of structure layer 40 or disposed within structure layer 40. A scrim lining made from a similar material as permeable layer 20 may improve bonding of permeable layer 20 to structure layer 40 (e.g., when the scrim is disposed along the bonding interface). The scrim lining may improve the tensile strength of structure layer 40 and nonwoven cementitious composite 10 both before and after in-situ hydration. By way of example, a loosely assembled structure layer 40 may have a tendency to separate, and a scrim lining may reinforce structure layer 40 to prevent such separation.

[0029] According to an alternative embodiment, the structure layer may include a plurality of nonwoven portions coupled together. The plurality of nonwoven portions may be different materials, have different densities, or have other distinct characteristics. According to an exemplary embodiment, a first nonwoven portion may interface with one or more additional nonwoven portions having different properties than the first nonwoven portion. In some embodiments, the first nonwoven portion is intertwined with another nonwoven portion. In other embodiments, the first nonwoven portion is stacked with another non-woven portion. According to an exemplary embodiment, the various portions may be coupled (e.g., fused, integrally formed, joined, etc.) with one another. A structure layer that includes different nonwoven portions may provide unique mechanical and structural properties in at least one of the lateral, the longitudinal, and the thickness direction of the nonwoven cementitious composite (i.e. a direction orthogonal to a planar surface of the composite) before and after in-situ hydration. By way of example, a first nonwoven portion having short strands configured to provide localized strength disposed within (i.e. intertwined) a second nonwoven portion having longer strands configured to provide durability and prevent separation of the structure layer. Together, the first and second nonwoven portions may provide both localized strength and durability for the nonwoven cementitious composite.

Cementitious Layer

10

15

20

25

30

35

40

55

[0030] Referring again to the exemplary embodiment shown in FIGS. 2-4, cementitious layer 30 comprises materials that set and harden once exposed to a fluid (e.g., water) through a hydration process. According to an exemplary embodiment, cementitious layer 30 is disposed within structure layer 40 and undergoes its normal setting and hardening process after in-situ hydration.

[0031] The setting process may begin once cementitious layer 30 interacts with a fluid (e.g., water). Such hydration and setting processes change cementitious layer 30 from a powder to a solid material. While setting produces a hardened material, curing may improve the strength of nonwoven cementitious composite 10. According to an exemplary embodiment, cementitious layer 30 has a compressive strength of between two and five thousand pounds per square inch. According to an alternative embodiment, cementitious layer 30 is modified with high performance cementitious ingredients and additives to achieve strength values in excess of five thousand pounds per square inch.

[0032] According to an exemplary embodiment, water is added to cementitious layer 30 to initiate the hydration processes. An operator may topically apply water to the surface of nonwoven cementitious composite 10 in-situ to set and harden cementitious layer 30. In some embodiments, in-situ hydration may occur where nonwoven cementitious composite 10 is horizontal, positioned at an angle, or positioned over a curved surface without undermining the strength of nonwoven cementitious composite 10. According to an exemplary embodiment, nonwoven cementitious composite 10 may be hydrated even if positioned at up to a 90 degree angle relative to level. It has been experimentally confirmed that a portion of nonwoven cementitious composite 10 positioned at a steeper angle (e.g., at a steeper flat angle, a steeper portion of a curved surface, etc.) may require a greater quantity of water to hydrate. Such additional water may

be advantageous because a portion of the applied water flows over, without being absorbed by, nonwoven cementitious composite 10. In these or other embodiments, cementitious layer 30 may set without segregating and bleeding.

[0033] The characteristics of the hydrated nonwoven cementitious composite 10 may be affected by the particle size of the constituent elements of cementitious layer 30. By way of example, particle size and density may affect the homogeneity of cementitious layer 30 thereby impacting various properties (e.g., strength, flexibility, etc.) of nonwoven cementitious composite 10. According to an exemplary embodiment, the constituent particles of cementitious layer 30 have an approximately equal particle size (e.g., within 150 microns). According to an alternative embodiment, the constituent particles of cementitious layer 30 may have different sizes (i.e. a variation of more than 150 microns) that vary between 0.5 and 450 microns. A cementitious layer 30 having differentially sized particles may improve packing and minimize open space within cementitious layer 30.

[0034] According to an exemplary embodiment, cementitious layer 30 comprises a single material (e.g., Portland cement, etc.). According to an alternative embodiment, cementitious layer 30 includes a mixture of materials such as cement, supplementary cementitious materials (e.g., fly ash, silica fume, slag, metakaolin, etc.), aggregates (e.g., fine aggregates, course aggregates, sand, etc.), and additives (e.g., fibers, plasticizers, accelerators, retarders, super absorbent polymers, etc.). According to an exemplary embodiment, cementitious layer 30 comprises approximately twenty-five percent Portland cement, twenty-five percent high alumina cement (e.g., Quix), forty-eight percent fine aggregates, and two percent non-chloride accelerator. As discussed below, this mix ratio has been experimentally confirmed to be particularly suited for use within nonwoven cementitious composite 10.

[0035] According to another exemplary embodiment, cementitious layer 30 includes an additive. Such an additive may be used to improve the mechanical properties (e.g., strength, setting time, curing requirements, thermal coefficient of expansion, etc.) or durability, among other characteristics, of the cement or may be used as a substitute for a portion of the cementitious materials. According to an exemplary embodiment, the additive includes a pozzolonic material (e.g., fly ash, bottom ash, silica fume, slag, metakaolin, etc.) added at a specified mix ratio.

[0036] According to an exemplary embodiment, cementitious layer 30 is cured using an external curing process. By way of example, such external curing may include water ponding. According to various alternative embodiments, the external curing process includes water spraying, wet burlap, sheeting, curing compounds, absorbent sands, and accelerated curing, among other known methods. According to an alternative embodiment, permeable layer 20 formed of a hydrophilic material (e.g., paper, cellulose based materials, etc.) may improve curing by holding water to prolong exposure of cementitious layer 30 to a fluid. According to an alternative embodiment, permeable layer 20 formed of a coating material having fewer apertures may improve curing by reducing the evaporation of water from cementitious layer 30. [0037] According to still another alternative embodiment, cementitious layer 30 is cured using an internal curing process. According to an exemplary embodiment, cementitious layer 30 is cured using internal water curing where cementitious layer 30 includes a component that serves as a curing agent to the cementitious mixture. Such a component may include either an aggregate or a new component (e.g. an additive, super absorbent polymer, special aggregate, etc.) introduced into cementitious layer 30 during the manufacturing process. Further, hydrophilic additives (e.g., super absorbent polymers, etc.) may improve curing by facilitating the ingress of water within cementitious layer 30. According to an exemplary embodiment, structure layer 40 may hold (e.g., secure, trap, etc.) water within the open space to improve curing of cementitious layer 30. According to an alternative embodiment, structure layer 40 is hydrophilic (e.g., absorbent, etc.) and facilitates the absorption of water into cementitious layer 30.

Permeable Layer

10

15

20

25

30

35

40

45

55

[0038] Referring again to the exemplary embodiment shown in FIG. 4, permeable layer 20 facilitates the dispersion of a fluid (e.g., water, etc.) into nonwoven cementitious composite 10 while retaining cementitious layer 30. Permeable layer 20 may include specified characteristics that manage the flow of the fluid through permeable layer 20. According to an exemplary embodiment, the specified characteristics allow for the hydration of cementitious layer 30 without allowing the cementitious material to migrate from structure layer 40 (e.g., during handling before in-situ hydration, during in-situ hydration, etc.). In other embodiments, the specified characteristics may also maintain the mix ratio of cementitious layer 30 during the hydration and hardening processes. Further, permeable layer 20 may maintain the level of compaction of cementitious layer 30 by applying consistent pressure to the cementitious material. According to an exemplary embodiment, less than 10 percent by weight of cementitious layer 30 migrates through permeable layer 20 prior to in-situ hydration. In some embodiments, up to 10 percent by weight of cementitious layer 30 may migrate through permeable layer 20 without compromising the structural performance of nonwoven cementitious composite 10 after in-situ hydration. [0039] According to an exemplary embodiment, permeable layer 20 comprises a woven or nonwoven polyolefin of the same family as structure layer 40 (e.g., polypropylene). Manufacturing both layers from similar materials facilitates the coupling of permeable layer 20 to structure layer 40 (e.g., by melting, ultrasonic welding, adhesive, etc.) and improves bond strength. According to an alternative embodiment, permeable layer 20 and structure layer 40 comprise different materials but may still be coupled together (e.g., with an adhesive, etc.). By way of example, permeable layer 20 may

comprise a sand blasting fabric having a resistance to ultraviolet light (e.g., white FR/UV sandblasting fabric 27600 as manufactured by TenCate, NW6 polypropylene fabric manufactured by Colbond, etc.). According to an exemplary embodiment, permeable layer 20 has a weight of approximately six ounces per square yard. According to an alternative embodiment, permeable layer 20 comprises Grade 354 Airtex as manufactured by Georgia-Pacific, which has a weight of between 0.16 and 0.32 ounces per square foot.

[0040] According to an exemplary embodiment, permeable layer 20 includes a plurality of apertures, among other features, having a specified shape, area, frequency, or spacing. By way of example, the apertures may have a specified shape (e.g., circular, ovular, rectangular, etc.), depending on the particular application of nonwoven cementitious composite 10. According to an exemplary embodiment, the size of the apertures may also be specified. By way of example, oversized apertures may allow sieving of cementitious layer 30 prior to in-situ hydration. In contrast, undersized apertures may provide too slow or incomplete hydration of cementitious layer 30. According to an exemplary embodiment, the apertures are designed to prevent particles less than fifteen microns from migrating from nonwoven cementitious composite 10 and have an area of between 0.001 and 3 square millimeters.

10

15

20

25

30

35

40

55

[0041] According to an exemplary embodiment, the frequency of the apertures may be specified to facilitate the transfer of water into cementitious layer 30. According to an exemplary embodiment, permeable layer 20 includes between one and twelve thousand apertures per square inch. According to an alternative embodiment, permeable layer 20 is a permeable material that does not include apertures (e.g., a fibrous material, paper, etc.).

[0042] According to an exemplary embodiment, permeable layer 20 is coupled to structure layer 40 during the manufacturing process. Such a permeable layer 20 may be designed as a removable product that does not remain coupled with structure layer 40 throughout the life of nonwoven cementitious composite 10. According to an exemplary embodiment, permeable layer 20 comprises a containment sheet (e.g., biodegradable paper, water soluble plastic, etc.) that secures cementitious layer 30 during the transportation of nonwoven cementitious composite 10. In some embodiments, the containment sheet may be removed before or after the nonwoven cementitious composite 10 is in place in the field. Such removal of the containment sheet may occur either before or after in-situ hydration. In either embodiment, permeable layer 20 may include flow channels (e.g., perforations) designed to facilitate the flow of water into cementitious layer 30. According to an alternative embodiment, permeable layer 20 is not removed and erodes in the field from weathering without compromising the structural performance of nonwoven cementitious composite 10. According to an alternative embodiment, permeable layer 20 is treated with a coating (e.g., for ultraviolet resistance, etc.) to extend service life in the field

[0043] According to still another alternative embodiment, permeable layer 20 may comprise a coating (e.g., elastomeric coatings, acrylic coatings, butyl rubber coatings, hypalon® coatings, neoprene® coatings, silicone coatings, modified asphalt coatings, acrylic lacquer coatings, urethane coatings, polyurethane coatings, polyurea coatings, one of various coatings approved for potable water, any combination of two or more coating materials, etc.). Such a coating may be applied through various known techniques (e.g., spraying, etc.) in one of a single and plural component form such that the material dries (i.e. sets, cures, etc.) into one of a permeable and impermeable coating. According to an exemplary embodiment, permeable layer 20 is AquaVers 405 as manufactured by Versaflex and has a thickness of between 0.07 and 2.0 millimeters. According to an alternative embodiment, the coating is another material having a low modulus of elasticity and a percent elongation of between 5 and 1000 percent. According to an alternative embodiment, a primer may be applied to a side of structure layer 40 before permeable layer 20 is sprayed on to improve bond strength (e.g., epoxy primers, acrylic primers, etc.). According to an alternative embodiment, additional treatment coatings may be applied to permeable layer 20 (e.g., to change the texture, color, etc. of permeable layer 20). In some embodiments, the additional treatment coating may be applied after an initial coating is applied. In still other embodiments, the additional treatment coating is applied over the various other materials discussed above for permeable layer 20 (e.g., woven or nonwoven polyolifin, etc).

