©-.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © :

GOG6F 7/00, 7/38, 7/52, 7/50, 9/30 Al

(11) International Publication Number:

(43) International Publication Date:

WO 97/08608

6 March 1997 (06.03.97)

(21) International Application Number: PCT/US96/11893

(22) International Filing Date: 17 July 1996 (17.07.96)

(30) Priority Data:

08/521,360 31 August 1995 (31.08.95) Us

(71) Applicant (for all designated States except US): INTEL COR-
PORATION [US/US}; 2200 Mission College Boulevard,
Santa Clara, CA 95052 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PELEG, Alexander, D.
[IL/IL]; 38 Hannah Street, Carmelia, Haifa (IL). YAARI,
Yaacov [IL/IL]; 17/2 Soerot Hanadin, Hanadin, Haifa (IL).
MITTAL, Millind [IN/US]; 1149 Hillside Boulevard, S. San
Francisco, CA (US). MENNEMEIER, Larry, M. [US/US];
P.O. Box 587, Boulder Creek, CA 95006 (US). EITAN,
Benny [IL/IL}; 25 Stephen Wise, Haifa (IL). GLEW, An-
drew, F. [CA/US]; 825 N.E. Kathryn, Hillsboro, OR 97124
(US). DULONG, Carole [FR/US]; 18983 Harleigh Drive,
Saratoga, CA 95070 (US). KOWASHI, Eiichi [JP/US];
Apartment 618, 355 N. Wolfe Road, Sunnyvale, CA 94086
(US). WITT, Wolf [DE/US]; 2622 San Antonio Drive, Wal-
nut Creek, CA 94598 (US).

(74) Agents: DE VOS, Daniel, M. et al; Blakely, Sokoloff,

Taylor & Zafman, 7th floor, 12400 Wilshire Boulevard, Los
Angeles, CA 90025 (US).

(81) Designated States: AL, AM, AT, AT (Utility model), AU,
AZ, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility
model), DE, DE (Utility model), DK, DK (Utility model),
EE, EE (Utility model), ES, FI, FI (Utility model), GB, GE,
HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT,
LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,
RO, RU, 8D, SE, SG, SI, SK, SK (Utility model), TJ, TM,
TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS,
MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG,
KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE,
DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE),
OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR,
NE, SN, TD, TG).

Published
With international search report.
With amended claims.

(54) Title: A SET OF INSTRUCTIONS FOR OPERATING ON PACKED DATA

(57) Abstract

An apparatus for including in a processor a set of instructions
that support operations on packed data required by typical multimedia
applications. In one embodiment, the invention includes a processor
having a storage area (150), a decoder (165), and a plurality of circuits
(130). The plurality of circuits provide for the execution of a number
of instructions to manipulate packed data. In this embodiment, these
instructions include pack, unpack, packed multipty, packed add, packed
subtract, packed compare, and packed shift.

| i
! Main Data Storay 0
! ROM forage
Displa M Device
Degic:{lzl ! 04 106 107 [
' 8 '
R) |
Input | J L Bus ol 1
Dcvu:e]n mmmiun t
! 1
! 1
Cursor 1
Control ™ |
1 | Cache |
| 160 |
HardCopy {_J ! |
Devi:e’ b— 11 |
! I
| Decoder
165 !
Sound { |
Recording and
Playback [| |
Device 1
125 Execution Unit !
1 o 10 |
: Packed Instruction Set 140 !
y |
Vidi
Digili:?ng "1 | | {{Pack Operation | |
evice | | [{Grpack Operetion R'i’,i‘l’e"'
126 Packed A£ Operation ! |
| | [{Packed Subteact Operation Internal Bus 1
Packed Multiply Operation 170
| | |{Packed Shift Operation }
) Packed Compare Operation
Multiply-Add/Subtract Operations 1
150
| | | Population Count Operation |
Logical ions
| (AND, ANDN, OR, XOR) |
! 1
| 1
| Processor 109 i
! !
|

Computer System100

applications under the PCT.

AM
AT
AU
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CcG

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Armenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

GB
GE
GN

HU
IE

Jp

KE
KG
KP

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

MW
MX
NE
NL
NO
NZ
PL

RO
RU
SD
SE
SG
SI
SK
SN
Sz

TG
TJ

UA
uG
Us
UZ

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

WO 97/08608 PCT/US96/11893

-1-

A SET OF INSTRUCTIONS FOR OPERATING ON PACKED
DATA

BACKGROUND OF THE INVENTION

1. FIELD QF INVENTION
In particular, the invention relates to the field of computer systems. More

specifically, the invention relates to the area of packed data operations.

2. DESCRIPTION OF RELATED ART

In typical computer systems, processors are implemented to operate on
values represented by a large number of bits (e.g., 64) using instructions that
produce one result. For exémple, the execution of an add instruction will add
together a first 64-bit value and a second 64-bit value and store the result as a
third 64-bit value. However, multimedia applications (e.g., applications targeted
at computer supported cooperation (CSC -- the integration of teleconferencing
with mixed media data manipulation), 2D/3D graphics, image processing, video
compression/decompression, recognition algorithms and audio manipulation)
require the manipulation of large amounts of data which may be represented in a
small number of bits. For example, graphical data typically requires 8 or 16 bits
and sound data typically requires 8 or 16 bits. Each of these multimedia
application requires one or more algorithms, each requiring a number of
operations. For example, an algorithm may require an add, compare and shift
operation.

To improve efficiency of multimedia applications (as well as other
applications that have the same characteristics), prior art processors provide
packed data formats. A packed data format is one in which the bits typically
used to represent a single value are broken into a number of fixed sized data
elements, each of which represents a separate value. For example, a 64-bit
register may be broken into two 32-bit elements, each of which represents a
separate 32-bit value. In addition, these prior art processors provide instructions
for separately manipulating each element in these packed data types in parallel.
For example, a packed add instruction adds together corresponding data elements

WO 97/08608 PCT/US96/11893 -

2-

from a first packed data and a second packed data. Thus, if a multimedia
algorithm requires a loop containing five operations that must be performed on a
large number of data elements, it is desirable to pack the data and perform these
operations in parallel using packed data instructions. In this manner, these
processors can more efficiently process multimedia applications.

However, if the loop of operations contains an operation that cannot be
performed by the processor on packed data (i.e., the processor lacks the
appropriate instruction), the data will have to be unpacked to perform the
operation. For example, if the multimedia algorithm required an add operation
and the previously described packed add instruction is not available, the
programmer must unpack both the first packed data and the second packed data
(i.e., separate the elements comprising both the first packed data and the second
packed data), add the separated elements together individually, and then pack the
results into a packed result for further packed processing. The processing time
required to perform such packing and unpacking often negates the performance
advantage for which packed data formats are provided. Therefore, it is desirable
to incorporate on a general purpose processor a set of packed data instructions
that provide all the required operations for typical multimedia algorithms.
However, due to the limited die area on today's microprocessors, the number of
instructions which may be added is limited.

One general purpose processor that contains packed data instructions is
the i860XP™ processor manufactured by Intel Corporation of Santa Clara,
California. The i860XP processor includes several packed data types having
different element sizes. In addition, the i860XP processor includes a packed add
and a packed compare instruction. However, the packed add instruction does not
break the carry chain, and thus the programmer has to insure the operations being
performed by the software will not cause an overflow -- i.e., the operation will
not cause bits from one element in the packed data to overflow into the next
element of the packed data. For example, if a value of 1 is added to an 8-bit
packed data element storing "11111111", an overflow occurs and the result is "1
00000000". In addition, the location of the decimal point in the packed data
types supported by the i860XP processor is fixed (i.e., the i860XP processor
supported 8.8, 6.10, and 8.24 numbers, where an i.j number contains the i most
significant bits and j bits after the decimal point). Thus, the programmer is

WO 97/08608 PCT/US96/11893 -

3-

limited as to the values that may be represented. Since the i860XP processor
supports only these two instructions, it cannot perform many of the operations
required by multimedia algorithms using packed data.

Another general purpose processor that supports packed data is the
MC88110™ processor manufactured by Motorola, Inc. The MC88110 processor
supports several different packed data formats having different size elements. In
addition, the set of packed instructions supported by the MC88110 processor
includes a pack, an unpack, a packed add, a packed subtract, a packed multiply, a
packed compare, and a packed rotate.

The MC88110 processor pack command operates by concatenating the (t
* 1)/64 (where t is the number of bits in the elements of the packed data) most
significant bits of each of the elements in a first register pair to generate a field of
width r. This field replaces the most significant bits of the packed data stored in
a second register pair. This packed data is then stored in a third register pair and
rotated left by r bits. The table of supported values for t & r, as well as an
example of the operation of this instruction, are shown in Tables 1 and 2 below.

8 X X 4

t 16 X 4 8
32 4 8 16

x = undefined operation

Table 1

WO 97/08608

PCT/US96/11893 -
4-
- > =32 >
G T B I~ B First
0 00 0 I 0 Register
Pair
=21 5
C Second
A, 0. Register
/ / Pair
B4_ Third
Ao. Co. Go. - 0. Register
Pair

Table 2

This implementation of a pack instruction has two disadvantages. The

first is that additional logic is required to perform the rotate at the end of the

instruction.

The second is the number of instructions required to generate a packed data

result. For example, if it is desired to use four 32-bit values to generate the result

in the third register (shown above), 2 instructions with t=32 and r=32 are

required as shown below in Table 3.

ppack Sourcel,Source2

Aq. AQ Co. .Co Sourcel

X X X X Source2

X X Ay, Co. Resultl

WO 97/08608 PCT/US96/11893 -

-5.
ppack Resultl,Source3
Go. G Bo. .Bo Resultl
X X Ag, Co. Source3
AQ, Co. Go. BQ. Result2
Table 3

The MC88110 processor unpack command operates by placing 4-, 8-, or 16-
bit data elements from a packed data into the lower half of data elements that are
twice as large (8, 16, or 32 bits) with zero fill -- i.e., the higher order bits in the -
resulting data elements are set to zero. An example of the operation of this
unpack command is shown below in Table 4.

First Register Pair

00101010 | 01010101 | 01010101] 11111111 | 10000000 | 01110000 | 10001111 | 10001000
7 6 5 4 3 2 1 0

Unpack

Second Register Pair

00000000 10000000 | 00000000 01110000 | 00000000 10001111 | 00000000 10001000
3 2 : 1 0

Table 4
The MC88110 processor packed multiply instruction multiplies each

element of a 64-bit packed data by a 32-bit value as if the packed data
represented a single value as shown below in Table 5.

WO 97/08608 PCT/US96/11893 -

63 48 47 32 31 16 15 0
00 | a; | 00 'Ry Joo TG Joo Tay |rStas1v

00 |00 [00 [Ay |rs2

[a1 X Ax [Ry X Ax | G1 X Ag | Bl X Ay DD+l

Table §
This multiply instruction has two draw backs. First, this multiply

instruction does not break the carry chains, and thus the programmer must insure
that the operations performed on the packed data do not cause an overflow. As a
result, the programmer is sometimes required to include additional instructions to
prevent this overflow. Second, this multiply instruction multiplies each element
in the packed data by a single value (i.e., the 32-bit value). As a result, the user
does not have the flexibility to choose which elements in a packed data are
multiplied by the 32-bit value. Therefore, the programmer must either prepare
the data such that the same multiplications are required on every element in the
packed data or waste processing time unpacking the data whenever a
multiplication on less than all of the elements in the data is required. Thus, the
programmer could not perform multiple multiplications using multiple

WO 97/08608 PCT/US96/11893

7-

multipliers in parallel. For example, to multiply together eight different pieces of
data, each one word long, requires four separate multiply operations. Each
operation multiplying two words at a time, effectively wasting data lines and
circuitry used for bits higher than bit sixteen.

The MC88110 processor packed compare instruction compares
corresponding 32-bit data elements from a first packed data and a second packed
data. Each of the two comparisons may return either less-than (<) or greater-
than-or-equal-to (2), resulting in four possible combinations. The instruction
returns an 8-bit result string; four bits indicate which of the four possible
conditions was met, and four bits indicate the complement of those bits.
Conditional branching on the results of this instruction can be implemented in
two ways: 1) with a sequence of conditional branches; or 2) with a jump table.
A problem with this instruction is the fact that it requires conditional branches
based on data to perform functions such as: if Y>A then X=X+B else X=X. A
pseudo code compiled representation of this function would be:

COMPARE Y,A
BRANCH if the conditional flag indicates Y<A
ADD X,B

New microprocessors try to speed up execution by speculatively predicting

where branches go. If a prediction is correct, performance is not lost and there is
a potential for a gain in performance. However, if a prediction is wrong,
performance is lost. Therefore, the incentive to predict well is great. However,
branches based on data (such as the one above) behave in an unpredictable way
that breaks the prediction algorithms and results in more wrong predictions. As a
result, use of this compare instruction to set up conditional branches on data
comes at a high cost to performance.

The MC88110 processor rotate instruction rotates a 64-bit value to any
modulo-4 boundary between 0 and 60 bits. (See Table 6 below for an example).

WO 97/08608 PCT/US96/11893

-8-

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
P

P, [Pc | Pq | P | Pt | Pg | Py

P Pd P Pg P Py P Pb

Table 6

Since the rotate instruction causes the high order bits that are shifted out of the
register to be shifted into the low order bits of the register, the MC88110

processor does not support individually shifting each element in a packed data.
As a result, programming algorithms which require individually shifting each
element in a packed data type requires: 1) unpacking the data, 2) performing a
shift on each element individually, and 3) packing the results into a result packed
data for further packed data processing.

SUMMARY OF THE INVENTION

A method and apparatus for including in a processor a set of packed data

instructions that support the operations required by typical multimedia
applications is described. In one embodiment, the invention includes a processor
and a storage area. The storage area contains a number of instructions for
execution by the processor to manipulate packed data. In this embodiment, these
instructions include pack, unpack, packed add, packed subtract, packed multiply,
packed shift, and packed compare.

The processor packs a portion of the bits from data elements in at least
two packed data to form a third packed data in response to receiving the pack
instruction. In contrast, the processor generates a fourth packed data containing
at least one data element from a first packed data operand and at least one
corresponding data element from a second packed data operand in response to
receiving the unpack instruction.

WO 97/08608 PCT/US96/11893

9-

The processor separately adds together in parallel corresponding data
elements from at least two packed data in response to receiving the packed add
instruction. In contrast, the processor separately subtracts in parallel
corresponding data elements from at least two packed data in response to
receiving the packed subtract instruction.

The processor separately multiplies together in parallel corresponding
data elements from at least two packed data in response to receiving the packed
multiply instruction.

The processor separately shifts in parallel each of the data elements in a
packed data operand by an indicated count in response to receiving the packed
shift instruction.

The processor separately compares in parallel corresponding data
elements from at least two packed data according to an indicated relationship and
stores as a result a packed mask in a first register in response to receiving the
packed compare instruction. The packed mask contains at least a first mask
element and a second mask element. Each bit in the first mask element indicates
the result of comparing one set of corresponding data elements, while each bit in
the second mask element indicates the result of comparing a second set of data

elements.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is illustrated by way of example, and not limitation, in the

figures. Like references indicate similar elements.

Figure 1 illustrates an exemplary computer system according to one
embodiment of the invention.

Figure 2 illustrates a register file of the processor according to one
embodiment of the invention.

Figure 3 is a flow diagram illustrating the general steps used by the
processor to manipulate data according to one embodiment of the invention.

Figure 4 illustrates packed data-types according to one embodiment of the
invention.

Figure 5a illustrates in-register packed data representations according to one
embodiment of the invention.

WO 97/08608 PCT/US96/11893

-10-

Figure 5b illustrates in-register packed data representations according to one
embodiment of the invention.

Figure 5c illustrates in-register packed data representations according to one
embodiment of the invention.

Figure 6a illustrates a control signal format for indicating the use of packed
data according to one embodiment of the invention.

Figure 6b illustrates a second control signal format for indicating the use of
packed data according to one embodiment of the invention.

PACKED ADD/SUBTRACT

Figure 7a illustrates a method for performing packed addition according to
one embodiment of the invention.

Figure 7b illustrates a method for performing packed subtraction according
to one embodiment of the invention.

Figure 8 illustrates a circuit for performing packed addition and packed
subtraction on individual bits of packed data according to one embodiment of the
invention.

Figure 9 illustrates a circuit for performing packed addition and packed
subtraction on packed byte data according to one embodiment of the invention.

Figure 10 is a logical view of a circuit for performing packed addition and
packed subtraction on packed word data according to one embodiment of the
invention. _ :

Figure 11 is a logical view of a circuit for performing packed addition and
packed subtraction on packed doubleword data according to one embodiment of
the invention.

PACKED MULTIPLY

Figure 12 is a flow diagram illustrating a method for performing packed
multiplication operations on packed data according to one embodiment of the
invention.

Figure 13 illustrates a circuit for performing packed multiplication
according to one embodiment of the invention.

WO 97/08608 PCT/US96/11893

-11-

MULTIPLY-ADD/SUBTRACT

Figure 14 is a flow diagram illustrating a method for performing multiply-
add and multiply-subtract operations on packed data according to one
embodiment of the invention.

Figure 15 illustrates a circuit for performing multiply-add and/or multiply-
subtract operations on packed data according to one embodiment of the
invention.

PACKED SHIFT

Figure 16 is a flow diagram illustrating a method for performing a packed
shift operation on packed data according to one embodiment of the invention.

Figure 17 illustrates a circuit for performing a packed shift on individual
bytes of packed data according to one embodiment of the invention.

PACK

Figure 18 is a flow diagram illustrating a method for performing pack
operations on packed data according to one embodiment of the invention.

Figure 19a illustrates a circuit for performing pack operations on packed
byte data according to one embodiment of the invention.

Figure 19b illustrates a circuit for performing pack operations on packed
word data according to one embodiment of the invention.

UNPACK

Figure 20 is a flow diagram illustrating a method for performing unpack
operations on packed data according to one embodiment of the invention.

Figure 21 illustrates a circuit for performing unpack operations on packed
data according to one embodiment of the invention.

POPULATION COUNT

Figure 22 is a flow diagram illustrating a method for performing a
population count operation on packed data according to one embodiment of the
invention.

Figure 23 is a flow diagram illustrating a method for performing a
population count operation on one data element of a packed data and generating
a single result data element for a result packed data according to one embodiment

of the invention.

WO 97/08608 PCT/US96/11893

-12-

Figure 24 illustrates a circuit for performing a population count operation on
packed data having four word data elements according to one embodiment of the
invention.

Figure 25 illustrates a detailed circuit for performing a population count
operation on one word data element of a packed data according to one
embodiment of the invention.

PACKED LOGICAL OPERATIONS

Figure 26 is a flow diagram illustrating a method for performing a number
of logical operations on packed data according to one embodiment of the
invention.

Figure 27 illustrates a circuit for performing logical operations on packed
data according to one embodiment of the invention.

PACKED COMPARE

Figure 28 is a flow diagram illustrating a method for performing packed
compare operations on packed data according to one embodiment of the
invention.

Figure 29 illustrates a circuit for performing packed compare operations on
individual bytes of packed data according to one embodiment of the invention.

DETAILED DESCRIPTION

This application describes a method and apparatus for including in a
processor a set of instructions that support the operations on packed data required
by typical multimedia applications. In the following description, numerous
specific details are set forth to provide a thorough understanding of the
invention. However, it is understood that the invention may be practiced without
these specific details. In other instances, well-known circuits, structures and
techniques have not been shown in detail in order not to unnécessarily obscure
the invention.

DEFINITIONS
To provide a foundation for understanding the description of the
embodiments of the invention, the following definitions are provided.

WO 97/08608 PCT/US96/11893

-13-

Bit X through Bit Y:
defines a subfield of binary number. For example, bit
six through bit zero of the byte 001110102 (shown in
base two) represent the subfield 1110107, The '2'
following a binary number indicates base 2. Therefore,
10002 equals 810, while F16 equals 151().

Rx: is a register. A register is any device capable of storing
and providing data. Further functionality of a register
is described below. A register is not necessarily part of
the processor’s package.

SRC1, SRC2, and DEST:
identify storage areas (e.g., memory addresses,

registers, etc.)

Sourcel-i and Resultl-i:
represent data.

COMPUTER SYSTEM

Figure 1 illustrates an exemplary computer system 100 according to one
embodiment of the invention. Computer system 100 includes a bus 101, or other
communications hardware and software, for communicating information, and a
processor 109 coupled with bus 101 for processing information. Processor 109
represents a central processing unit of any type of architecture, including a CISC
or RISC type architecture. Computer system 100 further includes a random
access memory (RAM) or other dynamic storage device (referred to as main
memory 104), coupled to bus 101 for storing information and instructions to be
executed hy processor 109. Main memory 104 also may be used for storing
temporary variables or other intermediate information during execution of
instructions by processor 109. Computer system 100 also includes a read only
memory (ROM) 106, and/or other static storage device, coupled to bus 101 for
storing static information and instructions for processor 109. Data storage device
107 is coupled to bus 101 for storing information and instructions.

WO 97/08608 PCT/US96/11893

-14-

Figure 1 also illustrates that processor 109 includes an execution unit 130, a
register file 150, a cache 160, a decoder 165, and an internal bus 170. Of course,
processor 109 contains additional circuitry which is not shown so as to not
obscure the invention.

Execution unit 130 is used for executing instructions received by processor
109. In addition to recognizing instructions typically implemented in general
purpose processors, execution unit 130 recognizes instructions in packed
instruction set 140 for performing operations on packed data formats. In one
embodiment, packed instruction set 140 includes instructions for supporting pack
operation(s), unpack operation(s), packed add operation(s), packed subtract
operation(s), packed multiply operation(s), packed shift operation(s), packed
compare operation(s), multiply-add operation(s), multiply-subtract operation(s),
population count operation(s), and a set of packed logical operations (including
packed AND, packed ANDNOT, packed OR, and packed XOR) in the manner
later described herein. While one embodiment is described in which packed
instruction set 140 includes these instructions, alternative embodiment may
contain a subset or a super-set of these instructions.

By including these instructions, the operations required by many of the
algorithms used in multimedia applications may be performed using packed data.
Thus, these algorithms may be written to pack the necessary data and perform
the necessary operations on the packed data, without requiring the packed data to
be unpacked to perform one or more operations one data element at a time. As
previously described, this provides performance advantages over prior art
general purpose processors that do not support the packed data operations
required by certain multimedia algorithms -- i.e., if a multimedia algorithm
requires an operation that cannot be performed on packed data, the program must
unpack the data, perform the operation on the separate elements individually, and
then pack the results into a packed result for further packed processing. In
addition, the disclosed manner in which several of these instructions are
performed improves the performance of many multimedia applications.

Execution unit 130 is coupled to register file 150 by internal bus 170.
Register file 150 represents a storage area on processor 109 for storing
information, including data. It is understood that one aspect of the invention is
the described instruction set for operating on packed data. According to this

WO 97/08608 PCT/US96/11893

-15-

aspect of the invention, the storage area used for storing the packed data is not
critical. However, one embodiment of the register file 150 is later described with
reference to Figure 2. Execution unit 130 is coupled to cache 160 and decoder
165. Cache 160 is used to cache data and/or control signals from, for example,
main memory 104. Decoder 165 is used for decoding instructions received by
processor 109 into control signals and/or microcode entry points. In response to
these control signals and/or microcode entry points, execution unit 130 performs
the appropriate operations. For example, if an add instruction is received,
decoder 165 causes execution unit 130 to perform the required addition; if a
subtract instruction is received, decoder 165 causes execution unit 130 to
perform the required subtraction; etc. Decoder 165 may be implemented using
any number of different mechanisms (e.g., a look-up table, a hardware
implementation, a PLA, etc.). Thus, while the execution of the various
instructions by the decoder and execution unit is represented by a series of
if/then statements, it is understood that the execution of an instruction does not
require a serial processing of these if/then statements. Rather, any mechanism
for logically performing this if/then processing is considered to be within the
scope of the invention.

Figure 1 additionally shows a data storage device 107, such as a magnetic
disk or optical disk, and its corresponding disk drive. Computer system 100 can
also be coupled via bus 101 to a display device 121 for displaying information to
a computer user. Display device 121 can include a frame buffer, specialized
graphics rendering devices, a cathode ray tube (CRT), and/or a flat panel display.
An alphanumeric input device 122, including alphanumeric and other keys, is
typically coupled to bus 101 for communicating information and command
selections to processor 109. Another type of user input device is cursor control
123, such as a mouse, a trackball, a pen, a touch screen, or cursor direction keys
for communicating direction information and command selections to processor
109, and for controlling cursor movement on display device 121. This input
device typically has two degrees of freedom in two axes, a first axis (e.g., x) and
a second axis (e.g., y), which allows the device to specify positions in a plane.
However, this invention should not be limited to input devices with only two
degrees of freedom.

WO 97/08608 PCT/US96/11893

-16-

Another device which may be coupled to bus 101 is a hard copy device 124
which may be used for printing instructions, data, or other information on a
medium such as paper, film, or similar types of media. Additionally, computer
system 100 can be coupled to a device for sound recording, and/or playback 125,
such as an audio digitizer coupled to a microphone for recording information.
Further, the device may include a speaker which is coupled to a digital to analog
(D/A) converter for playing back the digitized sounds.

Also, computer system 100 can be a terminal in a computer network (e.g., a
LAN). Computer system 100 would then be a computer subsystem of a computer
network. Computer system 100 optionally includes video digitizing device 126.
Video digitizing device 126 can be used to capture video images that can be
transmitted to others on the computer network.

