wo 2012/170236 A2 || 000 00O A O A

(43) International Publication Date
13 December 2012 (13.12.2012)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

WIPOIPCT

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2012/170236 A2

(51

eay)

(22)

(25)
(26)
(30)

1

(72

31

International Patent Classification:
GO6F 9/30 (2006.01) GO6F 9/45 (2006.01)

International Application Number:
PCT/US2012/039884

International Filing Date:
29 May 2012 (29.05.2012)

Filing Language: English
Publication Language: English
Priority Data:

13/158,226 10 June 2011 (10.06.2011) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: AGARWAL, Amit Kumar; ¢/o Microsoft Cor-
poration, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). ZHU, Weirong;
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, Washington 98052-6399
(US). LEVANONI, Yosseff; c/o Microsott Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

(84)

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: BINDING EXECUTABLE CODE AT RUNTIME

[1gol

Higher Level Code

Statements And
Expressions 112

Code

Code L»

Aspect
14

Code
Analyzer 101

Code

Generator 102

Input Data 107
(To Code
Aspect 114)

Representative
Instructions

Runtime
103

Input
Analyzer 104

Compiler 109

Figure 1A

Representative
Instructions

Executable
Code 106

(57) Abstract: The present invention extends to methods, systems, and computer program products for binding executable code at
runtime. Embodiments of the invention include late binding of specified aspects of code to improve execution performance. A
runtime dynamically binds lower level code based on runtime information to optimize execution of a higher level algorithm. Aspects
of a higher level algorithm having a requisite (e.g., higher) impact on execution performance can be targeted for late binding. Im -
proved performance can be achieved with minimal runtime costs using late binding for aspects having the requisite execution pet-
formance impact.

10

15

20

25

30

WO 2012/170236 PCT/US2012/039884

BINDING EXECUTABLE CODE AT RUNTIME
BACKGROUND

1. Background and Relevant Art

[0001] Computer systems and related technology affect many aspects of society.

Indeed, the computer system’s ability to process information has transformed the way we
live and work. Computer systems now commonly perform a host of tasks (e.g., word
processing, scheduling, accounting, etc.) that prior to the advent of the computer system
were performed manually. More recently, computer systems have been coupled to one
another and to other electronic devices to form both wired and wireless computer networks
over which the computer systems and other electronic devices can transfer electronic data.
Accordingly, the performance of many computing tasks are distributed across a number of
different computer systems and/or a number of different computing environments.

[0002] One mechanism for generating executable code is compilation. At compile time,
a compiler receives a source level description of an algorithm written in a higher level
programming language. The compiler is tasked with generating executable code for a
target environment from the source level description. At runtime, the executable code is
run in the target environment.

[0003] Typically, only partial and cursory information is available about the algorithm
inputs at compile time. Thus, the compiler cannot make any assumptions about many
aspects of the algorithm inputs, such as, for example, the size of the inputs. As such, the
compiler typically generates executable code that is capable of handling all possible inputs
at runtime. Unfortunately, the generality of compiled executable code comes at the cost of
sub-optimal performance. For example, during execution, some of the executed
instructions may be redundant for a specified input and more system resources (such as
memory and registers) may be consumed than required for handling the specific input.
[0004] Another mechanism for executing code is interpretation. An interpreter receives
an algorithm written in a higher level programming language and interprets the algorithm
for direct execution. Interpreted languages can address to some extent the sub-optimal
performance of compiled code. However, re-interpretation of the algorithm for each run
often outweighs the benefits of generating more optimized code.

[0005] Just-in-time (“JIT”’) compilation technique includes runtime translation of
intermediate code output from a complier to targeted machine executable code. As part of

this runtime translation (or just-in-time compilation) various optimizations can be used to

10

15

20

25

30

WO 2012/170236 PCT/US2012/039884

generate and execute more efficiently performing code, which is tailored to the specific
inputs observed during execution. However, JIT based systems compile the entire code at
runtime, paying a greater runtime overhead or the translation.

BRIEF SUMMARY

[0006] The present invention extends to methods, systems, and computer program
products for binding executable code at runtime. Embodiments of the invention include
mechanisms for a compiler and runtime to interoperate to achieve improved code
performance based on runtime information. Statements and expressions of higher level
source code are accessed. It is detected that the higher level source code includes at least
one specified aspect for which the execution efficiency of corresponding representative
lower instructions varies to a requisite extent dependent upon the configuration of input
data received during execution.