[0044] According to an exemplary embodiment, coating materials used for permeable layer 20 include three dimensional voids. Such a three dimensional void may comprise a sidewall configured to secure cementitious layer 30 within nonwoven cementitious composite 10. According to an exemplary embodiment, the three dimensional void is cone shaped. Such a cone shaped three dimensional void includes a larger cross sectional area along an outer surface of permeable layer 20 to draw water inward and a smaller cross sectional area proximate to cementitious layer 30 to prevent the cementitious material from migrating out of nonwoven cementitious composite 10. According to an alternative embodiment, the three dimensional void may have another shape (e.g., tetrahedral, etc.). Apertures having various shapes (e.g., triangle, circle, oval, diamond, square, rectangle, octagon, etc.) may also be formed in the coating.

[0045] Where permeable layer 20 comprises a coating, three dimensional voids or apertures (e.g., tetrahedral shaped, diamond shaped, etc.) may partially close when nonwoven cementitious composite 10 is rolled. Partially closing the apertures may better secure the cementitious material (e.g., during transportation, etc.). Certain shapes (e.g., tetrahedral, diamond, etc.) may close more securely than other shapes. As the radius of curvature increases from rolling, tension on permeable layer 20 increases and deforms the coating in the direction of the curve. Such deformation decreases the size (e.g., diameter, etc.) of the three dimensional voids or apertures in direction opposite of the curve. According to an

exemplary embodiment, three dimensional void or aperture returns to its original shape and size when unrolled.

[0046] According to an alternative embodiment, forming three dimensional voids or apertures with a material removal tool (e.g., laser, electron beam, a blade, etc.) fully removes the coating material in the three dimensional void or aperture. Such a process may prevent the three dimensional voids or apertures from closing or refilling. Apertures otherwise formed (e.g., with a point, etc.) may become refilled and require subsequent processing.

[0047] According to an alternative embodiment, permeable layer 20 is manufactured from a coating material that dries water-permeable such that apertures are not necessary to facilitate the transfer of hydration water. However, perforations may be added to permeable layer 20 comprising a water-permeable material to further promote the hydration of cementitious layer 30. According to an alternative embodiment, a side of structure layer 40 is not entirely covered by the coating but nonetheless contains the cementitious material and allows for hydration (e.g., without the need for separate three dimensional voids or apertures).

[0048] According to an exemplary embodiment, permeable layer 20 is sprayed onto a side of structure layer 40 and apertures are thereafter defined within permeable layer 20 (e.g., with a roller having points, a plate having points, etc.). Whether provided as a sheet, a product applied through spraying, or another product, permeable layer 20 may also include a texture (e.g., by including an abrasive within the coating, etc.) or coefficient of friction designed to allow for improved traction for objects (e.g., vehicles, people, etc.) moving across permeable layer 20. According to an alternative embodiment, permeable layer 20 may have a smooth surface, a surface designed to facilitate the flow of water into nonwoven cementitious composite 10, or a decorative finish.

Impermeable Layer

10

15

20

25

30

35

40

55

[0049] Referring again to the exemplary embodiment shown in FIG. 4, impermeable layer 50 comprises a material capable of retaining cementitious layer 30 and hydration water without degrading after interacting with the cementitious material. As shown in FIG. 4, impermeable layer 50 is coupled along a side (e.g., a lower side) of structure layer 40. Where impermeable layer 50 is positioned along a lower side of structure layer 40, impermeable layer 50 may experience a portion of the flexural and tensile stresses. Such a position may improve the strength and ductility of nonwoven cementitious composite 10. In some embodiments, impermeable layer 50 is a sheet that comprises a flexible material (e.g., to facilitate rolling nonwoven cementitious composite 10) that is capable of being coupled with structure layer 40 without allowing a fluid to seep through. According to an alternative embodiment, impermeable layer 50 may be integrally formed with or otherwise coupled to structure layer 40. According to an alternative embodiment, impermeable layer 50 may protect cementitious layer 30 from exposure to certain chemicals (e.g., from sulfate introduced by soils in the field, etc.).

[0050] According to an alternative embodiment, impermeable layer 50 comprises a geomembrane. Such a geomembrane may comprise various materials (e.g., synthetic sheeting, single-ply membrane, another type of membrane used for waterproofing, etc.). According to an exemplary embodiment, the geomembrane comprises a polyolefin film having a thickness of between 0.075 and 2.5 millimeters. According to an exemplary embodiment, impermeable layer 50 comprises extruded polypropylene or a reinforced polypropylene that provides improved puncture resistance and tensile strength relative to other materials. Reinforced materials (e.g., externally reinforced with nonwoven polyester fabric, internally reinforced with polyester scrim, reinforced with a woven fabric, reinforced with a non-woven fabric, a geogrid, or otherwise reinforced) allow for the use of a thinner membrane thereby reducing the overall weight or thickness of nonwoven cementitious composite 10. Specific exemplary polypropylene films include TT422 and TG 4000 as manufactured by Colbond or UltraPly TPO XR 100 as manufactured by Firestone.

[0051] According to an alternative embodiment, impermeable layer 50 may comprise another material (e.g., bituminous geomembrane, ethylene propylene diene monomer, low-density polyethylene, high-density polyethylene, polyvinyl chloride, polyurea and polypropylene, etc.). The material selected for impermeable layer 50 may have characteristics that improve the pliability, installation procedures, lifespan, and performance of nonwoven cementitious composite 10. By way of example, polyvinyl chloride is flexible and may conform to uneven surfaces without tearing. According to an exemplary embodiment, a specific manufacturing technique, tensile strength, and ductility may be selected for impermeable layer 50 to best suit a particular application of nonwoven cementitious composite 10.

[0052] According to still another alternative embodiment, impermeable layer 50 may comprise a coating (e.g., elastomeric coatings, acrylic coatings, butyl rubber coatings, hypalon® coatings, neoprene® coatings, silicone coatings, modified asphalt coatings, acrylic lacquer coatings, urethane coatings, polyurethane coatings, polyurea coatings, one of various coatings approved for potable water, any combination of two or more coating materials, etc.) that may be applied through various known techniques (e.g., spraying, etc.). It should be understood that the thickness, material selections, and other discussion regarding permeable layer 20 are applicable to impermeable layer 50. According to an exemplary embodiment, permeable layer 20, impermeable layer 50, and the side portions of nonwoven cementitious composite 10 comprise the same coating material. According to an alternative embodiment, permeable layer 20 and impermeable layer 50 comprise different materials. In either embodiment, permeable layer 20 and impermeable layer

50 may be applied simultaneously or successively.

[0053] According to still another embodiment, which does not pertain to the scope of protection but is helpful for understanding the invention, nonwoven cementitious composite 10 does not include an impermeable layer 50 and instead includes an additional permeable layer. Such a permeable layer may allow nonwoven cementitious composite 10 to fuse with substrates (e.g., existing concrete structures, etc.). By way of example, a permeable material may allow cementitious layer 30 to partially diffuse post-in-situ hydration and bond with a substrate below. External curing processes, internal curing processes (e.g., curing performed with compounds such as liquid polymer additives, etc.), or various additives in cementitious layer 30, may further improve the bond between nonwoven cementitious composite 10 and a substrate.

Manufacture and Installation

10

15

20

25

30

35

40

50

55

[0054] Referring next to FIG. 5, the nonwoven cementitious composite is manufactured using a line assembly machine, shown as machine 100. Machine 100 may operate continuously (i.e. provide material through at a constant rate for a period of time) or may engage in an indexed operation mode where material is fed, stopped (e.g., to allow machine 100 to perform an operation), and thereafter again fed through machine 100. As shown in FIG. 5, machine 100 includes an initial roll of material, shown as feeder 110. According to an exemplary embodiment, feeder 110 comprises a rotation system having a rotation device, shown as gear reducer 112 and motor 113 a core coupled to the motor, and a length of initial material, shown as material 114, wrapped around the core. It should be recognized that the rotation of the core by gear reducer 112 and motor 113 allows material 114 to feed off of the roll.

[0055] According to an exemplary embodiment, material 114 comprises a composite having an impermeable layer disposed along a bottom surface of a structural layer. By way of example, a manufacturer may receive material 114 having an impermeable and a structural layer from another supplier or may pre-assemble these layers, among other alternatives. According to an alternative embodiment, material 114 does not include a structural layer (e.g., includes only an impermeable layer, etc.). An assembly machine receiving such a material 114 may include additional components configured to thereafter (e.g., as a separate step, etc.) position a structural layer along a first side of the impermeable layer. According to still another alternative embodiment, material 114 does not include an impermeable layer (e.g., includes only a structural layer, etc.). An assembly machine receiving such a material 114 may include additional components configured to thereafter position an impermeable layer along a first side of the structural layer.

[0056] Referring again to the exemplary embodiment shown in FIG. 5, machine 100 feeds material 114 through a dispenser, shown as cementitious dispenser 130. As shown in FIG. 5, cementitious dispenser 130 includes a hopper, shown as container 132 and a dispensing end, shown as distributor 136 configured to deposit cementitious material onto material 114 as it passes below cementitious dispenser 130. In some embodiments, distributor 136 may be shaped (e.g., rectangular, adjustable, etc.) to facilitate even distribution of cementitious material onto material 114.

[0057] As shown in FIG. 5, material 114 having received cementitious material from cementitious dispenser 130 thereafter passes over a compactor, shown as vibratory table 135. According to an exemplary embodiment, vibrations from vibratory table 135 compact (i.e. fills, disposes, impregnates, etc.) cementitious material within the structural layer of material 114 to form a uniform cementitious layer. According to the exemplary embodiment shown in FIG. 5, machine 100 includes a physical compactor, shown as rollers 137. In some embodiments, rollers 137 are configured to compress material 114 with a pressure of between 200 and 10,000 pounds per square inch. Such rollers 137 may replace vibratory table 135 or may be positioned before, after, or with vibratory table 135 within machine 100. Rollers 137 may also move material 114 through machine 100. According to an alternative embodiment, machine 100 includes a hydraulic press or other type of physical compactor. According to an alternative embodiment, machine 100 incorporates a vacuum system configured to draw cementitious material into the structure layer (e.g., where the composite material does not include an impermeable layer). As shown in FIG. 5, machine 100 includes a second cementitious dispenser 130 and vibratory table 135 to dispense and compact additional cementitious material within the structural layer of material 114.

[0058] In some embodiments, machine 100 further includes a rotary brush 140 configured to expose or clean at least a portion (e.g., 0.5 millimeters, 1 millimeter, 2 millimeters, etc.) of the strands within material 114 (i.e. a top portion of the structure layer). According to an exemplary embodiment, removing a portion of the compacted cementitious material or cleaning the nonwoven strands more fully allows additional layers, such as a permeable layer, to bond to the structural layer. According to an alternative embodiment, exposure or cleaning of the nonwoven strands may be accomplished using another device (e.g., an air nozzle, a vacuum system, etc.). According to still another alternative embodiment, machine 100 does not include rotary brush 140 (e.g., cementitious dispenser 130 and vibratory table 135 may not entirely fill the structural layer with cementitious material, cleaning the nonwoven strands may not be required, etc.).

[0059] Referring again to the exemplary embodiment shown in FIG. 5, a quality measurement may be taken with a measurement device, shown as density measurement system 150. By way of example, density measurement system 150 may include a scale configured to weigh the material 114 or ultrasound device to measure density of material 114 to ensure cementitious dispenser 130 provided a preferred amount of cementitious material. According to an alternative

embodiment, quality may be otherwise ensured, and machine 100 may not include density measurement system 150. Another alternative embodiment utilizes a measurement device configured to determine the length of fibers extending from the structure layer to confirm the proper level of cementitious material is dispensed. If the density measurement is out of specification, machine 100 may enter a trouble mode (e.g., by stopping processing material 114, by sounding an alarm, etc.). An operator may manually add cementitious material to material 114, clear the machine from the trouble mode, and re-start machine 100. According to an alternative embodiment, machine 100 may automatically add an appropriate amount of cementitious material to bring the density into specification.