In one embodiment, the processor 109 additionally supports an instruction
set which is compatible with the x86 instruction set (the instruction set used by
existing microprocessors, such as the Pentium® processor, manufactured by Intel
Corporation of Santa Clara, California). Thus, in one embodiment, processor
109 supports all the operations supported in the IA™ - Intel Architecture, as
defined by Intel Corporation of Santa Clara, California (see Microprocessors,
Intel Data Books volume 1 and volume 2, 1992 and 1993, available from Intel of
Santa Clara, California). As a result, processor 109 can support existing x86
operations in addition to the operations of the invention. While the invention is
described as being incorporated into an x86 based instruction set, alternative
embodiments could incorporate the invention into other instruction sets. For
example, the invention could be incorporated into a 64-bit processor using a new
instruction set. '

Figure 2 illustrates the register file of the processor according to one
embodiment of the invention. The register file 150 is used for storing
information, including control/status information, integer data, floating point
data, and packed data. In the embodiment shown in Figure 2, the register file
150 includes integer registers 201, registers 209, status registers 208, and
instruction pointer register 211. Status registers 208 indicate the status of
processor 109. Instruction pointer register 211 stores the address of the next
instruction to be executed. Integer registers 201, registers 209, status registers

WO 97/08608 PCT/US96/11893

-17-

208, and instruction pointer register 211 are all coupled to internal bus 170. Any
additional registers would also be coupled to internal bus 170.

In one embodiment, the registers 209 are used for both packed data and
floating point data. In one such embodiment, the processor 109, at any given
time, must treat the registers 209 as being either stack referenced floating point
registers or non-stack referenced packed data registers. In this embodiment, a
mechanism is included to allow the processor 109 to switch between operating
on registers 209 as stack referenced floating point registers and non-stack
referenced packed data registers. In another such embodiment, the processor 109
may simultaneously operate on registers 209 as non-stack referenced floating
point and packed data registers. As another example, in another embodiment,
these same registers may be used for storing integer data.

Of course, alternative embodiments may be implemented to contain more or
less sets of registers. For example, an alternative embodiment may include a
separate set of floating point registers for storing floating point data. As another
example, an alternative embodiment may including a first set of registers, each
for storing control/status information, and a second set of registers, each capable
of storing integer, floating point, and packed data. As a matter of clarity, the
registers of an embodiment should not be limited in meaning to a particular type
of circuit. Rather, a register of an embodiment need only be capable of storing
and providing data, and performing the functions described herein.

The various sets of registers (e.g., the integer registers 201, the registers
209) may be implemented to include different numbers of registers and/or to
different size registers. For example, in one embodiment, the integer registers
201 are implemented to store thirty-two bits, while the registers 209 are
implemented to store eighty bits (all eighty bits are used for storing floating point
data, while only sixty-four are used for packed data). In addition, registers 209
contains eight registers, R(212a through R7 212h. R1 212a, R2 212b and R3
212c are examples of individual registers in registers 209. Thirty-two bits of a
register in registers 209 can be moved into an integer register in integer registers
201. Similarly, a value in an integer register can be moved into thirty-two bits of
a register in registers 209. In another embodiment, the integer registers 201 each
contain 64 bits, and 64 bits of data may be moved between the integer register
201 and the registers 209.

WO 97/08608 PCT/US96/11893

-18-

Figure 3 is a flow diagram illustrating the general steps used by the
processor to manipulate data according to one embodiment of the invention. For
example, such operations include a load operation to load a register in register
file 150 with data from cache 160, main memory 104, read only memory (ROM)
106, or data storage device 107.

At step 301, the decoder 202 receives a control signal 207 from either the
cache 160 or bus 101. Decoder 202 decodes the control signal to determine the
operations to be performed.

At step 302, Decoder 202 accesses the register file 150, or a location in
memory. Registers in the register file 150, or memory locations in the memory,
are accessed depending on the register address specified in the control signal
207. For example, for an operation on packed data, control signal 207 can
include SRC1, SRC2 and DEST register addresses. SRC1 is the address of the
first source register. SRC2 is the address of the second source register. In some
cases, the SRC2 address is optional as not all operations require two source
addresses. If the SRC2 address is not required for an operation, then only the
SRCI1 address is used. DEST is the address of the destination register where the
result data is stored. In one embodiment, SRC1 or SRC2 is also used as DEST.
SRCI1, SRC2 and DEST are described more fully in relation to Figure 6a and
Figure 6b. The data stored in the corresponding registers is referred to as
Sourcel, Source2, and Result respectively. Each of these data is sixty-four bits in
length.

In another embodiment of the invention, any one, or all, of SRC1, SRC2 and
DEST, can define a memory location in the addressable memory space of
processor 109. For example, SRC1 may identify a memory location in main
memory 104, while SRC?2 identifies a first register in integer registers 201 and
DEST identifies a second register in registers 209. For simplicity of the
description herein, the invention will be described in relation to accessing the
register file 150. However, these accesses could be made to memory instead.

At step 303, execution unit 130 is enabled to perform the operation on the
accessed data. At step 304, the result is stored back into register file 150
according to requirements of control signal 207.

WO 97/08608 PCT/US96/11893

-19-

DATA AND STORAGE FORMATS

Figure 4 illustrates packed data-types according to one embodiment of the
invention. Three packed data formats are illustrated; packed byte 401, packed
word 402, and packed doubleword 403. Packed byte, in one embodiment of the
invention, is sixty-four bits long containing eight data elements. Each data
element is one byte long. Generally, a data element is an individual piece of data
that is stored in a single register (or memory location) with other data elements
of the same length. In one embodiment of the invention, the number of data
elements stored in a register is sixty-four bits divided by the length in bits of a
data element.

Packed word 402 is sixty-four bits long and contains four word 402 data
elements. Each word 402 data element contains sixteen bits of information.

Packed doubleword 403 is sixty-four bits long and contains two doubleword
403 data elements. Each doubleword 403 data element contains thirty-two bits of
information.

Figure 5a through 5c illustrate the in-register packed data storage
representation according to one embodiment of the invention. Unsigned packed
byte in-register representation 510 illustrates the storage of an unsigned packed
byte 401 in one of the registers R() 212a through R7 212h. Information for each
byte data element is stored in bit seven through bit zero for byte zero, bit fifteen
through bit eight for byte one, bit twenty-three through bit sixteen for byte two,
bit thirty-one through bit twenty-four for byte three, bit thirty-nine through bit
thirty-two for byte four, bit forty-seven through bit forty for byte five, bit fifty-
five through bit forty-eight for byte six and bit sixty-three through bit fifty-six
for byte seven. Thus, all available bits are used in the register. This storage
arrangement increases the storage efficiency of the processor. As well, with eight
data elements accessed, one operation can now be performed on eight data
elements simultaneously. Signed packed byte in-register representation 511
illustrates the storage of a signed packed byte 401. Note that only the eighth bit
of every byte data element is necessary for the sign indicator.

Unsigned packed word in-register representation 512 illustrates how word
three through word zero are stored in one register of registers 209. Bit fifteen
through bit zero contain the data element information for word zero, bit thirty-
one through bit sixteen contain the information for data element word one, bit

WO 97/08608 PCT/US96/11893

-20-

forty-seven through bit thirty-two contain the information for data element word
two and bit sixty-three through bit forty-eight contain the information for data
element word three. Signed packed word in-register representation 513 is similar
to the unsigned packed word in-register representation 512. Note that only the
sixteenth bit of each word data element is the necessary for the sign indicator.

Unsigned packed doubleword in-register representation 514 shows how
registers 209 store two doubleword data elements. Doubleword zero is stored in
bit thirty-one through bit zero of the register. Doubleword one is stored in bit
sixty-three through bit thirty-two of the register. Signed packed doubleword in-
register representation 515 is similar to unsigned packed doubleword in-register
representation 514. Note that the necessary sign bit is the thirty-second bit of the
doubleword data element. ,

As mentioned previously, registers 209 may be used for both packed data
and floating point data. In this embodiment of the invention, the individual
programming processor 109 may be required to track whether an addressed
register, R 212a for example, is storing packed data or floating point data. In an
alternative embodiment, processor 109 could track the type of data stored in
individual registers of registers 209. This alternative embodiment could then
generate errors if, for example, a packed addition operation were attempted on
floating point data.

CONTROL SIGNAL FORMATS

The following describes one embodiment of control signal formats used by
processor 109 to manipulate packed data. In one embodiment of the invention,
control signals are represented as thirty-two bits. Decoder 202 may receive
control signal 207 from bus 101. In another embodiment, decoder 202 can also
receive such control signals from cache 160.

Figure 6a illustrates a control signal format for indicating the use of packed
data according to one embodiment of the invention. Operation field OP 601, bit
thirty-one through bit twenty-six, provides information about the operation to be
performed by processor 109; for example, packed addition, packed subtraction,
etc.. SRC1 602, bit twenty-five through twenty, provides the source register
address of a register in registers 209. This source register contains the first
packed data, Sourcel, to be used in the execution of the control signal. Similarly,

WO 97/08608 PCT/US96/11893

21-

SRC2 603, bit nineteen through bit fourteen, contains the address of a register in
registers 209. This second source register contains the packed data, Source2, to
be used during execution of the operation. DEST 605, bit five through bit zero,
contains the address of a register in registers 209. This destination register will
store the result packed data, Result, of the packed data operation.

Control bits SZ 610, bit twelve and bit thirteen, indicates the length of the
data elements in the first and second packed data source registers. If SZ 610
equals 012, then the packed data is formatted as packed byte 401. If SZ 610
equals 102, then the packed data is formatted as packed word 402. SZ 610
equaling 002 or 117 is reserved, however, in another embodiment, one of these
values could be used to indicate packed doubleword 403.

Control bit T 611, bit eleven, indicates whether the operation is to be carried
out with saturate mode. If T 611 equals one, then a saturating operation is
performed. If T 611 equals zero, then a non-saturating operation is performed.
Saturating operations will be described later.

Control bit S 612, bit ten, indicates the use of a signed operation. If S 612
equals one, then a signed operation is performed. If S 612 equals zero, then an
unsigned operation is performed.

Figure 6b illustrates a second control signal format for indicating the use of
packed data according to one embodiment of the invention. This format
corresponds with the general integer opcode format described in the “Pentium
Processor Family User’s Manual,” available from Intel Corporation, Literature
Sales, P.O. Box 7641, Mt. prospect, IL, 60056-7641. Note that OP 601, SZ 610,
T 611, and S 612 are all combined into one large field. For some control signals,
bits three through five are SRC1 602. In one embodiment, where there is a SRC1
602 address, then bits three through five also correspond to DEST 605. In an
alternate embodiment, where there is a SRC2 603 address, then bits zero through
two also correspond to DEST 605. For other control signals, like a packed shift
immediate operation, bits three through five represent an extension to the opcode
field. In one embodiment, this extension allows a programmer to include an
immediate value with the control signal, such as a shift count value. In one
embodiment, the immediate value follows the control signal. This is described in
more detail in the “Pentium Processor Family User’s Manual,” in appendix F,
pages F-1 through F-3. Bits zero through two represent SRC2 603. This general

WO 97/08608 PCT/US96/11893

22

format allows register to register, memory to register, register by memory,
register by register, register by immediate, register to memory addressing. Also,
in one embodiment, this general format can support integer register to register,
and register to integer register addressing.

DESCRIPTION OF SATURATE/UNSATURATE

As mentioned previously, T 611 indicates whether operations optionally
saturate. Where the result of an operation, with saturate enabled, overflows or
underflows the range of the data, the result will be clamped. Clamping means
setting the result to a maximum or minimum value should a result exceed the
range's maximum or minimum value. In the case of underflow, saturation clamps
the result to the lowest value in the range and in the case of overflow, to the
highest value. The allowable range for each data format is shown in Table 7.

Data Format| Minimum Value Maximum Value

Unsigned Byte 0 255
Signed Byte -128 127

Unsigned Word 0 65535

Signed Word -32768 32767

Unsigned Doubleword 0 : 264.1

Signed Doubleword -263 263.1

Table 7

As mentioned above, T 611 indicates whether saturating operations are
being performed. Therefore, using the unsigned byte data format, if an
operation's result = 258 and saturation was enabled, then the result would be
clamped to 255 before being stored into the operation's destination register.
Similarly, if an operation's result = -32999 and processor 109 used signed word
data format with saturation enabled, then the result would be clamped to -32768

before being stored into the operation's destination register.

PACKED ADDITION

WO 97/08608 PCT/US96/11893

223

PACKED ADDITION OPERATION

One embodiment of the invention enables packed addition operations to be
performed in Execution unit 130. That is, the invention enables each data
element of a first packed data to be added individually to each data element of a
second packed data.

Figure 7a illustrates a method for performing packed addition according to
one embodiment of the invention. At step 701, decoder 202 decodes control
signal 207 received by processor 109. Thus, decoder 202 decodes: the operation
code for packed addition; SRC1 602, SRC2 603 and DEST 605 addresses in
registers 209; saturate/unsaturate, signed/unsigned, and length of the data
elements in the packed data. At step 702, via internal bus 170, decoder 202
accesses registers 209 in register file 150 given the SRC1 602 and SRC2 603
addresses. Registers 209 provides Execution unit 130 with the packed data
stored in the registers at these addresses, Sourcel and Source2 respectively. That
is, registers 209 communicate the packed data to Execution unit 130 via internal
bus 170.

At step 703, decoder 202 enables Execution unit 130 to perform a packed
addition operation. Decoder 202 further communicates, via internal bus 170, the
length of packed data elements, whether saturation is to be used, and whether
signed arithmetic is to be used. At step 704, the length of the data element
determines which step is to be executed next. If the length of the data elements
in the packed data is eight bits (byte data), then Execution unit 130 performs step
705a. However, if the length of the data elements in the packed data is sixteen
bits (word data), then Execution unit 130 performs step 705b. In one
embodiment of the invention, only eight bit and sixteen bit data element length
packed addition is supported. However, alternative embodiments can support
different and/or other lengths. For example, an alternative embodiment could
additionally support thirty-two bit data element length packed addition.

Assuming the length of the data elements is eight bits, then step 705a is
executed. Execution unit 130 adds bit seven through bit zero of Sourcel to bit
seven through bit zero of SRC2, producing bit seven through bit zero of Result
packed data. In parallel with this addition, Execution unit 130 adds bit fifteen
through bit eight of Sourcel to bit fifteen through bit eight of Source2, producing
bit fifteen through bit eight of Result packed data. In parallel with these

WO 97/08608 PCT/US96/11893

224

additions, Execution unit 130 adds bit twenty-three through bit sixteen of
Sourcel to bit twenty-three through bit sixteen of Source2, producing bit twenty-
three through bit sixteen of Result packed data. In parallel with these additions,
Execution unit 130 adds bit thirty-one through bit twenty-four of Sourcel to bit
thirty-one through bit twenty-four of Source2, producing bit thirty-one through
bit twenty-four of Result packed data. In parallel with these additions, Execution
unit 130 adds bit thirty-nine through bit thirty-two of Sourcel to bit thirty-nine
through bit thirty-two of Source2, producing bit thirty-nine through bit thirty-two
of Result packed data. In parallel with these additions, Execution unit 130 adds
bit forty-seven through bit forty of Sourcel to bit forty-seven through bit forty of
Source2, producing bit forty-seven through bit forty of Result packed data. In
parallel with these additions, Execution unit 130 adds bit fifty-five through bit
forty-eight of Sourcel to bit fifty-five through bit forty-eight of Source2,
producing bit fifty-five through bit forty-eight of Result packed data. In parallel
with these additions, Execution unit 130 adds bit sixty-three through bit fifty-six
of Sourcel to bit sixty-three through bit fifty-six of Source2, producing bit sixty-
three through bit fifty-six of Result packed data.

Assuming the length of the data elements is sixteen bits, then step 705b is
executed. Execution unit 130 adds bit fifteen through bit zero of Sourcel to bit
fifteen through bit zero of SRC2, producing bit fifteen through bit zero of Result
packed data. In parallel with this addition, Execution unit 130 adds bit thirty-one
through bit sixteen of Sourcel to bit thirty-one through bit sixteen of Source2,
producing bit thirty-one through bit sixteen of Result packed data. In parallel
with these additions, Execution unit 130 adds bit forty-seven through bit thirty-
two of Sourcel to bit forty-seven through bit thirty-two of Source2, producing
bit forty-seven through bit thirty-two of Result packed data. In parallel with
these additions, Execution unit 130 adds bit sixty-three through bit forty-eight of
Sourcel to bit sixty-three through bit forty-eight of Source2, producing bit sixty-
three through bit forty-eight of Result packed data.

At step 706, decoder 202 enables a register in registers 209 with DEST 605
address of the destination register. Thus, the Result is stored in the register
addressed by DEST 605.

Table 8a illustrates the in-register representation of packed addition
operation. The first row of bits is the packed data representation of a Sourcel

WO 97/08608 PCT/US96/11893

25-

packed data. The second row of bits is the packed data representation of a
Source2 packed data. The third row of bits is the packed data representation of
the Result packed data. The number below each data element bit is the data
element number. For example, Sourcel data element 0 is 10001000,. Therefore,
if the data elements are eight bits in length (byte data), and unsigned, unsaturated
addition is performed, the Execution unit 130 produces the Result packed data as
shown.

Note that in one embodiment of the invention, where a result overflows or
underflows and the operation is using unsaturate, that result is simply truncated.
That is, the carry bit is ignored. For example, in Table 8a, the in-register
representation of result data element one would be: 10001000, + 10001000, =
00001000,. Similarly, for underflows, the result is truncated. This form of
truncation enables a programmer to easily perform module arithmetic. For
example, an equation for result data element one can be expressed as: (Sourcel
data element one + Source2 data element one) mod 256 = result data element
one. Further, one skilled in the art would understand from this description that
overflows and underflows could be detected by setting error bits in a status
register.

00101010 | 01010101 | 01010101 | 11111111 | 10000000 | 01110000 | 10001111 | 10001000
Z 6 4 0

+ "+ + + 4 + + 4 f

3 2

10101010 | 01010101 | 10101010 | 10000001 | 10000000 | 11110000 | 11001111 | 10001000
— 7] _ & — 7 3 T 0

3 2

11010100 | 10101010 | 11111111 | Overflow | Overflow | Overflow | Overflow | Overflow
7 6 5 4 3 2 1 0

Table 8a

Table 8b illustrates the in-register representation of a packed word data

addition operation. Therefore, if the data elements are sixteen bits in length
(word data), and unsigned, unsaturated addition is performed, the Execution unit
130 produces the Result packed data as shown. Note that in word data element

WO 97/08608 PCT/US96/11893

-26-

two, the carry from bit seven (see emphasized bits I below) propagated into bit
eight, causing data element two to overflow (see emphasized overflow below).

01010101 71111111 | 10000000 01110000 { 10001111 10001000

3 + Z + i + [/

00101010 01010101
+

11001111 10001000

10101010 01010101 § 10101010 J0000001
3 2

10000000 11110000
Ji

Overflow Overflow Overflow
3 2 1 0

Table 8b

Table 8c illustrates the in-register representation of packed doubleword

11010100 10101010

data addition operation. This operation is supported in an alternative
embodiment of the invention. Therefore, if the data elements are thirty-two bits
in length (i.e., doubleword data), and unsigned, unsaturated addition is
performed, the Execution unit 130 produces the Result packed data as shown.
Note that carries from bit seven and bit fifteen of doubleword data element one
propagated into bit eight and bit sixteen respectively.

10000000 01110000 10001111 10001000
0

00101010 01010101 01010101 11111111
Ji

+

- +

10101010 01010101

10101010 10000001

10000000 11110000 11001111 10001000

L

——

11010100 10101011

00000000 10000000

—e——

Overflow

[/
0

1

Table 8¢
To better illustrate the difference between packed addition and ordinary

addition, the data from the above example is duplicated in Table 9. However, in

this case, ordinary addition (sixty-four bit) is performed on the data. Note that

the carries from bit seven, bit fifteen, bit twenty-three, bit thirty-one, bit thirty-

nine and bit forty-seven have been carried into bit eight, bit sixteen, bit twenty-

four, bit thirty-two, bit forty and bit forty-eight respectively.

WO 97/08608 PCT/US96/11893

27-

00101010 01010101 01010101 11111111 10000000 01110000 10001111 10001000
+

10101010 01010101 10101010 10000001 10000000 11110000 11001111 10001000

11010100 10101017 00000000 10000001 00000001 01100001 01011111 00010000

Table 9

SIGNED/UNSATURATE PACKED ADDITION

Table 10 illustrates an example of a signed packed addition where the data
element length of the packed data is eight bits. Saturation is not used.
Therefore, results can overflow and underflow. Table 10 uses different data than
Tables 8a—8c and Table 9.

00101010 | 01010101 | 01010101 j 01111111 | 00000000 | 11110000 | 00001111 | 10001000

7 6
T T L T
3 Z

10101010 § 01010101 | 10101010 § 00000001 | 00000000 { 11110000 | 00001111 | 10001000
z 6 4 3 0

— = = = = - = = = =/ = -

S 2

11010100 |Overflow]11111111 |Overflow |00000000 | Underflow{00011110 |Underflow

7 6 5 4 3 2 1 0

Table 10

SIGNED/SATURATE PACKED ADDITION

Table 11 illustrates an example of a signed packed addition where the data
element length of the packed data is eight bits. Saturate is used, therefore,
overflow will be clamped to the maximum value, and underflow will be clamped
to the minimum value. Table 11 uses the same data as Table 10. Here data

WO 97/08608 PCT/US96/11893

-28-

element zero and data element two are clamped to the minimum value, while
data element four and data element six are clamped to the maximum value.

00101010 | 01010101 | 01010101 | 01111111 § 00000000 { 11110000 | 00001111 { 10001000

7 6 4
+ “f 4 8 + + 4 42 + + L 40
3 2
10101010 | 01010101 | 10101010 | 00000001 | 00000000 | 11110000 | 00001111 | 10001000
V2 S _ T B _ — I 0
3 2

11010100) 01111111 | 11111111 | 01111111 | 00000000 § 10000000 | 00011110 | 10000000

7 6 5 4 3 2 1 0
Table 11
PACKED SUBTRACTION

PACKED SUBTRACTION OPERATION

One embodiment of the invention enables packed subtraction operations to
be performed in Execution unit 130. That is, the invention enables each data
element of a second packed data to be subtracted individually from each data
element of a first packed data.

Figure 7b illustrates a method for performing packed subtraction according
to one embodiment of the invention. Note that steps 710-713 are similar to steps
701-704.

In the present embodiment of the invention, only eight bit and sixteen bit
data element length packed subtraction is supported. However, alternative
embodiments can support different and/or other lengths. For example, an
alternative embodiment could additionally support, thirty-two bit data element
length packed subtraction.

Assuming data element length is eight bits, steps 714a and 715a are
executed. Execution unit 130 2's complements bit seven through bit zero of
Source2. In parallel with this 2's complement, Execution unit 130 2's
complements bit fifteen through bit eight of Source2. In parallel with these 2's

WO 97/08608 PCT/US96/11893

-29-

complements, Execution unit 130 2's complements bit twenty-three through bit
sixteen of Source2. In parallel with these 2's complements, Execution unit 130
2's complements bit thirty-one through bit twenty-four of Source2. In parallel
with these 2's complements, Execution unit 130 2's complements bit thirty-nine
through bit thirty-two of Source2. In parallel with these 2's complements,
Execution unit 130 2's complements bit forty-seven through bit forty of Source2.
In parallel with these 2's complements, Execution unit 130 2's complements bit
fifty-five through bit forty-eight of Source2. In parallel with these 2's
complements, Execution unit 130 2's complements bit sixty-three through bit
fifty-six of Source2. At step 715a, Execution unit 130 performs the addition of
the 2's complemented bits of Source2 to the bits of Sourcel as generally
described for step 705a.

Assuming data element length is sixteen bits, steps 714b and 715b are
executed. Execution unit 130 2's complements bit fifteen through bit zero of
Source2. In parallel with this 2's complement, Execution unit 130 2's
complements bit thirty-one through bit sixteen of Source2. In parallel with these
2's complements, Execution unit 130 2's complements bit forty-seven through bit
thirty-two of Source2. In parallel with these 2's complements, Execution unit
130 2's complements bit sixty-three through bit forty-eight of Source2. At step
715b, Execution unit 130 performs the addition of the 2's complemented bits of
Source2 to the bits of Sourcel as generally described for step 705b.

Note that steps 714 and 715 are the method used in one embodiment of the
invention to subtract a first number from a second number. However, other
forms of subtraction are known in the art and this invention should not be
considered limited to using 2's complement arithmetic.

At step 716, decoder 202 enables registers 209 with the destination address
of the desrination register. Thus, the result packed data is stored in the DEST
register of registers 209.

WO 97/08608 PCT/US96/11893

-30-

Table 12 illustrates the in-register representation of packed subtraction
operation. Assuming the data elements are eight bits in length (byte data), and
unsigned, unsaturated subtraction is performed, then Execution unit 130
produces the result packed data as shown.

00101010 01010101 { 01010101 | 01111111 | 00000000 | 11110000 | 00001111 | 10001000

7] ¢} . & .4 .1 .2} . I .1
10101010 | 01010101 | 10101010 | 00000001 | 00000000 | 11110000 { 00001111 | 10001000
71 8 — N - N & B

= = 3 2

Underflow) 00000000 | Underflow | 01111110 00000000 | 00000000 | 00000000 | 00000000
7 6 5 4 3 2 1 0

Table 12

PACKED DATA ADDITION/SUBTRACTION CIRCUITS

Figure 8 illustrates a circuit for performing packed addition and packed
subtraction on individual bits of packed data according to one embodiment of the
invention. Figure 8 shows a modified bit slice adder/subtractor 800.
Adder/subtractor 801a-b enable two bits from Source2 to be added to, or
subtracted from, Sourcel. Operation and carry control 803 transmits to control
809a control signals to enable an addition or subtraction operation. Thus,
adder/subtractor 801a adds or subtracts bit i received on Source2;j 805a to bit i
received on Sourcelj 804a, producing a result bit transmitted on Resultj 806a.
Cin 807a-b and Coyt 808a-b represent carry control circuitry as is commonly

found on adder/subtractors.

WO 97/08608

-31-

PCT/US96/11893

Bit control 802 is enabled from operation and carry control 803 via packed
data enable 811 to control Cini+1 807b and Couti. For example, in Table 13a, an

unsigned packed byte addition is performed. If adder/subtractor 801a adds

Sourcel bit seven to Source?2 bit seven, then operation and carry control 803 will

enable bit control 802, stopping the propagation of a carry from bit seven to bit

eight.
. 100001111 | 10001000
7 7] 3
+ 548 + 4+ + 40
3 2
.1 00001111 | 10001000
7 — ¢ — 4 — 3 _ I — 0
S 2
. ... 100011110 | Overflow
7 6] 4 3 21 1 0
Table 13a

However, if an unsigned packed word addition is performed, and

adder/subtractor 801a is similarly used to add bit seven of Sourcel to bit seven of

Source?2, bit control 802 propagates the carry to bit eight. Table 13b illustrates

this result. This propagation would be allowed for packed doubleword addition

as well as unpacked addition.