[0007] The statements and expressions of the accessed higher level source code are
compiled into representative lower level instructions of the lower level code. Compilation
includes compiling a plurality of different representative lower level instructions for the at
least one specified aspect. Each of the plurality of different representative lower level
instructions is configured to correctly implement the intent of the at least one specified
aspect. At least one of the plurality of different representative lower level instructions is
optimized for execution efficiency based on a different configuration of received input
data.

[0008] Execution of the lower level instructions is configured at runtime. The
configuration of input data to be provided to the at least one specified aspect of the higher
level source code is analyzed. It is determined that specified representative lower level
instructions, selected from among the plurality of different representative lower level
instructions, are optimized for execution based on the configuration of the provided input
data. The specified lower level instructions are bound to executable code to implement the
intent of the at least one specified aspect of the higher level source code.

[0009] This summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used as an aid in determining the scope of the claimed subject matter.
[0010] Additional features and advantages of the invention will be set forth in the
description which follows, and in part will be obvious from the description, or may be

learned by the practice of the invention. The features and advantages of the invention may

10

15

20

25

30

WO 2012/170236 PCT/US2012/039884

be realized and obtained by means of the instruments and combinations particularly
pointed out in the appended claims. These and other features of the present invention will
become more fully apparent from the following description and appended claims, or may
be learned by the practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] In order to describe the manner in which the above-recited and other advantages
and features of the invention can be obtained, a more particular description of the
invention briefly described above will be rendered by reference to specific embodiments
thereof which are illustrated in the appended drawings. Understanding that these drawings
depict only typical embodiments of the invention and are not therefore to be considered to
be limiting of its scope, the invention will be described and explained with additional
specificity and detail through the use of the accompanying drawings in which:

[0012] Figure 1A illustrates an example computer architecture that facilitates binding
executable code at runtime.

[0013] Figure 1B illustrates using multiple versions of lower level code to bind
executable code at runtime.

[0014] Figure 1C illustrates using an abstract interface to bind executable code at
runtime.

[0015] Figure 2 illustrates a flow chart of an example method for binding executable
code at runtime.

DETAILED DESCRIPTION

[0016] The present invention extends to methods, systems, and computer program
products for binding executable code at runtime. Embodiments of the invention include
mechanisms for a compiler and runtime to interoperate to achieve improved code
performance based on runtime information. Statements and expressions of higher level
source code are accessed. It is detected that the higher level source code includes at least
one specified aspect for which the execution efficiency of corresponding representative
lower instructions varies to a requisite extent dependent upon the configuration of input
data received during execution.

[0017] The statements and expressions of the accessed higher level source code are
compiled into representative lower level instructions of the lower level code. Compilation
includes compiling a plurality of different representative lower level instructions for the at
least one specified aspect. Each of the plurality of different representative lower level

instructions is configured to correctly implement the intent of the at least one specified

10

15

20

25

30

WO 2012/170236 PCT/US2012/039884

aspect. At least one of the plurality of different representative lower level instructions is
optimized for execution efficiency based on a different configuration of received input
data.

[0018] Execution of the lower level instructions is configured at runtime. The
configuration of input data to be provided to the at least one specified aspect of the higher
level source code is analyzed. It is determined that specified representative lower level
instructions, selected from among the plurality of different representative lower level
instructions, are optimized for execution based on the configuration of the provided input
data. The specified lower level instructions are bound to executable code to implement the
intent of the at least one specified aspect of the higher level source code.

[0019] Embodiments of the present invention may comprise or utilize a special purpose
or general-purpose computer including computer hardware, such as, for example, one or
more processors and system memory, as discussed in greater detail below. Embodiments
within the scope of the present invention also include physical and other computer-
readable media for carrying or storing computer-executable instructions and/or data
structures. Such computer-readable media can be any available media that can be
accessed by a general purpose or special purpose computer system. Computer-readable
media that store computer-executable instructions are computer storage media (devices).
Computer-readable media that carry computer-executable instructions are transmission
media. Thus, by way of example, and not limitation, embodiments of the invention can
comprise at least two distinctly different kinds of computer-readable media: computer
storage media (devices) and transmission media.

[0020] Computer storage media (devices) includes RAM, ROM, EEPROM, CD-ROM,
solid state drives (“SSDs”) (e.g., based on RAM), Flash memory, phase-change memory
(“PCM”), other types of memory, other optical disk storage, magnetic disk storage or
other magnetic storage devices, or any other medium which can be used to store desired
program code means in the form of computer-executable instructions or data structures
and which can be accessed by a general purpose or special purpose computer.

[0021] A “network” is defined as one or more data links that enable the transport of
electronic data between computer systems and/or modules and/or other electronic devices.
When information is transferred or provided over a network or another communications
connection (either hardwired, wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a transmission medium.