[0060] As shown in FIG. 5, machine 100 may deposit a coating onto material 114 with an applicator, shown as sprayer 160 to form an upper containment layer. As discussed above, such a coating may include elastomeric coatings, acrylic coatings, butyl rubber coatings, hypalon® coatings, neoprene® coatings, silicone coatings, modified asphalt coatings, acrylic lacquer coatings, urethane coatings, polyurethane coatings, polyurea coatings, one of various coatings approved for potable water, any combination of two or more coating materials, or still other coatings. In some embodiments, the coating is configured to secure the cementitious material provided by cementitious dispenser 130 within material 114. A single sprayer may be configured on a track to move across material 114 or one or more spray units may be stationary and configured to apply a coating to at least one of the top, sides, and ends of material 114. According to an exemplary embodiment, the coating is applied in a one of a single and plural component and allowed to cure (i.e. dry, set, etc.) as it travels along a curing section 170.

10

15

20

25

30

35

40

55

[0061] According to an alternative embodiment, a film, sheet, or other configuration of material may be applied by machine 100 to form an upper containment layer. Such a film or sheet may be melted, welded, or adhesively secured to the structural layer of material 114. According to an exemplary embodiment, melting involves increasing the temperature of the upper containment layer, side containment layers, or the top portion of the structure layer to just below a melting point and thereafter applying the upper and side containment layers to material 114. According to an alternative embodiment, ultrasonic welding involves compressing the upper containment layer against the structure layer and thereafter passing material 114 under an ultrasonic welder having arms configured to fold down the containment layer and seal the sides and ends of material 114. According to still another alternative embodiment, the upper or side containment layer may be adhesively secured to the structure layer.

[0062] According to the exemplary embodiment shown in FIG. 5, apertures and indentations are defined within the upper containment layer with a perforator, shown as perforator 180. As discussed above, such three dimensional voids or apertures may be configured to facilitate the hydration process while containing the cementitious material within the nonwoven cementitious composite (e.g., during transportation, handling in the field, etc.). According to an exemplary embodiment, perforator 180 includes a laser (e.g., a continuous, a pulsed, etc.) or an electron beam, such as those discussed above, configured to produce the three dimensional voids or apertures. Such a perforator 180 may create the three dimensional voids or apertures without contacting or damaging the impermeable layer, structural layer, or the upper layer of material 114. Perforator 180 may have one or more lasers, depending on width and surface speed of material 114.

[0063] According to an alternative embodiment, perforator 180 includes sharpened points to puncture the upper containment layer when pressure is applied. Such points may be arranged to create a preferred size, shape, and frequency of perforations. In some embodiments, the length of the points may be specified to prevent damaging at least one of the structural layer and the impermeable layer. As shown in FIG. 5, perforator 180 may include a press configured to move vertically and physically interact with upper containment layer to create a plurality of perforations.

[0064] According to the alternative embodiment shown in FIG. 6, the plurality of apertures and indentations may be formed using a rotational perforator, shown as roller 182. As shown in FIG. 6, roller 182 includes a bottom roller, shown as lower roller 183 configured to apply pressure to the bottom of material 114 and an upper roller, shown as pointed roller 184. In some embodiments, material 114 is drawn between lower roller 183 and pointed roller 184 during the initial manufacturing process.

[0065] According to an alternative embodiment, an operator may create the perforations after the initial manufacturing process using a roller, such as roller 182 shown in FIG. 6. The roller utilized by the operator may be operated manually or may include a drive system configured to facilitate the operation of roller 182. In some embodiments, roller 182 is coupled to the equipment used to unroll nonwoven cementitious composite 10 in the field such that material 114 is drawn between lower roller 183 and pointed roller 184 to form apertures in the field. As shown in FIG. 7, the plurality of perforations may be alternatively applied by an operator using a roller, shown as roller 186. Such a roller 186 may be utilized by an operator either before or after positioning the nonwoven cementitious composite.

[0066] According to an exemplary embodiment, machine 100 includes a sealing system configured to seal the sides and ends of material 114. Such a sealing system may include additional sprayers configured to apply a coating to the sides and ends of material 114, a roller configured to fold a portion of the impermeable membrane over the sides and ends, or another system. According to an exemplary embodiment, sealing the sides and ends of material 114 further contains the cementitious material within material 114 and prevents it from migrating from the structure layer (e.g., during handling, transportation, installation, etc.).

[0067] Referring again to the exemplary embodiment shown in FIG. 5, machine 100 includes a take-up roll, shown as processed roller 120. As shown in FIG. 5, processed roller 120 includes a quantity of processed material, shown as material 124 disposed around a core. According to an exemplary embodiment, the core is coupled to a driver, shown as gear reducer 122 and motor 123. In some embodiments, gear reducer 122 and motor 123 may rotate and apply a driving force that draws material 114 through machine 100. According to an exemplary embodiment, material 124 is vacuum sealed either as an entire roll positioned on processed roller 120 or after it travels through curing section 170. According to an alternative embodiment, sheets of material 114 may be vacuum sealed individually or as a stacked group. Such sealing facilitates transportation and handling of the nonwoven cementitious composite.

[0068] Referring next to the exemplary embodiment shown in FIGS. 8a-11e, two sheets or rolls of nonwoven cementitious composite 10 may be joined together either during the initial manufacturing process (i.e. before an operator receives the product) or by an operator either before or after installation. Each sheet may have a width of between one and fifteen feet and may be configured in a square, rectangle, or other shape having an area between one and two hundred square feet. Each roll may have a width of between one and twenty feet and a length of ten to one thousand feet. [0069] Various lapping configurations may be utilized to join adjacent sheets or rolls of nonwoven cementitious composite 10 to produce a continuous and waterproof surface or water-resistant surface. As shown in FIGS. 8a-8d, the sheets or rolls have an impermeable layer 50 that extends laterally outward past an edge of permeable layer 20 thereby creating a flange having an upper surface configured to receive a bottom surface of an adjacent nonwoven cementitious composite 10. According to the alternative embodiment shown in FIGS. 9a-9c, adjacent nonwoven cementitious composites 10 both include impermeable layers 50 that extend laterally outward past edges of permeable layers 20 thereby creating a pair flanges. According to an exemplary embodiment, the flanges have a length of between 0.5 inches and 8.0 inches.

10

15

20

25

30

35

40

55

[0070] According to still another alternative embodiment shown in FIGS. 10a-11e, adjacent nonwoven cementitious composites 10 include impermeable layers 50 that do not extend laterally outward past an edge of permeable layers 20. Such composites may be joined with an adhesive applied (e.g., as lines, in a pattern, etc.) to a surface of nonwoven cementitious composite 10, or a backing strip (e.g., a separate piece of impermeable membrane, etc.). According to an alternative embodiment the adhesive may be applied in the form of a sheet secured to a portion of one nonwoven cementitious composite 10 or to a backing strip. It should be understood that various contacting surfaces of nonwoven cementitious composite 10 may be etched, sanded, or otherwise abraded to improve the bond strength of the adhesive joint.

[0071] According to still another alternative embodiment shown in FIGS. 8c, 9c, and 10c, adjacent nonwoven cementitious composites 10 may be welded together (e.g., with hot air, ultrasonic, etc.) either with a backing strip or with flanges. In embodiments where welding is used, the flanges preferably have an equal length longer than the width of the welder horn (shown representationally in FIGS. 8c, 9c, and 10c). Welding in the field may be accomplished by an operator using a portable welder (e.g., hot air, ultrasonic, etc.) that may have a guide to set the proper distance for welding without damaging the impermeable layer or other layers of the nonwoven cementitious composite. Such a portable welder may also include rollers to facilitate constant movement thereby improving the quality of the welded joint. According to yet another alternative embodiment, adjacent nonwoven cementitious composites 10 do not include flanges and are instead joined with mortar or an adhesive as shown in FIG. 10d or with stakes, as shown in FIGS. 11d-e.

[0072] According to an exemplary embodiment shown in FIGS. 12a-12e, the joined nonwoven cementitious composites 10 may have a gap, shown in FIG. 12a as space 200 formed above the interfacing flanges. As shown in FIG. 12b, the joint is reinforced by a nonwoven material, shown as structure layer 210 disposed within space 200. According to an exemplary embodiment, a portion of structure layer 210 may be coupled (e.g., adhesively secured, ultrasonically welded, melted, etc.) to the flanges of the adjacent nonwoven cementitious composites 10. According to an alternative embodiment, the joint may not include structure layer 210 or may include another type of reinforcing material.

[0073] As shown in FIG. 12c, cementitious material, shown as cementitious layer 220 is positioned within structure layer 210. According to an exemplary embodiment, cementitious layer 220 may comprise a cementitious mixture discussed above, a faster-setting cementitious material, a cementitious material having fibers at a higher volume fraction for increased toughness, or includes latex to improve the ductility of the joints. Such a cementitious layer 220 may be compacted (e.g., with a mobile compactor or physically compacted, etc.) within structure layer 210. According to an alternative embodiment, cementitious layer 220 may be positioned within space 200 without a structure layer 210.

[0074] In either embodiment, the manufacturer or operator may thereafter hydrate the cementitious layer to form a hydrated layer 230, as shown in FIG. 12d. Such hydration of cementitious layer 220 may occur after or with hydration of nonwoven cementitious composite 10. According to the exemplary embodiment, shown in FIG. 12e, a coating 240 is applied. Such a coating 240 may be applied after in-situ hydration, may provide a non-slip surface, may serve aesthetic purposes, or may serve another purpose. According to an alternative embodiment, a hydrophilic rubber waterstop is disposed within space 200. Such a sealant may include Adeka ultra seal MC-2010mn.

Experimental Testing

10

15

20

25

30

35

40

45

50

55

[0075] Applicants conducted several experiments during the development process of the subject matter disclosed in this Application. A first experiment evaluated various materials and configurations for the permeable layer, the structural layer, the cementitious layer, and the impermeable layer of the nonwoven cementitious composite. The materials tested for each layer during the various experiments are hereinafter discussed. The first experiment confirmed that the combination of the cementitious material and the nonwoven structure layer provide a composite material having an unexpectedly high strength relative to traditional cementitious composites. The experiment also provided various exemplary materials and mixtures for the various layers of the nonwoven cementitious composite.

[0076] A first portion of the first experiment tested various materials for the permeable layer using a constant mixture of cementitious material. Such materials included geotextile systems provided by Propex (NW 401, NW 601, and NW 801 nonwoven geotextiles and NM 104-F woven geotextile), Nilex Civil Environmental Group (NW 1601 nonwoven geotextile, GT 4X4 HF, 200 ST, and 315 ST woven geotextile, C-125 erosion control blanket, and P-300 and P-550 erosion control turf), Innegra Technologies (2800d, Absecon 14343, Absecon 14430, and VEL 1200), a polypropylene woven textile, and a knitted textile.

[0077] The first portion involved assembling combinations of the products discussed above into various samples of cementitious composites. Cementitious material is traditionally mixed with a fluid (e.g., water) and thereafter deposited into a form, where the material sets into a rigid structure. The experiment first verified that the cementitious material underwent proper hydration, setting, and hardening without pre-mixing the cementitious material with water. Specifically, the first portion involved constructing samples using each of the permeable layer materials positioned over disks measuring three inches in diameter and 0.25 inches in depth. The disks were filled with dry cementitious material having the composition of Portland cement and sieved fine aggregates.

[0078] The dry cementitious material was compacted with a hydraulic press for five seconds. Immersion in water for twenty four hours allowed for various hydration observations including, among others, that cracking occurred within some of the cementitious materials from lack of reinforcement and that several samples were properly hydrated even without mixing or agitation. A control sample covered with an impermeable membrane showed no hydration.