...] 00001111 10001000
3 2 Ji 0
+ * - + - + -
N | 00001111 10001000
~ 3 Z ~ I — 0
N N ...| 00011111 00010000
3 2 1 0
Table 13b

Adder/subtractor 801a subtracts bit Source2;j 805a from Sourcelj 804a by
first forming the 2's complement of Source2; 805a by inverting Source2j 805a

WO 97/08608 PCT/US96/11893

-32-

and adding one. Then adder/subtractor 801a adds this result to Sourcelj §04a.
Bit slice 2's complementing techniques are well known in the art, and one skilled
in the art would understand how to design such a bit slice 2's complementing
circuit. Note that propagation of carries are controlled by bit control 802 and
operation and carry control 803.

Figure 9 illustrates a circuit for performing packed addition and packed
subtraction on packed byte data according to one embodiment of the invention.
Sourcel bus 901 and Source?2 bus 902 carry the information signals to the
adder/subtractors 908a-h via Sourcelin 906a-h and Source2jn 905a-h
respectively. Thus, adder/subtractor 908a adds/subtracts Source2 bit seven
through bit zero to/from Source1 bit seven through bit zero; adder/subtractor
908b adds/subtracts Source2 bit fifteen through bit eight to/from Sourcel bit
fifteen through bit eight, etc.. CTRL 904a-h receives, from Operation Control
903, via packed control 911, control signals disabling the propagation of carries,
enabling/disabling saturate, and enabling/disabling signed/unsigned arithmetic.
Operation Control 903 disables propagation of carries by receiving carry
information from CTRL 904a-h and not propagating it to the next most
significant adder/subtractor 908a-h. Thus, Operation Control 903 performs the
operations of the operation and carry control 803 and the bit control 802 for 64
bit packed data. One skilled in the art would be able create such a circuit given
the illustrations in Figures 1-9 and the above description.

Adder/subtractors 908a-h communicate result information, via result out
907a-h, of the various packed additions to result register 910a-h. Each result
register 910a-h stores and then transmits the result information onto Result bus
909. This result information is then stored in the integer register specified by the
DEST 605 register address.

Figure 10 is a logical view of a circuit for performing packed addition and
packed subtraction on packed word data according to one embodiment of the
invention. Here, packed word operations are being performed. Propagation of
carries between bit eight and bit seven, bit twenty-four and bit twenty-three, bit
forty and bit thirty-nine, and bit fifty-six and bit fifty-five are enabled by
Operation Control 903. Thus, adder/subtractor 908a and 908b, shown as virtual
adder/subtractor 1008a, will act together to add/subtract the first word of packed
word data Source?2 (bit fifteen through bit zero) to/from the first word of packed

WO 97/08608 PCT/US96/11893

-33-

word data Sourcel (bit fifteen through bit zero); adder/subtractor 908c and 908d,
shown as virtual adder/subtractor 1008b, will act together to add/subtract the
second word of packed word data Source? (bit thirty-one through bit sixteen)
to/from the second word of packed word data Sourcel (bit thirty-one through bit
sixteen), etc..

Virtual adder/subtractors 1008a-d communicate result information, via result
out 1007a-d (combined result outs 907a-b, 907c-d, 907e-f and 907g-h), to virtual
result registers 1010a-d. Each virtual result register 1010a-d (combined result
registers 910a-b, 910c-d, 910e-f and 910g-h) stores a sixteen bit result data
element to be communicated onto Result bus 909.

Figure 11 is a logical view of a circuit for performing packed addition and
packed subtraction on packed doubleword data according to one embodiment of
the invention. Propagation of carries between bit eight and bit seven, bit sixteen
and bit fifteen, bit twenty-four and bit twenty-three, bit forty and bit thirty-nine,
bit forty-eight and bit forty-seven, and bit fifty-six and bit fifty-five are enabled
by Operation Control 903. Thus, adder/subtractors 908a-d, shown as virtual
adder/subtractor 1108a, act together to add/subtract the first doubleword of
packed doubleword data Source2 (bit thirty-one through bit zero) to/from the
first doubleword of packed word data Sourcel (bit thirty-one through bit zero);
adder/subtractors 908e-h, shown as virtual adder/subtractor 1108b, act together
to add/subtract the second doubleword of packed doubleword data Source2 (bit
sixty-three through bit thirty-two) to/from the second doubleword of packed
doubleword data Sourcel (bit sixty-three through bit thirty-two).

Virtual adder/subtractors 1108a-b communicate result information, via result
out 1107a-b (combined result outs 907a-d and 907e-h), to virtual result registers
1110a-b. Each virtual result register 1110a-b (combined result registers 910a-d
and 910e-h) stores a thirty-two bit result data element to be communicated onto
Result bus 909.

PACKED MULTIPLY

PACKED MULTIPLY OPERATION
In one embodiment of the invention, the SRC1 register contains
multiplicand data (Sourcel), the SRC2 register contains multiplier data

WO 97/08608 PCT/US96/11893

-34-

(Source2), and DEST register will contain a portion of the product of the
multiplication (Result). That is, Sourcel will have each data element
independently multiplied by the respective data element of Source2. Depending
on the type of the multiply, the Result will include the high order or the low
order bits of the product.

In one embodiment of the invention, the following multiply operations are
supported: multiply high unsigned packed, multiply high signed packed and
multiply low packed. Highllow indicate which bits from the product of the
multiplication are to be included in the Result. This is needed because a
multiplication of two N bit numbers results in a product having 2N bits. As each
result data element is the same size as the multiplicand and the multiplier’s data
elements, only half of the product can be represented by the result. High causes
the higher order bits to be output as the result. Low causes the low order bits to
be output as the result. For example, unsigned high packed multiplication of
Source1[7:0] by Source2[7:0] stores the high order bits of the product in
Result[7:0].

In one embodiment of the invention, the use of the highllow operation
modifier removes the possibility of an overflow from one data element into the
next higher data element. That is, this modifier allows the programmer to select
which bits of the product are to be in the result without concern for overflows.
The programmer can generate a complete 2N bit product using a combination of
packed multiply operations. For example, the programmer can use a multiply
high unsigned packed operation and then, using the same Sourcel and Source2, a
multiply low packed operation to obtain complete (2N) products. The multiply
high operation is provided because, often, the high order bits of the product are
the only important part of the product. The programmer can obtain the high order
bits of the product without first having to perform any truncation, as is often
required by a nonpacked data operation.

In one embodiment of the invention, each data element in Source2 can have
a different value. This provides the programmer with the flexibility to have a
different value as the multiplier for each multiplicand in Sourcel.

Figure 12 is a flow diagram illustrating a method for performing packed
multiplication operations on packed data according to one embodiment of the

invention.

WO 97/08608 PCT/US96/11893

-35-

At step 1201, decoder 202 decodes control signal 207 received by processor
109. Thus, decoder 202 decodes: the operation code for the appropriate multiply
operation; SRC1 602, SRC2 603 and DEST 605 addresses in registers 209;
signedlunsigned, highilow, and length of the data elements in the packed data.

At step 1202, via internal bus 170, decoder 202 accesses registers 209 in
register file 150 given the SRC1 602 and SRC2 603 addresses. Registers 209
provides execution unit 130 with the packed data stored in the SRC1 602 register
(Sourcel), and the packed data stored in SRC2 603 register (Source2). That is,
registers 209 communicate the packed data to execution unit 130 via internal bus
170.

At step 1130, decoder 202 enables execution unit 130 to perform the
appropriate packed multiply operation. Decoder 202 further communicates, via
internal bus 170, the size of data elements and the highllow for the multiply
operation.

At step 1210, the size of the data element determines which step is to be
executed next. If the size of the data elements is eight bits (byte data), then
execution unit 130 performs step 1212. However, if the size of the data elements
in the packed data is sixteen bits (word data), then execution unit 130 performs
step 1214. In one embodiment, only sixteen bit data element size packed
multiplies are supported. In another embodiment, eight bit and sixteen bit data
element size packed multiplies are supported. However, in another embodiment,
a thirty-two bit data element size packed multiply is also supported.

Assuming the size of the data elements is eight bits, then step 1212 is
executed. In step 1212, the following is performed. Sourcel bits seven through
zero are multiplied by Source? bits seven through zero generating Result bits
seven through zero. Sourcel bits fifteen through eight are multiplied by Source2
bits fifteen through eight generating Result bits fifteen through eight. Sourcel
bits twenty-three through sixteen are multiplied by Source2 bits twenty-three
through sixteen generating Result bits twenty-three through sixteen. Sourcel bits
thirty-one through twenty-four are multiplied by Source? bits thirty-one through
twenty-four generating Result bits thirty-one through twenty-four. Sourcel bits
thirty-nine through thirty-two are multiplied by Source2 bits thirty-nine through
thirty-two generating Result bits thirty-nine through thirty-two. Source1 bits
forty-seven through forty are multiplied by Source2 bits forty-seven through

WO 97/08608 PCT/US96/11893

-36-

forty generating Result forty-seven through forty. Sourcel bits fifty-five through
forty-eight are multiplied by Source2 bits fifty-five through forty-eight
generating Result bits fifty-five through forty-eight. Sourcel bits sixty-three
through fifty-six are multiplied by Source2 bits generating Result bits sixty-three
through fifty-six.

Assuming the size of the data elements is sixteen bits, then step 1214 is
executed. In step 1214, the following is performed. Sourcel bits fifteen through
zero are multiplied by Source2 bits fifteen through zero generating Result bits
fifteen through zero. Sourcel bits thirty-one through sixteen are multiplied by
Source? bits thirty-one through sixteen generating Result bits thirty-one through
sixteen. Sourcel bits forty-seven through thirty-two are multiplied by Source2
bits forty-seven through thirty-two generating Result bits forty-seven through
thirty-two. Sourcel bits sixty-three through forty-eight are multiplied by Source2
bits sixty-three through forty-eight generating Result bits sixty-three through
forty-eight.

In one embodiment, the multiplies of step 1212 are performed
simultaneously. However, in another embodiment, these multiplies are
performed serially. In another embodiment, some of these multiplies are
performed simultaneously and some are performed serially. This discussion also
applies to the multiplies of step 1214 as well.

At step 1220, the Result is stored in the DEST register.

Table 14 illustrates the in-register representation of packed multiply
unsigned high operation on packed word data. The first row of bits is the packed
data representation of Sourcel. The second row of bits is the data representation
of Source2. The third row of bits is the packed data representation of the Result.
The number below each data element bit is the data element number. For
example, Source1 data element two is 11111111 00000000,.

WO 97/08608

-37-

PCT/US96/11893

11111111 11111111

11111111 00000000

11111111 00000000

00001110 00001000

Multiply

Multiply

Multiply

Multiply

00000000_00000000

00000000 00000001

10000000_00000000

00001110 10000001

00000000 00000000

00000000 00000000

01111111 10000000

00000000 11001011

3

2

1

Table 14

Table 15 illustrates the in-register representation of multiply high signed

packed operation on packed word data.

0

11111111 11111111

11111111 00000000

11111111 00000000

00001110 00001000

Multiply

Multiply

Multiply

0
Multiply

00000000 00000000

00000000 00000001

10000000_00000000

00001110 10000001

00000000 00000000

11111111 11111111

00000000 10000000

00000000 11001011

3

2

1

Table 15

Table 16 illustrates the in-register representation of packed multiply low

operation on packed word data.

0

11111111 11111111

11111111 00000000

11111111 00000000

00001110 00001000

Multiply

Multiply

Multiply

Multiply

00000000_00000000

00000000 _00000001

00001110 10000001

10000000_00000000

00000000 _00000000

11111111 00000000

00000000_00000000

10000010 00001000

3

2

1

Table 16

0

WO 97/08608 PCT/US96/11893

-38-

PACKED DATA MULTIPLY CIRCUITS

In one embodiment, the multiply operation can occur on muitiple data
elements in the same number of clock cycles as a single multiply operation on
unpacked data. To achieve execution in the same number of clock cycles,
parallelism is used. That is, registers are simultaneously instructed to perform the
multiply operation on the data elements. This is discussed in more detail below.

Figure 13 illustrates a circuit for performing packed multiplication
according to one embodiment of the invention. Operation control 1300 controls
the circuits performing the multiplication. Operation control 1300 processes the
control signal for the multiply operation and has the following outputs: highllow
enable 1380; bytelword enable 1381 and sign enable 1382. Highllow enable 1380
identifies whether the high or low order bits of the product are to be included in
the result. Bytelword enable 1381 identifies whether a byte packed data or word
packed data multiply operation is to be performed. Sign enable 1382 indicates
whether signed multiplication should be used.

Packed word multiplier 1301 multiplies four word data elements
simultaneously. Packed byte multiplier 1302 multiplies eight byte data elements.
Packed word multiplier 1301 and packed byte multiplier 1302 both have the
following inputs: Source1[63:0] 1331, Source2[63:0] 1333, sign enable 1382,
and highllow enable 1380.

Packed word multiplier 1301 includes four 16x16 multiplier circuits: 16x16
multiplier A 1310, 16x16 multiplier B 1311, 16x16 multiplier C 1312 and 16x16
multiplier D 1313. 16x16 multiplier A 1310 has as inputs Source1[15:0] and
Source2[15:0]. 16x16 multiplier B 1311 has as inputs Source1[31:16] and
Source2[31:16]. 16x16 multiplier C 1312 has as inputs Source1[47:32] and
Source2[47:32). 16x16 multiplier D 1313 has as inputs Source 1[63:48] and
Source2[63:48]. Each 16x16 multiplier is coupled to the sign enable 1382. Each
16x16 multiplier produces a thirty-two bit product. For each multiplier, a
multiplexor (Mx0 1350, Mx1 1351, Mx2 1352 and Mx3 1353 respectively)
receives the thirty-two bit result. Depending on the value of the highllow enable
1380, each multiplexor outputs the sixteen high order bits or the sixteen low
order bits of the product. The outputs of the four multiplexors are combined into
one sixty-four bit result. This result is optionally stored in a result register 1
1371.

WO 97/08608 PCT/US96/11893

-39-

Packed byte multiplier 1302 includes eight 8x8 multiplier circuits: 8x8
multiplier A 1320 through 8x8 multiplier H 1327. Each 8x8 multiplier has an
eight bit input from each of Source1[63:0] 1331 and Source2[63:0] 1333. For
example 8x8 multiplier A 1320 has as inputs Source1[7:0] and Source2[7:0]
while 8x8 multiplier H 1327 has as inputs Source1[63:56] and Source2[63:56].
Each 8x8 multiplier is coupled to the sign enable 1382. Each 8x8 multiplier
produces a sixteen bit product. For each multiplier, a multiplexor (e.g. Mx4 1360
and Mx11 1367) receives the sixteen bit result. Depending on the value of the
highllow enable 1380, each multiplexor outputs the eight high order bits or the
eight low order bits of the product. The outputs of the eight multiplexors are
combined into one sixty-four bit result. This result is optionally stored in a result
register 2 1372. The bytelword enable 1381 enables the particular result register,
depending on the size of the data element that the operation requires.

In one embodiment, the area used to realize the multiplies is reduced by
making circuits that can multiply both two 8x8 numbers or one 16x16 number.
That is, two 8x8 multipliers and one 16x16 multiplier are combined into one 8x8
and 16x16 multiplier. Operation control 1300 would enable the appropriate size
for the multiply. In such an embodiment, the physical area used by the
multipliers would be reduced, however, it would be difficult to execute a packed
byte multiply and a packed word multiply. In another embodiment supporting
packed doubleword multiplies, one multiplier can perform four 8x8 multiplies,
two 16x16 multiplies or one 32x32.

In one embodiment, only a packed word multiply operation is provided. In
this embodiment, packed byte multiplier 1302 and result register 2 1372 would
not be included.

ADVANTAGES OF INCLUDING THE DESCRIBED PACKED MULTIPLY OPERATION
IN THE INSTRUCTION SET

Thus, the described packed multiply instruction provides for the
independent multiplication of each data element in Sourcel by its respective data
element in Source 2. Of course, algorithms that require each element in Sourcel
to be multiplied by the same number can be performed by storing the same
number in each element of Source2. In addition, this multiply instruction insures

WO 97/08608 PCT/US96/11893

-40-

against overflows by breaking the carry chains; thereby releasing the
programmer of this responsibility, removing the need for instructions to prepare
data to prevent overflows, and resulting in more robust code.

In contrast, prior art general purpose processors that do not support such
an instruction are required to perform this operation by unpacking the data
elements, performing the multiplies, and then packing the results for further
packed processing. Thus, processor 109 can multiply different data elements of
a packed data by different multipliers in parallel using one instruction.

Typical multimedia algorithms perform a large number of multiply
operations. Thus, by reducing the number of instructions required to perform
these multiply operations, performance of these multimedia algorithms is
increased. Thus, by providing this multiply instruction in the instruction set
supported by processor 109, processor 109 can execute algorithms requiring this
functionality at a higher performance level.

MULTIPLY-ADD/SUBTRACT

M LJI__,,TIPLY;ADD[SUBTRACT OPERATIONS

In one embodiment, two multiply-add operations are performed using a
single multiply-add instruction as shown below in Table 17a and Table 17b --
Table 17a shows a simplified representation of the disclosed multiply-add
instruction, while Table 17b shows a bit level example of the disclosed multiply-
add instruction.

Multiply-Add Sourcel, Source2

A1l A2 A3 A4 Sourcel
B1 B> B3 B4 Source2
A1B1+A2B2 A3B3+A4B4 Resultl

Table 17a

WO 97/08608

41-

PCT/US96/11893

11111111 11111111

11111111 00000000

01110001 11000111

01110001 11000111

Multiply

Multiply

Multiply

Multiply

00000000 00000000

00000000 00000001

10000000 00000000

00000100 00000000

{

!

|

)

32-Bit Intermediate

Result4

32-Bit Intermediate

Result 3

32-Bit Intermediate

Result 2

32-Bit Intermediate

Result 1

~_

Add

~—

Add

11111111 11111111

11111111 00000000

11001000 11100011

10011100 00000000

1

Table 17b
The multiply-subtract operation is the same as the multiply-add operation,
except that the add is replaced with a subtract. The operation of an example
multiply-subtract instruction which performs two multiply-subtract operations is

shown below in Table 12.

Multiply-Subtract Sourcel, Source2

0

Al A2 A3 A4 Sourcel
B1 B2 B3 B4 Source2
A1B1-A2B2 A3B3-A4B4 Result!
Table 12

In one embodiment of the invention, the SRC1 register contains packed data
(Sourcel), the SRC2 register contains packed data (Source2), and the DEST
register will contain the result (Result) of performing the multiply-add or
multiply-subtract instruction on Sourcel and Source2. In the first step of the
multiply-add or multiply-subtract instruction, Sourcel will have each data
element independently multiplied by the respective data element of Source2 to

WO 97/08608 PCT/US96/11893

-42-

generate a set of respective intermediate results. When executing the multiply-
add instruction, these intermediate results are summed by pairs producing two
resulting data elements that are stored as data elements of the Result. In contrast,
when executing the multiply-subtract instruction, these intermediate results are
subtracted by pairs producing two resulting data elements that are stored as data
elements of the Result.

Alternative embodiments may vary the number of bits in the data elements,
in the intermediate results, and/or in the data elements in the Result. In addition,
alternative embodiment may vary the number of data elements in Sourcel,
Source 2, and the Result. For example, if Sourcel and Source 2 each have 8 data
elements, the multiply-add/subtract instructions may be implemented to produce
a Result with 4 data elements (each data element in the Result representing the
addition of two intermediate results), 2 data elements (each data element in the
result representing the addition of four intermediate results), etc.

Figure 14 is a flow diagram illustrating a method for performing multiply-
add and multiply-subtract operations on packed data according to one
embodiment of the invention.

At step 1401, decoder 202 decodes control signal 207 received by processor
109. Thus, decoder 202 decodes: the operation code for a multiply-add or
multiply-subtract instruction.

At step 1402, via internal bus 170, decoder 202 accesses registers 209 in
register file 150 given the SRC1 602 and SRC2 603 addresses. Registers 209
provide execution unit 130 with the packed data stored in the SRC1 602 register
(Sourcel), and the packed data stored in SRC2 603 register (Source2). That is,
registers 209 communicate the packed data to execution unit 130 via internal bus
170.

At step 1403, decoder 202 enables execution unit 130 to perform the
instruction. If the instruction is a multiply-add instruction, flow passes to step
1414. However, if the instruction is a multiply-subtract instruction, flow passes
to step 1415.

In step 1414, the following is performed. Sourcel bits fifteen through zero
are multiplied by Source? bits fifteen through zero generating a first 32-bit
intermediate result (Intermediate Result 1). Sourcel bits thirty-one through
sixteen are multiplied by Source? bits thirty-one through sixteen generating a

WO 97/08608 PCT/US96/11893

-43.

second 32-bit intermediate result (Intermediate Result 2). Sourcel bits forty-
seven through thirty-two are multiplied by Source2 bits forty-seven through
thirty-two generating a third 32-bit intermediate result (Intermediate Result 3).
Sourcel bits sixty-three through forty-eight are multiplied by Source2 bits sixty-
three through forty-eight generating a fourth 32-bit intermediate result
(Intermediate Result 4). Intermediate Result 1 is added to Intermediate Result 2
generating bits thirty-one through 0 of the Result, and Intermediate Result 3 is
added to Intermediate Result 4 generating bits sixty-three through thirty-two of
the Result.

Step 1415 is the same as step 1414, with the exception that Intermediate
Result 1 and Intermediate Result 2 are subtracted to generate bits thirty-one
through O of the Result, Result 3 and Intermediate Result 4 are subtracted to
generate bits sixty-three through thirty-two of the Result.

Different embodiments may be perform the multiplies and adds/subtracts
serially, in parallel, or in some combination of serial and parallel operations.

At step 1420, the Result is stored in the DEST register.

PACKED DATA MULTIPLY-ADD/SUBTRACT CIRCUITS

In one embodiment, each of the multiply-add and multiply-subtract
instructions can occur on multiple data elements in the same number of clock
cycles as a single multiply on unpacked data. To achieve execution in the same
number of clock cycles, parallelism is used. That is, registers are simultaneously
instructed to perform the multiply-add or multiply-subtract operations on the data
elements. This is discussed in more detail below.

Figure 15 illustrates a circuit for performing multiply-add and/or multiply-
subtract operations on packed data according to one embodiment of the
invention. Operation control 1500 processes the control signal for the multiply-
add and multiply-subtract instructions. Operation control 1500 outputs signals
on Enable 1580 to control Packed Multiply-Adder/Subtractor 1501.

Packed Multiply-Adder/Subtractor 1501 has the following inputs:
Source1[63:0] 1531, Source2[63:0] 1533, and Enable 1580. Packed Multiply-
Adder/Subtractor 1501 includes four 16x16 multiplier circuits: 16x16 multiplier
A 1510, 16x16 multiplier B 1511, 16x16 multiplier C 1512 and 16x16 multiplier
D 1513. 16x16 multiplier A 1510 has as inputs Source1[15:0] and

WO 97/08608 PCT/US96/11893

-44-

Source2[15:0). 16x16 multiplier B 1511 has as inputs Source1{31:16] and
Source2[31:16]. 16x16 multiplier C 1512 has as inputs Source1[{47:32] and
Source2[47:32]. 16x16 multiplier D 1513 has as inputs Source1[63:48] and
Source2[63:48]. The 32-bit intermediate results generated by 16x16 multiplier A
1510 and 16x16 multiplier B 1511 are received by Virtual Adder/Subtractor
1550, while the 32-bit intermediate results generated by 16x16 multiplier C 1512
and 16x16 multiplier D 1513 are received by Virtual Adder/Subtractor 1551.

Based on whether the current instruction is a multiply-add or multiply-
subtract instruction, Virtual Adder/Subtractor 1550 and Virtual Adder/Subtractor
1551 either add or subtract their respective 32-bit inputs. The output of Virtual
Adder/Subtractor 1550 (i.e., bits thirty one through zero of the Result) and the
output of Virtual Adder/Subtractor 1551 (i.e., bits 63 through thirty two of the
Result) are combined into the 64-bit Result and communicated to Result Register
1571.

In one embodiment, Virtual Adder/Subtractor 1551 and Virtual
Adder/Subtractor 1550 are implemented in a similar fashion as Virtual
Adder/Subtractor 1108b and Virtual Adder/Subtractor 1108a (i.e., each of
Virtual Adder/Subtractor 1551 and Virtual Adder/Subtractor 1550 are composed
of four 8-bit adders with the appropriate propagation delays). However,
alternative embodiments could implement Virtual Adder/Subtractor 1551 and
Virtual Adder/Subtractor 1550 in any number of ways.

To perform the equivalent of these multiply-add or multiply-subtract
instructions on prior art processors which operate on unpacked data, four
separate 64-bit multiply operations and two 64-bit add or subtract operations, as
well as the necessary load and store operations, would be needed. This wastes
data lines and circuitry that are used for the bits that are higher than bit sixteen
for Sourcel and Source 2, and higher than bit thirty two for the Result. As well,
the entire 64-bit result generated by such prior art processors may not be of use
to the programmer. Therefore, the programmer would have to truncate each
result.

WO 97/08608 PCT/US96/11893

-45-

ADVANTAGES OF INCLUDING THE DESCRIBED MULTIPLY-ADD OPERATION
IN THE INSTR ION SET

The described multiply-add/subtract instructions can be used for a number
of purposes. For example, the multiply-add instruction can be used for the
multiplication of complex numbers and for the multiplication and accumulation
of values. Several algorithms which utilize the multiply-add instruction are later
described herein.

Thus, by including the described multiply-add and/or multiply-subtract
instructions in the instruction set supported by processor 109, many functions
can be performed in fewer instructions than prior art general purpose processors
which lack these instructions.