Transmissions media can include a network and/or data links which can be used to carry

10

15

20

25

30

WO 2012/170236 PCT/US2012/039884

or desired program code means in the form of computer-executable instructions or data
structures and which can be accessed by a general purpose or special purpose computer.
Combinations of the above should also be included within the scope of computer-readable
media.

[0022] Further, upon reaching various computer system components, program code
means in the form of computer-executable instructions or data structures can be
transferred automatically from transmission media to computer storage media (devices)
(or vice versa). For example, computer-executable instructions or data structures received
over a network or data link can be buffered in RAM within a network interface module
(e.g., a “NIC”), and then eventually transferred to computer system RAM and/or to less
volatile computer storage media (devices) at a computer system. Thus, it should be
understood that computer storage media (devices) can be included in computer system
components that also (or even primarily) utilize transmission media.

[0023] Computer-executable instructions comprise, for example, instructions and data
which, when executed at a processor, cause a general purpose computer, special purpose
computer, or special purpose processing device to perform a certain function or group of
functions. The computer executable instructions may be, for example, binaries,
intermediate format instructions such as assembly language, or even source code.
Although the subject matter has been described in language specific to structural features
and/or methodological acts, it is to be understood that the subject matter defined in the
appended claims is not necessarily limited to the described features or acts described
above. Rather, the described features and acts are disclosed as example forms of
implementing the claims.

[0024] Those skilled in the art will appreciate that the invention may be practiced in
network computing environments with many types of computer system configurations,
including combinations having one or more of: personal computers, desktop computers,
laptop computers, message processors, hand-held devices, multi-processor systems
(including systems with a one or more Central Processing Units (“CPUs”) and one or
more co-processors, for example, Graphical Processing Units (“GPUSs”) or accelerators),
microprocessor-based or programmable consumer electronics, network PCs,
minicomputers, mainframe computers, mobile telephones, PDAs, pagers, routers,
switches, and the like. The invention may also be practiced in distributed system
environments where local and remote computer systems, which are linked (either by

hardwired data links, wireless data links, or by a combination of hardwired and wireless

10

15

20

25

30

WO 2012/170236 PCT/US2012/039884

data links) through a network, both perform tasks. In a distributed system environment,
program modules may be located in both local and remote memory storage devices.

[0025] Embodiments of the invention include late binding of specified aspects of code to
improve execution performance. A runtime dynamically binds lower level code based on
runtime information to optimize execution of a higher level algorithm. Aspects of a higher
level algorithm having a requisite (e.g., higher) impact on execution performance can be
targeted for late binding. Improved performance can be achieved with minimal runtime
costs using late binding for aspects having the requisite impact on execution performance.
[0026] A variety of dynamic binding techniques can be used. In some embodiments, a
plurality of different versions of executable code is generated for a higher level aspect.
Each of the plurality of different versions includes lower level code correctly
implementing the higher level aspect. Each of the plurality of different versions is
optimized for execution based on a different configuration of input data corresponding to
the higher level aspect. At runtime, an optimized version of the lower level code is
selected based on received input data.

[0027] In other embodiments, an abstract interface for a higher level aspect is generated.
At runtime, an optimized concrete implementation of the higher level aspect is bound to
the abstract interface based on received input data.

[0028] A wide variety of different higher level aspects may have a requisite impact on
executable code performance, including but not limited to: buffer aliasing and logical
thread index mapping. Embodiments of the invention can be used to optimize execution
of these and other higher level aspects by binding executable code at runtime based on
runtime input data.

[0029] Figure 1 illustrates an example computer architecture 100 that facilitates binding
executable code at runtime. Referring to Figure 1, computer architecture 100 includes
compiler 109 and runtime 103. Each of the depicted components is connected to one
another over (or is part of) a system bus and/or a network, such as, for example, a Local
Area Network ("LAN"), a Wide Area Network (“WAN?), and even the Internet.
Accordingly, each of the depicted components as well as any other connected computer
systems and their components, can create message related data and exchange message
related data (e.g., Internet Protocol (“IP”’) datagrams and other higher layer protocols that
utilize IP datagrams, such as, Transmission Control Protocol (“TCP”), Hypertext Transfer
Protocol (“HTTP”), Simple Mail Transfer Protocol (“SMTP”), etc.) over the system bus

and/or network.