[0079] A second portion of the experiment tested thirteen cementitious mixtures using a constant permeable layer. The samples were created in a manner discussed above. Such mixtures included the following materials: Portland cement (Type I/II), hydraulic cement having a setting time of approximately five minutes, expansion cement having a setting time of approximately fifteen minutes, patching mortar, fine sand, fly ash, fine bonded sand, gypsum, calcium chloride, superabsorbent polymer, dry accelerator, dry super plasticizer, and Qwix. The combinations tested and relevant observations of the samples are provided below as Table 1.

Table 1

	Table 1	
Code	Description	Result
A-1	100% Fast setting mortar mix	Acceptable performance
A-2	100% Portland cement I/II (sieved through #100)	Acceptable performance
A-3	50% Portland cement + 50% fly ash (class F, high alumina)	Acceptable upon modification
A-4	50% Portland cement + 50% fine aggregates	Acceptable upon modification
A-5	50% Portland cement + 50% bonded (polymeric) sand	Acceptable, but not very advantagous
A-6	75% Portland cement + 25% super absorbent powder	Mixture absorbed air moisture and got wet
A-7	75% Portland cement + 25% super absorbent polymer	Mixture expanded as soon as water was added
A-8	90% Portland cement + 1.0% calcium chloride (granulars)	Powdered CaCl ₂ could work
A-9	75% Portland cement + 25% calcium sulfate (gypsum)	Can cause durability issues
A-10	100% Hydraulic cement	Lower strength values compared to Portland
A-11	100% Expansion cement	Lower strength values compared to Portland
A-12	The same as A-1 with maximal packing	Vibration was used for more packing
A-13	The same as A-1 with maximal packing + pressure	Pressure was used for more packing

[0080] A third portion of the first experiment tested twenty two materials for the structure layer of a nonwoven cementitious composite using the same cementitious mixture. Such materials included open-cell sponge foams which do not

pertain within the scope of protection, cross-linked fibrous foam systems, fibrous materials, and nonwoven fibrous materials, among other types of materials. Specifically, the tested materials included products manufactured by or purchased at Foam Factory (e.g., 1.0 inch thick Dry-fast foam, 1.0 inch thick Super soft foam, 1.0 inch thick polystyrene foam, 0.5 inch thick poly foam, 0.5 inch thick 2.2 pound polyethylene, and 0.5 inch thick mini-cell foam), Mesa Sells (0.5 inch thick soft foam, 0.5 inch thick layered foam, and 1.0 inch thick fibrous foam), Home Depot (0.5 inch thick air conditioning sponge foam, and 1.0 inch thick air conditioning sponge foam), ACE Hardware (0.25-0.5 inch thick heavy duty scrub fibrous foam, 0.25-0.5 inch thick scrub sponge fibrous foam), and 0.25-0.5 inch thick cleaner pad fibrous foam), Marvel Materials (0.25-0.5 inch thick industrial scrub fibrous foam), and Grainger Industrial Supply (0.25-0.5 inch thick synthetic or steel wool foam pads). The tested materials and relevant observations are provided below in Table 2.

5

Table 2

	Code	Description	Result
15	B-1	Sponge foam #1 (open cell with coarse opening)	This open cell foam works well and allows maximal packing
	B-2	Sponge foam #2 (open cell with coarse opening)	Similar to B-1, more expensive
20	B-3	Sponge foam #3 (open cell with fine opening)	This foam works well but the available foam is too thin
	B-4	Sponge foam #4 (semi-open cell with fine opening)	Cells are not fully connected, embedding cement is not possible
25	B-5	Sponge foam #5 (semi-open cell with fine opening)	Cells are not fully connected, embedding cement is not possible
	B-6	Sponge foam #6 (semi-open cell with fine opening)	Cells are not fully connected, embedding cement is not possible
30	B-7	Sponge foam #7 (open cell with coarse opening)	This foam works well but the available foam is too thick
	B-8	Sponge foam #8 (semi-open cell with fine opening)	Cells are not fully connected, embedding cement is not possible
35	B-9	Sponge foam #9 (semi-open cell with fine opening)	Cells are not fully connected, embedding cement is not possible
33	B-10	Fibrous foam #1 (polypropylene with coarse opening)	Foam is too flexible and doesn't have a firm structure
40	B-11	Fibrous foam #2 (silicon carbide with fine opening)	This fibrous foam works well, may need to be modified
40	B-12	Fibrous foam #3 (silicon carbide with fine opening)	This fibrous foam works well, may need to be modified
	B-13	Fibrous foam #4 (synthetic steel with fine opening)	This foam works well, but doesn't have a firm structure
45	B-14	Fibrous foam #5 (coconut with fine opening)	This fibrous foam works well, may need to be modified
	B-15	Fibrous foam #6 (synthetic with coarse opening)	Foam is too flexible and doesn't have a firm structure
50	B-16	Fibrous foam #7 (steel with coarse opening)	This foam works well, but doesn't have a firm structure
00	B-17	Fibrous foam #8 (wood with coarse opening)	This foam works well, but doesn't have a firm structure
	B-18	Fibrous foam #9 (polypropylene with coarse opening)	This fibrous foam works well, may need to be modified
55	B-19	Fibrous foam #10 (polypropylene with coarse opening)	This fibrous foam works well, may need to be modified

(continued)

Code	Description	Result		
B-20	Fibrous foam #2 (silicon carbide with fine opening)	This fibrous foam works well, may need to be modified		
B-21	Fibrous foam #11 (synthetic steel with coarse opening)	This fibrous foam works well, may need to be modified		
B-22	Fibrous foam, #12 (synthetic steel with coarse opening)	Exemplary Selection		

[0081] The third portion of the first experiment involved constructing four inch square samples using each of the structure layer materials of Table 2. Each sample included constant permeable layers, impermeable layers, and mixture of cementitious material, which was deposited within the structure layer using each of vibration and pressure. A known amount of water was added to the composite samples, which were thereafter covered by plastic sheets to prevent evaporation and facilitate the curing process. This portion of the experiment concluded by testing the flexural strength of each composite sample using a three-point bending test. An exemplary graph of stress versus displacement 300 is shown in FIG. 13, where data sets 310, 320, 330, and 340 correspond to samples B-16, B-18, B-20, and B-21 from Table 2. [0082] A fourth portion of the first experiment tested the strength and toughness of various samples that included a preferred nonwoven structural layer, a constant permeable and impermeable layer, and various mixtures of cementitious material. Each sample was hydrated to a water-to-cementitious materials ratio of 0.5. The mixtures and corresponding 7-day strength and toughness values are provided below in Table 3. According to an exemplary embodiment, the cementitious layer of a nonwoven cementitious composite includes approximately twenty-five percent Portland cement, twenty-five percent Qwix, forty-eight percent fine aggregates, and two percent non-chloride accelerator.

Table 3

Code	Description	Result	Flexural Strength (PSI)	Flexural Toughness (lb-in)	
C-1	100% Portland Cement I/II	May be optimized and used	785 ± 50	285 ± 26	
C-2	80% Portland Cement + 20% Fly Ash (Class F)	Needs mixing and curing	572 ± 226	201 ± 91	
C-3	80% Portland Cement + 20% Metakaolin	Needs mixing and curing	651 ± 154	235 ± 76	
C-4	80% Portland Cement + 20% Silica Fume	Needs mixing and curing	596 ± 147	205 ± 62	
C-5	50% Portland Cement + 50% Fine Aggregates (No. 30)	May be optimized and May be optimized and used	920 ± 69	365 ± 41	
C-6	50% Portland Cement + 50% Qwix (High Alumina Clinker)	May be optimized and used	722 ± 260	271 ± 95	
C-7	100% Portland Cement + 2% Non-Chloride Accelerator	May be optimized and used	947 ± 45	376 ± 13	
C-8	100% Portland Cement + 1% Plasticizer (Supercizer)	Needs mixing and curing	N/A	N/A	
C-9	100% Portland Cement + 1% Plasticizer (Hydrocizer)	Needs mixing and curing	N/A	N/A	
C-10	25% Portland Cement + 25% Qwix + 50% Fine Aggregates	May be optimized and used	942 ± 30	382 ± 23	

[0083] The fifth portion of the first experiment tested various materials for the impermeable layer of a nonwoven cementitious composite. Materials tested for this layer include a thin Kevlar-based membrane and products manufactured by CLI Clear-Water Construction (e.g., 0.92 millimeters thick reinforced polyethylene, 1.02 millimeters thick high-density polyethylene, 1.02 millimeters thick linear low-density polyethylene, and XR-5).

[0084] The final portion of the first experiment tested three identical nonwoven cementitious composite samples at different ages. As shown below in Table 4, the flexural strength and toughness was tested at one day, seven days, and twenty-eight days post- in-situ hydration.

Table 4

Time from Hydration	Description	Flexural Strength (PSI)	Flexural Toughness (lb-in)
1 Day	25% Portland Cement + 25% Qwix + 48% Fine Aggregates + 2% Non-chloride Accelerator	464 ± 117	139 ± 27
7 Days	Same Mixture	975 ± 12	286 ± 158
28 Days	Same Mixture	1044 ± 85	400 ± 16

[0085] A second experiment evaluated various materials and configurations for the permeable layer, the structural layer, and the cementitious layer of the nonwoven cementitious composite. The various portions of the second experiment included several samples prepared in accordance with the procedures of the first experiment. The results of the second experiment are provided below in Tables 5-6. Specifically, the second experiment showed that coated or non-coated microfibers (e.g., strands having a length of less than 0.1 millimeters and a diameter of less than ten microns) may be mixed with the cementitious material to enhance toughness. Fibers manufactured from high density polyethylene having a nominal length of 0.1 millimeters, a five micron diameter, and a coating to improve dispersion were used in mixes 6, 9, and 10 described in Table 5. According to an exemplary embodiment, a nonwoven cementitious composite includes a cementitious layer comprising the combination of materials described by Mix 5b and includes polyethylene fibers as discussed above.

Table 5

							40100						
10	Mix	St. Marys Cement	Qwix	Fritz NCA Ca-diformate	CaCl,	Normal Sand C778	Consum. Masonry Sand < 600 Microns	Elotex FL2211 Latex (solids)	Ultra Micro Fibers	Meta kaolin	Design Batch Water	1% Sand Abs. Water	Extra Water
15	1	550	550	22	0	1100	0	0	0	0	330	0	0
	2	550	550	0	22	1100	0	0	0	0	330	0	0
20	3	726	374	0	22	1100	0	0	0	0	330	0	0
	4	726	374	0	22	0	1100	0	0	0	330	11	20
	5	1100	0	0	22	0	1100	0	0	0	330	11	20
25	5b	920	180	0	22	0	1100	0	0	0	330	11	0
	6	1100	0	0	22	0	1100	0	2.1	0	330	11	0
30	7	726	220	0	22	0	1100	0	0	154	330	11	0
	8	946	0	0	22	0	1100	0	0	154	330	11	0
	9	946	0	0	22	0	1100	0	2.1	154	330	11	0
35	9 Repeat	946	0	0	22	0	1100	0	2.1	154	330	11	50
40	10	726	274	0	22	0	1100	0	2.1	154	330	11	20
40	11	726	274	0	22	0	1100	0	0	154	330	11	30
į	12	946	0	0	22	0	1100	154	0	0	330	11	-98
45	13	792	0	0	22	0	1100	154	0	154	330	11	-13
	14	660	132	0	22	0	1100	154	0	154	330	11	-8
50	15	660	132	0	22	0	1100	154	2.1	154	330	11	0
	16	946	0	0	22	0	1100	154	2.1	0	330	11	-63
	17	792	0	0	22	0	1100	154	2.1	154	330	11	-16
55													

Table 6

				Vicat C191 Test			
Mix	Actual w/cm	Initial Set	Final Set	1 day C109 (PSI)	7 Day C109 (PSI)	\$/ft2	
1	0.30	0:15	0:18	9130	10640	0.24	
2	0.30	0:08	0:11	7450	11815	0.23	
3	0.30	0:13	0:17	6315	8690	0.20	
4	0.32	0:13	0:16	5030	7600	0.20	
5	0.32	1:30	1:40	5555	10080	0.15	
5b	0.30	0:18	0:24	7565	10825	0.17	
6	0.30	1:09	1:20	6130	10115	0.16	
7	0.30	0:09	0:11	3740	9790	0.25	
8	0.30	0:22	0:38	5105	11265	0.22	
9	0.30	0:29	0:40	5115	10400	0.24	
9 Repeat	0.35	1:11	1:29	5140	10780	0.24	
10	0.30	0:05	0:09	3000	7650	0.28	
11	0.31	0:12	0:14	4140	8715	0.27	
12	0.25	0:24	0:48	1445	2575	0.31	
13	0.34	1:20	2:08	2045	5055	0.38	
14	0.34	0:26	0:54	1835	4705	0.40	
15	0.35	0:27	0:56	1940	5030	0.42	
16	0.28	1:10	2:13	2230	4665	0.32	
17	0.33	0:48	1:53	1785	5055	0.40	

[0086] As utilized herein, the terms "approximately," "about," "substantially," and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the invention as recited in the appended claims.