PACKED SHIFT

PACKED SHIFT OPERATION

In one embodiment of the invention, the SRCI1 register contains the data
(Sourcel) to be shifted, the SRC2 register contains the data (Source2)
representing the shift count, and DEST register will contain the result of the shift
(Result). That is, Sourcel will have each data element independently shifted by
the shift count. In one embodiment, Source? is interpreted as an unsigned 64 bit
scalar. In another embodiment, Source? is packed data and contains shift counts
for each corresponding data element in Sourcel.

In one embodiment of the invention, both arithmetic shifts and logical shifts
are supported. An arithmetic shift, shifts the bits of each data element down by a
specified number, and fills the high order bit of each data element with the initial
value of the sign bit. A shift count greater than seven for packed byte data,
greater than fifteen for packed word data, or greater than thirty-one for packed
doubleword, causes the each Result data element to be filled with the initial
value of the sign bit. A logical shift can operate by shifting bits up or down. In a
shift right logical, the high order bits of each data element are filled with zeroes.
A shift left logical causes the least significant bits of each data element to be
filled with zeroes.

WO 97/08608 PCT/US96/11893

-46-

In one embodiment of the invention, a shift right arithmetic, the shift right
logical, and the shift left logical operations are supported for packed bytes and
packed words. In another embodiment of the invention, these operations are
supported for packed doublewords also.

Figure 16 is a flow diagram illustrafing a method for performing a packed
shift operation on packed data according to one embodiment of the invention.

At step 1601, decoder 202 decodes control signal 207 received by processor
109. Thus, decoder 202 decodes: the operation code for the appropriate shift
operation; SRC1 602, SRC2 603 and DEST 605 addresses in registers 209;
saturate/unsaturate (not necessarily needed for shift operations), signed/unsigned
(again not necessarily needed), and length of the data elements in the packed
data.

At step 1602, via internal bus 170, decoder 202 accesses registers 209 in
register file 150 given the SRC1 602 and SRC2 603 addresses. Registers 209
provides execution unit 130 with the packed data stored in the SRC1 602 register
(Sourcel), and the scalar shift count stored in SRC2 603 register (Source2). That
is, registers 209 communicate the packed data to executioﬁ unit 130 via internal
bus 170.

At step 1603, decoder 202 enables execution unit 130 to perform the
appropriate packed shift operation. Decoder 202 further communicates, via
internal bus 170, the size of data elements, the type of shift operation, and the
direction of the shift (for logical shifts). |

At step 1610, the size of the data element determines which step is to be
executed next. If the size of the data elements is eight bits (byte data), then
execution unit 130 performs step 1612. However, if the size of the data elements
in the packed data is sixteen bits (word data), then execution unit 130 performs
step 1614. In one embodiment, only eight bit and sixteen bit data element size
packed shifts are supported. However, in another embodiment, a thirty-two bit
data element size packed shift is also supported.

Assuming the size of the data elements is eight bits, then step 1612 is
executed. In step 1612, the following is performed. Sourcel bits seven through
zero are shifted by the shift count (Source2 bits sixty-three through zero)
generating Result bits seven through zero. Sourcel bits fifteen through eight are
shifted by the shift count generating Result bits fifteen through eight. Source1

WO 97/08608 PCT/US96/11893

-47-

bits twenty-three through sixteen are shifted by the shift count generating Result
bits twenty-three through sixteen. Sourcel bits thirty-one through twenty-four
are shifted by the shift count generating Result bits thirty-one through twenty-
four. Sourcel bits thirty-nine through thirty-two are shifted by the shift count
generating Result bits thirty-nine through thirty-two. Sourcel bits forty-seven
through forty are shifted by the shift count generating Result forty-seven through
forty. Sourcel bits fifty-five through forty-eight are shifted by the shift count
generating Result bits fifty-five through forty-eight. Sourcel bits sixty-three
through fifty-six are shifted by the shift count generating Result bits sixty-three
through fifty-six.

Assuming the size of the data elements is sixteen bits, then step 1614 is
executed. In step 1614, the following is performed. Sourcel bits fifteen through
zero are shifted by the shift count generating Result bits fifteen through zero.
Sourcel bits thirty-one through sixteen are shifted by the shift count generating
Result bits thirty-one through sixteen. Sourcel bits forty-seven through thirty-
two are shifted by the shift count generating Result bits forty-seven through
thirty-two. Sourcel bits sixty-three through forty-eight are shifted by the shift
count generating Result bits sixty-three through forty-eight.

In one embodiment, the shifts of step 1612 are performed simultaneously.
However, in another embodiment, these shifts are performed serially. In another
embodiment, some of these shifts are performed simultaneously and some are
performed serially. This discussion applies to the shifts of step 1614 as well.

At step 1620, the Result is stored in the DEST register.

Table 19 illustrates the in-register representation of byte packed shift right
arithmetic operation. The first row of bits is the packed data representation of
Sourcel. The second row of bits is the data representation of Source2. The third
row of bits is the packed data representation of the Result. The number below
each data element bit is the data element number. For example, Sourcel data
element three is 10000000,.

WO 97/08608

-48-

PCT/US96/11893

00101010

01010101

01010101

11111111

10000000

01110000

10001111

10001000

7
Shift

6
Shift

5
Shift

4
Shift

3
Shift

2
Shift

1
Shift

0
Shift

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000100

—

00000010

00000101

00000101

11111111

11110000

00000111

11111000

11111000

7

6

5

4

3

Table 19

Table 20 illustrates the in-register representation of packed shift right logical
operation on packed byte data.

2

1

0

00101010

01010101

01010101

11111111

10000000

01110000

10001111

10001000

7
Shift

6
Shift

5
Shift

4
Shift

3
Shift

2
Shift

1
Shift

0
Shift

00000000

00000000

00000000

00000000

00000000

00000000

00000011

00000000

00000101

00001010

00001010

00011111

00010000

00001110

00010001

00010001

7

6

5

4

3

Table 20

2

1

0

Table 21 illustrates the in-register representation bf packed shift left logical
operation on packed byte data.

00101010

01010101

01010101

11111111

10000000

01110000

10001111

10001000

7
Shift

6
Shift

5
Shift

4
Shift

3
Shift

2
Shift

1
Shift

0
Shift

00000000

00000000

00000000

00000011

00000000

00000000

00000000

00000000

01010000

10101000

10101000

11111000

00000000

10000000

01111000

01000000

7

6

S

4

3

Table 21

2

1

0

WO 97/08608 PCT/US96/11893

-49-

PACKED DATA SHIFT CIRCUITS

In one embodiment, the shift operation can occur on multiple data elements
in the same number of clock cycles as a single shift operation on unpacked data.
To achieve execution in the same number of clock cycles, parallelism is used.
That is, registers are simultaneously instructed to perform the shift operation on
the data elements. This is discussed in more detail below.

Figure 17 illustrates a circuit for performing a packed shift on individual
bytes of packed data according to one embodiment of the invention. Figure 17
illustrates the use of a modified byte slice shift circuit, byte slice stage; 1799.
Each byte slice, except for the most significant data element byte slice, includes
a shift unit and bit control. The most significant data element byte slice need
only have a shift unit.

Shift unitj 1711 and shift unitj+1 1771 each allow eight bits from Sourcel to
be shifted by the shift count. In one embodiment, each shift unit operates like a
known eight bit shift circuit. Each shift unit has a Sourcel input, a Source?2 input,
a control input, a next stage signal, a last stage signal, and a result output.
Therefore, shift unitj 1711 has Sourcelj 1731 input, Source2[63:0] 1733 input,
controlj 1701 input, next stagej 1713 signal, last stagej 1712 input, and a result
stored in result registerj 1751. Therefore, shift unitj+1 1771 has Sourcelj+]1 1732
input, Source2[63:0] 1733 input, controlj+1 1702 input, next stagej+1 1773
signal, last stagej+1 1772 input, and a result stored in result registerj+1 1752.

The Sourcel input is typically an eight bit portion of Sourcel. The eight bits
represents the smallest type of data element, one packed byte data element.
Source?2 input represents the shift count. In one embodiment, each shift unit
receives the same shift count from Source2[63:0] 1733. Operation control 1700
transmits control signals to enable each shift unit to perform the required shift.
The control signals are determined from the type of shift (arithmetic/logical) and
the direction of the shift. The next stage signal is received from the bit control for
that shift unit. The shift unit will shift the most significant bit out/in on the next
stage signal, depending on the direction of the shift (left/right). Similarly, each
shift unit will shift the least significant bit out/in on the last stage signal,
depending on the direction of the shift (right/left). The last stage signal being
received from the bit control unit of the previous stage. The result output

WO 97/08608 PCT/US96/11893

-50-

represents the result of the shift operation on the portion of Sourcel the shift unit
is operating upon.

Bit controlj 1720 is enabled from operation control 1700 via packed data
enablej 1706. Bit controlj 1720 controls next stagej 1713 and last stagej+1 1772.
Assume, for example, shift unitj 1711 is responsible for the eight least significant
bits of Sourcel, and shift unitj+] 1771 is responsible for the next eight bits of
Sourcel. If a shift on packed bytes is performed, bit controlj 1720 will not allow
the least significant bit from shift unitj+1 1771 to be communicated with the
most significant bit of shift unitj 1711. However, a shift on packed words is
performed, then bit controlj 1720 will allow the least significant bit from shift
unitj+1 1771 to be communicated with the most significant bit of shift unitj
1711.

For example, in Table 22, a packed byte arithmetic shift right is performed.
Assume that shift unitj+] 1771 operates on data element one, and shift unitj 1711
operates on data element zero. Shift unitj+] 1771 shifts its least significant bit
out. However operation control 1700 will cause bit controlj 1720 to stop the
propagation of that bit, received from last stagej+1 1721, to next stagej 1713.
Instead, shift unitj 1711 will fill the high order bits with the sign bit, Source1[7].

.1 00001110 | 10001000
7 6 5 4 3 2 1 0

Shift Shift Shift Shift Shift Shift Shift Shift

00000001

... 1 00001111 | 01000100
7 6 5 4 3 2 1 0

Table 22
However, if a packed word arithmetic shift is performed, then the least
significant bit of shift unitj+1 1771 will be communicated to the most significant
bit of shift unitj 1711. Table 23 illustrates this result. This communication would

be allowed for packed doubleword shifts as well.

WO 97/08608 PCT/US96/11893

-51-

...| 00001110 10001000
3 2 1 0

Shift Shift Shift Shift

00000001

...| 00000111 01000100
3 2 1 0

Table 23

Each shift unit is optionally coupled to a result register. The result register
temporarily stores the result of the shift operation until the complete result,
Result[63:0] 1760 can be transmitted to the DEST register.

For a complete sixty-four bit packed shift circuit, eight shift units and seven
bit control units are used. Such a circuit can also be used to perform a shift on a
sixty-four bit unpacked data, thereby using the same circuit to perform the
unpacked shift operation and the packed shift operation.

ADVANTAGES OF INCLUDING THE DESCRIBED SHIFT OPERATION
IN THE INSTRUCTION SET

The described packed shift instruction causes each element of Sourcel to
be shifted by the indicated shift count. By including this instruction in the
instruction set, each element of a packed data may be shifted using a single
instruction. In contrast, prior art general purpose processors that do not support
such an operation must perform numerous instructions to unpack Sourcel,
individually shift each unpacked data element, and then pack the results into a
packed data format for further packed processing.

MOVE OPERATION

The move operation transfers data to or from registers 209. In one
embodiment, SRC2 603 is the address containing the source data and DEST 605
is the address where the data is to be transferred. In this embodiment, SRC1 602
would not be used. In another embodiment, SRC1 602 is equal to DEST 605.

WO 97/08608 PCT/US96/11893

-52-

For the purposes of the explanation of the move operation, a distinction is
drawn between a register and a memory location. Registers are found in register
file 150 while memory can be, for example, in cache 160, main memory 104,
ROM 106, data storage device 107.

The move operation can move data from memory to registers 209, from
registers 209 to memory, and from a register in registers 209 to a second register
in registers 209. In one embodiment, packed data is stored in different registers
than those used to store integer data. In this embodiment, the move operation can
move data from integer registers 201 to registers 209. For example, in processor
109, if packed data is stored in registers 209 and integer data is stored in integer
registers 201, then a move instruction can be used to move data from integer
registers 201 to registers 209, and vice versa.

In one embodiment, when a memory address is indicated for the move, the
eight bytes of data at the memory location (the memory location containing the
least significant byte) are loaded to a register in registers 209 or stored from that
register. When a register in registers 209 is indicated, the contents of that register
are moved to or loaded from a second register in registers 209. If the integer
registers 201 are sixty-four bits in length, and an integer register is specified,
then the eight bytes of data in that integer register are loaded to a register in
registers 209 or stored from that register.

In one embodiment, integers are represented as thirty-two bits. When a
move operation is performed from registers 209 to integer registers 201, then
only the low thirty-two bits of the packed data are moved to the specified integer
register. In one embodiment, the high order thirty-two bits are zeroed. Similarly,
only the low thirty-two bits of a register in registers 209 are loaded when a move
is executed from integer registers 201 to registers 209. In one embodiment,
processor 109 supports a thirty-two bit move operation between a register in
registers 209 and memory. In another embodiment, a move of only thirty-two
bits is performed on the high order thirty-two bits of packed data.

WO 97/08608 PCT/US96/11893

-53-

PACK OPERATION

In one embodiment of the invention, the SRC1 602 register contains data
(Sourcel), the SRC2 603 register contains the data (Source2), and DEST 605
register will contain the result data (Result) of the operation. That is, parts of
Sourcel and parts of Source2 will be packed together to generate Result.

In one embodiment, a pack operation converts packed words (or
doublewords) into packed bytes (or words) by packing the low order bytes (or
words) of the source packed words (or doublewords) into the bytes (or words) of
the Result. In one embodiment, the pack operation converts quad packed words
into packed doublewords. This operation can be optionally performed with
signed data. Further, this operation can be optionally performed with saturate.
In an alternative embodiment, additional pack operations are included which
operates on the high order portions of each data element.

Figure 18 is a flow diagram illustrating a method for performing pack
operations on packed data according to one embodiment of the invention.

At step 1801, decoder 202 decodes control signal 207 received by processor
109. Thus, decoder 202 decodes: the operation code for the appropriate pack
operation; SRC1 602, SRC2 603 and DEST 605 addresses in registers 209;
saturate/unsaturate, signed/unsigned, and length of the data elements in the
packed data. As mentioned previously, SRC1 602 (or SRC2 603) can be used as
DEST 605.

At step 1802, via internal bus 170, decoder 202 accesses registers 209 in
register file 150 given the SRC1 602 and SRC2 603 addresses. Registers 209
provides execution unit 130 with the packed data stored in the SRC1 602 register
(Sourcel), and the packed data stored in SRC2 603 register (Source2). That is,
registers 209 communicate the packed data to execution unit 130 via internal bus
170.

At step 1803, decoder 202 enables execution unit 130 to perform the
appropriate pack operation. Decoder 202 further communicates, via internal bus
170, saturate and the size of the data elements in Sourcel and Source2. Saturate
is optionally used to maximize the value of the data in the result data element. If
the value of the data elements in Sourcel or Source2 are greater than or less than
the range of values that the data elements of Result can represent, then the
corresponding result data element is set to its highest or lowest value. For

WO 97/08608 PCT/US96/11893

-54-

example, if signed values in the word data elements of Sourcel and Source2 are
smaller than 0x80 (or 0x8000 for doublewords), then the result byte (or word)
data elements are clamped to 0x80 (or 0x8000 for doublewords). If signed values
in word data elements of Sourcel and Source 2 are greater than 0x7F (or Ox7FFF
for doublewords) , then the result byte (or word) data elements are clamped to
O0x7F (or Ox7FFF).

At step 1810, the size of the data element determines which step is to be
executed next. If the size of the data elements is sixteen bits (packed word 402
data), then execution unit 130 performs step 1812. However, if the size of the
data elements in the packed data is thirty-two bits (packed doubleword 403 data),
then execution unit 130 performs step 1814.

Assuming the size of the source data elements is sixteen bits, then step 1812
is executed. In step 1812, the following is performed. Sourcel bits seven through
zero are Result bits seven through zero. Sourcel bits twenty-three through
sixteen are Result bits fifteen through eight. Sourcel bits thirty-nine through
thirty-two are Result bits twenty-three through sixteen. Sourcel bits sixty-three
through fifty-six are Result bits thirty-one through twenty-four. Source2 bits
seven through zero are Result bits thirty-nine through thirty-two. Source2 bits
twenty-three through sixteen are Result bits forty-seven through forty. Source2
bits thirty-nine through thirty-two are Result bits fifty-five through forty-eight.
Source? bits sixty-three through fifty-six are Result bits thirty-one through
twenty-four. If saturate is set, then the high order bits of each word are tested to
determine whether the Result data element should be clamped.

- Assuming the size of the source data elements is thirty-two bits, then step
1814 is executed. In step 1814, the following is performed: Sourcel bits fifteen
through zero are Result bits fifteen through zero. Sourcel bits forty-seven
through thirty-two are Result bits thirty-one through sixteen. Source?2 bits fifteen
through zero are Result bits forty-seven through thirty-two. Source? bits forty-
seven through thirty-two are Result bits sixty-three through forty-eight. If
saturate is set, then the high order bits of each doubleword are tested to
determine whether the Result data element should be clamped.

In one embodiment, the packing of step 1812 is performed simultaneously.
However, in another embodiment, this packing is performed serially. In another

WO 97/08608 PCT/US96/11893

-55-

embodiment, some of the packing is performed simultaneously and some is
performed serially. This discussion also applies to the packing of step 1814.

At step 1820, the Result is stored in the DEST 605 register.

Table 24 illustrates the in-register representation of a pack word operation.
The subscripted Hg and L represent the high and low order bits, respectively, of
each 16-bit data element in Sourcel and Source2. For example, A] represents

the low order 8 bits of the data element A in Sourcel.

SOURCE 2 SOURCE 1
Hy HL |GG GL|FH FL|EH EL DH DL {CH CL|BH BL | AH A
HL|GL|FL|EL|DL|CL|BL ALI

RESULT
Table 24

Table 25 illustrates the in-register representation of a pack doubleword
operation, where the subscripted Hg and Lg represent the high low order bits,

respectively, of each 32-bit data element in Sourcel and Source?2.

SOURCE 2 SOURCE 1

DH DLICH CL BH BLAH AL
DL CL|BL[AL
RESULT

Table 25

WO 97/08608 PCT/US96/11893

-56-

PACK CIRCUITS

In one embodiment of the invention, to achieve efficient execution of pack
operations parallelism is used. Figures 19a and 19b illustrate a circuit for
performing pack operations on packed data according to one embodiment of the
invention. The circuit can optionally perform the pack operation with saturation.

The circuit of Figures 19a and 19b includes an operation control 1900, a
result register 1952, a result register 1953, eight sixteen bit to eight bit test
saturate circuits, and four thirty-two bit to sixteen bit test saturate circuits.

Operation control 1900 receives information from the decoder 202 to enable
a pack operation. Operation control 1900 uses the saturate value to enable the
saturation tests for each of the test saturate circuits. If the size of the source
packed data is word packed data 503, then output enable 1931 is set by operation
control 1900. This enables the output of result register 1952. If the size of the
source packed data is doubleword packed data 504, then output enable 1932 is
set by operation control 1900. This enables the output of output register 1953.

Each test saturate circuit can selectively test for saturation. If a test for
saturation is disabled, then each test saturate circuit merely passes the low order
bits through to a corresponding position in a result register. If a test for saturate is
enabled, then each test saturate circuit tests the high order bits to determine if the
result should be clamped.

Test saturate 1910 through test saturate 1917 have sixteen bit inputs and
eight bit outputs. The eight bit outputs are the lower eight bits of the inputs, or
optionally, are a clamped value (0x80, 0x7F, or OxFF). Test saturate 1910
receives Sourcel bits fifteen through zero and outputs bits seven through zero for
result register 1952. Test saturate 1911 receives Sourcel bits thirty-one through
sixteen and outputs bits fifteen through eight for result register 1952. Test
saturate 1912 receives Sourcel bits forty-seven through thirty-two and outputs
bits twenty-three through sixteen for result register 1952, Test saturate 1913
receives Sourcel bits sixty-three through forty-eight and outputs bits thirty-one
through twenty-four for result register 1952. Test saturate 1914 receives Source2
bits fifteen through zero and outputs bits thirty-nine through thirty-two for result
register 1952. Test saturate 1915 receives Source2 bits thirty-one through sixteen
and outputs bits forty-seven through forty for result register 1952. Test saturate
1916 receives Source2 bits forty-seven through thirty-two and outputs bits fifty-

WO 97/08608 PCT/US96/11893

-57-

five through forty-eight for result register 1952. Test saturate 1917 receives
Source? bits sixty-three through forty-eight and outputs bits sixty-three through
fifty-six for result register 1952.

Test saturate 1920 through test saturate 1923 have thirty-two bit inputs and
sixteen bit outputs. The sixteen bit outputs are the lower sixteen bits of the
inputs, or optionally, are a clamped value (0x8000, Ox7FFF, or OxFFFF). Test
saturate 1920 receives Sourcel bits thirty-one through zero and outputs bits
fifteen through zero for result register 1953. Test saturate 1921 receives Sourcel
bits sixty-three through thirty-two and outputs bits thirty-one through sixteen for
result register 1953. Test saturate 1922 receives Source?2 bits thirty-one through
zero and outputs bits forty-seven through thirty-two for result register 1953. Test
saturate 1923 receives Source? bits sixty-three through thirty-two and outputs
bits sixty-three though forty-eight of result register 1953.

For example, in Table 26, a pack word unsigned with no saturate is
performed. Operation control 1900 will enable result register 1952 to output
result[63:0] 1960.

Sourcel
00001110 01110000 { 00001110 00001000
3 2 1 0
Source2
00001110 10000001 | 00001110 10000001
3 2 1 0
Result
10000001 | 10000001 | ... 01110000 | 00001000
7 6 5 4 3 2 1 0

Table 26
However, if a pack doubleword unsigned with no saturate is performed,
operation control 1900 will enable result register 1953 to output result[63:0]
1960. Table 27 illustrates this result.

WO 97/08608 PCT/US96/11893

-58-
Sourcel
...]1 00001110 01000001 00001110 00001000
1 0
Source2
... | 00001110 00000001 00001110 10000001
] 0
Result
...| 00001110 10000001 ...| 00001110 00001000
3 2 1 0
Table 27

ADVANTAGES OF INCLUDING THE DESCRIBED PACK OPERATION
IN THE INSTRUCTION SET

The described pack instruction packs a predefined number of bits from
each data element in Sourcel and Source 2 to generate the Result. In this
manner, processor 109 can pack data in as little as half the instructions required
by prior art general purpose processors. For example, generating a result which
contains four 16-bit data elements from four 32-bit data elements requires only
one instruction (as opposed to 2 instructions) as shown below:

Pack.High Sourcel,Source2

AQ. AQ Co. .Co Sourcel

Go, Gy By, .Bo Source2

A, Co. Go. B, Resultl
Table 28

Typical multimedia applications pack large amounts of data. Thus, by
reducing the number of instructions required to pack this data by as much as half,
performance of these multimedia applications is increased.

WO 97/08608 PCT/US96/11893

-50-

UNPACK OPERATION
UNPACK OPERATION

In one embodiment, an unpack operation interleaves the low order packed
bytes, words or doublewords of two source packed data to generate result packed
bytes, words, or doublewords. This operation is referred to herein as an unpack
low operation. In another embodiment, an unpack operation could also
interleave the high order elements (referred to as the unpack high operation).

Figure 20 is a flow diagram illustrating a method for performing unpack
operations on packed data according to one embodiment of the invention.

Step 2001 and step 2002 are executed first. At step 2003, decoder 202
enables execution unit 130 to perform the unpack operation. Decoder 202
communicates, via internal bus 170, the size of the data elements in Sourcel and
Source2.

At step 2010, the size of the data element determines which step is to be
executed next. If the size of the data elements is eight bits (packed byte 401
data), then execution unit 130 performs step 2012. However, if the size of the
data elements in the packed data is sixteen bits (packed word 402 data), then
execution unit 130 performs step 2014. However, if the size of the data elements
in the packed data is thirty-two bits (packed doubled word 503 data), then
execution unit 130 performs step 2016.

Assuming the size of the source data elements is eight bits, then step 2012 is
executed. In step 2012, the following is performed. Sourcel bits seven through
zero are Result bits seven through zero. Source? bits seven through zero are
Result bits fifteen through eight. Sourcel bits fifteen through eight are Result
bits twenty-three through sixteen. Source2 bits fifteen through eight are Result
bits thirty-one through twenty-four. Sourcel bits twenty-three through sixteen
are Result bits thirty-nine through thirty-two. Source2 bits twenty-three through
sixteen are Result bits forty-seven through forty. Sourcel bits thirty-one through
twenty-four are Result bits fifty-five through forty-eight. Source2 bits thirty-one
through twenty-four are Result bits sixty-three through fifty-six.

Assuming the size of the source data elements is sixteen bits, then step 2014
is executed. In step 2014, the following is performed. Source1 bits fifteen
through zero are Result bits fifteen through zero. Source? bits fifteen through
zero are Result bits thirty-one through sixteen. Sourcel bits thirty-one through

WO 97/08608 PCT/US96/11893

-60-

sixteen are Result bits forty-seven through thirty-two. Source? bits thirty-one
through sixteen are Result bits sixty-three through forty-eight.

Assuming the size of the source data elements is thirty-two bits, then step
2016 is executed. In step 2016, the following is performed. Sourcel bits thirty-
one through zero are Result bits thirty-one through zero. Source?2 bits thirty-one
through zero are Result bits sixty-three through thirty-two.

In one embodiment, the unpacking of step 2012 is performed
simultaneously. However, in another embodiment, this unpacking is performed
serially. In another embodiment, some of the unpacking is performed
simultaneously and some is performed serially. This discussion also applies to
the unpacking of step 2014 and step 2016.

At step 2020, the Result is stored in the DEST 605 register.