10

15

20

25

30

WO 2012/170236 PCT/US2012/039884

[0030] As depicted, compiler 109 includes code analyzer 101 (e.g., a compiler front end)
and code generator 102 (e.g., a compiler back end). Code analyzer 101 is configured to
receive statements and expressions of higher level code (e.g., written in C++, C++
extended for parallel environments, Visual Basic, etc.). Code analyzer 101 can analyze
the statements and expressions of higher level code to identify aspects having a requisite
impact on performance of representative lower level instructions. For example, code
analyzer 101 can determine that buffer use (which many or may not be aliased) has a
requisite impact on performance or that physical to logical thread mappings (which may
be direct or indirect) has a requisite impact on performance. Based on runtime input data,
optimized lower level code representing identified aspects can vary. As such, code
analyzer 101 indicates any identified aspects to code generator 102.

[0031] Code generator 102 is configured to receive statements and expression of higher
level code and indentified aspects having the requisite impact on representative lower
level instruction performance. From the statements and expressions and identified aspects,
code generator 102 can generate a plurality of different lower level instructions (e.g.,
DirectX/High Level Shader Language (“HLSL”) bytecode) that correctly implement the
requisite aspects. Each of the plurality of different lower level instructions can be
optimized for a specified configuration of received runtime input data. For example,
when buffers are used, one version of lower level code can be optimized for non-aliased
buffer access and another version of lower level code can be sub-optimal for implementing
the general scenario of aliasing among input/output buffers. Similarly, when physical to
logical thread mappings are used, one version of lower level code can be optimized for
direct mappings and another version of lower level code can be provided to handle the
more general but less efficient case of indirect mapping.

[0032] Generally, runtime 103 is configured to execute lower level code to implement
the intent of statements and expressions of higher level code. As depicted, runtime 103
includes input analyzer 104. Analyzer 104 is configured to determine the configuration of
input data to be provided to identify aspects. Input analyzer 104 can determine that
specified lower level instructions are optimized for execution in runtime 103 based on the
configuration of the input data. For example, representative lower level code can be
selected for aliased or non-aliased buffer access or direct or indirect physical to logical
thread mappings. Runtime 103 can bind the specified lower level instructions to

executable code for execution in runtime 103.

10

15

20

25

30

WO 2012/170236 PCT/US2012/039884

[0033] Figure 2 illustrates a flow chart of an example method 200 for binding
executable code at runtime. Method 200 will be described with respect to the components
and data of computer architecture 100.

[0034] Method 200 includes an act of accessing statements and expressions of higher
level source code (act 201). For example, code analyzer 101 can access statements and
expressions 112 of higher level code 111 (e.g., C++ extended for parallel environments).
Method 200 includes an act of detecting that the higher level source code includes at least
one specified aspect for which the execution efficiency of corresponding representative
lower instructions varies to a requisite extent dependent upon the configuration of input
data received during execution (act 202). For example, code analyzer 101 can detect that
code aspect 114 impacts the execution efficiency of representative lower level instructions
to a requisite extent based on the configuration of input to code aspect 114.

[0035] Code analyzer 101 indicates code aspect 114 to code generator 102. Complier
receives the indication of code aspect 114. Code generator 102 also accesses higher level
code 111.

[0036] Method 200 includes an act of compiling the statements and expressions of the
accessed higher level source code into representative lower level instructions of the lower
level code (act 203). For example, code generator 102 compiles statements and
expressions 112 into representative instructions of lower level code (e.g., DirectX/High
Level Shader Language (“HLSL”) bytecode).

[0037] Act 203 includes an act of compiling a plurality of different representative lower
level instructions for the at least one specified aspect, each of the plurality of different
representative lower level instructions configured to correctly implement the intent of the
at least one specified aspect, at least one of the plurality of different representative lower
level instructions being optimized for execution efficiency based on a different
configuration of received input data (act 204). For example, code generator 102 can
compile statements expressions 112 into representative instructions 122A and 122B. Each
of representative instructions 122A and 122B are configured to correctly implement the
intent of code aspect 114 for different input data configurations. Each of representative
instructions 122A and 122B are optimized for execution efficiency based on a different
configuration of input for code aspect 114.

[0038] In some embodiments, one or more optimized versions and a more generalized
“catch all” version of lower level instructions are generated. Each of the one or more

optimized versions is optimized for a particular circumstance, such as, for example, a

10

15

20

25

30

WO 2012/170236 PCT/US2012/039884

specified configuration of input. The catch all version handles any other cases. Thus,
collectively, the one or more optimized versions and the catch all version can handle any
possible case from an original algorithm. Method 200 includes an act of configuring
execution of the lower level instructions at runtime (act 205). For example, runtime 103
configures the execution of executable code 106 at runtime. Act 205 includes an act of
analyzing the configuration of input data to be provided to the at least one specified aspect
of the higher level source code (act 206). For example, input analyzer 104 can analyze
input data 107 (that is to be provided to code aspect 114).