[0087] It should be noted that the term "exemplary" as used herein to describe various embodiments is intended to indicate that such embodiments are possible examples, representations, and/or illustrations of possible embodiments (and such term is not intended to connote that such embodiments are necessarily extraordinary or superlative examples). [0088] The terms "coupled," "connected," and the like as used herein mean the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent) or moveable (e.g., removable or releasable). Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another.

[0089] It should be noted that the orientation of various elements may differ according to other exemplary embodiments and that such variations are intended to be encompassed by the present disclosure.

[0090] It is important to note that the construction and arrangement of the elements of the systems and methods as shown in the exemplary embodiments are illustrative only. Although only a few embodiments of the present disclosure have been described in detail, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements. It should be noted that the elements and/or assemblies of the enclosure may be constructed from any of a wide variety of materials that provide sufficient strength or durability,

in any of a wide variety of colors, textures, and combinations. Additionally, in the subject description, the word "exemplary" may be used to mean serving as an example, instance or illustration. Any embodiment or design described herein as "exemplary" may be not necessarily to be construed as preferred or advantageous over other embodiments or designs. Rather, use of the word exemplary may be intended to present concepts in a concrete manner. Accordingly, all such modifications are intended to be included within the scope of the present inventions. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Any means-plus-function clause may be intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the preferred and other exemplary embodiments without departing from scope of the present disclosure or from the spirit of the appended claims.

Claims

10

20

25

35

40

- 15 **1.** A cementitious composite material (10) for in-situ hydration, the composite (10) comprising:
 - a mesh layer (40) having a first side and a second side and including a plurality of discontinuous fibers (42) arranged in a nonwoven configuration and coupled with one another;
 - a cementitious material (30) disposed within the mesh layer (40), wherein the cementitious material (30) includes a plurality of cementitious particles (32);
 - a sealing layer (50) disposed along the first side of the mesh layer (40) and coupled to the plurality of discontinuous nonwoven fibers (42); and
 - a containment layer (20) disposed along the second side of the mesh layer (40) and configured to prevent the plurality of cementitious particles (32) from migrating out of the mesh layer (40).
 - 2. The composite (10) of Claim 1, wherein the volume within the mesh layer (40) and between the plurality of nonwoven fibers (42) defines an open space (44), wherein in particular the open space (44) defines between 80.0 percent and 99.8 percent by volume of the mesh layer (40), preferably between 95.0 percent and 99.8 percent.
- 30 3. The composite (10) of Claim 1, wherein the mesh layer (40) includes a first mesh portion including a first plurality of fibers arranged in a nonwoven configuration and a second mesh portion including a second plurality of fibers arranged in a nonwoven configuration, wherein, in particular, the first mesh portion is at least one of stacked and intertwined with the second mesh portion, and wherein, preferably, the second plurality of fibers are more densely arranged than the first plurality of fibers.
 - **4.** The composite of Claim 1, wherein the cementitious material (30) includes 39-44 percent by weight cementitious particles (32), 47-52 percent by weight sand, less than 2 percent by weight calcium chloride, and 5.5-10.5 percent by weight Qwix, or wherein the cementitious material (30) includes a plurality of micro fibers having a nominal length of less than 0.1 millimeters and a diameter of less than 10 microns.
 - 5. The composite (10) of Claim 1, wherein the containment layer (20) is at least one of a welded, adhesively secured, and melted onto the second side of the mesh layer (40), wherein, in particular, the containment layer (20) comprises a polypropylene film having a thickness of between 0.075 millimeters and 2.5 millimeters.
- 45 **6.** The composite (10) of Claim 1, wherein the containment layer (20) defines a retaining surface and an aperture configured to facilitate a fluid flow into the cementitious material (30), wherein, in particular, the aperture has an area of between 0.001 millimeters squared and 3.0 millimeters squared, or wherein, in particular, the containment layer (20) defines a plurality of apertures at a frequency of between one and twelve thousand apertures per square inch
 - 7. The composite (10) of Claim 1, wherein the plurality of nonwoven fibers (42) are arranged such that the mesh layer (40) has a thickness of between ten millimeters and fifty millimeters.
- **8.** The composite (10) of Claim 1, wherein the containment layer (20) comprises a sheet configured to be removed before or after in-situ hydration.
 - 9. The composite (10) of Claim 1, wherein the sealing layer (50) is integrally formed with the structural layer (40).

- **10.** A cementitious composite material (10) for in-situ hydration, the composite (10) comprising: a mesh layer (40) having a first side and a second side and including a plurality of discontinuous fibers (42) arranged in a nonwoven configuration intermediate the first side and the second side and coupled with one another;
 - a cementitious material (30) disposed within the mesh layer (40), wherein the cementitious material (30) includes a plurality of cementitious particles (32);
 - a sealing layer (50) disposed along the first side of the mesh layer (40) and coupled to the plurality of discontinuous nonwoven fibers (42); and
 - a coating disposed along the second side of the mesh layer (40) and configured to prevent the plurality of cementitious particles (32) from migrating out of the mesh layer (40).
- 11. The composite (10) of Claim 10, wherein the coating defines a retaining surface and an aperture configured to facilitate a fluid flow into the cementitious material (30), or wherein the coating comprises an elastomeric coating having a thickness of between 0.07 millimeters and 2 millimeters.
- 15 **12.** The composite (10) of Claim 10, wherein the coating includes an outer surface and a three dimensional void extending from the outer surface inward to the cementitious material (30), wherein, in particular, the three dimensional void is one of cone shaped and tetrahedral shaped.
 - 13. A method for manufacturing a cementitious composite material (10), the method comprising:
 - providing a mesh layer (40) having a first side and a second side and including a plurality of discontinuous fibers (42) arranged in a nonwoven configuration and coupled with one another, and disposed in at least one of a sheet and a roll, wherein the volume within the mesh layer (40) and between the plurality of discontinuous nonwoven fibers (42) defines an open space (44);
 - providing a membrane (50) coupled to the first side of the mesh layer (40); disposing a cementitious material (30) comprising cementitious particles (32) within the open space (44) of the mesh layer (40); and positioning a containment layer (20) along the second side of the mesh layer (40).
 - **14.** The method of Claim 13, further comprising forming a perforation within the containment layer (20) with at least one of a point, a pulsed laser (180), and an electron beam (180).
 - **15.** The method of Claim 13, further comprising spraying the containment layer (20) onto the second side of the mesh layer (40), or coupling the containment layer (20) to the plurality of nonwoven fibers (42) using at least one of an adhesive, a welding process, and a melting process.
 - **16.** The method of Claim 13, further comprising compacting the cementitious material (30) within the mesh layer (40) using at least one of a vibratory system (135), a compaction roller (137), and a press plate, further, in particular, comprising coupling a first membrane to a flange of a second composite with one of an adhesive, a welding process, and a melting process, and further preferably comprising positioning a mesh layer (40) between a layer of a first composite and a layer of the second composite.
 - **17.** The method of Claim 13, further comprising joining two composite materials by coupling a first membrane to a layer of a second composite.

Patentansprüche

5

10

20

25

30

35

40

45

- 1. Zementartiges Verbundmaterial (10) zur In-Situ Hydration, wobei der Verbund (10) umfasst:
- eine Maschenschicht (40) mit einer ersten Seite und einer zweiten Seite und umfassend eine Vielzahl von diskontinuierlichen Fasern (42), die in einer nichtgewebten Konfiguration angeordnet und miteinander verknüpft sind:
 - ein zementartiges Material (30), das in der Maschenschicht (40) angeordnet ist, wobei das zementartige Material (30) eine Vielzahl von zementartigen Partikeln (32) umfasst;
 - eine Dichtschicht (50), die entlang der ersten Seite der Maschenschicht (40) angeordnet ist und mit der Vielzahl der diskontinuierlichen nicht gewebten Fasern (42) gekoppelt ist; und
 - eine Eingrenzungsschicht (20), die entlang der zweiten Seite der Maschenschicht (40) angeordnet und eingerichtet ist, um das Auswandern der Vielzahl der zementartigen Partikel (32) aus der Maschenschicht (40) zu

verhindern.

5

10

15

20

25

30

35

40

45

- 2. Verbund (10) nach Anspruch 1, wobei das Volumen innerhalb der Maschenschicht (40) und zwischen der Vielzahl der nichtgewebten Fasern (42) einen offenen Raum (44) definiert, wobei insbesondere der offene Raum (44) zwischen 80,0 und 99,8 Volumenprozent der Maschenschicht definiert, vorzugsweise zwischen 95,0 und 99,8 Prozent.
- 3. Verbund (10) nach Anspruch 1, wobei die Maschenschicht (40) einen ersten Maschenabschnitt, umfassend eine in einer nichtgewebten Konfiguration angeordnete erste Vielzahl von Fasern, umfasst und einen zweiten Maschenabschnitt, umfassend eine in einer nichtgewebten Konfiguration angeordnete zweite Vielzahl von Fasern, umfasst, wobei insbesondere der erste Maschenabschnitt gestapelt und/oder verflochten mit dem zweiten Maschenabschnitt ist, und wobei vorzugsweise die zweite Vielzahl der Fasern dichter angeordnet ist als die erste Vielzahl der Fasern.
- 4. Verbund nach Anspruch 1, wobei das zementartige Material (30) 39-44 Gewichtsprozent zementartige Partikel (32), 47-52 Gewichtsprozent Sand, weniger als 2 Gewichtsprozent Calciumchlorid und 5,5-10,5 Gewichtsprozent Qwix umfasst, oder wobei das zementartige Material (30) eine Vielzahl von Mikrofasern mit einer nominalen Länge von weniger als 0,1 Millimeter und einem Durchmesser von weniger als 10 Mikrometer umfasst.
- 5. Verbund (10) nach Anspruch 1, wobei die Eingrenzungsschicht (20) zumindest geschweißt, klebstoffgesichert und auf der zweiten Seite der Maschenschicht verschmolzen wird, wobei insbesondere die Eingrenzungsschicht (20) ein Polypropylen-Film mit einer Dicke zwischen 0,075 Millimetern und 2,5 Millimetern umfasst.
- 6. Verbund (10) nach Anspruch 1, wobei die Eingrenzungsschicht (20) eine Haltefläche und eine Öffnung definiert, die dazu eingerichtet ist, eine Flüssigkeitsströmung in das zementartige Material (30) zu fördern, wobei insbesondere die Öffnung eine Fläche zwischen 0,001 Quadratmillimeter und 3,0 Quadratmillimeter hat, wobei insbesondere die Eingrenzungsschicht (20) eine Vielzahl von Öffnungen bei einer Häufigkeit von eins bis zwölftausend Öffnungen pro Quadratzoll definiert.
- 7. Verbund (10) nach Anspruch 1, wobei die Vielzahl der nichtgewebten Fasern (42) derart angeordnet ist, dass die Maschenschicht (40) eine Dicke zwischen 10 und 50 Millimeter hat.
- 8. Verbund (10) nach Anspruch 1, wobei die Eingrenzungsschicht (20) eine Platte umfasst, die eingerichtet ist, vor oder nach der In-Situ Hydration entfernt zu werden.
- 9. Verbund (10) nach Anspruch 1, wobei die Dichtschicht (50) einstückig mit der Strukturschicht (40) ausgebildet ist.
- 10. Zementartiges Verbundmaterial (10) zur In-Situ Hydration, wobei der Verbund umfasst:
 - eine Maschenschicht (40) mit einer ersten und einer zweiten Seite und umfassend eine Vielzahl von diskontinuierlichen Fasern (42), die in einer nichtgewebten Konfiguration zwischen der ersten und der zweiten Seite liegend angeordnet und miteinander verknüpft sind;
 - ein zementartiges Material (30), das innerhalb der Maschenschicht (40) angeordnet ist, wobei das zementartige Material (30) eine Vielzahl von zementartigen Partikeln (32) umfasst, wobei eine Dichtschicht (50) entlang der ersten Seite der Maschenschicht (40) angeordnet und mit der Vielzahl der diskontinuierlichen Fasern (42) gekoppelt ist; und
 - eine Beschichtung, die entlang der zweiten Seite der Maschenschicht (40) angeordnet und eingerichtet ist, um das Auswandern der Vielzahl der zementartigen Partikel (32) aus der Maschenschicht (40) zu verhindern.
- 11. Verbund (10) nach Anspruch 10, wobei die Beschichtung eine Haltefläche und eine Öffnung definiert, die eingerichtet ist, eine Flüssigkeitsströmung in das zementartige Material (30) zu fördern, oder wobei die Auftragung eine elastomere Auftragung mit einer Dicke zwischen 0,07 Millimeter und 2,0 Millimeter umfasst.
- 12. Verbund (10) nach Anspruch 10, wobei die Beschichtung eine äußere Fläche und eine sich von der äußeren Fläche einwärts zu dem zementartigen Material (30) erstreckenden dreidimensionalen Hohlraum umfasst, wobei insbesondere der dreidimensionale Hohlraum kegel- oder tetraederförmig ist.
- 13. Verfahren zum Herstellen eines zementartigen Verbundmaterials (10), wobei das Verfahren umfasst:

Bereitstellen einer Maschenschicht (40) mit einer ersten Seite und einer zweiten Seite, umfassend eine Vielzahl

21

50

von diskontinuierlichen Fasern (42), die in einer nichtgewebten Konfiguration angeordnet und miteinander verknüpft sind, und zumindest in einer Platte und/oder einem Gewebeballen angeordnet sind, wobei das Volumen innerhalb der Maschenschicht (40) und zwischen der Vielzahl der diskontinuierlichen nichtgewebten Fasern (42) einen offenen Raum (44) definiert;

Bereitstellen einer an die erste Seite der Maschenschicht (40) gekoppelte Membran (50);

Anordnen eines zementartigen Materials (30), umfassend zementartige Partikel (32), innerhalb des offenen Raums (44) der Maschenschicht (40), und

Positionieren einer Eingrenzungsschicht (20) entlang der zweiten Seite der Maschenschicht (40).

- 14. Verfahren nach Anspruch 13, weiter umfassend Ausbilden einer Perforation innerhalb der Eingrenzungsschicht (20) mit zumindest einem Punkt, einem gepulsten Laser (180) und/oder einem Elektronenstrahl (180).
 - **15.** Verfahren nach Anspruch 13, weiter umfassend Aufsprühen der Eingrenzungsschicht (20) auf die zweite Seite der Maschenschicht (40), oder Verknüpfen der Eingrenzungsschicht (20) mit der Vielzahl der nichtgewebten Fasern (42) mittels einer Klebmasse, einem Schweißprozess und einem Schmelzprozess.
 - 16. Verfahren nach Anspruch 13, weiter umfassend Verdichten des zementartigen Materials (30) innerhalb der Maschenschicht (40) mittels zumindest einem schwingfähigen System (135), einer Verdichtungswalze (137) und/oder einer Pressplatte, weiter insbesondere umfassend Verknüpfen einer ersten Membran mit einem Flansch eines zweiten Verbunds mit einer Klebmasse, einem Schweißprozess und einem Schmelzprozess und weiter vorzugsweise umfassend Positionieren einer Maschenschicht (40) zwischen einer Schicht eines ersten Verbunds und einer Schicht eines zweiten Verbunds.
 - 17. Verfahren nach Anspruch 13, weiter umfassend Verbinden von zwei Verbundmaterialien durch Koppeln einer ersten Membran an eine Schicht eines zweiten Verbunds.

Revendications

5

15

20

25

35

40

45

50

55

30 1. Matériau composite cimentaire (10) pour hydratation in situ, le composite (10), comprenant :

une couche de mailles (40) ayant un premier côté et un deuxième côté et comprenant une pluralité de fibres discontinues (42) agencées dans une configuration non tissée et couplées les unes aux autres ;

un matériau cimentaire (30) disposé à l'intérieur de la couche de mailles (40), dans lequel le matériau cimentaire (30) comprend une pluralité de particules cimentaires (32);

une couche d'étanchéité (50) disposée le long du premier côté de la couche de mailles (40) et couplée à la pluralité de fibres discontinues non tissées (42) ; et

une couche de confinement (20) disposée le long du deuxième côté de la couche de mailles (40) et conçue pour empêcher la pluralité de particules cimentaires (32) de migrer hors de la couche de mailles (40).

- 2. Matériau composite (10) selon la revendication 1, dans lequel le volume à l'intérieur de la couche de mailles (40) et entre la pluralité de fibres non tissées (42) définit un espace ouvert (44), dans lequel, en particulier, l'espace ouvert (44) définit entre 80,0 pour cent et 99,8 pour cent en volume de la couche de mailles (40), de préférence entre 95,0 pour cent et 99,8 pour cent.
- 3. Composite (10) selon la revendication 1, dans lequel la couche de mailles (40) comprend une première partie maillée comprenant une première pluralité de fibres agencées dans une configuration non tissée et une deuxième partie maillée comprenant une deuxième pluralité de fibres agencées dans une configuration non tissée, dans lequel, en particulier, la première partie maillée est au moins une parmi empilée et entrelacée avec la deuxième partie maillée, et dans lequel, de préférence, la deuxième pluralité de fibres sont agencées de manière plus dense que la première pluralité de fibres.
- 4. Composite selon la revendication 1, dans lequel le matériau cimentaire (30) comprend 39 à 44 pour cent en poids de particules cimentaires (32), 47 à 52 pour cent en poids de sable, moins de 2 pour cent en poids de chlorure de calcium, et 5,5 à 10,5 pour cent en poids de Qwix, ou dans lequel le matériau cimentaire (30) comprend une pluralité de micro-fibres ayant une longueur nominale de moins de 0,1 millimètre et d'un diamètre de moins de 10 microns.
- 5. Composite (10) selon la revendication 1, dans leguel la couche de confinement (20) est au moins une parmi une

couche soudée, fixée de façon adhésive et fondue sur le deuxième côté de la couche de mailles (40), dans lequel, en particulier, la couche de confinement (20) comprend un film de polypropylène ayant une épaisseur comprise entre 0,075 millimètre et 2,5 millimètres.

6. Composite (10) selon la revendication 1, dans lequel la couche de confinement (20) définit une surface de retenue et une ouverture conçue pour faciliter un écoulement de fluide dans le matériau cimentaire (30), dans lequel, en particulier, l'ouverture a une superficie comprise entre 0,001 millimètre carré et 3,0 millimètres carrés, ou dans lequel, en particulier, la couche de confinement (20) définit une pluralité d'ouvertures à une fréquence comprise entre une et douze mille ouvertures par pouce carré.