Table 29 illustrates the in-register representation of an unpack doubleword
operation (each of data elements A()-1 and B(-1 contain 32 bits).

SOURCE 2 SOURCE 1
B1 Bo A1 Ay

I Bp Ag I v
RESULT
Table 29

Table 30 illustrates the in-register representation of an unpack word
operation (each of data elements A(Q-3 and B(-3 contain 16 bits).

SOURCE 1 SOURCE 2
LE3_ Bo| B1| By Az | Ao [A1 | Ap
B[A1 | Bg Ag_l

RESULT

WO 97/08608 PCT/US96/11893

-61-

Table 30

Table 31 illustrates the in-register representation of an unpack byte
operation (each of data elements A(-7 and B().7 contain 8§ bits).

SOURCE 1 SOURCE 2
B7 | Bo| B Ba | B3 [Bp| B | B0 [Ar[46|26 | A] e[im0

B3| A3 |[B2|A2|B1|A1|Bg|Ag
RESULT

Table 31

UNPACK CIRCUITS

Figure 21 illustrates a circuit for performing unpack operations on packed
data according to one embodiment of the invention. The circuit of Figure 21
includes the operation control circuit 2100, a result register 2152, a result register
2153, and a result register 2154.

Operation control 2100 receives information from the decoder 202 to enable
an unpack operation. If the size of the source packed data is byte packed data
502, then output enable 2132 is set by operation control 2100. This enables the
output of result register 2152. If the size of the source packed data is word
packed data 503, then output enable 2133 is set by operation control 2100. This
enables the output of output register 2153. If the size of the source packed data is
doubleword packed data 504, then output enable 2134 is set by operation control
2100. This enables the output of output result register 2154.

WO 97/08608 PCT/US96/11893

-62-

Result register 2152 has the following inputs. Sourcel bits seven through
zero are bits seven through zero for result register 2152. Source?2 bits seven
through zero are bits fifteen through eight for result register 2152. Sourcel bits
fifteen through eight are bits twenty-three through sixteen for result register
2152. Source 2 bits fifteen through eight are bits thirty-one through twenty-four
for result register 2152. Sourcel bits twenty-three through sixteen are bits thirty-
nine through thirty-two for result register 2152. Source?2 bits twenty-three
through sixteen are bits forty-seven through forty for result register 2152.
Sourcel bits thirty-one through twenty-four are bits fifty-five through forty-eight
for result register 2152. Source2 bits thirty-one through twenty-four are bits
sixty-three through fifty-six for result register 2152.

Result register 2153 has the following inputs. Sourcel bits fifteen through
zero are bits fifteen through zero for result register 2153. Source2 bits fifteen
through zero are bits thirty-one through sixteen for result register 2153. Sourcel
bits thirty-one through sixteen are bits forty-seven through thirty-two for result
register 2153. Source?2 bits thirty-one through sixteen are bits sixty-three though
forty-eight of result register 1953.

Result register 2154 has the following inputs. Sourcel bits thirty-one
through zero are bits thirty-one through zero for result register 2154. Source2
bits thirty-one through zero are bits sixty-three through thirty-two of result
register 2154.

WO 97/08608

For example, in Table 32, an unpack word operation is performed.

PCT/US96/11893

-63-

Operation control 2100 will enable result register 2153 to output result[63:0]

2160.
Sourcel
00001110 01110000 | 00001110 00001000
3 2 1 0
Source2
00001110 00000001 | 00001110 10000001
3 2 1 0
Result
00001110 00000001 00001110 01110000 | 00001110 10000001 - 00001110 00001000
3 2 1 0

Table 32

However, if an unpack doubleword is performed, operation control 2100
will enable result register 2154 to output result[63:0] 2160. Table 33 illustrates

this result.

Sourcel

00001110 01000001 00001110 00001000

0

Source2

00001110 00000001 00001110 10000001

0

Result

00001110 00000001

00001110 10000001 | 00001110 01000001 00001110 00001000

1

Table 33

0

WO 97/08608 PCT/US96/11893

-64-

ADVANTAGES OF INCLUDING THE DESCRIBED UNPACK INSTRUCTION
IN THE INSTRUCTION SET

By including the described unpack instruction in the instruction set, packed
data may be either interleaved or unpacked. This unpack instruction can be used
for unpacking packed data by making all of the data elements in Source2 all Os.
An example of unpacking bytes is shown below in Table 34a.

Sourcel
00101010 | 01010101] 01010101 { 11111111 | 10000000 | 01110000 | 10001111 | 10001000
7 6 5 4 3 2 1 0
Source2
00000000 § 060000000 | 00000000 § 00000000 | 00000000 | 00000000 | 00000000 | 00000000
7 6 5 4 3 2 1 0

Result
00000000 10000000 | 00000000 01110000 | 00000000 10001111 | 00000000 10001000
3 2 1 0

Table 34a

This same unpack instruction can be used for interleaving data as shown in
Table 34b. Interleaving is useful in a number of multimedia algorithms. For
example, interleaving is useful for transposing matrixes and interpolating pixels.

WO 97/08608 PCT/US96/11893

-65-
Sourcel
00101010 01010101 | 01010101 | 11111121 { 10000000 { 01110000 | 10001111 | 10001000
7 6 5 4 3 2 1 0
Source2
00000000 | 00000000 | 11000000 | 00000000 | 11110011 | 00000000 | 10001110 | 10001000
7 6 5 4 3 2 1 0

Result
11110011 § 10000000 | 00000000 | 01110000 | 10001110 | 10001111 | 10001000 | 10001000
7 6 5 4 3 2 1 0

Table 34b

Thus, by providing this unpack instruction in the instruction set supported
by processor 109, processor 109 is more versatile and can perform algorithms
requiring this functionality at a higher performance level.

POPULATION COUNT

POPULATION COUNT
One embodiment of the invention enables population count operations to be

performed on packed data. That is, the invention generates a result data element
for each data element of a first packed data. Each result data element represents
the number of bits set in each corresponding data element of the first packed
data. In one embodiment, the total number of bits set to one is counted.

Table 35a illustrates an in-register representation of a population count
operation on a packed data. The first row of bits is the packed data
representation of a Sourcel packed data. The second row of bits is the packed
data representation of the Result packed data. The number below each data
element bit is the data element number. For example, Sourcel data element 0 is
1000111110001000,. Therefore, if the data elements are sixteen bits in length
(word data), and a population count operation is performed, Execution unit 130
produces the Result packed data as shown.

WO 97/08608

PCT/US96/11893

-66-
01110010 00000101 | 11111111 11111111] 01111111 11111111 | 10001111 10001000
_ 3 _ 2 _ 1 _ 0
00000000 00000110 | 00000000 00010000 | 00000000 00001111 | 00000000 00000111
3 2 1 0
Table 35a

In another embodiment, population counts are performed on eight bit data

elements. Table 35b illustrates an in-register representation of a population

count on a packed data having eight eight-bit packed data elements.

01111111 § 01010101 | 10101010 § 10000001

10000000 | 11111111 | 11001111 | 00000000

7r _ ¢ — 2

- 3 —_ i

3

2

00000111 | 00000100 | 00000100 § 00000010

00000001 | 00001000 | 00000110

7 6 5 4

3 2 1 0

Table 35b

In another embodiment, population counts are performed on thirty-two bit

data elements. Table 35c illustrates an in-register representation of a population

count on a packed data having two, thirty-two bit, packed data elements.

11111111 11111111 11111111 11111111

_ L

Sma—

10000000 11110000 11001111 10001000
0

—

00000000_ 00000000 00000000 00100000

00000000 00000000 00000000 00001101

1

0

Table 35¢

Population counts can also be performed on sixty-four bit integer data. That
is, the number of bits set to one, in sixty-four bits of data, is totaled. Table 35d

illustrates an in-register representation of a population count on sixty-four bit

integer data.

WO 97/08608 PCT/US96/11893

-67-

11111111 11111111 11111111 11111111 10000000 11110000 11001111 10001000

—
—

00000000 00000000 00000000 00100000 00000000 00000000 00000000 00101101

Table 35d

A METHOD OF PERFORMING A POPULATION COUNT
Figure 22 is a flow diagram illustrating a method for performing a

population count operation on packed data according to one embodiment of the
invention. At step 2201, responsive to receiving a control signal 207, decoder
202 decodes that control signal 207. In one embodiment, control signal 207 is
supplied via bus 101. In another embodiment, control signal 207 is supplied by
cache 160. Thus, decoder 202 decodes: the operation code for population count,
and SRC1 602 and DEST 605 addresses in registers 209. Note that SRC2 603 is
not used in this present embodiment of the invention. As well,
saturate/unsaturate, signed/unsigned, and length of the data elements in the
packed data are not used in this embodiment. In the present embodiment of the
invention, only sixteen bit data element length packed addition is supported.
However, one skilled in the art would understand that population counts can be
performed on packed data having eight packed byte data elements or two packed
doubleword data elements.

At step 2202, via internal bus 170, decoder 202 accesses registers 209 in
register file 150 given the SRC1 602 address. Registers 209 provides Execution
unit 130 with the packed data, Sourcel, stored in the register at this address.
That is, registers 209 communicate the packed data to Execution unit 130 via
internal bus 170.

At step 2130, decoder 202 enables Execution unit 130 to perform a
population count operation. In an alternative embodiment, decoder 202 further
communicates, via internal bus 170, the length of packed data elements.

At step 2205, assuming the length of the data elements is sixteen bits, then
Execution unit 130 totals the number of bits set in bit fifteen through bit zero of
Sourcel, producing bit fifteen through bit zero of Result packed data. In parallel

WO 97/08608 PCT/US96/11893

-68-

with this totaling, Execution unit 130 adds totals thirty-one through bit sixteen of
Sourcel, producing bit thirty-one through bit sixteen of Result packed data. In
parallel with the generation of these totals, Execution unit 130 totals bit forty-
seven through bit thirty-two of Sourcel, producing bit forty-seven through bit
thirty-two of Result packed data. In parallel with the generation of these totals,
Execution unit 130 totals bit sixty-three through bit forty-eight of Sourcel,
producing bit sixty-three through bit forty-eight of Result packed data.

At step 2206, decoder 202 enables a register in registers 209 with DEST 605
address of the destination register. Thus, the Result packed data is stored in the
register addressed by DEST 605.

A METHOD OF PERFORMING A POPULATION COUNT ON ONE DATA ELEMENT
Figure 23 is a flow diagram illustrating a method for performing a

population count operation on one data element of a packed data and generating
a single result data element for a result packed data according to one embodiment
of the invention. At step 2310a, a column sum, CSum1a, and a column carry,
CCarry 1a, are generated from Sourcel bits fifteen, fourteen, thirteen and twelve.
At step 2310b, a column sum, CSumlb, and a column carry, CCarry 1b, are
generated from Sourcel bits eleven, ten, nine and eight. At step 2310c, a column
sum, CSumlc, and a column carry, CCarry lc, are generated from Sourcel bits
seven, six, five and four. At step 2310d, a column sum, CSumld, and a column
carry, CCarry 1d, are generated from Sourcel bits three, two, one and zero. In
one embodiment of the invention, steps 2310a-d are performed in parallel. At
step 2320a, a column sum, CSum2a, and a column carry, CCarry 2b, are
generated from CSumla, CCarryla, CSumlb, and CCarrylb. At step 2320b, a
column sum, CSum2b, and a column carry, CCarry 2b, are generated from
CSumlc, CCarryl, CSumld, and CCarryld. In one embodiment of the
invention, steps 2320a-b are performed in parallel. At step 2330, a column sum,
CSum3, and a column carry, CCarry 3, are generated from CSum?2a, CCarry2a,
CSum2b, and CCarry2b. At step 2340, a Result is generated from CSum3 and
CCarry3. In one embodiment, the Result is represented in sixteen bits. In this
embodiment, as only bit four through bit zero are need to represent the maximum
number of bits set in a Sourcel, bits fifteen through five are set to zero. The
maximum number of bits for Sourcel is sixteen. This occurs when Sourcel

WO 97/08608 PCT/US96/11893

-69-

equals 11111111111111112. The Result would be sixteen and would be
represented by 00000000000100002.

Thus, to calculate four result data elements for a population count operation
on a sixty-four bit packed data, the steps of Figure 23 would be performed for
each data element in the packed data. In one embodiment, the four sixteen bit
result data elements would be calculated in parallel.

A CIRCUIT FOR PERFORMING A POPULATION COUNT
Figure 24 illustrates a circuit for performing a population count operation on

packed data having four word data elements according to one embodiment of the
invention. Figure 25 illustrates a detailed circuit for performing a population
count operation on one word data element of a packed data according to one
embodiment of the invention. '

Figure 24 illustrates a circuit wherein Sourcel bus 2401 carries information
signals to the popcnt circuits 2408a-d via Sourceln 2406a-d. Thus, popent
circuit 2408a totals the number of bits set in bit fifteen through bit zero of
Sourcel, producing bit fifteen through bit zero of Result. Popcnt circuit 2408b
totals the number of bits set in bit thirty-one through bit sixteen of Sourcel,
producing bit thirty-one through bit sixteen of Result. Popcnt circuit 2408c
totals the number of bits set in bit forty-seven through bit thirty-two of Sourcel,
producing bit forty-seven through bit thirty-two of Result. Popcnt circuit 2408d
totals the number of bits set in bit sixty-three through bit forty-eight of Sourcel,
producing bit sixty-three through bit forty-eight of Result. Enable 2404a-d
receives, from Operation Control 2410, via control 2403, control signals
enabling popent circuits 2408a-d to perform population count operations, and to
place a Result on the Result Bus 2409. One skilled in the art would be able to
create such a circuit given the above description and the above description and
illustrations in Figures 1-6b and 23-25.

Popcnt circuits 2408a-d communicate result information of a packed
population count operation onto Result bus 2409, via result out 2407a-d. This
result information is then stored in the integer register specified by the DEST
605 register address.

WO 97/08608 PCT/US96/11893

-70-

A CIRCUIT FOR PERFORMING A POPULATION COUNT ON ONE DATA ELEMENT

Figure 25 illustrates a detailed circuit for performing a population count
operation on one, word, data element of a packed data. In particular, Figure 25
illustrates a portion of popcnt circuit 2408a. To achieve the maximum
performance for applications employing a population count operation, the
operation should be complete within one clock cycle. Therefore, given that
accessing a register and storing a result requires a certain percentage of the clock
cycle, the circuit of Figure 24 completes its operation within approximately 80%
of one clock period. This circuit has the advantage of allowing processor 109 to
execute a population count operation on four sixteen bit data elements in one
clock cycle.

Popcnt circuit 2408a employs 4->2 carry-save adders (unless otherwise
specified, CSA will refer to a 4->2 carry-save adder). 4->2 carry-save adders, as
may be employed in the popcnt circuit 2408a-d, are well known in the art. A 4-
>2 carry-save adder is an adder that adds four operands, resulting in two sums.
Since the population count operation in popent circuit 2408a involves sixteen
bits, the first level includes four 4->2 carry-save adders. These four 4->2 carry-
save adders transform the sixteen one-bit operands into eight two-bit sums. The
second level transforms the eight two-bit sums into four three-bit sums, and the
third level transforms the four three-bit sums into two four-bit sums. Then a
four-bit full adder, adds the two four-bit sums to generate a final result.

Although 4->2 carry-save adders are used, an alternative embodiments could
employ 3->2 carry-save adders. Alternatively, a number of full adders could be
used; however, this configuration would not provide a result as quickly as the
embodiment shown in Figure 25.

Sourcel]N 15-02406a carries bit fifteen through bit zero of Sourcel. The
first four bits are coupled to the inputs of a 4->2 carry-save adder (CSA 2510a).
The next four bits are coupled to the inputs of CSA 2510b. The next four bits are
coupled to the inputs of CSA 2510c. The final four bits are coupled to the inputs
of CSA 2510d. Each CSA 2510a-d generates two, two-bit, outputs. The two,
two bit, outputs of CSA 2510a are coupled to two inputs of CSA 2520a. The
two, two bit, outputs of CSA 2510b are coupled to the other two inputs of CSA
2520a. The two, two bit outputs of CSA 2510c are coupled to two inputs of CSA
2520b. The two, two bit outputs of CSA 2510d are coupled to the other two

WO 97/08608 PCT/US96/11893

71-

inputs of CSA 2520b. Each CSA 2520a-b generates two, three bit, outputs. The
two, three bit, outputs of 2520a are coupled to two inputs of CSA 2530. The two
, three bit, outputs of 2520b are coupled to the other two inputs of CSA 2530.
CSA 2530 generates two, four bit, outputs.

These two four bit outputs are coupled to two inputs of a full adder (FA
2550). FA 2550 adds the two four bit inputs and communicates bit three through
bit zero of Result Out 2407a as a total of the addition of the two, four bit, inputs.
FA 2550 generates bit four of Result Out 2407a through carry out (CO 2552). In
an alternative embodiment, a five bit full adder is used to generate bit four
through bit zero of Result Out 2407a. In either case, bit fifteen through bit five
of Result Out 2407a are tied to zero. As well, any carry inputs to the full adder
are tied to zero.

Although not shown in Figure 25, one skilled in the art would understand
that Result Qut 2407a could be multiplexed or buffered onto Result bus 2409.
The multiplexor would be controlled by Enable 2404a. This would allow other
Execution unit circuits to write data onto Result bus 2409.

ADVANTAGES OF INCLUDING THE DESCRIBED POPULATION COUNT OPERATION
IN THE INSTRUCTION SET

The described population count instruction calculates the number of bits set
in each of the data elements of packed data, such as Sourcel. Thus, by including
this instruction in the instruction set, a population count operation may be
performed on packed data in a single instruction. In contrast, prior art general
purpose processors must perform numerous instructions to unpack Sourcel,
perform the function individually on each unpacked data element, and then pack
the results for further packed processing.

Thus, by providing this population count instruction in the instruction set
supported by processor 109, the performance of algorithms requiring this

functionality is increased.

WO 97/08608 PCT/US96/11893

LOGICAL OPERATIONS

LOGICAL OPERATION.
In one embodiment of the invention, the SRC1 register contains packed data

(Sourcel), the SRC2 register contains packed data (Source2), and the DEST
register will contain the result (Result) of performing the selected logical
operation on Sourcel and Source2. For example, if the logical AND operation is
selected, Sourcel will be logically ANDed with Source 2.

In one embodiment of the invention, the following logical operations are
supported: logical AND, logical ANDN, logical OR, and logical XOR. The
logical AND, OR, and XOR operations are well known in the art. The logical
ANDN operation causes Source2 to be ANDed with the logical inversion of
Source 1. While the invention is described in relation to these logical operations,
alternative embodiments could implement other logical operations.

Figure 26 is a flow diagram illustrating a method for performing a number
of logical operations on packed data according to one embodiment of the
invention.

At step 2601, decoder 202 decodes control signal 207 received by processor
109. Thus, decoder 202 decodes: the operation code for the appropriate logical
operation (i.e., AND, ANDN, OR, or XOR); SRC1 602, SRC2 603 and DEST
605 addresses in registers 209. ' '

At step 2602, via internal bus 170, decoder 202 accesses registers 209 in
register file 150 given the SRC1 602 and SRC2 603 addresses. Registers 209
provide execution unit 130 with the packed data stored in the SRC1 602 register
(Sourcel) and the packed data stored in SRC2 603 register (Source2). That is,
registers 209 communicate the packed data to execution unit 130 via internal bus
170.

At step 2603, decoder 202 enables execution unit 130 to perform the
selected one of the packed logical operations.

At step 2610, the selected one of the packed logical operations determines
which step is to be executed next. Execution unit 130 performs step 2612 if the
logical AND operation was selected; Execution unit 130 performs step 2613 if
the logical ANDN operation was selected; Execution unit 130 performs step

WO 97/08608 ' PCT/US96/11893

-73-

2614 if the logical OR operation was selected; and Execution unit 130 performs
step 2615 if the logical XOR operation was selected.

Assuming the logical AND operation was selected, step 2612 is executed. In
step 2612, Sourcel bits sixty-three through zero are ANDed with Source2 bits
sixty-three through zero to generate Result bits sixty-three through zero.

Assuming the logical ANDN operation was selected, step 2613 is executed.
In step 2613, Sourcel bits sixty-three through zero are ANDNed with Source2
bits sixty-three through zero to generate Result bits sixty-three through zero.

Assuming the logical OR operation was selected, step 2614 is executed. In
step 2614, Sourcel bits sixty-three through zero are ORed with Source?2 bits
sixty-three through zero to generate Result bits sixty-three through zero.

Assuming the logical XOR operation was selected, step 2615 is executed. In
step 2615, Sourcel bits sixty-three through zero are exclusive ORed with
Source?2 bits sixty-three through zero to generate Result bits sixty-three through
Zero.

At step 2620, the Result is stored in the DEST register.

Table 36 illustrates the in-register representation of a logical ANDN
operation on packed data. The first row of bits is the packed data representation
of Sourcel. The second row of bits is the packed data representation of Source2.
The third row of bits is the packed data representation of the Result. The number
below each data element bit is the data element number. For example, Sourcel
data element two is 11111111 00000000,.

11111111 11111111 11111111 00000000 11111111 00000000 | 00001110 00001000

3 2 1
Logical ANDN Logical ANDN Logical ANDN Logical ANDN

00000000 00000000 00000000 00000001 10000000 00000000 | 00001110 10000001

00000000 00000000 00000000 00000001 00000000 00000000 00000000 10000001

3 2 1 0

Table 36

While the invention is described in relation to the same logical operation

being performed on corresponding data elements in Sourcel and Source2,
alternative embodiments could support instructions which allowed for the logical

WO 97/08608 PCT/US96/11893

-74-

operation performed on corresponding data elements to be selected on a per

element basis.

PACKED DATA LOGICAL CIRCUITS

In one embodiment, the described logical operations can occur on multiple
data elements in the same number of clock cycles as a single logical operation on
unpacked data. To achieve execution in the same number of clock cycles,
parallelism is used.

Figure 27 illustrates a circuit for performing logical operations on packed
data according to one embodiment of the invention. Operation control 2700
controls the circuits performing the logical operations. Operation control 2700
processes the control signal and outputs selection signals on control lines 2780.
These selection signals communicate to Logical Operations Circuit 2701 the
selected one of the AND, ANDN, OR, and XOR operatiorfs.

Logical Operations Circuit 2701 receives Sourcel [63:0] and Source2 [63:0]
and performs the logical operation indicated by the selection signals to generate
the Result. Logical Operations Circuit 2701 communicates Result [63:0] to
Result Register 2731.

ADVANTAGES OF INCLUDING THE DESCRIBED LOGICAL OPERATIONS
IN THE INSTRUCTION SET

The described logical instructions perform a logical AND, a logical AND
NOT, a logical OR, and a logical OR NOT. These instructions are useful in any
application that requires logical manipulation of data. By including these
instructions in the instruction set supported by processor 109, these logical
operations may be performed on packed data in one instruction.

WO 97/08608 PCT/US96/11893

-75-

PACKED COMPARE

PACKED COMPARE OPERATION
In one embodiment of the invention, the SRC1 602 register contains data

(Sourcel) to be compared, the SRC2 603 register contains the data (Source2) to
be compared against, and DEST 605 register will contain the result of the
compare (Result). That is, Sourcel will have each data element independently
compared by the each data element of Source2, according to an indicated
relationship.

In one embodiment of the invention, the following compare relationships are
supported: equal; signed greater than; signed greater than or equal; unsigned
greater than; or unsigned greater than or equal. The relationship is tested in each
pair of corresponding data elements. For example, Source1[7:0] is greater than
Source2[7:0], with the result being Result[7:0]. If the result of the comparison
satisfies the relationship, then, in one embodiment, the corresponding data
element in Result is set to all ones. If the result of the comparison does not
satisfy the relationship, then the corresponding data element in Result is set to all
zeroes.

Figure 28 is a flow diagram illustrating a method for performing packed
compare operations on packed data according to one embodiment of the
invention. '

At step 2801, decoder 202 decodes control signal 207 received by processor
109. Thus, decoder 202 decodes: the operation code for the appropriate compare
operation; SRC1 602, SRC2 603 and DEST 605 addresses in registers 209;
saturate/unsaturate (not necessarily needed for compare operations),
signed/unsigned, and length of the data elements in the packed data. As
mentioned previously, SRC1 602 (or SRC2 603) can be used as DEST 605.

At step 2802, via internal bus 170, decoder 202 accesses registers 209 in
register file 150 given the SRC1 602 and SRC2 603 addresses. Registers 209
provides execution unit 130 with the packed data stored in the SRC1 602 register
(Sourcel), and the packed data stored in SRC2 603 register (Source2). That is,
registers 209 communicate the packed data to execution unit 130 via internal bus
170.

WO 97/08608 PCT/US96/11893

-76-

At step 2803, decoder 202 enables execution unit 130 to perform the
appropriate packed compare operation. Decoder 202 further communicates, via
internal bus 170, the size of data elements and the relationship for the compare
operation.

At step 2810, the size of the data element determines which step is to be
executed next. If the size of the data elements is eight bits (packed byte 401
data), then execution unit 130 performs step 2812. However, if the size of the
data elements in the packed data is sixteen bits (packed word 402 data), then
execution unit 130 performs step 2814. In one embodiment, only eight bit and
sixteen bit data element size packed compares are supported. However, in
another embodiment, a thirty-two bit data element size packed compare is also
supported (packed doubleword 403).

Assuming the size of the data elements is eight bits, then step 2812 is
executed. In step 2812, the following is performed. Sourcel bits seven through
zero are compared to Source2 bits seven through zero generating Result bits
seven through zero. Sourcel bits fifteen through eight are compared to Source2
bits fifteen through eight generating Result bits fifteen through eight. Sourcel
bits twenty-three through sixteen are compared to Source2 bits twenty-three
through sixteen generating Result bits twenty-three through sixteen. Sourcel bits
thirty-one through twenty-four are compared to Source? bits thirty-one through
twenty-four generating Result bits thirty-one through twenty-four. Sourcel bits
thirty-nine through thirty-two are compared to Source? bits thirty-nine through
thirty-two generating Result bits thirty-nine through thirty-two. Sourcel bits
forty-seven through forty are compared to Source? bits forty-seven through forty
generating Result forty-seven through forty. Sourcel bits fifty-five through forty-
eight are compared to Source2 bits fifty-five through forty-eight generating
Result bits fifty-five through forty-eight. Sourcel bits sixty-three through fifty-
six are compared to Source2 bits generating Result bits sixty-three through fifty-
six.