[0039] Act 205 includes an act of determining that specified representative lower level
instructions, selected from among the plurality of different representative lower level
instructions, are optimized for execution based on the configuration of the provided input
data (act 207). For example, input analyzer 104 (or some other module in runtime 103) can
determine that representative instructions 122B are optimized for execution based on the
configuration of input data 107. Act 205 includes an act of binding the specified lower
level instructions to executable code to implement the intent of the at least one specified
aspect of the higher level source code (act 208). For example, runtime 103 can bind 108
representative code 122B to executable code 106 to implement the intent of code aspect
114.

[0040] A plurality of different representative lower level instructions can be generated in
a variety of ways. Binding representative lower level instructions at runtime can also
vary. Turning to Figure 1B, Figure 1B illustrates using multiple versions of lower level
code to bind executable code at runtime. As depicted in Figure 1B, code generator 102
generates lower level code 121A including representative instructions 122A and lower
level code 121B including representative instructions 122B. At runtime, based on analysis
of input data 107, runtime 103 can launch 109 lower level code 121B as executable code
106.

[0041] Embodiments of using multiple versions of lower level code include generating
multiple HLSL shaders from C++ extended for parallel environments code. For example,
in the context of buffer aliasing, code generator 102 can generate one shader version (e.g.,
representative instructions 122A) which assumes that there is (and is optimized for) no
aliasing at runtime and another shader version (e.g., representative instructions 122B)
which handles aliasing of buffers. At runtime, runtime 103 checks for aliasing among the

buffer parameters to the kernel and invokes the appropriate shader version.

10

15

20

25

30

WO 2012/170236 PCT/US2012/039884

[0042] In the context of thread mapping, code generator 102 can generate one shader
version which assumes that there is (and is optimized for) direct thread mapping and
another shader which handles indirect thread mapping. At runtime, runtime 103 checks
for direct/indirect thread mapping and invokes the appropriate shader version.

[0043] Turning to Figure 1C, Figure 1C illustrates using an abstract interface to bind
executable code at runtime. As depicted in Figure 1C, code generator 102 generates lower
level code 121C including abstract interface 124. Representative instructions 122A and
122B are concrete implementations of abstract interface 124. Representative instructions
122A and 122B can exist from previous compilation or can be generated along with
abstract interface 124. Representative instructions 122A and 122B represent different
portions of lower level code that can be dynamically linked to implement abstract interface
124 at runtime. At runtime, runtime 103 launches 112 lower level code 121C as
executable code 106. Based on analysis of input data 107, runtime 103 can bind
representative instructions 122B to executable code 106 to provide a concrete
implementation of abstract interface 124.

[0044] Embodiments of using an abstract interface include DirectX/HLSL defining an
abstract interface that can be used in HLSL code. Binding the interface to actual code can
be delayed until runtime. For example, in the context of physical to logical thread index
mapping context, code generator 102 can generate HLSL bytecode that utilizes an abstract
interface for mapping the physical thread IDs to the C++ logical thread IDs. The abstract
interface is bound to direct mapping code (e.g., representative instructions 122A) or
indirect mapping code (e.g., representative instructions 122B) based on the actual compute
domains specified at runtime.

[0045] In the context of buffer aliasing, code generator 102 can generate HLSL
bytecode that utilizes an abstract interface for handling buffers at runtime. The abstract
interface is bound to code using aliased buffers or code using non-aliased buffers based on
whether or not aliasing among the buffer parameters to the kernel is detected at runtime.
[0046] Further embodiments include generating multiple shaders for hardware
dependent features present in user code. One shader can take advantage of the hardware
features and another shader can use a less efficient fallback implementation. At runtime,
an appropriate shader is selected for execution based on the hardware capabilities of the
target processor determined at runtime.

[0047] Additional embodiments include generating multiple shaders, each shader

varying optimization choices for code generation and accordingly varying resource

10

10

15

20

25

WO 2012/170236 PCT/US2012/039884

requirements. At runtime, an appropriate shader can be selected for execution based on
the resource availability on the target hardware. These additional embodiments may be
useful when hardware resources, such as, for example, the number of registers vary across
hardware.

[0048] Multiple versions of a shader can also be generated to handle different runtime
configurations, such as, for example, capabilities of the execution hardware. For example,
embodiments include generating multiple shaders (versions of executable code) for
different target processors. At runtime, an appropriate shader is selected for execution
based on the target processor selected for execution.