10

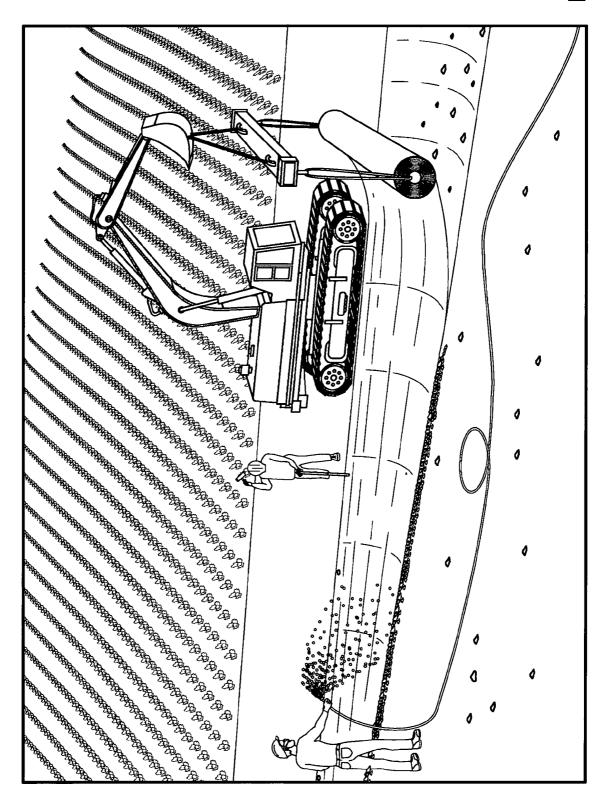
25

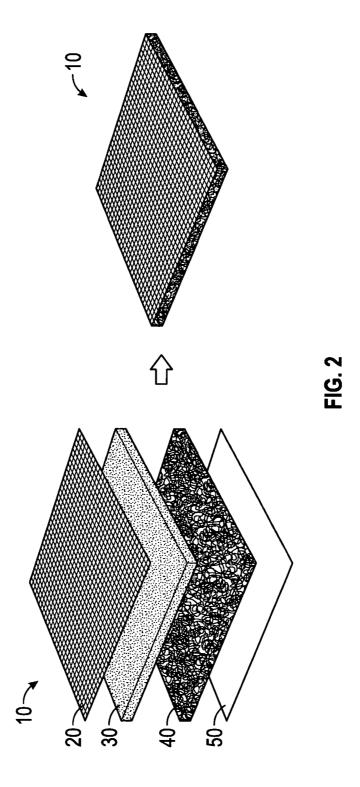
30

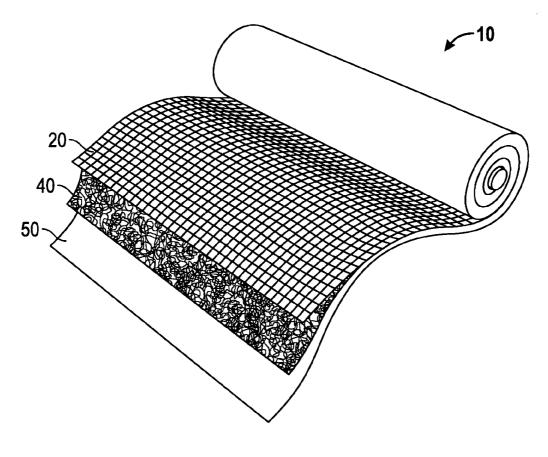
40

45

- 7. Composite (10) selon la revendication 1, dans lequel la pluralité de fibres non tissées (42) sont agencées de telle sorte que la couche de mailles (40) présente une épaisseur comprise entre dix millimètres et cinquante millimètres.
- 8. Composite (10) selon la revendication 1, dans lequel la couche de confinement (20) comprend une feuille conçue pour être retirée avant ou après une hydratation in situ.
 - 9. Composite (10) selon la revendication 1, dans lequel la couche d'étanchéité (50) est formée d'un seul tenant avec la couche structurelle (40).
- 20 10. Matériau composite cimentaire (10) pour une hydratation in situ, le composite (10) comprenant : une couche de mailles (40) ayant un premier côté et un deuxième côté et comprenant une pluralité de fibres discontinues (42) agencées dans une configuration non tissée intermédiaire entre le premier côté et le deuxième côté et couplées les unes aux autres ;
 - un matériau cimentaire (30) disposé à l'intérieur de la couche de mailles (40), dans lequel le matériau cimentaire (30) comprend une pluralité de particules cimentaire (32);
 - une couche d'étanchéité (50) disposée le long du premier côté de la couche de mailles (40) et couplée à la pluralité de fibres discontinues non tissées (42) ; et
 - un revêtement disposé le long du deuxième côté de la couche de mailles (40) et conçu pour empêcher la pluralité de particules cimentaires (32) de migrer hors de la couche de mailles (40).
 - 11. Composite (10) selon la revendication 10, dans lequel le revêtement définit une surface de retenue et une ouverture conçue pour faciliter un écoulement de fluide dans le matériau cimentaire (30), ou dans lequel le revêtement comprend un revêtement élastomère ayant une épaisseur comprise entre 0,07 millimètre et 2 millimètres.
- 35 **12.** Composite (10) selon la revendication 10, dans lequel le revêtement comprend une surface extérieure et un vide tridimensionnel s'étendant de la surface extérieure vers l'intérieur du matériau cimentaire (30), dans lequel, en particulier, le vide tridimensionnel est un parmi une forme de cône et une forme de tétraèdre.
 - **13.** Procédé de fabrication d'un matériau composite cimentaire (10), le procédé comprenant :
 - la fourniture d'une couche de mailles (40) ayant un premier côté et un deuxième côté et comprenant une pluralité de fibres discontinues (42) agencées dans une configuration non tissée et couplées les unes aux autres, et disposées en au moins un parmi une feuille et un rouleau, dans lequel le volume à l'intérieur de la couche de mailles (40) et entre la pluralité de fibres discontinues non tissées (42) définit un espace ouvert (44);
 - la fourniture d'une membrane (50) couplée au premier côté de la couche de mailles (40); la disposition d'un matériau cimentaire (30) comprenant des particules cimentaires (32) à l'intérieur de l'espace ouvert (44) de la couche de mailles (40); et le positionnement d'une couche de confinement (20) le long du deuxième côté de la couche de mailles (40).
- 50 **14.** Procédé selon la revendication 13, comprenant en outre la formation d'une perforation dans la couche de confinement (20) avec au moins un parmi une pointe, un laser pulsé (180) et un faisceau d'électrons (180).
 - **15.** Procédé selon la revendication 13, comprenant en outre la pulvérisation de la couche de confinement (20) sur le deuxième côté de la couche de mailles (40), ou le couplage de la couche de confinement (20) à la pluralité de fibres non tissées (42) à l'aide d'au moins un parmi un adhésif, un procédé de soudage et un procédé de fusion.
 - **16.** Procédé selon la revendication 13, comprenant en outre le compactage du matériau cimentaire (30) dans la couche de mailles (40) à l'aide d'au moins un parmi un système de vibration (135), un rouleau de compactage (137), et une


5


plaque de pressage, comprenant en outre, en particulier, le couplage d'une première membrane à une bride d'un deuxième composite avec un parmi un adhésif, un procédé de soudage et un procédé de fusion, et comprenant en outre de préférence le positionnement d'une couche de mailles (40) entre une couche d'un premier composite et une couche du deuxième composite.


17. Procédé selon la revendication 13, comprenant en outre l'assemblage de deux matériaux composites par le couplage

d'une première membrane à une couche d'un deuxième matériau composite.

10			
15			
20			
25			
30			
35			
40			
45			
50			
55			

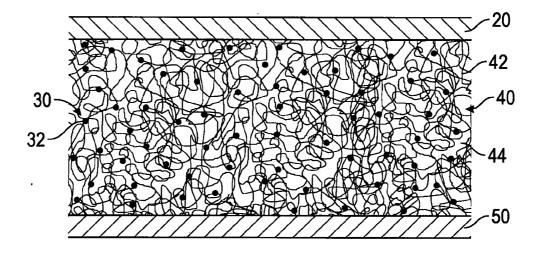
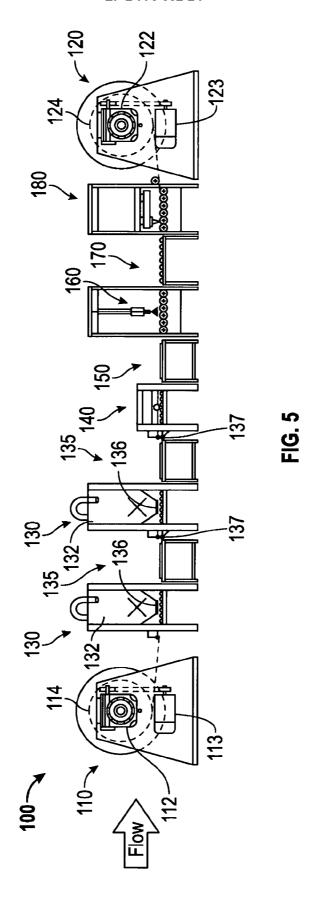



FIG. 4

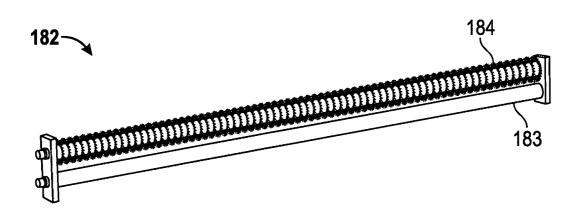
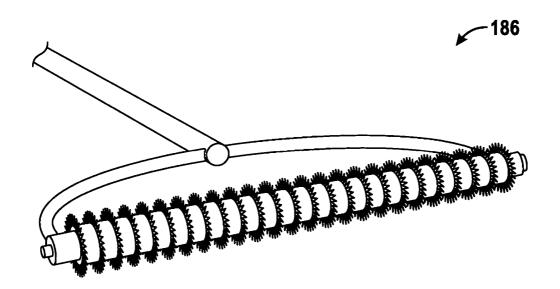
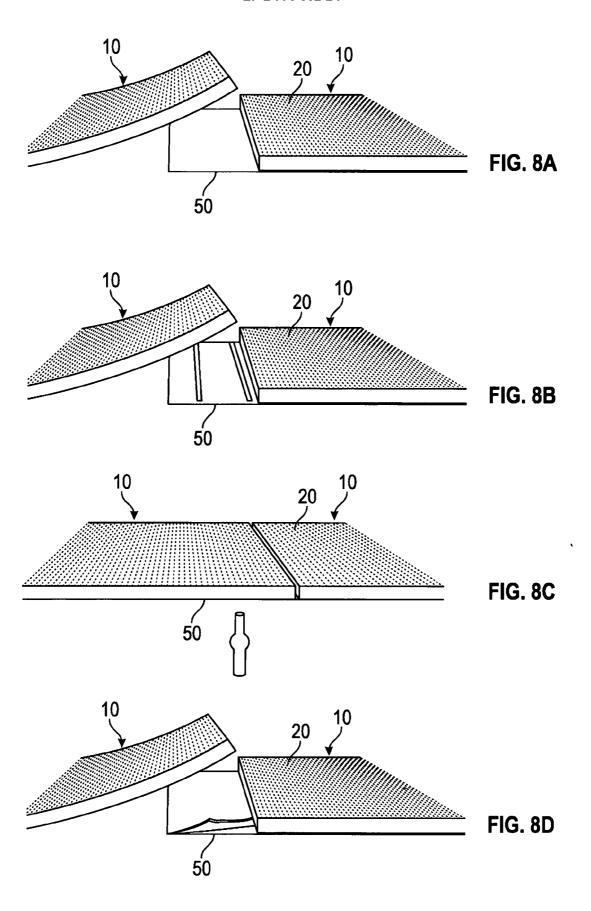
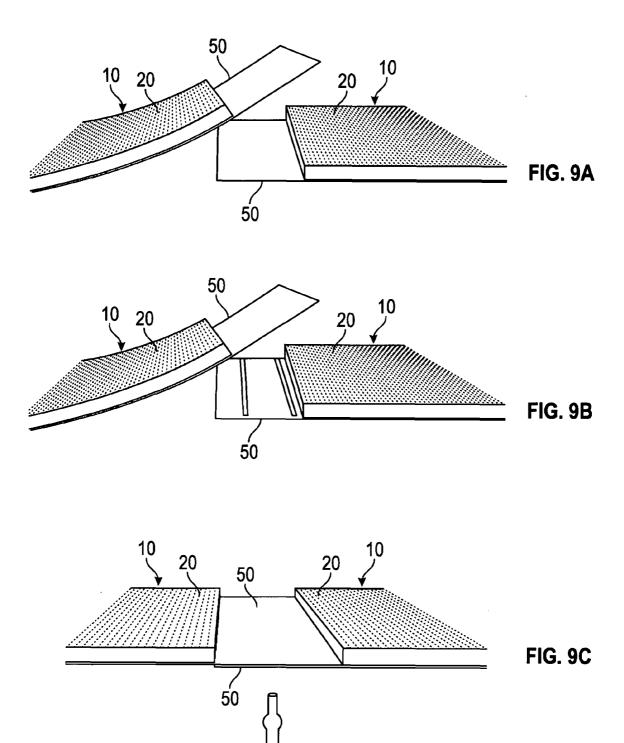
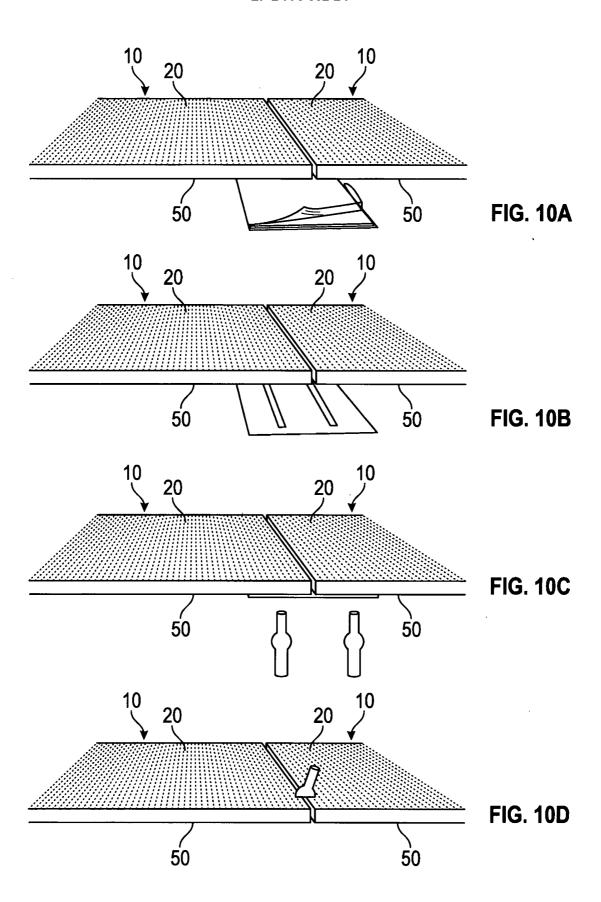
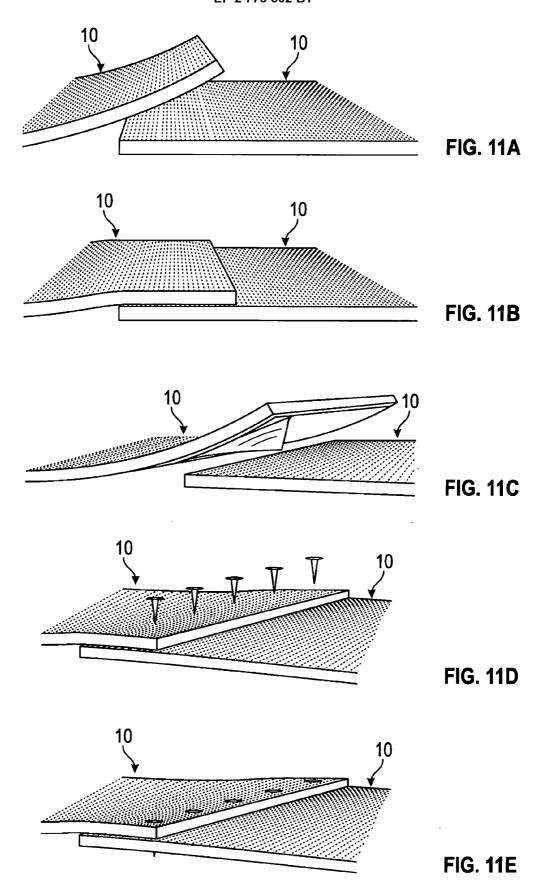
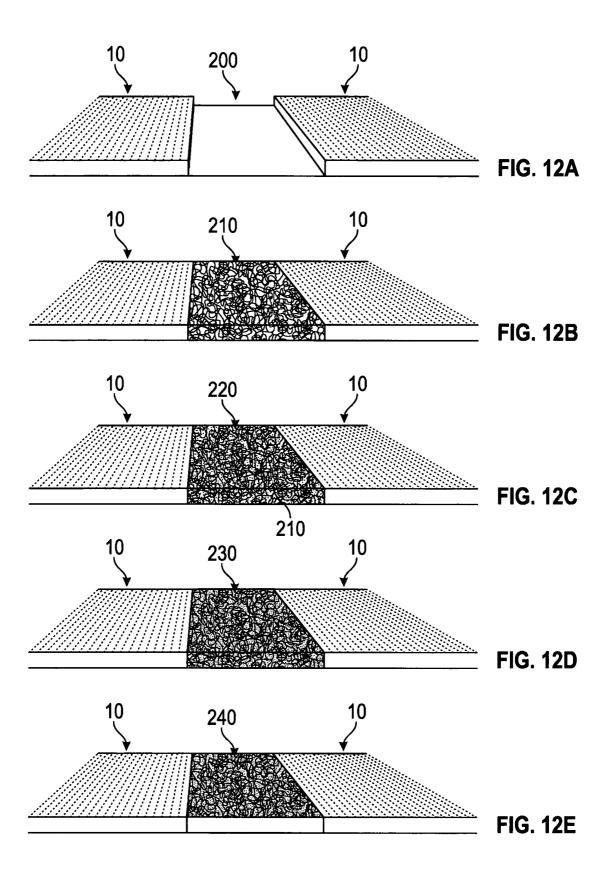
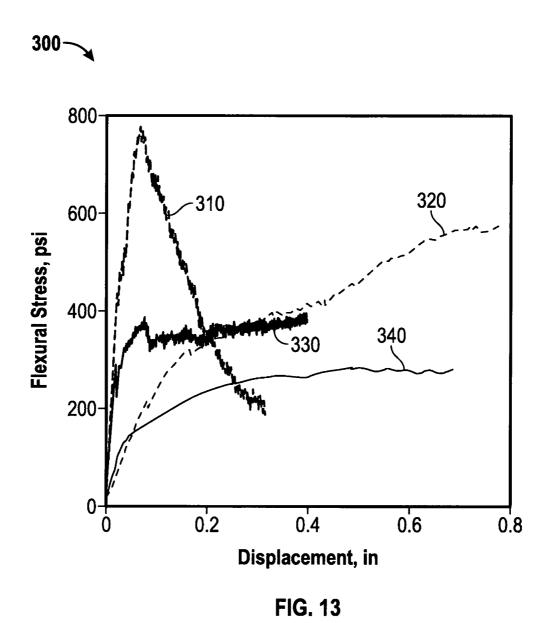