Assuming the size of the data elements is sixteen bits, then step 2814 is
executed. In step 2814, the following is performed. Sourcel bits fifteen through
zero are compared to Source?2 bits fifteen through zero generating Result bits
fifteen through zero. Sourcel bits thirty-one through sixteen are compared to
Source?2 bits thirty-one through sixteen generating Result bits thirty-one through

WO 97/08608 PCT/US96/11893

-77-

sixteen. Sourcel bits forty-seven through thirty-two are compared to Source2
bits forty-seven through thirty-two generating Result bits forty-seven through
thirty-two. Sourcel bits sixty-three through forty-eight are compared to Source2
bits sixty-three through forty-eight generating Result bits sixty-three through
forty-eight.

In one embodiment, the compares of step 2812 are performed
simultaneously. However, in another embodiment, these compares are performed
serially. In another embodiment, some of these compares are performed
simultaneously and some are performed serially. This discussion also applies to
the compares of step 2814 as well.

At step 2820, the Result is stored in the DEST 605 register.

Table 37 illustrates the in-register representation of packed compare
unsigned greater than operation. The first row of bits is the packed data
representation of Sourcel. The second row of bits is the data representation of
Source2. The third row of bits is the packed data representation of the Result.
The number below each data element bit is the data element number. For
example, Sourcel data element three is 10000000,.

00101010 1 01010101 | 01010101 § 11111111 | 10000000 | 01110000 | 10001111 | 10001000
7 6 S 4 3 2 1 0

> > > > > > > >
00000000 | 00000000 { 10000000 | 00000000 | 11110011 | 00000000 | 10001110 | 10001000

J 2 | J))))

11111111 J 11111111 | 00000000 { 11111111 } 00000000 | 11111111 § 11111111 | 00000000
7 6 5 4 3 2 1 0

Table 37

Table 38 illustrates the in-register representation of packed compare signed

greater than or equal to operation on packed byte data.

WO 97/08608 PCT/US96/11893

-78-

00101010 | 01010101 | 01010101 f 11111111 | 10000000 | 01110000 | 10001111 | 10001000

7 6 5 4 3 1 0
>= >= So= >= >= >= >= >=

00000000 § 60000000 | 10000000 | 00000000 | 11110011 | 00000000 { 10001110 | 10001000

3 | J 3 | |}))

11111111] 11111111 11111111 | 00000000 | 00000000 § 11111111 | 00000000 { 11111111

7 6 5 4 3 2 1 0

Table 38

PACKED DATA COMPARE CIRCUITS
In one embodiment, the compare operation can occur on multiple data

elements in the same number of clock cycles as a single compare operation on
unpacked data. To achieve execution in the same number of clock cycles,
parallelism is used. That is, registers are simultaneously instructed to perform the
compare operation on the data elements. This is discussed in more detail below.

Figure 29 illustrates a circuit for performing packed compare operations on
individual bytes of packed data according to one embodiment of the invention.
Figure 29 illustrates the use of a modified byte slice compare circuit, byte slice
stagej 2999. Each byte slice, except for the most significant data element byte
slice, includes a compare unit and bit control. The most significant data element
byte slice need only have a compare unit.

Compare unitj 2911 and compare unitj+1 2971 each allow eight bits from
Sourcel to be compared to the corresponding eight bits from Source2. In one
embodiment, each compare unit operates like a known eight bit compare circuit.
Such a known eight bit compare circuit includes a byte slice circuit allowing the
subtraction of Source2 from Sourcel. The results of the subtraction are processed
to determine the results of the compare operation. In one embodiment, the results
of the subtraction include an overflow information. This overflow information is
tested to determine whether the result of the compare operation is true.

Each compare unit has a Sourcel input, a Source2 input, a control input, a
next stage signal, a last stage signal, and a result output. Therefore, compare unit;
2911 has Sourcelj 2931 input, Source2; 2933 input, control; 2901 input, next

WO 97/08608 PCT/US96/11893

-70-

stagej 2913 signal, last stagej 2912 input, and a result stored in result registerj
2951. Therefore, compare unitj+1 2971 has Sourceli+] 2932 input, Source2j+1
2934 input, controlj+1 2902 input, next stagei+1 2973 signal, last stagej+] 2972
input, and a result stored in result registerj+] 2952.

The Sourcelp input is typically an eight bit portion of Sourcel. The eight
bits represents the smallest type of data element, one packed byte 401 data
element. Source2 input is the corresponding eight bit portion of Source?2.
Operation control 2900 transmits control signals to enable each compare unit to
perform the required compare. The control signals are determined from the
relationship for the compare (e.g. signed greater than) and the size of the data
element (e.g. byte or word). The next stage signal is received from the bit control
for that compare unit. Compare units are effectively combined by the bit control
units when a larger than byte size data element is used. For example, when the
word packed data is compared, the bit control unit between the first compare unit
and the second compare unit will cause the two compare units to act as one
sixteen bit compare unit. Similarly, the compare unit between the third and
fourth compare units will cause these two compare units to act as one compare
unit. This continues for the four packed word data elements.

Depending on the desired relationship and the values of Sourcel and
Source2, the compare unit performs the compare by allowing result of the higher
order compare unit to be propagated down to the lower order compare unit or
vice versa. That is, each compare unit will provide the results of the compare
using the information communicated by the bit controlj 2920. If double word
packed data is used, then four compare units act together to form one thirty-two
bit long compare unit for each data element. The result output of each compare
unit represents the result of the compare operation on the portion of Sourcel and
Source2 the compare unit is operating upon.

Bit controlj 2920 is enabled from operation control 2900 via packed data
enablej 2906. Bit controlj 2920 controls next stagej 2913 and last stagej+] 2972.
Assume, for example, compare unitj 2911 is responsible for the eight least
significant bits of Sourcel and Source2, and compare unitj+1 2971 is responsible
for the next eight bits of Sourcel and Source2. If a compare on packed byte data
is performed, bit controlj 2920 will not allow the result information from
compare unitj4+] 2971 to be communicated with the compare unitj 2911, and vice

WO 97/08608 PCT/US96/11893

-80-

versa. However, if a compare on packed words is performed, then bit control
2920 will allow the result (in one embodiment, an overflow) information from
compare unitj 2911 to be communicated to compare unitj+] and result (in one
embodiment, an overflow) information from compare unitj+] 2971 to be
communicated to compare unitj 2911.

For example, in Table 39, a packed byte signed greater than compare is
performed. Assume that compare unitj+1 2971 operates on data element one, and
compare unitj 2911 operates on data element zero. Compare unitj+1 2971
compares the most significant eight bits of a word and communicates the result
information via last stagej+1 2972. Compare unitj 2911 compares the least
significant eight bits of the word and communicates the result information via
next stagej 2913. However operation control 2900 will cause bit controlj 2920 to
stop the propagation of that result information, received from the last stagej+1
2972 and next stagej 2913, between the compare units.

00001110 § 00001000

7 6 5 4 3 2 1 0
> > > > > > > >

00001110 | 10001000

A B 4

...] 00000000 | 11111111
7 6 5 4 3 2 1 0

Table 39

However, if a packed word signed greater than compare is performed, then
the result of compare unitj+] 2971 will be communicated to the compare unitj

2911, and vice versa. Table 40 illustrates this result. This type of communication
would be allowed for packed doubleword compares as well.

WO 97/08608 PCT/US96/11893

-81-

00001110 00001000

3 2 1 0
> > > >

00001110 10000001

.. ... 1 00000000 00000000
3 2 1 0

Table 40

Each compare unit is optionally coupled to a result register. The result

register temporarily stores the result of the compare operation until the complete
result, Result[63:0] 2960, can be transmitted to the DEST 605 register.

For a complete sixty-four bit packed compare circuit, eight compare units
and seven bit control units are used. Such a circuit can also be used to perform a
compare on sixty-four bit unpacked data, thereby using the same circuit to
perform the unpacked compare operation and the packed compare operation.

ADVANTAGES OF INCLUDING THE DESCRIBED PACKED COMPARE OPERATION
IN THE INSTR ION SET

The described packed compare instruction stores the result of comparing
Sourcel and Source2 as a packed mask. As previously described, conditional
branches on data are unpredictable, and thus cost processor performance because
they break the branch prediction algorithms. However, by generating a packed
masked, this comparison instruction reduces the number of required conditional
branches based on data. For example, the function (if Y > A then X = X + B;
else X = X) may be performed on packed data as shown below in Table 41 (the
values shown in Table 41 are shown in hexadecimal notation).

WO 97/08608

-82-
Compare.Greater_Than Sourcel,Source2
00000001 00000000
> >
00000000 00000001
FFFFFFFF 00000000
Packed AND Source3,Mask
00000005 0000000A
> >
FFFFFFFF 00000000
00000005 00000000

Packed Add Source4, Result

00000010 00000020
> >
00000005 00000000
00000015 00000020
Table 41

PCT/US96/11893

Sourcel=Y()-1

Source2=A()-1

Mask

Source3=B(-1

Mask

Result

Source4=X(-1

Result

New X()-1 value

As can be seen from the above example, conditional branches are no longer
required. Since a branch instruction is not required, processors that speculatively

predict branches do not have a performance decrease when using this compare

instruction to perform this and other similar operations. Thus, by providing this

compare instruction in the instruction set supported by processor 109, processor

109 can perform algorithms requiring this functionality at a higher performance

level.

EXAMPLE MULTIMEDIA ALGORITHMS
To illustrate the versatility of the disclosed instruction set, several example
multimedia algorithms are described below. In some cases, similar packed data

WO 97/08608

-83-

PCT/US96/11893

instructions could be used to perform certain steps in these algorithms. A

number of steps requiring the use of general purpose processor instructions to

manage data movement, looping, and conditional branching have been omitted in

the following examples.

Multiplication of Complex Numbers
The disclosed multiply-add instruction can be used to multiply two complex

1)

numbers in a single instruction as shown in Table 42a. The multiplication of two
complex number (e.g., 1] i] and r2 i2) is performed according to the following

equation:

Real Component=r] *12-i1 * 12

Imaginary Component =11 *i2 +12 * 1]

If this instruction is implemented to be completed every clock cycle, the

invention can multiply two complex numbers every clock cycle.

Multiply-Add Sourcel, Source2

r] 12 I i Sourcel
v} -2 i) Source2
Real Component: Imaginary Component: Result
r1r2-ijip r]ig+12i] 1
Table 42a

As another example, Table 42b shows the instructions used to multiply

together three complex numbers.

Multiply-Add Sourcel, Source2

r1 i1 r] i1 Sourcel

y) -2 i V) Source?2

Real Component]: Imaginary Componentj: Resultl
rr2-i1i2 r]i2+12i]

WO 97/08608

PCT/US96/11893
-84-
Packed Shift Right Sourcel, Source2
Real Component] Imaginary Component] Resultl
16
Real Imaginary | Result2
Component] Component
Pack Result2, Result2
Real Imaginary | Result2
Component] Component]
Real Imaginary | Result2
Component] Component]
Real Imaginary Real Imaginary | Result3
Component] | Component] | Component; | Component]
Multiply-Add Result3, Source3
Real Imaginary Real Imaginary | Result3
Component]: | Component]: | Component]: Component]:
r112-11i2 r1ig+r2i] rir-i1i2 r1ig+mii
13 -3 i3 r3 Source3
Real Component2 Imaginary Component? Result4
Table 42b
2) Multiply Accumulation Operations

The disclosed instructions can also be used to multiply and accumulate
values. For example, two sets of four data elements (A]-4 and B1-4) may be

multiplied and accumulated as shown below in Table 43. In one embodiment,

WO 97/08608 PCT/US96/11893

-85-

each of the instructions shown in Table 43 is implemented to complete each

clock cycle.

Multiply-Add Sourcel, Source2

0 0 A1 A2 Sourcel
0 0 Bi Bo Source2
0 A1B1+A2B) Resultl

Multiply-Add Source3, Source4

0 0 A3 Aq Source3
0 0 B3 B4 Source4
0 A3A4+B3B4 Result2

Unpacked Add Resultl, Result2

0 A1B1+A2B2 Resultl

0 A3A4+B3B4 Result2

0 A1B1+A2B2+A3A4+B3B4 | Result3
Table 43

If the number of data elements in each set exceeds 8 and is a multiple of 4,
the multiplication and accumulation of these sets requires fewer instructions if

performed as shown in Table 44 below.

WO 97/08608

PCT/US96/11893
-86-
Multiply-Add Sourcel, Source2
A1l A2 A3 A4 Sourcel
Bi By B3 B4 Source2
A1B1+A2B2 A3B3+A4B4 Resultl
Multiply-Add Source3, Source4
As A6 A7 Ag Source3
Bs Bg B7 Bg Source4
A5B5+A6B6 A7B7+AgBg Result2
Packed Add Resultl, Result2
A1B1+A2B2 A3B3+A4B4 Resultl
A5B5+A6B6 A7B7+A8Bg Result2
A1B1+A2B2+A5B5+A6B6 | A3B3+A4B4+A7B7+AgBg | Result3
Unpack High Result3, Source5
A1B1+A2B2+A5B5+A6B6 | A3B3+A4B4+A7B7+A8Bg | Result3
0 0 Source5
0 A1B1+A2B2+A5B5+A6B6 | Result4

WO 97/08608

-87-

Unpack Low Result3, Source5

A1B1+A2B2+As5B5+A¢Bg A3B3+A4B4+A7B7+A8B§

0 A3B3+A4B4+A7B7+AgBg

Packed Add Result4, Result5

0 A1B1+A2B2+A5B5+A6Bg
0 A3B3+A4B4+A7B7+AgB§
0 T TOTAL

Table 44

PCT/US96/11893

Result3

Source5

Result5

Result4

Result5

Result6

As another ¢xample, Table 45 shows the separate multiplication and

accumulation of sets A and B and sets C and D, where each of these sets includes

2 data elements.

Multiply-Add Sourcel, Source2

Al A2 C1 C2
B1 B2 Di D2
A1B1+A2B2 C1D1+C2D2

Table 45

Sourcel

Source2

Resultl

As another example, Table 46 shows the separate multiplication and

accumulation of sets A and B and sets C and D, where each of these sets includes

4 data elements.

WO 97/08608

-88-

Multiply-Add Sourcel, Source2

A1

A2

C1

2

B1

B2

Di

D)

A1B1+A2B2

C1D1+C2D2

Multiply-Add Source3, Source4

A3

A4

C3

C4

B3

Bg

D3

D4

A3B3+A4B4

C3D3+C4D4

Packed Add Resultl, Result2

A1B1+A2B2

Ci1D1+C2D2

A3B3+A4B4

C3D3+C4D4

A1B1+A2B2+A3B3+A4B4

C1D1+C2D2+C3D3+C4D4

Table 46

3) Dot Product Algorithms
Dot product (also termed as inner product) is used in signal processing and

PCT/US96/11893

Sourcel

Source2

Resultl

Source3

Source4

Result2

Resultl

Result2

Result6

matrix operations. For example, dot product is used when computing the product
of matrices, digital filtering operations (such as FIR and IIR filtering), and
computing correlation sequences. Since many speech compression algorithms
(e.g., GSM, G.728, CELP, and VSELP) and Hi-Fi compression algorithms (e.g.,
MPEG and subband coding) make extensive use of digital filtering and

WO 97/08608 PCT/US96/11893

-80-

correlation computations, increasing the performance of dot product increases
the performance of these algorithms.
The dot product of two length N sequences A and B is defined as:

N-1
Result =Z Ai + Bi
i=0

Performing a dot product calculation makes extensive use of the multiply
accumulate operation where corresponding elements of each of the sequences are
multiplied together, and the results are accumulated to form the dot product
result.

By including the move, packed add, multiply-add, and pack shift operations,
the invention allows the dot product calculation to be performed using packed
data. For example if the packed data type containing four sixteen-bit elements is
used, the dot product calculation may be performed on two sequences each
containing four values by:

1) accessing the four sixteen-bit values from the A sequence to generate
Sourcel using a move instruction;

2) accessing four sixteen-bit values from the B sequence to generate Source2
using a move instruction; and

3) multiplying and accumulating as previously described using a multiply-
add, packed add, and shift instructions.

For vectors with more than just a few elements the method shown in Table
46 is used and the final results are added together at the end. Other supporting
instructions include the packed OR and XOR instructions for initializing the
accumulator register, the packed shift instruction for shifting off unwanted
values at the final stage of computation. Loop control operations are
accomplished using instructions already existing in the instruction set of
processor 109.

4) 2-Dimensional Loop Filter

2-dimensional loop filters are used in certain multimedia algorithms. For
example, the filter coefficients shown below in Table 47 may be used in video

conferencing algorithms to perform a low pass filter on pixel data.

WO 97/08608 PCT/US96/11893

-90-

- -
121

242
121

?able éﬁ

To calculate the new value of a pixel at location (x, y), the following
equation is used:

Resulting Pixel = (x-1,y-1) + 2(x,y-1) + (x+1,y-1) + 2(x-1,y) + 4(x,y) + 2(x+1,y)
+
(x-1,y+1) + 2(x,y+1) + (x+1,y+1)

By including the pack, unpack, move, packed shift, and a packed add, the
invention allows a 2-dimensional loop filter to be performed using packed data.
According to one implementation of the previously described loop filter, this
loop filter is applied as two simple 1-dimensional filters -- i.e., the above 2-
dimensional filter can be applied as two 121 filters. The first filter is in the
horizontal direction, while the second filter is in the vertical direction.

Table 48 shows a representation of an 8x8 block of pixel data.

lo (11|12]!3|la|ls] I |l7
Table 48

The following steps are performed to implement the horizontal pass of the
filter on this 8x8 block of pixel data:

WO 97/08608 PCT/US96/11893

91-

1) accessing eight 8-bit pixel values as packed data using a move
instruction;

2) unpacking the eight 8-bit pixels into a 16-bit packed data containing
four 8-bit pixels (Sourcel) to maintain accuracy during
accumulations;

3) duplicating Sourcel two times to generate Source2 and Source3;

4) performing an unpacked shift right by 16 bits on Sourcel;

5) performing an unpacked shift left by 16 bits on Source 3;

6) generating (Sourcel + 2*Source2 + Source3) by performing the
following packed adds:

a) Sourcel = Sourcel + Source2,
b) Sourcel = Sourcel + Source2,
¢) Sourcel = Sourcel + Source3;

7) storing the resulting packed word data as part of an 8x8 intermediate
result array; and

8) repeating these steps until the entire 8x8 intermediate result array is
generated as shown in Table 49 below (e.g., IAQ represents the
intermediate result for AQ from Table 49).

€167

IAQ

IAq

1Ay

1A3

IA4

IA5

IAg

IB()

1B

1By

IB3

IB4

IB5

IB6

IB7

ICy

IC4

ICy

IC3

ICy

ICs

ICq

IC

Ip

18]

1)

Ii3

Iy

I

Ilg

II7

Table 49
The following steps are performed to implement the vertical pass of the
filter on the 8x8 intermediate result array:

WO 97/08608 PCT/US96/11893

-92-

1) accessing a 4x4 block of data from the intermediate result array as
packed data using a move instruction to generate Sourcel, Source2,
and Source3 (e.g., see Table 50 for an example);

162
IAO IA1 IA2 IA3 Sourcel

IBO IBI IB2 IB3 Source2

ICq [ICq [ICy | IC5 [Source3
Table 50

2) generating (Sourcel + 2*Source2 + Source 3) by performing the

following packed adds:
a) Sourcel = Sourcel + Source2,
b) Sourcel = Sourcel + Source2,
¢) Sourcel = Sourcel + Source3;

3) performing a packed shift right by 4 bits on the resulting Sourcel to
generate the sum of the weights -- this is effectively dividing by 16;

4) packing the resulting Source 1 with saturation to convert the 16-bit
values back into 8-bit pixel values;

6) storing the resulting packed byte data as part of an 8x8 result array (in
regards to the example shown in Table 50, these four bytes represent
the new pixel values for Bg, B1, B2, and B3); and

7) repeating these steps until the entire 8x8 result array is generated.

It is worth while to note, that the top and bottom rows of the 8x8 result array
are determined using a different algorithm that is not described here so not to
obscure the invention.

Thus, by providing on processor 109 the pack, unpack, move, packed shift,
and packed add instructions, the invention provides for a significant performance
increase over prior art general processors which must perform the operations
required by such filters 1 data element at a time.

5) Motion Estimation

Motion estimation is used in several multimedia applications (e.g., video
conferencing and MPEG (high quality video playback)). In regard to video
conferencing, motion estimation is used to reduce the amount of data which must

WO 97/08608 PCT/US96/11893

-03-

be transmitted between terminals. Motion estimation works by dividing the
video frames into fixed size video blocks. For each block in Framel, it is
determined whether there is a block containing a similar image in Frame2. If
such a block is contained in Frame2, that block can be described with a motion
vector reference into Framel. Thus, rather than transmitting all of the data
representing that block, only a motion vector need be transmitted to the receiving
terminal. For example, if a block in Framel is similar to and at the same screen
coordinates as a block in Frame2, only a motion vector of 0 need to sent for that
block. However, if a block in Framel is similar to, but at different screen
coordinates than, a block in Frame?2, only a motion vector indicating the new
location of that block need be sent. According to one implementation, to
determine if a block A in Framel is similar to a block B in Frame2, the sum of
the absolute differences between the pixel values is determined. The lower the
summation, the more similar block A is to block B (i.e., if the summation is 0,
block A is identical to block B).

By including the move, unpack, packed add, packed subtract with saturate,
and logical operations, the invention allows motion estimation to be performed
using packed data. For example, if two 16x16 blocks of video are represented by
two arrays of 8-bit pixel values stored as packed data, the absolute difference of
the pixel values in these blocks may be calculated by:

1) accessing eight 8-bit values from block A to generate Sourcel using a
move instruction;

2) accessing eight 8-bit values from block B to generate Source2 using a
move instruction;

3) performing a packed subtract with saturate to subtract Sourcel from
Source2 generating Source 3 -- By subtracting with saturate, Source 3
will contain only the positive results of this subtraction (i.e., the negative
results will be zeroed);

4) performing a packed subtract with saturate to subtract Source2 from
Sourcel generating Source 4 -- By subtracting with saturate, Source 4
will contain only the positive results of this subtraction (i.e., the negative

results will be zeroed),

WO 97/08608 PCT/US96/11893

-94-

5) performing a packed OR operation on Source3 and Source4 to produce
Source5 -- By performing this OR operation, Source5 contains the
absolute value of Sourcel and Source?2;

6) repeating these steps until the 16x16 blocks have been processed.

The resulting 8-bit absolute values are unpacked into 16-bit data elements to
allow for 16-bit precision, and then summed using packed adds.

Thus, by providing on processor 109 move, unpack, packed add, packed
subtract with saturate, and logical operations, the invention provides for a
significant performance increase over prior art general purpose processors which
must perform the additions and the absolute differences of the motion estimation
calculation one data element at a time.

6) Discrete Cosign Transform
Discrete Cosine Transform (DCT) is a well known function used in many

signal processing algorithms. Video and image compression algorithms, in
particular, make extensive use of this transform.

In image and video compression algorithms, DCT is used to transform a
block of pixels from the spatial representation to the frequency representation. In
the frequency representation, the picture information is divided into frequency
components, some of which are more important than others. The compression
algorithm selectively quantizes or discards the frequency components that do not
adversely affect the reconstructed picture contents. In this manner, compression
is achieved.

There are many implementations of the DCT, the most popular being some
kind of fast transform method modeled based on the Fast Fourier Transform
(FFT) computation flow. In the fast transform, an order N transform is broken
down to a combination of order N/2 transforms and the result recombined. This
decomposition can be carried out until the smallest order 2 transform is reached.
This elementary 2 transform kernel is often referred to as the butterfly operation.
The butterfly operation is expressed as follows:

X =a*x + b*y

Y =c*x - d*y
where a, b, ¢ and d are termed the coefficients, x and y are the input data, and X
and Y are the transform output.

WO 97/08608 PCT/US96/11893

95

By including the move, multiply-add, and packed shift operations, the
invention allows the DCT calculation to be performed using packed data in the
following manner:

1) accessing the two 16-bit values representing x and y to generate Sourcel
(see Table 51 below) using the move and unpack instructions;

2) generating Source2 as shown in Table 51 below -- Note that Source2 may
be reused over a number of butterfly operations; and

3) performing a multiply-add instruction using Sourcel and Source2 to
generate the Result (see Table 51 below).

X y X y Source1

a b c -d Source?2

asx+b-y |cex-d -y |Source3
Table 51

In some situations, the coefficients of the butterfly operation are 1. For these

cases, the butterfly operation degenerates into just adds and subtracts that may be
performed using the packed add and packed subtract instructions.

An IEEE document specifies the accuracy with which inverse DCT should
be performed for video conferencing. (See, IEEE Circuits and Systems Society,
"IEEE Standard Specifications for the Implementations of 8x8 Inverse Discrete
Cosine Transform," IEEE Std. 1180-1990, IEEE Inc. 345 East 47th St., NY, NY
10017, USA, March 18, 1991). The required accuracy is met by the disclosed
multiply-add instruction because it uses 16-bit inputs to generate 32-bit outputs.

Thus, by providing on processor 109 the move, multiply-add, and packed
shift operations, the invention provides for a significant performance increase
over prior art general purpose processors which must perform the additions and
the multiplications of the DCT calculation one data element at a time.

WO 97/08608 PCT/US96/11893

-96-

ALTERNATIVE EMBODIMENTS

While the invention has been described in which each of the different
operations have separate circuitry, alternative embodiments could be
implemented such that certain circuitry is shared by different operations. For
example, in one embodiment the following circuitry is used: 1) a single
arithmetic logic unit (ALU) to perform the packed add, packed subtract, packed
compare, and packed logical operations; 2) a circuitry unit to perform the pack,
unpack, and packed shift operations; 3) a circuitry unit to perform the packed
multiply and multiply-add operations; and 4) a circuitry unit to perform the
population count operation.