[0049] Other embodiments for handling different runtime configurations include
generating multiple shaders with some of the shaders including instrumentation code to
aid profiling/debugging at the expense of slower execution. This offers a runtime choice
for running the instrumented or non-instrumented code without the need for recompilation.
At runtime, an appropriate shader can be selected based on whether or not
profiling/debugging is selected.

[0050] Abstract interfaces can be used in combination with multiple code versions.
Some inputs are then serviced by different interface implementations, while other inputs
are served by completely different code versions, which do not employ an interface or
employ different interfaces.

[0051] The present invention may be embodied in other specific forms without
departing from its spirit or essential characteristics. The described embodiments are to be
considered in all respects only as illustrative and not restrictive. The scope of the
invention is, therefore, indicated by the appended claims rather than by the foregoing
description. All changes which come within the meaning and range of equivalency of the

claims are to be embraced within their scope.

11

10

15

20

25

30

WO 2012/170236 PCT/US2012/039884

CLAIMS
1. At a computer system, the computer system including a processor and system
memory, the computer system also including a compiler and a runtime, the compiler
configured to compile statements and expressions of higher level source code into
representative lower level instructions of lower level code, the runtime configured to
execute executable code, a method for binding code at runtime to improve performance,
the method comprising;:
an act of accessing statements and expressions of higher level source code;
an act of detecting that the higher level source code includes at least one specified
aspect for which the execution efficiency of corresponding representative lower
instructions varies to a requisite extent dependent upon the configuration of input data
received during execution;
an act of compiling the statements and expressions of the accessed higher level
source code into representative lower level instructions of the lower level code, including:
an act of compiling a plurality of different representative lower level
instructions for the at least one specified aspect, cach of the plurality of different
representative lower level instructions configured to correctly implement the intent
of the at least one specified aspect, at least one of the plurality of different
representative lower level instructions being optimized for execution efficiency
based on a different configuration of received input data;
an act of configuring execution of the lower level instructions at runtime,
including:
an act of analyzing the configuration of input data to be provided to the at
least one specified aspect of the higher level source code;
an act of determining that specified representative lower level instructions,
selected from among the plurality of different representative lower level
instructions, are optimized for execution based on the configuration of the
provided input data; and
an act of binding the specified lower level instructions to executable code
to implement the intent of the at least one specified aspect of the higher level
source code.
2. The method as recited in claim 1, wherein the act of compiling a plurality of
different representative lower level instructions for the at least one specified aspect

comprises:

12

10

15

20

25

30

WO 2012/170236 PCT/US2012/039884

an act of compiling one version of representative lower level instructions
optimized for use with input data that does not use buffer aliasing at runtime; and

an act of compiling another version of representative lower level instructions for
use with input data that does use buffer aliasing at runtime.
3. The method as recited in claim 2, wherein an act of analyzing the configuration of
input data to be provided to the at least one specified aspect of the higher level source code
comprises an act of determining that the input data does not use buffer aliasing; and

wherein the act of binding the specified lower level instructions to executable code
to implement the intent of the at least one specified aspect of the higher level source code
comprises an act of binding the one version of representative lower level instructions to
executable code at runtime.
4. The method as recited in claim 1, wherein the act of compiling a plurality of
different representative lower level instructions for the at least one specified aspect
comprises:

an act of compiling an abstract interface to represent the at least one specified
aspect; and

an act of compiling a plurality of different portions of lower level code that can be
dynamically linked to the abstract interface at runtime.
5. The method as recited in claim 4, wherein the act of compiling an abstract interface
to represent the at least one specified aspect comprises an act of compiling a physical to
logical thread ID mapping interface; and

wherein the act of compiling a plurality of different portions of lower level code
that can be dynamically linked to the abstract interface at runtime comprises:

an act of compiling one portion of lower level code for direct physical to
logical thread ID mapping; and
an act of compiling another portion of lower level code for the more

general indirect physical to logical thread ID mapping.
6. A computer program product for use at a computer system, the computer system
including a compiler and a runtime, the compiler configured to compile statements and
expressions of higher level source code into representative lower level instructions of
lower level code, the runtime configured to execute executable code, the computer
program product for a method for binding code at runtime to improve performance, the

computer program product for comprising one or more computer storage devices having