FIG. 6


FIG. 7



REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 61554377 A [0001]
- US 61703618 A [0001]
- EP 0876524 B1 [0004]

- US 2958593 A [0019]
- US 3537121 A [0019]
- US 4437271 A [0019]

715411/00

HELYSZÍNEN VÉGZETT HIDRATÁLÁSRA SZOLGÁLÓ NEMSZÖTT CEMENTÁLÓ KOMPOZIT

SZABADALMI IGÉNYPONTOK

 Cementáló kompozitanyag (10) helyszínen végzett hidratáláshoz, amely kompozit (10) magában foglal:

egy hálós réteget (40), amelynek van egy első oldala és egy második oldala, és nem folytonos szálak (42) sokaságát tartalmazza, amelyek nemszőtt szerkezetbe vannak rendezve, és egymással összekapcsolódnak;

egy cementáló anyagot (30), amely a hálós rétegben (40) helyezkedik el, amely cementáló anyag (30) cementáló szemcsék (32) sokaságát tartalmazza;

egy záróréteget (50), amely a hálós réteg (40) első oldalán helyezkedik el, és hozzá van kötve a nem folytonos, nemszőtt szálak (42) sokaságához; valamint

egy határoló réteget (20), amely a hálós réteg (40) második oldalán helyezkedik el, és úgy van kialakítva, hogy megakadályozza a cementáló szemcsék (32) sokaságának a hálós rétegből (40) való elvándorlását.

- 2. Az 1. igénypont szerinti kompozit (10), amelyben a hálós rétegen (40) belüli és a nemszőtt szálak (42) sokasága közötti volumen egy nyitott teret (44) határol, továbbá különösen a nyitott tér (44) a hálós réteg (40) 80,0-99,8 térfogatszázalékát, előnyös módon 95,0-99,8 térfogatszázalékát határolja.
- 3. Az 1. igénypont szerinti kompozit (10), amelyben a hálós réteg (40) tartalmaz egy első hálós részt, amely nemszőtt szerkezetbe rendezett szálak egy első sokaságát tartalmazza, és egy második hálós részt, amely nemszőtt szerkezetbe rendezett szálak egy második sokaságát tartalmazza, továbbá különösen az első hálós rész rá van halmozva a második hálós részre és/vagy vele össze van fonva, ezenkívül előnyös módon a szálak második sokasága sűrűbben van elrendezve, mint a szálak első sokasága.
- 4. Az 1. igénypont szerinti kompozit, amelyben a cementáló anyag (30) 39-44 tömegszázalék cementáló szemcsét (32), 47-52 százalék tömegszázalék homokot, 2 tömegszázaléknál kevesebb kalcium-kloridot és 5,5-10,5 tömegszázalék Qwixet tartalmaz, vagy amelyben a cementáló anyag (30) olyan mikroszálak sokaságát tartalmazza, amelyek névleges hossza 0,1 milliméternél kisebb, és átmérője 10 mikronnál kevesebb.
- 5. Az 1. igénypont szerinti kompozit (10), amelyben a határoló réteg (20) hozzá van hegesztve és/vagy hozzá van ragasztva a hálós réteg (40) második oldalához és/vagy arra rá van olvasztva, továbbá különösen a határoló réteg (20) egy polipropilén filmet foglal magában, amelynek 0,075 milliméter és 2,5 milliméter közötti a

vastagsága.

- 6. Az 1. igénypont szerinti kompozit (10), amelyben a határoló réteg (20) egy visszatartó felületet és egy olyan nyílást határol, amely úgy van kialakítva, hogy elősegítse a folyadékáramlást a cementáló anyagba (30), továbbá különösen a nyílás területe 0,001 négyzetmilliméter és 3,0 négyzetmilliméter között van, vagy amelyben különösen a határoló réteg (20) nyílások sokaságát határolja, amelyek mennyisége ezer és tizenkétezer nyílás között van négyzethűvelykenként (155-1860/cm²).
- 7. Az 1. igénypont szerinti kompozit (10), amelyben a nemszőtt szálak (42) sokasága úgy van elrendezve, hogy a hálós rétegnek (40) tíz milliméter és ötven milliméter közötti a vastagsága.
- 8. Az 1. igénypont szerinti kompozit (10), amelyben a határoló réteg (20) egy lapot foglal magában, amelyet a helyszínen végzett hidratálás előtt vagy után el kell távolítani.
- 9. Az 1. igénypont szerinti kompozit (10), amelyben a záróréteg (50) egy darabból van kialakítva a szerkezeti réteggel (40).
- 10. Cementáló kompozitanyag (10) helyszínen végzett hidratáláshoz, amely kompozit (10) magában foglal: egy hálós réteget (40), amelynek van egy első oldala és egy második oldala, és nem folytonos szálak (42) sokaságát tartalmazza, amelyek egy, az első oldal és a második oldal közötti nemszőtt szerkezetbe vannak rendezve, és egymással összekapcsolódnak;

egy cementáló anyagot (30), amely a hálós rétegben (40) helyezkedik el, amely cementáló anyag (30) cementáló szemcsék (32) sokaságát tartalmazza:

egy záróréteget (50), amely a hálós réteg (40) első oldalán helyezkedik el, és hozzá van kötve a nem folytonos, nemszőtt szálak (42) sokaságához; valamint

egy bevonatot, amely a hálós réteg (40) második oldalán helyezkedik el, és úgy van kialakítva, hogy megakadályozza a cementáló szemcsék (32) sokaságának a hálós rétegből (40) való elvándorlását.

- 11. A 10. igénypont szerinti kompozit (10), amelyben a bevonat egy visszatartó felületet és egy olyan nyílást határol, amely úgy van kialakítva, hogy elősegítse a folyadékáramlást a cementáló anyagba (30), vagy amelyben a bevonat egy elasztomer bevonatot foglal magában, amelynek 0,07 milliméter és 2 milliméter közötti a vastagsága.
- 12. A 10. igénypont szerinti kompozit (10), amelyben a bevonat egy külső felületet és egy, a külső felülettől befelé, a cementáló anyag (30) felé kiterjedő térbeli hézagot határol, továbbá különösen a térbeli hézag vagy kúp alakú, vagy tetraéder alakú.
- 13. Eljárás cementáló kompozitanyag (10) előállítására, amely eljárás magában foglalja, hogy:

rendelkezésre bocsátunk egy hálós réteget (40), amelynek van egy első oldala és egy második oldala, és nem folytonos szálak (42) sokaságát tartalmazza, amelyek nemszőtt szerkezetbe vannak rendezve, és egymással összekapcsolódnak, és egy lap és egy henger közül legalább az egyiken helyezkednek el, továbbá a hálós rétegen (40) belüli és a nem folytonos, nemszőtt szálak (42) sokasága közötti volumen egy nyitott teret (44) határol;

rendelkezésre bocsátunk egy membránt (50), amely hozzá van kötve a hálós réteg (40) első oldalához;

lehelyezünk egy cementáló szemcséket (32) magában foglaló cementáló anyagot (30) a hálós réteg (40) nyitott terében (44); és

elhelyezűnk egy határoló réteget (20) a hálós réteg (40) második oldalán.

- 14. A 13. igénypont szerinti eljárás, amely magában foglalja továbbá, hogy perforációt készítünk a határoló rétegben (20) pontiézer, impulzusiézer (180) és elektronsugár (180) közül legalább az egyikkel.
- 15. A 13. igénypont szerinti eljárás, amely magában foglalja továbbá, hogy a határoló réteget (20) rászórjuk a hálós réteg (40) második oldalára, vagy a határoló réteget (20) a nemszőtt szálak (42) sokaságához egy ragasztóanyag, egy hegesztési eljárás és egy olvasztási eljárás közül legalább az egyik alkalmazásával kötjük hozzá.
- 16. A 13. igénypont szerinti eljárás, amely magában foglalja továbbá, hogy a cementáló anyagot (30) a hálós rétegben (40) egy vibrációs rendszer (135), egy tömörítőhenger (137) és egy présiemez közül legalább az egyik alkalmazásával tömörítjük, továbbá különösen magában foglalja, hogy egy első membránt hozzákötünk egy második kompozit pereméhez egy ragasztóanyag, egy hegesztési eljárás és egy olvasztási eljárás közül az egyikkel, továbbá előnyös módon magában foglalja, hogy elhelyezünk egy hálós réteget (40) egy első kompozitnak a rétege és egy második kompozitnak a rétege között.
- 17. A 13. igénypont szerinti eljárás, amely magában foglalja továbbá, hogy egyesítűnk két kompozitanyagot egy első membránnak egy második kompozit rétegéhez való hozzákötésével.

(A meghatalmazott)

Mendinand bennad Kernin Carpen Syrive SBCK Stabadian Dyyvive meda