The terms corresponding and respective are used herein to refer to the
predetermined relationship between the data elements stored in two or more
packed data. In one embodiment, this relationship is based on the bit positions of
the data elements in the packed data. For example, data element O (e.g., stored in
bit positions 0-7 in packed byte format) of a first packed data corresponds to data
elements O (e.g., stored in bit positions 0-7 in packed byte format) of a second
packed data. However, this relationship may differ in alternative embodiments.
For example, corresponding data elements in the first and second packed data
may be of different sizes. As another example, rather than the least significant
data element of a first packed data corresponding to the least significant data
element of a second packed data (and so on), the data clements in the first and
second packed data may correspond to each other in some other order. As
another example, rather than having a 1 to 1 correspondence of data elements in
the first and second packed data, the data elements may correspond at a different
ratio (e.g., the first packed data may have one or more data elements which
correspond to two or more different data elements in a second packed data).

While the invention has been described in terms of several embodiments,
those skilled in the art will recognize that the invention is not limited to the
embodiments described. The method and apparatus of the invention can be
practiced with modification and alteration within the spirit and scope of the
appended claims. The description is thus to be regarded as illustrative instead of

limiting on the invention.

WO 97/08608 PCT/US96/11893

-97-

THE CLAIMS
What is claimed is:

1. A computer system comprising:
a processor including a first register; and
a storage area coupled to said processor having stored therein,

a pack instruction operating on a first packed data and a second
packed data, said first packed data containing at least a first data element and a
second data element, said second packed data containing at least a third data
element and a fourth data element, each of said first data element, said second
data element said third data element, and said fourth data element containing a
set of bits, said processor packing a portion of each of said first data element,
said second data element, said third data element, and said fourth data element to
form a third packed data in response to receiving said pack instruction ;

- an unpack instruction operating on a fourth packed data and a
fifth packed data, said fourth packed data containing at least a fifth data element
and a sixth data element, said fifth packed data containing at least a seventh data
element corresponding to said fifth data element and a eighth data element
corresponding to said sixth data element, each of said fifth data element, said
sixth data element, said seventh data element and said eighth data element
including a set of bits, said processor generating a sixth packed data containing at
least said fifth data element from said fourth packed data and said seventh data
element from said fifth packed data in response to receiving said unpack
instruction;

a packed add instruction, said processor separately adding
together in parallel corresponding data elements of said fourth packed data and
said fifth packed data in response to receiving said packed add instruction;

a packed subtract instruction, said processor separately
subtracting in parallel corresponding data elements of said fourth packed data
and said fifth packed data in response to receiving said packed subtract
instruction;

a packed shift instruction, said processor separately shifting in
parallel at least said first data element by an indicated count and said second data

WO 97/08608 PCT/US96/11893

-08-

element by an indicated count in response to receiving said packed shift
instruction; and

a packed compare instruction, said processor separately
comparing in parallel corresponding data elements from said fourth packed data
and said fifth packed data according to an indicated relationship and storing as a
result a packed mask in said first register in response to receiving said packed
compare instruction, said packed mask containing at least a first mask element
and a second mask element each including said predetermined number of bits,
each bit in said first mask element indicating said result of comparing said fifth
data element in said fourth packed data to said seventh data element in said fifth
packed data, each bit in said second mask element indicating said result of
comparing said sixth data element in said fourth packed data to said eighth data
element in said fifth packed data.

2. The computer system of claim 1, said storage area further having stored
therein a packed multiply instruction, said processor separately multiplying

together in parallel corresponding data elements of said fourth packed data and
said fifth packed data in response to receiving said packed multiply instruction.

3. The computer system of claim 1, said storage area further having stored
therein a packed multiply-add instruction, said processor multiplying together
said first data element and said third data element to generate a first intermediate
result, multiplying together said second data element and said fourth data
element to generate a second intermediate result, and adding together said first
intermediate result and said second intermediate result to generate a ninth data
element in a final result in response to receiving said packed multiply-add
instruction.

4. The computer system of claim 2, wherein said first data element, said
second data element, said third data element, and said fourth data element each
include a predetermined number of bits, and wherein said ninth data element
includes two times said predetermined number of bits.

WO 97/08608 PCT/US96/11893

-99.

5. The computer system of claim 1, said storage area further having stored
therein a population count instruction, said processor determining in parallel how
many bits in said first data element are set to a predetermined value and how
many bits in said second data element are set to said predetermined value in
response to receiving said population count instruction.

6. The computer system of claim 1, said storage area further having stored
therein,

a first packed logical instruction, said processor logically ANDing
together in parallel corresponding data elements from said fourth packed data
and said fifth packed data in response to receiving said first packed logical
instruction;

a second packed logical instruction, said processor logically
ANDing in parallel data elements from said fourth packed data with the logical
inversion of corresponding data elements from said fifth packed data in response
to receiving said second packed logical instruction;

a third packed logical instruction, said processor logically ORing
together in parallel corresponding data elements from said fourth packed data
and said fifth packed data in response to receiving said third packed logical
instruction; and

a fourth packed logical instruction, said processor logically
exclusive ORing together in parallel corresponding data elements from said
fourth packed data and said fifth packed data in response to receiving said fourth
packed logical instruction.

7. The computer system of Claim 1, wherein said shifting is arithmetic.

8. The computer system of Claim 1, wherein said shifting is logical.

9. The computer system of Claim 1, wherein said shifting is in a rightward
direction.

10. The computer system of Claim 1, wherein said shifting is in a leftward
direction.

WO 97/08608 PCT/US96/11893

-100-

11. The computer system of Claim 1, wherein said first data element, said
second data element, said third data element, and said fourth data element each
include a predetermined number of bits.

12. The computer system of Claim 11, wherein said portion includes half of
said predetermined number of bits.

13. The computer system of Claim 1, wherein said fifth data element, said
sixth data element, said seventh data element, and said eighth data element each
include said predetermined number of bits.

14. A method for manipulating a first packed data and a second packed data,
said first packed data containing at least a first data element and a second data
element, said second packed data containing at least a third data element
corresponding to said first data element and a fourth data element corresponding
to said second data element, each of said first data element, said second data
element, said third data element and said fourth data element each containing a
set of bits, said method comprising the computer implemented steps of:

receiving an instruction;

determining if said instruction is one of a pack instruction, an unpack
instruction, a packed add instruction, a packed subtract instruction, a packed shift
instruction, and a packed compare instruction;

if said instruction is said pack instruction, then packing a portion of each
of said first data element, said second data element, said third data element, and
said fourth data element to form a third packed data;

if said instruction is said unpack instruction, generating a fourth packed
data containing at least said first data element from said first packed data and
said third data element from said second packed data;

if said instruction is said packed add instruction, separately adding
together in parallel corresponding data elements of said first packed data and said
second packed data;

WO 97/08608 PCT/US96/11893

-101-

if said instruction is said packed subtract instruction, separately
subtracting in parallel corresponding data elements of said first packed data and
said second packed data;

if said instruction is said packed shift instruction, separately shifting in
parallel at least said first data element and said second data element by an
indicated count; and

if said instruction is said packed compare instruction, separately
comparing in parallel corresponding data elements from said first packed data
and said second packed data according to an indicated relationship and
generating as a result a packed mask, said packed mask containing at least a first
mask element and a second mask element each including said predetermined
number of bits, each bit in said first mask element indicating said result of
comparing said first data element in said first packed data to said third data
element in said second packed data, each bit in said second mask element
indicating said result of comparing said second data element in said first packed
data to said fourth data element in said second packed data.

15. The method of claim 14, wherein:

said step of determining further includes determining if said instruction is
a packed multiply instruction; and

said method further including the step of: ,

if said instruction is said packed multiply instruction, separately
multiplying together in parallel corresponding data elements of said first packed
data and said second packed data.

16. The method of claim 14, wherein:

said step of determining further includes determining if said instruction is
a packed 1nultiply-add instruction; and

said method further including the steps of:

if said instruction is said packed multiply-add instruction, performing the
steps of:

multiplying together said first data element and said third data

element to generate a first intermediate result,

WO 97/08608 : PCT/US96/11893

-102-

multiplying together said second data element and said fourth data
element to generate a second intermediate result, and

adding together said first intermediate result and said second
intermediate result to generate a fifth data element in a final result.

17. The method of claim 16, wherein said first data element, said second data
element, said third data element, and said fourth data element each contain a
predetermined number of bits, and wherein each of said fourth data element and
said fifth data element each contain two times said predetermined number of bits.

18. The method of claim 14, wherein:

said step of determining further includes determining if said instruction is
a population count instruction; and

said method further including the step of:

if said instruction is said population count instruction, determining in
parallel how many bits in said first data element are set to a predetermined value
and how many bits in said second data element are set to said predetermined

value.

19. The method of claim 14, wherein:

said step of determining further includes determining if said instruction is
one of a plurality of packed logical instructions; and

said method further including the step of:

if said instruction is a first of said plurality of packed logical instructions,
then logically ANDing together in parallel corresponding data elements from
said first packed data and said second packed data;

if said instruction is a second of said plurality of packed logical
instructions, logically ANDing together in parallel data elements from said first
packed data with the logical inversion of corresponding data elements from said
second packed data;

if said instruction is a third of said plurality of packed logical
instructions, logically ORing together in parallel corresponding data elements
from said first packed data and said second packed data; and

WO 97/08608 PCT/US96/11893

-103-

if said instruction is a fourth of said plurality of packed logical
instructions, logically exclusive ORing together in parallel corresponding data
elements from said first packed data and said second packed data.

20. The computer system of Claim 14, wherein said step of separately
shifting is performed as one of an arithmetic shift and a logical shift.

21. The computer system of Claim 14, wherein said step of separately
shifting is performed such that both said first data element and said second data
element are shifted in one of a rightward direction and a leftword direction.

22, The method of claim 16, wherein said first data element, said second data
element, said third data element, and said fourth data element each contain a
predetermined number of bits.

23. The method of claim 22, wherein said portion contains half of said
predetermined number of bits.

24. The method of claim 14, wherein said step of determining is performed
by a decoder.

WO 97/08608 104 PCT/US96/11893
AMENDED CLAIMS

Lreceived by the International Bureau on 01 November 1996(01.11.96);
original claims 1-24 cancelled, new claims 25-55 added,
other claims unchanged (8 pages)]

25. A processor comprising:

a storage area configured to contain a first packed data and a second packed
data respectively including a first plurality of data elements and a second plurality of data
elements, wherein each data element in the first plurality of data elements corresponds to a
data element in the second plurality of data elements;

a decoder configured to decode an instruction;

a first circuit, coupled to the storage area and the decoder, the first circuit
configured to simultaneously copy, in response to an unpack instruction, certain
corresponding data elements of the first and second plurality of data elements into the
storage area as a plurality of result data elements in a third packed data;

a second circuit, coupled to the storage area and the decoder, the second circuit
configured to simultaneously copy, in response to a pack instruction, a part of each data
element in the first and second plurality of data elements into the storage area as a plurality
of result data elements in a third packed data;

a third circuit, coupled to the storage area and the decoder, the third circuit
configured to simultaneously multiply, in response to a multiply instruction, each data
element of the first plurality of data elements with a corresponding data element of the
second plurality of data elements to generate a plurality of result data elements in a third
packed data, wherein each result data element includes only high order bits or low order
bits;

a fourth circuit, coupled to the storage area and the decoder, the fourth circuit
configured to simultaneously add, in response to an add instruction, each data element of
the first plurality of data elements with a corresponding data element of the second
plurality of data elements to generate a plurality of result data elements in a third packed
data;

a fifth circuit, coupled to the storage area and the decoder, the fifth circuit
configured to simultaneously subtract, in response to a subtract instruction, each data
element of the first plurality of data elements from a corresponding data element of the
second plurality of data elements to generate a plurality of result data elements in a third
packed data;

a sixth circuit, coupled to the storage area and the decoder, the sixth circuit
configured to simultaneously compare each data element in the first packed data against a
corresponding data element in the second packed data, and the sixth circuit further

AMENDED SHEET (ARTICLE 19)

WO 97/08608 PCT/US96/11893

105

configured to generate a packed mask having a plurality of mask elements, each mask
element representing a corresponding comparison, and each mask element includes a
plurality of bits all having either a first predetermined value or a second predetermined
value based on whether the corresponding comparison was TRUE or FALSE; and

a seventh circuit, coupled to the storage area and the decoder, the seventh
circuit configured to independently shift, in response to a shift instruction, each data
element of the first plurality of data elements by a shift count.

26. The processor of Claim 25 further comprising:

an eighth circuit, coupled to the storage area and the decoder, the eighth circuit
configured to simultaneously multiply, in response to a multiply-add instruction, each data
element of the first plurality of data elements with a corresponding data element of the
second plurality of data elements to generate a plurality of intermediate result data
elements, and simultaneously adding adjacent intermediate result data elements to generate
a plurality of result data elements in a third packed data.

27. The processor of Claim 25, further comprising a ninth circuit, coupled to the
storage area and the decoder, the ninth circuit configured to simultaneously generate, in
response to a population count instruction, a result packed data having at least a first and
second result data element, the first result data element representing a total number bits set
in a first data element of the first plurality of data elements, and the second result data
element representing a total number bits set in a second data element of the first plurality of
data elements.

28. The processor of Claim 25, further comprising:

a tenth circuit, coupled to the storage area and the decoder, the tenth circuit
configured to simultaneously logically AND, in response to a logical AND instruction,
each data element of the first plurality of data element with a corresponding data element
from the second plurality of data elements to generate a plurality of result data elements in
a third packed data;

an eleventh circuit, coupled to the storage area and the decoder, the eleventh
circuit configured to simultaneously logically AND, in response to a second logical AND

AMENDED SHEET (ARTICLE 19)

WO 97/08608 PCT/US96/11893

106

instruction, an inversion of the each element of the first plurality of data elements with a
corresponding data element from the second plurality of data elements to generate a
plurality of result data elements in a third packed data;

a twelfth circuit, coupled to the storage area and the decoder, the twelfth circuit
configured to simultaneously logically OR, in response to a logical OR instruction, each
data element of the first plurality of data elements with a corresponding data element of the
second plurality of data elements to generate a plurality of result data elements in a third
packed data; and

a thirteenth circuit, coupled to the storage area and the decoder, the thirteenth
circuit coupled to simultaneously logically OR, in response to a second logical OR
instruction, an inversion of each data element of the first plurality of data elements with a
corresponding data element of the second plurality of data elements to generate a plurality:
of result data elements in a third packed data.

29. The processor of Claim 25, wherein the seventh circuit is further
configured fill, in each data element, a shift count number of bits with zeros.

30. The processor of Claim 25, wherein the seventh circuit is further
configured to fill, in each data element, a shift count number of bits with a sign bit
for the respective data element.

31. The processor of Claim 25, wherein the first circuit is further
configured to simultaneously copy half of the data elements in the first plurality of
data elements and half of the data elements of the second plurality of data elements.

32. The processor of claim 31, wherein the corresponding data elements
copied from the first and second plurality of data elements are copied into the
storage area adjacent to each other as the plurality of result data elements.

33) The processor of Claim 32, wherein the first plurality of data elements

are copied in the same order as the first plurality of data elements appear in the first
packed data.

AMENDED SHEET (ARTICLE 19)

WO 97/08608 PCT/US96/11893
107

34) The processor of Claim 25, wherein the part of each data element
copied by the second circuit is either the low order bits or the high order bits of
each data element in the first and second plurality of data elements.

35) The processor of claim 34, wherein the parts of the first plurality of
data elements are copied into the third packed data adjacent to each other as the
plurality of result data elements.

36) The processor of claim 35, wherein the parts of the first and second
plurality of data elements are copied into the third packed data in the same order as
the first and second plurality of data elements appear in the first and second packed
data.

37) The processor of Claim 25, wherein the first and second plurality of
data elements each include two data elements, each data element representing
thirty-two bits.

38) The processor of Claim 25, wherein the first and second plurality of
data elements each include four data elements, each data element representing

sixteen bits.

39) The processor of Claim 25, wherein the first and second plurality of
data elements each include eight data elements, each data element representing
eight bits.

40) A processor comprising:

a first storage area configured to contain a first packed data having a first
plurality of data elements;

a second storage area configured to contain a second packed data having a
second plurality of data elements, each data element of the second plurality of data
elements corresponding to a different data element of the first plurality of data elements;

a decoder configured to decode an instruction, the instruction indicating a first
address corresponding to the first storage area, a second address corresponding to the

AMENDED SHEET (ARTICLE 19)

WO 97/08608 PCT/US96/11893

108

second storage area, a destination address corresponding to a third storage area, and an
operation to be performed on at least the first plurality of data elements;

a first circuit, coupled to the storage areas and the decoder, the first circuit
configured to copy in parallel, in response to an unpack instruction, certain corresponding
data elements from the first and second plurality of data elements into the third storage area
as a third plurality of data elements in a third packed data;

a second circuit, coupled to the storage areas and the decoder, the second
circuit configured to copy in parallel, in response to a pack instruction, a part of each data
element in the first and second plurality of data elements into the third storage area as a /
third plurality of data elements in a third packed data;

a third circuit, coupled to the storage areas and the decoder, the third circuit
configured to multiply in parallel, in response to a multiply instruction, each data element
of the first plurality of data elements with a different corresponding data element of the
second plurality of data elements to generate a third plurality of data elements in a third
packed data, wherein each data element of the third plurality of data elements includes only
high order bits or low order bits; :

a fourth circuit, coupled to the storage areas and the decoder, the fourth circuit
configured to add in parallel, in response to an add instruction, each data element of the
first plurality of data elements with a different corresponding data elements of the second
plurality of data elements to generate a third plurality of data elements in a third packed
data; '

a fifth circuit, coupled to the storage areas and the decoder, the fifth circuit
configured to subtract in parallel, in response to a subtract instruction, each data element
of the first plurality of data element from a different corresponding data element of the
second plurality of data elements to generate a third plurality of data elements in a third
packed data;

a sixth circuit, coupled to the storage area and the decoder, the sixth circuit
configured to compare in parallel, in response to a compare instruction, each data element
in the first packed data against a different corresponding data element in the second packed
data, and the sixth circuit further configured to generate a packed mask having a plurality
of mask elements, each mask element in the plurality of mask elements representing a
corresponding comparison generated by the sixth circuit comparing in parallel each data
element in the first packed data against a different corresponding data element in the
second packed data, each mask element in the plurality of mask elements including a

AMENDED SHEET (ARTICLE 19)

WO 97/08608 PCT/US96/11893

109

plurality of bits all having either a first predetermined value or a second predetermined
value based on whether the corresponding comparison was TRUE or FALSE; and

an seventh circuit, coupled to the storage areas and the decoder, the seventh
circuit configured to independently shift, in response to a shift instruction, each data
element of the first plurality of data elements by a shift count.

41) The processor of Claim 40 further comprising:

an eighth circuit, coupled to the storage areas and the decoder, the eighth
circuit configured to multiply in parallel, in response to a multiply-add instruction, each
data element of the first plurality of data elements with a different corresponding data
element of the second plurality of data elements to generate a third plurality of data
elements, and adding, in parallel, adjacent data elements in the third plurality of data
elements to generate a fourth plurality of data elements in a third packed data.

42) | The processor of Claim 41, further comprising a ninth circuit, coupled to the
storage areas and the decoder, the ninth circuit configured to generate in parallel, in
response to a population count instruction, a result packed data having at least a first and
second result data element, the first result data element representing a total number bits set
in a first data element of the first plurality of data elements, and the second result data
element representing a total number bits set in a second data element of the first plurality of
data elements.

43) The processor of Claim 42, further comprising:

a tenth circuit, coupled to the storage areas and the decoder, the tenth circuit
configured to logically AND in parallel, in response to a logical AND instruction, each
data element of the first plurality of data elements with a different corresponding data
element from the second plurality of data elements to generate a third plurality of data
elements in a third packed data;

an eleventh circuit, coupled to the storage areas and the decoder, the eleventh
circuit configured to logically AND in parallel, in response to a second logical AND
instruction, an inversion of each data element of the first plurality of data elements with a

AMENDED SHEET (ARTIGLE 19}

WO 97/08608 PCT/US96/11893
110

different corresponding data element from the second plurality of data elements to generate
a third plurality of data elements in a third packed data;

a twelfth circuit, coupled to the storage areas and the decoder, the twelfth
circuit configured to logically OR in parallel, in response to a logical OR instruction, each
data element of the first plurality of data elements with a different corresponding data
element of the second plurality of data elements to generate a third plurality of data
elements in a third packed data; and

a thirteenth circuit, coupled to the storage areas and the decoder, the thirteenth
circuit coupled to logically OR in parallel, in response to a second logical OR instruction,
an inversion of each data element of the first plurality of data elements with a different
corresponding data element of the second plurality of data elements to generate a third
plurality of data elements in a third packed data.

44) The processor of Claim 40, wherein the seventh circuit is further
configured to logically shift in parallel, in response to a logical shift instruction,
each data element of the first plurality of data elements, wherein a shift count
number of bits in each data element is filled with zeros.

45) The processor of Claim 40, wherein the seventh circuit is further
configured to independently perform an arithmetic shift in parallel, in response to a
arithmetic shift instruction, on each data element of the first plurality of data
elements, wherein a shift count number of bits in each data element is filled with a
sign bit for the respective data element.

46) The processor of Claim 40, wherein the first circuit is further
configured to copy in parallel, in response to the unpack instruction, half of the
data elements in the first plurality of data elements and half the data elements of the
second plurality of data elements.

47) The processor of claim 46, wherein corresponding data elements
copied from the first and second plurality of data elements, by the first circuit are
placed adjacent to each other, into the third storage area as the third plurality of
data elements.

' AMENDED SHEET (ARTICLE 19)

WO 97/08608 PCT/US96/11893

M

48) The processor of Claim 47, wherein each of the first plurality of data
elements copied, by the first circuit, are copied into the third packed data in the
same order as the first plurality of data elements appear in the first packed data.

49) The processor of Claim 40, wherein the part of each data element
copied, by the second circuit, is half of the bits in each data element in the first and
second plurality of data elements.

50) The processor of Claim 49, wherein the part of each data element
copied, by the second circuit, is either the low or the high order bits of each data
element in the first and second plurality of data elements.

51) The processor of Claim 50, wherein the parts copied from data
elements in the first plurality of data elements, by the second circuit, are placed
adjacent in the third plurality of data elements.

52) The processor of claim 51, wherein the parts copied from the first and
second plurality of data elements are copied into the third packed data in the same
order as the first and second plurality of data elements appear in the first and
second packed data.

53) The processor of Claim 40, wherein the first and second plurality of
data elements each include two data elements, each data element representing
thirty-two bits.

54) The processor of Claim 40, wherein the first and second plurality of
data elements each include four data elements, each data element representing
sixteen bits.

55) The processor of Claim 40, wherein the first and second plurality of

data elements each include eight data elements, each data element representing
eight bits.

AMENDED SHEET (ARTICLE 13)

PCT/US96/11893

Packed Subtract Operation
Packed Multiply Operation
Packed Shift Operation
Packed Compare Operation
Multiply-Add/Subtract Operations
Population Count Operation
Logical Operations

(AND, ANDN, OR, XOR)

170

150

Processor 109

Computer System100

WO 97/08608
1/30
_________________ -
! |
' Mai D
) ain ata Storage |
Display | Memory ROM Device
Dcv1cc12] 104 106 107 !
! |
S S S R
Input 1 Bus |
Device 122 EE 101 |
! |
! |
Cursor |
Control 123 |
' Cache]
| 160 |
Hard Copy ! I
Device |
124 I
| |
I Decoder |
Sound I 165
Recording and |
Playback | |
Device | X
125 Execution Unit |
l S~ 130 |
|
Packed Instruction Set 140 |
Vid ! '
ideo
Pt o | et Regisr |||
126 Packed Add Operation File |
| Internal Bus |
! |
! |
' |
! l
| |
| |
| |
! |
| |

SUBSTITUTE SHEET (RULE 26)

WO 97/08608 PCT/US96/11893

2/30
Register File
» 150
Registers
209
Rp 212a
R1 212b
R2 2129 (Integer
. Registers
R 201
[Fi
Rz 212h . gur e 2
........... Instruction
63 0 .
Pointer
Register
211
Status
Registers
208

Receive and Decode Instruction
301

'

Access Register File or Memory
302

Y

Enable Execution Unit with

Operation Fi g u I'e 3

303

!

Store Result in Register or
Memory
304

WO 97/08608 PCT/US96/11893

3/30
63 5655 4847 4033 3231 2423 1615 87 0
Byte7| Byte6| Byle5| Byte4| Byte3 Byte2| Byte1| Byte0
Packed Byte 401
63 4847 . 3231 1615 0
Word 3 Word 2 Word 1 Word 0
Packed Word 402
63 3231 0
DoubleWord 1 DoubleWord 0
Packed DoubleWord 403
Figure 4
63 5655 4847 4033 3231 2423 1615 87 0
bbbb bbbb [bbbb bbbb fbbbb bbbb [bbbb bbbb [bbbb bbbb | bbbb bbbb|{bbbb bbbb |bbbb bbbb
Unsigned Packed Byte In-register Representation 510
63 56 55 4847 4039 3231 2423 1615 87 0
‘ﬁb bbbb lsbbb bbbb lsbbb bbbb [sbbb bbbb |sbbb bbbb | sbbb bbbb Isbbb bbbb lsbbb bbbb
Signed Packed Byte In-register Representation 511

Figure 5a

PCT/US96/11893

WO 97/08608

4/30

oG aInbi4

G1G uonejuasaiday Jaisibai-u| piomajgnoq paxoed paubis

PPPP PPPP PPPP PPPP PPPP PPPP PPPP PPPS

PPPP PPPP PPPP PPPP PPPP PPPP PPPP PPPS

0 leee £9
1§ uonejussaiday Jajsibal-uj piomajgnoq paxoey paubisup
PPPP PPPP PPPP PPPP PPPP PPPP PPPP PPPP PPPP PPPP PPPP PPPP PPPP PPPP PPPP PPPP
0 1E €€ €9

qs ainbi4

€1 uojiejuasaiday Js)sifiai-uj piopp payord paubig

MMMM MMMM MMMM MMMS | MMM MMMM MMMM MMMS

MMMM MMMM MMMM MMMS | MMM MMMM MMMM MMMS

0 G191 Ze€e Ly 9 €9

21§ uopejuasaiday Jaisibal-uj piops paxoed paubisupn

MAMM MMMM MMM MMMM | MMMM MMMM. MMMM MMM

MMMM MMM MMMM MMM | AMMM MMAMM MMM MMM

Gi 91 cEEe lv8y £9

PCT/US96/11893

5/30

WO 97/08608

qg ainbi4

(09 1S30Q)
£09 20HS

(509 1s30)
209 1OHS ¢9S’ 1191 oENm 109 dO

Y

eg ainbi4
moohwwo /%

109

0

Ob LI 2l El¥l

G¢9¢

WO 97/08608

6/30

PCT/US96/11893

Decode Control Signal

701

v

Access Register File, SRC1 & SRC2
2

v

Enable Execution Unit with a Packed Add Operation
(Size, Sign, HighlLow)
703

8 bits

Result[7:0] = Source1[7:0]
add to Source2[7:0]

Result{15:8] = Source1[15:8]
add to Source2[15:8]

Result[23:16] = Source1[23:16)
add to Source2[23:16)

Result[31:24] = Source1[31:24)
add to Source2[31:24)

Result[39:32] = Source1[39:32)
add to Source2[39:32)

Result[47:40] = Source1[47:40
add to Source2{47:40]

Result[55:48] = Source1[55:48)
add to Source2[55:48)

Result[63:56) = Source1[63:56)
add to Source2[63:56]

7053

I

16 bits

Result[15:0] = Source1[15:0)
add to Source2{15:0)

Resut[31:16) = Source1[31:16)
add to Source2[31:16)

Result[47:32) = Source1[47:32)
add to Source2(47:32)

Result[63:48] = Source1[63:48]
add to Source2[63:48)

705

v

Store Result in DEST Register

Figure 7a

WO 97/08608 PCT/US96/11893

7/30

Decode Control Signal
710

v
Access Register File, SRC1 & SRC2
m

v

Enable Execution Unit with a Packed SubtractOperation
(Size, Sign, HighiLow)
712

Result[15:0) = 2's Complement
Source2{15:0)
Result{7:0] = 2's Complement Source2[7:0) 481 = o
Resut(5:8] = 2's Complement Source2[15:3] “eS“"[3g;ﬁl;eg[g,c.fg;’f"em‘*“‘
Fl:esu'lt[[23:1 6] = 2's Complement Source2(23:16) '
esult[31:24] = 2's Compiement Source2[31:24) 0] = O
Result[39:32) = 2's Complement Source2[39:32) ”es""[“g;f,ﬁ],cé;fgg}p'e'"e”t
gesult[47:401 =2's Complement Source2[47:40] ’
esult{55:38] = 2's Complement Source2[55:48] 48] = O
Resut[63:56] = 25 Complement Source2(63:56] “es“'““%iﬁ’,ceﬁ[;g:;’;P fement
7143 i
v v

Result[7:0) = Source1[7:0] add to Source2[7:0] Resut(15:0} = Source1[15:0]

Resul[15:8] = Source1[15:8] add fo Source2{15:] addto Source2]15:0]
Result{31:16) =
Source1[31:16) add to
Source2{31:16)

Result[23:16) = Source1{23:16] add to Source2[23:16)
Result[31:24] = Source1[31:24] add to Source2(31:24]

Result[47:32) =
Resul{39:32) = Source1[39:32] add to Source2[39:32] Sourcel [oo o

Source2{47:32
Result}47:40) = Source1 [47:40) add to Source2[47:40) ource2[47:32]

Result[63:48) =
Result[55:48] = Source1[55:48] add to Source2[55:48) Source1[63:48) add to

Source2[63:48
Result/53:56) = Source1(63:56] add to Source2[63:56] 715{,]

715a

I |
v

Store Result in DEST Register
716

Figure 7b

WO 97/08608

PCT/US96/11893

8/30
'/" 800
803
Operation and Carry Control
809~ 809a—
Control;, 1 Control;
811
808b Packed Data
CouT;, 4 Enable
8045 §Q4_§
Sourcelj,q oyreel;
b 53
Soyrce2;, 4 Sec')%:ezi
808a
Co T;
801 801a -
802
Bit
Adder/Subtractor Control Adder/Subtractor
|
| 807
i’ CiNy 8072
808a~_~ a
B_@\/\ Resulti C'Ni
Resulti +1 l

Figure 8

PCT/US96/11893

WO 97/08608

9/30

606 Snd
nsa
T T 1
B016 q0i6 016
H31SID3IH 1INS3H H31SI93H 1INS3Y H31SI93H 11NS3Y
009 209 809 S19 919 £eq
€06 1NO qz06 1NO 906 1NO
1NS3y 1Ins3y 1Ins3y
2806 3806 3806
HOLOvd18NS/H3aav HOLOVHLIaNS/H3aqy HO1OvH1ansH3aay
e906 BG06 By06| | 9906 qS06 qp06 | | 9906 9506 3%06
Nl eainog Nigaainos 1419 | Nipaainog Nigaamog 1y 10| |NliaainogNigaoinog 419

I

1

B

]

4

l
H31S1934 1INS3d

S5q £99

yz06 1IN0
11ns3y

4806
HO1dvdians/d3aaav

4906 Us06 up0s
Nljaainog Nizaoinog 419

|

(a2
=1
(=2}

{6
—— —o— —e — >55 SNA gaoinos
o— L — ¢ o5 SNd tedinog
Ti5 "
M1 INOVd
JOHINOD NOILVHIJO m 9ihn m _ m

PCT/US96/11893

WO 97/08608

10/30

606 Sng

Jinsay
20101 H31SID3H 1INS3H qoror H31SI934 1INS3H 0101 H31SI93Y 17INS3Y
IVNLHIA IVNLYHIA IVNLHIA
519 919 1eq 81q £99
B/00I 1n017NS3H 4001 1NO 1INS3y PZ00F 1NO 17INS3H
€8001 HOLOvH18NS/H3aav G800T HOLOVHLANSM3IaQY PBOOT HOLOVH1ans/MIaay
IVNLHIA IYNLHIA IVALHIA
5007 By001 | | G001 5007 avoor P900T 0 pro0T
Nhysainog Nigeainog 10 | [Nijsainog Nizaainog 1410 Nijaainog zmmsﬁﬁ, Bl
{Hf fr 205 SNa zeainog
lr —— T SNg 18a1nog
Ti6
L GINOVd m
T0HINOD NOILYHIJO c _. * l
€06

PCT/US96/11893

WO 97/08608

11/30

606 Snd
< s
2OTTT ¥31S1934 1INS3H 11T H3LSI93Y 1INS3H
IVALHIA IVALHIA
009 1€9 2eq £99
e/0[F 1nO1InS3H 40if 1no11NsS3d
HO1Ovd18ns/d3aay HOLOvHi8NS/H3aay
egoti IVALHIA q80t } TVNLHIA
eg01 1 g0l Ep0LL q30Li qsot) avol1
Nlja2inog Nizaoinog 10| |Nljsonog Nigaoinog 10
T 506 SNA ZeaInog

o)
[=2)

116
10 G3xnovd

TOHINOO NOLLYH3dO

o5 SNa oo

L1 @inbl4

WO 97/08608

12/30

Decode Control Signal
1201

v

Access Register File, SRC1 & SRC?
122

v

Enable Execution Unit with a Packed Multiply Operation

(Size, Sign, HighlLow)
1203

Result[7:0] = Source1[7:0)
muttiply by Source2[7:0]

Result[15:8) = Sourcet {15:8]
multiply by Source2{15:8)

Result[23:16] = Source1[23:16)
multiply by Source2[23:16]

Result{31:24] = Source1[31 :24)
multiply by Source2[31:24)

Resull[39:32] = Source1[39:32)
multiply by Source2[39:32)

Result[47:40) = Source1[47:40)
multiply by Source2[47:40)

Result[55:48] = Source1[55:48)
multiply by Source2[55:48)

Result[63:56] = Sourcet [63:56)
muttiply by Source2[63:56)
1212

PCT/US96/11893

Result[15:0) = Source1[15:0)

muttiply by Source2[15:0]

Result[31:16] = Source1[31:1 6]
muttiply by Source2(31:16)

Result[47:32) = Source1[47:32)
multiply by Source2[47:32)

Result[63:48) = Source1[63:48]
multtiply by Source2[63:48)

1214

L

Store Result in DEST Register
20

Figure 12

PCT/US96/11893

WO 97/08608

13/30

¢l ainbig

aesa
06€1
[o:eghinsey 7
9
1864
26 9jqeu3 piom|aig 2761
| 1815162y Jinsay ¢ laisibey ynsay
10€} e}
sdninp piom pasoed Jaydninyy eg paoey
al ot af P g 8 ¥ 8 1T
0Sel ISEl el £5€1 09€) L9€1
N XN XN EXW pXI FIXW
S S 2 xf o ok
0igl el el giel el 1264
v ®iduny [—| g seuduinpy ow_am_.._:z — Q4audynpy v sendningy |— H saidinyy
91X9} 91x9} 19} 91x94
_ | ; " “ _ esr 88
|
06ET
sjqeuy
a8} moybi
1EE1 WYOIH
_EEEL [0:89]130un0g oiqeuzubig £eel [0:£9]199un0g
[0:€9]za0un0g [0:€9]zeinog
00€!

louog uonessdp

S96/11893
WO 97/08608 PCTAU

14/30

Decode Control Signal
1401

'

Access Register File, SRC1 & SRC2
1402

'

Enable Execution Unit with the
Decoded Instruction)
1403 *

Multiply-Add ultiply-Subtract

Result[31:0] = (Source1 [15:0]

muitiply by Source2]1 5:0))+

(Source1[31:16) multiply by
Source2[31:16))

Result[31:0] = (Source1 [15:0]

multiply by Source2{15:0}) -

(Source1[31:16) multiply by
Source2[31:16))

Result[63:32) = (Source1[47:32)

multiply by Source2[47:32))+
(Source1[63:48) multiply by
Source2[63:48))

1414

Result|63:32] = (Source1 [47:32)
multiply by Source2[47:32]) -
(Source1[63:48) multiply by

Source2[63:48))

1415

Store Result in DEST

Figure 14

PCT/US96/11893

15/30

WO 97/08608

m —. ¢.— n m _m aa%ﬂ%m.'%

126} 19isibay ynsey
¥9
\\
AN €
\\
0581 414 !
010VH18NS/HIAAY VNLHIA |HO10VH18NS/AHIAAY TVNLHIA
ce 43 2¢ 43
0I1St HIGI mpw— mrmw
v ssidinpy g saydyinpy 0 leydynpy @ Jandiiny
10S1 HOLOVHLANS/AHIAAV-ATdILINN QINOV ~ 91x94 91x91 g1x91 91x9}
— [I _
0851 8jqeu]
£e41 LEG1L
[0:69]28am0g [0:p9)4301n0g
0051

jo5juoy uopesadp

WO 97/08608 16/30 PCT/US96/11893

Decode Control Signal
1601

v

Access Register File, SRC1 & SRC2
1602

v

Enable Execution Unit with Packed Shift Operation
(Size, Type of Shift, and Direction of Shift)

1603
Byte Word
Result[7:0] = Source1[7:0)
shift by Source2[63:0]
Result[15:8] = Source1[15:8]
shift by Source2[63:0]

Result[23:16] = Source1{23:16) Result[15:0] = Source1[15:0]
shift by Source2[63:0] shift by Source2[63:0]
Result[31:24] = Source1[31:24] Result[31:16] = Source1[31:16]
shift by Source2[63:0) shift by Source2[63:0]
Result[39:32] = Source1[39:32] Result[47:32] = Source1[47:32)
shift by Source2[63:0] shift by Source2[63:0]
Result[47:40] = Source1[47:40] Result[63:48] = Source1[63:48]
shift by Source2[63:0] shift by Source2[63:0]
Result{55:48] = Source1[55:48] 1614

shift by Source2{63:0]
Result[63:56] = Source1[63:56]
shift by Source2[63:0]
1612

I

v

Store Result in DEST
1620

Figure 16

SUBSTITUTE SHEET (RULE 26)

PCT/US96/11893

WO 97/08608

17/30

9Lk -
[0:e9hnsay <+ I I
1SL1)
uaysibay ynsey FHuosibay ynsay
| labejg ﬂ
30)iS alkg
V11 Lt 02Ll bLLL €LL1
labeig 1seq fwin ums ‘abe)g fonuo) ug Hhun yus Hlabeig pon
XoN 2LLh
ﬁ Habeig [
Se
L S 1
01
Yooy 9044 20/} celh
ELL bigeuz Hlonuon HYa0inog
fLaainog eleq
PaYoEq geLl
[o:eglesoinog
s

—1-

L1 ainb4

‘T

0021
jouo) uogesadp

WO 97/08608 PCT/US96/11893

18/30

Decode Control Signal
1801

v

Access Date at SRC1 & SRC2
182

Y

Enable Exscution Unit with a Pack Operation
(Size, Saturation, Signed)
1803

Doubleword

Resull[7:0] = Source1[7:0]
or Saturate

Result{15:8] = Source1]23:16)
or Saturate

Result[23:16] = Source1[39:32) Result[1g:r0]s=a$<::trge1[150]
or Saturate

Result[31:24] = Source1 [48:55] Resul[31 :relszac::{:eun:sz]
or Saturate

Result[39:32] = Source2[7:0] Result[4'/;:?2g ;E&%CGZHS:O]
or Saturate

Resulf47:40) = Source2{23:16] Resulfoa:48] - Source2i47.32)
or Saturate
Result[55:48] = Source2[39:32) 1814

or Saturate

Result{63:56] = Source2[63:56)
or Saturate

1812
L
v
Store Result at DEST
180

Figure 18

PCT/US96/11893

e6L 2inbi4

0964 2e61
[0:c9lunsay a|qeuy
A\\\ ndino

WO 97/08608

19/30

%mm—
lgjsibay ynsay \4
0L | 851 J9Le2|ve1efee6Ej0p-Ly | 8195 95:€9 Le61
d|qeuy
indinQ
0061
onuo) uoneiadp
0161 1161 ci6l £i6l ¥i61 Gi61 9i61 L6l
®| sjeinjes | sjeinjeg ajeinjes |— sjeinjeg ajeinjes t+—{ ejeinjes ajeinjeg ajeinjes l.A'
Isa| Isal 1oL I1s9] Isal Is8j s8] I1s9]
I _ - oes8 -
_ _ _ _ ajqeuy
.) . ajeinjes
[0:G4]180M08 [91:1€]180un05 e S:mp_:om [sp:e9livomnos [p:Gijgeninog —”_m_mhwosom e Ew_quom [8v:e9lzeninog 1581

PCT/US96/11893

h— m —. @.— = m _n— _oum%_n_w_rom

WO 97/08608

20/30

— -©

€561
saysibey ynsay Y @
: : . 2e6}
oie | zew | eveo s1gEL N0
9 9 9%
0251 Ie6l 6t €261
ajeinjeg ajeinjes ajeinjeg ajeinjes v
Ise} i8] 19} {s9] / :
0e8
_ _ | | aiqeu3
. ajeinjeg
[o:1€]400un0g [ee-e9]1021n05 [0:1€Jzaainog [ee-e9lzeoinog 181

WO 97/08608

21/30
Decode Control Signal
2001
L4
Access Date at SRC1 & SRC2
2002
Enable Execution Unit with an Unpack Operation
{Size)
2003
Doubleword
Result(7:0] =
Source1[7:0]
Result|15:8] = ¢
Source2(7:0) lgesulth 5:0) =
ource1[15:0
Resul23:16] = Hree1(15:0)
Source1[15:8] Rsesult[31:16]= Result[31:0] =
e2[15:0 K
Resul[31:24] ource2[15:0] Source1{31:0]
Source2[15:8] Hsesun[417:32] = Result/63:32) =
ource1[31:16 :
Resul{39:32) = urce1{31:16) Source2[31:0] ,
Source1[23:16] Rsesult{63:48] = 2016
2[31:1
Result[47:40] = ource2(31:16]
Source2[23:16) 2014
Result[55:48) =
Source1[31:24]
Result{63:56) =
Source2[31:24)
2012
|

Store Result at DEST
2020

PCT/US96/11893

Figure 20

PCT/US96/11893

WO 97/08608

22/30

00ile
jojuo) uoyesadp

cEle
biqeus Inding ¢

0912
[o:eglinsay
Vel
8|qeud jndinp
512
lg)sibay ynsay
0l _ 2669 £E1Z
_ _ 8|qeu3 indinQ
£s1e
[0:1€]19in0g [0:1glza0unog 19)sibay ynsay /JP’
st | oe [@ [eves
I
[0:51]1801n0g ! cate

[94:1€]180un0g

1aisibay ynsay

: 90IN0
[0:51]zeomnog [91:1g)ze0in0g

0L

851 |ovee]veiie]eeee]orsv] eves]oseo

—. N m‘— = m _ m [0:2]4801m0g

[8:51]1301n0g [I94:€2)) 801008

[¥2:1€]1801n0g

[0:20zeomos [giGilgeoinog [9):€2lzaoinog

[¥e:1€lzaoinog

WO 97/08608 PCT/US96/11893

23/30

Decode Control Signal
2201

I

Access Register File, SRC1
20

'

Enable Execution Unit with a Population Count Operation
(Size, Sign, HighiLow)
2203

l

Result{15:0}=Total Number of Bits
in Source1[15:0] set to one

Result{31:16)=Total Number of Bits
in Source1(31:16) set to one

Result[47:32}=Total Number of Bits
in Source1[47:32) set to one

Result[63:48]=Total Number of Bits
in Source1[63:48] set to one
2205

!

Store Result in DEST Register
206

Figure 22

WO 97/08608

24/30

v

v

v v

PCT/US96/11893

Generate CSum1a, | |Generate CSumib, | |Generate CSumic, | |Generate CSumid,
CCarry1a from: CCarry1b from: CCarry1c from: CCarry1d from:
Source1 45, Source1 4y, Source1, Source1, Sourcetp,
Sourcet 44, Source1 19, Sourcetg, | [Source1g, Sourcets, | | Sourcety, and
Source1 43, and and Source1 g and Source1)
Sourcet Source14

2310a 2310b 2310c 2310d

L | L |
v v

Generate CSumza,
CCarry2a from:

2320a

CSumta, CCarryta,
CSum1b, CCarry1b

L

Generate CSum2b,
CCarry2b from: CSumic,
CCarryic,

CSum1d, CCarrytd

2320b

|

v

Generate CSum3 and CCarry3 from:
CSum?a, CCarry2a, CSum2b, and

CCarry2b
2330

v

Resulty. = Add CSum3 + CCarry3

Fiesult1 5.5=0
2340

Figure 23

PCT/US96/11893

WO 97/08608

25/30

L0ve

60¥¢ Snd ,
Iinsoy ¢ mw [4[
009 914 SI9 919 9 189 269 9 W9 gyq 91 4 £99
| e/0p2 1N0 q:0v2 1NO 30y 1IN0 pLo¥¢ INO
1Ins3y 17NS34 1Ns3y 1Ins3y
eg0be q80¥¢ 9806 peove
1INOHIO INDdOd 1INOHIO INOdOd 1INJHID INOdOd LINDHID INOdOd
€30%2 eb0be | |Q90V2 Qvove | | 39012 5v0pC 90v2
NI soinog 9jqeu3| . (Nljaainog digeu3| [Nljaoinog alqeu3 h:mosow W_Mwww
9l A\ 9L { 91 { 9L £
— —— —— v
¥9
£0ve
0Jju —
onod 1§74
TOHINOD NOILYHIdO

SNg 18dinos

y¢ @inbi4 |

PCT/US96/11893

WO 97/08608

26/30

gt
-
B/0¥¢ 1N0 11NS3Y

e30y¢

Jnllwwl 5z uigle
0 wn u g
1N0°1INS3H waw v - - _\ "
«— | 00 uwe———T A0 a0 Gl Q._sm_ -
rinolnsad | ___ VSO 2<-p
055¢ v4 oup julzu gyl
W= | t
Sy A— |
SStinotinsy ¢ L Pe X re
2ano 1o O JALLe)
®025¢ q025e
VSO 2<-v VS 2<-b
oul Ul gul gy 0ul LU 2u gy
¢ N\\ ¢ N\
2ino Lo aing L0 2o g 20 1o
®0IGe q01G¢ 30152 poISe
VSO e<-b VSJ 2<b VS Z<-b VSO 2<-p
oul Ul u gy oul Ly gup gy oul 1 gul gy oul Ul gup gy
Oni NI NI 9N 8N Y] Cin LY
INI ENI SNI 2] 6Ni FENI ENI Shni

0-S1 Ntpaoinog

WO 97/08608

27/30

Decode Control Signal

2601

'

Access Register File, SRC1 & SRC2

2602

'

Enable Execution Unit with the selected one of
the AND, ANDN, OR, and XOR logical

2603

'

Logical Operation

2610
ANDN XOR

PCT/US96/11893

OR

'

Result[63:0] = Result{63:0] =
Source1[63:0] Source1[63:0]
AND with . OR
Source2[63:0] Result[63:0] = Result{63:0] = Source2[63:0]
) Source1[63:0]
2612 Not (Source1[63:0]) XOR
. 2
AND Source2[63:0] Source2[63:0] 615
2613 2614
Store Result in DEST
2620

SUBSTITUTE SHEET (RULE 26)

PCT/US96/11893

WO 97/08608

28/30

L¢ ainbi4

[0:g9linsay

¥9
\\

1642
lgjsibay ynsay

1 2]
\\

104¢

In241] suoljesad() jeoibio

v 2
\\ \\

-

I
08¢ saur] _o::oc\

00s2

Jojuog uoyesadp

£€L2
[o:g9]zaainog

1622
lo:egjisamog

WO 97/08608

PCT/US96/11893

29/30

Decode Control Signal
2801

v

Access Register File, SRC1 & SRC2
2802

v

Enable Execution Unit with a Compare
Operation (Size, Céongpare Relationship)
80

Result[7:0] = Source1[7:0]
compare with Source2[7:0)

Result[15:8) = Source1[15:8)
compare with Source2(15:8]

Result[23:16} = Source1{23:16)
compare with Source2[23:16]

Result[31:24) = Source1[31:24]
compare with Source2[31:24]

Result[39:32) = Source1[39:32)
compare with Source2]39:32]

Result[47:40] = Source1[47:40)
compare with Source2[47:40]

Result[55:48) = Source1[55:48)
compare with Source2|55:48]

Result{63:56} = Source1(63:56)
compare with Source2[63:56]

2812

|

Result[15:0} = Source1[15:0]
compare with Source2[15:0]

Result{31:16] = Source1[31:16)
compare with Source2(31:16]

Result[47:32] = Source1[47:32)
compare with Source2{47:32]

Result63:48) = Source1[63:48)
compare with Source2(63:48]

2814

v

Store Result in DEST

Figure 28

PCT/US96/11893

WO 97/08608

30/30

096¢

[0:eglinsey Jm_

166¢
Lig)sibay ynsay

S

256¢
Hhaisibay ynsay

£L6¢

6
J 6662
labeig
89S auig
ase cl6e L16¢ 0c6e LL6C
labeig 1se hun asedwon _mmmwmw Yfonuon g 2162 Hun asedwor blabeig xaN
H N«
_xm-m Hlabeg
i1seq
1062 [_\
honuoy | 7| & 9062 26z | % e & e
le6e oiqeu Honuog | Hjaoinog
}jeoinog £€62 ejeq Hzaoinog
Izaoinog payoed
62 9inb14
-

jonuo) uoneiadp

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/11893

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOGF 7/00, 7/38, 7/52, 1/50, 9/30
US CL :364/715.08, 736, 757, 769, 784; 395/375

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
US. : 364/715.08, 736, 757, 769, 784, 725, 726, 749, 754, 758, 760; 395/375

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS

Search terms: packed, data, pack, unpack, add, compare, shift, multiply

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y MC88110UM/AD Second Generation-RISC Microprocessor| 1-24
User’s Manual, September 1992, pages 1-1 through 1-23, 5-
1 through 5-25 and 10-62 through 10-71.
Y US, A, 4,985,848 (PFEIFFER ET AL) 15 January 1991, Cols.| 1-24
38-57 and Figs. 15-29.
A US, A, 4,811,269 (HIROSE ET AL) 07 March 1989, Abstract| 1-24
A US, A, 5,126,964 (ZURAWSKI) 30 June 1992, Abstract. 1-24
A US, A, 5,001,662 (BAUM) 19 March 1991, Abstract. 1-24

Further documents are listed in the continuation of Box C.

D See patent family annex.

. Special categories of cited documents:

At documentdefining the general state of the art which is not considered
to be part of particular relevance

earlier document published on or after the international filing date

document which may throw doubts on priority claim(s) or which is
cited to blish the publication date of another citation or other

T later d

published after the i | filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

°X* document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

reaso ‘Y document of particular relevance; the claimed invention cannot be
opecial " (e upecd"ed) considered to involve an inventive step when the documcnl is
0" document referring W an oral disclosure, use, exhibition or other combined with one or more other such d such bi
means being obvious to a person skilled in the art
"p* document published prior to the international filing date but later than < g+ document member of the same patent family
the priority date claimed

Date of the actual completion of the international search

04 SEPTEMBER 1996

Date of mailing of the international search report

27 SEP19%

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

uthorized officer o

e

(703) 305-3800

Wl

&
A CHUONG D. NGO
Telephone No.

Form PCT/ISA/210 (second sheet)(July 1992)x

INTERNATIONAL SEARCH REPORT International application No.
PCT/US96/11893

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A US, A, 4,760,545, INAGAMI ET AL) 26 July 1988, Abstract.

1-24

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

	Abstract
	Bibliographic
	Description
	Claims
	Amendment
	Drawings
	Search_Report