13

10

15

20

25

30

WO 2012/170236 PCT/US2012/039884

stored thereon computer-executable instructions that, when executed at a processor, cause
the computer system to perform the method including the following:
access statements and expressions of higher level source code;
detect that the higher level source code includes at least one specified aspect for
which the execution efficiency of corresponding representative lower instructions varies to
a requisite extent dependent upon the configuration of input data received during
execution;
compile the statements and expressions of the accessed higher level source code
into representative lower level instructions of the lower level code, including:
compile a plurality of different representative lower level instructions for
the at least one specified aspect, each of the plurality of different representative
lower level instructions configured to correctly implement the intent of the at least
one specified aspect, each of the plurality of different representative lower level
instructions being optimized for execution efficiency based on a different
configuration of received input data;
configure execution of the lower level instructions at runtime, including:
analyze the configuration of input data to be provided to the at least one
specified aspect of the higher level source code;
determine that specified representative lower level instructions, selected
from among the plurality of different representative lower level instructions, are
optimized for execution based on the configuration of the provided input data; and
bind the specified lower level instructions to executable code to implement
the intent of the at least one specified aspect of the higher level source code.
7. The computer program product as recited in claim 6, wherein computer-executable
instructions that, when executed, cause the computer system to compile the statements and
expressions of the accessed higher level source code into representative lower level
instructions of the lower level code comprise computer-executable instructions that, when
executed, cause the computer system to compile C++ code into High Level Shader
Language (“HLSL”) bytecode, the C++ code including extensions for parallel
environments.
8. The computer program product as recited in claim 7, wherein computer-executable
instructions that, when executed, cause the computer system to compile a plurality of
different representative lower level instructions for the at least one specified aspect

comprise computer-executable instructions that, when executed, cause the computer

14

10

15

20

25

30

WO 2012/170236 PCT/US2012/039884

system to compile a plurality of different versions of a shader for the C++ code, at least
one of the plurality of different versions of the shader optimized for a specific
configuration of input data.
9. The computer program product as recited in claim 6, wherein computer-executable
instructions that, when executed, cause the computer system to compile a plurality of
different representative lower level instructions for the at least one specified aspect
comprise computer-executable instructions that, when executed, cause the computer
System to:

compile one version of representative lower level instructions optimized for use
with input data that does not use buffer aliasing at runtime; and

compile another version of representative lower level instructions for use with
input data that does use buffer aliasing at runtime.
10. The computer program product as recited in claim 9, wherein computer-executable
instructions that, when executed, cause the computer system to analyze the configuration
of input data to be provided to the at least one specified aspect of the higher level source
code comprise computer-executable instructions that, when executed, cause the computer
system to determine that the input data does not use buffer aliasing; and

wherein computer-executable instructions that, when executed, cause the computer
system to bind the specified lower level instructions to executable code to implement the
intent of the at least one specified aspect of the higher level source code comprise
computer-executable instructions that, when executed, cause the computer system to bind
the one version of representative lower level instructions to executable code at runtime.
11. The computer program product as recited in claim 9, wherein the one version of
representative lower level instructions and the other version of representative lower level
instructions are both High Level Shader Language (“HLSL”) shaders.
12. The computer program product as recited in claim 6, wherein computer-executable
instructions that, when executed, cause the computer system to compile a plurality of
different representative lower level instructions for the at least one specified aspect
comprise computer-executable instructions that, when executed, cause the computer
System to:

compile an abstract interface to represent the at least one specified aspect; and

compile a plurality of different portions of lower level code that can be

dynamically linked to the abstract interface at runtime.

15

10

15

20

25

30

WO 2012/170236 PCT/US2012/039884

13. The computer program product as recited in claim 12, wherein computer-
executable instructions that, when executed, cause the computer system to compile an
abstract interface to represent the at least one specified aspect comprise computer-
executable instructions that, when executed, cause the computer system to compile a
physical to logical thread ID mapping interface; and

wherein computer-executable instructions that, when executed, cause the computer
system to compile a plurality of different portions of lower level code that can be
dynamically linked to the abstract interface at runtime comprise computer-executable
instructions that, when executed, cause the computer system to:

compile one portion of lower level code for direct physical to logical thread
ID mapping; and
compile another portion of lower level code for the more general indirect

physical to logical thread ID mapping.
14. The computer program product as recited in claim 12, wherein computer-
executable instructions that, when executed, cause the computer system to analyze the
configuration of input data to be provided to the at least one aspect of the higher level
source code comprise computer-executable instructions that, when executed, cause the
computer system to determine that the input data using direct physical to logical thread ID
mapping; and

wherein computer-executable instructions that, when executed, cause the computer
system to bind the specified lower level instructions to executable code to implement the
intent of the at least one aspect of the higher level source code comprises computer-
executable instructions that, when executed, cause the computer system to dynamically
link the one portion of lower level code to the physical to the logical thread ID mapping
interface at runtime.
15. A computer system, the computer system comprising:

ONE Or MOTre Processors;

system memory; and

one or more computer storage devices having stored there one computer-
executable instructions representing a code analyzer, a compiler, and a runtime, wherein
the code analyzer is configured to:

access statements and expressions of higher level source code;

16

WO 2012/170236 PCT/US2012/039884

detect that the higher level source code includes at least one specified
aspect that varies to a requisite extent dependent upon the runtime configuration
during execution; and
indicate the identified at least one aspect to the compiler;
5 wherein the compiler is configured to:
receiving the indication of the identified at least one aspect;
access the statements and expressions of the higher level code; and
compile the statements and expressions of the accessed higher level source
code into representative lower level instructions of the lower level code, including:
10 compiling a plurality of different representative lower level
instructions for the at least one specified aspect, each of the plurality of
different representative lower level instructions configured to correctly
implement the intent of the at least one specified aspect, each of the
plurality of different representative lower level instructions configured for
15 execution on a different runtime configuration; and
wherein the runtime is configured to:
analyze the runtime configuration to be utilized during execution;
determine that specified representative lower level instructions, selected
from among the plurality of different representative lower level instructions, are
20 configured for execution based on the provided runtime configuration; and
bind the specified lower level instructions to executable code to implement

the intent of the at least one specified aspect of the higher level source code.

17

PCT/US2012/039884

WO 2012/170236

1/4

€0l
awnuny

901 8po)
8|genoexg

Y01 19zAleuy
ndu

A

(11 108dsy
8poD 0])

707 eyeq induj

801
pulg

décl
sSuonoNIIsu|
aAlRIUSSOIdDoy

vicl
sSuonoNIIsu|
aAlRIUSSOIdDoy

V1 ainbi4

60T Jo)dwod
1201 Jojessus TOT JozAleuy
apon 9p0D
J

N

00l

%

Z1 | suoissaudxg
puy SjusWwoIRIS

11
8poD |eneT JaybiH

PCT/US2012/039884

WO 2012/170236

2/4

601
youne-

)

dl ainbi4

\\

[
awnuny

<

901 9pod
5|qeIN0axy

701 JozAleuy
induy

A

d¢cl
suonoNISU|
aAlejuasaldoy

dlcl 3p0D
[OAST JOMOT

101
ejeq indu

V144
suonoNISU|
aAlejuasaldoy

Y1Zl 9p0D
[OAST JOMOT

x5

00l

5

Z0] Jolelausn)

=Tolo%e)

PCT/US2012/039884

3/4

WO 2012/170236

9| ainbi4

ﬁ ﬁ)
accl Vel
sSuoioNJISU| sSuoioNJISU|
aANneluasalday aANneluasalday
47’
9Ll (lg oune
oulg JJ Y T
v F2T
90T epoD S0e LY Z0T Jojesausn)
a|qeINoaxg A.L Joelsqy apoD
Ol¢l °@po)d
[9A87 JomOT
Y01 J1ozAjeuy
ToT indu
awpuny A
01
ejeq 1ndu M J \w«
001

WO 2012/170236 PCT/US2012/039884

4/4

§°0%

201~

Accessing Statements And Expressions Of Higher Level Source Code

202~

Detecting That The Higher Level Source Code Includes At Least One Specified
Aspect For Which The Execution Efficiency Of Corresponding Representative
Lower Instructions Varies To A Requisite Extent Dependent Upon The
Configuration Of Input Data Received During Execution

203 ™

Compiling The Statements And Expressions Of The Accessed
Higher Level Source Code Into Representative Lower Level
Instructions Of The Lower Level Code, Including:
204 ~

Compiling A Plurality Of Different Representative Lower Level
Instructions For The At Least One Specified Aspect, Each Of The
Plurality Of Different Representative Lower Level Instructions
Configured To Correctly Implement The Intent Of The At Least One
Specified Aspect, At Least One Of The Plurality Of Different
Representative Lower Level Instructions Being Optimized For Execution
Efficiency Based On A Different Configuration Of Received Input Data

205~

Configuring Execution Of The Lower Level Instructions At Runtime, Including:
206 ~

Analyzing The Configuration Of Input Data To Be Provided To The
At Least One Specified Aspect Of The Higher Level Source Code

207 —~
Determining That Specified Representative Lower Level Instructions,
Selected From Among The Plurality Of Different Representative Lower
Level Instructions, Are Optimized For Execution Based On The
Configuration Of The Provided Input Data

208 ~

Binding The Specified Lower Level Instructions To Executable
Code To Implement The Intent Of The At Least One Specified
Aspect Of The Higher Level Source Code

Figure 2

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - claims
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings

